1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "NativeProcessLinux.h" 11 12 // C Includes 13 #include <errno.h> 14 #include <stdint.h> 15 #include <string.h> 16 #include <unistd.h> 17 18 // C++ Includes 19 #include <fstream> 20 #include <mutex> 21 #include <sstream> 22 #include <string> 23 #include <unordered_map> 24 25 // Other libraries and framework includes 26 #include "lldb/Core/EmulateInstruction.h" 27 #include "lldb/Core/ModuleSpec.h" 28 #include "lldb/Core/RegisterValue.h" 29 #include "lldb/Core/State.h" 30 #include "lldb/Host/Host.h" 31 #include "lldb/Host/HostProcess.h" 32 #include "lldb/Host/PseudoTerminal.h" 33 #include "lldb/Host/ThreadLauncher.h" 34 #include "lldb/Host/common/NativeBreakpoint.h" 35 #include "lldb/Host/common/NativeRegisterContext.h" 36 #include "lldb/Host/linux/Ptrace.h" 37 #include "lldb/Host/linux/Uio.h" 38 #include "lldb/Host/posix/ProcessLauncherPosixFork.h" 39 #include "lldb/Symbol/ObjectFile.h" 40 #include "lldb/Target/Process.h" 41 #include "lldb/Target/ProcessLaunchInfo.h" 42 #include "lldb/Target/Target.h" 43 #include "lldb/Utility/LLDBAssert.h" 44 #include "lldb/Utility/Status.h" 45 #include "lldb/Utility/StringExtractor.h" 46 #include "llvm/Support/Errno.h" 47 #include "llvm/Support/FileSystem.h" 48 #include "llvm/Support/Threading.h" 49 50 #include "NativeThreadLinux.h" 51 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 52 #include "Procfs.h" 53 54 #include <linux/unistd.h> 55 #include <sys/socket.h> 56 #include <sys/syscall.h> 57 #include <sys/types.h> 58 #include <sys/user.h> 59 #include <sys/wait.h> 60 61 // Support hardware breakpoints in case it has not been defined 62 #ifndef TRAP_HWBKPT 63 #define TRAP_HWBKPT 4 64 #endif 65 66 using namespace lldb; 67 using namespace lldb_private; 68 using namespace lldb_private::process_linux; 69 using namespace llvm; 70 71 // Private bits we only need internally. 72 73 static bool ProcessVmReadvSupported() { 74 static bool is_supported; 75 static llvm::once_flag flag; 76 77 llvm::call_once(flag, [] { 78 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 79 80 uint32_t source = 0x47424742; 81 uint32_t dest = 0; 82 83 struct iovec local, remote; 84 remote.iov_base = &source; 85 local.iov_base = &dest; 86 remote.iov_len = local.iov_len = sizeof source; 87 88 // We shall try if cross-process-memory reads work by attempting to read a 89 // value from our own process. 90 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); 91 is_supported = (res == sizeof(source) && source == dest); 92 if (is_supported) 93 LLDB_LOG(log, 94 "Detected kernel support for process_vm_readv syscall. " 95 "Fast memory reads enabled."); 96 else 97 LLDB_LOG(log, 98 "syscall process_vm_readv failed (error: {0}). Fast memory " 99 "reads disabled.", 100 llvm::sys::StrError()); 101 }); 102 103 return is_supported; 104 } 105 106 namespace { 107 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) { 108 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 109 if (!log) 110 return; 111 112 if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO)) 113 LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec()); 114 else 115 LLDB_LOG(log, "leaving STDIN as is"); 116 117 if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO)) 118 LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec()); 119 else 120 LLDB_LOG(log, "leaving STDOUT as is"); 121 122 if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO)) 123 LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec()); 124 else 125 LLDB_LOG(log, "leaving STDERR as is"); 126 127 int i = 0; 128 for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; 129 ++args, ++i) 130 LLDB_LOG(log, "arg {0}: '{1}'", i, *args); 131 } 132 133 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) { 134 uint8_t *ptr = (uint8_t *)bytes; 135 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 136 for (uint32_t i = 0; i < loop_count; i++) { 137 s.Printf("[%x]", *ptr); 138 ptr++; 139 } 140 } 141 142 void PtraceDisplayBytes(int &req, void *data, size_t data_size) { 143 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 144 if (!log) 145 return; 146 StreamString buf; 147 148 switch (req) { 149 case PTRACE_POKETEXT: { 150 DisplayBytes(buf, &data, 8); 151 LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData()); 152 break; 153 } 154 case PTRACE_POKEDATA: { 155 DisplayBytes(buf, &data, 8); 156 LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData()); 157 break; 