1 //===-- NativeProcessLinux.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "NativeProcessLinux.h"
10 
11 #include <errno.h>
12 #include <stdint.h>
13 #include <string.h>
14 #include <unistd.h>
15 
16 #include <fstream>
17 #include <mutex>
18 #include <sstream>
19 #include <string>
20 #include <unordered_map>
21 
22 #include "NativeThreadLinux.h"
23 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
24 #include "Plugins/Process/Utility/LinuxProcMaps.h"
25 #include "Procfs.h"
26 #include "lldb/Core/ModuleSpec.h"
27 #include "lldb/Host/Host.h"
28 #include "lldb/Host/HostProcess.h"
29 #include "lldb/Host/ProcessLaunchInfo.h"
30 #include "lldb/Host/PseudoTerminal.h"
31 #include "lldb/Host/ThreadLauncher.h"
32 #include "lldb/Host/common/NativeRegisterContext.h"
33 #include "lldb/Host/linux/Host.h"
34 #include "lldb/Host/linux/Ptrace.h"
35 #include "lldb/Host/linux/Uio.h"
36 #include "lldb/Host/posix/ProcessLauncherPosixFork.h"
37 #include "lldb/Symbol/ObjectFile.h"
38 #include "lldb/Target/Process.h"
39 #include "lldb/Target/Target.h"
40 #include "lldb/Utility/LLDBAssert.h"
41 #include "lldb/Utility/State.h"
42 #include "lldb/Utility/Status.h"
43 #include "lldb/Utility/StringExtractor.h"
44 #include "llvm/ADT/ScopeExit.h"
45 #include "llvm/Support/Errno.h"
46 #include "llvm/Support/FileSystem.h"
47 #include "llvm/Support/Threading.h"
48 
49 #include <linux/unistd.h>
50 #include <sys/socket.h>
51 #include <sys/syscall.h>
52 #include <sys/types.h>
53 #include <sys/user.h>
54 #include <sys/wait.h>
55 
56 // Support hardware breakpoints in case it has not been defined
57 #ifndef TRAP_HWBKPT
58 #define TRAP_HWBKPT 4
59 #endif
60 
61 using namespace lldb;
62 using namespace lldb_private;
63 using namespace lldb_private::process_linux;
64 using namespace llvm;
65 
66 // Private bits we only need internally.
67 
68 static bool ProcessVmReadvSupported() {
69   static bool is_supported;
70   static llvm::once_flag flag;
71 
72   llvm::call_once(flag, [] {
73     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
74 
75     uint32_t source = 0x47424742;
76     uint32_t dest = 0;
77 
78     struct iovec local, remote;
79     remote.iov_base = &source;
80     local.iov_base = &dest;
81     remote.iov_len = local.iov_len = sizeof source;
82 
83     // We shall try if cross-process-memory reads work by attempting to read a
84     // value from our own process.
85     ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
86     is_supported = (res == sizeof(source) && source == dest);
87     if (is_supported)
88       LLDB_LOG(log,
89                "Detected kernel support for process_vm_readv syscall. "
90                "Fast memory reads enabled.");
91     else
92       LLDB_LOG(log,
93                "syscall process_vm_readv failed (error: {0}). Fast memory "
94                "reads disabled.",
95                llvm::sys::StrError());
96   });
97 
98   return is_supported;
99 }
100 
101 namespace {
102 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) {
103   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
104   if (!log)
105     return;
106 
107   if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO))
108     LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec());
109   else
110     LLDB_LOG(log, "leaving STDIN as is");
111 
112   if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO))
113     LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec());
114   else
115     LLDB_LOG(log, "leaving STDOUT as is");
116 
117   if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO))
118     LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec());
119   else
120     LLDB_LOG(log, "leaving STDERR as is");
121 
122   int i = 0;
123   for (const char **args = info.GetArguments().GetConstArgumentVector(); *args;
124        ++args, ++i)
125     LLDB_LOG(log, "arg {0}: '{1}'", i, *args);
126 }
127 
128 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) {
129   uint8_t *ptr = (uint8_t *)bytes;
130   const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
131   for (uint32_t i = 0; i < loop_count; i++) {
132     s.Printf("[%x]", *ptr);
133     ptr++;
134   }
135 }
136 
137 void PtraceDisplayBytes(int &req, void *data, size_t data_size) {
138   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
139   if (!log)
140     return;
141   StreamString buf;
142 
143   switch (req) {
144   case PTRACE_POKETEXT: {
145     DisplayBytes(buf, &data, 8);
146     LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData());
147     break;
148   }
149   case PTRACE_POKEDATA: {
150     DisplayBytes(buf, &data, 8);
151     LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData());
152     break;
153   }
154   case PTRACE_POKEUSER: {
155     DisplayBytes(buf, &data, 8);
156     LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData());
157     break;
158   }
159   case PTRACE_SETREGS: {
160     DisplayBytes(buf, data, data_size);
161     LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData());
162     break;
163   }
164   case PTRACE_SETFPREGS: {
165     DisplayBytes(buf, data, data_size);
166     LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData());
167     break;
168   }
169   case PTRACE_SETSIGINFO: {
170     DisplayBytes(buf, data, sizeof(siginfo_t));
171     LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData());
172     break;
173   }
174   case PTRACE_SETREGSET: {
175     // Extract iov_base from data, which is a pointer to the struct iovec
176     DisplayBytes(buf, *(void **)data, data_size);
177     LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData());
178     break;
179   }
180   default: {}
181   }
182 }
183 
184 static constexpr unsigned k_ptrace_word_size = sizeof(void *);
185 static_assert(sizeof(long) >= k_ptrace_word_size,
186               "Size of long must be larger than ptrace word size");
187 } // end of anonymous namespace
188 
189 // Simple helper function to ensure flags are enabled on the given file
190 // descriptor.
191 static Status EnsureFDFlags(int fd, int flags) {
192   Status error;
193 
194   int status = fcntl(fd, F_GETFL);
195   if (status == -1) {
196     error.SetErrorToErrno();
197     return error;
198   }
199 
200   if (fcntl(fd, F_SETFL, status | flags) == -1) {
201     error.SetErrorToErrno();
202     return error;
203   }
204 
205   return error;
206 }
207 
208 // Public Static Methods
209 
210 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
211 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info,
212                                     NativeDelegate &native_delegate,
213                                     MainLoop &mainloop) const {
214   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
215 
216   MaybeLogLaunchInfo(launch_info);
217 
218   Status status;
219   ::pid_t pid = ProcessLauncherPosixFork()
220                     .LaunchProcess(launch_info, status)
221                     .GetProcessId();
222   LLDB_LOG(log, "pid = {0:x}", pid);
223   if (status.Fail()) {
224     LLDB_LOG(log, "failed to launch process: {0}", status);
225     return status.ToError();
226   }
227 
228   // Wait for the child process to trap on its call to execve.
229   int wstatus;
230   ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0);
231   assert(wpid == pid);
232   (void)wpid;
233   if (!WIFSTOPPED(wstatus)) {
234     LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}",
235              WaitStatus::Decode(wstatus));
236     return llvm::make_error<StringError>("Could not sync with inferior process",
237                                          llvm::inconvertibleErrorCode());
238   }
239   LLDB_LOG(log, "inferior started, now in stopped state");
240 
241   ProcessInstanceInfo Info;
242   if (!Host::GetProcessInfo(pid, Info)) {
243     return llvm::make_error<StringError>("Cannot get process architecture",
244                                          llvm::inconvertibleErrorCode());
245   }
246 
247   // Set the architecture to the exe architecture.
248   LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid,
249            Info.GetArchitecture().GetArchitectureName());
250 
251   status = SetDefaultPtraceOpts(pid);
252   if (status.Fail()) {
253     LLDB_LOG(log, "failed to set default ptrace options: {0}", status);
254     return status.ToError();
255   }
256 
257   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
258       pid, launch_info.GetPTY().ReleasePrimaryFileDescriptor(), native_delegate,
259       Info.GetArchitecture(), mainloop, {pid}));
260 }
261 
262 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
263 NativeProcessLinux::Factory::Attach(
264     lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate,
265     MainLoop &mainloop) const {
266   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
267   LLDB_LOG(log, "pid = {0:x}", pid);
268 
269   // Retrieve the architecture for the running process.
