1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "lldb/lldb-python.h"
11 
12 #include "NativeProcessLinux.h"
13 
14 // C Includes
15 #include <errno.h>
16 #include <poll.h>
17 #include <string.h>
18 #include <stdint.h>
19 #include <unistd.h>
20 
21 // C++ Includes
22 #include <fstream>
23 #include <sstream>
24 #include <string>
25 
26 // Other libraries and framework includes
27 #include "lldb/Core/Debugger.h"
28 #include "lldb/Core/EmulateInstruction.h"
29 #include "lldb/Core/Error.h"
30 #include "lldb/Core/Module.h"
31 #include "lldb/Core/ModuleSpec.h"
32 #include "lldb/Core/RegisterValue.h"
33 #include "lldb/Core/Scalar.h"
34 #include "lldb/Core/State.h"
35 #include "lldb/Host/common/NativeBreakpoint.h"
36 #include "lldb/Host/common/NativeRegisterContext.h"
37 #include "lldb/Host/Host.h"
38 #include "lldb/Host/HostInfo.h"
39 #include "lldb/Host/HostNativeThread.h"
40 #include "lldb/Host/ThreadLauncher.h"
41 #include "lldb/Symbol/ObjectFile.h"
42 #include "lldb/Target/Process.h"
43 #include "lldb/Target/ProcessLaunchInfo.h"
44 #include "lldb/Utility/LLDBAssert.h"
45 #include "lldb/Utility/PseudoTerminal.h"
46 
47 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
48 #include "Plugins/Process/Utility/LinuxSignals.h"
49 #include "Utility/StringExtractor.h"
50 #include "NativeThreadLinux.h"
51 #include "ProcFileReader.h"
52 #include "Procfs.h"
53 
54 // System includes - They have to be included after framework includes because they define some
55 // macros which collide with variable names in other modules
56 #include <linux/unistd.h>
57 #include <sys/personality.h>
58 #include <sys/ptrace.h>
59 #include <sys/socket.h>
60 #include <sys/signalfd.h>
61 #include <sys/syscall.h>
62 #include <sys/types.h>
63 #include <sys/uio.h>
64 #include <sys/user.h>
65 #include <sys/wait.h>
66 
67 #if defined (__arm64__) || defined (__aarch64__)
68 // NT_PRSTATUS and NT_FPREGSET definition
69 #include <elf.h>
70 #endif
71 
72 #ifdef __ANDROID__
73 #define __ptrace_request int
74 #define PT_DETACH PTRACE_DETACH
75 #endif
76 
77 #define DEBUG_PTRACE_MAXBYTES 20
78 
79 // Support ptrace extensions even when compiled without required kernel support
80 #ifndef PT_GETREGS
81 #ifndef PTRACE_GETREGS
82   #define PTRACE_GETREGS 12
83 #endif
84 #endif
85 #ifndef PT_SETREGS
86 #ifndef PTRACE_SETREGS
87   #define PTRACE_SETREGS 13
88 #endif
89 #endif
90 #ifndef PT_GETFPREGS
91 #ifndef PTRACE_GETFPREGS
92   #define PTRACE_GETFPREGS 14
93 #endif
94 #endif
95 #ifndef PT_SETFPREGS
96 #ifndef PTRACE_SETFPREGS
97   #define PTRACE_SETFPREGS 15
98 #endif
99 #endif
100 #ifndef PTRACE_GETREGSET
101   #define PTRACE_GETREGSET 0x4204
102 #endif
103 #ifndef PTRACE_SETREGSET
104   #define PTRACE_SETREGSET 0x4205
105 #endif
106 #ifndef PTRACE_GET_THREAD_AREA
107   #define PTRACE_GET_THREAD_AREA 25
108 #endif
109 #ifndef PTRACE_ARCH_PRCTL
110   #define PTRACE_ARCH_PRCTL      30
111 #endif
112 #ifndef ARCH_GET_FS
113   #define ARCH_SET_GS 0x1001
114   #define ARCH_SET_FS 0x1002
115   #define ARCH_GET_FS 0x1003
116   #define ARCH_GET_GS 0x1004
117 #endif
118 
119 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS  0xffffffff
120 
121 // Support hardware breakpoints in case it has not been defined
122 #ifndef TRAP_HWBKPT
123   #define TRAP_HWBKPT 4
124 #endif
125 
126 // Try to define a macro to encapsulate the tgkill syscall
127 // fall back on kill() if tgkill isn't available
128 #define tgkill(pid, tid, sig) \
129     syscall(SYS_tgkill, static_cast<::pid_t>(pid), static_cast<::pid_t>(tid), sig)
130 
131 // We disable the tracing of ptrace calls for integration builds to
132 // avoid the additional indirection and checks.
133 #ifndef LLDB_CONFIGURATION_BUILDANDINTEGRATION
134 #define PTRACE(req, pid, addr, data, data_size, error) \
135     PtraceWrapper((req), (pid), (addr), (data), (data_size), (error), #req, __FILE__, __LINE__)
136 #else
137 #define PTRACE(req, pid, addr, data, data_size, error) \
138     PtraceWrapper((req), (pid), (addr), (data), (data_size), (error))
139 #endif
140 
141 using namespace lldb;
142 using namespace lldb_private;
143 using namespace lldb_private::process_linux;
144 using namespace llvm;
145 
146 // Private bits we only need internally.
147 namespace
148 {
149     const UnixSignals&
150     GetUnixSignals ()
151     {
152         static process_linux::LinuxSignals signals;
153         return signals;
154     }
155 
156     NativeProcessLinux::LogFunction
157     GetThreadLoggerFunction ()
158     {
159         return [](const char *format, va_list args)
160         {
161             Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
162             if (log)
163                 log->VAPrintf (format, args);
164         };
165     }
166 
167     void
168     CoordinatorErrorHandler (const std::string &error_message)
169     {
170         Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
171         if (log)
172             log->Printf ("NativeProcessLinux::%s %s", __FUNCTION__, error_message.c_str ());
173         assert (false && "NativeProcessLinux error reported");
174     }
175 
176     Error
177     ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch)
178     {
179         // Grab process info for the running process.
180         ProcessInstanceInfo process_info;
181         if (!platform.GetProcessInfo (pid, process_info))
182             return Error("failed to get process info");
183 
184         // Resolve the executable module.
185         ModuleSP exe_module_sp;
186         ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
187         FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ());
188         Error error = platform.ResolveExecutable(
189             exe_module_spec,
190             exe_module_sp,
191             executable_search_paths.GetSize () ? &executable_search_paths : NULL);
192 
193         if (!error.Success ())
194             return error;
195 
196         // Check if we've got our architecture from the exe_module.
197         arch = exe_module_sp->GetArchitecture ();
198         if (arch.IsValid ())
199             return Error();
200         else
201             return Error("failed to retrieve a valid architecture from the exe module");
202     }
203 
204     void
205     DisplayBytes (StreamString &s, void *bytes, uint32_t count)
206     {
207         uint8_t *ptr = (uint8_t *)bytes;
208         const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
209         for(uint32_t i=0; i<loop_count; i++)
210         {
211             s.Printf ("[%x]", *ptr);
212             ptr++;
213         }
214     }
215 
216     void
217     PtraceDisplayBytes(int &req, void *data, size_t data_size)
218     {
219         StreamString buf;
220         Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (
221                     POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE));
222 
223         if (verbose_log)
224         {
225             switch(req)
226             {
227             case PTRACE_POKETEXT:
228             {
229                 DisplayBytes(buf, &data, 8);
230                 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData());
231                 break;
232             }
233             case PTRACE_POKEDATA:
234             {
235                 DisplayBytes(buf, &data, 8);
236                 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData());
237                 break;
238             }
239             case PTRACE_POKEUSER:
240             {
241                 DisplayBytes(buf, &data, 8);
242                 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData());
243                 break;
244             }
245             case PTRACE_SETREGS:
246             {
247                 DisplayBytes(buf, data, data_size);
248                 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData());
249                 break;
250             }
251             case PTRACE_SETFPREGS:
252             {
253                 DisplayBytes(buf, data, data_size);
254                 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData());
255                 break;
256             }
257             case PTRACE_SETSIGINFO:
258             {
259                 DisplayBytes(buf, data, sizeof(siginfo_t));
260                 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData());
261                 break;
262             }
263             case PTRACE_SETREGSET:
264             {
265                 // Extract iov_base from data, which is a pointer to the struct IOVEC
266                 DisplayBytes(buf, *(void **)data, data_size);
267                 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData());
268                 break;
269             }
270             default:
271             {
272             }
273             }
274         }
275     }
276 
277     // Wrapper for ptrace to catch errors and log calls.
278     // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
279     long
280     PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error,
281                   const char* reqName, const char* file, int line)
282     {
283         long int result;
284 
285         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE));
286 
287         PtraceDisplayBytes(req, data, data_size);
288 
289         error.Clear();
290         errno = 0;
291         if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
292             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
293         else
294             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
295 
296         if (result == -1)
297             error.SetErrorToErrno();
298 
299         if (log)
300             log->Printf("ptrace(%s, %" PRIu64 ", %p, %p, %zu)=%lX called from file %s line %d",
301                     reqName, pid, addr, data, data_size, result, file, line);
302 
303         PtraceDisplayBytes(req, data, data_size);
304 
305         if (log && error.GetError() != 0)
306         {
307             const char* str;
308             switch (error.GetError())
309             {
310             case ESRCH:  str = "ESRCH"; break;
311             case EINVAL: str = "EINVAL"; break;
312             case EBUSY:  str = "EBUSY"; break;
313             case EPERM:  str = "EPERM"; break;
314             default:     str = error.AsCString();
315             }
316             log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str);
317         }
318 
319         return result;
320     }
321 
322 #ifdef LLDB_CONFIGURATION_BUILDANDINTEGRATION
323     // Wrapper for ptrace when logging is not required.
324     // Sets errno to 0 prior to calling ptrace.
325     long
326     PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error)
327     {
328         long result = 0;
329 
330         error.Clear();
331         errno = 0;
332         if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
333             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
334         else
335             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
336 
337         if (result == -1)
338             error.SetErrorToErrno();
339         return result;
340     }
341 #endif
342 
343     //------------------------------------------------------------------------------
344     // Static implementations of NativeProcessLinux::ReadMemory and
345     // NativeProcessLinux::WriteMemory.  This enables mutual recursion between these
346     // functions without needed to go thru the thread funnel.
347 
348     size_t
349     DoReadMemory(
350         lldb::pid_t pid,
351         lldb::addr_t vm_addr,
352         void *buf,
353         size_t size,
354         Error &error)
355     {
356         // ptrace word size is determined by the host, not the child
357         static const unsigned word_size = sizeof(void*);
358         unsigned char *dst = static_cast<unsigned char*>(buf);
359         size_t bytes_read;
360         size_t remainder;
361         long data;
362 
363         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
364         if (log)
365             ProcessPOSIXLog::IncNestLevel();
366         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
367             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__,
368                     pid, word_size, (void*)vm_addr, buf, size);
369 
370         assert(sizeof(data) >= word_size);
371         for (bytes_read = 0; bytes_read < size; bytes_read += remainder)
372         {
373             data = PTRACE(PTRACE_PEEKDATA, pid, (void*)vm_addr, nullptr, 0, error);
374             if (error.Fail())
375             {
376                 if (log)
377                     ProcessPOSIXLog::DecNestLevel();
378                 return bytes_read;
379             }
380 
381             remainder = size - bytes_read;
382             remainder = remainder > word_size ? word_size : remainder;
383 
384             // Copy the data into our buffer
385             for (unsigned i = 0; i < remainder; ++i)
386                 dst[i] = ((data >> i*8) & 0xFF);
387 
388             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
389                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
390                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
391                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
392             {
393                 uintptr_t print_dst = 0;
394                 // Format bytes from data by moving into print_dst for log output
395                 for (unsigned i = 0; i < remainder; ++i)
396                     print_dst |= (((data >> i*8) & 0xFF) << i*8);
397                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
398                         (void*)vm_addr, print_dst, (unsigned long)data);
399             }
400 
401             vm_addr += word_size;
402             dst += word_size;
403         }
404 
405         if (log)
406             ProcessPOSIXLog::DecNestLevel();
407         return bytes_read;
408     }
409 
410     size_t
411     DoWriteMemory(
412         lldb::pid_t pid,
413         lldb::addr_t vm_addr,
414         const void *buf,
415         size_t size,
416         Error &error)
417     {
418         // ptrace word size is determined by the host, not the child
419         static const unsigned word_size = sizeof(void*);
420         const unsigned char *src = static_cast<const unsigned char*>(buf);
421         size_t bytes_written = 0;
422         size_t remainder;
423 
424         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
425         if (log)
426             ProcessPOSIXLog::IncNestLevel();
427         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
428             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__,
429                     pid, word_size, (void*)vm_addr, buf, size);
430 
431         for (bytes_written = 0; bytes_written < size; bytes_written += remainder)
432         {
433             remainder = size - bytes_written;
434             remainder = remainder > word_size ? word_size : remainder;
435 
436             if (remainder == word_size)
437             {
438                 unsigned long data = 0;
439                 assert(sizeof(data) >= word_size);
440                 for (unsigned i = 0; i < word_size; ++i)
441                     data |= (unsigned long)src[i] << i*8;
442 
443                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
444                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
445                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
446                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
447                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
448                             (void*)vm_addr, *(const unsigned long*)src, data);
449 
450                 if (PTRACE(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data, 0, error))
451                 {
452                     if (log)
453                         ProcessPOSIXLog::DecNestLevel();
454                     return bytes_written;
455                 }
456             }
457             else
458             {
459                 unsigned char buff[8];
460                 if (DoReadMemory(pid, vm_addr,
461                                 buff, word_size, error) != word_size)
462                 {
463                     if (log)
464                         ProcessPOSIXLog::DecNestLevel();
465                     return bytes_written;
466                 }
467 
468                 memcpy(buff, src, remainder);
469 
470                 if (DoWriteMemory(pid, vm_addr,
471                                 buff, word_size, error) != word_size)
472                 {
473                     if (log)
474                         ProcessPOSIXLog::DecNestLevel();
475                     return bytes_written;
476                 }
477 
478                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
479                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
480                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
481                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
482                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
483                             (void*)vm_addr, *(const unsigned long*)src, *(unsigned long*)buff);
484             }
485 
486             vm_addr += word_size;
487             src += word_size;
488         }
489         if (log)
490             ProcessPOSIXLog::DecNestLevel();
491         return bytes_written;
492     }
493 
494     //------------------------------------------------------------------------------
495     /// @class Operation
496     /// @brief Represents a NativeProcessLinux operation.
497     ///
498     /// Under Linux, it is not possible to ptrace() from any other thread but the
499     /// one that spawned or attached to the process from the start.  Therefore, when
500     /// a NativeProcessLinux is asked to deliver or change the state of an inferior
501     /// process the operation must be "funneled" to a specific thread to perform the
502     /// task.  The Operation class provides an abstract base for all services the
503     /// NativeProcessLinux must perform via the single virtual function Execute, thus
504     /// encapsulating the code that needs to run in the privileged context.
505     class Operation
506     {
507     public:
508         Operation () : m_error() { }
509 
510         virtual
511         ~Operation() {}
512 
513         virtual void
514         Execute (NativeProcessLinux *process) = 0;
515 
516         const Error &
517         GetError () const { return m_error; }
518 
519     protected:
520         Error m_error;
521     };
522 
523     //------------------------------------------------------------------------------
524     /// @class ReadOperation
525     /// @brief Implements NativeProcessLinux::ReadMemory.
526     class ReadOperation : public Operation
527     {
528     public:
529         ReadOperation(
530             lldb::addr_t addr,
531             void *buff,
532             size_t size,
533             size_t &result) :
534             Operation (),
535             m_addr (addr),
536             m_buff (buff),
537             m_size (size),
538             m_result (result)
539             {
540             }
541 
542         void Execute (NativeProcessLinux *process) override;
543 
544     private:
545         lldb::addr_t m_addr;
546         void *m_buff;
547         size_t m_size;
548         size_t &m_result;
549     };
550 
551     void
552     ReadOperation::Execute (NativeProcessLinux *process)
553     {
554         m_result = DoReadMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
555     }
556 
557     //------------------------------------------------------------------------------
558     /// @class WriteOperation
559     /// @brief Implements NativeProcessLinux::WriteMemory.
560     class WriteOperation : public Operation
561     {
562     public:
563         WriteOperation(
564             lldb::addr_t addr,
565             const void *buff,
566             size_t size,
567             size_t &result) :
568             Operation (),
569             m_addr (addr),
570             m_buff (buff),
571             m_size (size),
572             m_result (result)
573             {
574             }
575 
576         void Execute (NativeProcessLinux *process) override;
577 
578     private:
579         lldb::addr_t m_addr;
580         const void *m_buff;
581         size_t m_size;
582         size_t &m_result;
583     };
584 
585     void
586     WriteOperation::Execute(NativeProcessLinux *process)
587     {
588         m_result = DoWriteMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
589     }
590 
591     //------------------------------------------------------------------------------
592     /// @class ReadRegOperation
593     /// @brief Implements NativeProcessLinux::ReadRegisterValue.
594     class ReadRegOperation : public Operation
595     {
596     public:
597         ReadRegOperation(lldb::tid_t tid, uint32_t offset, const char *reg_name,
598                 RegisterValue &value)
599             : m_tid(tid),
600               m_offset(static_cast<uintptr_t> (offset)),
601               m_reg_name(reg_name),
602               m_value(value)
603             { }
604 
605         void Execute(NativeProcessLinux *monitor) override;
606 
607     private:
608         lldb::tid_t m_tid;
609         uintptr_t m_offset;
610         const char *m_reg_name;
611         RegisterValue &m_value;
612     };
613 
614     void
615     ReadRegOperation::Execute(NativeProcessLinux *monitor)
616     {
617 #if defined (__arm64__) || defined (__aarch64__)
618         if (m_offset > sizeof(struct user_pt_regs))
619         {
620             uintptr_t offset = m_offset - sizeof(struct user_pt_regs);
621             if (offset > sizeof(struct user_fpsimd_state))
622             {
623                 m_error.SetErrorString("invalid offset value");
624                 return;
625             }
626             elf_fpregset_t regs;
627             int regset = NT_FPREGSET;
628             struct iovec ioVec;
629 
630             ioVec.iov_base = &regs;
631             ioVec.iov_len = sizeof regs;
632             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
633             if (m_error.Success())
634             {
635                 ArchSpec arch;
636                 if (monitor->GetArchitecture(arch))
637                     m_value.SetBytes((void *)(((unsigned char *)(&regs)) + offset), 16, arch.GetByteOrder());
638                 else
639                     m_error.SetErrorString("failed to get architecture");
640             }
641         }
642         else
643         {
644             elf_gregset_t regs;
645             int regset = NT_PRSTATUS;
646             struct iovec ioVec;
647 
648             ioVec.iov_base = &regs;
649             ioVec.iov_len = sizeof regs;
650             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
651             if (m_error.Success())
652             {
653                 ArchSpec arch;
654                 if (monitor->GetArchitecture(arch))
655                     m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, arch.GetByteOrder());
656                 else
657                     m_error.SetErrorString("failed to get architecture");
658             }
659         }
660 #elif defined (__mips__)
661         elf_gregset_t regs;
662         PTRACE(PTRACE_GETREGS, m_tid, NULL, &regs, sizeof regs, m_error);
663         if (m_error.Success())
664         {
665             lldb_private::ArchSpec arch;
666             if (monitor->GetArchitecture(arch))
667                 m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, arch.GetByteOrder());
668             else
669                 m_error.SetErrorString("failed to get architecture");
670         }
671 #else
672         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS));
673 
674         lldb::addr_t data = static_cast<unsigned long>(PTRACE(PTRACE_PEEKUSER, m_tid, (void*)m_offset, nullptr, 0, m_error));
675         if (m_error.Success())
676             m_value = data;
677 
678         if (log)
679             log->Printf ("NativeProcessLinux::%s() reg %s: 0x%" PRIx64, __FUNCTION__,
680                     m_reg_name, data);
681 #endif
682     }
683 
684     //------------------------------------------------------------------------------
685     /// @class WriteRegOperation
686     /// @brief Implements NativeProcessLinux::WriteRegisterValue.