158 } 159 case PTRACE_POKEUSER: { 160 DisplayBytes(buf, &data, 8); 161 LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData()); 162 break; 163 } 164 case PTRACE_SETREGS: { 165 DisplayBytes(buf, data, data_size); 166 LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData()); 167 break; 168 } 169 case PTRACE_SETFPREGS: { 170 DisplayBytes(buf, data, data_size); 171 LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData()); 172 break; 173 } 174 case PTRACE_SETSIGINFO: { 175 DisplayBytes(buf, data, sizeof(siginfo_t)); 176 LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData()); 177 break; 178 } 179 case PTRACE_SETREGSET: { 180 // Extract iov_base from data, which is a pointer to the struct IOVEC 181 DisplayBytes(buf, *(void **)data, data_size); 182 LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData()); 183 break; 184 } 185 default: {} 186 } 187 } 188 189 static constexpr unsigned k_ptrace_word_size = sizeof(void *); 190 static_assert(sizeof(long) >= k_ptrace_word_size, 191 "Size of long must be larger than ptrace word size"); 192 } // end of anonymous namespace 193 194 // Simple helper function to ensure flags are enabled on the given file 195 // descriptor. 196 static Status EnsureFDFlags(int fd, int flags) { 197 Status error; 198 199 int status = fcntl(fd, F_GETFL); 200 if (status == -1) { 201 error.SetErrorToErrno(); 202 return error; 203 } 204 205 if (fcntl(fd, F_SETFL, status | flags) == -1) { 206 error.SetErrorToErrno(); 207 return error; 208 } 209 210 return error; 211 } 212 213 // ----------------------------------------------------------------------------- 214 // Public Static Methods 215 // ----------------------------------------------------------------------------- 216 217 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 218 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info, 219 NativeDelegate &native_delegate, 220 MainLoop &mainloop) const { 221 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 222 223 MaybeLogLaunchInfo(launch_info); 224 225 Status status; 226 ::pid_t pid = ProcessLauncherPosixFork() 227 .LaunchProcess(launch_info, status) 228 .GetProcessId(); 229 LLDB_LOG(log, "pid = {0:x}", pid); 230 if (status.Fail()) { 231 LLDB_LOG(log, "failed to launch process: {0}", status); 232 return status.ToError(); 233 } 234 235 // Wait for the child process to trap on its call to execve. 236 int wstatus; 237 ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0); 238 assert(wpid == pid); 239 (void)wpid; 240 if (!WIFSTOPPED(wstatus)) { 241 LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}", 242 WaitStatus::Decode(wstatus)); 243 return llvm::make_error<StringError>("Could not sync with inferior process", 244 llvm::inconvertibleErrorCode()); 245 } 246 LLDB_LOG(log, "inferior started, now in stopped state"); 247 248 ArchSpec arch; 249 if ((status = ResolveProcessArchitecture(pid, arch)).Fail()) 250 return status.ToError(); 251 252 // Set the architecture to the exe architecture. 253 LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid, 254 arch.GetArchitectureName()); 255 256 status = SetDefaultPtraceOpts(pid); 257 if (status.Fail()) { 258 LLDB_LOG(log, "failed to set default ptrace options: {0}", status); 259 return status.ToError(); 260 } 261 262 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 263 pid, launch_info.GetPTY().ReleaseMasterFileDescriptor(), native_delegate, 264 arch, mainloop, {pid})); 265 } 266 267 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 268 NativeProcessLinux::Factory::Attach( 269 lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate, 270 MainLoop &mainloop) const { 271 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 272 LLDB_LOG(log, "pid = {0:x}", pid); 273 274 // Retrieve the architecture for the running process. 