1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/lldb-python.h" 11 12 #include "NativeProcessLinux.h" 13 14 // C Includes 15 #include <errno.h> 16 #include <poll.h> 17 #include <string.h> 18 #include <stdint.h> 19 #include <unistd.h> 20 21 // C++ Includes 22 #include <fstream> 23 #include <sstream> 24 #include <string> 25 26 // Other libraries and framework includes 27 #include "lldb/Core/Debugger.h" 28 #include "lldb/Core/EmulateInstruction.h" 29 #include "lldb/Core/Error.h" 30 #include "lldb/Core/Module.h" 31 #include "lldb/Core/ModuleSpec.h" 32 #include "lldb/Core/RegisterValue.h" 33 #include "lldb/Core/Scalar.h" 34 #include "lldb/Core/State.h" 35 #include "lldb/Host/common/NativeBreakpoint.h" 36 #include "lldb/Host/common/NativeRegisterContext.h" 37 #include "lldb/Host/Host.h" 38 #include "lldb/Host/HostInfo.h" 39 #include "lldb/Host/HostNativeThread.h" 40 #include "lldb/Host/ThreadLauncher.h" 41 #include "lldb/Symbol/ObjectFile.h" 42 #include "lldb/Target/Process.h" 43 #include "lldb/Target/ProcessLaunchInfo.h" 44 #include "lldb/Utility/LLDBAssert.h" 45 #include "lldb/Utility/PseudoTerminal.h" 46 47 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 48 #include "Plugins/Process/Utility/LinuxSignals.h" 49 #include "Utility/StringExtractor.h" 50 #include "NativeThreadLinux.h" 51 #include "ProcFileReader.h" 52 #include "Procfs.h" 53 54 // System includes - They have to be included after framework includes because they define some 55 // macros which collide with variable names in other modules 56 #include <linux/unistd.h> 57 #include <sys/personality.h> 58 #include <sys/ptrace.h> 59 #include <sys/socket.h> 60 #include <sys/signalfd.h> 61 #include <sys/syscall.h> 62 #include <sys/types.h> 63 #include <sys/uio.h> 64 #include <sys/user.h> 65 #include <sys/wait.h> 66 67 #if defined (__arm64__) || defined (__aarch64__) 68 // NT_PRSTATUS and NT_FPREGSET definition 69 #include <elf.h> 70 #endif 71 72 #ifdef __ANDROID__ 73 #define __ptrace_request int 74 #define PT_DETACH PTRACE_DETACH 75 #endif 76 77 #define DEBUG_PTRACE_MAXBYTES 20 78 79 // Support ptrace extensions even when compiled without required kernel support 80 #ifndef PT_GETREGS 81 #ifndef PTRACE_GETREGS 82 #define PTRACE_GETREGS 12 83 #endif 84 #endif 85 #ifndef PT_SETREGS 86 #ifndef PTRACE_SETREGS 87 #define PTRACE_SETREGS 13 88 #endif 89 #endif 90 #ifndef PT_GETFPREGS 91 #ifndef PTRACE_GETFPREGS 92 #define PTRACE_GETFPREGS 14 93 #endif 94 #endif 95 #ifndef PT_SETFPREGS 96 #ifndef PTRACE_SETFPREGS 97 #define PTRACE_SETFPREGS 15 98 #endif 99 #endif 100 #ifndef PTRACE_GETREGSET 101 #define PTRACE_GETREGSET 0x4204 102 #endif 103 #ifndef PTRACE_SETREGSET 104 #define PTRACE_SETREGSET 0x4205 105 #endif 106 #ifndef PTRACE_GET_THREAD_AREA 107 #define PTRACE_GET_THREAD_AREA 25 108 #endif 109 #ifndef PTRACE_ARCH_PRCTL 110 #define PTRACE_ARCH_PRCTL 30 111 #endif 112 #ifndef ARCH_GET_FS 113 #define ARCH_SET_GS 0x1001 114 #define ARCH_SET_FS 0x1002 115 #define ARCH_GET_FS 0x1003 116 #define ARCH_GET_GS 0x1004 117 #endif 118 119 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS 0xffffffff 120 121 // Support hardware breakpoints in case it has not been defined 122 #ifndef TRAP_HWBKPT 123 #define TRAP_HWBKPT 4 124 #endif 125 126 // Try to define a macro to encapsulate the tgkill syscall 127 // fall back on kill() if tgkill isn't available 128 #define tgkill(pid, tid, sig) \ 129 syscall(SYS_tgkill, static_cast<::pid_t>(pid), static_cast<::pid_t>(tid), sig) 130 131 // We disable the tracing of ptrace calls for integration builds to 132 // avoid the additional indirection and checks. 133 #ifndef LLDB_CONFIGURATION_BUILDANDINTEGRATION 134 #define PTRACE(req, pid, addr, data, data_size, error) \ 135 PtraceWrapper((req), (pid), (addr), (data), (data_size), (error), #req, __FILE__, __LINE__) 136 #else 137 #define PTRACE(req, pid, addr, data, data_size, error) \ 138 PtraceWrapper((req), (pid), (addr), (data), (data_size), (error)) 139 #endif 140 141 using namespace lldb; 142 using namespace lldb_private; 143 using namespace lldb_private::process_linux; 144 using namespace llvm; 145 146 // Private bits we only need internally. 147 namespace 148 { 149 const UnixSignals& 150 GetUnixSignals () 151 { 152 static process_linux::LinuxSignals signals; 153 return signals; 154 } 155 156 NativeProcessLinux::LogFunction 157 GetThreadLoggerFunction () 158 { 159 return [](const char *format, va_list args) 160 { 161 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 162 if (log) 163 log->VAPrintf (format, args); 164 }; 165 } 166 167 void 168 CoordinatorErrorHandler (const std::string &error_message) 169 { 170 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 171 if (log) 172 log->Printf ("NativeProcessLinux::%s %s", __FUNCTION__, error_message.c_str ()); 173 assert (false && "NativeProcessLinux error reported"); 174 } 175 176 Error 177 ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch) 178 { 179 // Grab process info for the running process. 180 ProcessInstanceInfo process_info; 181 if (!platform.GetProcessInfo (pid, process_info)) 182 return Error("failed to get process info"); 183 184 // Resolve the executable module. 185 ModuleSP exe_module_sp; 186 ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture()); 187 FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ()); 188 Error error = platform.ResolveExecutable( 189 exe_module_spec, 190 exe_module_sp, 191 executable_search_paths.GetSize () ? &executable_search_paths : NULL); 192 193 if (!error.Success ()) 194 return error; 195 196 // Check if we've got our architecture from the exe_module. 197 arch = exe_module_sp->GetArchitecture (); 198 if (arch.IsValid ()) 199 return Error(); 200 else 201 return Error("failed to retrieve a valid architecture from the exe module"); 202 } 203 204 void 205 DisplayBytes (StreamString &s, void *bytes, uint32_t count) 206 { 207 uint8_t *ptr = (uint8_t *)bytes; 208 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 209 for(uint32_t i=0; i<loop_count; i++) 210 { 211 s.Printf ("[%x]", *ptr); 212 ptr++; 213 } 214 } 215 216 void 217 PtraceDisplayBytes(int &req, void *data, size_t data_size) 218 { 219 StreamString buf; 220 Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet ( 221 POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE)); 222 223 if (verbose_log) 224 { 225 switch(req) 226 { 227 case PTRACE_POKETEXT: 228 { 229 DisplayBytes(buf, &data, 8); 230 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData()); 231 break; 232 } 233 case PTRACE_POKEDATA: 234 { 235 DisplayBytes(buf, &data, 8); 236 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData()); 237 break; 238 } 239 case PTRACE_POKEUSER: 240 { 241 DisplayBytes(buf, &data, 8); 242 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData()); 243 break; 244 } 245 case PTRACE_SETREGS: 246 { 247 DisplayBytes(buf, data, data_size); 248 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData()); 249 break; 250 } 251 case PTRACE_SETFPREGS: 252 { 253 DisplayBytes(buf, data, data_size); 254 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData()); 255 break; 256 } 257 case PTRACE_SETSIGINFO: 258 { 259 DisplayBytes(buf, data, sizeof(siginfo_t)); 260 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData()); 261 break; 262 } 263 case PTRACE_SETREGSET: 264 { 265 // Extract iov_base from data, which is a pointer to the struct IOVEC 266 DisplayBytes(buf, *(void **)data, data_size); 267 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData()); 268 break; 269 } 270 default: 271 { 272 } 273 } 274 } 275 } 276 277 // Wrapper for ptrace to catch errors and log calls. 278 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) 279 long 280 PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error, 281 const char* reqName, const char* file, int line) 282 { 283 long int result; 284 285 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE)); 286 287 PtraceDisplayBytes(req, data, data_size); 288 289 error.Clear(); 290 errno = 0; 291 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 292 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data); 293 else 294 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data); 295 296 if (result == -1) 297 error.SetErrorToErrno(); 298 299 if (log) 300 log->Printf("ptrace(%s, %" PRIu64 ", %p, %p, %zu)=%lX called from file %s line %d", 301 reqName, pid, addr, data, data_size, result, file, line); 302 303 PtraceDisplayBytes(req, data, data_size); 304 305 if (log && error.GetError() != 0) 306 { 307 const char* str; 308 switch (error.GetError()) 309 { 310 case ESRCH: str = "ESRCH"; break; 311 case EINVAL: str = "EINVAL"; break; 312 case EBUSY: str = "EBUSY"; break; 313 case EPERM: str = "EPERM"; break; 314 default: str = error.AsCString(); 315 } 316 log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str); 317 } 318 319 return result; 320 } 321 322 #ifdef LLDB_CONFIGURATION_BUILDANDINTEGRATION 323 // Wrapper for ptrace when logging is not required. 324 // Sets errno to 0 prior to calling ptrace. 325 long 326 PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error) 327 { 328 long result = 0; 329 330 error.Clear(); 331 errno = 0; 332 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 333 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data); 334 else 335 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data); 336 337 if (result == -1) 338 error.SetErrorToErrno(); 339 return result; 340 } 341 #endif 342 343 //------------------------------------------------------------------------------ 344 // Static implementations of NativeProcessLinux::ReadMemory and 345 // NativeProcessLinux::WriteMemory. This enables mutual recursion between these 346 // functions without needed to go thru the thread funnel. 347 348 size_t 349 DoReadMemory( 350 lldb::pid_t pid, 351 lldb::addr_t vm_addr, 352 void *buf, 353 size_t size, 354 Error &error) 355 { 356 // ptrace word size is determined by the host, not the child 357 static const unsigned word_size = sizeof(void*); 358 unsigned char *dst = static_cast<unsigned char*>(buf); 359 size_t bytes_read; 360 size_t remainder; 361 long data; 362 363 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); 364 if (log) 365 ProcessPOSIXLog::IncNestLevel(); 366 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) 367 log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__, 368 pid, word_size, (void*)vm_addr, buf, size); 369 370 assert(sizeof(data) >= word_size); 371 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) 372 { 373 data = PTRACE(PTRACE_PEEKDATA, pid, (void*)vm_addr, nullptr, 0, error); 374 if (error.Fail()) 375 { 376 if (log) 377 ProcessPOSIXLog::DecNestLevel(); 378 return bytes_read; 379 } 380 381 remainder = size - bytes_read; 382 remainder = remainder > word_size ? word_size : remainder; 383 384 // Copy the data into our buffer 385 for (unsigned i = 0; i < remainder; ++i) 386 dst[i] = ((data >> i*8) & 0xFF); 387 388 if (log && ProcessPOSIXLog::AtTopNestLevel() && 389 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 390 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 391 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 392 { 393 uintptr_t print_dst = 0; 394 // Format bytes from data by moving into print_dst for log output 395 for (unsigned i = 0; i < remainder; ++i) 396 print_dst |= (((data >> i*8) & 0xFF) << i*8); 397 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 398 (void*)vm_addr, print_dst, (unsigned long)data); 399 } 400 401 vm_addr += word_size; 402 dst += word_size; 403 } 404 405 if (log) 406 ProcessPOSIXLog::DecNestLevel(); 407 return bytes_read; 408 } 409 410 size_t 411 DoWriteMemory( 412 lldb::pid_t pid, 413 lldb::addr_t vm_addr, 414 const void *buf, 415 size_t size, 416 Error &error) 417 { 418 // ptrace word size is determined by the host, not the child 419 static const unsigned word_size = sizeof(void*); 420 const unsigned char *src = static_cast<const unsigned char*>(buf); 421 size_t bytes_written = 0; 422 size_t remainder; 423 424 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); 425 if (log) 426 ProcessPOSIXLog::IncNestLevel(); 427 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) 428 log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__, 429 pid, word_size, (void*)vm_addr, buf, size); 430 431 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) 432 { 433 remainder = size - bytes_written; 434 remainder = remainder > word_size ? word_size : remainder; 435 436 if (remainder == word_size) 437 { 438 unsigned long data = 0; 439 assert(sizeof(data) >= word_size); 440 for (unsigned i = 0; i < word_size; ++i) 441 data |= (unsigned long)src[i] << i*8; 442 443 if (log && ProcessPOSIXLog::AtTopNestLevel() && 444 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 445 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 446 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 447 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 448 (void*)vm_addr, *(const unsigned long*)src, data); 449 450 if (PTRACE(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data, 0, error)) 451 { 452 if (log) 453 ProcessPOSIXLog::DecNestLevel(); 454 return bytes_written; 455 } 456 } 457 else 458 { 459 unsigned char buff[8]; 460 if (DoReadMemory(pid, vm_addr, 461 buff, word_size, error) != word_size) 462 { 463 if (log) 464 ProcessPOSIXLog::DecNestLevel(); 465 return bytes_written; 466 } 467 468 memcpy(buff, src, remainder); 469 470 if (DoWriteMemory(pid, vm_addr, 471 buff, word_size, error) != word_size) 472 { 473 if (log) 474 ProcessPOSIXLog::DecNestLevel(); 475 return bytes_written; 476 } 477 478 if (log && ProcessPOSIXLog::AtTopNestLevel() && 479 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 480 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 481 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 482 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 483 (void*)vm_addr, *(const unsigned long*)src, *(unsigned long*)buff); 484 } 485 486 vm_addr += word_size; 487 src += word_size; 488 } 489 if (log) 490 ProcessPOSIXLog::DecNestLevel(); 491 return bytes_written; 492 } 493 494 //------------------------------------------------------------------------------ 495 /// @class Operation 496 /// @brief Represents a NativeProcessLinux operation. 497 /// 498 /// Under Linux, it is not possible to ptrace() from any other thread but the 499 /// one that spawned or attached to the process from the start. Therefore, when 500 /// a NativeProcessLinux is asked to deliver or change the state of an inferior 501 /// process the operation must be "funneled" to a specific thread to perform the 502 /// task. The Operation class provides an abstract base for all services the 503 /// NativeProcessLinux must perform via the single virtual function Execute, thus 504 /// encapsulating the code that needs to run in the privileged context. 505 class Operation 506 { 507 public: 508 Operation () : m_error() { } 509 510 virtual 511 ~Operation() {} 512 513 virtual void 514 Execute (NativeProcessLinux *process) = 0; 515 516 const Error & 517 GetError () const { return m_error; } 518 519 protected: 520 Error m_error; 521 }; 522 523 //------------------------------------------------------------------------------ 524 /// @class ReadOperation 525 /// @brief Implements NativeProcessLinux::ReadMemory. 526 class ReadOperation : public Operation 527 { 528 public: 529 ReadOperation( 530 lldb::addr_t addr, 531 void *buff, 532 size_t size, 533 size_t &result) : 534 Operation (), 535 m_addr (addr), 536 m_buff (buff), 537 m_size (size), 538 m_result (result) 539 { 540 } 541 542 void Execute (NativeProcessLinux *process) override; 543 544 private: 545 lldb::addr_t m_addr; 546 void *m_buff; 547 size_t m_size; 548 size_t &m_result; 549 }; 550 551 void 552 ReadOperation::Execute (NativeProcessLinux *process) 553 { 554 m_result = DoReadMemory (process->GetID (), m_addr, m_buff, m_size, m_error); 555 } 556 557 //------------------------------------------------------------------------------ 558 /// @class WriteOperation 559 /// @brief Implements NativeProcessLinux::WriteMemory. 560 class WriteOperation : public Operation 561 { 562 public: 563 WriteOperation( 564 lldb::addr_t addr, 565 const void *buff, 566 size_t size, 567 size_t &result) : 568 Operation (), 569 m_addr (addr), 570 m_buff (buff), 571 m_size (size), 572 m_result (result) 573 { 574 } 575 576 void Execute (NativeProcessLinux *process) override; 577 578 private: 579 lldb::addr_t m_addr; 580 const void *m_buff; 581 size_t m_size; 582 size_t &m_result; 583 }; 584 585 void 586 WriteOperation::Execute(NativeProcessLinux *process) 587 { 588 m_result = DoWriteMemory (process->GetID (), m_addr, m_buff, m_size, m_error); 589 } 590 591 //------------------------------------------------------------------------------ 592 /// @class ReadRegOperation 593 /// @brief Implements NativeProcessLinux::ReadRegisterValue. 594 class ReadRegOperation : public Operation 595 { 596 public: 597 ReadRegOperation(lldb::tid_t tid, uint32_t offset, const char *reg_name, 598 RegisterValue &value) 599 : m_tid(tid), 600 m_offset(static_cast<uintptr_t> (offset)), 601 m_reg_name(reg_name), 602 m_value(value) 603 { } 604 605 void Execute(NativeProcessLinux *monitor) override; 606 607 private: 608 lldb::tid_t m_tid; 609 uintptr_t m_offset; 610 const char *m_reg_name; 611 RegisterValue &m_value; 612 }; 613 614 void 615 ReadRegOperation::Execute(NativeProcessLinux *monitor) 616 { 617 #if defined (__arm64__) || defined (__aarch64__) 618 if (m_offset > sizeof(struct user_pt_regs)) 619 { 620 uintptr_t offset = m_offset - sizeof(struct user_pt_regs); 621 if (offset > sizeof(struct user_fpsimd_state)) 622 { 623 m_error.SetErrorString("invalid offset value"); 624 return; 625 } 626 elf_fpregset_t regs; 627 int regset = NT_FPREGSET; 628 struct iovec ioVec; 629 630 ioVec.iov_base = ®s; 631 ioVec.iov_len = sizeof regs; 632 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 633 if (m_error.Success()) 634 { 635 ArchSpec arch; 636 if (monitor->GetArchitecture(arch)) 637 m_value.SetBytes((void *)(((unsigned char *)(®s)) + offset), 16, arch.GetByteOrder()); 638 else 639 m_error.SetErrorString("failed to get architecture"); 640 } 641 } 642 else 643 { 644 elf_gregset_t regs; 645 int regset = NT_PRSTATUS; 646 struct iovec ioVec; 647 648 ioVec.iov_base = ®s; 649 ioVec.iov_len = sizeof regs; 650 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 651 if (m_error.Success()) 652 { 653 ArchSpec arch; 654 if (monitor->GetArchitecture(arch)) 655 m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, arch.GetByteOrder()); 656 else 657 m_error.SetErrorString("failed to get architecture"); 658 } 659 } 660 #elif defined (__mips__) 661 elf_gregset_t regs; 662 PTRACE(PTRACE_GETREGS, m_tid, NULL, ®s, sizeof regs, m_error); 663 if (m_error.Success()) 664 { 665 lldb_private::ArchSpec arch; 666 if (monitor->GetArchitecture(arch)) 667 m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, arch.GetByteOrder()); 668 else 669 m_error.SetErrorString("failed to get architecture"); 670 } 671 #else 672 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS)); 673 674 lldb::addr_t data = static_cast<unsigned long>(PTRACE(PTRACE_PEEKUSER, m_tid, (void*)m_offset, nullptr, 0, m_error)); 675 if (m_error.Success()) 676 m_value = data; 677 678 if (log) 679 log->Printf ("NativeProcessLinux::%s() reg %s: 0x%" PRIx64, __FUNCTION__, 680 m_reg_name, data); 681 #endif 682 } 683 684 //------------------------------------------------------------------------------ 685 /// @class WriteRegOperation 686 /// @brief Implements NativeProcessLinux::WriteRegisterValue. 