270   ProcessInstanceInfo Info;
271   if (!Host::GetProcessInfo(pid, Info)) {
272     return llvm::make_error<StringError>("Cannot get process architecture",
273                                          llvm::inconvertibleErrorCode());
274   }
275 
276   auto tids_or = NativeProcessLinux::Attach(pid);
277   if (!tids_or)
278     return tids_or.takeError();
279 
280   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
281       pid, -1, native_delegate, Info.GetArchitecture(), mainloop, *tids_or));
282 }
283 
284 NativeProcessLinux::Extension
285 NativeProcessLinux::Factory::GetSupportedExtensions() const {
286   return Extension::multiprocess | Extension::fork | Extension::vfork;
287 }
288 
289 // Public Instance Methods
290 
291 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd,
292                                        NativeDelegate &delegate,
293                                        const ArchSpec &arch, MainLoop &mainloop,
294                                        llvm::ArrayRef<::pid_t> tids)
295     : NativeProcessELF(pid, terminal_fd, delegate), m_arch(arch),
296       m_main_loop(mainloop), m_intel_pt_manager(pid) {
297   if (m_terminal_fd != -1) {
298     Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
299     assert(status.Success());
300   }
301 
302   Status status;
303   m_sigchld_handle = mainloop.RegisterSignal(
304       SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status);
305   assert(m_sigchld_handle && status.Success());
306 
307   for (const auto &tid : tids) {
308     NativeThreadLinux &thread = AddThread(tid, /*resume*/ false);
309     ThreadWasCreated(thread);
310   }
311 
312   // Let our process instance know the thread has stopped.
313   SetCurrentThreadID(tids[0]);
314   SetState(StateType::eStateStopped, false);
315 
316   // Proccess any signals we received before installing our handler
317   SigchldHandler();
318 }
319 
320 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) {
321   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
322 
323   Status status;
324   // Use a map to keep track of the threads which we have attached/need to
325   // attach.
326   Host::TidMap tids_to_attach;
327   while (Host::FindProcessThreads(pid, tids_to_attach)) {
328     for (Host::TidMap::iterator it = tids_to_attach.begin();
329          it != tids_to_attach.end();) {
330       if (it->second == false) {
331         lldb::tid_t tid = it->first;
332 
333         // Attach to the requested process.
334         // An attach will cause the thread to stop with a SIGSTOP.
335         if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) {
336           // No such thread. The thread may have exited. More error handling
337           // may be needed.
338           if (status.GetError() == ESRCH) {
339             it = tids_to_attach.erase(it);
340             continue;
341           }
342           return status.ToError();
343         }
344 
345         int wpid =
346             llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL);
347         // Need to use __WALL otherwise we receive an error with errno=ECHLD At
348         // this point we should have a thread stopped if waitpid succeeds.
349         if (wpid < 0) {
350           // No such thread. The thread may have exited. More error handling
351           // may be needed.
352           if (errno == ESRCH) {
353             it = tids_to_attach.erase(it);
354             continue;
355           }
356           return llvm::errorCodeToError(
357               std::error_code(errno, std::generic_category()));
358         }
359 
360         if ((status = SetDefaultPtraceOpts(tid)).Fail())
361           return status.ToError();
362 
363         LLDB_LOG(log, "adding tid = {0}", tid);
364         it->second = true;
365       }
366 
367       // move the loop forward
368       ++it;
369     }
370   }
371 
372   size_t tid_count = tids_to_attach.size();
373   if (tid_count == 0)
374     return llvm::make_error<StringError>("No such process",
375                                          llvm::inconvertibleErrorCode());
376 
377   std::vector<::pid_t> tids;
378   tids.reserve(tid_count);
379   for (const auto &p : tids_to_attach)
380     tids.push_back(p.first);
381   return std::move(tids);
382 }
383 
384 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) {
385   long ptrace_opts = 0;
386 
387   // Have the child raise an event on exit.  This is used to keep the child in
388   // limbo until it is destroyed.
389   ptrace_opts |= PTRACE_O_TRACEEXIT;
390 
391   // Have the tracer trace threads which spawn in the inferior process.
392   ptrace_opts |= PTRACE_O_TRACECLONE;
393 
394   // Have the tracer notify us before execve returns (needed to disable legacy
395   // SIGTRAP generation)
396   ptrace_opts |= PTRACE_O_TRACEEXEC;
397 
398   // Have the tracer trace forked children.
399   ptrace_opts |= PTRACE_O_TRACEFORK;
400 
401   // Have the tracer trace vforks.
402   ptrace_opts |= PTRACE_O_TRACEVFORK;
403 
404   // Have the tracer trace vfork-done in order to restore breakpoints after
405   // the child finishes sharing memory.
406   ptrace_opts |= PTRACE_O_TRACEVFORKDONE;
407 
408   return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts);
409 }
410 
411 // Handles all waitpid events from the inferior process.
412 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited,
413                                          WaitStatus status) {
414   Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
415 
416   // Certain activities differ based on whether the pid is the tid of the main
417   // thread.
418   const bool is_main_thread = (pid == GetID());
419 
420   // Handle when the thread exits.
421   if (exited) {
422     LLDB_LOG(log,
423              "got exit status({0}) , tid = {1} ({2} main thread), process "
424              "state = {3}",
425              status, pid, is_main_thread ? "is" : "is not", GetState());
426 
427     // This is a thread that exited.  Ensure we're not tracking it anymore.
428     StopTrackingThread(pid);
429 
430     if (is_main_thread) {
431       // The main thread exited.  We're done monitoring.  Report to delegate.
432       SetExitStatus(status, true);
433 
434       // Notify delegate that our process has exited.
435       SetState(StateType::eStateExited, true);
436     }
437     return;
438   }
439 
440   siginfo_t info;
441   const auto info_err = GetSignalInfo(pid, &info);
442   auto thread_sp = GetThreadByID(pid);
443 
444   if (!thread_sp) {
445     // Normally, the only situation when we cannot find the thread is if we
446     // have just received a new thread notification. This is indicated by
447     // GetSignalInfo() returning si_code == SI_USER and si_pid == 0
448     LLDB_LOG(log, "received notification about an unknown tid {0}.", pid);
449 
450     if (info_err.Fail()) {
451       LLDB_LOG(log,
452                "(tid {0}) GetSignalInfo failed ({1}). "
453                "Ingoring this notification.",
454                pid, info_err);
455       return;
456     }
457 
458     LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code,
459              info.si_pid);
460 
461     MonitorClone(pid, llvm::None);
462     return;
463   }
464 
465   // Get details on the signal raised.
466   if (info_err.Success()) {
467     // We have retrieved the signal info.  Dispatch appropriately.
468     if (info.si_signo == SIGTRAP)
469       MonitorSIGTRAP(info, *thread_sp);
470     else
471       MonitorSignal(info, *thread_sp, exited);
472   } else {
473     if (info_err.GetError() == EINVAL) {
474       // This is a group stop reception for this tid. We can reach here if we
475       // reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the tracee,
476       // triggering the group-stop mechanism. Normally receiving these would
477       // stop the process, pending a SIGCONT. Simulating this state in a
478       // debugger is hard and is generally not needed (one use case is
479       // debugging background task being managed by a shell). For general use,
480       // it is sufficient to stop the process in a signal-delivery stop which
481       // happens before the group stop. This done by MonitorSignal and works
482       // correctly for all signals.
483       LLDB_LOG(log,
484                "received a group stop for pid {0} tid {1}. Transparent "
485                "handling of group stops not supported, resuming the "
486                "thread.",
487                GetID(), pid);
488       ResumeThread(*thread_sp, thread_sp->GetState(),
489                    LLDB_INVALID_SIGNAL_NUMBER);
490     } else {
491       // ptrace(GETSIGINFO) failed (but not due to group-stop).
492 
493       // A return value of ESRCH means the thread/process is no longer on the
494       // system, so it was killed somehow outside of our control.  Either way,
495       // we can't do anything with it anymore.
496 
497       // Stop tracking the metadata for the thread since it's entirely off the
498       // system now.