275 ArchSpec arch; 276 Status status = ResolveProcessArchitecture(pid, arch); 277 if (!status.Success()) 278 return status.ToError(); 279 280 auto tids_or = NativeProcessLinux::Attach(pid); 281 if (!tids_or) 282 return tids_or.takeError(); 283 284 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 285 pid, -1, native_delegate, arch, mainloop, *tids_or)); 286 } 287 288 // ----------------------------------------------------------------------------- 289 // Public Instance Methods 290 // ----------------------------------------------------------------------------- 291 292 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd, 293 NativeDelegate &delegate, 294 const ArchSpec &arch, MainLoop &mainloop, 295 llvm::ArrayRef<::pid_t> tids) 296 : NativeProcessProtocol(pid, terminal_fd, delegate), m_arch(arch) { 297 if (m_terminal_fd != -1) { 298 Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 299 assert(status.Success()); 300 } 301 302 Status status; 303 m_sigchld_handle = mainloop.RegisterSignal( 304 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status); 305 assert(m_sigchld_handle && status.Success()); 306 307 for (const auto &tid : tids) { 308 NativeThreadLinuxSP thread_sp = AddThread(tid); 309 assert(thread_sp && "AddThread() returned a nullptr thread"); 310 thread_sp->SetStoppedBySignal(SIGSTOP); 311 ThreadWasCreated(*thread_sp); 312 } 313 314 // Let our process instance know the thread has stopped. 315 SetCurrentThreadID(tids[0]); 316 SetState(StateType::eStateStopped, false); 317 318 // Proccess any signals we received before installing our handler 319 SigchldHandler(); 320 } 321 322 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) { 323 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 324 325 Status status; 326 // Use a map to keep track of the threads which we have attached/need to 327 // attach. 328 Host::TidMap tids_to_attach; 329 while (Host::FindProcessThreads(pid, tids_to_attach)) { 330 for (Host::TidMap::iterator it = tids_to_attach.begin(); 331 it != tids_to_attach.end();) { 332 if (it->second == false) { 333 lldb::tid_t tid = it->first; 334 335 // Attach to the requested process. 336 // An attach will cause the thread to stop with a SIGSTOP. 337 if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) { 338 // No such thread. The thread may have exited. 339 // More error handling may be needed. 340 if (status.GetError() == ESRCH) { 341 it = tids_to_attach.erase(it); 342 continue; 343 } 344 return status.ToError(); 345 } 346 347 int wpid = 348 llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL); 349 // Need to use __WALL otherwise we receive an error with errno=ECHLD 350 // At this point we should have a thread stopped if waitpid succeeds. 351 if (wpid < 0) { 352 // No such thread. The thread may have exited. 353 // More error handling may be needed. 354 if (errno == ESRCH) { 355 it = tids_to_attach.erase(it); 356 continue; 357 } 358 return llvm::errorCodeToError( 359 std::error_code(errno, std::generic_category())); 360 } 361 362 if ((status = SetDefaultPtraceOpts(tid)).Fail()) 363 return status.ToError(); 364 365 LLDB_LOG(log, "adding tid = {0}", tid); 366 it->second = true; 367 } 368 369 // move the loop forward 370 ++it; 371 } 372 } 373 374 size_t tid_count = tids_to_attach.size(); 375 if (tid_count == 0) 376 return llvm::make_error<StringError>("No such process", 377 llvm::inconvertibleErrorCode()); 378 379 std::vector<::pid_t> tids; 380 tids.reserve(tid_count); 381 for (const auto &p : tids_to_attach) 382 tids.push_back(p.first); 383 return std::move(tids); 384 } 385 386 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) { 387 long ptrace_opts = 0; 388 389 // Have the child raise an event on exit. This is used to keep the child in 390 // limbo until it is destroyed. 391 ptrace_opts |= PTRACE_O_TRACEEXIT; 392 393 // Have the tracer trace threads which spawn in the inferior process. 394 // TODO: if we want to support tracing the inferiors' child, add the 395 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) 396 ptrace_opts |= PTRACE_O_TRACECLONE; 397 398 // Have the tracer notify us before execve returns 399 // (needed to disable legacy SIGTRAP generation) 400 ptrace_opts |= PTRACE_O_TRACEEXEC; 401 402 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts); 403 } 404 405 // Handles all waitpid events from the inferior process. 406 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited, 407 WaitStatus status) { 408 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 409 410 // Certain activities differ based on whether the pid is the tid of the main 411 // thread. 412 const bool is_main_thread = (pid == GetID()); 413 414 // Handle when the thread exits. 415 if (exited) { 416 LLDB_LOG(log, "got exit signal({0}) , tid = {1} ({2} main thread)", signal, 417 pid, is_main_thread ? "is" : "is not"); 418 419 // This is a thread that exited. Ensure we're not tracking it anymore. 420 const bool thread_found = StopTrackingThread(pid); 421 422 if (is_main_thread) { 423 // We only set the exit status and notify the delegate if we haven't 424 // already set the process 425 // state to an exited state. We normally should have received a SIGTRAP | 426 // (PTRACE_EVENT_EXIT << 8) 427 // for the main thread. 