687 class WriteRegOperation : public Operation 688 { 689 public: 690 WriteRegOperation(lldb::tid_t tid, unsigned offset, const char *reg_name, 691 const RegisterValue &value) 692 : m_tid(tid), 693 m_offset(offset), 694 m_reg_name(reg_name), 695 m_value(value) 696 { } 697 698 void Execute(NativeProcessLinux *monitor) override; 699 700 private: 701 lldb::tid_t m_tid; 702 uintptr_t m_offset; 703 const char *m_reg_name; 704 const RegisterValue &m_value; 705 }; 706 707 void 708 WriteRegOperation::Execute(NativeProcessLinux *monitor) 709 { 710 #if defined (__arm64__) || defined (__aarch64__) 711 if (m_offset > sizeof(struct user_pt_regs)) 712 { 713 uintptr_t offset = m_offset - sizeof(struct user_pt_regs); 714 if (offset > sizeof(struct user_fpsimd_state)) 715 { 716 m_error.SetErrorString("invalid offset value"); 717 return; 718 } 719 elf_fpregset_t regs; 720 int regset = NT_FPREGSET; 721 struct iovec ioVec; 722 723 ioVec.iov_base = ®s; 724 ioVec.iov_len = sizeof regs; 725 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 726 if (m_error.Success()) 727 { 728 ::memcpy((void *)(((unsigned char *)(®s)) + offset), m_value.GetBytes(), 16); 729 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 730 } 731 } 732 else 733 { 734 elf_gregset_t regs; 735 int regset = NT_PRSTATUS; 736 struct iovec ioVec; 737 738 ioVec.iov_base = ®s; 739 ioVec.iov_len = sizeof regs; 740 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 741 if (m_error.Success()) 742 { 743 ::memcpy((void *)(((unsigned char *)(®s)) + m_offset), m_value.GetBytes(), 8); 744 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 745 } 746 } 747 #elif defined (__mips__) 748 elf_gregset_t regs; 749 PTRACE(PTRACE_GETREGS, m_tid, NULL, ®s, sizeof regs, m_error); 750 if (m_error.Success()) 751 { 752 ::memcpy((void *)(((unsigned char *)(®s)) + m_offset), m_value.GetBytes(), 8); 753 PTRACE(PTRACE_SETREGS, m_tid, NULL, ®s, sizeof regs, m_error); 754 } 755 #else 756 void* buf; 757 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS)); 758 759 buf = (void*) m_value.GetAsUInt64(); 760 761 if (log) 762 log->Printf ("NativeProcessLinux::%s() reg %s: %p", __FUNCTION__, m_reg_name, buf); 763 PTRACE(PTRACE_POKEUSER, m_tid, (void*)m_offset, buf, 0, m_error); 764 #endif 765 } 766 767 //------------------------------------------------------------------------------ 768 /// @class ReadGPROperation 769 /// @brief Implements NativeProcessLinux::ReadGPR. 770 class ReadGPROperation : public Operation 771 { 772 public: 773 ReadGPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 774 : m_tid(tid), m_buf(buf), m_buf_size(buf_size) 775 { } 776 777 void Execute(NativeProcessLinux *monitor) override; 778 779 private: 780 lldb::tid_t m_tid; 781 void *m_buf; 782 size_t m_buf_size; 783 }; 784 785 void 786 ReadGPROperation::Execute(NativeProcessLinux *monitor) 787 { 788 #if defined (__arm64__) || defined (__aarch64__) 789 int regset = NT_PRSTATUS; 790 struct iovec ioVec; 791 792 ioVec.iov_base = m_buf; 793 ioVec.iov_len = m_buf_size; 794 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); 795 #else 796 PTRACE(PTRACE_GETREGS, m_tid, nullptr, m_buf, m_buf_size, m_error); 797 #endif 798 } 799 800 //------------------------------------------------------------------------------ 801 /// @class ReadFPROperation 802 /// @brief Implements NativeProcessLinux::ReadFPR. 803 class ReadFPROperation : public Operation 804 { 805 public: 806 ReadFPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 807 : m_tid(tid), 808 m_buf(buf), 809 m_buf_size(buf_size) 810 { } 811 812 void Execute(NativeProcessLinux *monitor) override; 813 814 private: 815 lldb::tid_t m_tid; 816 void *m_buf; 817 size_t m_buf_size; 818 }; 819 820 void 821 ReadFPROperation::Execute(NativeProcessLinux *monitor) 822 { 823 #if defined (__arm64__) || defined (__aarch64__) 824 int regset = NT_FPREGSET; 825 struct iovec ioVec; 826 827 ioVec.iov_base = m_buf; 828 ioVec.iov_len = m_buf_size; 829 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); 830 #else 831 PTRACE(PTRACE_GETFPREGS, m_tid, nullptr, m_buf, m_buf_size, m_error); 832 #endif 833 } 834 835 //------------------------------------------------------------------------------ 836 /// @class ReadRegisterSetOperation 837 /// @brief Implements NativeProcessLinux::ReadRegisterSet. 838 class ReadRegisterSetOperation : public Operation 839 { 840 public: 841 ReadRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 842 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset) 843 { } 844 845 void Execute(NativeProcessLinux *monitor) override; 846 847 private: 848 lldb::tid_t m_tid; 849 void *m_buf; 850 size_t m_buf_size; 851 const unsigned int m_regset; 852 }; 853 854 void 855 ReadRegisterSetOperation::Execute(NativeProcessLinux *monitor) 856 { 857 PTRACE(PTRACE_GETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error); 858 } 859 860 //------------------------------------------------------------------------------ 861 /// @class WriteGPROperation 862 /// @brief Implements NativeProcessLinux::WriteGPR. 863 class WriteGPROperation : public Operation 864 { 865 public: 866 WriteGPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 867 : m_tid(tid), m_buf(buf), m_buf_size(buf_size) 868 { } 869 870 void Execute(NativeProcessLinux *monitor) override; 871 872 private: 873 lldb::tid_t m_tid; 874 void *m_buf; 875 size_t m_buf_size; 876 }; 877 878 void 879 WriteGPROperation::Execute(NativeProcessLinux *monitor) 880 { 881 #if defined (__arm64__) || defined (__aarch64__) 882 int regset = NT_PRSTATUS; 883 struct iovec ioVec; 884 885 ioVec.iov_base = m_buf; 886 ioVec.iov_len = m_buf_size; 887 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); 888 #else 889 PTRACE(PTRACE_SETREGS, m_tid, NULL, m_buf, m_buf_size, m_error); 890 #endif 891 } 892 893 //------------------------------------------------------------------------------ 894 /// @class WriteFPROperation 895 /// @brief Implements NativeProcessLinux::WriteFPR. 896 class WriteFPROperation : public Operation 897 { 898 public: 899 WriteFPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 900 : m_tid(tid), m_buf(buf), m_buf_size(buf_size) 901 { } 902 903 void Execute(NativeProcessLinux *monitor) override; 904 905 private: 906 lldb::tid_t m_tid; 907 void *m_buf; 908 size_t m_buf_size; 909 }; 910 911 void 912 WriteFPROperation::Execute(NativeProcessLinux *monitor) 913 { 914 #if defined (__arm64__) || defined (__aarch64__) 915 int regset = NT_FPREGSET; 916 struct iovec ioVec; 917 918 ioVec.iov_base = m_buf; 919 ioVec.iov_len = m_buf_size; 920 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); 921 #else 922 PTRACE(PTRACE_SETFPREGS, m_tid, NULL, m_buf, m_buf_size, m_error); 923 #endif 924 } 925 926 //------------------------------------------------------------------------------ 927 /// @class WriteRegisterSetOperation 928 /// @brief Implements NativeProcessLinux::WriteRegisterSet. 929 class WriteRegisterSetOperation : public Operation 930 { 931 public: 932 WriteRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 933 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset) 934 { } 935 936 void Execute(NativeProcessLinux *monitor) override; 937 938 private: 939 lldb::tid_t m_tid; 940 void *m_buf; 941 size_t m_buf_size; 942 const unsigned int m_regset; 943 }; 944 945 void 946 WriteRegisterSetOperation::Execute(NativeProcessLinux *monitor) 947 { 948 PTRACE(PTRACE_SETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error); 949 } 950 951 //------------------------------------------------------------------------------ 952 /// @class ResumeOperation 953 /// @brief Implements NativeProcessLinux::Resume. 954 class ResumeOperation : public Operation 955 { 956 public: 957 ResumeOperation(lldb::tid_t tid, uint32_t signo) : 958 m_tid(tid), m_signo(signo) { } 959 960 void Execute(NativeProcessLinux *monitor) override; 961 962 private: 963 lldb::tid_t m_tid; 964 uint32_t m_signo; 965 }; 966 967 void 968 ResumeOperation::Execute(NativeProcessLinux *monitor) 969 { 970 intptr_t data = 0; 971 972 if (m_signo != LLDB_INVALID_SIGNAL_NUMBER) 973 data = m_signo; 974 975 PTRACE(PTRACE_CONT, m_tid, nullptr, (void*)data, 0, m_error); 976 if (m_error.Fail()) 977 { 978 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 979 980 if (log) 981 log->Printf ("ResumeOperation (%" PRIu64 ") failed: %s", m_tid, m_error.AsCString()); 982 } 983 } 984 985 //------------------------------------------------------------------------------ 986 /// @class SingleStepOperation 987 /// @brief Implements NativeProcessLinux::SingleStep. 988 class SingleStepOperation : public Operation 989 { 990 public: 991 SingleStepOperation(lldb::tid_t tid, uint32_t signo) 992 : m_tid(tid), m_signo(signo) { } 993 994 void Execute(NativeProcessLinux *monitor) override; 995 996 private: 997 lldb::tid_t m_tid; 998 uint32_t m_signo; 999 }; 1000 1001 void 1002 SingleStepOperation::Execute(NativeProcessLinux *monitor) 1003 { 1004 intptr_t data = 0; 1005 1006 if (m_signo != LLDB_INVALID_SIGNAL_NUMBER) 1007 data = m_signo; 1008 1009 PTRACE(PTRACE_SINGLESTEP, m_tid, nullptr, (void*)data, 0, m_error); 1010 } 1011 1012 //------------------------------------------------------------------------------ 1013 /// @class SiginfoOperation 1014 /// @brief Implements NativeProcessLinux::GetSignalInfo. 1015 class SiginfoOperation : public Operation 1016 { 1017 public: 1018 SiginfoOperation(lldb::tid_t tid, void *info) 1019 : m_tid(tid), m_info(info) { } 1020 1021 void Execute(NativeProcessLinux *monitor) override; 1022 1023 private: 1024 lldb::tid_t m_tid; 1025 void *m_info; 1026 }; 1027 1028 void 1029 SiginfoOperation::Execute(NativeProcessLinux *monitor) 1030 { 1031 PTRACE(PTRACE_GETSIGINFO, m_tid, nullptr, m_info, 0, m_error); 1032 } 1033 1034 //------------------------------------------------------------------------------ 1035 /// @class EventMessageOperation 1036 /// @brief Implements NativeProcessLinux::GetEventMessage. 1037 class EventMessageOperation : public Operation 1038 { 1039 public: 1040 EventMessageOperation(lldb::tid_t tid, unsigned long *message) 1041 : m_tid(tid), m_message(message) { } 1042 1043 void Execute(NativeProcessLinux *monitor) override; 1044 1045 private: 1046 lldb::tid_t m_tid; 1047 unsigned long *m_message; 1048 }; 1049 1050 void 1051 EventMessageOperation::Execute(NativeProcessLinux *monitor) 1052 { 1053 PTRACE(PTRACE_GETEVENTMSG, m_tid, nullptr, m_message, 0, m_error); 1054 } 1055 1056 class DetachOperation : public Operation 1057 { 1058 public: 1059 DetachOperation(lldb::tid_t tid) : m_tid(tid) { } 1060 1061 void Execute(NativeProcessLinux *monitor) override; 1062 1063 private: 1064 lldb::tid_t m_tid; 1065 }; 1066 1067 void 1068 DetachOperation::Execute(NativeProcessLinux *monitor) 1069 { 1070 PTRACE(PTRACE_DETACH, m_tid, nullptr, 0, 0, m_error); 1071 } 1072 } // end of anonymous namespace 1073 1074 // Simple helper function to ensure flags are enabled on the given file 1075 // descriptor. 1076 static Error 1077 EnsureFDFlags(int fd, int flags) 1078 { 1079 Error error; 1080 1081 int status = fcntl(fd, F_GETFL); 1082 if (status == -1) 1083 { 1084 error.SetErrorToErrno(); 1085 return error; 1086 } 1087 1088 if (fcntl(fd, F_SETFL, status | flags) == -1) 1089 { 1090 error.SetErrorToErrno(); 1091 return error; 1092 } 1093 1094 return error; 1095 } 1096 1097 // This class encapsulates the privileged thread which performs all ptrace and wait operations on 1098 // the inferior. The thread consists of a main loop which waits for events and processes them 1099 // - SIGCHLD (delivered over a signalfd file descriptor): These signals notify us of events in 1100 // the inferior process. Upon receiving this signal we do a waitpid to get more information 1101 // and dispatch to NativeProcessLinux::MonitorCallback. 1102 // - requests for ptrace operations: These initiated via the DoOperation method, which funnels 1103 // them to the Monitor thread via m_operation member. The Monitor thread is signaled over a 1104 // pipe, and the completion of the operation is signalled over the semaphore. 1105 // - thread exit event: this is signaled from the Monitor destructor by closing the write end 1106 // of the command pipe. 1107 class NativeProcessLinux::Monitor 1108 { 1109 private: 1110 // The initial monitor operation (launch or attach). It returns a inferior process id. 1111 std::unique_ptr<InitialOperation> m_initial_operation_up; 1112 1113 ::pid_t m_child_pid = -1; 1114 NativeProcessLinux * m_native_process; 1115 1116 enum { READ, WRITE }; 1117 int m_pipefd[2] = {-1, -1}; 1118 int m_signal_fd = -1; 1119 HostThread m_thread; 1120 1121 // current operation which must be executed on the priviliged thread 1122 Mutex m_operation_mutex; 1123 Operation *m_operation = nullptr; 1124 sem_t m_operation_sem; 1125 Error m_operation_error; 1126 1127 unsigned m_operation_nesting_level = 0; 1128 1129 static constexpr char operation_command = 'o'; 1130 static constexpr char begin_block_command = '{'; 1131 static constexpr char end_block_command = '}'; 1132 1133 void 1134 HandleSignals(); 1135 1136 void 1137 HandleWait(); 1138 1139 // Returns true if the thread should exit. 1140 bool 1141 HandleCommands(); 1142 1143 void 1144 MainLoop(); 1145 1146 static void * 1147 RunMonitor(void *arg); 1148 1149 Error 1150 WaitForAck(); 1151 1152 void 1153 BeginOperationBlock() 1154 { 1155 write(m_pipefd[WRITE], &begin_block_command, sizeof operation_command); 1156 WaitForAck(); 1157 } 1158 1159 void 1160 EndOperationBlock() 1161 { 1162 write(m_pipefd[WRITE], &end_block_command, sizeof operation_command); 1163 WaitForAck(); 1164 } 1165 1166 public: 1167 Monitor(const InitialOperation &initial_operation, 1168 NativeProcessLinux *native_process) 1169 : m_initial_operation_up(new InitialOperation(initial_operation)), 1170 m_native_process(native_process) 1171 { 1172 sem_init(&m_operation_sem, 0, 0); 1173 } 1174 1175 ~Monitor(); 1176 1177 Error 1178 Initialize(); 1179 1180 void 1181 Terminate(); 1182 1183 void 1184 DoOperation(Operation *op); 1185 1186 class ScopedOperationLock { 1187 Monitor &m_monitor; 1188 1189 public: 1190 ScopedOperationLock(Monitor &monitor) 1191 : m_monitor(monitor) 1192 { m_monitor.BeginOperationBlock(); } 1193 1194 ~ScopedOperationLock() 1195 { m_monitor.EndOperationBlock(); } 1196 }; 1197 }; 1198 constexpr char NativeProcessLinux::Monitor::operation_command; 1199 constexpr char NativeProcessLinux::Monitor::begin_block_command; 1200 constexpr char NativeProcessLinux::Monitor::end_block_command; 1201 1202 Error 1203 NativeProcessLinux::Monitor::Initialize() 1204 { 1205 Error error; 1206 1207 // We get a SIGCHLD every time something interesting happens with the inferior. We shall be 1208 // listening for these signals over a signalfd file descriptors. This allows us to wait for 1209 // multiple kinds of events with select. 1210 sigset_t signals; 1211 sigemptyset(&signals); 1212 sigaddset(&signals, SIGCHLD); 1213 m_signal_fd = signalfd(-1, &signals, SFD_NONBLOCK | SFD_CLOEXEC); 1214 if (m_signal_fd < 0) 1215 { 1216 return Error("NativeProcessLinux::Monitor::%s failed due to signalfd failure. Monitoring the inferior will be impossible: %s", 1217 __FUNCTION__, strerror(errno)); 1218 1219 } 1220 1221 if (pipe2(m_pipefd, O_CLOEXEC) == -1) 1222 { 1223 error.SetErrorToErrno(); 1224 return error; 1225 } 1226 1227 if ((error = EnsureFDFlags(m_pipefd[READ], O_NONBLOCK)).Fail()) { 1228 return error; 1229 } 1230 1231 static const char g_thread_name[] = "lldb.process.nativelinux.monitor"; 1232 m_thread = ThreadLauncher::LaunchThread(g_thread_name, Monitor::RunMonitor, this, nullptr); 1233 if (!m_thread.IsJoinable()) 1234 return Error("Failed to create monitor thread for NativeProcessLinux."); 1235 1236 // Wait for initial operation to complete. 1237 return WaitForAck(); 1238 } 1239 1240 void 1241 NativeProcessLinux::Monitor::DoOperation(Operation *op) 1242 { 1243 if (m_thread.EqualsThread(pthread_self())) { 1244 // If we're on the Monitor thread, we can simply execute the operation. 1245 op->Execute(m_native_process); 1246 return; 1247 } 1248 1249 // Otherwise we need to pass the operation to the Monitor thread so it can handle it. 1250 Mutex::Locker lock(m_operation_mutex); 1251 1252 m_operation = op; 1253 1254 // notify the thread that an operation is ready to be processed 1255 write(m_pipefd[WRITE], &operation_command, sizeof operation_command); 1256 1257 WaitForAck(); 1258 } 1259 1260 void 1261 NativeProcessLinux::Monitor::Terminate() 1262 { 1263 if (m_pipefd[WRITE] >= 0) 1264 { 1265 close(m_pipefd[WRITE]); 1266 m_pipefd[WRITE] = -1; 1267 } 1268 if (m_thread.IsJoinable()) 1269 m_thread.Join(nullptr); 1270 } 1271 1272 NativeProcessLinux::Monitor::~Monitor() 1273 { 1274 Terminate(); 1275 if (m_pipefd[READ] >= 0) 1276 close(m_pipefd[READ]); 1277 if (m_signal_fd >= 0) 1278 close(m_signal_fd); 1279 sem_destroy(&m_operation_sem); 1280 } 1281 1282 void 1283 NativeProcessLinux::Monitor::HandleSignals() 1284 { 1285 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1286 1287 // We don't really care about the content of the SIGCHLD siginfo structure, as we will get 1288 // all the information from waitpid(). We just need to read all the signals so that we can 1289 // sleep next time we reach select(). 1290 while (true) 1291 { 1292 signalfd_siginfo info; 1293 ssize_t size = read(m_signal_fd, &info, sizeof info); 1294 if (size == -1) 1295 { 1296 if (errno == EAGAIN || errno == EWOULDBLOCK) 1297 break; // We are done. 1298 if (errno == EINTR) 1299 continue; 1300 if (log) 1301 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor failed: %s", 1302 __FUNCTION__, strerror(errno)); 1303 break; 1304 } 1305 if (size != sizeof info) 1306 { 1307 // We got incomplete information structure. This should not happen, let's just log 1308 // that. 1309 if (log) 1310 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor returned incomplete data: " 1311 "structure size is %zd, read returned %zd bytes", 1312 __FUNCTION__, sizeof info, size); 1313 break; 1314 } 1315 if (log) 1316 log->Printf("NativeProcessLinux::Monitor::%s received signal %s(%d).", __FUNCTION__, 1317 Host::GetSignalAsCString(info.ssi_signo), info.ssi_signo); 1318 } 1319 } 1320 1321 void 1322 NativeProcessLinux::Monitor::HandleWait() 1323 { 1324 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1325 // Process all pending waitpid notifications. 