687     class WriteRegOperation : public Operation
688     {
689     public:
690         WriteRegOperation(lldb::tid_t tid, unsigned offset, const char *reg_name,
691                 const RegisterValue &value)
692             : m_tid(tid),
693               m_offset(offset),
694               m_reg_name(reg_name),
695               m_value(value)
696             { }
697 
698         void Execute(NativeProcessLinux *monitor) override;
699 
700     private:
701         lldb::tid_t m_tid;
702         uintptr_t m_offset;
703         const char *m_reg_name;
704         const RegisterValue &m_value;
705     };
706 
707     void
708     WriteRegOperation::Execute(NativeProcessLinux *monitor)
709     {
710 #if defined (__arm64__) || defined (__aarch64__)
711         if (m_offset > sizeof(struct user_pt_regs))
712         {
713             uintptr_t offset = m_offset - sizeof(struct user_pt_regs);
714             if (offset > sizeof(struct user_fpsimd_state))
715             {
716                 m_error.SetErrorString("invalid offset value");
717                 return;
718             }
719             elf_fpregset_t regs;
720             int regset = NT_FPREGSET;
721             struct iovec ioVec;
722 
723             ioVec.iov_base = &regs;
724             ioVec.iov_len = sizeof regs;
725             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
726             if (m_error.Success())
727             {
728                 ::memcpy((void *)(((unsigned char *)(&regs)) + offset), m_value.GetBytes(), 16);
729                 PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
730             }
731         }
732         else
733         {
734             elf_gregset_t regs;
735             int regset = NT_PRSTATUS;
736             struct iovec ioVec;
737 
738             ioVec.iov_base = &regs;
739             ioVec.iov_len = sizeof regs;
740             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
741             if (m_error.Success())
742             {
743                 ::memcpy((void *)(((unsigned char *)(&regs)) + m_offset), m_value.GetBytes(), 8);
744                 PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
745             }
746         }
747 #elif defined (__mips__)
748         elf_gregset_t regs;
749         PTRACE(PTRACE_GETREGS, m_tid, NULL, &regs, sizeof regs, m_error);
750         if (m_error.Success())
751         {
752             ::memcpy((void *)(((unsigned char *)(&regs)) + m_offset), m_value.GetBytes(), 8);
753             PTRACE(PTRACE_SETREGS, m_tid, NULL, &regs, sizeof regs, m_error);
754         }
755 #else
756         void* buf;
757         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS));
758 
759         buf = (void*) m_value.GetAsUInt64();
760 
761         if (log)
762             log->Printf ("NativeProcessLinux::%s() reg %s: %p", __FUNCTION__, m_reg_name, buf);
763         PTRACE(PTRACE_POKEUSER, m_tid, (void*)m_offset, buf, 0, m_error);
764 #endif
765     }
766 
767     //------------------------------------------------------------------------------
768     /// @class ReadGPROperation
769     /// @brief Implements NativeProcessLinux::ReadGPR.
770     class ReadGPROperation : public Operation
771     {
772     public:
773         ReadGPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
774             : m_tid(tid), m_buf(buf), m_buf_size(buf_size)
775             { }
776 
777         void Execute(NativeProcessLinux *monitor) override;
778 
779     private:
780         lldb::tid_t m_tid;
781         void *m_buf;
782         size_t m_buf_size;
783     };
784 
785     void
786     ReadGPROperation::Execute(NativeProcessLinux *monitor)
787     {
788 #if defined (__arm64__) || defined (__aarch64__)
789         int regset = NT_PRSTATUS;
790         struct iovec ioVec;
791 
792         ioVec.iov_base = m_buf;
793         ioVec.iov_len = m_buf_size;
794         PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
795 #else
796         PTRACE(PTRACE_GETREGS, m_tid, nullptr, m_buf, m_buf_size, m_error);
797 #endif
798     }
799 
800     //------------------------------------------------------------------------------
801     /// @class ReadFPROperation
802     /// @brief Implements NativeProcessLinux::ReadFPR.
803     class ReadFPROperation : public Operation
804     {
805     public:
806         ReadFPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
807             : m_tid(tid),
808               m_buf(buf),
809               m_buf_size(buf_size)
810             { }
811 
812         void Execute(NativeProcessLinux *monitor) override;
813 
814     private:
815         lldb::tid_t m_tid;
816         void *m_buf;
817         size_t m_buf_size;
818     };
819 
820     void
821     ReadFPROperation::Execute(NativeProcessLinux *monitor)
822     {
823 #if defined (__arm64__) || defined (__aarch64__)
824         int regset = NT_FPREGSET;
825         struct iovec ioVec;
826 
827         ioVec.iov_base = m_buf;
828         ioVec.iov_len = m_buf_size;
829         PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
830 #else
831         PTRACE(PTRACE_GETFPREGS, m_tid, nullptr, m_buf, m_buf_size, m_error);
832 #endif
833     }
834 
835     //------------------------------------------------------------------------------
836     /// @class ReadRegisterSetOperation
837     /// @brief Implements NativeProcessLinux::ReadRegisterSet.
838     class ReadRegisterSetOperation : public Operation
839     {
840     public:
841         ReadRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
842             : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset)
843             { }
844 
845         void Execute(NativeProcessLinux *monitor) override;
846 
847     private:
848         lldb::tid_t m_tid;
849         void *m_buf;
850         size_t m_buf_size;
851         const unsigned int m_regset;
852     };
853 
854     void
855     ReadRegisterSetOperation::Execute(NativeProcessLinux *monitor)
856     {
857         PTRACE(PTRACE_GETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error);
858     }
859 
860     //------------------------------------------------------------------------------
861     /// @class WriteGPROperation
862     /// @brief Implements NativeProcessLinux::WriteGPR.
863     class WriteGPROperation : public Operation
864     {
865     public:
866         WriteGPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
867             : m_tid(tid), m_buf(buf), m_buf_size(buf_size)
868             { }
869 
870         void Execute(NativeProcessLinux *monitor) override;
871 
872     private:
873         lldb::tid_t m_tid;
874         void *m_buf;
875         size_t m_buf_size;
876     };
877 
878     void
879     WriteGPROperation::Execute(NativeProcessLinux *monitor)
880     {
881 #if defined (__arm64__) || defined (__aarch64__)
882         int regset = NT_PRSTATUS;
883         struct iovec ioVec;
884 
885         ioVec.iov_base = m_buf;
886         ioVec.iov_len = m_buf_size;
887         PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
888 #else
889         PTRACE(PTRACE_SETREGS, m_tid, NULL, m_buf, m_buf_size, m_error);
890 #endif
891     }
892 
893     //------------------------------------------------------------------------------
894     /// @class WriteFPROperation
895     /// @brief Implements NativeProcessLinux::WriteFPR.
896     class WriteFPROperation : public Operation
897     {
898     public:
899         WriteFPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
900             : m_tid(tid), m_buf(buf), m_buf_size(buf_size)
901             { }
902 
903         void Execute(NativeProcessLinux *monitor) override;
904 
905     private:
906         lldb::tid_t m_tid;
907         void *m_buf;
908         size_t m_buf_size;
909     };
910 
911     void
912     WriteFPROperation::Execute(NativeProcessLinux *monitor)
913     {
914 #if defined (__arm64__) || defined (__aarch64__)
915         int regset = NT_FPREGSET;
916         struct iovec ioVec;
917 
918         ioVec.iov_base = m_buf;
919         ioVec.iov_len = m_buf_size;
920         PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
921 #else
922         PTRACE(PTRACE_SETFPREGS, m_tid, NULL, m_buf, m_buf_size, m_error);
923 #endif
924     }
925 
926     //------------------------------------------------------------------------------
927     /// @class WriteRegisterSetOperation
928     /// @brief Implements NativeProcessLinux::WriteRegisterSet.
929     class WriteRegisterSetOperation : public Operation
930     {
931     public:
932         WriteRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
933             : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset)
934             { }
935 
936         void Execute(NativeProcessLinux *monitor) override;
937 
938     private:
939         lldb::tid_t m_tid;
940         void *m_buf;
941         size_t m_buf_size;
942         const unsigned int m_regset;
943     };
944 
945     void
946     WriteRegisterSetOperation::Execute(NativeProcessLinux *monitor)
947     {
948         PTRACE(PTRACE_SETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error);
949     }
950 
951     //------------------------------------------------------------------------------
952     /// @class ResumeOperation
953     /// @brief Implements NativeProcessLinux::Resume.
954     class ResumeOperation : public Operation
955     {
956     public:
957         ResumeOperation(lldb::tid_t tid, uint32_t signo) :
958             m_tid(tid), m_signo(signo) { }
959 
960         void Execute(NativeProcessLinux *monitor) override;
961 
962     private:
963         lldb::tid_t m_tid;
964         uint32_t m_signo;
965     };
966 
967     void
968     ResumeOperation::Execute(NativeProcessLinux *monitor)
969     {
970         intptr_t data = 0;
971 
972         if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
973             data = m_signo;
974 
975         PTRACE(PTRACE_CONT, m_tid, nullptr, (void*)data, 0, m_error);
976         if (m_error.Fail())
977         {
978             Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
979 
980             if (log)
981                 log->Printf ("ResumeOperation (%"  PRIu64 ") failed: %s", m_tid, m_error.AsCString());
982         }
983     }
984 
985     //------------------------------------------------------------------------------
986     /// @class SingleStepOperation
987     /// @brief Implements NativeProcessLinux::SingleStep.
988     class SingleStepOperation : public Operation
989     {
990     public:
991         SingleStepOperation(lldb::tid_t tid, uint32_t signo)
992             : m_tid(tid), m_signo(signo) { }
993 
994         void Execute(NativeProcessLinux *monitor) override;
995 
996     private:
997         lldb::tid_t m_tid;
998         uint32_t m_signo;
999     };
1000 
1001     void
1002     SingleStepOperation::Execute(NativeProcessLinux *monitor)
1003     {
1004         intptr_t data = 0;
1005 
1006         if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
1007             data = m_signo;
1008 
1009         PTRACE(PTRACE_SINGLESTEP, m_tid, nullptr, (void*)data, 0, m_error);
1010     }
1011 
1012     //------------------------------------------------------------------------------
1013     /// @class SiginfoOperation
1014     /// @brief Implements NativeProcessLinux::GetSignalInfo.
1015     class SiginfoOperation : public Operation
1016     {
1017     public:
1018         SiginfoOperation(lldb::tid_t tid, void *info)
1019             : m_tid(tid), m_info(info) { }
1020 
1021         void Execute(NativeProcessLinux *monitor) override;
1022 
1023     private:
1024         lldb::tid_t m_tid;
1025         void *m_info;
1026     };
1027 
1028     void
1029     SiginfoOperation::Execute(NativeProcessLinux *monitor)
1030     {
1031         PTRACE(PTRACE_GETSIGINFO, m_tid, nullptr, m_info, 0, m_error);
1032     }
1033 
1034     //------------------------------------------------------------------------------
1035     /// @class EventMessageOperation
1036     /// @brief Implements NativeProcessLinux::GetEventMessage.
1037     class EventMessageOperation : public Operation
1038     {
1039     public:
1040         EventMessageOperation(lldb::tid_t tid, unsigned long *message)
1041             : m_tid(tid), m_message(message) { }
1042 
1043         void Execute(NativeProcessLinux *monitor) override;
1044 
1045     private:
1046         lldb::tid_t m_tid;
1047         unsigned long *m_message;
1048     };
1049 
1050     void
1051     EventMessageOperation::Execute(NativeProcessLinux *monitor)
1052     {
1053         PTRACE(PTRACE_GETEVENTMSG, m_tid, nullptr, m_message, 0, m_error);
1054     }
1055 
1056     class DetachOperation : public Operation
1057     {
1058     public:
1059         DetachOperation(lldb::tid_t tid) : m_tid(tid) { }
1060 
1061         void Execute(NativeProcessLinux *monitor) override;
1062 
1063     private:
1064         lldb::tid_t m_tid;
1065     };
1066 
1067     void
1068     DetachOperation::Execute(NativeProcessLinux *monitor)
1069     {
1070         PTRACE(PTRACE_DETACH, m_tid, nullptr, 0, 0, m_error);
1071     }
1072 } // end of anonymous namespace
1073 
1074 // Simple helper function to ensure flags are enabled on the given file
1075 // descriptor.
1076 static Error
1077 EnsureFDFlags(int fd, int flags)
1078 {
1079     Error error;
1080 
1081     int status = fcntl(fd, F_GETFL);
1082     if (status == -1)
1083     {
1084         error.SetErrorToErrno();
1085         return error;
1086     }
1087 
1088     if (fcntl(fd, F_SETFL, status | flags) == -1)
1089     {
1090         error.SetErrorToErrno();
1091         return error;
1092     }
1093 
1094     return error;
1095 }
1096 
1097 // This class encapsulates the privileged thread which performs all ptrace and wait operations on
1098 // the inferior. The thread consists of a main loop which waits for events and processes them
1099 //   - SIGCHLD (delivered over a signalfd file descriptor): These signals notify us of events in
1100 //     the inferior process. Upon receiving this signal we do a waitpid to get more information
1101 //     and dispatch to NativeProcessLinux::MonitorCallback.
1102 //   - requests for ptrace operations: These initiated via the DoOperation method, which funnels
1103 //     them to the Monitor thread via m_operation member. The Monitor thread is signaled over a
1104 //     pipe, and the completion of the operation is signalled over the semaphore.
1105 //   - thread exit event: this is signaled from the Monitor destructor by closing the write end
1106 //     of the command pipe.
1107 class NativeProcessLinux::Monitor
1108 {
1109 private:
1110     // The initial monitor operation (launch or attach). It returns a inferior process id.
1111     std::unique_ptr<InitialOperation> m_initial_operation_up;
1112 
1113     ::pid_t                           m_child_pid = -1;
1114     NativeProcessLinux              * m_native_process;
1115 
1116     enum { READ, WRITE };
1117     int        m_pipefd[2] = {-1, -1};
1118     int        m_signal_fd = -1;
1119     HostThread m_thread;
1120 
1121     // current operation which must be executed on the priviliged thread
1122     Mutex      m_operation_mutex;
1123     Operation *m_operation = nullptr;
1124     sem_t      m_operation_sem;
1125     Error      m_operation_error;
1126 
1127     unsigned   m_operation_nesting_level = 0;
1128 
1129     static constexpr char operation_command   = 'o';
1130     static constexpr char begin_block_command = '{';
1131     static constexpr char end_block_command   = '}';
1132 
1133     void
1134     HandleSignals();
1135 
1136     void
1137     HandleWait();
1138 
1139     // Returns true if the thread should exit.
1140     bool
1141     HandleCommands();
1142 
1143     void
1144     MainLoop();
1145 
1146     static void *
1147     RunMonitor(void *arg);
1148 
1149     Error
1150     WaitForAck();
1151 
1152     void
1153     BeginOperationBlock()
1154     {
1155         write(m_pipefd[WRITE], &begin_block_command, sizeof operation_command);
1156         WaitForAck();
1157     }
1158 
1159     void
1160     EndOperationBlock()
1161     {
1162         write(m_pipefd[WRITE], &end_block_command, sizeof operation_command);
1163         WaitForAck();
1164     }
1165 
1166 public:
1167     Monitor(const InitialOperation &initial_operation,
1168             NativeProcessLinux *native_process)
1169         : m_initial_operation_up(new InitialOperation(initial_operation)),
1170           m_native_process(native_process)
1171     {
1172         sem_init(&m_operation_sem, 0, 0);
1173     }
1174 
1175     ~Monitor();
1176 
1177     Error
1178     Initialize();
1179 
1180     void
1181     Terminate();
1182 
1183     void
1184     DoOperation(Operation *op);
1185 
1186     class ScopedOperationLock {
1187         Monitor &m_monitor;
1188 
1189     public:
1190         ScopedOperationLock(Monitor &monitor)
1191             : m_monitor(monitor)
1192         { m_monitor.BeginOperationBlock(); }
1193 
1194         ~ScopedOperationLock()
1195         { m_monitor.EndOperationBlock(); }
1196     };
1197 };
1198 constexpr char NativeProcessLinux::Monitor::operation_command;
1199 constexpr char NativeProcessLinux::Monitor::begin_block_command;
1200 constexpr char NativeProcessLinux::Monitor::end_block_command;
1201 
1202 Error
1203 NativeProcessLinux::Monitor::Initialize()
1204 {
1205     Error error;
1206 
1207     // We get a SIGCHLD every time something interesting happens with the inferior. We shall be
1208     // listening for these signals over a signalfd file descriptors. This allows us to wait for
1209     // multiple kinds of events with select.
1210     sigset_t signals;
1211     sigemptyset(&signals);
1212     sigaddset(&signals, SIGCHLD);
1213     m_signal_fd = signalfd(-1, &signals, SFD_NONBLOCK | SFD_CLOEXEC);
1214     if (m_signal_fd < 0)
1215     {
1216         return Error("NativeProcessLinux::Monitor::%s failed due to signalfd failure. Monitoring the inferior will be impossible: %s",
1217                     __FUNCTION__, strerror(errno));
1218 
1219     }
1220 
1221     if (pipe2(m_pipefd, O_CLOEXEC) == -1)
1222     {
1223         error.SetErrorToErrno();
1224         return error;
1225     }
1226 
1227     if ((error = EnsureFDFlags(m_pipefd[READ], O_NONBLOCK)).Fail()) {
1228         return error;
1229     }
1230 
1231     static const char g_thread_name[] = "lldb.process.nativelinux.monitor";
1232     m_thread = ThreadLauncher::LaunchThread(g_thread_name, Monitor::RunMonitor, this, nullptr);
1233     if (!m_thread.IsJoinable())
1234         return Error("Failed to create monitor thread for NativeProcessLinux.");
1235 
1236     // Wait for initial operation to complete.
1237     return WaitForAck();
1238 }
1239 
1240 void
1241 NativeProcessLinux::Monitor::DoOperation(Operation *op)
1242 {
1243     if (m_thread.EqualsThread(pthread_self())) {
1244         // If we're on the Monitor thread, we can simply execute the operation.
1245         op->Execute(m_native_process);
1246         return;
1247     }
1248 
1249     // Otherwise we need to pass the operation to the Monitor thread so it can handle it.
1250     Mutex::Locker lock(m_operation_mutex);
1251 
1252     m_operation = op;
1253 
1254     // notify the thread that an operation is ready to be processed
1255     write(m_pipefd[WRITE], &operation_command, sizeof operation_command);
1256 
1257     WaitForAck();
1258 }
1259 
1260 void
1261 NativeProcessLinux::Monitor::Terminate()
1262 {
1263     if (m_pipefd[WRITE] >= 0)
1264     {
1265         close(m_pipefd[WRITE]);
1266         m_pipefd[WRITE] = -1;
1267     }
1268     if (m_thread.IsJoinable())
1269         m_thread.Join(nullptr);
1270 }
1271 
1272 NativeProcessLinux::Monitor::~Monitor()
1273 {
1274     Terminate();
1275     if (m_pipefd[READ] >= 0)
1276         close(m_pipefd[READ]);
1277     if (m_signal_fd >= 0)
1278         close(m_signal_fd);
1279     sem_destroy(&m_operation_sem);
1280 }
1281 
1282 void
1283 NativeProcessLinux::Monitor::HandleSignals()
1284 {
1285     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1286 
1287     // We don't really care about the content of the SIGCHLD siginfo structure, as we will get
1288     // all the information from waitpid(). We just need to read all the signals so that we can
1289     // sleep next time we reach select().