428 const bool already_notified = (GetState() == StateType::eStateExited) || 429 (GetState() == StateType::eStateCrashed); 430 if (!already_notified) { 431 LLDB_LOG( 432 log, 433 "tid = {0} handling main thread exit ({1}), expected exit state " 434 "already set but state was {2} instead, setting exit state now", 435 pid, 436 thread_found ? "stopped tracking thread metadata" 437 : "thread metadata not found", 438 GetState()); 439 // The main thread exited. We're done monitoring. Report to delegate. 440 SetExitStatus(status, true); 441 442 // Notify delegate that our process has exited. 443 SetState(StateType::eStateExited, true); 444 } else 445 LLDB_LOG(log, "tid = {0} main thread now exited (%s)", pid, 446 thread_found ? "stopped tracking thread metadata" 447 : "thread metadata not found"); 448 } else { 449 // Do we want to report to the delegate in this case? I think not. If 450 // this was an orderly thread exit, we would already have received the 451 // SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, and we would have done an 452 // all-stop then. 453 LLDB_LOG(log, "tid = {0} handling non-main thread exit (%s)", pid, 454 thread_found ? "stopped tracking thread metadata" 455 : "thread metadata not found"); 456 } 457 return; 458 } 459 460 siginfo_t info; 461 const auto info_err = GetSignalInfo(pid, &info); 462 auto thread_sp = GetThreadByID(pid); 463 464 if (!thread_sp) { 465 // Normally, the only situation when we cannot find the thread is if we have 466 // just received a new thread notification. This is indicated by 467 // GetSignalInfo() returning si_code == SI_USER and si_pid == 0 468 LLDB_LOG(log, "received notification about an unknown tid {0}.", pid); 469 470 if (info_err.Fail()) { 471 LLDB_LOG(log, 472 "(tid {0}) GetSignalInfo failed ({1}). " 473 "Ingoring this notification.", 474 pid, info_err); 475 return; 476 } 477 478 LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code, 479 info.si_pid); 480 481 auto thread_sp = AddThread(pid); 482 483 // Resume the newly created thread. 484 ResumeThread(*thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 485 ThreadWasCreated(*thread_sp); 486 return; 487 } 488 489 // Get details on the signal raised. 490 if (info_err.Success()) { 491 // We have retrieved the signal info. Dispatch appropriately. 492 if (info.si_signo == SIGTRAP) 493 MonitorSIGTRAP(info, *thread_sp); 494 else 495 MonitorSignal(info, *thread_sp, exited); 496 } else { 497 if (info_err.GetError() == EINVAL) { 498 // This is a group stop reception for this tid. 499 // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU 500 // into the tracee, triggering the group-stop mechanism. Normally 501 // receiving these would stop the process, pending a SIGCONT. Simulating 502 // this state in a debugger is hard and is generally not needed (one use 503 // case is debugging background task being managed by a shell). For 504 // general use, it is sufficient to stop the process in a signal-delivery 505 // stop which happens before the group stop. This done by MonitorSignal 506 // and works correctly for all signals. 507 LLDB_LOG(log, 508 "received a group stop for pid {0} tid {1}. Transparent " 509 "handling of group stops not supported, resuming the " 510 "thread.", 511 GetID(), pid); 512 ResumeThread(*thread_sp, thread_sp->GetState(), 513 LLDB_INVALID_SIGNAL_NUMBER); 514 } else { 515 // ptrace(GETSIGINFO) failed (but not due to group-stop). 516 517 // A return value of ESRCH means the thread/process is no longer on the 518 // system, so it was killed somehow outside of our control. Either way, 519 // we can't do anything with it anymore. 520 521 // Stop tracking the metadata for the thread since it's entirely off the 522 // system now. 523 const bool thread_found = StopTrackingThread(pid); 524 525 LLDB_LOG(log, 526 "GetSignalInfo failed: {0}, tid = {1}, signal = {2}, " 527 "status = {3}, main_thread = {4}, thread_found: {5}", 528 info_err, pid, signal, status, is_main_thread, thread_found); 529 530 if (is_main_thread) { 531 // Notify the delegate - our process is not available but appears to 532 // have been killed outside 533 // our control. Is eStateExited the right exit state in this case? 534 SetExitStatus(status, true); 535 SetState(StateType::eStateExited, true); 536 } else { 537 // This thread was pulled out