1326 while (true) 1327 { 1328 int status = -1; 1329 ::pid_t wait_pid = waitpid(m_child_pid, &status, __WALL | WNOHANG); 1330 1331 if (wait_pid == 0) 1332 break; // We are done. 1333 1334 if (wait_pid == -1) 1335 { 1336 if (errno == EINTR) 1337 continue; 1338 1339 if (log) 1340 log->Printf("NativeProcessLinux::Monitor::%s waitpid (pid = %" PRIi32 ", &status, __WALL | WNOHANG) failed: %s", 1341 __FUNCTION__, m_child_pid, strerror(errno)); 1342 break; 1343 } 1344 1345 bool exited = false; 1346 int signal = 0; 1347 int exit_status = 0; 1348 const char *status_cstr = NULL; 1349 if (WIFSTOPPED(status)) 1350 { 1351 signal = WSTOPSIG(status); 1352 status_cstr = "STOPPED"; 1353 } 1354 else if (WIFEXITED(status)) 1355 { 1356 exit_status = WEXITSTATUS(status); 1357 status_cstr = "EXITED"; 1358 exited = true; 1359 } 1360 else if (WIFSIGNALED(status)) 1361 { 1362 signal = WTERMSIG(status); 1363 status_cstr = "SIGNALED"; 1364 if (wait_pid == abs(m_child_pid)) { 1365 exited = true; 1366 exit_status = -1; 1367 } 1368 } 1369 else 1370 status_cstr = "(\?\?\?)"; 1371 1372 if (log) 1373 log->Printf("NativeProcessLinux::Monitor::%s: waitpid (pid = %" PRIi32 ", &status, __WALL | WNOHANG)" 1374 "=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i", 1375 __FUNCTION__, m_child_pid, wait_pid, status, status_cstr, signal, exit_status); 1376 1377 m_native_process->MonitorCallback (wait_pid, exited, signal, exit_status); 1378 } 1379 } 1380 1381 bool 1382 NativeProcessLinux::Monitor::HandleCommands() 1383 { 1384 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1385 1386 while (true) 1387 { 1388 char command = 0; 1389 ssize_t size = read(m_pipefd[READ], &command, sizeof command); 1390 if (size == -1) 1391 { 1392 if (errno == EAGAIN || errno == EWOULDBLOCK) 1393 return false; 1394 if (errno == EINTR) 1395 continue; 1396 if (log) 1397 log->Printf("NativeProcessLinux::Monitor::%s exiting because read from command file descriptor failed: %s", __FUNCTION__, strerror(errno)); 1398 return true; 1399 } 1400 if (size == 0) // end of file - write end closed 1401 { 1402 if (log) 1403 log->Printf("NativeProcessLinux::Monitor::%s exit command received, exiting...", __FUNCTION__); 1404 assert(m_operation_nesting_level == 0 && "Unbalanced begin/end block commands detected"); 1405 return true; // We are done. 1406 } 1407 1408 switch (command) 1409 { 1410 case operation_command: 1411 m_operation->Execute(m_native_process); 1412 break; 1413 case begin_block_command: 1414 ++m_operation_nesting_level; 1415 break; 1416 case end_block_command: 1417 assert(m_operation_nesting_level > 0); 1418 --m_operation_nesting_level; 1419 break; 1420 default: 1421 if (log) 1422 log->Printf("NativeProcessLinux::Monitor::%s received unknown command '%c'", 1423 __FUNCTION__, command); 1424 } 1425 1426 // notify calling thread that the command has been processed 1427 sem_post(&m_operation_sem); 1428 } 1429 } 1430 1431 void 1432 NativeProcessLinux::Monitor::MainLoop() 1433 { 1434 ::pid_t child_pid = (*m_initial_operation_up)(m_operation_error); 1435 m_initial_operation_up.reset(); 1436 m_child_pid = -getpgid(child_pid), 1437 sem_post(&m_operation_sem); 1438 1439 while (true) 1440 { 1441 fd_set fds; 1442 FD_ZERO(&fds); 1443 // Only process waitpid events if we are outside of an operation block. Any pending 1444 // events will be processed after we leave the block. 1445 if (m_operation_nesting_level == 0) 1446 FD_SET(m_signal_fd, &fds); 1447 FD_SET(m_pipefd[READ], &fds); 1448 1449 int max_fd = std::max(m_signal_fd, m_pipefd[READ]) + 1; 1450 int r = select(max_fd, &fds, nullptr, nullptr, nullptr); 1451 if (r < 0) 1452 { 1453 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1454 if (log) 1455 log->Printf("NativeProcessLinux::Monitor::%s exiting because select failed: %s", 1456 __FUNCTION__, strerror(errno)); 1457 return; 1458 } 1459 1460 if (FD_ISSET(m_pipefd[READ], &fds)) 1461 { 1462 if (HandleCommands()) 1463 return; 1464 } 1465 1466 if (FD_ISSET(m_signal_fd, &fds)) 1467 { 1468 HandleSignals(); 1469 HandleWait(); 1470 } 1471 } 1472 } 1473 1474 Error 1475 NativeProcessLinux::Monitor::WaitForAck() 1476 { 1477 Error error; 1478 while (sem_wait(&m_operation_sem) != 0) 1479 { 1480 if (errno == EINTR) 1481 continue; 1482 1483 error.SetErrorToErrno(); 1484 return error; 1485 } 1486 1487 return m_operation_error; 1488 } 1489 1490 void * 1491 NativeProcessLinux::Monitor::RunMonitor(void *arg) 1492 { 1493 static_cast<Monitor *>(arg)->MainLoop(); 1494 return nullptr; 1495 } 1496 1497 1498 NativeProcessLinux::LaunchArgs::LaunchArgs(Module *module, 1499 char const **argv, 1500 char const **envp, 1501 const std::string &stdin_path, 1502 const std::string &stdout_path, 1503 const std::string &stderr_path, 1504 const char *working_dir, 1505 const ProcessLaunchInfo &launch_info) 1506 : m_module(module), 1507 m_argv(argv), 1508 m_envp(envp), 1509 m_stdin_path(stdin_path), 1510 m_stdout_path(stdout_path), 1511 m_stderr_path(stderr_path), 1512 m_working_dir(working_dir), 1513 m_launch_info(launch_info) 1514 { 1515 } 1516 1517 NativeProcessLinux::LaunchArgs::~LaunchArgs() 1518 { } 1519 1520 // ----------------------------------------------------------------------------- 1521 // Public Static Methods 1522 // ----------------------------------------------------------------------------- 1523 1524 Error 1525 NativeProcessLinux::LaunchProcess ( 1526 Module *exe_module, 1527 ProcessLaunchInfo &launch_info, 1528 NativeProcessProtocol::NativeDelegate &native_delegate, 1529 NativeProcessProtocolSP &native_process_sp) 1530 { 1531 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1532 1533 Error error; 1534 1535 // Verify the working directory is valid if one was specified. 1536 const char* working_dir = launch_info.GetWorkingDirectory (); 1537 if (working_dir) 1538 { 1539 FileSpec working_dir_fs (working_dir, true); 1540 if (!working_dir_fs || working_dir_fs.GetFileType () != FileSpec::eFileTypeDirectory) 1541 { 1542 error.SetErrorStringWithFormat ("No such file or directory: %s", working_dir); 1543 return error; 1544 } 1545 } 1546 1547 const FileAction *file_action; 1548 1549 // Default of NULL will mean to use existing open file descriptors. 1550 std::string stdin_path; 1551 std::string stdout_path; 1552 std::string stderr_path; 1553 1554 file_action = launch_info.GetFileActionForFD (STDIN_FILENO); 1555 if (file_action) 1556 stdin_path = file_action->GetPath (); 1557 1558 file_action = launch_info.GetFileActionForFD (STDOUT_FILENO); 1559 if (file_action) 1560 stdout_path = file_action->GetPath (); 1561 1562 file_action = launch_info.GetFileActionForFD (STDERR_FILENO); 1563 if (file_action) 1564 stderr_path = file_action->GetPath (); 1565 1566 if (log) 1567 { 1568 if (!stdin_path.empty ()) 1569 log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'", __FUNCTION__, stdin_path.c_str ()); 1570 else 1571 log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__); 1572 1573 if (!stdout_path.empty ()) 1574 log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'", __FUNCTION__, stdout_path.c_str ()); 1575 else 1576 log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__); 1577 1578 if (!stderr_path.empty ()) 1579 log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'", __FUNCTION__, stderr_path.c_str ()); 1580 else 1581 log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__); 1582 } 1583 1584 // Create the NativeProcessLinux in launch mode. 1585 native_process_sp.reset (new NativeProcessLinux ()); 1586 1587 if (log) 1588 { 1589 int i = 0; 1590 for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i) 1591 { 1592 log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr"); 1593 ++i; 1594 } 1595 } 1596 1597 if (!native_process_sp->RegisterNativeDelegate (native_delegate)) 1598 { 1599 native_process_sp.reset (); 1600 error.SetErrorStringWithFormat ("failed to register the native delegate"); 1601 return error; 1602 } 1603 1604 std::static_pointer_cast<NativeProcessLinux> (native_process_sp)->LaunchInferior ( 1605 exe_module, 1606 launch_info.GetArguments ().GetConstArgumentVector (), 1607 launch_info.GetEnvironmentEntries ().GetConstArgumentVector (), 1608 stdin_path, 1609 stdout_path, 1610 stderr_path, 1611 working_dir, 1612 launch_info, 1613 error); 1614 1615 if (error.Fail ()) 1616 { 1617 native_process_sp.reset (); 1618 if (log) 1619 log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ()); 1620 return error; 1621 } 1622 1623 launch_info.SetProcessID (native_process_sp->GetID ()); 1624 1625 return error; 1626 } 1627 1628 Error 1629 NativeProcessLinux::AttachToProcess ( 1630 lldb::pid_t pid, 1631 NativeProcessProtocol::NativeDelegate &native_delegate, 1632 NativeProcessProtocolSP &native_process_sp) 1633 { 1634 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1635 if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE)) 1636 log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid); 1637 1638 // Grab the current platform architecture. This should be Linux, 1639 // since this code is only intended to run on a Linux host. 1640 PlatformSP platform_sp (Platform::GetHostPlatform ()); 1641 if (!platform_sp) 1642 return Error("failed to get a valid default platform"); 1643 1644 // Retrieve the architecture for the running process. 1645 ArchSpec process_arch; 1646 Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch); 1647 if (!error.Success ()) 1648 return error; 1649 1650 std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ()); 1651 1652 if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate)) 1653 { 1654 error.SetErrorStringWithFormat ("failed to register the native delegate"); 1655 return error; 1656 } 1657 1658 native_process_linux_sp->AttachToInferior (pid, error); 1659 if (!error.Success ()) 1660 return error; 1661 1662 native_process_sp = native_process_linux_sp; 1663 return error; 1664 } 1665 1666 // ----------------------------------------------------------------------------- 1667 // Public Instance Methods 1668 // ----------------------------------------------------------------------------- 1669 1670 NativeProcessLinux::NativeProcessLinux () : 1671 NativeProcessProtocol (LLDB_INVALID_PROCESS_ID), 1672 m_arch (), 1673 m_supports_mem_region (eLazyBoolCalculate), 1674 m_mem_region_cache (), 1675 m_mem_region_cache_mutex (), 1676 m_log_function (GetThreadLoggerFunction()), 1677 m_tid_map (), 1678 m_log_event_processing (false) 1679 { 1680 } 1681 1682 //------------------------------------------------------------------------------ 1683 // NativeProcessLinux spawns a new thread which performs all operations on the inferior process. 1684 // Refer to Monitor and Operation classes to see why this is necessary. 1685 //------------------------------------------------------------------------------ 1686 void 1687 NativeProcessLinux::LaunchInferior ( 1688 Module *module, 1689 const char *argv[], 1690 const char *envp[], 1691 const std::string &stdin_path, 1692 const std::string &stdout_path, 1693 const std::string &stderr_path, 1694 const char *working_dir, 1695 const ProcessLaunchInfo &launch_info, 1696 Error &error) 1697 { 1698 if (module) 1699 m_arch = module->GetArchitecture (); 1700 1701 SetState (eStateLaunching); 1702 1703 std::unique_ptr<LaunchArgs> args( 1704 new LaunchArgs( 1705 module, argv, envp, 1706 stdin_path, stdout_path, stderr_path, 1707 working_dir, launch_info)); 1708 1709 StartMonitorThread ([&] (Error &e) { return Launch(args.get(), e); }, error); 1710 if (!error.Success ()) 1711 return; 1712 } 1713 1714 void 1715 NativeProcessLinux::AttachToInferior (lldb::pid_t pid, Error &error) 1716 { 1717 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1718 if (log) 1719 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid); 1720 1721 // We can use the Host for everything except the ResolveExecutable portion. 1722 PlatformSP platform_sp = Platform::GetHostPlatform (); 1723 if (!platform_sp) 1724 { 1725 if (log) 1726 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid); 1727 error.SetErrorString ("no default platform available"); 1728 return; 1729 } 1730 1731 // Gather info about the process. 1732 ProcessInstanceInfo process_info; 1733 if (!platform_sp->GetProcessInfo (pid, process_info)) 1734 { 1735 if (log) 1736 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid); 1737 error.SetErrorString ("failed to get process info"); 1738 return; 1739 } 1740 1741 // Resolve the executable module 1742 ModuleSP exe_module_sp; 1743 FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths()); 1744 ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture()); 1745 error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp, 1746 executable_search_paths.GetSize() ? &executable_search_paths : NULL); 1747 if (!error.Success()) 1748 return; 1749 1750 // Set the architecture to the exe architecture. 1751 m_arch = exe_module_sp->GetArchitecture(); 1752 if (log) 1753 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ()); 1754 1755 m_pid = pid; 1756 SetState(eStateAttaching); 1757 1758 StartMonitorThread ([=] (Error &e) { return Attach(pid, e); }, error); 1759 if (!error.Success ()) 1760 return; 1761 } 1762 1763 void 1764 NativeProcessLinux::Terminate () 1765 { 1766 m_monitor_up->Terminate(); 1767 } 1768 1769 ::pid_t 1770 NativeProcessLinux::Launch(LaunchArgs *args, Error &error) 1771 { 1772 assert (args && "null args"); 1773 1774 const char **argv = args->m_argv; 1775 const char **envp = args->m_envp; 1776 const char *working_dir = args->m_working_dir; 1777 1778 lldb_utility::PseudoTerminal terminal; 1779 const size_t err_len = 1024; 1780 char err_str[err_len]; 1781 lldb::pid_t pid; 1782 NativeThreadProtocolSP thread_sp; 1783 1784 lldb::ThreadSP inferior; 1785 1786 // Propagate the environment if one is not supplied. 1787 if (envp == NULL || envp[0] == NULL) 1788 envp = const_cast<const char **>(environ); 1789 1790 if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1)) 1791 { 1792 error.SetErrorToGenericError(); 1793 error.SetErrorStringWithFormat("Process fork failed: %s", err_str); 1794 return -1; 1795 } 1796 1797 // Recognized child exit status codes. 1798 enum { 1799 ePtraceFailed = 1, 1800 eDupStdinFailed, 1801 eDupStdoutFailed, 1802 eDupStderrFailed, 1803 eChdirFailed, 1804 eExecFailed, 1805 eSetGidFailed 1806 }; 1807 1808 // Child process. 1809 if (pid == 0) 1810 { 1811 // FIXME consider opening a pipe between parent/child and have this forked child 1812 // send log info to parent re: launch status, in place of the log lines removed here. 1813 1814 // Start tracing this child that is about to exec. 1815 PTRACE(PTRACE_TRACEME, 0, nullptr, nullptr, 0, error); 1816 if (error.Fail()) 1817 exit(ePtraceFailed); 1818 1819 // terminal has already dupped the tty descriptors to stdin/out/err. 1820 // This closes original fd from which they were copied (and avoids 1821 // leaking descriptors to the debugged process. 1822 terminal.CloseSlaveFileDescriptor(); 1823 1824 // Do not inherit setgid powers. 1825 if (setgid(getgid()) != 0) 1826 exit(eSetGidFailed); 1827 1828 // Attempt to have our own process group. 1829 if (setpgid(0, 0) != 0) 1830 { 1831 // FIXME log that this failed. This is common. 1832 // Don't allow this to prevent an inferior exec. 1833 } 1834 1835 // Dup file descriptors if needed. 1836 if (!args->m_stdin_path.empty ()) 1837 if (!DupDescriptor(args->m_stdin_path.c_str (), STDIN_FILENO, O_RDONLY)) 1838 exit(eDupStdinFailed); 1839 1840 if (!args->m_stdout_path.empty ()) 1841 if (!DupDescriptor(args->m_stdout_path.c_str (), STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC)) 1842 exit(eDupStdoutFailed); 1843 1844 if (!args->m_stderr_path.empty ()) 1845 if (!DupDescriptor(args->m_stderr_path.c_str (), STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC)) 1846 exit(eDupStderrFailed); 1847 1848 // Close everything besides stdin, stdout, and stderr that has no file 1849 // action to avoid leaking 1850 for (int fd = 3; fd < sysconf(_SC_OPEN_MAX); ++fd) 1851 if (!args->m_launch_info.GetFileActionForFD(fd)) 1852 close(fd); 1853 1854 // Change working directory 1855 if (working_dir != NULL && working_dir[0]) 1856 if (0 != ::chdir(working_dir)) 1857 exit(eChdirFailed); 1858 1859 // Disable ASLR if requested. 1860 if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR)) 1861 { 1862 const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS); 1863 if (old_personality == -1) 1864 { 1865 // Can't retrieve Linux personality. Cannot disable ASLR. 1866 } 1867 else 1868 { 1869 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality); 1870 if (new_personality == -1) 1871 { 1872 // Disabling ASLR failed. 1873 } 1874 else 1875 { 1876 // Disabling ASLR succeeded. 1877 } 1878 } 1879 } 1880 1881 // Execute. We should never return... 1882 execve(argv[0], 1883 const_cast<char *const *>(argv), 1884 const_cast<char *const *>(envp)); 1885 1886 // ...unless exec fails. In which case we definitely need to end the child here. 1887 exit(eExecFailed); 1888 } 1889 1890 // 1891 // This is the parent code here. 1892 // 1893 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1894 1895 // Wait for the child process to trap on its call to execve. 1896 ::pid_t wpid; 1897 int status; 1898 if ((wpid = waitpid(pid, &status, 0)) < 0) 1899 { 1900 error.SetErrorToErrno(); 1901 if (log) 1902 log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s", 1903 __FUNCTION__, error.AsCString ()); 1904 1905 // Mark the inferior as invalid. 1906 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1907 SetState (StateType::eStateInvalid); 1908 1909 return -1; 1910 } 1911 else if (WIFEXITED(status)) 1912 { 1913 // open, dup or execve likely failed for some reason. 1914 error.SetErrorToGenericError(); 1915 switch (WEXITSTATUS(status)) 1916 { 1917 case ePtraceFailed: 1918 error.SetErrorString("Child ptrace failed."); 1919 break; 1920 case eDupStdinFailed: 1921 error.SetErrorString("Child open stdin failed."); 1922 break; 1923 case eDupStdoutFailed: 1924 error.SetErrorString("Child open stdout failed."); 1925 break; 1926 case eDupStderrFailed: 1927 error.SetErrorString("Child open stderr failed."); 1928 break; 1929 case eChdirFailed: 1930 error.SetErrorString("Child failed to set working directory."); 1931 break; 1932 case eExecFailed: 1933 error.SetErrorString("Child exec failed."); 1934 break; 1935 case eSetGidFailed: 1936 error.SetErrorString("Child setgid failed."); 1937 break; 1938 default: 1939 error.SetErrorString("Child returned unknown exit status."); 1940 break; 1941 } 1942 1943 if (log) 1944 { 1945 log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP", 1946 __FUNCTION__, 1947 WEXITSTATUS(status)); 1948 } 1949 1950 // Mark the inferior as invalid. 