499       const bool thread_found = StopTrackingThread(pid);
500 
501       LLDB_LOG(log,
502                "GetSignalInfo failed: {0}, tid = {1}, status = {2}, "
503                "status = {3}, main_thread = {4}, thread_found: {5}",
504                info_err, pid, status, status, is_main_thread, thread_found);
505 
506       if (is_main_thread) {
507         // Notify the delegate - our process is not available but appears to
508         // have been killed outside our control.  Is eStateExited the right
509         // exit state in this case?
510         SetExitStatus(status, true);
511         SetState(StateType::eStateExited, true);
512       } else {
513         // This thread was pulled out from underneath us.  Anything to do here?
514         // Do we want to do an all stop?
515         LLDB_LOG(log,
516                  "pid {0} tid {1} non-main thread exit occurred, didn't "
517                  "tell delegate anything since thread disappeared out "
518                  "from underneath us",
519                  GetID(), pid);
520       }
521     }
522   }
523 }
524 
525 void NativeProcessLinux::WaitForCloneNotification(::pid_t pid) {
526   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
527 
528   // The PID is not tracked yet, let's wait for it to appear.
529   int status = -1;
530   LLDB_LOG(log,
531            "received clone event for pid {0}. pid not tracked yet, "
532            "waiting for it to appear...",
533            pid);
534   ::pid_t wait_pid =
535       llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &status, __WALL);
536   // Since we are waiting on a specific pid, this must be the creation event.
537   // But let's do some checks just in case.
538   if (wait_pid != pid) {
539     LLDB_LOG(log,
540              "waiting for pid {0} failed. Assuming the pid has "
541              "disappeared in the meantime",
542              pid);
543     // The only way I know of this could happen is if the whole process was
544     // SIGKILLed in the mean time. In any case, we can't do anything about that
545     // now.
546     return;
547   }
548   if (WIFEXITED(status)) {
549     LLDB_LOG(log,
550              "waiting for pid {0} returned an 'exited' event. Not "
551              "tracking it.",
552              pid);
553     // Also a very improbable event.
554     m_pending_pid_map.erase(pid);
555     return;
556   }
557 
558   MonitorClone(pid, llvm::None);
559 }
560 
561 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info,
562                                         NativeThreadLinux &thread) {
563   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
564   const bool is_main_thread = (thread.GetID() == GetID());
565 
566   assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
567 
568   switch (info.si_code) {
569   case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
570   case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
571   case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): {
572     // This can either mean a new thread or a new process spawned via
573     // clone(2) without SIGCHLD or CLONE_VFORK flag.  Note that clone(2)
574     // can also cause PTRACE_EVENT_FORK and PTRACE_EVENT_VFORK if one
575     // of these flags are passed.
576 
577     unsigned long event_message = 0;
578     if (GetEventMessage(thread.GetID(), &event_message).Fail()) {
579       LLDB_LOG(log,
580                "pid {0} received clone() event but GetEventMessage failed "
581                "so we don't know the new pid/tid",
582                thread.GetID());
583       ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
584     } else {
585       if (!MonitorClone(event_message, {{(info.si_code >> 8), thread.GetID()}}))
586         WaitForCloneNotification(event_message);
587     }
588 
589     break;
590   }
591 
592   case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): {
593     LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP);
594 
595     // Exec clears any pending notifications.
596     m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
597 
598     // Remove all but the main thread here.  Linux fork creates a new process
599     // which only copies the main thread.
600     LLDB_LOG(log, "exec received, stop tracking all but main thread");
601 
602     llvm::erase_if(m_threads, [&](std::unique_ptr<NativeThreadProtocol> &t) {
603       return t->GetID() != GetID();
604     });
605     assert(m_threads.size() == 1);
606     auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get());
607 
608     SetCurrentThreadID(main_thread->GetID());
609     main_thread->SetStoppedByExec();
610 
611     // Tell coordinator about about the "new" (since exec) stopped main thread.
612     ThreadWasCreated(*main_thread);
613 
614     // Let our delegate know we have just exec'd.
615     NotifyDidExec();
616 
617     // Let the process know we're stopped.
618     StopRunningThreads(main_thread->GetID());
619 
620     break;
621   }
622 
623   case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): {
624     // The inferior process or one of its threads is about to exit. We don't
625     // want to do anything with the thread so we just resume it. In case we
626     // want to implement "break on thread exit" functionality, we would need to
627     // stop here.
628 
629     unsigned long data = 0;
630     if (GetEventMessage(thread.GetID(), &data).Fail())
631       data = -1;
632 
633     LLDB_LOG(log,
634              "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, "
635              "WIFSIGNALED={2}, pid = {3}, main_thread = {4}",
636              data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(),
637              is_main_thread);
638 
639 
640     StateType state = thread.GetState();
641     if (!StateIsRunningState(state)) {
642       // Due to a kernel bug, we may sometimes get this stop after the inferior
643       // gets a SIGKILL. This confuses our state tracking logic in
644       // ResumeThread(), since normally, we should not be receiving any ptrace
645       // events while the inferior is stopped. This makes sure that the
646       // inferior is resumed and exits normally.
647       state = eStateRunning;
648     }
649     ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
650 
651     break;
652   }
653 
654   case (SIGTRAP | (PTRACE_EVENT_VFORK_DONE << 8)): {
655     if (bool(m_enabled_extensions & Extension::vfork)) {
656       thread.SetStoppedByVForkDone();
657       StopRunningThreads(thread.GetID());
658     }
659     else
660       ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
661     break;
662   }
663 
664   case 0:
665   case TRAP_TRACE:  // We receive this on single stepping.
666   case TRAP_HWBKPT: // We receive this on watchpoint hit
667   {
668     // If a watchpoint was hit, report it
669     uint32_t wp_index;
670     Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
671         wp_index, (uintptr_t)info.si_addr);
672     if (error.Fail())
673       LLDB_LOG(log,
674                "received error while checking for watchpoint hits, pid = "
675                "{0}, error = {1}",
676                thread.GetID(), error);
677     if (wp_index != LLDB_INVALID_INDEX32) {
678       MonitorWatchpoint(thread, wp_index);
679       break;
680     }
681 
682     // If a breakpoint was hit, report it
683     uint32_t bp_index;
684     error = thread.GetRegisterContext().GetHardwareBreakHitIndex(
685         bp_index, (uintptr_t)info.si_addr);
686     if (error.Fail())
687       LLDB_LOG(log, "received error while checking for hardware "
688                     "breakpoint hits, pid = {0}, error = {1}",
689                thread.GetID(), error);
690     if (bp_index != LLDB_INVALID_INDEX32) {
691       MonitorBreakpoint(thread);
692       break;
693     }
694 
695     // Otherwise, report step over
696     MonitorTrace(thread);
697     break;
698   }
699 
700   case SI_KERNEL:
701 #if defined __mips__
702     // For mips there is no special signal for watchpoint So we check for
703     // watchpoint in kernel trap
704     {
705       // If a watchpoint was hit, report it
706       uint32_t wp_index;
707       Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
708           wp_index, LLDB_INVALID_ADDRESS);
709       if (error.Fail())
710         LLDB_LOG(log,
711                  "received error while checking for watchpoint hits, pid = "
712                  "{0}, error = {1}",
713                  thread.GetID(), error);
714       if (wp_index != LLDB_INVALID_INDEX32) {
715         MonitorWatchpoint(thread, wp_index);
716         break;
717       }
718     }
719 // NO BREAK
720 #endif
721   case TRAP_BRKPT:
722     MonitorBreakpoint(thread);
723     break;
724 
725   case SIGTRAP:
726   case (SIGTRAP | 0x80):
727     LLDB_LOG(
728         log,
729         "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming",
730         info.si_code, GetID(), thread.GetID());
731 
732     // Ignore these signals until we know more about them.
733     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
734     break;
735 
736   default:
737     LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}",
738              info.si_code, GetID(), thread.GetID());
739     MonitorSignal(info, thread, false);
740     break;
741   }
742 }
743 
744 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) {
745   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
746   LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID());
747 
748   // This thread is currently stopped.
749   thread.SetStoppedByTrace();
750 
751   StopRunningThreads(thread.GetID());
752 }
753 
754 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) {
755   Log *log(
756       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
757   LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID());
758 
759   // Mark the thread as stopped at breakpoint.