1290     while (true)
1291     {
1292         signalfd_siginfo info;
1293         ssize_t size = read(m_signal_fd, &info, sizeof info);
1294         if (size == -1)
1295         {
1296             if (errno == EAGAIN || errno == EWOULDBLOCK)
1297                 break; // We are done.
1298             if (errno == EINTR)
1299                 continue;
1300             if (log)
1301                 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor failed: %s",
1302                         __FUNCTION__, strerror(errno));
1303             break;
1304         }
1305         if (size != sizeof info)
1306         {
1307             // We got incomplete information structure. This should not happen, let's just log
1308             // that.
1309             if (log)
1310                 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor returned incomplete data: "
1311                         "structure size is %zd, read returned %zd bytes",
1312                         __FUNCTION__, sizeof info, size);
1313             break;
1314         }
1315         if (log)
1316             log->Printf("NativeProcessLinux::Monitor::%s received signal %s(%d).", __FUNCTION__,
1317                 Host::GetSignalAsCString(info.ssi_signo), info.ssi_signo);
1318     }
1319 }
1320 
1321 void
1322 NativeProcessLinux::Monitor::HandleWait()
1323 {
1324     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1325     // Process all pending waitpid notifications.
1326     while (true)
1327     {
1328         int status = -1;
1329         ::pid_t wait_pid = waitpid(m_child_pid, &status, __WALL | WNOHANG);
1330 
1331         if (wait_pid == 0)
1332             break; // We are done.
1333 
1334         if (wait_pid == -1)
1335         {
1336             if (errno == EINTR)
1337                 continue;
1338 
1339             if (log)
1340               log->Printf("NativeProcessLinux::Monitor::%s waitpid (pid = %" PRIi32 ", &status, __WALL | WNOHANG) failed: %s",
1341                       __FUNCTION__, m_child_pid, strerror(errno));
1342             break;
1343         }
1344 
1345         bool exited = false;
1346         int signal = 0;
1347         int exit_status = 0;
1348         const char *status_cstr = NULL;
1349         if (WIFSTOPPED(status))
1350         {
1351             signal = WSTOPSIG(status);
1352             status_cstr = "STOPPED";
1353         }
1354         else if (WIFEXITED(status))
1355         {
1356             exit_status = WEXITSTATUS(status);
1357             status_cstr = "EXITED";
1358             exited = true;
1359         }
1360         else if (WIFSIGNALED(status))
1361         {
1362             signal = WTERMSIG(status);
1363             status_cstr = "SIGNALED";
1364             if (wait_pid == abs(m_child_pid)) {
1365                 exited = true;
1366                 exit_status = -1;
1367             }
1368         }
1369         else
1370             status_cstr = "(\?\?\?)";
1371 
1372         if (log)
1373             log->Printf("NativeProcessLinux::Monitor::%s: waitpid (pid = %" PRIi32 ", &status, __WALL | WNOHANG)"
1374                 "=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i",
1375                 __FUNCTION__, m_child_pid, wait_pid, status, status_cstr, signal, exit_status);
1376 
1377         m_native_process->MonitorCallback (wait_pid, exited, signal, exit_status);
1378     }
1379 }
1380 
1381 bool
1382 NativeProcessLinux::Monitor::HandleCommands()
1383 {
1384     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1385 
1386     while (true)
1387     {
1388         char command = 0;
1389         ssize_t size = read(m_pipefd[READ], &command, sizeof command);
1390         if (size == -1)
1391         {
1392             if (errno == EAGAIN || errno == EWOULDBLOCK)
1393                 return false;
1394             if (errno == EINTR)
1395                 continue;
1396             if (log)
1397                 log->Printf("NativeProcessLinux::Monitor::%s exiting because read from command file descriptor failed: %s", __FUNCTION__, strerror(errno));
1398             return true;
1399         }
1400         if (size == 0) // end of file - write end closed
1401         {
1402             if (log)
1403                 log->Printf("NativeProcessLinux::Monitor::%s exit command received, exiting...", __FUNCTION__);
1404             assert(m_operation_nesting_level == 0 && "Unbalanced begin/end block commands detected");
1405             return true; // We are done.
1406         }
1407 
1408         switch (command)
1409         {
1410         case operation_command:
1411             m_operation->Execute(m_native_process);
1412             break;
1413         case begin_block_command:
1414             ++m_operation_nesting_level;
1415             break;
1416         case end_block_command:
1417             assert(m_operation_nesting_level > 0);
1418             --m_operation_nesting_level;
1419             break;
1420         default:
1421             if (log)
1422                 log->Printf("NativeProcessLinux::Monitor::%s received unknown command '%c'",
1423                         __FUNCTION__, command);
1424         }
1425 
1426         // notify calling thread that the command has been processed
1427         sem_post(&m_operation_sem);
1428     }
1429 }
1430 
1431 void
1432 NativeProcessLinux::Monitor::MainLoop()
1433 {
1434     ::pid_t child_pid = (*m_initial_operation_up)(m_operation_error);
1435     m_initial_operation_up.reset();
1436     m_child_pid = -getpgid(child_pid),
1437     sem_post(&m_operation_sem);
1438 
1439     while (true)
1440     {
1441         fd_set fds;
1442         FD_ZERO(&fds);
1443         // Only process waitpid events if we are outside of an operation block. Any pending
1444         // events will be processed after we leave the block.
1445         if (m_operation_nesting_level == 0)
1446             FD_SET(m_signal_fd, &fds);
1447         FD_SET(m_pipefd[READ], &fds);
1448 
1449         int max_fd = std::max(m_signal_fd, m_pipefd[READ]) + 1;
1450         int r = select(max_fd, &fds, nullptr, nullptr, nullptr);
1451         if (r < 0)
1452         {
1453             Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1454             if (log)
1455                 log->Printf("NativeProcessLinux::Monitor::%s exiting because select failed: %s",
1456                         __FUNCTION__, strerror(errno));
1457             return;
1458         }
1459 
1460         if (FD_ISSET(m_pipefd[READ], &fds))
1461         {
1462             if (HandleCommands())
1463                 return;
1464         }
1465 
1466         if (FD_ISSET(m_signal_fd, &fds))
1467         {
1468             HandleSignals();
1469             HandleWait();
1470         }
1471     }
1472 }
1473 
1474 Error
1475 NativeProcessLinux::Monitor::WaitForAck()
1476 {
1477     Error error;
1478     while (sem_wait(&m_operation_sem) != 0)
1479     {
1480         if (errno == EINTR)
1481             continue;
1482 
1483         error.SetErrorToErrno();
1484         return error;
1485     }
1486 
1487     return m_operation_error;
1488 }
1489 
1490 void *
1491 NativeProcessLinux::Monitor::RunMonitor(void *arg)
1492 {
1493     static_cast<Monitor *>(arg)->MainLoop();
1494     return nullptr;
1495 }
1496 
1497 
1498 NativeProcessLinux::LaunchArgs::LaunchArgs(Module *module,
1499                                        char const **argv,
1500                                        char const **envp,
1501                                        const std::string &stdin_path,
1502                                        const std::string &stdout_path,
1503                                        const std::string &stderr_path,
1504                                        const char *working_dir,
1505                                        const ProcessLaunchInfo &launch_info)
1506     : m_module(module),
1507       m_argv(argv),
1508       m_envp(envp),
1509       m_stdin_path(stdin_path),
1510       m_stdout_path(stdout_path),
1511       m_stderr_path(stderr_path),
1512       m_working_dir(working_dir),
1513       m_launch_info(launch_info)
1514 {
1515 }
1516 
1517 NativeProcessLinux::LaunchArgs::~LaunchArgs()
1518 { }
1519 
1520 // -----------------------------------------------------------------------------
1521 // Public Static Methods
1522 // -----------------------------------------------------------------------------
1523 
1524 Error
1525 NativeProcessLinux::LaunchProcess (
1526     Module *exe_module,
1527     ProcessLaunchInfo &launch_info,
1528     NativeProcessProtocol::NativeDelegate &native_delegate,
1529     NativeProcessProtocolSP &native_process_sp)
1530 {
1531     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1532 
1533     Error error;
1534 
1535     // Verify the working directory is valid if one was specified.
1536     const char* working_dir = launch_info.GetWorkingDirectory ();
1537     if (working_dir)
1538     {
1539       FileSpec working_dir_fs (working_dir, true);
1540       if (!working_dir_fs || working_dir_fs.GetFileType () != FileSpec::eFileTypeDirectory)
1541       {
1542           error.SetErrorStringWithFormat ("No such file or directory: %s", working_dir);
1543           return error;
1544       }
1545     }
1546 
1547     const FileAction *file_action;
1548 
1549     // Default of NULL will mean to use existing open file descriptors.
1550     std::string stdin_path;
1551     std::string stdout_path;
1552     std::string stderr_path;
1553 
1554     file_action = launch_info.GetFileActionForFD (STDIN_FILENO);
1555     if (file_action)
1556         stdin_path = file_action->GetPath ();
1557 
1558     file_action = launch_info.GetFileActionForFD (STDOUT_FILENO);
1559     if (file_action)
1560         stdout_path = file_action->GetPath ();
1561 
1562     file_action = launch_info.GetFileActionForFD (STDERR_FILENO);
1563     if (file_action)
1564         stderr_path = file_action->GetPath ();
1565 
1566     if (log)
1567     {
1568         if (!stdin_path.empty ())
1569             log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'", __FUNCTION__, stdin_path.c_str ());
1570         else
1571             log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__);
1572 
1573         if (!stdout_path.empty ())
1574             log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'", __FUNCTION__, stdout_path.c_str ());
1575         else
1576             log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__);
1577 
1578         if (!stderr_path.empty ())
1579             log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'", __FUNCTION__, stderr_path.c_str ());
1580         else
1581             log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__);
1582     }
1583 
1584     // Create the NativeProcessLinux in launch mode.
1585     native_process_sp.reset (new NativeProcessLinux ());
1586 
1587     if (log)
1588     {
1589         int i = 0;
1590         for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i)
1591         {
1592             log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr");
1593             ++i;
1594         }
1595     }
1596 
1597     if (!native_process_sp->RegisterNativeDelegate (native_delegate))
1598     {
1599         native_process_sp.reset ();
1600         error.SetErrorStringWithFormat ("failed to register the native delegate");
1601         return error;
1602     }
1603 
1604     std::static_pointer_cast<NativeProcessLinux> (native_process_sp)->LaunchInferior (
1605             exe_module,
1606             launch_info.GetArguments ().GetConstArgumentVector (),
1607             launch_info.GetEnvironmentEntries ().GetConstArgumentVector (),
1608             stdin_path,
1609             stdout_path,
1610             stderr_path,
1611             working_dir,
1612             launch_info,
1613             error);
1614 
1615     if (error.Fail ())
1616     {
1617         native_process_sp.reset ();
1618         if (log)
1619             log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ());
1620         return error;
1621     }
1622 
1623     launch_info.SetProcessID (native_process_sp->GetID ());
1624 
1625     return error;
1626 }
1627 
1628 Error
1629 NativeProcessLinux::AttachToProcess (
1630     lldb::pid_t pid,
1631     NativeProcessProtocol::NativeDelegate &native_delegate,
1632     NativeProcessProtocolSP &native_process_sp)
1633 {
1634     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1635     if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE))
1636         log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid);
1637 
1638     // Grab the current platform architecture.  This should be Linux,
1639     // since this code is only intended to run on a Linux host.
1640     PlatformSP platform_sp (Platform::GetHostPlatform ());
1641     if (!platform_sp)
1642         return Error("failed to get a valid default platform");
1643 
1644     // Retrieve the architecture for the running process.
1645     ArchSpec process_arch;
1646     Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch);
1647     if (!error.Success ())
1648         return error;
1649 
1650     std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ());
1651 
1652     if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate))
1653     {
1654         error.SetErrorStringWithFormat ("failed to register the native delegate");
1655         return error;
1656     }
1657 
1658     native_process_linux_sp->AttachToInferior (pid, error);
1659     if (!error.Success ())
1660         return error;
1661 
1662     native_process_sp = native_process_linux_sp;
1663     return error;
1664 }
1665 
1666 // -----------------------------------------------------------------------------
1667 // Public Instance Methods
1668 // -----------------------------------------------------------------------------
1669 
1670 NativeProcessLinux::NativeProcessLinux () :
1671     NativeProcessProtocol (LLDB_INVALID_PROCESS_ID),
1672     m_arch (),
1673     m_supports_mem_region (eLazyBoolCalculate),
1674     m_mem_region_cache (),
1675     m_mem_region_cache_mutex (),
1676     m_log_function (GetThreadLoggerFunction()),
1677     m_tid_map (),
1678     m_log_event_processing (false)
1679 {
1680 }
1681 
1682 //------------------------------------------------------------------------------
1683 // NativeProcessLinux spawns a new thread which performs all operations on the inferior process.
1684 // Refer to Monitor and Operation classes to see why this is necessary.
1685 //------------------------------------------------------------------------------
1686 void
1687 NativeProcessLinux::LaunchInferior (
1688     Module *module,
1689     const char *argv[],
1690     const char *envp[],
1691     const std::string &stdin_path,
1692     const std::string &stdout_path,
1693     const std::string &stderr_path,
1694     const char *working_dir,
1695     const ProcessLaunchInfo &launch_info,
1696     Error &error)
1697 {
1698     if (module)
1699         m_arch = module->GetArchitecture ();
1700 
1701     SetState (eStateLaunching);
1702 
1703     std::unique_ptr<LaunchArgs> args(
1704         new LaunchArgs(
1705             module, argv, envp,
1706             stdin_path, stdout_path, stderr_path,
1707             working_dir, launch_info));
1708 
1709     StartMonitorThread ([&] (Error &e) { return Launch(args.get(), e); }, error);
1710     if (!error.Success ())
1711         return;
1712 }
1713 
1714 void
1715 NativeProcessLinux::AttachToInferior (lldb::pid_t pid, Error &error)
1716 {
1717     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1718     if (log)
1719         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid);
1720 
1721     // We can use the Host for everything except the ResolveExecutable portion.
1722     PlatformSP platform_sp = Platform::GetHostPlatform ();
1723     if (!platform_sp)
1724     {
1725         if (log)
1726             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid);
1727         error.SetErrorString ("no default platform available");
1728         return;
1729     }
1730 
1731     // Gather info about the process.
1732     ProcessInstanceInfo process_info;
1733     if (!platform_sp->GetProcessInfo (pid, process_info))
1734     {
1735         if (log)
1736             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid);
1737         error.SetErrorString ("failed to get process info");
1738         return;
1739     }
1740 
1741     // Resolve the executable module
1742     ModuleSP exe_module_sp;
1743     FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths());
1744     ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
1745     error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp,
1746                                            executable_search_paths.GetSize() ? &executable_search_paths : NULL);
1747     if (!error.Success())
1748         return;
1749 
1750     // Set the architecture to the exe architecture.
1751     m_arch = exe_module_sp->GetArchitecture();
1752     if (log)
1753         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ());
1754 
1755     m_pid = pid;
1756     SetState(eStateAttaching);
1757 
1758     StartMonitorThread ([=] (Error &e) { return Attach(pid, e); }, error);
1759     if (!error.Success ())
1760         return;
1761 }
1762 
1763 void
1764 NativeProcessLinux::Terminate ()
1765 {
1766     m_monitor_up->Terminate();
1767 }
1768 
1769 ::pid_t
1770 NativeProcessLinux::Launch(LaunchArgs *args, Error &error)
1771 {
1772     assert (args && "null args");
1773 
1774     const char **argv = args->m_argv;
1775     const char **envp = args->m_envp;
1776     const char *working_dir = args->m_working_dir;
1777 
1778     lldb_utility::PseudoTerminal terminal;
1779     const size_t err_len = 1024;
1780     char err_str[err_len];
1781     lldb::pid_t pid;
1782     NativeThreadProtocolSP thread_sp;
1783 
1784     lldb::ThreadSP inferior;
1785 
1786     // Propagate the environment if one is not supplied.
1787     if (envp == NULL || envp[0] == NULL)
1788         envp = const_cast<const char **>(environ);
1789 
1790     if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1))
1791     {
1792         error.SetErrorToGenericError();
1793         error.SetErrorStringWithFormat("Process fork failed: %s", err_str);
1794         return -1;
1795     }
1796 
1797     // Recognized child exit status codes.
1798     enum {
1799         ePtraceFailed = 1,
1800         eDupStdinFailed,
1801         eDupStdoutFailed,
1802         eDupStderrFailed,
1803         eChdirFailed,
1804         eExecFailed,
1805         eSetGidFailed
1806     };
1807 
1808     // Child process.
1809     if (pid == 0)
1810     {
1811         // FIXME consider opening a pipe between parent/child and have this forked child
1812         // send log info to parent re: launch status, in place of the log lines removed here.
1813 
1814         // Start tracing this child that is about to exec.
1815         PTRACE(PTRACE_TRACEME, 0, nullptr, nullptr, 0, error);
1816         if (error.Fail())
1817             exit(ePtraceFailed);
1818 
1819         // terminal has already dupped the tty descriptors to stdin/out/err.
1820         // This closes original fd from which they were copied (and avoids
1821         // leaking descriptors to the debugged process.
1822         terminal.CloseSlaveFileDescriptor();
1823 
1824         // Do not inherit setgid powers.
1825         if (setgid(getgid()) != 0)
1826             exit(eSetGidFailed);
1827 
1828         // Attempt to have our own process group.
1829         if (setpgid(0, 0) != 0)
1830         {
1831             // FIXME log that this failed. This is common.
1832             // Don't allow this to prevent an inferior exec.
1833         }
1834 
1835         // Dup file descriptors if needed.
1836         if (!args->m_stdin_path.empty ())
1837             if (!DupDescriptor(args->m_stdin_path.c_str (), STDIN_FILENO, O_RDONLY))
1838                 exit(eDupStdinFailed);
1839 
1840         if (!args->m_stdout_path.empty ())
1841             if (!DupDescriptor(args->m_stdout_path.c_str (), STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
1842                 exit(eDupStdoutFailed);
1843 
1844         if (!args->m_stderr_path.empty ())
1845             if (!DupDescriptor(args->m_stderr_path.c_str (), STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
1846                 exit(eDupStderrFailed);
1847 
1848         // Close everything besides stdin, stdout, and stderr that has no file
1849         // action to avoid leaking
1850         for (int fd = 3; fd < sysconf(_SC_OPEN_MAX); ++fd)
1851             if (!args->m_launch_info.GetFileActionForFD(fd))
1852                 close(fd);
1853 
1854         // Change working directory
1855         if (working_dir != NULL && working_dir[0])
1856           if (0 != ::chdir(working_dir))
1857               exit(eChdirFailed);
1858 
1859         // Disable ASLR if requested.
1860         if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR))
1861         {
1862             const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS);
1863             if (old_personality == -1)
1864             {
1865                 // Can't retrieve Linux personality.  Cannot disable ASLR.
1866             }
1867             else
1868             {
1869                 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality);
1870                 if (new_personality == -1)
1871                 {
1872                     // Disabling ASLR failed.