1951 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1952 SetState (StateType::eStateInvalid); 1953 1954 return -1; 1955 } 1956 assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) && 1957 "Could not sync with inferior process."); 1958 1959 if (log) 1960 log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__); 1961 1962 error = SetDefaultPtraceOpts(pid); 1963 if (error.Fail()) 1964 { 1965 if (log) 1966 log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s", 1967 __FUNCTION__, error.AsCString ()); 1968 1969 // Mark the inferior as invalid. 1970 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1971 SetState (StateType::eStateInvalid); 1972 1973 return -1; 1974 } 1975 1976 // Release the master terminal descriptor and pass it off to the 1977 // NativeProcessLinux instance. Similarly stash the inferior pid. 1978 m_terminal_fd = terminal.ReleaseMasterFileDescriptor(); 1979 m_pid = pid; 1980 1981 // Set the terminal fd to be in non blocking mode (it simplifies the 1982 // implementation of ProcessLinux::GetSTDOUT to have a non-blocking 1983 // descriptor to read from). 1984 error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 1985 if (error.Fail()) 1986 { 1987 if (log) 1988 log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s", 1989 __FUNCTION__, error.AsCString ()); 1990 1991 // Mark the inferior as invalid. 1992 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1993 SetState (StateType::eStateInvalid); 1994 1995 return -1; 1996 } 1997 1998 if (log) 1999 log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid); 2000 2001 thread_sp = AddThread (pid); 2002 assert (thread_sp && "AddThread() returned a nullptr thread"); 2003 NotifyThreadCreateStopped (pid); 2004 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP); 2005 2006 // Let our process instance know the thread has stopped. 2007 SetCurrentThreadID (thread_sp->GetID ()); 2008 SetState (StateType::eStateStopped); 2009 2010 if (log) 2011 { 2012 if (error.Success ()) 2013 { 2014 log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__); 2015 } 2016 else 2017 { 2018 log->Printf ("NativeProcessLinux::%s inferior launching failed: %s", 2019 __FUNCTION__, error.AsCString ()); 2020 return -1; 2021 } 2022 } 2023 return pid; 2024 } 2025 2026 ::pid_t 2027 NativeProcessLinux::Attach(lldb::pid_t pid, Error &error) 2028 { 2029 lldb::ThreadSP inferior; 2030 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2031 2032 // Use a map to keep track of the threads which we have attached/need to attach. 2033 Host::TidMap tids_to_attach; 2034 if (pid <= 1) 2035 { 2036 error.SetErrorToGenericError(); 2037 error.SetErrorString("Attaching to process 1 is not allowed."); 2038 return -1; 2039 } 2040 2041 while (Host::FindProcessThreads(pid, tids_to_attach)) 2042 { 2043 for (Host::TidMap::iterator it = tids_to_attach.begin(); 2044 it != tids_to_attach.end();) 2045 { 2046 if (it->second == false) 2047 { 2048 lldb::tid_t tid = it->first; 2049 2050 // Attach to the requested process. 2051 // An attach will cause the thread to stop with a SIGSTOP. 2052 PTRACE(PTRACE_ATTACH, tid, nullptr, nullptr, 0, error); 2053 if (error.Fail()) 2054 { 2055 // No such thread. The thread may have exited. 2056 // More error handling may be needed. 2057 if (error.GetError() == ESRCH) 2058 { 2059 it = tids_to_attach.erase(it); 2060 continue; 2061 } 2062 else 2063 return -1; 2064 } 2065 2066 int status; 2067 // Need to use __WALL otherwise we receive an error with errno=ECHLD 2068 // At this point we should have a thread stopped if waitpid succeeds. 2069 if ((status = waitpid(tid, NULL, __WALL)) < 0) 2070 { 2071 // No such thread. The thread may have exited. 2072 // More error handling may be needed. 2073 if (errno == ESRCH) 2074 { 2075 it = tids_to_attach.erase(it); 2076 continue; 2077 } 2078 else 2079 { 2080 error.SetErrorToErrno(); 2081 return -1; 2082 } 2083 } 2084 2085 error = SetDefaultPtraceOpts(tid); 2086 if (error.Fail()) 2087 return -1; 2088 2089 if (log) 2090 log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid); 2091 2092 it->second = true; 2093 2094 // Create the thread, mark it as stopped. 2095 NativeThreadProtocolSP thread_sp (AddThread (static_cast<lldb::tid_t> (tid))); 2096 assert (thread_sp && "AddThread() returned a nullptr"); 2097 2098 // This will notify this is a new thread and tell the system it is stopped. 2099 NotifyThreadCreateStopped (tid); 2100 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP); 2101 SetCurrentThreadID (thread_sp->GetID ()); 2102 } 2103 2104 // move the loop forward 2105 ++it; 2106 } 2107 } 2108 2109 if (tids_to_attach.size() > 0) 2110 { 2111 m_pid = pid; 2112 // Let our process instance know the thread has stopped. 2113 SetState (StateType::eStateStopped); 2114 } 2115 else 2116 { 2117 error.SetErrorToGenericError(); 2118 error.SetErrorString("No such process."); 2119 return -1; 2120 } 2121 2122 return pid; 2123 } 2124 2125 Error 2126 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) 2127 { 2128 long ptrace_opts = 0; 2129 2130 // Have the child raise an event on exit. This is used to keep the child in 2131 // limbo until it is destroyed. 2132 ptrace_opts |= PTRACE_O_TRACEEXIT; 2133 2134 // Have the tracer trace threads which spawn in the inferior process. 2135 // TODO: if we want to support tracing the inferiors' child, add the 2136 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) 2137 ptrace_opts |= PTRACE_O_TRACECLONE; 2138 2139 // Have the tracer notify us before execve returns 2140 // (needed to disable legacy SIGTRAP generation) 2141 ptrace_opts |= PTRACE_O_TRACEEXEC; 2142 2143 Error error; 2144 PTRACE(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts, 0, error); 2145 return error; 2146 } 2147 2148 static ExitType convert_pid_status_to_exit_type (int status) 2149 { 2150 if (WIFEXITED (status)) 2151 return ExitType::eExitTypeExit; 2152 else if (WIFSIGNALED (status)) 2153 return ExitType::eExitTypeSignal; 2154 else if (WIFSTOPPED (status)) 2155 return ExitType::eExitTypeStop; 2156 else 2157 { 2158 // We don't know what this is. 2159 return ExitType::eExitTypeInvalid; 2160 } 2161 } 2162 2163 static int convert_pid_status_to_return_code (int status) 2164 { 2165 if (WIFEXITED (status)) 2166 return WEXITSTATUS (status); 2167 else if (WIFSIGNALED (status)) 2168 return WTERMSIG (status); 2169 else if (WIFSTOPPED (status)) 2170 return WSTOPSIG (status); 2171 else 2172 { 2173 // We don't know what this is. 2174 return ExitType::eExitTypeInvalid; 2175 } 2176 } 2177 2178 // Handles all waitpid events from the inferior process. 2179 void 2180 NativeProcessLinux::MonitorCallback(lldb::pid_t pid, 2181 bool exited, 2182 int signal, 2183 int status) 2184 { 2185 Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS)); 2186 2187 // Certain activities differ based on whether the pid is the tid of the main thread. 2188 const bool is_main_thread = (pid == GetID ()); 2189 2190 // Handle when the thread exits. 2191 if (exited) 2192 { 2193 if (log) 2194 log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %" PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not"); 2195 2196 // This is a thread that exited. Ensure we're not tracking it anymore. 2197 const bool thread_found = StopTrackingThread (pid); 2198 2199 // Make sure the thread state coordinator knows about this. 2200 NotifyThreadDeath (pid); 2201 2202 if (is_main_thread) 2203 { 2204 // We only set the exit status and notify the delegate if we haven't already set the process 2205 // state to an exited state. We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8) 2206 // for the main thread. 2207 const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed); 2208 if (!already_notified) 2209 { 2210 if (log) 2211 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ())); 2212 // The main thread exited. We're done monitoring. Report to delegate. 2213 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); 2214 2215 // Notify delegate that our process has exited. 2216 SetState (StateType::eStateExited, true); 2217 } 2218 else 2219 { 2220 if (log) 2221 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); 2222 } 2223 } 2224 else 2225 { 2226 // Do we want to report to the delegate in this case? I think not. If this was an orderly 2227 // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, 2228 // and we would have done an all-stop then. 2229 if (log) 2230 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); 2231 } 2232 return; 2233 } 2234 2235 // Get details on the signal raised. 2236 siginfo_t info; 2237 const auto err = GetSignalInfo(pid, &info); 2238 if (err.Success()) 2239 { 2240 // We have retrieved the signal info. Dispatch appropriately. 2241 if (info.si_signo == SIGTRAP) 2242 MonitorSIGTRAP(&info, pid); 2243 else 2244 MonitorSignal(&info, pid, exited); 2245 } 2246 else 2247 { 2248 if (err.GetError() == EINVAL) 2249 { 2250 // This is a group stop reception for this tid. 2251 if (log) 2252 log->Printf ("NativeThreadLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64, __FUNCTION__, GetID (), pid); 2253 NotifyThreadStop (pid); 2254 } 2255 else 2256 { 2257 // ptrace(GETSIGINFO) failed (but not due to group-stop). 2258 2259 // A return value of ESRCH means the thread/process is no longer on the system, 2260 // so it was killed somehow outside of our control. Either way, we can't do anything 2261 // with it anymore. 2262 2263 // Stop tracking the metadata for the thread since it's entirely off the system now. 2264 const bool thread_found = StopTrackingThread (pid); 2265 2266 // Make sure the thread state coordinator knows about this. 2267 NotifyThreadDeath (pid); 2268 2269 if (log) 2270 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)", 2271 __FUNCTION__, err.AsCString(), pid, signal, status, err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found"); 2272 2273 if (is_main_thread) 2274 { 2275 // Notify the delegate - our process is not available but appears to have been killed outside 2276 // our control. Is eStateExited the right exit state in this case? 2277 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); 2278 SetState (StateType::eStateExited, true); 2279 } 2280 else 2281 { 2282 // This thread was pulled out from underneath us. Anything to do here? Do we want to do an all stop? 2283 if (log) 2284 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid); 2285 } 2286 } 2287 } 2288 } 2289 2290 void 2291 NativeProcessLinux::WaitForNewThread(::pid_t tid) 2292 { 2293 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2294 2295 NativeThreadProtocolSP new_thread_sp = GetThreadByID(tid); 2296 2297 if (new_thread_sp) 2298 { 2299 // We are already tracking the thread - we got the event on the new thread (see 2300 // MonitorSignal) before this one. We are done. 2301 return; 2302 } 2303 2304 // The thread is not tracked yet, let's wait for it to appear. 2305 int status = -1; 2306 ::pid_t wait_pid; 2307 do 2308 { 2309 if (log) 2310 log->Printf ("NativeProcessLinux::%s() received thread creation event for tid %" PRIu32 ". tid not tracked yet, waiting for thread to appear...", __FUNCTION__, tid); 2311 wait_pid = waitpid(tid, &status, __WALL); 2312 } 2313 while (wait_pid == -1 && errno == EINTR); 2314 // Since we are waiting on a specific tid, this must be the creation event. But let's do 2315 // some checks just in case. 2316 if (wait_pid != tid) { 2317 if (log) 2318 log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime", __FUNCTION__, tid); 2319 // The only way I know of this could happen is if the whole process was 2320 // SIGKILLed in the mean time. In any case, we can't do anything about that now. 2321 return; 2322 } 2323 if (WIFEXITED(status)) 2324 { 2325 if (log) 2326 log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " returned an 'exited' event. Not tracking the thread.", __FUNCTION__, tid); 2327 // Also a very improbable event. 2328 return; 2329 } 2330 2331 siginfo_t info; 2332 Error error = GetSignalInfo(tid, &info); 2333 if (error.Fail()) 2334 { 2335 if (log) 2336 log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime.", __FUNCTION__, tid); 2337 return; 2338 } 2339 2340 if (((info.si_pid != 0) || (info.si_code != SI_USER)) && log) 2341 { 2342 // We should be getting a thread creation signal here, but we received something 2343 // else. There isn't much we can do about it now, so we will just log that. Since the 2344 // thread is alive and we are receiving events from it, we shall pretend that it was 2345 // created properly. 2346 log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " received unexpected signal with code %d from pid %d.", __FUNCTION__, tid, info.si_code, info.si_pid); 2347 } 2348 2349 if (log) 2350 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": tracking new thread tid %" PRIu32, 2351 __FUNCTION__, GetID (), tid); 2352 2353 new_thread_sp = AddThread(tid); 2354 std::static_pointer_cast<NativeThreadLinux> (new_thread_sp)->SetRunning (); 2355 Resume (tid, LLDB_INVALID_SIGNAL_NUMBER); 2356 NotifyThreadCreate (tid, false, CoordinatorErrorHandler); 2357 } 2358 2359 void 2360 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid) 2361 { 2362 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2363 const bool is_main_thread = (pid == GetID ()); 2364 2365 assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!"); 2366 if (!info) 2367 return; 2368 2369 Mutex::Locker locker (m_threads_mutex); 2370 2371 // See if we can find a thread for this signal. 2372 NativeThreadProtocolSP thread_sp = GetThreadByID (pid); 2373 if (!thread_sp) 2374 { 2375 if (log) 2376 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid); 2377 } 2378 2379 switch (info->si_code) 2380 { 2381 // TODO: these two cases are required if we want to support tracing of the inferiors' children. We'd need this to debug a monitor. 2382 // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 2383 // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 2384 2385 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): 2386 { 2387 // This is the notification on the parent thread which informs us of new thread 2388 // creation. 2389 // We don't want to do anything with the parent thread so we just resume it. In case we 2390 // want to implement "break on thread creation" functionality, we would need to stop 2391 // here. 2392 2393 unsigned long event_message = 0; 2394 if (GetEventMessage (pid, &event_message).Fail()) 2395 { 2396 if (log) 2397 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, pid); 2398 } else 2399 WaitForNewThread(event_message); 2400 2401 Resume (pid, LLDB_INVALID_SIGNAL_NUMBER); 2402 break; 2403 } 2404 2405 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): 2406 { 2407 NativeThreadProtocolSP main_thread_sp; 2408 if (log) 2409 log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP); 2410 2411 // The thread state coordinator needs to reset due to the exec. 2412 ResetForExec (); 2413 2414 // Remove all but the main thread here. Linux fork creates a new process which only copies the main thread. Mutexes are in undefined state. 2415 if (log) 2416 log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__); 2417 2418 for (auto thread_sp : m_threads) 2419 { 2420 const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID (); 2421 if (is_main_thread) 2422 { 2423 main_thread_sp = thread_sp; 2424 if (log) 2425 log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ()); 2426 } 2427 else 2428 { 2429 // Tell thread coordinator this thread is dead. 2430 if (log) 2431 log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ()); 2432 } 2433 } 2434 2435 m_threads.clear (); 2436 2437 if (main_thread_sp) 2438 { 2439 m_threads.push_back (main_thread_sp); 2440 SetCurrentThreadID (main_thread_sp->GetID ()); 2441 std::static_pointer_cast<NativeThreadLinux> (main_thread_sp)->SetStoppedByExec (); 2442 } 2443 else 2444 { 2445 SetCurrentThreadID (LLDB_INVALID_THREAD_ID); 2446 if (log) 2447 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ()); 2448 } 2449 2450 // Tell coordinator about about the "new" (since exec) stopped main thread. 2451 const lldb::tid_t main_thread_tid = GetID (); 2452 NotifyThreadCreateStopped (main_thread_tid); 2453 2454 // NOTE: ideally these next statements would execute at the same time as the coordinator thread create was executed. 2455 // Consider a handler that can execute when that happens. 2456 // Let our delegate know we have just exec'd. 2457 NotifyDidExec (); 2458 2459 // If we have a main thread, indicate we are stopped. 2460 assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked"); 2461 2462 // Let the process know we're stopped. 2463 StopRunningThreads (pid); 2464 2465 break; 2466 } 2467 2468 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): 2469 { 2470 // The inferior process or one of its threads is about to exit. 2471 2472 // This thread is currently stopped. It's not actually dead yet, just about to be. 2473 NotifyThreadStop (pid); 2474 2475 unsigned long data = 0; 2476 if (GetEventMessage(pid, &data).Fail()) 2477 data = -1; 2478 2479 if (log) 2480 { 2481 log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)", 2482 __FUNCTION__, 2483 data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false", 2484 pid, 2485 is_main_thread ? "is main thread" : "not main thread"); 2486 } 2487 2488 if (is_main_thread) 2489 { 2490 SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true); 2491 } 2492 2493 const int signo = static_cast<int> (data); 2494 RequestThreadResume (pid, 2495 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2496 { 2497 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning (); 2498 return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo); 2499 }, 2500 CoordinatorErrorHandler); 2501 2502 break; 2503 } 2504 2505 case 0: 2506 case TRAP_TRACE: // We receive this on single stepping. 2507 case TRAP_HWBKPT: // We receive this on watchpoint hit 2508 if (thread_sp) 2509 { 2510 // If a watchpoint was hit, report it 2511 uint32_t wp_index; 2512 Error error = thread_sp->GetRegisterContext()->GetWatchpointHitIndex(wp_index); 2513 if (error.Fail() && log) 2514 log->Printf("NativeProcessLinux::%s() " 2515 "received error while checking for watchpoint hits, " 2516 "pid = %" PRIu64 " error = %s", 2517 __FUNCTION__, pid, error.AsCString()); 2518 if (wp_index != LLDB_INVALID_INDEX32) 2519 { 2520 MonitorWatchpoint(pid, thread_sp, wp_index); 2521 break; 2522 } 2523 } 2524 // Otherwise, report step over 2525 MonitorTrace(pid, thread_sp); 2526 break; 2527 2528 case SI_KERNEL: 2529 case TRAP_BRKPT: 2530 MonitorBreakpoint(pid, thread_sp); 2531 break; 2532 2533 case SIGTRAP: 2534 case (SIGTRAP | 0x80): 2535 if (log) 2536 log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), pid); 2537 2538 // This thread is currently stopped. 