760   thread.SetStoppedByBreakpoint();
761   FixupBreakpointPCAsNeeded(thread);
762 
763   if (m_threads_stepping_with_breakpoint.find(thread.GetID()) !=
764       m_threads_stepping_with_breakpoint.end())
765     thread.SetStoppedByTrace();
766 
767   StopRunningThreads(thread.GetID());
768 }
769 
770 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread,
771                                            uint32_t wp_index) {
772   Log *log(
773       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
774   LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}",
775            thread.GetID(), wp_index);
776 
777   // Mark the thread as stopped at watchpoint. The address is at
778   // (lldb::addr_t)info->si_addr if we need it.
779   thread.SetStoppedByWatchpoint(wp_index);
780 
781   // We need to tell all other running threads before we notify the delegate
782   // about this stop.
783   StopRunningThreads(thread.GetID());
784 }
785 
786 void NativeProcessLinux::MonitorSignal(const siginfo_t &info,
787                                        NativeThreadLinux &thread, bool exited) {
788   const int signo = info.si_signo;
789   const bool is_from_llgs = info.si_pid == getpid();
790 
791   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
792 
793   // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
794   // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2)
795   // or raise(3).  Similarly for tgkill(2) on Linux.
796   //
797   // IOW, user generated signals never generate what we consider to be a
798   // "crash".
799   //
800   // Similarly, ACK signals generated by this monitor.
801 
802   // Handle the signal.
803   LLDB_LOG(log,
804            "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, "
805            "waitpid pid = {4})",
806            Host::GetSignalAsCString(signo), signo, info.si_code,
807            thread.GetID());
808 
809   // Check for thread stop notification.
810   if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) {
811     // This is a tgkill()-based stop.
812     LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID());
813 
814     // Check that we're not already marked with a stop reason. Note this thread
815     // really shouldn't already be marked as stopped - if we were, that would
816     // imply that the kernel signaled us with the thread stopping which we
817     // handled and marked as stopped, and that, without an intervening resume,
818     // we received another stop.  It is more likely that we are missing the
819     // marking of a run state somewhere if we find that the thread was marked
820     // as stopped.
821     const StateType thread_state = thread.GetState();
822     if (!StateIsStoppedState(thread_state, false)) {
823       // An inferior thread has stopped because of a SIGSTOP we have sent it.
824       // Generally, these are not important stops and we don't want to report
825       // them as they are just used to stop other threads when one thread (the
826       // one with the *real* stop reason) hits a breakpoint (watchpoint,
827       // etc...). However, in the case of an asynchronous Interrupt(), this
828       // *is* the real stop reason, so we leave the signal intact if this is
829       // the thread that was chosen as the triggering thread.
830       if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
831         if (m_pending_notification_tid == thread.GetID())
832           thread.SetStoppedBySignal(SIGSTOP, &info);
833         else
834           thread.SetStoppedWithNoReason();
835 
836         SetCurrentThreadID(thread.GetID());
837         SignalIfAllThreadsStopped();
838       } else {
839         // We can end up here if stop was initiated by LLGS but by this time a
840         // thread stop has occurred - maybe initiated by another event.
841         Status error = ResumeThread(thread, thread.GetState(), 0);
842         if (error.Fail())
843           LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(),
844                    error);
845       }
846     } else {
847       LLDB_LOG(log,
848                "pid {0} tid {1}, thread was already marked as a stopped "
849                "state (state={2}), leaving stop signal as is",
850                GetID(), thread.GetID(), thread_state);
851       SignalIfAllThreadsStopped();
852     }
853 
854     // Done handling.
855     return;
856   }
857 
858   // Check if debugger should stop at this signal or just ignore it and resume
859   // the inferior.
860   if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) {
861      ResumeThread(thread, thread.GetState(), signo);
862      return;
863   }
864 
865   // This thread is stopped.
866   LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo));
867   thread.SetStoppedBySignal(signo, &info);
868 
869   // Send a stop to the debugger after we get all other threads to stop.
870   StopRunningThreads(thread.GetID());
871 }
872 
873 bool NativeProcessLinux::MonitorClone(
874     lldb::pid_t child_pid,
875     llvm::Optional<NativeProcessLinux::CloneInfo> clone_info) {
876   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
877   LLDB_LOG(log, "clone, child_pid={0}, clone info?={1}", child_pid,
878            clone_info.hasValue());
879 
880   auto find_it = m_pending_pid_map.find(child_pid);
881   if (find_it == m_pending_pid_map.end()) {
882     // not in the map, so this is the first signal for the PID
883     m_pending_pid_map.insert({child_pid, clone_info});
884     return false;
885   }
886   m_pending_pid_map.erase(find_it);
887 
888   // second signal for the pid
889   assert(clone_info.hasValue() != find_it->second.hasValue());
890   if (!clone_info) {
891     // child signal does not indicate the event, so grab the one stored
892     // earlier
893     clone_info = find_it->second;
894   }
895 
896   LLDB_LOG(log, "second signal for child_pid={0}, parent_tid={1}, event={2}",
897            child_pid, clone_info->parent_tid, clone_info->event);
898 
899   auto *parent_thread = GetThreadByID(clone_info->parent_tid);
900   assert(parent_thread);
901 
902   switch (clone_info->event) {
903   case PTRACE_EVENT_CLONE: {
904     // PTRACE_EVENT_CLONE can either mean a new thread or a new process.
905     // Try to grab the new process' PGID to figure out which one it is.
906     // If PGID is the same as the PID, then it's a new process.  Otherwise,
907     // it's a thread.
908     auto tgid_ret = getPIDForTID(child_pid);
909     if (tgid_ret != child_pid) {
910       // A new thread should have PGID matching our process' PID.
911       assert(!tgid_ret || tgid_ret.getValue() == GetID());
912 
913       NativeThreadLinux &child_thread = AddThread(child_pid, /*resume*/ true);
914       ThreadWasCreated(child_thread);
915 
916       // Resume the parent.
917       ResumeThread(*parent_thread, parent_thread->GetState(),
918                    LLDB_INVALID_SIGNAL_NUMBER);
919       break;
920     }
921   }
922     LLVM_FALLTHROUGH;
923   case PTRACE_EVENT_FORK:
924   case PTRACE_EVENT_VFORK: {
925     bool is_vfork = clone_info->event == PTRACE_EVENT_VFORK;
926     std::unique_ptr<NativeProcessLinux> child_process{new NativeProcessLinux(
927         static_cast<::pid_t>(child_pid), m_terminal_fd, m_delegate, m_arch,
928         m_main_loop, {static_cast<::pid_t>(child_pid)})};
929     if (!is_vfork)
930       child_process->m_software_breakpoints = m_software_breakpoints;
931 
932     Extension expected_ext = is_vfork ? Extension::vfork : Extension::fork;
933     if (bool(m_enabled_extensions & expected_ext)) {
934       m_delegate.NewSubprocess(this, std::move(child_process));
935       // NB: non-vfork clone() is reported as fork
936       parent_thread->SetStoppedByFork(is_vfork, child_pid);
937       StopRunningThreads(parent_thread->GetID());
938     } else {
939       child_process->Detach();
940       ResumeThread(*parent_thread, parent_thread->GetState(),
941                    LLDB_INVALID_SIGNAL_NUMBER);
942     }
943     break;
944   }
945   default:
946     llvm_unreachable("unknown clone_info.event");
947   }
948 
949   return true;
950 }
951 
952 bool NativeProcessLinux::SupportHardwareSingleStepping() const {
953   if (m_arch.GetMachine() == llvm::Triple::arm || m_arch.IsMIPS())
954     return false;
955   return true;
956 }
957 
958 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) {
959   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
960   LLDB_LOG(log, "pid {0}", GetID());
961 
962   bool software_single_step = !SupportHardwareSingleStepping();
963 
964   if (software_single_step) {
965     for (const auto &thread : m_threads) {
966       assert(thread && "thread list should not contain NULL threads");
967 
968       const ResumeAction *const action =
969           resume_actions.GetActionForThread(thread->GetID(), true);
970       if (action == nullptr)
971         continue;
972 
973       if (action->state == eStateStepping) {
974         Status error = SetupSoftwareSingleStepping(
975             static_cast<NativeThreadLinux &>(*thread));
976         if (error.Fail())
977           return error;
978       }
979     }
980   }
981 
982   for (const auto &thread : m_threads) {
983     assert(thread && "thread list should not contain NULL threads");
984 
985     const ResumeAction *const action =
986         resume_actions.GetActionForThread(thread->GetID(), true);
987 
988     if (action == nullptr) {
989       LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(),
990                thread->GetID());
991       continue;
992     }
993 
994     LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}",
995              action->state, GetID(), thread->GetID());
996 
997     switch (action->state) {
998     case eStateRunning:
999     case eStateStepping: {
1000       // Run the thread, possibly feeding it the signal.