1873                 }
1874                 else
1875                 {
1876                     // Disabling ASLR succeeded.
1877                 }
1878             }
1879         }
1880 
1881         // Execute.  We should never return...
1882         execve(argv[0],
1883                const_cast<char *const *>(argv),
1884                const_cast<char *const *>(envp));
1885 
1886         // ...unless exec fails.  In which case we definitely need to end the child here.
1887         exit(eExecFailed);
1888     }
1889 
1890     //
1891     // This is the parent code here.
1892     //
1893     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1894 
1895     // Wait for the child process to trap on its call to execve.
1896     ::pid_t wpid;
1897     int status;
1898     if ((wpid = waitpid(pid, &status, 0)) < 0)
1899     {
1900         error.SetErrorToErrno();
1901         if (log)
1902             log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s",
1903                     __FUNCTION__, error.AsCString ());
1904 
1905         // Mark the inferior as invalid.
1906         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1907         SetState (StateType::eStateInvalid);
1908 
1909         return -1;
1910     }
1911     else if (WIFEXITED(status))
1912     {
1913         // open, dup or execve likely failed for some reason.
1914         error.SetErrorToGenericError();
1915         switch (WEXITSTATUS(status))
1916         {
1917             case ePtraceFailed:
1918                 error.SetErrorString("Child ptrace failed.");
1919                 break;
1920             case eDupStdinFailed:
1921                 error.SetErrorString("Child open stdin failed.");
1922                 break;
1923             case eDupStdoutFailed:
1924                 error.SetErrorString("Child open stdout failed.");
1925                 break;
1926             case eDupStderrFailed:
1927                 error.SetErrorString("Child open stderr failed.");
1928                 break;
1929             case eChdirFailed:
1930                 error.SetErrorString("Child failed to set working directory.");
1931                 break;
1932             case eExecFailed:
1933                 error.SetErrorString("Child exec failed.");
1934                 break;
1935             case eSetGidFailed:
1936                 error.SetErrorString("Child setgid failed.");
1937                 break;
1938             default:
1939                 error.SetErrorString("Child returned unknown exit status.");
1940                 break;
1941         }
1942 
1943         if (log)
1944         {
1945             log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP",
1946                     __FUNCTION__,
1947                     WEXITSTATUS(status));
1948         }
1949 
1950         // Mark the inferior as invalid.
1951         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1952         SetState (StateType::eStateInvalid);
1953 
1954         return -1;
1955     }
1956     assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) &&
1957            "Could not sync with inferior process.");
1958 
1959     if (log)
1960         log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__);
1961 
1962     error = SetDefaultPtraceOpts(pid);
1963     if (error.Fail())
1964     {
1965         if (log)
1966             log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s",
1967                     __FUNCTION__, error.AsCString ());
1968 
1969         // Mark the inferior as invalid.
1970         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1971         SetState (StateType::eStateInvalid);
1972 
1973         return -1;
1974     }
1975 
1976     // Release the master terminal descriptor and pass it off to the
1977     // NativeProcessLinux instance.  Similarly stash the inferior pid.
1978     m_terminal_fd = terminal.ReleaseMasterFileDescriptor();
1979     m_pid = pid;
1980 
1981     // Set the terminal fd to be in non blocking mode (it simplifies the
1982     // implementation of ProcessLinux::GetSTDOUT to have a non-blocking
1983     // descriptor to read from).
1984     error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
1985     if (error.Fail())
1986     {
1987         if (log)
1988             log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s",
1989                     __FUNCTION__, error.AsCString ());
1990 
1991         // Mark the inferior as invalid.
1992         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1993         SetState (StateType::eStateInvalid);
1994 
1995         return -1;
1996     }
1997 
1998     if (log)
1999         log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid);
2000 
2001     thread_sp = AddThread (pid);
2002     assert (thread_sp && "AddThread() returned a nullptr thread");
2003     NotifyThreadCreateStopped (pid);
2004     std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP);
2005 
2006     // Let our process instance know the thread has stopped.
2007     SetCurrentThreadID (thread_sp->GetID ());
2008     SetState (StateType::eStateStopped);
2009 
2010     if (log)
2011     {
2012         if (error.Success ())
2013         {
2014             log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__);
2015         }
2016         else
2017         {
2018             log->Printf ("NativeProcessLinux::%s inferior launching failed: %s",
2019                 __FUNCTION__, error.AsCString ());
2020             return -1;
2021         }
2022     }
2023     return pid;
2024 }
2025 
2026 ::pid_t
2027 NativeProcessLinux::Attach(lldb::pid_t pid, Error &error)
2028 {
2029     lldb::ThreadSP inferior;
2030     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2031 
2032     // Use a map to keep track of the threads which we have attached/need to attach.
2033     Host::TidMap tids_to_attach;
2034     if (pid <= 1)
2035     {
2036         error.SetErrorToGenericError();
2037         error.SetErrorString("Attaching to process 1 is not allowed.");
2038         return -1;
2039     }
2040 
2041     while (Host::FindProcessThreads(pid, tids_to_attach))
2042     {
2043         for (Host::TidMap::iterator it = tids_to_attach.begin();
2044              it != tids_to_attach.end();)
2045         {
2046             if (it->second == false)
2047             {
2048                 lldb::tid_t tid = it->first;
2049 
2050                 // Attach to the requested process.
2051                 // An attach will cause the thread to stop with a SIGSTOP.
2052                 PTRACE(PTRACE_ATTACH, tid, nullptr, nullptr, 0, error);
2053                 if (error.Fail())
2054                 {
2055                     // No such thread. The thread may have exited.
2056                     // More error handling may be needed.
2057                     if (error.GetError() == ESRCH)
2058                     {
2059                         it = tids_to_attach.erase(it);
2060                         continue;
2061                     }
2062                     else
2063                         return -1;
2064                 }
2065 
2066                 int status;
2067                 // Need to use __WALL otherwise we receive an error with errno=ECHLD
2068                 // At this point we should have a thread stopped if waitpid succeeds.
2069                 if ((status = waitpid(tid, NULL, __WALL)) < 0)
2070                 {
2071                     // No such thread. The thread may have exited.
2072                     // More error handling may be needed.
2073                     if (errno == ESRCH)
2074                     {
2075                         it = tids_to_attach.erase(it);
2076                         continue;
2077                     }
2078                     else
2079                     {
2080                         error.SetErrorToErrno();
2081                         return -1;
2082                     }
2083                 }
2084 
2085                 error = SetDefaultPtraceOpts(tid);
2086                 if (error.Fail())
2087                     return -1;
2088 
2089                 if (log)
2090                     log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid);
2091 
2092                 it->second = true;
2093 
2094                 // Create the thread, mark it as stopped.
2095                 NativeThreadProtocolSP thread_sp (AddThread (static_cast<lldb::tid_t> (tid)));
2096                 assert (thread_sp && "AddThread() returned a nullptr");
2097 
2098                 // This will notify this is a new thread and tell the system it is stopped.
2099                 NotifyThreadCreateStopped (tid);
2100                 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP);
2101                 SetCurrentThreadID (thread_sp->GetID ());
2102             }
2103 
2104             // move the loop forward
2105             ++it;
2106         }
2107     }
2108 
2109     if (tids_to_attach.size() > 0)
2110     {
2111         m_pid = pid;
2112         // Let our process instance know the thread has stopped.
2113         SetState (StateType::eStateStopped);
2114     }
2115     else
2116     {
2117         error.SetErrorToGenericError();
2118         error.SetErrorString("No such process.");
2119         return -1;
2120     }
2121 
2122     return pid;
2123 }
2124 
2125 Error
2126 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid)
2127 {
2128     long ptrace_opts = 0;
2129 
2130     // Have the child raise an event on exit.  This is used to keep the child in
2131     // limbo until it is destroyed.
2132     ptrace_opts |= PTRACE_O_TRACEEXIT;
2133 
2134     // Have the tracer trace threads which spawn in the inferior process.
2135     // TODO: if we want to support tracing the inferiors' child, add the
2136     // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
2137     ptrace_opts |= PTRACE_O_TRACECLONE;
2138 
2139     // Have the tracer notify us before execve returns
2140     // (needed to disable legacy SIGTRAP generation)
2141     ptrace_opts |= PTRACE_O_TRACEEXEC;
2142 
2143     Error error;
2144     PTRACE(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts, 0, error);
2145     return error;
2146 }
2147 
2148 static ExitType convert_pid_status_to_exit_type (int status)
2149 {
2150     if (WIFEXITED (status))
2151         return ExitType::eExitTypeExit;
2152     else if (WIFSIGNALED (status))
2153         return ExitType::eExitTypeSignal;
2154     else if (WIFSTOPPED (status))
2155         return ExitType::eExitTypeStop;
2156     else
2157     {
2158         // We don't know what this is.
2159         return ExitType::eExitTypeInvalid;
2160     }
2161 }
2162 
2163 static int convert_pid_status_to_return_code (int status)
2164 {
2165     if (WIFEXITED (status))
2166         return WEXITSTATUS (status);
2167     else if (WIFSIGNALED (status))
2168         return WTERMSIG (status);
2169     else if (WIFSTOPPED (status))
2170         return WSTOPSIG (status);
2171     else
2172     {
2173         // We don't know what this is.
2174         return ExitType::eExitTypeInvalid;
2175     }
2176 }
2177 
2178 // Handles all waitpid events from the inferior process.
2179 void
2180 NativeProcessLinux::MonitorCallback(lldb::pid_t pid,
2181                                     bool exited,
2182                                     int signal,
2183                                     int status)
2184 {
2185     Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS));
2186 
2187     // Certain activities differ based on whether the pid is the tid of the main thread.
2188     const bool is_main_thread = (pid == GetID ());
2189 
2190     // Handle when the thread exits.
2191     if (exited)
2192     {
2193         if (log)
2194             log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %"  PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not");
2195 
2196         // This is a thread that exited.  Ensure we're not tracking it anymore.
2197         const bool thread_found = StopTrackingThread (pid);
2198 
2199         // Make sure the thread state coordinator knows about this.
2200         NotifyThreadDeath (pid);
2201 
2202         if (is_main_thread)
2203         {
2204             // We only set the exit status and notify the delegate if we haven't already set the process
2205             // state to an exited state.  We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8)
2206             // for the main thread.
2207             const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed);
2208             if (!already_notified)
2209             {
2210                 if (log)
2211                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ()));
2212                 // The main thread exited.  We're done monitoring.  Report to delegate.
2213                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
2214 
2215                 // Notify delegate that our process has exited.
2216                 SetState (StateType::eStateExited, true);
2217             }
2218             else
2219             {
2220                 if (log)
2221                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
2222             }
2223         }
2224         else
2225         {
2226             // Do we want to report to the delegate in this case?  I think not.  If this was an orderly
2227             // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal,
2228             // and we would have done an all-stop then.
2229             if (log)
2230                 log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
2231         }
2232         return;
2233     }
2234 
2235     // Get details on the signal raised.
2236     siginfo_t info;
2237     const auto err = GetSignalInfo(pid, &info);
2238     if (err.Success())
2239     {
2240         // We have retrieved the signal info.  Dispatch appropriately.
2241         if (info.si_signo == SIGTRAP)
2242             MonitorSIGTRAP(&info, pid);
2243         else
2244             MonitorSignal(&info, pid, exited);
2245     }
2246     else
2247     {
2248         if (err.GetError() == EINVAL)
2249         {
2250             // This is a group stop reception for this tid.
2251             if (log)
2252                 log->Printf ("NativeThreadLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64, __FUNCTION__, GetID (), pid);
2253             NotifyThreadStop (pid);
2254         }
2255         else
2256         {
2257             // ptrace(GETSIGINFO) failed (but not due to group-stop).
2258 
2259             // A return value of ESRCH means the thread/process is no longer on the system,
2260             // so it was killed somehow outside of our control.  Either way, we can't do anything
2261             // with it anymore.
2262 
2263             // Stop tracking the metadata for the thread since it's entirely off the system now.
2264             const bool thread_found = StopTrackingThread (pid);
2265 
2266             // Make sure the thread state coordinator knows about this.
2267             NotifyThreadDeath (pid);
2268 
2269             if (log)
2270                 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)",
2271                              __FUNCTION__, err.AsCString(), pid, signal, status, err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found");
2272 
2273             if (is_main_thread)
2274             {
2275                 // Notify the delegate - our process is not available but appears to have been killed outside
2276                 // our control.  Is eStateExited the right exit state in this case?
2277                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
2278                 SetState (StateType::eStateExited, true);
2279             }
2280             else
2281             {
2282                 // This thread was pulled out from underneath us.  Anything to do here? Do we want to do an all stop?
2283                 if (log)
2284                     log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid);
2285             }
2286         }
2287     }
2288 }
2289 
2290 void
2291 NativeProcessLinux::WaitForNewThread(::pid_t tid)
2292 {
2293     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2294 
2295     NativeThreadProtocolSP new_thread_sp = GetThreadByID(tid);
2296 
2297     if (new_thread_sp)
2298     {
2299         // We are already tracking the thread - we got the event on the new thread (see
2300         // MonitorSignal) before this one. We are done.
2301         return;
2302     }
2303 
2304     // The thread is not tracked yet, let's wait for it to appear.
2305     int status = -1;
2306     ::pid_t wait_pid;
2307     do
2308     {
2309         if (log)
2310             log->Printf ("NativeProcessLinux::%s() received thread creation event for tid %" PRIu32 ". tid not tracked yet, waiting for thread to appear...", __FUNCTION__, tid);
2311         wait_pid = waitpid(tid, &status, __WALL);
2312     }
2313     while (wait_pid == -1 && errno == EINTR);
2314     // Since we are waiting on a specific tid, this must be the creation event. But let's do
2315     // some checks just in case.
2316     if (wait_pid != tid) {
2317         if (log)
2318             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime", __FUNCTION__, tid);
2319         // The only way I know of this could happen is if the whole process was
2320         // SIGKILLed in the mean time. In any case, we can't do anything about that now.
2321         return;
2322     }
2323     if (WIFEXITED(status))
2324     {
2325         if (log)
2326             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " returned an 'exited' event. Not tracking the thread.", __FUNCTION__, tid);
2327         // Also a very improbable event.
2328         return;
2329     }
2330 
2331     siginfo_t info;
2332     Error error = GetSignalInfo(tid, &info);
2333     if (error.Fail())
2334     {
2335         if (log)
2336             log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime.", __FUNCTION__, tid);
2337         return;
2338     }
2339 
2340     if (((info.si_pid != 0) || (info.si_code != SI_USER)) && log)
2341     {
2342         // We should be getting a thread creation signal here, but we received something
2343         // else. There isn't much we can do about it now, so we will just log that. Since the
2344         // thread is alive and we are receiving events from it, we shall pretend that it was
2345         // created properly.
2346         log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " received unexpected signal with code %d from pid %d.", __FUNCTION__, tid, info.si_code, info.si_pid);
2347     }
2348 
2349     if (log)
2350         log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": tracking new thread tid %" PRIu32,
2351                  __FUNCTION__, GetID (), tid);
2352 
2353     new_thread_sp = AddThread(tid);
2354     std::static_pointer_cast<NativeThreadLinux> (new_thread_sp)->SetRunning ();
2355     Resume (tid, LLDB_INVALID_SIGNAL_NUMBER);
2356     NotifyThreadCreate (tid, false, CoordinatorErrorHandler);
2357 }
2358 
2359 void
2360 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid)
2361 {
2362     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2363     const bool is_main_thread = (pid == GetID ());
2364 
2365     assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!");
2366     if (!info)
2367         return;
2368 
2369     Mutex::Locker locker (m_threads_mutex);
2370 
2371     // See if we can find a thread for this signal.
2372     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
2373     if (!thread_sp)
2374     {
2375         if (log)
2376             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
2377     }
2378 
2379     switch (info->si_code)
2380     {
2381     // TODO: these two cases are required if we want to support tracing of the inferiors' children.  We'd need this to debug a monitor.
2382     // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
2383     // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
2384 
2385     case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)):
2386     {
2387         // This is the notification on the parent thread which informs us of new thread
2388         // creation.
2389         // We don't want to do anything with the parent thread so we just resume it. In case we
2390         // want to implement "break on thread creation" functionality, we would need to stop
2391         // here.
2392 
2393         unsigned long event_message = 0;
2394         if (GetEventMessage (pid, &event_message).Fail())
2395         {
2396             if (log)
2397                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, pid);
2398         } else
2399             WaitForNewThread(event_message);
2400 
2401         Resume (pid, LLDB_INVALID_SIGNAL_NUMBER);
2402         break;
2403     }
2404 
2405     case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)):
2406     {
2407         NativeThreadProtocolSP main_thread_sp;
2408         if (log)
2409             log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP);
2410 
2411         // The thread state coordinator needs to reset due to the exec.
2412         ResetForExec ();
2413 
2414         // Remove all but the main thread here.  Linux fork creates a new process which only copies the main thread.  Mutexes are in undefined state.
2415         if (log)
2416             log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__);
2417 
2418         for (auto thread_sp : m_threads)
2419         {
2420             const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID ();
2421             if (is_main_thread)
2422             {
2423                 main_thread_sp = thread_sp;
2424                 if (log)
2425                     log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ());
2426             }
2427             else
2428             {
2429                 // Tell thread coordinator this thread is dead.
2430                 if (log)
2431                     log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ());
2432             }
2433         }
2434 
2435         m_threads.clear ();
2436 
2437         if (main_thread_sp)
2438         {
2439             m_threads.push_back (main_thread_sp);
2440             SetCurrentThreadID (main_thread_sp->GetID ());
2441             std::static_pointer_cast<NativeThreadLinux> (main_thread_sp)->SetStoppedByExec ();
2442         }
2443         else
2444         {
2445             SetCurrentThreadID (LLDB_INVALID_THREAD_ID);
2446             if (log)
2447                 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ());
2448         }
2449 
2450         // Tell coordinator about about the "new" (since exec) stopped main thread.
2451         const lldb::tid_t main_thread_tid = GetID ();
2452         NotifyThreadCreateStopped (main_thread_tid);
2453 
2454         // NOTE: ideally these next statements would execute at the same time as the coordinator thread create was executed.
2455         // Consider a handler that can execute when that happens.
2456         // Let our delegate know we have just exec'd.
2457         NotifyDidExec ();
2458 
2459         // If we have a main thread, indicate we are stopped.
2460         assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked");
2461 
2462         // Let the process know we're stopped.
2463         StopRunningThreads (pid);
2464 
2465         break;
2466     }
2467 
2468     case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)):
2469     {
2470         // The inferior process or one of its threads is about to exit.
2471 
2472         // This thread is currently stopped.  It's not actually dead yet, just about to be.
2473         NotifyThreadStop (pid);
2474 
2475         unsigned long data = 0;
2476         if (GetEventMessage(pid, &data).Fail())
2477             data = -1;
2478 
2479         if (log)
2480         {
2481             log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)",
2482                          __FUNCTION__,
2483                          data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false",
2484                          pid,
2485                     is_main_thread ? "is main thread" : "not main thread");
2486         }
2487 
2488         if (is_main_thread)
2489         {
2490             SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true);
2491         }
2492 
2493         const int signo = static_cast<int> (data);
2494         RequestThreadResume (pid,
2495                 [=](lldb::tid_t tid_to_resume, bool supress_signal)
2496                 {
2497                     std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2498                     return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo);
2499                 },
2500                 CoordinatorErrorHandler);
2501 
2502         break;
2503     }
2504 
2505     case 0:
2506     case TRAP_TRACE:  // We receive this on single stepping.