2539 NotifyThreadStop (pid); 2540 if (thread_sp) 2541 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGTRAP); 2542 2543 2544 // Ignore these signals until we know more about them. 2545 RequestThreadResume (pid, 2546 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2547 { 2548 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning (); 2549 return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER); 2550 }, 2551 CoordinatorErrorHandler); 2552 break; 2553 2554 default: 2555 assert(false && "Unexpected SIGTRAP code!"); 2556 if (log) 2557 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%" PRIx64, __FUNCTION__, GetID (), pid, static_cast<uint64_t> (SIGTRAP | (PTRACE_EVENT_CLONE << 8))); 2558 break; 2559 2560 } 2561 } 2562 2563 void 2564 NativeProcessLinux::MonitorTrace(lldb::pid_t pid, NativeThreadProtocolSP thread_sp) 2565 { 2566 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2567 if (log) 2568 log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)", 2569 __FUNCTION__, pid); 2570 2571 if (thread_sp) 2572 std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace(); 2573 2574 // This thread is currently stopped. 2575 NotifyThreadStop(pid); 2576 2577 // Here we don't have to request the rest of the threads to stop or request a deferred stop. 2578 // This would have already happened at the time the Resume() with step operation was signaled. 2579 // At this point, we just need to say we stopped, and the deferred notifcation will fire off 2580 // once all running threads have checked in as stopped. 2581 SetCurrentThreadID(pid); 2582 // Tell the process we have a stop (from software breakpoint). 2583 StopRunningThreads(pid); 2584 } 2585 2586 void 2587 NativeProcessLinux::MonitorBreakpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp) 2588 { 2589 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 2590 if (log) 2591 log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64, 2592 __FUNCTION__, pid); 2593 2594 // This thread is currently stopped. 2595 NotifyThreadStop(pid); 2596 2597 // Mark the thread as stopped at breakpoint. 2598 if (thread_sp) 2599 { 2600 std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByBreakpoint(); 2601 Error error = FixupBreakpointPCAsNeeded(thread_sp); 2602 if (error.Fail()) 2603 if (log) 2604 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s", 2605 __FUNCTION__, pid, error.AsCString()); 2606 2607 auto it = m_threads_stepping_with_breakpoint.find(pid); 2608 if (it != m_threads_stepping_with_breakpoint.end()) 2609 { 2610 Error error = RemoveBreakpoint (it->second); 2611 if (error.Fail()) 2612 if (log) 2613 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s", 2614 __FUNCTION__, pid, error.AsCString()); 2615 2616 m_threads_stepping_with_breakpoint.erase(it); 2617 std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace(); 2618 } 2619 } 2620 else 2621 if (log) 2622 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 ": " 2623 "warning, cannot process software breakpoint since no thread metadata", 2624 __FUNCTION__, pid); 2625 2626 2627 // We need to tell all other running threads before we notify the delegate about this stop. 2628 StopRunningThreads(pid); 2629 } 2630 2631 void 2632 NativeProcessLinux::MonitorWatchpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp, uint32_t wp_index) 2633 { 2634 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); 2635 if (log) 2636 log->Printf("NativeProcessLinux::%s() received watchpoint event, " 2637 "pid = %" PRIu64 ", wp_index = %" PRIu32, 2638 __FUNCTION__, pid, wp_index); 2639 2640 // This thread is currently stopped. 2641 NotifyThreadStop(pid); 2642 2643 // Mark the thread as stopped at watchpoint. 2644 // The address is at (lldb::addr_t)info->si_addr if we need it. 2645 lldbassert(thread_sp && "thread_sp cannot be NULL"); 2646 std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByWatchpoint(wp_index); 2647 2648 // We need to tell all other running threads before we notify the delegate about this stop. 2649 StopRunningThreads(pid); 2650 } 2651 2652 void 2653 NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited) 2654 { 2655 assert (info && "null info"); 2656 if (!info) 2657 return; 2658 2659 const int signo = info->si_signo; 2660 const bool is_from_llgs = info->si_pid == getpid (); 2661 2662 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2663 2664 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 2665 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a 2666 // kill(2) or raise(3). Similarly for tgkill(2) on Linux. 2667 // 2668 // IOW, user generated signals never generate what we consider to be a 2669 // "crash". 2670 // 2671 // Similarly, ACK signals generated by this monitor. 2672 2673 Mutex::Locker locker (m_threads_mutex); 2674 2675 // See if we can find a thread for this signal. 2676 NativeThreadProtocolSP thread_sp = GetThreadByID (pid); 2677 if (!thread_sp) 2678 { 2679 if (log) 2680 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid); 2681 } 2682 2683 // Handle the signal. 2684 if (info->si_code == SI_TKILL || info->si_code == SI_USER) 2685 { 2686 if (log) 2687 log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")", 2688 __FUNCTION__, 2689 GetUnixSignals ().GetSignalAsCString (signo), 2690 signo, 2691 (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"), 2692 info->si_pid, 2693 is_from_llgs ? "from llgs" : "not from llgs", 2694 pid); 2695 } 2696 2697 // Check for new thread notification. 2698 if ((info->si_pid == 0) && (info->si_code == SI_USER)) 2699 { 2700 // A new thread creation is being signaled. This is one of two parts that come in 2701 // a non-deterministic order. This code handles the case where the new thread event comes 2702 // before the event on the parent thread. For the opposite case see code in 2703 // MonitorSIGTRAP. 2704 if (log) 2705 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification", 2706 __FUNCTION__, GetID (), pid); 2707 2708 thread_sp = AddThread(pid); 2709 assert (thread_sp.get() && "failed to create the tracking data for newly created inferior thread"); 2710 // We can now resume the newly created thread. 2711 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning (); 2712 Resume (pid, LLDB_INVALID_SIGNAL_NUMBER); 2713 NotifyThreadCreate (pid, false, CoordinatorErrorHandler); 2714 // Done handling. 2715 return; 2716 } 2717 2718 // Check for thread stop notification. 2719 if (is_from_llgs && (info->si_code == SI_TKILL) && (signo == SIGSTOP)) 2720 { 2721 // This is a tgkill()-based stop. 2722 if (thread_sp) 2723 { 2724 if (log) 2725 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped", 2726 __FUNCTION__, 2727 GetID (), 2728 pid); 2729 2730 // Check that we're not already marked with a stop reason. 2731 // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that 2732 // the kernel signaled us with the thread stopping which we handled and marked as stopped, 2733 // and that, without an intervening resume, we received another stop. It is more likely 2734 // that we are missing the marking of a run state somewhere if we find that the thread was 2735 // marked as stopped. 2736 std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp); 2737 assert (linux_thread_sp && "linux_thread_sp is null!"); 2738 2739 const StateType thread_state = linux_thread_sp->GetState (); 2740 if (!StateIsStoppedState (thread_state, false)) 2741 { 2742 // An inferior thread has stopped because of a SIGSTOP we have sent it. 2743 // Generally, these are not important stops and we don't want to report them as 2744 // they are just used to stop other threads when one thread (the one with the 2745 // *real* stop reason) hits a breakpoint (watchpoint, etc...). However, in the 2746 // case of an asynchronous Interrupt(), this *is* the real stop reason, so we 2747 // leave the signal intact if this is the thread that was chosen as the 2748 // triggering thread. 2749 if (m_pending_notification_up && m_pending_notification_up->triggering_tid == pid) 2750 linux_thread_sp->SetStoppedBySignal(SIGSTOP); 2751 else 2752 linux_thread_sp->SetStoppedBySignal(0); 2753 2754 SetCurrentThreadID (thread_sp->GetID ()); 2755 NotifyThreadStop (thread_sp->GetID (), true, CoordinatorErrorHandler); 2756 } 2757 else 2758 { 2759 if (log) 2760 { 2761 // Retrieve the signal name if the thread was stopped by a signal. 2762 int stop_signo = 0; 2763 const bool stopped_by_signal = linux_thread_sp->IsStopped (&stop_signo); 2764 const char *signal_name = stopped_by_signal ? GetUnixSignals ().GetSignalAsCString (stop_signo) : "<not stopped by signal>"; 2765 if (!signal_name) 2766 signal_name = "<no-signal-name>"; 2767 2768 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is", 2769 __FUNCTION__, 2770 GetID (), 2771 linux_thread_sp->GetID (), 2772 StateAsCString (thread_state), 2773 stop_signo, 2774 signal_name); 2775 } 2776 // Tell the thread state coordinator about the stop. 2777 NotifyThreadStop (thread_sp->GetID ()); 2778 } 2779 } 2780 2781 // Done handling. 2782 return; 2783 } 2784 2785 if (log) 2786 log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo)); 2787 2788 // This thread is stopped. 2789 NotifyThreadStop (pid); 2790 2791 switch (signo) 2792 { 2793 case SIGSTOP: 2794 { 2795 if (log) 2796 { 2797 if (is_from_llgs) 2798 log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from llgs, most likely an interrupt", __FUNCTION__, GetID (), pid); 2799 else 2800 log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from outside of debugger", __FUNCTION__, GetID (), pid); 2801 } 2802 2803 // Resume this thread to get the group-stop mechanism to fire off the true group stops. 2804 // This thread will get stopped again as part of the group-stop completion. 2805 RequestThreadResume (pid, 2806 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2807 { 2808 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning (); 2809 // Pass this signal number on to the inferior to handle. 2810 return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo); 2811 }, 2812 CoordinatorErrorHandler); 2813 } 2814 break; 2815 case SIGSEGV: 2816 case SIGILL: 2817 case SIGFPE: 2818 case SIGBUS: 2819 if (thread_sp) 2820 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetCrashedWithException (*info); 2821 break; 2822 default: 2823 // This is just a pre-signal-delivery notification of the incoming signal. 2824 if (thread_sp) 2825 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (signo); 2826 2827 break; 2828 } 2829 2830 // Send a stop to the debugger after we get all other threads to stop. 2831 StopRunningThreads (pid); 2832 } 2833 2834 namespace { 2835 2836 struct EmulatorBaton 2837 { 2838 NativeProcessLinux* m_process; 2839 NativeRegisterContext* m_reg_context; 2840 2841 // eRegisterKindDWARF -> RegsiterValue 2842 std::unordered_map<uint32_t, RegisterValue> m_register_values; 2843 2844 EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) : 2845 m_process(process), m_reg_context(reg_context) {} 2846 }; 2847 2848 } // anonymous namespace 2849 2850 static size_t 2851 ReadMemoryCallback (EmulateInstruction *instruction, 2852 void *baton, 2853 const EmulateInstruction::Context &context, 2854 lldb::addr_t addr, 2855 void *dst, 2856 size_t length) 2857 { 2858 EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton); 2859 2860 size_t bytes_read; 2861 emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read); 2862 return bytes_read; 2863 } 2864 2865 static bool 2866 ReadRegisterCallback (EmulateInstruction *instruction, 2867 void *baton, 2868 const RegisterInfo *reg_info, 2869 RegisterValue ®_value) 2870 { 2871 EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton); 2872 2873 auto it = emulator_baton->m_register_values.find(reg_info->kinds[eRegisterKindDWARF]); 2874 if (it != emulator_baton->m_register_values.end()) 2875 { 2876 reg_value = it->second; 2877 return true; 2878 } 2879 2880 // The emulator only fill in the dwarf regsiter numbers (and in some case 2881 // the generic register numbers). Get the full register info from the 2882 // register context based on the dwarf register numbers. 2883 const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo( 2884 eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]); 2885 2886 Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value); 2887 if (error.Success()) 2888 { 2889 emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value; 2890 return true; 2891 } 2892 return false; 2893 } 2894 2895 static bool 2896 WriteRegisterCallback (EmulateInstruction *instruction, 2897 void *baton, 2898 const EmulateInstruction::Context &context, 2899 const RegisterInfo *reg_info, 2900 const RegisterValue ®_value) 2901 { 2902 EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton); 2903 emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value; 2904 return true; 2905 } 2906 2907 static size_t 2908 WriteMemoryCallback (EmulateInstruction *instruction, 2909 void *baton, 2910 const EmulateInstruction::Context &context, 2911 lldb::addr_t addr, 2912 const void *dst, 2913 size_t length) 2914 { 2915 return length; 2916 } 2917 2918 static lldb::addr_t 2919 ReadFlags (NativeRegisterContext* regsiter_context) 2920 { 2921 const RegisterInfo* flags_info = regsiter_context->GetRegisterInfo( 2922 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 2923 return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS); 2924 } 2925 2926 Error 2927 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadProtocolSP thread_sp) 2928 { 2929 Error error; 2930 NativeRegisterContextSP register_context_sp = thread_sp->GetRegisterContext(); 2931 2932 std::unique_ptr<EmulateInstruction> emulator_ap( 2933 EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr)); 2934 2935 if (emulator_ap == nullptr) 2936 return Error("Instruction emulator not found!"); 2937 2938 EmulatorBaton baton(this, register_context_sp.get()); 2939 emulator_ap->SetBaton(&baton); 2940 emulator_ap->SetReadMemCallback(&ReadMemoryCallback); 2941 emulator_ap->SetReadRegCallback(&ReadRegisterCallback); 2942 emulator_ap->SetWriteMemCallback(&WriteMemoryCallback); 2943 emulator_ap->SetWriteRegCallback(&WriteRegisterCallback); 2944 2945 if (!emulator_ap->ReadInstruction()) 2946 return Error("Read instruction failed!"); 2947 2948 bool emulation_result = emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC); 2949 2950 const RegisterInfo* reg_info_pc = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); 2951 const RegisterInfo* reg_info_flags = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 2952 2953 auto pc_it = baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]); 2954 auto flags_it = baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]); 2955 2956 lldb::addr_t next_pc; 2957 lldb::addr_t next_flags; 2958 if (emulation_result) 2959 { 2960 assert(pc_it != baton.m_register_values.end() && "Emulation was successfull but PC wasn't updated"); 2961 next_pc = pc_it->second.GetAsUInt64(); 2962 2963 if (flags_it != baton.m_register_values.end()) 2964 next_flags = flags_it->second.GetAsUInt64(); 2965 else 2966 next_flags = ReadFlags (register_context_sp.get()); 2967 } 2968 else if (pc_it == baton.m_register_values.end()) 2969 { 2970 // Emulate instruction failed and it haven't changed PC. Advance PC 2971 // with the size of the current opcode because the emulation of all 2972 // PC modifying instruction should be successful. The failure most 2973 // likely caused by a not supported instruction which don't modify PC. 2974 next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize(); 2975 next_flags = ReadFlags (register_context_sp.get()); 2976 } 2977 else 2978 { 2979 // The instruction emulation failed after it modified the PC. It is an 2980 // unknown error where we can't continue because the next instruction is 2981 // modifying the PC but we don't know how. 2982 return Error ("Instruction emulation failed unexpectedly."); 2983 } 2984 2985 if (m_arch.GetMachine() == llvm::Triple::arm) 2986 { 2987 if (next_flags & 0x20) 2988 { 2989 // Thumb mode 2990 error = SetSoftwareBreakpoint(next_pc, 2); 2991 } 2992 else 2993 { 2994 // Arm mode 2995 error = SetSoftwareBreakpoint(next_pc, 4); 2996 } 2997 } 2998 else 2999 { 3000 // No size hint is given for the next breakpoint 3001 error = SetSoftwareBreakpoint(next_pc, 0); 3002 } 3003 3004 if (error.Fail()) 3005 return error; 3006 3007 m_threads_stepping_with_breakpoint.insert({thread_sp->GetID(), next_pc}); 3008 3009 return Error(); 3010 } 3011 3012 bool 3013 NativeProcessLinux::SupportHardwareSingleStepping() const 3014 { 3015 return m_arch.GetMachine() != llvm::Triple::arm; 3016 } 3017 3018 Error 3019 NativeProcessLinux::Resume (const ResumeActionList &resume_actions) 3020 { 3021 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD)); 3022 if (log) 3023 log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ()); 3024 3025 lldb::tid_t deferred_signal_tid = LLDB_INVALID_THREAD_ID; 3026 lldb::tid_t deferred_signal_skip_tid = LLDB_INVALID_THREAD_ID; 3027 int deferred_signo = 0; 3028 NativeThreadProtocolSP deferred_signal_thread_sp; 3029 bool stepping = false; 3030 bool software_single_step = !SupportHardwareSingleStepping(); 3031 3032 Monitor::ScopedOperationLock monitor_lock(*m_monitor_up); 3033 Mutex::Locker locker (m_threads_mutex); 3034 3035 if (software_single_step) 3036 { 3037 for (auto thread_sp : m_threads) 3038 { 3039 assert (thread_sp && "thread list should not contain NULL threads"); 3040 3041 const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true); 3042 if (action == nullptr) 3043 continue; 3044 3045 if (action->state == eStateStepping) 3046 { 3047 Error error = SetupSoftwareSingleStepping(thread_sp); 3048 if (error.Fail()) 3049 return error; 3050 } 3051 } 3052 } 3053 3054 for (auto thread_sp : m_threads) 3055 { 3056 assert (thread_sp && "thread list should not contain NULL threads"); 3057 3058 const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true); 3059 3060 if (action == nullptr) 3061 { 3062 if (log) 3063 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64, 3064 __FUNCTION__, GetID (), thread_sp->GetID ()); 3065 continue; 3066 } 3067 3068 if (log) 3069 { 3070 log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64, 3071 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); 3072 } 3073 3074 switch (action->state) 3075 { 3076 case eStateRunning: 3077 { 3078 // Run the thread, possibly feeding it the signal. 3079 const int signo = action->signal; 3080 RequestThreadResumeAsNeeded (thread_sp->GetID (), 3081 [=](lldb::tid_t tid_to_resume, bool supress_signal) 3082 { 3083 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning (); 3084 // Pass this signal number on to the inferior to handle. 