1001       const int signo = action->signal;
1002       ResumeThread(static_cast<NativeThreadLinux &>(*thread), action->state,
1003                    signo);
1004       break;
1005     }
1006 
1007     case eStateSuspended:
1008     case eStateStopped:
1009       llvm_unreachable("Unexpected state");
1010 
1011     default:
1012       return Status("NativeProcessLinux::%s (): unexpected state %s specified "
1013                     "for pid %" PRIu64 ", tid %" PRIu64,
1014                     __FUNCTION__, StateAsCString(action->state), GetID(),
1015                     thread->GetID());
1016     }
1017   }
1018 
1019   return Status();
1020 }
1021 
1022 Status NativeProcessLinux::Halt() {
1023   Status error;
1024 
1025   if (kill(GetID(), SIGSTOP) != 0)
1026     error.SetErrorToErrno();
1027 
1028   return error;
1029 }
1030 
1031 Status NativeProcessLinux::Detach() {
1032   Status error;
1033 
1034   // Stop monitoring the inferior.
1035   m_sigchld_handle.reset();
1036 
1037   // Tell ptrace to detach from the process.
1038   if (GetID() == LLDB_INVALID_PROCESS_ID)
1039     return error;
1040 
1041   for (const auto &thread : m_threads) {
1042     Status e = Detach(thread->GetID());
1043     if (e.Fail())
1044       error =
1045           e; // Save the error, but still attempt to detach from other threads.
1046   }
1047 
1048   m_intel_pt_manager.Clear();
1049 
1050   return error;
1051 }
1052 
1053 Status NativeProcessLinux::Signal(int signo) {
1054   Status error;
1055 
1056   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1057   LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo,
1058            Host::GetSignalAsCString(signo), GetID());
1059 
1060   if (kill(GetID(), signo))
1061     error.SetErrorToErrno();
1062 
1063   return error;
1064 }
1065 
1066 Status NativeProcessLinux::Interrupt() {
1067   // Pick a running thread (or if none, a not-dead stopped thread) as the
1068   // chosen thread that will be the stop-reason thread.
1069   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1070 
1071   NativeThreadProtocol *running_thread = nullptr;
1072   NativeThreadProtocol *stopped_thread = nullptr;
1073 
1074   LLDB_LOG(log, "selecting running thread for interrupt target");
1075   for (const auto &thread : m_threads) {
1076     // If we have a running or stepping thread, we'll call that the target of
1077     // the interrupt.
1078     const auto thread_state = thread->GetState();
1079     if (thread_state == eStateRunning || thread_state == eStateStepping) {
1080       running_thread = thread.get();
1081       break;
1082     } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) {
1083       // Remember the first non-dead stopped thread.  We'll use that as a
1084       // backup if there are no running threads.
1085       stopped_thread = thread.get();
1086     }
1087   }
1088 
1089   if (!running_thread && !stopped_thread) {
1090     Status error("found no running/stepping or live stopped threads as target "
1091                  "for interrupt");
1092     LLDB_LOG(log, "skipping due to error: {0}", error);
1093 
1094     return error;
1095   }
1096 
1097   NativeThreadProtocol *deferred_signal_thread =
1098       running_thread ? running_thread : stopped_thread;
1099 
1100   LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(),
1101            running_thread ? "running" : "stopped",
1102            deferred_signal_thread->GetID());
1103 
1104   StopRunningThreads(deferred_signal_thread->GetID());
1105 
1106   return Status();
1107 }
1108 
1109 Status NativeProcessLinux::Kill() {
1110   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1111   LLDB_LOG(log, "pid {0}", GetID());
1112 
1113   Status error;
1114 
1115   switch (m_state) {
1116   case StateType::eStateInvalid:
1117   case StateType::eStateExited:
1118   case StateType::eStateCrashed:
1119   case StateType::eStateDetached:
1120   case StateType::eStateUnloaded:
1121     // Nothing to do - the process is already dead.
1122     LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(),
1123              m_state);
1124     return error;
1125 
1126   case StateType::eStateConnected:
1127   case StateType::eStateAttaching:
1128   case StateType::eStateLaunching:
1129   case StateType::eStateStopped:
1130   case StateType::eStateRunning:
1131   case StateType::eStateStepping:
1132   case StateType::eStateSuspended:
1133     // We can try to kill a process in these states.
1134     break;
1135   }
1136 
1137   if (kill(GetID(), SIGKILL) != 0) {
1138     error.SetErrorToErrno();
1139     return error;
1140   }
1141 
1142   return error;
1143 }
1144 
1145 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr,
1146                                                MemoryRegionInfo &range_info) {
1147   // FIXME review that the final memory region returned extends to the end of
1148   // the virtual address space,
1149   // with no perms if it is not mapped.
1150 
1151   // Use an approach that reads memory regions from /proc/{pid}/maps. Assume
1152   // proc maps entries are in ascending order.
1153   // FIXME assert if we find differently.
1154 
1155   if (m_supports_mem_region == LazyBool::eLazyBoolNo) {
1156     // We're done.
1157     return Status("unsupported");
1158   }
1159 
1160   Status error = PopulateMemoryRegionCache();
1161   if (error.Fail()) {
1162     return error;
1163   }
1164 
1165   lldb::addr_t prev_base_address = 0;
1166 
1167   // FIXME start by finding the last region that is <= target address using
1168   // binary search.  Data is sorted.
1169   // There can be a ton of regions on pthreads apps with lots of threads.
1170   for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end();
1171        ++it) {
1172     MemoryRegionInfo &proc_entry_info = it->first;
1173 
1174     // Sanity check assumption that /proc/{pid}/maps entries are ascending.
1175     assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) &&
1176            "descending /proc/pid/maps entries detected, unexpected");
1177     prev_base_address = proc_entry_info.GetRange().GetRangeBase();
1178     UNUSED_IF_ASSERT_DISABLED(prev_base_address);
1179 
1180     // If the target address comes before this entry, indicate distance to next
1181     // region.
1182     if (load_addr < proc_entry_info.GetRange().GetRangeBase()) {
1183       range_info.GetRange().SetRangeBase(load_addr);
1184       range_info.GetRange().SetByteSize(
1185           proc_entry_info.GetRange().GetRangeBase() - load_addr);
1186       range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1187       range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1188       range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1189       range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1190 
1191       return error;
1192     } else if (proc_entry_info.GetRange().Contains(load_addr)) {
1193       // The target address is within the memory region we're processing here.
1194       range_info = proc_entry_info;
1195       return error;
1196     }
1197 
1198     // The target memory address comes somewhere after the region we just
1199     // parsed.
1200   }
1201 
1202   // If we made it here, we didn't find an entry that contained the given
1203   // address. Return the load_addr as start and the amount of bytes betwwen
1204   // load address and the end of the memory as size.
1205   range_info.GetRange().SetRangeBase(load_addr);
1206   range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS);
1207   range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1208   range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1209   range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1210   range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1211   return error;
1212 }
1213 
1214 Status NativeProcessLinux::PopulateMemoryRegionCache() {
1215   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1216 
1217   // If our cache is empty, pull the latest.  There should always be at least
1218   // one memory region if memory region handling is supported.