2507     case TRAP_HWBKPT: // We receive this on watchpoint hit
2508         if (thread_sp)
2509         {
2510             // If a watchpoint was hit, report it
2511             uint32_t wp_index;
2512             Error error = thread_sp->GetRegisterContext()->GetWatchpointHitIndex(wp_index);
2513             if (error.Fail() && log)
2514                 log->Printf("NativeProcessLinux::%s() "
2515                             "received error while checking for watchpoint hits, "
2516                             "pid = %" PRIu64 " error = %s",
2517                             __FUNCTION__, pid, error.AsCString());
2518             if (wp_index != LLDB_INVALID_INDEX32)
2519             {
2520                 MonitorWatchpoint(pid, thread_sp, wp_index);
2521                 break;
2522             }
2523         }
2524         // Otherwise, report step over
2525         MonitorTrace(pid, thread_sp);
2526         break;
2527 
2528     case SI_KERNEL:
2529     case TRAP_BRKPT:
2530         MonitorBreakpoint(pid, thread_sp);
2531         break;
2532 
2533     case SIGTRAP:
2534     case (SIGTRAP | 0x80):
2535         if (log)
2536             log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), pid);
2537 
2538         // This thread is currently stopped.
2539         NotifyThreadStop (pid);
2540         if (thread_sp)
2541             std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGTRAP);
2542 
2543 
2544         // Ignore these signals until we know more about them.
2545         RequestThreadResume (pid,
2546                 [=](lldb::tid_t tid_to_resume, bool supress_signal)
2547                 {
2548                     std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2549                     return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER);
2550                 },
2551                 CoordinatorErrorHandler);
2552         break;
2553 
2554     default:
2555         assert(false && "Unexpected SIGTRAP code!");
2556         if (log)
2557             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%" PRIx64, __FUNCTION__, GetID (), pid, static_cast<uint64_t> (SIGTRAP | (PTRACE_EVENT_CLONE << 8)));
2558         break;
2559 
2560     }
2561 }
2562 
2563 void
2564 NativeProcessLinux::MonitorTrace(lldb::pid_t pid, NativeThreadProtocolSP thread_sp)
2565 {
2566     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2567     if (log)
2568         log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)",
2569                 __FUNCTION__, pid);
2570 
2571     if (thread_sp)
2572         std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace();
2573 
2574     // This thread is currently stopped.
2575     NotifyThreadStop(pid);
2576 
2577     // Here we don't have to request the rest of the threads to stop or request a deferred stop.
2578     // This would have already happened at the time the Resume() with step operation was signaled.
2579     // At this point, we just need to say we stopped, and the deferred notifcation will fire off
2580     // once all running threads have checked in as stopped.
2581     SetCurrentThreadID(pid);
2582     // Tell the process we have a stop (from software breakpoint).
2583     StopRunningThreads(pid);
2584 }
2585 
2586 void
2587 NativeProcessLinux::MonitorBreakpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp)
2588 {
2589     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
2590     if (log)
2591         log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64,
2592                 __FUNCTION__, pid);
2593 
2594     // This thread is currently stopped.
2595     NotifyThreadStop(pid);
2596 
2597     // Mark the thread as stopped at breakpoint.
2598     if (thread_sp)
2599     {
2600         std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByBreakpoint();
2601         Error error = FixupBreakpointPCAsNeeded(thread_sp);
2602         if (error.Fail())
2603             if (log)
2604                 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s",
2605                         __FUNCTION__, pid, error.AsCString());
2606 
2607         auto it = m_threads_stepping_with_breakpoint.find(pid);
2608         if (it != m_threads_stepping_with_breakpoint.end())
2609         {
2610             Error error = RemoveBreakpoint (it->second);
2611             if (error.Fail())
2612                 if (log)
2613                     log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s",
2614                             __FUNCTION__, pid, error.AsCString());
2615 
2616             m_threads_stepping_with_breakpoint.erase(it);
2617             std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace();
2618         }
2619     }
2620     else
2621         if (log)
2622             log->Printf("NativeProcessLinux::%s()  pid = %" PRIu64 ": "
2623                     "warning, cannot process software breakpoint since no thread metadata",
2624                     __FUNCTION__, pid);
2625 
2626 
2627     // We need to tell all other running threads before we notify the delegate about this stop.
2628     StopRunningThreads(pid);
2629 }
2630 
2631 void
2632 NativeProcessLinux::MonitorWatchpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp, uint32_t wp_index)
2633 {
2634     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
2635     if (log)
2636         log->Printf("NativeProcessLinux::%s() received watchpoint event, "
2637                     "pid = %" PRIu64 ", wp_index = %" PRIu32,
2638                     __FUNCTION__, pid, wp_index);
2639 
2640     // This thread is currently stopped.
2641     NotifyThreadStop(pid);
2642 
2643     // Mark the thread as stopped at watchpoint.
2644     // The address is at (lldb::addr_t)info->si_addr if we need it.
2645     lldbassert(thread_sp && "thread_sp cannot be NULL");
2646     std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByWatchpoint(wp_index);
2647 
2648     // We need to tell all other running threads before we notify the delegate about this stop.
2649     StopRunningThreads(pid);
2650 }
2651 
2652 void
2653 NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited)
2654 {
2655     assert (info && "null info");
2656     if (!info)
2657         return;
2658 
2659     const int signo = info->si_signo;
2660     const bool is_from_llgs = info->si_pid == getpid ();
2661 
2662     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2663 
2664     // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
2665     // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
2666     // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
2667     //
2668     // IOW, user generated signals never generate what we consider to be a
2669     // "crash".
2670     //
2671     // Similarly, ACK signals generated by this monitor.
2672 
2673     Mutex::Locker locker (m_threads_mutex);
2674 
2675     // See if we can find a thread for this signal.
2676     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
2677     if (!thread_sp)
2678     {
2679         if (log)
2680             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
2681     }
2682 
2683     // Handle the signal.
2684     if (info->si_code == SI_TKILL || info->si_code == SI_USER)
2685     {
2686         if (log)
2687             log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")",
2688                             __FUNCTION__,
2689                             GetUnixSignals ().GetSignalAsCString (signo),
2690                             signo,
2691                             (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"),
2692                             info->si_pid,
2693                             is_from_llgs ? "from llgs" : "not from llgs",
2694                             pid);
2695     }
2696 
2697     // Check for new thread notification.
2698     if ((info->si_pid == 0) && (info->si_code == SI_USER))
2699     {
2700         // A new thread creation is being signaled. This is one of two parts that come in
2701         // a non-deterministic order. This code handles the case where the new thread event comes
2702         // before the event on the parent thread. For the opposite case see code in
2703         // MonitorSIGTRAP.
2704         if (log)
2705             log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification",
2706                      __FUNCTION__, GetID (), pid);
2707 
2708         thread_sp = AddThread(pid);
2709         assert (thread_sp.get() && "failed to create the tracking data for newly created inferior thread");
2710         // We can now resume the newly created thread.
2711         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2712         Resume (pid, LLDB_INVALID_SIGNAL_NUMBER);
2713         NotifyThreadCreate (pid, false, CoordinatorErrorHandler);
2714         // Done handling.
2715         return;
2716     }
2717 
2718     // Check for thread stop notification.
2719     if (is_from_llgs && (info->si_code == SI_TKILL) && (signo == SIGSTOP))
2720     {
2721         // This is a tgkill()-based stop.
2722         if (thread_sp)
2723         {
2724             if (log)
2725                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped",
2726                              __FUNCTION__,
2727                              GetID (),
2728                              pid);
2729 
2730             // Check that we're not already marked with a stop reason.
2731             // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that
2732             // the kernel signaled us with the thread stopping which we handled and marked as stopped,
2733             // and that, without an intervening resume, we received another stop.  It is more likely
2734             // that we are missing the marking of a run state somewhere if we find that the thread was
2735             // marked as stopped.
2736             std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp);
2737             assert (linux_thread_sp && "linux_thread_sp is null!");
2738 
2739             const StateType thread_state = linux_thread_sp->GetState ();
2740             if (!StateIsStoppedState (thread_state, false))
2741             {
2742                 // An inferior thread has stopped because of a SIGSTOP we have sent it.
2743                 // Generally, these are not important stops and we don't want to report them as
2744                 // they are just used to stop other threads when one thread (the one with the
2745                 // *real* stop reason) hits a breakpoint (watchpoint, etc...). However, in the
2746                 // case of an asynchronous Interrupt(), this *is* the real stop reason, so we
2747                 // leave the signal intact if this is the thread that was chosen as the
2748                 // triggering thread.
2749                 if (m_pending_notification_up && m_pending_notification_up->triggering_tid == pid)
2750                     linux_thread_sp->SetStoppedBySignal(SIGSTOP);
2751                 else
2752                     linux_thread_sp->SetStoppedBySignal(0);
2753 
2754                 SetCurrentThreadID (thread_sp->GetID ());
2755                 NotifyThreadStop (thread_sp->GetID (), true, CoordinatorErrorHandler);
2756             }
2757             else
2758             {
2759                 if (log)
2760                 {
2761                     // Retrieve the signal name if the thread was stopped by a signal.
2762                     int stop_signo = 0;
2763                     const bool stopped_by_signal = linux_thread_sp->IsStopped (&stop_signo);
2764                     const char *signal_name = stopped_by_signal ? GetUnixSignals ().GetSignalAsCString (stop_signo) : "<not stopped by signal>";
2765                     if (!signal_name)
2766                         signal_name = "<no-signal-name>";
2767 
2768                     log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is",
2769                                  __FUNCTION__,
2770                                  GetID (),
2771                                  linux_thread_sp->GetID (),
2772                                  StateAsCString (thread_state),
2773                                  stop_signo,
2774                                  signal_name);
2775                 }
2776                 // Tell the thread state coordinator about the stop.
2777                 NotifyThreadStop (thread_sp->GetID ());
2778             }
2779         }
2780 
2781         // Done handling.
2782         return;
2783     }
2784 
2785     if (log)
2786         log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo));
2787 
2788     // This thread is stopped.
2789     NotifyThreadStop (pid);
2790 
2791     switch (signo)
2792     {
2793     case SIGSTOP:
2794         {
2795             if (log)
2796             {
2797                 if (is_from_llgs)
2798                     log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from llgs, most likely an interrupt", __FUNCTION__, GetID (), pid);
2799                 else
2800                     log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from outside of debugger", __FUNCTION__, GetID (), pid);
2801             }
2802 
2803             // Resume this thread to get the group-stop mechanism to fire off the true group stops.
2804             // This thread will get stopped again as part of the group-stop completion.
2805             RequestThreadResume (pid,
2806                     [=](lldb::tid_t tid_to_resume, bool supress_signal)
2807                     {
2808                         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2809                         // Pass this signal number on to the inferior to handle.
2810                         return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo);
2811                     },
2812                     CoordinatorErrorHandler);
2813         }
2814         break;
2815     case SIGSEGV:
2816     case SIGILL:
2817     case SIGFPE:
2818     case SIGBUS:
2819         if (thread_sp)
2820             std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetCrashedWithException (*info);
2821         break;
2822     default:
2823         // This is just a pre-signal-delivery notification of the incoming signal.
2824         if (thread_sp)
2825             std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (signo);
2826 
2827         break;
2828     }
2829 
2830     // Send a stop to the debugger after we get all other threads to stop.
2831     StopRunningThreads (pid);
2832 }
2833 
2834 namespace {
2835 
2836 struct EmulatorBaton
2837 {
2838     NativeProcessLinux* m_process;
2839     NativeRegisterContext* m_reg_context;
2840 
2841     // eRegisterKindDWARF -> RegsiterValue
2842     std::unordered_map<uint32_t, RegisterValue> m_register_values;
2843 
2844     EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) :
2845             m_process(process), m_reg_context(reg_context) {}
2846 };
2847 
2848 } // anonymous namespace
2849 
2850 static size_t
2851 ReadMemoryCallback (EmulateInstruction *instruction,
2852                     void *baton,
2853                     const EmulateInstruction::Context &context,
2854                     lldb::addr_t addr,
2855                     void *dst,
2856                     size_t length)
2857 {
2858     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2859 
2860     size_t bytes_read;
2861     emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read);
2862     return bytes_read;
2863 }
2864 
2865 static bool
2866 ReadRegisterCallback (EmulateInstruction *instruction,
2867                       void *baton,
2868                       const RegisterInfo *reg_info,
2869                       RegisterValue &reg_value)
2870 {
2871     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2872 
2873     auto it = emulator_baton->m_register_values.find(reg_info->kinds[eRegisterKindDWARF]);
2874     if (it != emulator_baton->m_register_values.end())
2875     {
2876         reg_value = it->second;
2877         return true;
2878     }
2879 
2880     // The emulator only fill in the dwarf regsiter numbers (and in some case
2881     // the generic register numbers). Get the full register info from the
2882     // register context based on the dwarf register numbers.
2883     const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo(
2884             eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
2885 
2886     Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value);
2887     if (error.Success())
2888     {
2889         emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value;
2890         return true;
2891     }
2892     return false;
2893 }
2894 
2895 static bool
2896 WriteRegisterCallback (EmulateInstruction *instruction,
2897                        void *baton,
2898                        const EmulateInstruction::Context &context,
2899                        const RegisterInfo *reg_info,
2900                        const RegisterValue &reg_value)
2901 {
2902     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2903     emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value;
2904     return true;
2905 }
2906 
2907 static size_t
2908 WriteMemoryCallback (EmulateInstruction *instruction,
2909                      void *baton,
2910                      const EmulateInstruction::Context &context,
2911                      lldb::addr_t addr,
2912                      const void *dst,
2913                      size_t length)
2914 {
2915     return length;
2916 }
2917 
2918 static lldb::addr_t
2919 ReadFlags (NativeRegisterContext* regsiter_context)
2920 {
2921     const RegisterInfo* flags_info = regsiter_context->GetRegisterInfo(
2922             eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
2923     return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS);
2924 }
2925 
2926 Error
2927 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadProtocolSP thread_sp)
2928 {
2929     Error error;
2930     NativeRegisterContextSP register_context_sp = thread_sp->GetRegisterContext();
2931 
2932     std::unique_ptr<EmulateInstruction> emulator_ap(
2933         EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr));
2934 
2935     if (emulator_ap == nullptr)
2936         return Error("Instruction emulator not found!");
2937 
2938     EmulatorBaton baton(this, register_context_sp.get());
2939     emulator_ap->SetBaton(&baton);
2940     emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
2941     emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
2942     emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
2943     emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
2944 
2945     if (!emulator_ap->ReadInstruction())
2946         return Error("Read instruction failed!");
2947 
2948     bool emulation_result = emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
2949 
2950     const RegisterInfo* reg_info_pc = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
2951     const RegisterInfo* reg_info_flags = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
2952 
2953     auto pc_it = baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
2954     auto flags_it = baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
2955 
2956     lldb::addr_t next_pc;
2957     lldb::addr_t next_flags;
2958     if (emulation_result)
2959     {
2960         assert(pc_it != baton.m_register_values.end() && "Emulation was successfull but PC wasn't updated");
2961         next_pc = pc_it->second.GetAsUInt64();
2962 
2963         if (flags_it != baton.m_register_values.end())
2964             next_flags = flags_it->second.GetAsUInt64();
2965         else
2966             next_flags = ReadFlags (register_context_sp.get());
2967     }
2968     else if (pc_it == baton.m_register_values.end())
2969     {
2970         // Emulate instruction failed and it haven't changed PC. Advance PC
2971         // with the size of the current opcode because the emulation of all
2972         // PC modifying instruction should be successful. The failure most
2973         // likely caused by a not supported instruction which don't modify PC.
2974         next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize();
2975         next_flags = ReadFlags (register_context_sp.get());
2976     }
2977     else
2978     {
2979         // The instruction emulation failed after it modified the PC. It is an
2980         // unknown error where we can't continue because the next instruction is
2981         // modifying the PC but we don't  know how.
2982         return Error ("Instruction emulation failed unexpectedly.");
2983     }
2984 
2985     if (m_arch.GetMachine() == llvm::Triple::arm)
2986     {
2987         if (next_flags & 0x20)
2988         {
2989             // Thumb mode
2990             error = SetSoftwareBreakpoint(next_pc, 2);
2991         }
2992         else
2993         {
2994             // Arm mode
2995             error = SetSoftwareBreakpoint(next_pc, 4);
2996         }
2997     }
2998     else
2999     {
3000         // No size hint is given for the next breakpoint
3001         error = SetSoftwareBreakpoint(next_pc, 0);
3002     }
3003 
3004     if (error.Fail())
3005         return error;
3006 
3007     m_threads_stepping_with_breakpoint.insert({thread_sp->GetID(), next_pc});
3008 
3009     return Error();
3010 }
3011 
3012 bool
3013 NativeProcessLinux::SupportHardwareSingleStepping() const
3014 {
3015     return m_arch.GetMachine() != llvm::Triple::arm;
3016 }
3017 
3018 Error
3019 NativeProcessLinux::Resume (const ResumeActionList &resume_actions)
3020 {
3021     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD));
3022     if (log)
3023         log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ());
3024 
3025     lldb::tid_t deferred_signal_tid = LLDB_INVALID_THREAD_ID;
3026     lldb::tid_t deferred_signal_skip_tid = LLDB_INVALID_THREAD_ID;
3027     int deferred_signo = 0;
3028     NativeThreadProtocolSP deferred_signal_thread_sp;
3029     bool stepping = false;
3030     bool software_single_step = !SupportHardwareSingleStepping();
3031 
3032     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
3033     Mutex::Locker locker (m_threads_mutex);
3034 
3035     if (software_single_step)
3036     {
3037         for (auto thread_sp : m_threads)
3038         {
3039             assert (thread_sp && "thread list should not contain NULL threads");
3040 
3041             const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
3042             if (action == nullptr)
3043                 continue;
3044 
3045             if (action->state == eStateStepping)
3046             {
3047                 Error error = SetupSoftwareSingleStepping(thread_sp);
3048                 if (error.Fail())
3049                     return error;
3050             }
3051         }
3052     }
3053 
3054     for (auto thread_sp : m_threads)
3055     {
3056         assert (thread_sp && "thread list should not contain NULL threads");
3057 
3058         const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
3059 
3060         if (action == nullptr)
3061         {
3062             if (log)
3063                 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64,
3064                     __FUNCTION__, GetID (), thread_sp->GetID ());
3065             continue;
3066         }
3067 
3068         if (log)
3069         {
3070             log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64,
3071                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
3072         }
3073 
3074         switch (action->state)
3075         {
3076         case eStateRunning:
3077         {
3078             // Run the thread, possibly feeding it the signal.
3079             const int signo = action->signal;
3080             RequestThreadResumeAsNeeded (thread_sp->GetID (),
3081                     [=](lldb::tid_t tid_to_resume, bool supress_signal)
3082                     {
3083                         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
3084                         // Pass this signal number on to the inferior to handle.
3085                         const auto resume_result = Resume (tid_to_resume, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
3086                         if (resume_result.Success())
3087                             SetState(eStateRunning, true);
3088                         return resume_result;
3089                     },
3090                     CoordinatorErrorHandler);
3091             break;
3092         }
3093 
3094         case eStateStepping:
3095         {
3096             // Request the step.