3085 const auto resume_result = Resume (tid_to_resume, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER); 3086 if (resume_result.Success()) 3087 SetState(eStateRunning, true); 3088 return resume_result; 3089 }, 3090 CoordinatorErrorHandler); 3091 break; 3092 } 3093 3094 case eStateStepping: 3095 { 3096 // Request the step. 3097 const int signo = action->signal; 3098 RequestThreadResume (thread_sp->GetID (), 3099 [=](lldb::tid_t tid_to_step, bool supress_signal) 3100 { 3101 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStepping (); 3102 3103 Error step_result; 3104 if (software_single_step) 3105 step_result = Resume (tid_to_step, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER); 3106 else 3107 step_result = SingleStep (tid_to_step,(signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER); 3108 3109 assert (step_result.Success() && "SingleStep() failed"); 3110 if (step_result.Success()) 3111 SetState(eStateStepping, true); 3112 return step_result; 3113 }, 3114 CoordinatorErrorHandler); 3115 stepping = true; 3116 break; 3117 } 3118 3119 case eStateSuspended: 3120 case eStateStopped: 3121 // if we haven't chosen a deferred signal tid yet, use this one. 3122 if (deferred_signal_tid == LLDB_INVALID_THREAD_ID) 3123 { 3124 deferred_signal_tid = thread_sp->GetID (); 3125 deferred_signal_thread_sp = thread_sp; 3126 deferred_signo = SIGSTOP; 3127 } 3128 break; 3129 3130 default: 3131 return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64, 3132 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); 3133 } 3134 } 3135 3136 // If we had any thread stopping, then do a deferred notification of the chosen stop thread id and signal 3137 // after all other running threads have stopped. 3138 // If there is a stepping thread involved we'll be eventually stopped by SIGTRAP trace signal. 3139 if (deferred_signal_tid != LLDB_INVALID_THREAD_ID && !stepping) 3140 StopRunningThreadsWithSkipTID(deferred_signal_tid, deferred_signal_skip_tid); 3141 3142 return Error(); 3143 } 3144 3145 Error 3146 NativeProcessLinux::Halt () 3147 { 3148 Error error; 3149 3150 if (kill (GetID (), SIGSTOP) != 0) 3151 error.SetErrorToErrno (); 3152 3153 return error; 3154 } 3155 3156 Error 3157 NativeProcessLinux::Detach () 3158 { 3159 Error error; 3160 3161 // Tell ptrace to detach from the process. 3162 if (GetID () != LLDB_INVALID_PROCESS_ID) 3163 error = Detach (GetID ()); 3164 3165 // Stop monitoring the inferior. 3166 m_monitor_up->Terminate(); 3167 3168 // No error. 3169 return error; 3170 } 3171 3172 Error 3173 NativeProcessLinux::Signal (int signo) 3174 { 3175 Error error; 3176 3177 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3178 if (log) 3179 log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64, 3180 __FUNCTION__, signo, GetUnixSignals ().GetSignalAsCString (signo), GetID ()); 3181 3182 if (kill(GetID(), signo)) 3183 error.SetErrorToErrno(); 3184 3185 return error; 3186 } 3187 3188 Error 3189 NativeProcessLinux::Interrupt () 3190 { 3191 // Pick a running thread (or if none, a not-dead stopped thread) as 3192 // the chosen thread that will be the stop-reason thread. 3193 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3194 3195 NativeThreadProtocolSP running_thread_sp; 3196 NativeThreadProtocolSP stopped_thread_sp; 3197 3198 if (log) 3199 log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__); 3200 3201 Monitor::ScopedOperationLock monitor_lock(*m_monitor_up); 3202 Mutex::Locker locker (m_threads_mutex); 3203 3204 for (auto thread_sp : m_threads) 3205 { 3206 // The thread shouldn't be null but lets just cover that here. 3207 if (!thread_sp) 3208 continue; 3209 3210 // If we have a running or stepping thread, we'll call that the 3211 // target of the interrupt. 3212 const auto thread_state = thread_sp->GetState (); 3213 if (thread_state == eStateRunning || 3214 thread_state == eStateStepping) 3215 { 3216 running_thread_sp = thread_sp; 3217 break; 3218 } 3219 else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true)) 3220 { 3221 // Remember the first non-dead stopped thread. We'll use that as a backup if there are no running threads. 3222 stopped_thread_sp = thread_sp; 3223 } 3224 } 3225 3226 if (!running_thread_sp && !stopped_thread_sp) 3227 { 3228 Error error("found no running/stepping or live stopped threads as target for interrupt"); 3229 if (log) 3230 log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ()); 3231 3232 return error; 3233 } 3234 3235 NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp; 3236 3237 if (log) 3238 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target", 3239 __FUNCTION__, 3240 GetID (), 3241 running_thread_sp ? "running" : "stopped", 3242 deferred_signal_thread_sp->GetID ()); 3243 3244 StopRunningThreads(deferred_signal_thread_sp->GetID()); 3245 3246 return Error(); 3247 } 3248 3249 Error 3250 NativeProcessLinux::Kill () 3251 { 3252 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3253 if (log) 3254 log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ()); 3255 3256 Error error; 3257 3258 switch (m_state) 3259 { 3260 case StateType::eStateInvalid: 3261 case StateType::eStateExited: 3262 case StateType::eStateCrashed: 3263 case StateType::eStateDetached: 3264 case StateType::eStateUnloaded: 3265 // Nothing to do - the process is already dead. 3266 if (log) 3267 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state)); 3268 return error; 3269 3270 case StateType::eStateConnected: 3271 case StateType::eStateAttaching: 3272 case StateType::eStateLaunching: 3273 case StateType::eStateStopped: 3274 case StateType::eStateRunning: 3275 case StateType::eStateStepping: 3276 case StateType::eStateSuspended: 3277 // We can try to kill a process in these states. 3278 break; 3279 } 3280 3281 if (kill (GetID (), SIGKILL) != 0) 3282 { 3283 error.SetErrorToErrno (); 3284 return error; 3285 } 3286 3287 return error; 3288 } 3289 3290 static Error 3291 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info) 3292 { 3293 memory_region_info.Clear(); 3294 3295 StringExtractor line_extractor (maps_line.c_str ()); 3296 3297 // Format: {address_start_hex}-{address_end_hex} perms offset dev inode pathname 3298 // perms: rwxp (letter is present if set, '-' if not, final character is p=private, s=shared). 3299 3300 // Parse out the starting address 3301 lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0); 3302 3303 // Parse out hyphen separating start and end address from range. 3304 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-')) 3305 return Error ("malformed /proc/{pid}/maps entry, missing dash between address range"); 3306 3307 // Parse out the ending address 3308 lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address); 3309 3310 // Parse out the space after the address. 3311 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' ')) 3312 return Error ("malformed /proc/{pid}/maps entry, missing space after range"); 3313 3314 // Save the range. 3315 memory_region_info.GetRange ().SetRangeBase (start_address); 3316 memory_region_info.GetRange ().SetRangeEnd (end_address); 3317 3318 // Parse out each permission entry. 3319 if (line_extractor.GetBytesLeft () < 4) 3320 return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions"); 3321 3322 // Handle read permission. 3323 const char read_perm_char = line_extractor.GetChar (); 3324 if (read_perm_char == 'r') 3325 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes); 3326 else 3327 { 3328 assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" ); 3329 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 3330 } 3331 3332 // Handle write permission. 3333 const char write_perm_char = line_extractor.GetChar (); 3334 if (write_perm_char == 'w') 3335 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes); 3336 else 3337 { 3338 assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" ); 3339 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 3340 } 3341 3342 // Handle execute permission. 3343 const char exec_perm_char = line_extractor.GetChar (); 3344 if (exec_perm_char == 'x') 3345 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes); 3346 else 3347 { 3348 assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" ); 3349 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 3350 } 3351 3352 return Error (); 3353 } 3354 3355 Error 3356 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info) 3357 { 3358 // FIXME review that the final memory region returned extends to the end of the virtual address space, 3359 // with no perms if it is not mapped. 3360 3361 // Use an approach that reads memory regions from /proc/{pid}/maps. 3362 // Assume proc maps entries are in ascending order. 3363 // FIXME assert if we find differently. 3364 Mutex::Locker locker (m_mem_region_cache_mutex); 3365 3366 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3367 Error error; 3368 3369 if (m_supports_mem_region == LazyBool::eLazyBoolNo) 3370 { 3371 // We're done. 3372 error.SetErrorString ("unsupported"); 3373 return error; 3374 } 3375 3376 // If our cache is empty, pull the latest. There should always be at least one memory region 3377 // if memory region handling is supported. 3378 if (m_mem_region_cache.empty ()) 3379 { 3380 error = ProcFileReader::ProcessLineByLine (GetID (), "maps", 3381 [&] (const std::string &line) -> bool 3382 { 3383 MemoryRegionInfo info; 3384 const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info); 3385 if (parse_error.Success ()) 3386 { 3387 m_mem_region_cache.push_back (info); 3388 return true; 3389 } 3390 else 3391 { 3392 if (log) 3393 log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ()); 3394 return false; 3395 } 3396 }); 3397 3398 // If we had an error, we'll mark unsupported. 3399 if (error.Fail ()) 3400 { 3401 m_supports_mem_region = LazyBool::eLazyBoolNo; 3402 return error; 3403 } 3404 else if (m_mem_region_cache.empty ()) 3405 { 3406 // No entries after attempting to read them. This shouldn't happen if /proc/{pid}/maps 3407 // is supported. Assume we don't support map entries via procfs. 3408 if (log) 3409 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__); 3410 m_supports_mem_region = LazyBool::eLazyBoolNo; 3411 error.SetErrorString ("not supported"); 3412 return error; 3413 } 3414 3415 if (log) 3416 log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ()); 3417 3418 // We support memory retrieval, remember that. 3419 m_supports_mem_region = LazyBool::eLazyBoolYes; 3420 } 3421 else 3422 { 3423 if (log) 3424 log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ())); 3425 } 3426 3427 lldb::addr_t prev_base_address = 0; 3428 3429 // FIXME start by finding the last region that is <= target address using binary search. Data is sorted. 3430 // There can be a ton of regions on pthreads apps with lots of threads. 3431 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it) 3432 { 3433 MemoryRegionInfo &proc_entry_info = *it; 3434 3435 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 3436 assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected"); 3437 prev_base_address = proc_entry_info.GetRange ().GetRangeBase (); 3438 3439 // If the target address comes before this entry, indicate distance to next region. 3440 if (load_addr < proc_entry_info.GetRange ().GetRangeBase ()) 3441 { 3442 range_info.GetRange ().SetRangeBase (load_addr); 3443 range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr); 3444 range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 3445 range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 3446 range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 3447 3448 return error; 3449 } 3450 else if (proc_entry_info.GetRange ().Contains (load_addr)) 3451 { 3452 // The target address is within the memory region we're processing here. 3453 range_info = proc_entry_info; 3454 return error; 3455 } 3456 3457 // The target memory address comes somewhere after the region we just parsed. 3458 } 3459 3460 // If we made it here, we didn't find an entry that contained the given address. 3461 error.SetErrorString ("address comes after final region"); 3462 3463 if (log) 3464 log->Printf ("NativeProcessLinux::%s failed to find map entry for address 0x%" PRIx64 ": %s", __FUNCTION__, load_addr, error.AsCString ()); 3465 3466 return error; 3467 } 3468 3469 void 3470 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId) 3471 { 3472 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3473 if (log) 3474 log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId); 3475 3476 { 3477 Mutex::Locker locker (m_mem_region_cache_mutex); 3478 if (log) 3479 log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ())); 3480 m_mem_region_cache.clear (); 3481 } 3482 } 3483 3484 Error 3485 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, lldb::addr_t &addr) 3486 { 3487 // FIXME implementing this requires the equivalent of 3488 // InferiorCallPOSIX::InferiorCallMmap, which depends on 3489 // functional ThreadPlans working with Native*Protocol. 3490 #if 1 3491 return Error ("not implemented yet"); 3492 #else 3493 addr = LLDB_INVALID_ADDRESS; 3494 3495 unsigned prot = 0; 3496 if (permissions & lldb::ePermissionsReadable) 3497 prot |= eMmapProtRead; 3498 if (permissions & lldb::ePermissionsWritable) 3499 prot |= eMmapProtWrite; 3500 if (permissions & lldb::ePermissionsExecutable) 3501 prot |= eMmapProtExec; 3502 3503 // TODO implement this directly in NativeProcessLinux 3504 // (and lift to NativeProcessPOSIX if/when that class is 3505 // refactored out). 3506 if (InferiorCallMmap(this, addr, 0, size, prot, 3507 eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { 3508 m_addr_to_mmap_size[addr] = size; 3509 return Error (); 3510 } else { 3511 addr = LLDB_INVALID_ADDRESS; 3512 return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions)); 3513 } 3514 #endif 3515 } 3516 3517 Error 3518 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr) 3519 { 3520 // FIXME see comments in AllocateMemory - required lower-level 3521 // bits not in place yet (ThreadPlans) 3522 return Error ("not implemented"); 3523 } 3524 3525 lldb::addr_t 3526 NativeProcessLinux::GetSharedLibraryInfoAddress () 3527 { 3528 #if 1 3529 // punt on this for now 3530 return LLDB_INVALID_ADDRESS; 3531 #else 3532 // Return the image info address for the exe module 3533 #if 1 3534 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3535 3536 ModuleSP module_sp; 3537 Error error = GetExeModuleSP (module_sp); 3538 if (error.Fail ()) 3539 { 3540 if (log) 3541 log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ()); 3542 return LLDB_INVALID_ADDRESS; 3543 } 3544 3545 if (module_sp == nullptr) 3546 { 3547 if (log) 3548 log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__); 3549 return LLDB_INVALID_ADDRESS; 3550 } 3551 3552 ObjectFileSP object_file_sp = module_sp->GetObjectFile (); 3553 if (object_file_sp == nullptr) 3554 { 3555 if (log) 3556 log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__); 3557 return LLDB_INVALID_ADDRESS; 3558 } 3559 3560 return obj_file_sp->GetImageInfoAddress(); 3561 #else 3562 Target *target = &GetTarget(); 3563 ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile(); 3564 Address addr = obj_file->GetImageInfoAddress(target); 3565 3566 if (addr.IsValid()) 3567 return addr.GetLoadAddress(target); 3568 return LLDB_INVALID_ADDRESS; 3569 #endif 3570 #endif // punt on this for now 3571 } 3572 3573 size_t 3574 NativeProcessLinux::UpdateThreads () 3575 { 3576 // The NativeProcessLinux monitoring threads are always up to date 3577 // with respect to thread state and they keep the thread list 3578 // populated properly. All this method needs to do is return the 3579 // thread count. 3580 Mutex::Locker locker (m_threads_mutex); 3581 return m_threads.size (); 3582 } 3583 3584 bool 3585 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const 3586 { 3587 arch = m_arch; 3588 return true; 3589 } 3590 3591 Error 3592 NativeProcessLinux::GetSoftwareBreakpointPCOffset (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size) 3593 { 3594 // FIXME put this behind a breakpoint protocol class that can be 3595 // set per architecture. Need ARM, MIPS support here. 3596 static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 }; 3597 static const uint8_t g_i386_opcode [] = { 0xCC }; 3598 static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d }; 3599 3600 switch (m_arch.GetMachine ()) 3601 { 3602 case llvm::Triple::aarch64: 3603 actual_opcode_size = static_cast<uint32_t> (sizeof(g_aarch64_opcode)); 3604 return Error (); 3605 3606 case llvm::Triple::arm: 3607 actual_opcode_size = 0; // On arm the PC don't get updated for breakpoint hits 3608 return Error (); 3609 3610 case llvm::Triple::x86: 3611 case llvm::Triple::x86_64: 3612 actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode)); 3613 return Error (); 3614 3615 case llvm::Triple::mips64: 3616 case llvm::Triple::mips64el: 3617 actual_opcode_size = static_cast<uint32_t> (sizeof(g_mips64_opcode)); 3618 return Error (); 3619 3620 default: 3621 assert(false && "CPU type not supported!"); 3622 return Error ("CPU type not supported"); 3623 } 3624 } 3625 3626 Error 3627 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware) 3628 { 3629 if (hardware) 3630 return Error ("NativeProcessLinux does not support hardware breakpoints"); 3631 else 3632 return SetSoftwareBreakpoint (addr, size); 3633 } 3634 3635 Error 3636 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint, 3637 size_t &actual_opcode_size, 3638 const uint8_t *&trap_opcode_bytes) 3639 { 3640 // FIXME put this behind a breakpoint protocol class that can be set per 3641 // architecture. Need MIPS support here. 3642 static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 }; 3643 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 3644 // linux kernel does otherwise. 