1219   if (!m_mem_region_cache.empty()) {
1220     LLDB_LOG(log, "reusing {0} cached memory region entries",
1221              m_mem_region_cache.size());
1222     return Status();
1223   }
1224 
1225   Status Result;
1226   LinuxMapCallback callback = [&](llvm::Expected<MemoryRegionInfo> Info) {
1227     if (Info) {
1228       FileSpec file_spec(Info->GetName().GetCString());
1229       FileSystem::Instance().Resolve(file_spec);
1230       m_mem_region_cache.emplace_back(*Info, file_spec);
1231       return true;
1232     }
1233 
1234     Result = Info.takeError();
1235     m_supports_mem_region = LazyBool::eLazyBoolNo;
1236     LLDB_LOG(log, "failed to parse proc maps: {0}", Result);
1237     return false;
1238   };
1239 
1240   // Linux kernel since 2.6.14 has /proc/{pid}/smaps
1241   // if CONFIG_PROC_PAGE_MONITOR is enabled
1242   auto BufferOrError = getProcFile(GetID(), "smaps");
1243   if (BufferOrError)
1244     ParseLinuxSMapRegions(BufferOrError.get()->getBuffer(), callback);
1245   else {
1246     BufferOrError = getProcFile(GetID(), "maps");
1247     if (!BufferOrError) {
1248       m_supports_mem_region = LazyBool::eLazyBoolNo;
1249       return BufferOrError.getError();
1250     }
1251 
1252     ParseLinuxMapRegions(BufferOrError.get()->getBuffer(), callback);
1253   }
1254 
1255   if (Result.Fail())
1256     return Result;
1257 
1258   if (m_mem_region_cache.empty()) {
1259     // No entries after attempting to read them.  This shouldn't happen if
1260     // /proc/{pid}/maps is supported. Assume we don't support map entries via
1261     // procfs.
1262     m_supports_mem_region = LazyBool::eLazyBoolNo;
1263     LLDB_LOG(log,
1264              "failed to find any procfs maps entries, assuming no support "
1265              "for memory region metadata retrieval");
1266     return Status("not supported");
1267   }
1268 
1269   LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps",
1270            m_mem_region_cache.size(), GetID());
1271 
1272   // We support memory retrieval, remember that.
1273   m_supports_mem_region = LazyBool::eLazyBoolYes;
1274   return Status();
1275 }
1276 
1277 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) {
1278   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1279   LLDB_LOG(log, "newBumpId={0}", newBumpId);
1280   LLDB_LOG(log, "clearing {0} entries from memory region cache",
1281            m_mem_region_cache.size());
1282   m_mem_region_cache.clear();
1283 }
1284 
1285 llvm::Expected<uint64_t>
1286 NativeProcessLinux::Syscall(llvm::ArrayRef<uint64_t> args) {
1287   PopulateMemoryRegionCache();
1288   auto region_it = llvm::find_if(m_mem_region_cache, [](const auto &pair) {
1289     return pair.first.GetExecutable() == MemoryRegionInfo::eYes;
1290   });
1291   if (region_it == m_mem_region_cache.end())
1292     return llvm::createStringError(llvm::inconvertibleErrorCode(),
1293                                    "No executable memory region found!");
1294 
1295   addr_t exe_addr = region_it->first.GetRange().GetRangeBase();
1296 
1297   NativeThreadLinux &thread = *GetThreadByID(GetID());
1298   assert(thread.GetState() == eStateStopped);
1299   NativeRegisterContextLinux &reg_ctx = thread.GetRegisterContext();
1300 
1301   NativeRegisterContextLinux::SyscallData syscall_data =
1302       *reg_ctx.GetSyscallData();
1303 
1304   DataBufferSP registers_sp;
1305   if (llvm::Error Err = reg_ctx.ReadAllRegisterValues(registers_sp).ToError())
1306     return std::move(Err);
1307   auto restore_regs = llvm::make_scope_exit(
1308       [&] { reg_ctx.WriteAllRegisterValues(registers_sp); });
1309 
1310   llvm::SmallVector<uint8_t, 8> memory(syscall_data.Insn.size());
1311   size_t bytes_read;
1312   if (llvm::Error Err =
1313           ReadMemory(exe_addr, memory.data(), memory.size(), bytes_read)
1314               .ToError()) {
1315     return std::move(Err);
1316   }
1317 
1318   auto restore_mem = llvm::make_scope_exit(
1319       [&] { WriteMemory(exe_addr, memory.data(), memory.size(), bytes_read); });
1320 
1321   if (llvm::Error Err = reg_ctx.SetPC(exe_addr).ToError())
1322     return std::move(Err);
1323 
1324   for (const auto &zip : llvm::zip_first(args, syscall_data.Args)) {
1325     if (llvm::Error Err =
1326             reg_ctx
1327                 .WriteRegisterFromUnsigned(std::get<1>(zip), std::get<0>(zip))
1328                 .ToError()) {
1329       return std::move(Err);
1330     }
1331   }
1332   if (llvm::Error Err = WriteMemory(exe_addr, syscall_data.Insn.data(),
1333                                     syscall_data.Insn.size(), bytes_read)
1334                             .ToError())
1335     return std::move(Err);
1336 
1337   m_mem_region_cache.clear();
1338 
1339   // With software single stepping the syscall insn buffer must also include a
1340   // trap instruction to stop the process.
1341   int req = SupportHardwareSingleStepping() ? PTRACE_SINGLESTEP : PTRACE_CONT;
1342   if (llvm::Error Err =
1343           PtraceWrapper(req, thread.GetID(), nullptr, nullptr).ToError())
1344     return std::move(Err);
1345 
1346   int status;
1347   ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, thread.GetID(),
1348                                                  &status, __WALL);
1349   if (wait_pid == -1) {
1350     return llvm::errorCodeToError(
1351         std::error_code(errno, std::generic_category()));
1352   }
1353   assert((unsigned)wait_pid == thread.GetID());
1354 
1355   uint64_t result = reg_ctx.ReadRegisterAsUnsigned(syscall_data.Result, -ESRCH);
1356 
1357   // Values larger than this are actually negative errno numbers.
1358   uint64_t errno_threshold =
1359       (uint64_t(-1) >> (64 - 8 * m_arch.GetAddressByteSize())) - 0x1000;
1360   if (result > errno_threshold) {
1361     return llvm::errorCodeToError(
1362         std::error_code(-result & 0xfff, std::generic_category()));
1363   }
1364 
1365   return result;
1366 }
1367 
1368 llvm::Expected<addr_t>
1369 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions) {
1370 
1371   llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data =
1372       GetCurrentThread()->GetRegisterContext().GetMmapData();
1373   if (!mmap_data)
1374     return llvm::make_error<UnimplementedError>();
1375 
1376   unsigned prot = PROT_NONE;
1377   assert((permissions & (ePermissionsReadable | ePermissionsWritable |
1378                          ePermissionsExecutable)) == permissions &&
1379          "Unknown permission!");
1380   if (permissions & ePermissionsReadable)
1381     prot |= PROT_READ;
1382   if (permissions & ePermissionsWritable)
1383     prot |= PROT_WRITE;
1384   if (permissions & ePermissionsExecutable)
1385     prot |= PROT_EXEC;
1386 
1387   llvm::Expected<uint64_t> Result =
1388       Syscall({mmap_data->SysMmap, 0, size, prot, MAP_ANONYMOUS | MAP_PRIVATE,
1389                uint64_t(-1), 0});
1390   if (Result)
1391     m_allocated_memory.try_emplace(*Result, size);
1392   return Result;
1393 }
1394 
1395 llvm::Error NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) {
1396   llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data =
1397       GetCurrentThread()->GetRegisterContext().GetMmapData();
1398   if (!mmap_data)
1399     return llvm::make_error<UnimplementedError>();
1400 
1401   auto it = m_allocated_memory.find(addr);
1402   if (it == m_allocated_memory.end())
1403     return llvm::createStringError(llvm::errc::invalid_argument,
1404                                    "Memory not allocated by the debugger.");
1405 
1406   llvm::Expected<uint64_t> Result =
1407       Syscall({mmap_data->SysMunmap, addr, it->second});
1408   if (!Result)
1409     return Result.takeError();
1410 
1411   m_allocated_memory.erase(it);
1412   return llvm::Error::success();
1413 }
1414 
1415 size_t NativeProcessLinux::UpdateThreads() {
1416   // The NativeProcessLinux monitoring threads are always up to date with
1417   // respect to thread state and they keep the thread list populated properly.
1418   // All this method needs to do is return the thread count.