3097             const int signo = action->signal;
3098             RequestThreadResume (thread_sp->GetID (),
3099                     [=](lldb::tid_t tid_to_step, bool supress_signal)
3100                     {
3101                         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStepping ();
3102 
3103                         Error step_result;
3104                         if (software_single_step)
3105                             step_result = Resume (tid_to_step, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
3106                         else
3107                             step_result = SingleStep (tid_to_step,(signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
3108 
3109                         assert (step_result.Success() && "SingleStep() failed");
3110                         if (step_result.Success())
3111                             SetState(eStateStepping, true);
3112                         return step_result;
3113                     },
3114                     CoordinatorErrorHandler);
3115             stepping = true;
3116             break;
3117         }
3118 
3119         case eStateSuspended:
3120         case eStateStopped:
3121             // if we haven't chosen a deferred signal tid yet, use this one.
3122             if (deferred_signal_tid == LLDB_INVALID_THREAD_ID)
3123             {
3124                 deferred_signal_tid = thread_sp->GetID ();
3125                 deferred_signal_thread_sp = thread_sp;
3126                 deferred_signo = SIGSTOP;
3127             }
3128             break;
3129 
3130         default:
3131             return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64,
3132                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
3133         }
3134     }
3135 
3136     // If we had any thread stopping, then do a deferred notification of the chosen stop thread id and signal
3137     // after all other running threads have stopped.
3138     // If there is a stepping thread involved we'll be eventually stopped by SIGTRAP trace signal.
3139     if (deferred_signal_tid != LLDB_INVALID_THREAD_ID && !stepping)
3140         StopRunningThreadsWithSkipTID(deferred_signal_tid, deferred_signal_skip_tid);
3141 
3142     return Error();
3143 }
3144 
3145 Error
3146 NativeProcessLinux::Halt ()
3147 {
3148     Error error;
3149 
3150     if (kill (GetID (), SIGSTOP) != 0)
3151         error.SetErrorToErrno ();
3152 
3153     return error;
3154 }
3155 
3156 Error
3157 NativeProcessLinux::Detach ()
3158 {
3159     Error error;
3160 
3161     // Tell ptrace to detach from the process.
3162     if (GetID () != LLDB_INVALID_PROCESS_ID)
3163         error = Detach (GetID ());
3164 
3165     // Stop monitoring the inferior.
3166     m_monitor_up->Terminate();
3167 
3168     // No error.
3169     return error;
3170 }
3171 
3172 Error
3173 NativeProcessLinux::Signal (int signo)
3174 {
3175     Error error;
3176 
3177     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3178     if (log)
3179         log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64,
3180                 __FUNCTION__, signo,  GetUnixSignals ().GetSignalAsCString (signo), GetID ());
3181 
3182     if (kill(GetID(), signo))
3183         error.SetErrorToErrno();
3184 
3185     return error;
3186 }
3187 
3188 Error
3189 NativeProcessLinux::Interrupt ()
3190 {
3191     // Pick a running thread (or if none, a not-dead stopped thread) as
3192     // the chosen thread that will be the stop-reason thread.
3193     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3194 
3195     NativeThreadProtocolSP running_thread_sp;
3196     NativeThreadProtocolSP stopped_thread_sp;
3197 
3198     if (log)
3199         log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__);
3200 
3201     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
3202     Mutex::Locker locker (m_threads_mutex);
3203 
3204     for (auto thread_sp : m_threads)
3205     {
3206         // The thread shouldn't be null but lets just cover that here.
3207         if (!thread_sp)
3208             continue;
3209 
3210         // If we have a running or stepping thread, we'll call that the
3211         // target of the interrupt.
3212         const auto thread_state = thread_sp->GetState ();
3213         if (thread_state == eStateRunning ||
3214             thread_state == eStateStepping)
3215         {
3216             running_thread_sp = thread_sp;
3217             break;
3218         }
3219         else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true))
3220         {
3221             // Remember the first non-dead stopped thread.  We'll use that as a backup if there are no running threads.
3222             stopped_thread_sp = thread_sp;
3223         }
3224     }
3225 
3226     if (!running_thread_sp && !stopped_thread_sp)
3227     {
3228         Error error("found no running/stepping or live stopped threads as target for interrupt");
3229         if (log)
3230             log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ());
3231 
3232         return error;
3233     }
3234 
3235     NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp;
3236 
3237     if (log)
3238         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target",
3239                      __FUNCTION__,
3240                      GetID (),
3241                      running_thread_sp ? "running" : "stopped",
3242                      deferred_signal_thread_sp->GetID ());
3243 
3244     StopRunningThreads(deferred_signal_thread_sp->GetID());
3245 
3246     return Error();
3247 }
3248 
3249 Error
3250 NativeProcessLinux::Kill ()
3251 {
3252     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3253     if (log)
3254         log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ());
3255 
3256     Error error;
3257 
3258     switch (m_state)
3259     {
3260         case StateType::eStateInvalid:
3261         case StateType::eStateExited:
3262         case StateType::eStateCrashed:
3263         case StateType::eStateDetached:
3264         case StateType::eStateUnloaded:
3265             // Nothing to do - the process is already dead.
3266             if (log)
3267                 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state));
3268             return error;
3269 
3270         case StateType::eStateConnected:
3271         case StateType::eStateAttaching:
3272         case StateType::eStateLaunching:
3273         case StateType::eStateStopped:
3274         case StateType::eStateRunning:
3275         case StateType::eStateStepping:
3276         case StateType::eStateSuspended:
3277             // We can try to kill a process in these states.
3278             break;
3279     }
3280 
3281     if (kill (GetID (), SIGKILL) != 0)
3282     {
3283         error.SetErrorToErrno ();
3284         return error;
3285     }
3286 
3287     return error;
3288 }
3289 
3290 static Error
3291 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info)
3292 {
3293     memory_region_info.Clear();
3294 
3295     StringExtractor line_extractor (maps_line.c_str ());
3296 
3297     // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode   pathname
3298     // perms: rwxp   (letter is present if set, '-' if not, final character is p=private, s=shared).
3299 
3300     // Parse out the starting address
3301     lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0);
3302 
3303     // Parse out hyphen separating start and end address from range.
3304     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-'))
3305         return Error ("malformed /proc/{pid}/maps entry, missing dash between address range");
3306 
3307     // Parse out the ending address
3308     lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address);
3309 
3310     // Parse out the space after the address.
3311     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' '))
3312         return Error ("malformed /proc/{pid}/maps entry, missing space after range");
3313 
3314     // Save the range.
3315     memory_region_info.GetRange ().SetRangeBase (start_address);
3316     memory_region_info.GetRange ().SetRangeEnd (end_address);
3317 
3318     // Parse out each permission entry.
3319     if (line_extractor.GetBytesLeft () < 4)
3320         return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions");
3321 
3322     // Handle read permission.
3323     const char read_perm_char = line_extractor.GetChar ();
3324     if (read_perm_char == 'r')
3325         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes);
3326     else
3327     {
3328         assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" );
3329         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
3330     }
3331 
3332     // Handle write permission.
3333     const char write_perm_char = line_extractor.GetChar ();
3334     if (write_perm_char == 'w')
3335         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes);
3336     else
3337     {
3338         assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" );
3339         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
3340     }
3341 
3342     // Handle execute permission.
3343     const char exec_perm_char = line_extractor.GetChar ();
3344     if (exec_perm_char == 'x')
3345         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes);
3346     else
3347     {
3348         assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" );
3349         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
3350     }
3351 
3352     return Error ();
3353 }
3354 
3355 Error
3356 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info)
3357 {
3358     // FIXME review that the final memory region returned extends to the end of the virtual address space,
3359     // with no perms if it is not mapped.
3360 
3361     // Use an approach that reads memory regions from /proc/{pid}/maps.
3362     // Assume proc maps entries are in ascending order.
3363     // FIXME assert if we find differently.
3364     Mutex::Locker locker (m_mem_region_cache_mutex);
3365 
3366     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3367     Error error;
3368 
3369     if (m_supports_mem_region == LazyBool::eLazyBoolNo)
3370     {
3371         // We're done.
3372         error.SetErrorString ("unsupported");
3373         return error;
3374     }
3375 
3376     // If our cache is empty, pull the latest.  There should always be at least one memory region
3377     // if memory region handling is supported.
3378     if (m_mem_region_cache.empty ())
3379     {
3380         error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
3381              [&] (const std::string &line) -> bool
3382              {
3383                  MemoryRegionInfo info;
3384                  const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info);
3385                  if (parse_error.Success ())
3386                  {
3387                      m_mem_region_cache.push_back (info);
3388                      return true;
3389                  }
3390                  else
3391                  {
3392                      if (log)
3393                          log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ());
3394                      return false;
3395                  }
3396              });
3397 
3398         // If we had an error, we'll mark unsupported.
3399         if (error.Fail ())
3400         {
3401             m_supports_mem_region = LazyBool::eLazyBoolNo;
3402             return error;
3403         }
3404         else if (m_mem_region_cache.empty ())
3405         {
3406             // No entries after attempting to read them.  This shouldn't happen if /proc/{pid}/maps
3407             // is supported.  Assume we don't support map entries via procfs.
3408             if (log)
3409                 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__);
3410             m_supports_mem_region = LazyBool::eLazyBoolNo;
3411             error.SetErrorString ("not supported");
3412             return error;
3413         }
3414 
3415         if (log)
3416             log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ());
3417 
3418         // We support memory retrieval, remember that.
3419         m_supports_mem_region = LazyBool::eLazyBoolYes;
3420     }
3421     else
3422     {
3423         if (log)
3424             log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
3425     }
3426 
3427     lldb::addr_t prev_base_address = 0;
3428 
3429     // FIXME start by finding the last region that is <= target address using binary search.  Data is sorted.
3430     // There can be a ton of regions on pthreads apps with lots of threads.
3431     for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it)
3432     {
3433         MemoryRegionInfo &proc_entry_info = *it;
3434 
3435         // Sanity check assumption that /proc/{pid}/maps entries are ascending.
3436         assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected");
3437         prev_base_address = proc_entry_info.GetRange ().GetRangeBase ();
3438 
3439         // If the target address comes before this entry, indicate distance to next region.
3440         if (load_addr < proc_entry_info.GetRange ().GetRangeBase ())
3441         {
3442             range_info.GetRange ().SetRangeBase (load_addr);
3443             range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr);
3444             range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
3445             range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
3446             range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
3447 
3448             return error;
3449         }
3450         else if (proc_entry_info.GetRange ().Contains (load_addr))
3451         {
3452             // The target address is within the memory region we're processing here.
3453             range_info = proc_entry_info;
3454             return error;
3455         }
3456 
3457         // The target memory address comes somewhere after the region we just parsed.
3458     }
3459 
3460     // If we made it here, we didn't find an entry that contained the given address.
3461     error.SetErrorString ("address comes after final region");
3462 
3463     if (log)
3464         log->Printf ("NativeProcessLinux::%s failed to find map entry for address 0x%" PRIx64 ": %s", __FUNCTION__, load_addr, error.AsCString ());
3465 
3466     return error;
3467 }
3468 
3469 void
3470 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId)
3471 {
3472     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3473     if (log)
3474         log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId);
3475 
3476     {
3477         Mutex::Locker locker (m_mem_region_cache_mutex);
3478         if (log)
3479             log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
3480         m_mem_region_cache.clear ();
3481     }
3482 }
3483 
3484 Error
3485 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, lldb::addr_t &addr)
3486 {
3487     // FIXME implementing this requires the equivalent of
3488     // InferiorCallPOSIX::InferiorCallMmap, which depends on
3489     // functional ThreadPlans working with Native*Protocol.
3490 #if 1
3491     return Error ("not implemented yet");
3492 #else
3493     addr = LLDB_INVALID_ADDRESS;
3494 
3495     unsigned prot = 0;
3496     if (permissions & lldb::ePermissionsReadable)
3497         prot |= eMmapProtRead;
3498     if (permissions & lldb::ePermissionsWritable)
3499         prot |= eMmapProtWrite;
3500     if (permissions & lldb::ePermissionsExecutable)
3501         prot |= eMmapProtExec;
3502 
3503     // TODO implement this directly in NativeProcessLinux
3504     // (and lift to NativeProcessPOSIX if/when that class is
3505     // refactored out).
3506     if (InferiorCallMmap(this, addr, 0, size, prot,
3507                          eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
3508         m_addr_to_mmap_size[addr] = size;
3509         return Error ();
3510     } else {
3511         addr = LLDB_INVALID_ADDRESS;
3512         return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions));
3513     }
3514 #endif
3515 }
3516 
3517 Error
3518 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr)
3519 {
3520     // FIXME see comments in AllocateMemory - required lower-level
3521     // bits not in place yet (ThreadPlans)
3522     return Error ("not implemented");
3523 }
3524 
3525 lldb::addr_t
3526 NativeProcessLinux::GetSharedLibraryInfoAddress ()
3527 {
3528 #if 1
3529     // punt on this for now
3530     return LLDB_INVALID_ADDRESS;
3531 #else
3532     // Return the image info address for the exe module
3533 #if 1
3534     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3535 
3536     ModuleSP module_sp;
3537     Error error = GetExeModuleSP (module_sp);
3538     if (error.Fail ())
3539     {
3540          if (log)
3541             log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ());
3542         return LLDB_INVALID_ADDRESS;
3543     }
3544 
3545     if (module_sp == nullptr)
3546     {
3547          if (log)
3548             log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__);
3549          return LLDB_INVALID_ADDRESS;
3550     }
3551 
3552     ObjectFileSP object_file_sp = module_sp->GetObjectFile ();
3553     if (object_file_sp == nullptr)
3554     {
3555          if (log)
3556             log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__);
3557          return LLDB_INVALID_ADDRESS;
3558     }
3559 
3560     return obj_file_sp->GetImageInfoAddress();
3561 #else
3562     Target *target = &GetTarget();
3563     ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile();
3564     Address addr = obj_file->GetImageInfoAddress(target);
3565 
3566     if (addr.IsValid())
3567         return addr.GetLoadAddress(target);
3568     return LLDB_INVALID_ADDRESS;
3569 #endif
3570 #endif // punt on this for now
3571 }
3572 
3573 size_t
3574 NativeProcessLinux::UpdateThreads ()
3575 {
3576     // The NativeProcessLinux monitoring threads are always up to date
3577     // with respect to thread state and they keep the thread list
3578     // populated properly. All this method needs to do is return the
3579     // thread count.
3580     Mutex::Locker locker (m_threads_mutex);
3581     return m_threads.size ();
3582 }
3583 
3584 bool
3585 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const
3586 {
3587     arch = m_arch;
3588     return true;
3589 }
3590 
3591 Error
3592 NativeProcessLinux::GetSoftwareBreakpointPCOffset (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size)
3593 {
3594     // FIXME put this behind a breakpoint protocol class that can be
3595     // set per architecture.  Need ARM, MIPS support here.
3596     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
3597     static const uint8_t g_i386_opcode [] = { 0xCC };
3598     static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d };
3599 
3600     switch (m_arch.GetMachine ())
3601     {
3602         case llvm::Triple::aarch64:
3603             actual_opcode_size = static_cast<uint32_t> (sizeof(g_aarch64_opcode));
3604             return Error ();
3605 
3606         case llvm::Triple::arm:
3607             actual_opcode_size = 0; // On arm the PC don't get updated for breakpoint hits
3608             return Error ();
3609 
3610         case llvm::Triple::x86:
3611         case llvm::Triple::x86_64:
3612             actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode));
3613             return Error ();
3614 
3615         case llvm::Triple::mips64:
3616         case llvm::Triple::mips64el:
3617             actual_opcode_size = static_cast<uint32_t> (sizeof(g_mips64_opcode));
3618             return Error ();
3619 
3620         default:
3621             assert(false && "CPU type not supported!");
3622             return Error ("CPU type not supported");
3623     }
3624 }
3625 
3626 Error
3627 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware)
3628 {
3629     if (hardware)
3630         return Error ("NativeProcessLinux does not support hardware breakpoints");
3631     else
3632         return SetSoftwareBreakpoint (addr, size);
3633 }
3634 
3635 Error
3636 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint,
3637                                                      size_t &actual_opcode_size,
3638                                                      const uint8_t *&trap_opcode_bytes)
3639 {
3640     // FIXME put this behind a breakpoint protocol class that can be set per
3641     // architecture.  Need MIPS support here.
3642     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
3643     // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
3644     // linux kernel does otherwise.
3645     static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 };
3646     static const uint8_t g_i386_opcode [] = { 0xCC };
3647     static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d };
3648     static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 };
3649     static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde };
3650 
3651     switch (m_arch.GetMachine ())
3652     {
3653     case llvm::Triple::aarch64:
3654         trap_opcode_bytes = g_aarch64_opcode;
3655         actual_opcode_size = sizeof(g_aarch64_opcode);
3656         return Error ();
3657 
3658     case llvm::Triple::arm:
3659         switch (trap_opcode_size_hint)
3660         {
3661         case 2:
3662             trap_opcode_bytes = g_thumb_breakpoint_opcode;
3663             actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
3664             return Error ();
3665         case 4:
3666             trap_opcode_bytes = g_arm_breakpoint_opcode;
3667             actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
3668             return Error ();
3669         default:
3670             assert(false && "Unrecognised trap opcode size hint!");
3671             return Error ("Unrecognised trap opcode size hint!");
3672         }
3673 
3674     case llvm::Triple::x86:
3675     case llvm::Triple::x86_64:
3676         trap_opcode_bytes = g_i386_opcode;
3677         actual_opcode_size = sizeof(g_i386_opcode);
3678         return Error ();
3679 
3680     case llvm::Triple::mips64:
3681         trap_opcode_bytes = g_mips64_opcode;
3682         actual_opcode_size = sizeof(g_mips64_opcode);
3683         return Error ();
3684 
3685     case llvm::Triple::mips64el:
3686         trap_opcode_bytes = g_mips64el_opcode;
3687         actual_opcode_size = sizeof(g_mips64el_opcode);
3688         return Error ();
3689 
3690     default:
3691         assert(false && "CPU type not supported!");
3692         return Error ("CPU type not supported");
3693     }
3694 }
3695 
3696 #if 0
3697 ProcessMessage::CrashReason
3698 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
3699 {
3700     ProcessMessage::CrashReason reason;
3701     assert(info->si_signo == SIGSEGV);
3702 
3703     reason = ProcessMessage::eInvalidCrashReason;
3704 
3705     switch (info->si_code)
3706     {
3707     default:
3708         assert(false && "unexpected si_code for SIGSEGV");
3709         break;
3710     case SI_KERNEL:
3711         // Linux will occasionally send spurious SI_KERNEL codes.
3712         // (this is poorly documented in sigaction)
3713         // One way to get this is via unaligned SIMD loads.