3645 static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 }; 3646 static const uint8_t g_i386_opcode [] = { 0xCC }; 3647 static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d }; 3648 static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 }; 3649 static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde }; 3650 3651 switch (m_arch.GetMachine ()) 3652 { 3653 case llvm::Triple::aarch64: 3654 trap_opcode_bytes = g_aarch64_opcode; 3655 actual_opcode_size = sizeof(g_aarch64_opcode); 3656 return Error (); 3657 3658 case llvm::Triple::arm: 3659 switch (trap_opcode_size_hint) 3660 { 3661 case 2: 3662 trap_opcode_bytes = g_thumb_breakpoint_opcode; 3663 actual_opcode_size = sizeof(g_thumb_breakpoint_opcode); 3664 return Error (); 3665 case 4: 3666 trap_opcode_bytes = g_arm_breakpoint_opcode; 3667 actual_opcode_size = sizeof(g_arm_breakpoint_opcode); 3668 return Error (); 3669 default: 3670 assert(false && "Unrecognised trap opcode size hint!"); 3671 return Error ("Unrecognised trap opcode size hint!"); 3672 } 3673 3674 case llvm::Triple::x86: 3675 case llvm::Triple::x86_64: 3676 trap_opcode_bytes = g_i386_opcode; 3677 actual_opcode_size = sizeof(g_i386_opcode); 3678 return Error (); 3679 3680 case llvm::Triple::mips64: 3681 trap_opcode_bytes = g_mips64_opcode; 3682 actual_opcode_size = sizeof(g_mips64_opcode); 3683 return Error (); 3684 3685 case llvm::Triple::mips64el: 3686 trap_opcode_bytes = g_mips64el_opcode; 3687 actual_opcode_size = sizeof(g_mips64el_opcode); 3688 return Error (); 3689 3690 default: 3691 assert(false && "CPU type not supported!"); 3692 return Error ("CPU type not supported"); 3693 } 3694 } 3695 3696 #if 0 3697 ProcessMessage::CrashReason 3698 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info) 3699 { 3700 ProcessMessage::CrashReason reason; 3701 assert(info->si_signo == SIGSEGV); 3702 3703 reason = ProcessMessage::eInvalidCrashReason; 3704 3705 switch (info->si_code) 3706 { 3707 default: 3708 assert(false && "unexpected si_code for SIGSEGV"); 3709 break; 3710 case SI_KERNEL: 3711 // Linux will occasionally send spurious SI_KERNEL codes. 3712 // (this is poorly documented in sigaction) 3713 // One way to get this is via unaligned SIMD loads. 3714 reason = ProcessMessage::eInvalidAddress; // for lack of anything better 3715 break; 3716 case SEGV_MAPERR: 3717 reason = ProcessMessage::eInvalidAddress; 3718 break; 3719 case SEGV_ACCERR: 3720 reason = ProcessMessage::ePrivilegedAddress; 3721 break; 3722 } 3723 3724 return reason; 3725 } 3726 #endif 3727 3728 3729 #if 0 3730 ProcessMessage::CrashReason 3731 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info) 3732 { 3733 ProcessMessage::CrashReason reason; 3734 assert(info->si_signo == SIGILL); 3735 3736 reason = ProcessMessage::eInvalidCrashReason; 3737 3738 switch (info->si_code) 3739 { 3740 default: 3741 assert(false && "unexpected si_code for SIGILL"); 3742 break; 3743 case ILL_ILLOPC: 3744 reason = ProcessMessage::eIllegalOpcode; 3745 break; 3746 case ILL_ILLOPN: 3747 reason = ProcessMessage::eIllegalOperand; 3748 break; 3749 case ILL_ILLADR: 3750 reason = ProcessMessage::eIllegalAddressingMode; 3751 break; 3752 case ILL_ILLTRP: 3753 reason = ProcessMessage::eIllegalTrap; 3754 break; 3755 case ILL_PRVOPC: 3756 reason = ProcessMessage::ePrivilegedOpcode; 3757 break; 3758 case ILL_PRVREG: 3759 reason = ProcessMessage::ePrivilegedRegister; 3760 break; 3761 case ILL_COPROC: 3762 reason = ProcessMessage::eCoprocessorError; 3763 break; 3764 case ILL_BADSTK: 3765 reason = ProcessMessage::eInternalStackError; 3766 break; 3767 } 3768 3769 return reason; 3770 } 3771 #endif 3772 3773 #if 0 3774 ProcessMessage::CrashReason 3775 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info) 3776 { 3777 ProcessMessage::CrashReason reason; 3778 assert(info->si_signo == SIGFPE); 3779 3780 reason = ProcessMessage::eInvalidCrashReason; 3781 3782 switch (info->si_code) 3783 { 3784 default: 3785 assert(false && "unexpected si_code for SIGFPE"); 3786 break; 3787 case FPE_INTDIV: 3788 reason = ProcessMessage::eIntegerDivideByZero; 3789 break; 3790 case FPE_INTOVF: 3791 reason = ProcessMessage::eIntegerOverflow; 3792 break; 3793 case FPE_FLTDIV: 3794 reason = ProcessMessage::eFloatDivideByZero; 3795 break; 3796 case FPE_FLTOVF: 3797 reason = ProcessMessage::eFloatOverflow; 3798 break; 3799 case FPE_FLTUND: 3800 reason = ProcessMessage::eFloatUnderflow; 3801 break; 3802 case FPE_FLTRES: 3803 reason = ProcessMessage::eFloatInexactResult; 3804 break; 3805 case FPE_FLTINV: 3806 reason = ProcessMessage::eFloatInvalidOperation; 3807 break; 3808 case FPE_FLTSUB: 3809 reason = ProcessMessage::eFloatSubscriptRange; 3810 break; 3811 } 3812 3813 return reason; 3814 } 3815 #endif 3816 3817 #if 0 3818 ProcessMessage::CrashReason 3819 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info) 3820 { 3821 ProcessMessage::CrashReason reason; 3822 assert(info->si_signo == SIGBUS); 3823 3824 reason = ProcessMessage::eInvalidCrashReason; 3825 3826 switch (info->si_code) 3827 { 3828 default: 3829 assert(false && "unexpected si_code for SIGBUS"); 3830 break; 3831 case BUS_ADRALN: 3832 reason = ProcessMessage::eIllegalAlignment; 3833 break; 3834 case BUS_ADRERR: 3835 reason = ProcessMessage::eIllegalAddress; 3836 break; 3837 case BUS_OBJERR: 3838 reason = ProcessMessage::eHardwareError; 3839 break; 3840 } 3841 3842 return reason; 3843 } 3844 #endif 3845 3846 Error 3847 NativeProcessLinux::SetWatchpoint (lldb::addr_t addr, size_t size, uint32_t watch_flags, bool hardware) 3848 { 3849 // The base SetWatchpoint will end up executing monitor operations. Let's lock the monitor 3850 // for it. 3851 Monitor::ScopedOperationLock monitor_lock(*m_monitor_up); 3852 return NativeProcessProtocol::SetWatchpoint(addr, size, watch_flags, hardware); 3853 } 3854 3855 Error 3856 NativeProcessLinux::RemoveWatchpoint (lldb::addr_t addr) 3857 { 3858 // The base RemoveWatchpoint will end up executing monitor operations. Let's lock the monitor 3859 // for it. 3860 Monitor::ScopedOperationLock monitor_lock(*m_monitor_up); 3861 return NativeProcessProtocol::RemoveWatchpoint(addr); 3862 } 3863 3864 Error 3865 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read) 3866 { 3867 ReadOperation op(addr, buf, size, bytes_read); 3868 m_monitor_up->DoOperation(&op); 3869 return op.GetError (); 3870 } 3871 3872 Error 3873 NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read) 3874 { 3875 Error error = ReadMemory(addr, buf, size, bytes_read); 3876 if (error.Fail()) return error; 3877 return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size); 3878 } 3879 3880 Error 3881 NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, size_t size, size_t &bytes_written) 3882 { 3883 WriteOperation op(addr, buf, size, bytes_written); 3884 m_monitor_up->DoOperation(&op); 3885 return op.GetError (); 3886 } 3887 3888 Error 3889 NativeProcessLinux::ReadRegisterValue(lldb::tid_t tid, uint32_t offset, const char* reg_name, 3890 uint32_t size, RegisterValue &value) 3891 { 3892 ReadRegOperation op(tid, offset, reg_name, value); 3893 m_monitor_up->DoOperation(&op); 3894 return op.GetError(); 3895 } 3896 3897 Error 3898 NativeProcessLinux::WriteRegisterValue(lldb::tid_t tid, unsigned offset, 3899 const char* reg_name, const RegisterValue &value) 3900 { 3901 WriteRegOperation op(tid, offset, reg_name, value); 3902 m_monitor_up->DoOperation(&op); 3903 return op.GetError(); 3904 } 3905 3906 Error 3907 NativeProcessLinux::ReadGPR(lldb::tid_t tid, void *buf, size_t buf_size) 3908 { 3909 ReadGPROperation op(tid, buf, buf_size); 3910 m_monitor_up->DoOperation(&op); 3911 return op.GetError(); 3912 } 3913 3914 Error 3915 NativeProcessLinux::ReadFPR(lldb::tid_t tid, void *buf, size_t buf_size) 3916 { 3917 ReadFPROperation op(tid, buf, buf_size); 3918 m_monitor_up->DoOperation(&op); 3919 return op.GetError(); 3920 } 3921 3922 Error 3923 NativeProcessLinux::ReadRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 3924 { 3925 ReadRegisterSetOperation op(tid, buf, buf_size, regset); 3926 m_monitor_up->DoOperation(&op); 3927 return op.GetError(); 3928 } 3929 3930 Error 3931 NativeProcessLinux::WriteGPR(lldb::tid_t tid, void *buf, size_t buf_size) 3932 { 3933 WriteGPROperation op(tid, buf, buf_size); 3934 m_monitor_up->DoOperation(&op); 3935 return op.GetError(); 3936 } 3937 3938 Error 3939 NativeProcessLinux::WriteFPR(lldb::tid_t tid, void *buf, size_t buf_size) 3940 { 3941 WriteFPROperation op(tid, buf, buf_size); 3942 m_monitor_up->DoOperation(&op); 3943 return op.GetError(); 3944 } 3945 3946 Error 3947 NativeProcessLinux::WriteRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 3948 { 3949 WriteRegisterSetOperation op(tid, buf, buf_size, regset); 3950 m_monitor_up->DoOperation(&op); 3951 return op.GetError(); 3952 } 3953 3954 Error 3955 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo) 3956 { 3957 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3958 3959 if (log) 3960 log->Printf ("NativeProcessLinux::%s() resuming thread = %" PRIu64 " with signal %s", __FUNCTION__, tid, 3961 GetUnixSignals().GetSignalAsCString (signo)); 3962 ResumeOperation op (tid, signo); 3963 m_monitor_up->DoOperation (&op); 3964 if (log) 3965 log->Printf ("NativeProcessLinux::%s() resuming thread = %" PRIu64 " result = %s", __FUNCTION__, tid, op.GetError().Success() ? "true" : "false"); 3966 return op.GetError(); 3967 } 3968 3969 Error 3970 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo) 3971 { 3972 SingleStepOperation op(tid, signo); 3973 m_monitor_up->DoOperation(&op); 3974 return op.GetError(); 3975 } 3976 3977 Error 3978 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) 3979 { 3980 SiginfoOperation op(tid, siginfo); 3981 m_monitor_up->DoOperation(&op); 3982 return op.GetError(); 3983 } 3984 3985 Error 3986 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message) 3987 { 3988 EventMessageOperation op(tid, message); 3989 m_monitor_up->DoOperation(&op); 3990 return op.GetError(); 3991 } 3992 3993 Error 3994 NativeProcessLinux::Detach(lldb::tid_t tid) 3995 { 3996 if (tid == LLDB_INVALID_THREAD_ID) 3997 return Error(); 3998 3999 DetachOperation op(tid); 4000 m_monitor_up->DoOperation(&op); 4001 return op.GetError(); 4002 } 4003 4004 bool 4005 NativeProcessLinux::DupDescriptor(const char *path, int fd, int flags) 4006 { 4007 int target_fd = open(path, flags, 0666); 4008 4009 if (target_fd == -1) 4010 return false; 4011 4012 if (dup2(target_fd, fd) == -1) 4013 return false; 4014 4015 return (close(target_fd) == -1) ? false : true; 4016 } 4017 4018 void 4019 NativeProcessLinux::StartMonitorThread(const InitialOperation &initial_operation, Error &error) 4020 { 4021 m_monitor_up.reset(new Monitor(initial_operation, this)); 4022 error = m_monitor_up->Initialize(); 4023 if (error.Fail()) { 4024 m_monitor_up.reset(); 4025 } 4026 } 4027 4028 bool 4029 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id) 4030 { 4031 for (auto thread_sp : m_threads) 4032 { 4033 assert (thread_sp && "thread list should not contain NULL threads"); 4034 if (thread_sp->GetID () == thread_id) 4035 { 4036 // We have this thread. 4037 return true; 4038 } 4039 } 4040 4041 // We don't have this thread. 4042 return false; 4043 } 4044 4045 NativeThreadProtocolSP 4046 NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id) 4047 { 4048 // CONSIDER organize threads by map - we can do better than linear. 4049 for (auto thread_sp : m_threads) 4050 { 4051 if (thread_sp->GetID () == thread_id) 4052 return thread_sp; 4053 } 4054 4055 // We don't have this thread. 4056 return NativeThreadProtocolSP (); 4057 } 4058 4059 bool 4060 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id) 4061 { 4062 Mutex::Locker locker (m_threads_mutex); 4063 for (auto it = m_threads.begin (); it != m_threads.end (); ++it) 4064 { 4065 if (*it && ((*it)->GetID () == thread_id)) 4066 { 4067 m_threads.erase (it); 4068 return true; 4069 } 4070 } 4071 4072 // Didn't find it. 4073 return false; 4074 } 4075 4076 NativeThreadProtocolSP 4077 NativeProcessLinux::AddThread (lldb::tid_t thread_id) 4078 { 4079 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 4080 4081 Mutex::Locker locker (m_threads_mutex); 4082 4083 if (log) 4084 { 4085 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64, 4086 __FUNCTION__, 4087 GetID (), 4088 thread_id); 4089 } 4090 4091 assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists"); 4092 4093 // If this is the first thread, save it as the current thread 4094 if (m_threads.empty ()) 4095 SetCurrentThreadID (thread_id); 4096 4097 NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id)); 4098 m_threads.push_back (thread_sp); 4099 4100 return thread_sp; 4101 } 4102 4103 Error 4104 NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp) 4105 { 4106 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS)); 4107 4108 Error error; 4109 4110 // Get a linux thread pointer. 4111 if (!thread_sp) 4112 { 4113 error.SetErrorString ("null thread_sp"); 4114 if (log) 4115 log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); 4116 return error; 4117 } 4118 std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp); 4119 4120 // Find out the size of a breakpoint (might depend on where we are in the code). 4121 NativeRegisterContextSP context_sp = linux_thread_sp->GetRegisterContext (); 4122 if (!context_sp) 4123 { 4124 error.SetErrorString ("cannot get a NativeRegisterContext for the thread"); 4125 if (log) 4126 log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); 4127 return error; 4128 } 4129 4130 uint32_t breakpoint_size = 0; 4131 error = GetSoftwareBreakpointPCOffset (context_sp, breakpoint_size); 4132 if (error.Fail ()) 4133 { 4134 if (log) 4135 log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ()); 4136 return error; 4137 } 4138 else 4139 { 4140 if (log) 4141 log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size); 4142 } 4143 4144 // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size. 4145 const lldb::addr_t initial_pc_addr = context_sp->GetPC (); 4146 lldb::addr_t breakpoint_addr = initial_pc_addr; 4147 if (breakpoint_size > 0) 4148 { 4149 // Do not allow breakpoint probe to wrap around. 4150 if (breakpoint_addr >= breakpoint_size) 4151 breakpoint_addr -= breakpoint_size; 4152 } 4153 4154 // Check if we stopped because of a breakpoint. 4155 NativeBreakpointSP breakpoint_sp; 4156 error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp); 4157 if (!error.Success () || !breakpoint_sp) 4158 { 4159 // We didn't find one at a software probe location. Nothing to do. 4160 if (log) 4161 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr); 4162 return Error (); 4163 } 4164 4165 // If the breakpoint is not a software breakpoint, nothing to do. 4166 if (!breakpoint_sp->IsSoftwareBreakpoint ()) 4167 { 4168 if (log) 4169 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr); 4170 return Error (); 4171 } 4172 4173 // 4174 // We have a software breakpoint and need to adjust the PC. 4175 // 4176 4177 // Sanity check. 4178 if (breakpoint_size == 0) 4179 { 4180 // Nothing to do! How did we get here? 4181 if (log) 4182 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr); 4183 return Error (); 4184 } 4185 4186 // Change the program counter. 4187 if (log) 4188 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_sp->GetID (), initial_pc_addr, breakpoint_addr); 4189 4190 error = context_sp->SetPC (breakpoint_addr); 4191 if (error.Fail ()) 4192 { 4193 if (log) 4194 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_sp->GetID (), error.AsCString ()); 4195 return error; 4196 } 4197 4198 return error; 4199 } 4200 4201 void 4202 NativeProcessLinux::NotifyThreadCreateStopped (lldb::tid_t tid) 4203 { 4204 const bool is_stopped = true; 4205 NotifyThreadCreate (tid, is_stopped, CoordinatorErrorHandler); 4206 } 4207 4208 void 4209 NativeProcessLinux::NotifyThreadDeath (lldb::tid_t tid) 4210 { 4211 NotifyThreadDeath (tid, CoordinatorErrorHandler); 4212 } 4213 4214 void 4215 NativeProcessLinux::NotifyThreadStop (lldb::tid_t tid) 4216 { 4217 NotifyThreadStop (tid, false, CoordinatorErrorHandler); 4218 } 4219 4220 void 4221 NativeProcessLinux::StopRunningThreads(lldb::tid_t trigerring_tid) 4222 { 4223 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 4224 if (log) 4225 log->Printf("NativeProcessLinux::%s tid %" PRIu64, __FUNCTION__, trigerring_tid); 4226 4227 const lldb::pid_t pid = GetID (); 4228 StopRunningThreads(trigerring_tid, 4229 [=](lldb::tid_t request_stop_tid) { return RequestThreadStop(pid, request_stop_tid); }, 4230 CoordinatorErrorHandler); 4231 } 4232 4233 void 4234 NativeProcessLinux::StopRunningThreadsWithSkipTID(lldb::tid_t deferred_signal_tid, 4235 lldb::tid_t skip_stop_request_tid) 4236 { 4237 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 4238 if (log) 4239 log->Printf("NativeProcessLinux::%s deferred_signal_tid %" PRIu64 ", skip_stop_request_tid %" PRIu64, __FUNCTION__, deferred_signal_tid, skip_stop_request_tid); 4240 4241 const lldb::pid_t pid = GetID (); 4242 StopRunningThreadsWithSkipTID(deferred_signal_tid, 4243 skip_stop_request_tid != LLDB_INVALID_THREAD_ID ? NativeProcessLinux::ThreadIDSet {skip_stop_request_tid} : NativeProcessLinux::ThreadIDSet (), 4244 [=](lldb::tid_t request_stop_tid) { return RequestThreadStop(pid, request_stop_tid); }, 4245 CoordinatorErrorHandler); 4246 } 4247 4248 Error 4249 NativeProcessLinux::RequestThreadStop (const lldb::pid_t pid, const lldb::tid_t tid) 4250 { 4251 Log* log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 4252 if (log) 4253 log->Printf ("NativeProcessLinux::%s requesting thread stop(pid: %" PRIu64 ", tid: %" PRIu64 ")", __FUNCTION__, pid, tid); 4254 4255 Error err; 4256 errno = 0; 4257 if (::tgkill (pid, tid, SIGSTOP) != 0) 4258 { 4259 err.SetErrorToErrno (); 4260 if (log) 4261 log->Printf ("NativeProcessLinux::%s tgkill(%" PRIu64 ", %" PRIu64 ", SIGSTOP) failed: %s", __FUNCTION__, pid, tid, err.AsCString ()); 4262 } 4263 4264 return err; 4265 } 4266 4267 Error 4268 NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec) 4269 { 4270 char maps_file_name[32]; 4271 snprintf(maps_file_name, sizeof(maps_file_name), "/proc/%" PRIu64 "/maps", GetID()); 4272 4273 FileSpec maps_file_spec(maps_file_name, false); 4274 if (!maps_file_spec.Exists()) { 4275 file_spec.Clear(); 4276 return Error("/proc/%" PRIu64 "/maps file doesn't exists!", GetID()); 4277 } 4278 4279 FileSpec module_file_spec(module_path, true); 4280 4281 std::ifstream maps_file(maps_file_name); 4282 std::string maps_data_str((std::istreambuf_iterator<char>(maps_file)), std::istreambuf_iterator<char>()); 4283 StringRef maps_data(maps_data_str.c_str()); 4284 4285 while (!maps_data.empty()) 4286 { 4287 StringRef maps_row; 4288 std::tie(maps_row, maps_data) = maps_data.split('\n'); 4289 4290 SmallVector<StringRef, 16> maps_columns; 4291 maps_row.split(maps_columns, StringRef(" "), -1, false); 4292 4293 if (maps_columns.size() >= 6) 4294 { 4295 file_spec.SetFile(maps_columns[5].str().c_str(), false); 4296 if (file_spec.GetFilename() == module_file_spec.GetFilename()) 4297 return Error(); 4298 } 4299 } 4300 4301 file_spec.Clear(); 4302 return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 4303 module_file_spec.GetFilename().AsCString(), GetID()); 4304 } 4305 4306 void 4307 NativeProcessLinux::DoResume( 4308 lldb::tid_t tid, 4309 ResumeThreadFunction request_thread_resume_function, 4310 ErrorFunction error_function, 4311 bool error_when_already_running) 4312 { 4313 // Ensure we know about the thread. 4314 auto find_it = m_tid_map.find (tid); 4315 if (find_it == m_tid_map.end ()) 4316 { 4317 // We don't know about this thread. This is an error condition. 