1419   return m_threads.size();
1420 }
1421 
1422 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size,
1423                                          bool hardware) {
1424   if (hardware)
1425     return SetHardwareBreakpoint(addr, size);
1426   else
1427     return SetSoftwareBreakpoint(addr, size);
1428 }
1429 
1430 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) {
1431   if (hardware)
1432     return RemoveHardwareBreakpoint(addr);
1433   else
1434     return NativeProcessProtocol::RemoveBreakpoint(addr);
1435 }
1436 
1437 llvm::Expected<llvm::ArrayRef<uint8_t>>
1438 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(size_t size_hint) {
1439   // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
1440   // linux kernel does otherwise.
1441   static const uint8_t g_arm_opcode[] = {0xf0, 0x01, 0xf0, 0xe7};
1442   static const uint8_t g_thumb_opcode[] = {0x01, 0xde};
1443 
1444   switch (GetArchitecture().GetMachine()) {
1445   case llvm::Triple::arm:
1446     switch (size_hint) {
1447     case 2:
1448       return llvm::makeArrayRef(g_thumb_opcode);
1449     case 4:
1450       return llvm::makeArrayRef(g_arm_opcode);
1451     default:
1452       return llvm::createStringError(llvm::inconvertibleErrorCode(),
1453                                      "Unrecognised trap opcode size hint!");
1454     }
1455   default:
1456     return NativeProcessProtocol::GetSoftwareBreakpointTrapOpcode(size_hint);
1457   }
1458 }
1459 
1460 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size,
1461                                       size_t &bytes_read) {
1462   if (ProcessVmReadvSupported()) {
1463     // The process_vm_readv path is about 50 times faster than ptrace api. We
1464     // want to use this syscall if it is supported.
1465 
1466     const ::pid_t pid = GetID();
1467 
1468     struct iovec local_iov, remote_iov;
1469     local_iov.iov_base = buf;
1470     local_iov.iov_len = size;
1471     remote_iov.iov_base = reinterpret_cast<void *>(addr);
1472     remote_iov.iov_len = size;
1473 
1474     bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
1475     const bool success = bytes_read == size;
1476 
1477     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1478     LLDB_LOG(log,
1479              "using process_vm_readv to read {0} bytes from inferior "
1480              "address {1:x}: {2}",
1481              size, addr, success ? "Success" : llvm::sys::StrError(errno));
1482 
1483     if (success)
1484       return Status();
1485     // else the call failed for some reason, let's retry the read using ptrace
1486     // api.
1487   }
1488 
1489   unsigned char *dst = static_cast<unsigned char *>(buf);
1490   size_t remainder;
1491   long data;
1492 
1493   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1494   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1495 
1496   for (bytes_read = 0; bytes_read < size; bytes_read += remainder) {
1497     Status error = NativeProcessLinux::PtraceWrapper(
1498         PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data);
1499     if (error.Fail())
1500       return error;
1501 
1502     remainder = size - bytes_read;
1503     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1504 
1505     // Copy the data into our buffer
1506     memcpy(dst, &data, remainder);
1507 
1508     LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1509     addr += k_ptrace_word_size;
1510     dst += k_ptrace_word_size;
1511   }
1512   return Status();
1513 }
1514 
1515 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf,
1516                                        size_t size, size_t &bytes_written) {
1517   const unsigned char *src = static_cast<const unsigned char *>(buf);
1518   size_t remainder;
1519   Status error;
1520 
1521   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1522   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1523 
1524   for (bytes_written = 0; bytes_written < size; bytes_written += remainder) {
1525     remainder = size - bytes_written;
1526     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1527 
1528     if (remainder == k_ptrace_word_size) {
1529       unsigned long data = 0;
1530       memcpy(&data, src, k_ptrace_word_size);
1531 
1532       LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1533       error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(),
1534                                                 (void *)addr, (void *)data);
1535       if (error.Fail())
1536         return error;
1537     } else {
1538       unsigned char buff[8];
1539       size_t bytes_read;
1540       error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
1541       if (error.Fail())
1542         return error;
1543 
1544       memcpy(buff, src, remainder);
1545 
1546       size_t bytes_written_rec;
1547       error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
1548       if (error.Fail())
1549         return error;
1550 
1551       LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src,
1552                *(unsigned long *)buff);
1553     }
1554 
1555     addr += k_ptrace_word_size;
1556     src += k_ptrace_word_size;
1557   }
1558   return error;
1559 }
1560 
1561 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) {
1562   return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
1563 }
1564 
1565 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid,
1566                                            unsigned long *message) {
1567   return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
1568 }
1569 
1570 Status NativeProcessLinux::Detach(lldb::tid_t tid) {
1571   if (tid == LLDB_INVALID_THREAD_ID)
1572     return Status();
1573 
1574   return PtraceWrapper(PTRACE_DETACH, tid);
1575 }
1576 
1577 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) {
1578   for (const auto &thread : m_threads) {
1579     assert(thread && "thread list should not contain NULL threads");
1580     if (thread->GetID() == thread_id) {
1581       // We have this thread.
1582       return true;
1583     }
1584   }
1585 
1586   // We don't have this thread.
1587   return false;
1588 }
1589 
1590 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) {
1591   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1592   LLDB_LOG(log, "tid: {0})", thread_id);
1593 
1594   bool found = false;
1595   for (auto it = m_threads.begin(); it != m_threads.end(); ++it) {
1596     if (*it && ((*it)->GetID() == thread_id)) {
1597       m_threads.erase(it);
1598       found = true;
1599       break;
1600     }
1601   }
1602 
1603   if (found)
1604     NotifyTracersOfThreadDestroyed(thread_id);
1605 
1606   SignalIfAllThreadsStopped();
1607   return found;
1608 }
1609 
1610 Status NativeProcessLinux::NotifyTracersOfNewThread(lldb::tid_t tid) {
1611   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD));
1612   Status error(m_intel_pt_manager.OnThreadCreated(tid));
1613   if (error.Fail())
1614     LLDB_LOG(log, "Failed to trace a new thread with intel-pt, tid = {0}. {1}",
1615              tid, error.AsCString());
1616   return error;
1617 }
1618 
1619 Status NativeProcessLinux::NotifyTracersOfThreadDestroyed(lldb::tid_t tid) {
1620   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD));
1621   Status error(m_intel_pt_manager.OnThreadDestroyed(tid));
1622   if (error.Fail())
1623     LLDB_LOG(log,
1624              "Failed to stop a destroyed thread with intel-pt, tid = {0}. {1}",
1625              tid, error.AsCString());
1626   return error;
1627 }
1628 
1629 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id,
1630                                                  bool resume) {
1631   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD));
1632   LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id);
1633 
1634   assert(!HasThreadNoLock(thread_id) &&
1635          "attempted to add a thread by id that already exists");
1636 
1637   // If this is the first thread, save it as the current thread
1638   if (m_threads.empty())
1639     SetCurrentThreadID(thread_id);
1640 
1641   m_threads.push_back(std::make_unique<NativeThreadLinux>(*this, thread_id));
1642   NativeThreadLinux &thread =
1643       static_cast<NativeThreadLinux &>(*m_threads.back());
1644 
1645   Status tracing_error = NotifyTracersOfNewThread(thread.GetID());
1646   if (tracing_error.Fail()) {
1647     thread.SetStoppedByProcessorTrace(tracing_error.AsCString());
1648     StopRunningThreads(thread.GetID());
1649   } else if (resume)
1650     ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
1651   else
1652     thread.SetStoppedBySignal(SIGSTOP);
1653 
1654   return thread;
1655 }
1656 
1657 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path,
1658                                                    FileSpec &file_spec) {
1659   Status error = PopulateMemoryRegionCache();
1660   if (error.Fail())
1661     return error;
1662 
1663   FileSpec module_file_spec(module_path);
1664   FileSystem::Instance().Resolve(module_file_spec);
1665 
1666   file_spec.Clear();
1667   for (const auto &it : m_mem_region_cache) {
1668     if (it.second.GetFilename() == module_file_spec.GetFilename()) {
1669       file_spec = it.second;
1670       return Status();
1671     }
1672   }
1673   return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
1674                 module_file_spec.GetFilename().AsCString(), GetID());
1675 }
1676 
1677 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name,
1678                                               lldb::addr_t &load_addr) {
1679   load_addr = LLDB_INVALID_ADDRESS;
1680   Status error = PopulateMemoryRegionCache();
1681   if (error.Fail())
1682     return error;
1683 
1684   FileSpec file(file_name);
1685   for (const auto &it : m_mem_region_cache) {
1686     if (it.second == file) {
1687       load_addr = it.first.GetRange().GetRangeBase();
1688       return Status();
1689     }
1690   }
1691   return Status("No load address found for specified file.");
1692 }
1693 
1694 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) {
1695   return static_cast<NativeThreadLinux *>(
1696       NativeProcessProtocol::GetThreadByID(tid));
1697 }
1698 
1699 NativeThreadLinux *NativeProcessLinux::GetCurrentThread() {
1700   return static_cast<NativeThreadLinux *>(
1701       NativeProcessProtocol::GetCurrentThread());
1702 }
1703 
1704 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread,
1705                                         lldb::StateType state, int signo) {
1706   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1707   LLDB_LOG(log, "tid: {0}", thread.GetID());
1708 
1709   // Before we do the resume below, first check if we have a pending stop
1710   // notification that is currently waiting for all threads to stop.  This is
1711   // potentially a buggy situation since we're ostensibly waiting for threads
1712   // to stop before we send out the pending notification, and here we are
1713   // resuming one before we send out the pending stop notification.