3714         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
3715         break;
3716     case SEGV_MAPERR:
3717         reason = ProcessMessage::eInvalidAddress;
3718         break;
3719     case SEGV_ACCERR:
3720         reason = ProcessMessage::ePrivilegedAddress;
3721         break;
3722     }
3723 
3724     return reason;
3725 }
3726 #endif
3727 
3728 
3729 #if 0
3730 ProcessMessage::CrashReason
3731 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
3732 {
3733     ProcessMessage::CrashReason reason;
3734     assert(info->si_signo == SIGILL);
3735 
3736     reason = ProcessMessage::eInvalidCrashReason;
3737 
3738     switch (info->si_code)
3739     {
3740     default:
3741         assert(false && "unexpected si_code for SIGILL");
3742         break;
3743     case ILL_ILLOPC:
3744         reason = ProcessMessage::eIllegalOpcode;
3745         break;
3746     case ILL_ILLOPN:
3747         reason = ProcessMessage::eIllegalOperand;
3748         break;
3749     case ILL_ILLADR:
3750         reason = ProcessMessage::eIllegalAddressingMode;
3751         break;
3752     case ILL_ILLTRP:
3753         reason = ProcessMessage::eIllegalTrap;
3754         break;
3755     case ILL_PRVOPC:
3756         reason = ProcessMessage::ePrivilegedOpcode;
3757         break;
3758     case ILL_PRVREG:
3759         reason = ProcessMessage::ePrivilegedRegister;
3760         break;
3761     case ILL_COPROC:
3762         reason = ProcessMessage::eCoprocessorError;
3763         break;
3764     case ILL_BADSTK:
3765         reason = ProcessMessage::eInternalStackError;
3766         break;
3767     }
3768 
3769     return reason;
3770 }
3771 #endif
3772 
3773 #if 0
3774 ProcessMessage::CrashReason
3775 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
3776 {
3777     ProcessMessage::CrashReason reason;
3778     assert(info->si_signo == SIGFPE);
3779 
3780     reason = ProcessMessage::eInvalidCrashReason;
3781 
3782     switch (info->si_code)
3783     {
3784     default:
3785         assert(false && "unexpected si_code for SIGFPE");
3786         break;
3787     case FPE_INTDIV:
3788         reason = ProcessMessage::eIntegerDivideByZero;
3789         break;
3790     case FPE_INTOVF:
3791         reason = ProcessMessage::eIntegerOverflow;
3792         break;
3793     case FPE_FLTDIV:
3794         reason = ProcessMessage::eFloatDivideByZero;
3795         break;
3796     case FPE_FLTOVF:
3797         reason = ProcessMessage::eFloatOverflow;
3798         break;
3799     case FPE_FLTUND:
3800         reason = ProcessMessage::eFloatUnderflow;
3801         break;
3802     case FPE_FLTRES:
3803         reason = ProcessMessage::eFloatInexactResult;
3804         break;
3805     case FPE_FLTINV:
3806         reason = ProcessMessage::eFloatInvalidOperation;
3807         break;
3808     case FPE_FLTSUB:
3809         reason = ProcessMessage::eFloatSubscriptRange;
3810         break;
3811     }
3812 
3813     return reason;
3814 }
3815 #endif
3816 
3817 #if 0
3818 ProcessMessage::CrashReason
3819 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
3820 {
3821     ProcessMessage::CrashReason reason;
3822     assert(info->si_signo == SIGBUS);
3823 
3824     reason = ProcessMessage::eInvalidCrashReason;
3825 
3826     switch (info->si_code)
3827     {
3828     default:
3829         assert(false && "unexpected si_code for SIGBUS");
3830         break;
3831     case BUS_ADRALN:
3832         reason = ProcessMessage::eIllegalAlignment;
3833         break;
3834     case BUS_ADRERR:
3835         reason = ProcessMessage::eIllegalAddress;
3836         break;
3837     case BUS_OBJERR:
3838         reason = ProcessMessage::eHardwareError;
3839         break;
3840     }
3841 
3842     return reason;
3843 }
3844 #endif
3845 
3846 Error
3847 NativeProcessLinux::SetWatchpoint (lldb::addr_t addr, size_t size, uint32_t watch_flags, bool hardware)
3848 {
3849     // The base SetWatchpoint will end up executing monitor operations. Let's lock the monitor
3850     // for it.
3851     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
3852     return NativeProcessProtocol::SetWatchpoint(addr, size, watch_flags, hardware);
3853 }
3854 
3855 Error
3856 NativeProcessLinux::RemoveWatchpoint (lldb::addr_t addr)
3857 {
3858     // The base RemoveWatchpoint will end up executing monitor operations. Let's lock the monitor
3859     // for it.
3860     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
3861     return NativeProcessProtocol::RemoveWatchpoint(addr);
3862 }
3863 
3864 Error
3865 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
3866 {
3867     ReadOperation op(addr, buf, size, bytes_read);
3868     m_monitor_up->DoOperation(&op);
3869     return op.GetError ();
3870 }
3871 
3872 Error
3873 NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
3874 {
3875     Error error = ReadMemory(addr, buf, size, bytes_read);
3876     if (error.Fail()) return error;
3877     return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size);
3878 }
3879 
3880 Error
3881 NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, size_t size, size_t &bytes_written)
3882 {
3883     WriteOperation op(addr, buf, size, bytes_written);
3884     m_monitor_up->DoOperation(&op);
3885     return op.GetError ();
3886 }
3887 
3888 Error
3889 NativeProcessLinux::ReadRegisterValue(lldb::tid_t tid, uint32_t offset, const char* reg_name,
3890                                       uint32_t size, RegisterValue &value)
3891 {
3892     ReadRegOperation op(tid, offset, reg_name, value);
3893     m_monitor_up->DoOperation(&op);
3894     return op.GetError();
3895 }
3896 
3897 Error
3898 NativeProcessLinux::WriteRegisterValue(lldb::tid_t tid, unsigned offset,
3899                                    const char* reg_name, const RegisterValue &value)
3900 {
3901     WriteRegOperation op(tid, offset, reg_name, value);
3902     m_monitor_up->DoOperation(&op);
3903     return op.GetError();
3904 }
3905 
3906 Error
3907 NativeProcessLinux::ReadGPR(lldb::tid_t tid, void *buf, size_t buf_size)
3908 {
3909     ReadGPROperation op(tid, buf, buf_size);
3910     m_monitor_up->DoOperation(&op);
3911     return op.GetError();
3912 }
3913 
3914 Error
3915 NativeProcessLinux::ReadFPR(lldb::tid_t tid, void *buf, size_t buf_size)
3916 {
3917     ReadFPROperation op(tid, buf, buf_size);
3918     m_monitor_up->DoOperation(&op);
3919     return op.GetError();
3920 }
3921 
3922 Error
3923 NativeProcessLinux::ReadRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
3924 {
3925     ReadRegisterSetOperation op(tid, buf, buf_size, regset);
3926     m_monitor_up->DoOperation(&op);
3927     return op.GetError();
3928 }
3929 
3930 Error
3931 NativeProcessLinux::WriteGPR(lldb::tid_t tid, void *buf, size_t buf_size)
3932 {
3933     WriteGPROperation op(tid, buf, buf_size);
3934     m_monitor_up->DoOperation(&op);
3935     return op.GetError();
3936 }
3937 
3938 Error
3939 NativeProcessLinux::WriteFPR(lldb::tid_t tid, void *buf, size_t buf_size)
3940 {
3941     WriteFPROperation op(tid, buf, buf_size);
3942     m_monitor_up->DoOperation(&op);
3943     return op.GetError();
3944 }
3945 
3946 Error
3947 NativeProcessLinux::WriteRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
3948 {
3949     WriteRegisterSetOperation op(tid, buf, buf_size, regset);
3950     m_monitor_up->DoOperation(&op);
3951     return op.GetError();
3952 }
3953 
3954 Error
3955 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo)
3956 {
3957     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3958 
3959     if (log)
3960         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " with signal %s", __FUNCTION__, tid,
3961                                  GetUnixSignals().GetSignalAsCString (signo));
3962     ResumeOperation op (tid, signo);
3963     m_monitor_up->DoOperation (&op);
3964     if (log)
3965         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " result = %s", __FUNCTION__, tid, op.GetError().Success() ? "true" : "false");
3966     return op.GetError();
3967 }
3968 
3969 Error
3970 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo)
3971 {
3972     SingleStepOperation op(tid, signo);
3973     m_monitor_up->DoOperation(&op);
3974     return op.GetError();
3975 }
3976 
3977 Error
3978 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo)
3979 {
3980     SiginfoOperation op(tid, siginfo);
3981     m_monitor_up->DoOperation(&op);
3982     return op.GetError();
3983 }
3984 
3985 Error
3986 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message)
3987 {
3988     EventMessageOperation op(tid, message);
3989     m_monitor_up->DoOperation(&op);
3990     return op.GetError();
3991 }
3992 
3993 Error
3994 NativeProcessLinux::Detach(lldb::tid_t tid)
3995 {
3996     if (tid == LLDB_INVALID_THREAD_ID)
3997         return Error();
3998 
3999     DetachOperation op(tid);
4000     m_monitor_up->DoOperation(&op);
4001     return op.GetError();
4002 }
4003 
4004 bool
4005 NativeProcessLinux::DupDescriptor(const char *path, int fd, int flags)
4006 {
4007     int target_fd = open(path, flags, 0666);
4008 
4009     if (target_fd == -1)
4010         return false;
4011 
4012     if (dup2(target_fd, fd) == -1)
4013         return false;
4014 
4015     return (close(target_fd) == -1) ? false : true;
4016 }
4017 
4018 void
4019 NativeProcessLinux::StartMonitorThread(const InitialOperation &initial_operation, Error &error)
4020 {
4021     m_monitor_up.reset(new Monitor(initial_operation, this));
4022     error = m_monitor_up->Initialize();
4023     if (error.Fail()) {
4024         m_monitor_up.reset();
4025     }
4026 }
4027 
4028 bool
4029 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id)
4030 {
4031     for (auto thread_sp : m_threads)
4032     {
4033         assert (thread_sp && "thread list should not contain NULL threads");
4034         if (thread_sp->GetID () == thread_id)
4035         {
4036             // We have this thread.
4037             return true;
4038         }
4039     }
4040 
4041     // We don't have this thread.
4042     return false;
4043 }
4044 
4045 NativeThreadProtocolSP
4046 NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id)
4047 {
4048     // CONSIDER organize threads by map - we can do better than linear.
4049     for (auto thread_sp : m_threads)
4050     {
4051         if (thread_sp->GetID () == thread_id)
4052             return thread_sp;
4053     }
4054 
4055     // We don't have this thread.
4056     return NativeThreadProtocolSP ();
4057 }
4058 
4059 bool
4060 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id)
4061 {
4062     Mutex::Locker locker (m_threads_mutex);
4063     for (auto it = m_threads.begin (); it != m_threads.end (); ++it)
4064     {
4065         if (*it && ((*it)->GetID () == thread_id))
4066         {
4067             m_threads.erase (it);
4068             return true;
4069         }
4070     }
4071 
4072     // Didn't find it.
4073     return false;
4074 }
4075 
4076 NativeThreadProtocolSP
4077 NativeProcessLinux::AddThread (lldb::tid_t thread_id)
4078 {
4079     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
4080 
4081     Mutex::Locker locker (m_threads_mutex);
4082 
4083     if (log)
4084     {
4085         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64,
4086                 __FUNCTION__,
4087                 GetID (),
4088                 thread_id);
4089     }
4090 
4091     assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists");
4092 
4093     // If this is the first thread, save it as the current thread
4094     if (m_threads.empty ())
4095         SetCurrentThreadID (thread_id);
4096 
4097     NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id));
4098     m_threads.push_back (thread_sp);
4099 
4100     return thread_sp;
4101 }
4102 
4103 Error
4104 NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp)
4105 {
4106     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS));
4107 
4108     Error error;
4109 
4110     // Get a linux thread pointer.
4111     if (!thread_sp)
4112     {
4113         error.SetErrorString ("null thread_sp");
4114         if (log)
4115             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
4116         return error;
4117     }
4118     std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp);
4119 
4120     // Find out the size of a breakpoint (might depend on where we are in the code).
4121     NativeRegisterContextSP context_sp = linux_thread_sp->GetRegisterContext ();
4122     if (!context_sp)
4123     {
4124         error.SetErrorString ("cannot get a NativeRegisterContext for the thread");
4125         if (log)
4126             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
4127         return error;
4128     }
4129 
4130     uint32_t breakpoint_size = 0;
4131     error = GetSoftwareBreakpointPCOffset (context_sp, breakpoint_size);
4132     if (error.Fail ())
4133     {
4134         if (log)
4135             log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ());
4136         return error;
4137     }
4138     else
4139     {
4140         if (log)
4141             log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size);
4142     }
4143 
4144     // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size.
4145     const lldb::addr_t initial_pc_addr = context_sp->GetPC ();
4146     lldb::addr_t breakpoint_addr = initial_pc_addr;
4147     if (breakpoint_size > 0)
4148     {
4149         // Do not allow breakpoint probe to wrap around.
4150         if (breakpoint_addr >= breakpoint_size)
4151             breakpoint_addr -= breakpoint_size;
4152     }
4153 
4154     // Check if we stopped because of a breakpoint.
4155     NativeBreakpointSP breakpoint_sp;
4156     error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp);
4157     if (!error.Success () || !breakpoint_sp)
4158     {
4159         // We didn't find one at a software probe location.  Nothing to do.
4160         if (log)
4161             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr);
4162         return Error ();
4163     }
4164 
4165     // If the breakpoint is not a software breakpoint, nothing to do.
4166     if (!breakpoint_sp->IsSoftwareBreakpoint ())
4167     {
4168         if (log)
4169             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr);
4170         return Error ();
4171     }
4172 
4173     //
4174     // We have a software breakpoint and need to adjust the PC.
4175     //
4176 
4177     // Sanity check.
4178     if (breakpoint_size == 0)
4179     {
4180         // Nothing to do!  How did we get here?
4181         if (log)
4182             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr);
4183         return Error ();
4184     }
4185 
4186     // Change the program counter.
4187     if (log)
4188         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_sp->GetID (), initial_pc_addr, breakpoint_addr);
4189 
4190     error = context_sp->SetPC (breakpoint_addr);
4191     if (error.Fail ())
4192     {
4193         if (log)
4194             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_sp->GetID (), error.AsCString ());
4195         return error;
4196     }
4197 
4198     return error;
4199 }
4200 
4201 void
4202 NativeProcessLinux::NotifyThreadCreateStopped (lldb::tid_t tid)
4203 {
4204     const bool is_stopped = true;
4205     NotifyThreadCreate (tid, is_stopped, CoordinatorErrorHandler);
4206 }
4207 
4208 void
4209 NativeProcessLinux::NotifyThreadDeath (lldb::tid_t tid)
4210 {
4211     NotifyThreadDeath (tid, CoordinatorErrorHandler);
4212 }
4213 
4214 void
4215 NativeProcessLinux::NotifyThreadStop (lldb::tid_t tid)
4216 {
4217     NotifyThreadStop (tid, false, CoordinatorErrorHandler);
4218 }
4219 
4220 void
4221 NativeProcessLinux::StopRunningThreads(lldb::tid_t trigerring_tid)
4222 {
4223     Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
4224     if (log)
4225         log->Printf("NativeProcessLinux::%s tid %" PRIu64, __FUNCTION__, trigerring_tid);
4226 
4227     const lldb::pid_t pid = GetID ();
4228     StopRunningThreads(trigerring_tid,
4229             [=](lldb::tid_t request_stop_tid) { return RequestThreadStop(pid, request_stop_tid); },
4230             CoordinatorErrorHandler);
4231 }
4232 
4233 void
4234 NativeProcessLinux::StopRunningThreadsWithSkipTID(lldb::tid_t deferred_signal_tid,
4235                                                   lldb::tid_t skip_stop_request_tid)
4236 {
4237     Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
4238     if (log)
4239         log->Printf("NativeProcessLinux::%s deferred_signal_tid %" PRIu64 ", skip_stop_request_tid %" PRIu64, __FUNCTION__, deferred_signal_tid, skip_stop_request_tid);
4240 
4241     const lldb::pid_t pid = GetID ();
4242     StopRunningThreadsWithSkipTID(deferred_signal_tid,
4243             skip_stop_request_tid != LLDB_INVALID_THREAD_ID ? NativeProcessLinux::ThreadIDSet {skip_stop_request_tid} : NativeProcessLinux::ThreadIDSet (),
4244             [=](lldb::tid_t request_stop_tid) { return RequestThreadStop(pid, request_stop_tid); },
4245             CoordinatorErrorHandler);
4246 }
4247 
4248 Error
4249 NativeProcessLinux::RequestThreadStop (const lldb::pid_t pid, const lldb::tid_t tid)
4250 {
4251     Log* log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
4252     if (log)
4253         log->Printf ("NativeProcessLinux::%s requesting thread stop(pid: %" PRIu64 ", tid: %" PRIu64 ")", __FUNCTION__, pid, tid);
4254 
4255     Error err;
4256     errno = 0;
4257     if (::tgkill (pid, tid, SIGSTOP) != 0)
4258     {
4259         err.SetErrorToErrno ();
4260         if (log)
4261             log->Printf ("NativeProcessLinux::%s tgkill(%" PRIu64 ", %" PRIu64 ", SIGSTOP) failed: %s", __FUNCTION__, pid, tid, err.AsCString ());
4262     }
4263 
4264     return err;
4265 }
4266 
4267 Error
4268 NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec)
4269 {
4270     char maps_file_name[32];
4271     snprintf(maps_file_name, sizeof(maps_file_name), "/proc/%" PRIu64 "/maps", GetID());
4272 
4273     FileSpec maps_file_spec(maps_file_name, false);
4274     if (!maps_file_spec.Exists()) {
4275         file_spec.Clear();
4276         return Error("/proc/%" PRIu64 "/maps file doesn't exists!", GetID());
4277     }
4278 
4279     FileSpec module_file_spec(module_path, true);
4280 
4281     std::ifstream maps_file(maps_file_name);
4282     std::string maps_data_str((std::istreambuf_iterator<char>(maps_file)), std::istreambuf_iterator<char>());
4283     StringRef maps_data(maps_data_str.c_str());
4284 
4285     while (!maps_data.empty())
4286     {
4287         StringRef maps_row;
4288         std::tie(maps_row, maps_data) = maps_data.split('\n');
4289 
4290         SmallVector<StringRef, 16> maps_columns;
4291         maps_row.split(maps_columns, StringRef(" "), -1, false);
4292 
4293         if (maps_columns.size() >= 6)
4294         {
4295             file_spec.SetFile(maps_columns[5].str().c_str(), false);
4296             if (file_spec.GetFilename() == module_file_spec.GetFilename())
4297                 return Error();
4298         }
4299     }
4300 
4301     file_spec.Clear();
4302     return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
4303                  module_file_spec.GetFilename().AsCString(), GetID());
4304 }
4305 
4306 void
4307 NativeProcessLinux::DoResume(
4308         lldb::tid_t tid,
4309         ResumeThreadFunction request_thread_resume_function,
4310         ErrorFunction error_function,
4311         bool error_when_already_running)
4312 {
4313     // Ensure we know about the thread.
4314     auto find_it = m_tid_map.find (tid);
4315     if (find_it == m_tid_map.end ())
4316     {
4317         // We don't know about this thread.  This is an error condition.
4318         std::ostringstream error_message;
4319         error_message << "error: tid " << tid << " asked to resume but tid is unknown";
4320         error_function (error_message.str ());
4321         return;
4322     }
4323     auto& context = find_it->second;
4324     // Tell the thread to resume if we don't already think it is running.
4325     const bool is_stopped = context.m_state == ThreadState::Stopped;
4326     if (!is_stopped)
4327     {
4328         // It's not an error, just a log, if the error_when_already_running flag is not set.
4329         // This covers cases where, for instance, we're just trying to resume all threads
4330         // from the user side.
4331         if (!error_when_already_running)
4332         {
4333             TSCLog ("NativeProcessLinux::%s tid %" PRIu64 " optional resume skipped since it is already running",
4334                              __FUNCTION__,
4335                              tid);
4336         }
4337         else
4338         {
4339             // Skip the resume call - we have tracked it to be running.  And we unconditionally
4340             // expected to resume this thread.  Flag this as an error.
4341             std::ostringstream error_message;
4342             error_message << "error: tid " << tid << " asked to resume but we think it is already running";
4343             error_function (error_message.str ());
4344         }
4345 
4346         // Error or not, we're done.