4318 std::ostringstream error_message; 4319 error_message << "error: tid " << tid << " asked to resume but tid is unknown"; 4320 error_function (error_message.str ()); 4321 return; 4322 } 4323 auto& context = find_it->second; 4324 // Tell the thread to resume if we don't already think it is running. 4325 const bool is_stopped = context.m_state == ThreadState::Stopped; 4326 if (!is_stopped) 4327 { 4328 // It's not an error, just a log, if the error_when_already_running flag is not set. 4329 // This covers cases where, for instance, we're just trying to resume all threads 4330 // from the user side. 4331 if (!error_when_already_running) 4332 { 4333 TSCLog ("NativeProcessLinux::%s tid %" PRIu64 " optional resume skipped since it is already running", 4334 __FUNCTION__, 4335 tid); 4336 } 4337 else 4338 { 4339 // Skip the resume call - we have tracked it to be running. And we unconditionally 4340 // expected to resume this thread. Flag this as an error. 4341 std::ostringstream error_message; 4342 error_message << "error: tid " << tid << " asked to resume but we think it is already running"; 4343 error_function (error_message.str ()); 4344 } 4345 4346 // Error or not, we're done. 4347 return; 4348 } 4349 4350 // Before we do the resume below, first check if we have a pending 4351 // stop notification this is currently or was previously waiting for 4352 // this thread to stop. This is potentially a buggy situation since 4353 // we're ostensibly waiting for threads to stop before we send out the 4354 // pending notification, and here we are resuming one before we send 4355 // out the pending stop notification. 4356 if (m_pending_notification_up) 4357 { 4358 if (m_pending_notification_up->wait_for_stop_tids.count (tid) > 0) 4359 { 4360 TSCLog ("NativeProcessLinux::%s about to resume tid %" PRIu64 " per explicit request but we have a pending stop notification (tid %" PRIu64 ") that is actively waiting for this thread to stop. Valid sequence of events?", __FUNCTION__, tid, m_pending_notification_up->triggering_tid); 4361 } 4362 else if (m_pending_notification_up->original_wait_for_stop_tids.count (tid) > 0) 4363 { 4364 TSCLog ("NativeProcessLinux::%s about to resume tid %" PRIu64 " per explicit request but we have a pending stop notification (tid %" PRIu64 ") that hasn't fired yet and this is one of the threads we had been waiting on (and already marked satisfied for this tid). Valid sequence of events?", __FUNCTION__, tid, m_pending_notification_up->triggering_tid); 4365 for (auto tid : m_pending_notification_up->wait_for_stop_tids) 4366 { 4367 TSCLog ("NativeProcessLinux::%s tid %" PRIu64 " deferred stop notification still waiting on tid %" PRIu64, 4368 __FUNCTION__, 4369 m_pending_notification_up->triggering_tid, 4370 tid); 4371 } 4372 } 4373 } 4374 4375 // Request a resume. We expect this to be synchronous and the system 4376 // to reflect it is running after this completes. 4377 const auto error = request_thread_resume_function (tid, false); 4378 if (error.Success ()) 4379 { 4380 // Now mark it is running. 4381 context.m_state = ThreadState::Running; 4382 context.m_request_resume_function = request_thread_resume_function; 4383 } 4384 else 4385 { 4386 TSCLog ("NativeProcessLinux::%s failed to resume thread tid %" PRIu64 ": %s", 4387 __FUNCTION__, tid, error.AsCString ()); 4388 } 4389 4390 return; 4391 } 4392 4393 //===----------------------------------------------------------------------===// 4394 4395 void 4396 NativeProcessLinux::StopThreads(const lldb::tid_t triggering_tid, 4397 const ThreadIDSet &wait_for_stop_tids, 4398 const StopThreadFunction &request_thread_stop_function, 4399 const ErrorFunction &error_function) 4400 { 4401 std::lock_guard<std::mutex> lock(m_event_mutex); 4402 4403 if (m_log_event_processing) 4404 { 4405 TSCLog ("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ", wait_for_stop_tids.size(): %zd)", 4406 __FUNCTION__, triggering_tid, wait_for_stop_tids.size()); 4407 } 4408 4409 DoStopThreads(PendingNotificationUP(new PendingNotification( 4410 triggering_tid, wait_for_stop_tids, request_thread_stop_function, error_function))); 4411 4412 if (m_log_event_processing) 4413 { 4414 TSCLog ("NativeProcessLinux::%s event processing done", __FUNCTION__); 4415 } 4416 } 4417 4418 void 4419 NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid, 4420 const StopThreadFunction &request_thread_stop_function, 4421 const ErrorFunction &error_function) 4422 { 4423 std::lock_guard<std::mutex> lock(m_event_mutex); 4424 4425 if (m_log_event_processing) 4426 { 4427 TSCLog ("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ")", 4428 __FUNCTION__, triggering_tid); 4429 } 4430 4431 DoStopThreads(PendingNotificationUP(new PendingNotification( 4432 triggering_tid, 4433 request_thread_stop_function, 4434 error_function))); 4435 4436 if (m_log_event_processing) 4437 { 4438 TSCLog ("NativeProcessLinux::%s event processing done", __FUNCTION__); 4439 } 4440 } 4441 4442 void 4443 NativeProcessLinux::StopRunningThreadsWithSkipTID(lldb::tid_t triggering_tid, 4444 const ThreadIDSet &skip_stop_request_tids, 4445 const StopThreadFunction &request_thread_stop_function, 4446 const ErrorFunction &error_function) 4447 { 4448 std::lock_guard<std::mutex> lock(m_event_mutex); 4449 4450 if (m_log_event_processing) 4451 { 4452 TSCLog ("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ", skip_stop_request_tids.size(): %zd)", 4453 __FUNCTION__, triggering_tid, skip_stop_request_tids.size()); 4454 } 4455 4456 DoStopThreads(PendingNotificationUP(new PendingNotification( 4457 triggering_tid, 4458 request_thread_stop_function, 4459 skip_stop_request_tids, 4460 error_function))); 4461 4462 if (m_log_event_processing) 4463 { 4464 TSCLog ("NativeProcessLinux::%s event processing done", __FUNCTION__); 4465 } 4466 } 4467 4468 void 4469 NativeProcessLinux::SignalIfRequirementsSatisfied() 4470 { 4471 if (m_pending_notification_up && m_pending_notification_up->wait_for_stop_tids.empty ()) 4472 { 4473 SetCurrentThreadID(m_pending_notification_up->triggering_tid); 4474 SetState(StateType::eStateStopped, true); 4475 m_pending_notification_up.reset(); 4476 } 4477 } 4478 4479 bool 4480 NativeProcessLinux::RequestStopOnAllSpecifiedThreads() 4481 { 4482 // Request a stop for all the thread stops that need to be stopped 4483 // and are not already known to be stopped. Keep a list of all the 4484 // threads from which we still need to hear a stop reply. 4485 4486 ThreadIDSet sent_tids; 4487 for (auto tid : m_pending_notification_up->wait_for_stop_tids) 4488 { 4489 // Validate we know about all tids for which we must first receive a stop before 4490 // triggering the deferred stop notification. 4491 auto find_it = m_tid_map.find (tid); 4492 if (find_it == m_tid_map.end ()) 4493 { 4494 // This is an error. We shouldn't be asking for waiting pids that aren't known. 4495 // NOTE: we may be stripping out the specification of wait tids and handle this 4496 // automatically, in which case this state can never occur. 4497 std::ostringstream error_message; 4498 error_message << "error: deferred notification for tid " << m_pending_notification_up->triggering_tid << " specified an unknown/untracked pending stop tid " << m_pending_notification_up->triggering_tid; 4499 m_pending_notification_up->error_function (error_message.str ()); 4500 4501 // Bail out here. 4502 return false; 4503 } 4504 4505 // If the pending stop thread is currently running, we need to send it a stop request. 4506 auto& context = find_it->second; 4507 if (context.m_state == ThreadState::Running) 4508 { 4509 RequestThreadStop (tid, context); 4510 sent_tids.insert (tid); 4511 } 4512 } 4513 // We only need to wait for the sent_tids - so swap our wait set 4514 // to the sent tids. The rest are already stopped and we won't 4515 // be receiving stop notifications for them. 4516 m_pending_notification_up->wait_for_stop_tids.swap (sent_tids); 4517 4518 // Succeeded, keep running. 4519 return true; 4520 } 4521 4522 void 4523 NativeProcessLinux::RequestStopOnAllRunningThreads() 4524 { 4525 // Request a stop for all the thread stops that need to be stopped 4526 // and are not already known to be stopped. Keep a list of all the 4527 // threads from which we still need to hear a stop reply. 4528 4529 ThreadIDSet sent_tids; 4530 for (auto it = m_tid_map.begin(); it != m_tid_map.end(); ++it) 4531 { 4532 // We only care about threads not stopped. 4533 const bool running = it->second.m_state == ThreadState::Running; 4534 if (running) 4535 { 4536 const lldb::tid_t tid = it->first; 4537 4538 // Request this thread stop if the tid stop request is not explicitly ignored. 4539 const bool skip_stop_request = m_pending_notification_up->skip_stop_request_tids.count (tid) > 0; 4540 if (!skip_stop_request) 4541 RequestThreadStop (tid, it->second); 4542 4543 // Even if we skipped sending the stop request for other reasons (like stepping), 4544 // we still need to wait for that stepping thread to notify completion/stop. 4545 sent_tids.insert (tid); 4546 } 4547 } 4548 4549 // Set the wait list to the set of tids for which we requested stops. 4550 m_pending_notification_up->wait_for_stop_tids.swap (sent_tids); 4551 } 4552 4553 void 4554 NativeProcessLinux::RequestThreadStop (lldb::tid_t tid, ThreadContext& context) 4555 { 4556 const auto error = m_pending_notification_up->request_thread_stop_function (tid); 4557 if (error.Success ()) 4558 context.m_stop_requested = true; 4559 else 4560 { 4561 TSCLog ("NativeProcessLinux::%s failed to request thread stop tid %" PRIu64 ": %s", 4562 __FUNCTION__, tid, error.AsCString ()); 4563 } 4564 } 4565 4566 4567 void 4568 NativeProcessLinux::ThreadDidStop (lldb::tid_t tid, bool initiated_by_llgs, const ErrorFunction &error_function) 4569 { 4570 // Ensure we know about the thread. 4571 auto find_it = m_tid_map.find (tid); 4572 if (find_it == m_tid_map.end ()) 4573 { 4574 // We don't know about this thread. This is an error condition. 4575 std::ostringstream error_message; 4576 error_message << "error: tid " << tid << " asked to stop but tid is unknown"; 4577 error_function (error_message.str ()); 4578 return; 4579 } 4580 4581 // Update the global list of known thread states. This one is definitely stopped. 4582 auto& context = find_it->second; 4583 const auto stop_was_requested = context.m_stop_requested; 4584 context.m_state = ThreadState::Stopped; 4585 context.m_stop_requested = false; 4586 4587 // If we have a pending notification, remove this from the set. 4588 if (m_pending_notification_up) 4589 { 4590 m_pending_notification_up->wait_for_stop_tids.erase(tid); 4591 SignalIfRequirementsSatisfied(); 4592 } 4593 4594 if (initiated_by_llgs && context.m_request_resume_function && !stop_was_requested) 4595 { 4596 // We can end up here if stop was initiated by LLGS but by this time a 4597 // thread stop has occurred - maybe initiated by another event. 4598 TSCLog ("Resuming thread %" PRIu64 " since stop wasn't requested", tid); 4599 const auto error = context.m_request_resume_function (tid, true); 4600 if (error.Success ()) 4601 { 4602 context.m_state = ThreadState::Running; 4603 } 4604 else 4605 { 4606 TSCLog ("NativeProcessLinux::%s failed to resume thread tid %" PRIu64 ": %s", 4607 __FUNCTION__, tid, error.AsCString ()); 4608 } 4609 } 4610 } 4611 4612 void 4613 NativeProcessLinux::DoStopThreads(PendingNotificationUP &¬ification_up) 4614 { 4615 // Validate we know about the deferred trigger thread. 4616 if (!IsKnownThread (notification_up->triggering_tid)) 4617 { 4618 // We don't know about this thread. This is an error condition. 4619 std::ostringstream error_message; 4620 error_message << "error: deferred notification tid " << notification_up->triggering_tid << " is unknown"; 4621 notification_up->error_function (error_message.str ()); 4622 4623 // We bail out here. 4624 return; 4625 } 4626 4627 if (m_pending_notification_up) 4628 { 4629 // Yikes - we've already got a pending signal notification in progress. 4630 // Log this info. We lose the pending notification here. 4631 TSCLog ("NativeProcessLinux::%s dropping existing pending signal notification for tid %" PRIu64 ", to be replaced with signal for tid %" PRIu64, 4632 __FUNCTION__, 4633 m_pending_notification_up->triggering_tid, 4634 notification_up->triggering_tid); 4635 } 4636 m_pending_notification_up = std::move(notification_up); 4637 4638 if (m_pending_notification_up->request_stop_on_all_unstopped_threads) 4639 RequestStopOnAllRunningThreads(); 4640 else 4641 { 4642 if (!RequestStopOnAllSpecifiedThreads()) 4643 return; 4644 } 4645 4646 SignalIfRequirementsSatisfied(); 4647 } 4648 4649 void 4650 NativeProcessLinux::ThreadWasCreated (lldb::tid_t tid, bool is_stopped, const ErrorFunction &error_function) 4651 { 4652 // Ensure we don't already know about the thread. 4653 auto find_it = m_tid_map.find (tid); 4654 if (find_it != m_tid_map.end ()) 4655 { 4656 // We already know about this thread. This is an error condition. 4657 std::ostringstream error_message; 4658 error_message << "error: notified tid " << tid << " created but we already know about this thread"; 4659 error_function (error_message.str ()); 4660 return; 4661 } 4662 4663 // Add the new thread to the stop map. 4664 ThreadContext ctx; 4665 ctx.m_state = (is_stopped) ? ThreadState::Stopped : ThreadState::Running; 4666 m_tid_map[tid] = std::move(ctx); 4667 4668 if (m_pending_notification_up && !is_stopped) 4669 { 4670 // We will need to wait for this new thread to stop as well before firing the 4671 // notification. 4672 m_pending_notification_up->wait_for_stop_tids.insert(tid); 4673 m_pending_notification_up->request_thread_stop_function(tid); 4674 } 4675 } 4676 4677 void 4678 NativeProcessLinux::ThreadDidDie (lldb::tid_t tid, const ErrorFunction &error_function) 4679 { 4680 // Ensure we know about the thread. 4681 auto find_it = m_tid_map.find (tid); 4682 if (find_it == m_tid_map.end ()) 4683 { 4684 // We don't know about this thread. This is an error condition. 4685 std::ostringstream error_message; 4686 error_message << "error: notified tid " << tid << " died but tid is unknown"; 4687 error_function (error_message.str ()); 4688 return; 4689 } 4690 4691 // Update the global list of known thread states. While this one is stopped, it is also dead. 4692 // So stop tracking it. We assume the user of this coordinator will not keep trying to add 4693 // dependencies on a thread after it is known to be dead. 4694 m_tid_map.erase (find_it); 4695 4696 // If we have a pending notification, remove this from the set. 4697 if (m_pending_notification_up) 4698 { 4699 m_pending_notification_up->wait_for_stop_tids.erase(tid); 4700 SignalIfRequirementsSatisfied(); 4701 } 4702 } 4703 4704 void 4705 NativeProcessLinux::TSCLog (const char *format, ...) 4706 { 4707 va_list args; 4708 va_start (args, format); 4709 4710 m_log_function (format, args); 4711 4712 va_end (args); 4713 } 4714 4715 void 4716 NativeProcessLinux::NotifyThreadStop (lldb::tid_t tid, 4717 bool initiated_by_llgs, 4718 const ErrorFunction &error_function) 4719 { 4720 std::lock_guard<std::mutex> lock(m_event_mutex); 4721 4722 if (m_log_event_processing) 4723 { 4724 TSCLog ("NativeProcessLinux::%s about to process event: (tid: %" PRIu64 ", %sinitiated by llgs)", 4725 __FUNCTION__, tid, initiated_by_llgs?"":"not "); 4726 } 4727 4728 ThreadDidStop (tid, initiated_by_llgs, error_function); 4729 4730 if (m_log_event_processing) 4731 { 4732 TSCLog ("NativeProcessLinux::%s event processing done", __FUNCTION__); 4733 } 4734 } 4735 4736 void 4737 NativeProcessLinux::RequestThreadResume (lldb::tid_t tid, 4738 const ResumeThreadFunction &request_thread_resume_function, 4739 const ErrorFunction &error_function) 4740 { 4741 std::lock_guard<std::mutex> lock(m_event_mutex); 4742 4743 if (m_log_event_processing) 4744 { 4745 TSCLog ("NativeProcessLinux::%s about to process event: (tid: %" PRIu64 ")", 4746 __FUNCTION__, tid); 4747 } 4748 4749 DoResume(tid, request_thread_resume_function, error_function, true); 4750 4751 if (m_log_event_processing) 4752 { 4753 TSCLog ("NativeProcessLinux::%s event processing done", __FUNCTION__); 4754 } 4755 } 4756 4757 void 4758 NativeProcessLinux::RequestThreadResumeAsNeeded (lldb::tid_t tid, 4759 const ResumeThreadFunction &request_thread_resume_function, 4760 const ErrorFunction &error_function) 4761 { 4762 std::lock_guard<std::mutex> lock(m_event_mutex); 4763 4764 if (m_log_event_processing) 4765 { 4766 TSCLog ("NativeProcessLinux::%s about to process event: (tid: %" PRIu64 ")", 4767 __FUNCTION__, tid); 4768 } 4769 4770 DoResume (tid, request_thread_resume_function, error_function, false); 4771 4772 if (m_log_event_processing) 4773 { 4774 TSCLog ("NativeProcessLinux::%s event processing done", __FUNCTION__); 4775 } 4776 } 4777 4778 void 4779 NativeProcessLinux::NotifyThreadCreate (lldb::tid_t tid, 4780 bool is_stopped, 4781 const ErrorFunction &error_function) 4782 { 4783 std::lock_guard<std::mutex> lock(m_event_mutex); 4784 4785 if (m_log_event_processing) 4786 { 4787 TSCLog ("NativeProcessLinux::%s about to process event: (tid: %" PRIu64 ", is %sstopped)", 4788 __FUNCTION__, tid, is_stopped?"":"not "); 4789 } 4790 4791 ThreadWasCreated (tid, is_stopped, error_function); 4792 4793 if (m_log_event_processing) 4794 { 4795 TSCLog ("NativeProcessLinux::%s event processing done", __FUNCTION__); 4796 } 4797 } 4798 4799 void 4800 NativeProcessLinux::NotifyThreadDeath (lldb::tid_t tid, 4801 const ErrorFunction &error_function) 4802 { 4803 std::lock_guard<std::mutex> lock(m_event_mutex); 4804 4805 if (m_log_event_processing) 4806 { 4807 TSCLog ("NativeProcessLinux::%s about to process event: (tid: %" PRIu64 ")", __FUNCTION__, tid); 4808 } 4809 4810 ThreadDidDie(tid, error_function); 4811 4812 if (m_log_event_processing) 4813 { 4814 TSCLog ("NativeProcessLinux::%s event processing done", __FUNCTION__); 4815 } 4816 } 4817 4818 void 4819 NativeProcessLinux::ResetForExec () 4820 { 4821 std::lock_guard<std::mutex> lock(m_event_mutex); 4822 4823 if (m_log_event_processing) 4824 { 4825 TSCLog ("NativeProcessLinux::%s about to process event", __FUNCTION__); 4826 } 4827 4828 // Clear the pending notification if there was one. 4829 m_pending_notification_up.reset (); 4830 4831 // Clear the stop map - we no longer know anything about any thread state. 4832 // The caller is expected to reset thread states for all threads, and we 4833 // will assume anything we haven't heard about is running and requires a 4834 // stop. 4835 m_tid_map.clear (); 4836 4837 if (m_log_event_processing) 4838 { 4839 TSCLog ("NativeProcessLinux::%s event processing done", __FUNCTION__); 4840 } 4841 } 4842 void 4843 NativeProcessLinux::LogEnableEventProcessing (bool enabled) 4844 { 4845 m_log_event_processing = enabled; 4846 } 4847 4848 bool 4849 NativeProcessLinux::IsKnownThread (lldb::tid_t tid) const 4850 { 4851 return m_tid_map.find (tid) != m_tid_map.end (); 4852 } 4853