1714   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
1715     LLDB_LOG(log,
1716              "about to resume tid {0} per explicit request but we have a "
1717              "pending stop notification (tid {1}) that is actively "
1718              "waiting for this thread to stop. Valid sequence of events?",
1719              thread.GetID(), m_pending_notification_tid);
1720   }
1721 
1722   // Request a resume.  We expect this to be synchronous and the system to
1723   // reflect it is running after this completes.
1724   switch (state) {
1725   case eStateRunning: {
1726     const auto resume_result = thread.Resume(signo);
1727     if (resume_result.Success())
1728       SetState(eStateRunning, true);
1729     return resume_result;
1730   }
1731   case eStateStepping: {
1732     const auto step_result = thread.SingleStep(signo);
1733     if (step_result.Success())
1734       SetState(eStateRunning, true);
1735     return step_result;
1736   }
1737   default:
1738     LLDB_LOG(log, "Unhandled state {0}.", state);
1739     llvm_unreachable("Unhandled state for resume");
1740   }
1741 }
1742 
1743 //===----------------------------------------------------------------------===//
1744 
1745 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) {
1746   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1747   LLDB_LOG(log, "about to process event: (triggering_tid: {0})",
1748            triggering_tid);
1749 
1750   m_pending_notification_tid = triggering_tid;
1751 
1752   // Request a stop for all the thread stops that need to be stopped and are
1753   // not already known to be stopped.
1754   for (const auto &thread : m_threads) {
1755     if (StateIsRunningState(thread->GetState()))
1756       static_cast<NativeThreadLinux *>(thread.get())->RequestStop();
1757   }
1758 
1759   SignalIfAllThreadsStopped();
1760   LLDB_LOG(log, "event processing done");
1761 }
1762 
1763 void NativeProcessLinux::SignalIfAllThreadsStopped() {
1764   if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
1765     return; // No pending notification. Nothing to do.
1766 
1767   for (const auto &thread_sp : m_threads) {
1768     if (StateIsRunningState(thread_sp->GetState()))
1769       return; // Some threads are still running. Don't signal yet.
1770   }
1771 
1772   // We have a pending notification and all threads have stopped.
1773   Log *log(
1774       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
1775 
1776   // Clear any temporary breakpoints we used to implement software single
1777   // stepping.
1778   for (const auto &thread_info : m_threads_stepping_with_breakpoint) {
1779     Status error = RemoveBreakpoint(thread_info.second);
1780     if (error.Fail())
1781       LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}",
1782                thread_info.first, error);
1783   }
1784   m_threads_stepping_with_breakpoint.clear();
1785 
1786   // Notify the delegate about the stop
1787   SetCurrentThreadID(m_pending_notification_tid);
1788   SetState(StateType::eStateStopped, true);
1789   m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
1790 }
1791 
1792 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) {
1793   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1794   LLDB_LOG(log, "tid: {0}", thread.GetID());
1795 
1796   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID &&
1797       StateIsRunningState(thread.GetState())) {
1798     // We will need to wait for this new thread to stop as well before firing
1799     // the notification.
1800     thread.RequestStop();
1801   }
1802 }
1803 
1804 void NativeProcessLinux::SigchldHandler() {
1805   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1806   // Process all pending waitpid notifications.
1807   while (true) {
1808     int status = -1;
1809     ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, -1, &status,
1810                                           __WALL | __WNOTHREAD | WNOHANG);
1811 
1812     if (wait_pid == 0)
1813       break; // We are done.
1814 
1815     if (wait_pid == -1) {
1816       Status error(errno, eErrorTypePOSIX);
1817       LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error);
1818       break;
1819     }
1820 
1821     WaitStatus wait_status = WaitStatus::Decode(status);
1822     bool exited = wait_status.type == WaitStatus::Exit ||
1823                   (wait_status.type == WaitStatus::Signal &&
1824                    wait_pid == static_cast<::pid_t>(GetID()));
1825 
1826     LLDB_LOG(
1827         log,
1828         "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}",
1829         wait_pid, wait_status, exited);
1830 
1831     MonitorCallback(wait_pid, exited, wait_status);
1832   }
1833 }
1834 
1835 // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets
1836 // errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
1837 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr,
1838                                          void *data, size_t data_size,
1839                                          long *result) {
1840   Status error;
1841   long int ret;
1842 
1843   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1844 
1845   PtraceDisplayBytes(req, data, data_size);
1846 
1847   errno = 0;
1848   if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
1849     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
1850                  *(unsigned int *)addr, data);
1851   else
1852     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
1853                  addr, data);
1854 
1855   if (ret == -1)
1856     error.SetErrorToErrno();
1857 
1858   if (result)
1859     *result = ret;
1860 
1861   LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data,
1862            data_size, ret);
1863 
1864   PtraceDisplayBytes(req, data, data_size);
1865 
1866   if (error.Fail())
1867     LLDB_LOG(log, "ptrace() failed: {0}", error);
1868 
1869   return error;
1870 }
1871 
1872 llvm::Expected<TraceSupportedResponse> NativeProcessLinux::TraceSupported() {
1873   if (IntelPTManager::IsSupported())
1874     return TraceSupportedResponse{"intel-pt", "Intel Processor Trace"};
1875   return NativeProcessProtocol::TraceSupported();
1876 }
1877 
1878 Error NativeProcessLinux::TraceStart(StringRef json_request, StringRef type) {
1879   if (type == "intel-pt") {
1880     if (Expected<TraceIntelPTStartRequest> request =
1881             json::parse<TraceIntelPTStartRequest>(json_request,
1882                                                   "TraceIntelPTStartRequest")) {
1883       std::vector<lldb::tid_t> process_threads;
1884       for (auto &thread : m_threads)
1885         process_threads.push_back(thread->GetID());
1886       return m_intel_pt_manager.TraceStart(*request, process_threads);
1887     } else
1888       return request.takeError();
1889   }
1890 
1891   return NativeProcessProtocol::TraceStart(json_request, type);
1892 }
1893 
1894 Error NativeProcessLinux::TraceStop(const TraceStopRequest &request) {
1895   if (request.type == "intel-pt")
1896     return m_intel_pt_manager.TraceStop(request);
1897   return NativeProcessProtocol::TraceStop(request);
1898 }
1899 
1900 Expected<json::Value> NativeProcessLinux::TraceGetState(StringRef type) {
1901   if (type == "intel-pt")
1902     return m_intel_pt_manager.GetState();
1903   return NativeProcessProtocol::TraceGetState(type);
1904 }
1905 
1906 Expected<std::vector<uint8_t>> NativeProcessLinux::TraceGetBinaryData(
1907     const TraceGetBinaryDataRequest &request) {
1908   if (request.type == "intel-pt")
1909     return m_intel_pt_manager.GetBinaryData(request);
1910   return NativeProcessProtocol::TraceGetBinaryData(request);
1911 }
1912