4347         return;
4348     }
4349 
4350     // Before we do the resume below, first check if we have a pending
4351     // stop notification this is currently or was previously waiting for
4352     // this thread to stop.  This is potentially a buggy situation since
4353     // we're ostensibly waiting for threads to stop before we send out the
4354     // pending notification, and here we are resuming one before we send
4355     // out the pending stop notification.
4356     if (m_pending_notification_up)
4357     {
4358         if (m_pending_notification_up->wait_for_stop_tids.count (tid) > 0)
4359         {
4360             TSCLog ("NativeProcessLinux::%s about to resume tid %" PRIu64 " per explicit request but we have a pending stop notification (tid %" PRIu64 ") that is actively waiting for this thread to stop. Valid sequence of events?", __FUNCTION__, tid, m_pending_notification_up->triggering_tid);
4361         }
4362         else if (m_pending_notification_up->original_wait_for_stop_tids.count (tid) > 0)
4363         {
4364             TSCLog ("NativeProcessLinux::%s about to resume tid %" PRIu64 " per explicit request but we have a pending stop notification (tid %" PRIu64 ") that hasn't fired yet and this is one of the threads we had been waiting on (and already marked satisfied for this tid). Valid sequence of events?", __FUNCTION__, tid, m_pending_notification_up->triggering_tid);
4365             for (auto tid : m_pending_notification_up->wait_for_stop_tids)
4366             {
4367                 TSCLog ("NativeProcessLinux::%s tid %" PRIu64 " deferred stop notification still waiting on tid  %" PRIu64,
4368                                  __FUNCTION__,
4369                                  m_pending_notification_up->triggering_tid,
4370                                  tid);
4371             }
4372         }
4373     }
4374 
4375     // Request a resume.  We expect this to be synchronous and the system
4376     // to reflect it is running after this completes.
4377     const auto error = request_thread_resume_function (tid, false);
4378     if (error.Success ())
4379     {
4380         // Now mark it is running.
4381         context.m_state = ThreadState::Running;
4382         context.m_request_resume_function = request_thread_resume_function;
4383     }
4384     else
4385     {
4386         TSCLog ("NativeProcessLinux::%s failed to resume thread tid  %" PRIu64 ": %s",
4387                          __FUNCTION__, tid, error.AsCString ());
4388     }
4389 
4390     return;
4391 }
4392 
4393 //===----------------------------------------------------------------------===//
4394 
4395 void
4396 NativeProcessLinux::StopThreads(const lldb::tid_t triggering_tid,
4397                                               const ThreadIDSet &wait_for_stop_tids,
4398                                               const StopThreadFunction &request_thread_stop_function,
4399                                               const ErrorFunction &error_function)
4400 {
4401     std::lock_guard<std::mutex> lock(m_event_mutex);
4402 
4403     if (m_log_event_processing)
4404     {
4405         TSCLog ("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ", wait_for_stop_tids.size(): %zd)",
4406                 __FUNCTION__, triggering_tid, wait_for_stop_tids.size());
4407     }
4408 
4409     DoStopThreads(PendingNotificationUP(new PendingNotification(
4410                 triggering_tid, wait_for_stop_tids, request_thread_stop_function, error_function)));
4411 
4412     if (m_log_event_processing)
4413     {
4414         TSCLog ("NativeProcessLinux::%s event processing done", __FUNCTION__);
4415     }
4416 }
4417 
4418 void
4419 NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid,
4420                                                      const StopThreadFunction &request_thread_stop_function,
4421                                                      const ErrorFunction &error_function)
4422 {
4423     std::lock_guard<std::mutex> lock(m_event_mutex);
4424 
4425     if (m_log_event_processing)
4426     {
4427         TSCLog ("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ")",
4428                 __FUNCTION__, triggering_tid);
4429     }
4430 
4431     DoStopThreads(PendingNotificationUP(new PendingNotification(
4432                 triggering_tid,
4433                 request_thread_stop_function,
4434                 error_function)));
4435 
4436     if (m_log_event_processing)
4437     {
4438         TSCLog ("NativeProcessLinux::%s event processing done", __FUNCTION__);
4439     }
4440 }
4441 
4442 void
4443 NativeProcessLinux::StopRunningThreadsWithSkipTID(lldb::tid_t triggering_tid,
4444                                                                  const ThreadIDSet &skip_stop_request_tids,
4445                                                                  const StopThreadFunction &request_thread_stop_function,
4446                                                                  const ErrorFunction &error_function)
4447 {
4448     std::lock_guard<std::mutex> lock(m_event_mutex);
4449 
4450     if (m_log_event_processing)
4451     {
4452         TSCLog ("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ", skip_stop_request_tids.size(): %zd)",
4453                 __FUNCTION__, triggering_tid, skip_stop_request_tids.size());
4454     }
4455 
4456     DoStopThreads(PendingNotificationUP(new PendingNotification(
4457                 triggering_tid,
4458                 request_thread_stop_function,
4459                 skip_stop_request_tids,
4460                 error_function)));
4461 
4462     if (m_log_event_processing)
4463     {
4464         TSCLog ("NativeProcessLinux::%s event processing done", __FUNCTION__);
4465     }
4466 }
4467 
4468 void
4469 NativeProcessLinux::SignalIfRequirementsSatisfied()
4470 {
4471     if (m_pending_notification_up && m_pending_notification_up->wait_for_stop_tids.empty ())
4472     {
4473         SetCurrentThreadID(m_pending_notification_up->triggering_tid);
4474         SetState(StateType::eStateStopped, true);
4475         m_pending_notification_up.reset();
4476     }
4477 }
4478 
4479 bool
4480 NativeProcessLinux::RequestStopOnAllSpecifiedThreads()
4481 {
4482     // Request a stop for all the thread stops that need to be stopped
4483     // and are not already known to be stopped.  Keep a list of all the
4484     // threads from which we still need to hear a stop reply.
4485 
4486     ThreadIDSet sent_tids;
4487     for (auto tid : m_pending_notification_up->wait_for_stop_tids)
4488     {
4489         // Validate we know about all tids for which we must first receive a stop before
4490         // triggering the deferred stop notification.
4491         auto find_it = m_tid_map.find (tid);
4492         if (find_it == m_tid_map.end ())
4493         {
4494             // This is an error.  We shouldn't be asking for waiting pids that aren't known.
4495             // NOTE: we may be stripping out the specification of wait tids and handle this
4496             // automatically, in which case this state can never occur.
4497             std::ostringstream error_message;
4498             error_message << "error: deferred notification for tid " << m_pending_notification_up->triggering_tid << " specified an unknown/untracked pending stop tid " << m_pending_notification_up->triggering_tid;
4499             m_pending_notification_up->error_function (error_message.str ());
4500 
4501             // Bail out here.
4502             return false;
4503         }
4504 
4505         // If the pending stop thread is currently running, we need to send it a stop request.
4506         auto& context = find_it->second;
4507         if (context.m_state == ThreadState::Running)
4508         {
4509             RequestThreadStop (tid, context);
4510             sent_tids.insert (tid);
4511         }
4512     }
4513     // We only need to wait for the sent_tids - so swap our wait set
4514     // to the sent tids.  The rest are already stopped and we won't
4515     // be receiving stop notifications for them.
4516     m_pending_notification_up->wait_for_stop_tids.swap (sent_tids);
4517 
4518     // Succeeded, keep running.
4519     return true;
4520 }
4521 
4522 void
4523 NativeProcessLinux::RequestStopOnAllRunningThreads()
4524 {
4525     // Request a stop for all the thread stops that need to be stopped
4526     // and are not already known to be stopped.  Keep a list of all the
4527     // threads from which we still need to hear a stop reply.
4528 
4529     ThreadIDSet sent_tids;
4530     for (auto it = m_tid_map.begin(); it != m_tid_map.end(); ++it)
4531     {
4532         // We only care about threads not stopped.
4533         const bool running = it->second.m_state == ThreadState::Running;
4534         if (running)
4535         {
4536             const lldb::tid_t tid = it->first;
4537 
4538             // Request this thread stop if the tid stop request is not explicitly ignored.
4539             const bool skip_stop_request = m_pending_notification_up->skip_stop_request_tids.count (tid) > 0;
4540             if (!skip_stop_request)
4541                 RequestThreadStop (tid, it->second);
4542 
4543             // Even if we skipped sending the stop request for other reasons (like stepping),
4544             // we still need to wait for that stepping thread to notify completion/stop.
4545             sent_tids.insert (tid);
4546         }
4547     }
4548 
4549     // Set the wait list to the set of tids for which we requested stops.
4550     m_pending_notification_up->wait_for_stop_tids.swap (sent_tids);
4551 }
4552 
4553 void
4554 NativeProcessLinux::RequestThreadStop (lldb::tid_t tid, ThreadContext& context)
4555 {
4556     const auto error = m_pending_notification_up->request_thread_stop_function (tid);
4557     if (error.Success ())
4558         context.m_stop_requested = true;
4559     else
4560     {
4561         TSCLog ("NativeProcessLinux::%s failed to request thread stop tid  %" PRIu64 ": %s",
4562                          __FUNCTION__, tid, error.AsCString ());
4563     }
4564 }
4565 
4566 
4567 void
4568 NativeProcessLinux::ThreadDidStop (lldb::tid_t tid, bool initiated_by_llgs, const ErrorFunction &error_function)
4569 {
4570     // Ensure we know about the thread.
4571     auto find_it = m_tid_map.find (tid);
4572     if (find_it == m_tid_map.end ())
4573     {
4574         // We don't know about this thread.  This is an error condition.
4575         std::ostringstream error_message;
4576         error_message << "error: tid " << tid << " asked to stop but tid is unknown";
4577         error_function (error_message.str ());
4578         return;
4579     }
4580 
4581     // Update the global list of known thread states.  This one is definitely stopped.
4582     auto& context = find_it->second;
4583     const auto stop_was_requested = context.m_stop_requested;
4584     context.m_state = ThreadState::Stopped;
4585     context.m_stop_requested = false;
4586 
4587     // If we have a pending notification, remove this from the set.
4588     if (m_pending_notification_up)
4589     {
4590         m_pending_notification_up->wait_for_stop_tids.erase(tid);
4591         SignalIfRequirementsSatisfied();
4592     }
4593 
4594     if (initiated_by_llgs && context.m_request_resume_function && !stop_was_requested)
4595     {
4596         // We can end up here if stop was initiated by LLGS but by this time a
4597         // thread stop has occurred - maybe initiated by another event.
4598         TSCLog ("Resuming thread %"  PRIu64 " since stop wasn't requested", tid);
4599         const auto error = context.m_request_resume_function (tid, true);
4600         if (error.Success ())
4601         {
4602             context.m_state = ThreadState::Running;
4603         }
4604         else
4605         {
4606             TSCLog ("NativeProcessLinux::%s failed to resume thread tid  %" PRIu64 ": %s",
4607                  __FUNCTION__, tid, error.AsCString ());
4608         }
4609     }
4610 }
4611 
4612 void
4613 NativeProcessLinux::DoStopThreads(PendingNotificationUP &&notification_up)
4614 {
4615     // Validate we know about the deferred trigger thread.
4616     if (!IsKnownThread (notification_up->triggering_tid))
4617     {
4618         // We don't know about this thread.  This is an error condition.
4619         std::ostringstream error_message;
4620         error_message << "error: deferred notification tid " << notification_up->triggering_tid << " is unknown";
4621         notification_up->error_function (error_message.str ());
4622 
4623         // We bail out here.
4624         return;
4625     }
4626 
4627     if (m_pending_notification_up)
4628     {
4629         // Yikes - we've already got a pending signal notification in progress.
4630         // Log this info.  We lose the pending notification here.
4631         TSCLog ("NativeProcessLinux::%s dropping existing pending signal notification for tid %" PRIu64 ", to be replaced with signal for tid %" PRIu64,
4632                    __FUNCTION__,
4633                    m_pending_notification_up->triggering_tid,
4634                    notification_up->triggering_tid);
4635     }
4636     m_pending_notification_up = std::move(notification_up);
4637 
4638     if (m_pending_notification_up->request_stop_on_all_unstopped_threads)
4639         RequestStopOnAllRunningThreads();
4640     else
4641     {
4642         if (!RequestStopOnAllSpecifiedThreads())
4643             return;
4644     }
4645 
4646     SignalIfRequirementsSatisfied();
4647 }
4648 
4649 void
4650 NativeProcessLinux::ThreadWasCreated (lldb::tid_t tid, bool is_stopped, const ErrorFunction &error_function)
4651 {
4652     // Ensure we don't already know about the thread.
4653     auto find_it = m_tid_map.find (tid);
4654     if (find_it != m_tid_map.end ())
4655     {
4656         // We already know about this thread.  This is an error condition.
4657         std::ostringstream error_message;
4658         error_message << "error: notified tid " << tid << " created but we already know about this thread";
4659         error_function (error_message.str ());
4660         return;
4661     }
4662 
4663     // Add the new thread to the stop map.
4664     ThreadContext ctx;
4665     ctx.m_state = (is_stopped) ? ThreadState::Stopped : ThreadState::Running;
4666     m_tid_map[tid] = std::move(ctx);
4667 
4668     if (m_pending_notification_up && !is_stopped)
4669     {
4670         // We will need to wait for this new thread to stop as well before firing the
4671         // notification.
4672         m_pending_notification_up->wait_for_stop_tids.insert(tid);
4673         m_pending_notification_up->request_thread_stop_function(tid);
4674     }
4675 }
4676 
4677 void
4678 NativeProcessLinux::ThreadDidDie (lldb::tid_t tid, const ErrorFunction &error_function)
4679 {
4680     // Ensure we know about the thread.
4681     auto find_it = m_tid_map.find (tid);
4682     if (find_it == m_tid_map.end ())
4683     {
4684         // We don't know about this thread.  This is an error condition.
4685         std::ostringstream error_message;
4686         error_message << "error: notified tid " << tid << " died but tid is unknown";
4687         error_function (error_message.str ());
4688         return;
4689     }
4690 
4691     // Update the global list of known thread states.  While this one is stopped, it is also dead.
4692     // So stop tracking it.  We assume the user of this coordinator will not keep trying to add
4693     // dependencies on a thread after it is known to be dead.
4694     m_tid_map.erase (find_it);
4695 
4696     // If we have a pending notification, remove this from the set.
4697     if (m_pending_notification_up)
4698     {
4699         m_pending_notification_up->wait_for_stop_tids.erase(tid);
4700         SignalIfRequirementsSatisfied();
4701     }
4702 }
4703 
4704 void
4705 NativeProcessLinux::TSCLog (const char *format, ...)
4706 {
4707     va_list args;
4708     va_start (args, format);
4709 
4710     m_log_function (format, args);
4711 
4712     va_end (args);
4713 }
4714 
4715 void
4716 NativeProcessLinux::NotifyThreadStop (lldb::tid_t tid,
4717                                           bool initiated_by_llgs,
4718                                           const ErrorFunction &error_function)
4719 {
4720     std::lock_guard<std::mutex> lock(m_event_mutex);
4721 
4722     if (m_log_event_processing)
4723     {
4724         TSCLog ("NativeProcessLinux::%s about to process event: (tid: %" PRIu64 ", %sinitiated by llgs)",
4725                 __FUNCTION__, tid, initiated_by_llgs?"":"not ");
4726     }
4727 
4728     ThreadDidStop (tid, initiated_by_llgs, error_function);
4729 
4730     if (m_log_event_processing)
4731     {
4732         TSCLog ("NativeProcessLinux::%s event processing done", __FUNCTION__);
4733     }
4734 }
4735 
4736 void
4737 NativeProcessLinux::RequestThreadResume (lldb::tid_t tid,
4738                                              const ResumeThreadFunction &request_thread_resume_function,
4739                                              const ErrorFunction &error_function)
4740 {
4741     std::lock_guard<std::mutex> lock(m_event_mutex);
4742 
4743     if (m_log_event_processing)
4744     {
4745         TSCLog ("NativeProcessLinux::%s about to process event: (tid: %" PRIu64 ")",
4746                 __FUNCTION__, tid);
4747     }
4748 
4749     DoResume(tid, request_thread_resume_function, error_function, true);
4750 
4751     if (m_log_event_processing)
4752     {
4753         TSCLog ("NativeProcessLinux::%s event processing done", __FUNCTION__);
4754     }
4755 }
4756 
4757 void
4758 NativeProcessLinux::RequestThreadResumeAsNeeded (lldb::tid_t tid,
4759                                                      const ResumeThreadFunction &request_thread_resume_function,
4760                                                      const ErrorFunction &error_function)
4761 {
4762     std::lock_guard<std::mutex> lock(m_event_mutex);
4763 
4764     if (m_log_event_processing)
4765     {
4766         TSCLog ("NativeProcessLinux::%s about to process event: (tid: %" PRIu64 ")",
4767                 __FUNCTION__, tid);
4768     }
4769 
4770     DoResume (tid, request_thread_resume_function, error_function, false);
4771 
4772     if (m_log_event_processing)
4773     {
4774         TSCLog ("NativeProcessLinux::%s event processing done", __FUNCTION__);
4775     }
4776 }
4777 
4778 void
4779 NativeProcessLinux::NotifyThreadCreate (lldb::tid_t tid,
4780                                             bool is_stopped,
4781                                             const ErrorFunction &error_function)
4782 {
4783     std::lock_guard<std::mutex> lock(m_event_mutex);
4784 
4785     if (m_log_event_processing)
4786     {
4787         TSCLog ("NativeProcessLinux::%s about to process event: (tid: %" PRIu64 ", is %sstopped)",
4788                 __FUNCTION__, tid, is_stopped?"":"not ");
4789     }
4790 
4791     ThreadWasCreated (tid, is_stopped, error_function);
4792 
4793     if (m_log_event_processing)
4794     {
4795         TSCLog ("NativeProcessLinux::%s event processing done", __FUNCTION__);
4796     }
4797 }
4798 
4799 void
4800 NativeProcessLinux::NotifyThreadDeath (lldb::tid_t tid,
4801                                            const ErrorFunction &error_function)
4802 {
4803     std::lock_guard<std::mutex> lock(m_event_mutex);
4804 
4805     if (m_log_event_processing)
4806     {
4807         TSCLog ("NativeProcessLinux::%s about to process event: (tid: %" PRIu64 ")", __FUNCTION__, tid);
4808     }
4809 
4810     ThreadDidDie(tid, error_function);
4811 
4812     if (m_log_event_processing)
4813     {
4814         TSCLog ("NativeProcessLinux::%s event processing done", __FUNCTION__);
4815     }
4816 }
4817 
4818 void
4819 NativeProcessLinux::ResetForExec ()
4820 {
4821     std::lock_guard<std::mutex> lock(m_event_mutex);
4822 
4823     if (m_log_event_processing)
4824     {
4825         TSCLog ("NativeProcessLinux::%s about to process event", __FUNCTION__);
4826     }
4827 
4828     // Clear the pending notification if there was one.
4829     m_pending_notification_up.reset ();
4830 
4831     // Clear the stop map - we no longer know anything about any thread state.
4832     // The caller is expected to reset thread states for all threads, and we
4833     // will assume anything we haven't heard about is running and requires a
4834     // stop.
4835     m_tid_map.clear ();
4836 
4837     if (m_log_event_processing)
4838     {
4839         TSCLog ("NativeProcessLinux::%s event processing done", __FUNCTION__);
4840     }
4841 }
4842 void
4843 NativeProcessLinux::LogEnableEventProcessing (bool enabled)
4844 {
4845     m_log_event_processing = enabled;
4846 }
4847 
4848 bool
4849 NativeProcessLinux::IsKnownThread (lldb::tid_t tid) const
4850 {
4851     return m_tid_map.find (tid) != m_tid_map.end ();
4852 }
4853