from underneath us. Anything to do here? 538 // Do we want to do an all stop? 539 LLDB_LOG(log, 540 "pid {0} tid {1} non-main thread exit occurred, didn't " 541 "tell delegate anything since thread disappeared out " 542 "from underneath us", 543 GetID(), pid); 544 } 545 } 546 } 547 } 548 549 void NativeProcessLinux::WaitForNewThread(::pid_t tid) { 550 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 551 552 NativeThreadLinuxSP new_thread_sp = GetThreadByID(tid); 553 554 if (new_thread_sp) { 555 // We are already tracking the thread - we got the event on the new thread 556 // (see 557 // MonitorSignal) before this one. We are done. 558 return; 559 } 560 561 // The thread is not tracked yet, let's wait for it to appear. 562 int status = -1; 563 LLDB_LOG(log, 564 "received thread creation event for tid {0}. tid not tracked " 565 "yet, waiting for thread to appear...", 566 tid); 567 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, &status, __WALL); 568 // Since we are waiting on a specific tid, this must be the creation event. 569 // But let's do some checks just in case. 570 if (wait_pid != tid) { 571 LLDB_LOG(log, 572 "waiting for tid {0} failed. Assuming the thread has " 573 "disappeared in the meantime", 574 tid); 575 // The only way I know of this could happen is if the whole process was 576 // SIGKILLed in the mean time. In any case, we can't do anything about that 577 // now. 578 return; 579 } 580 if (WIFEXITED(status)) { 581 LLDB_LOG(log, 582 "waiting for tid {0} returned an 'exited' event. Not " 583 "tracking the thread.", 584 tid); 585 // Also a very improbable event. 586 return; 587 } 588 589 LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid); 590 new_thread_sp = AddThread(tid); 591 592 ResumeThread(*new_thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 593 ThreadWasCreated(*new_thread_sp); 594 } 595 596 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, 597 NativeThreadLinux &thread) { 598 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 599 const bool is_main_thread = (thread.GetID() == GetID()); 600 601 assert(info.si_signo == SIGTRAP && "Unexpected child signal!"); 602 603 switch (info.si_code) { 604 // TODO: these two cases are required if we want to support tracing of the 605 // inferiors' children. We'd need this to debug a monitor. 606 // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 607 // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 608 609 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { 610 // This is the notification on the parent thread which informs us of new 611 // thread 612 // creation. 613 // We don't want to do anything with the parent thread so we just resume it. 614 // In case we 615 // want to implement "break on thread creation" functionality, we would need 616 // to stop 617 // here. 618 619 unsigned long event_message = 0; 620 if (GetEventMessage(thread.GetID(), &event_message).Fail()) { 621 LLDB_LOG(log, 622 "pid {0} received thread creation event but " 623 "GetEventMessage failed so we don't know the new tid", 624 thread.GetID()); 625 } else 626 WaitForNewThread(event_message); 627 628 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 629 break; 630 } 631 632 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): { 633 NativeThreadLinuxSP main_thread_sp; 634 LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP); 635 636 // Exec clears any pending notifications. 637 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 638 639 // Remove all but the main thread here. Linux fork creates a new process 640 // which only copies the main thread. 641 LLDB_LOG(log, "exec received, stop tracking all but main thread"); 642 643 for (auto thread_sp : m_threads) { 644 const bool is_main_thread = thread_sp && thread_sp->GetID() == GetID(); 645 if (is_main_thread) { 646 main_thread_sp = std::static_pointer_cast<NativeThreadLinux>(thread_sp); 647 LLDB_LOG(log, "found main thread with tid {0}, keeping", 648 main_thread_sp->GetID()); 649 } else { 650 LLDB_LOG(log, "discarding non-main-thread tid {0} due to exec", 651 thread_sp->GetID()); 652 } 653 } 654 655 m_threads.clear(); 656 657 if (main_thread_sp) { 658 m_threads.push_back(main_thread_sp); 659 SetCurrentThreadID(main_thread_sp->GetID()); 660 main_thread_sp->SetStoppedByExec(); 661 } else { 662 SetCurrentThreadID(LLDB_INVALID_THREAD_ID); 663 LLDB_LOG(log, 664 "pid {0} no main thread found, discarded all threads, " 665 "we're in a no-thread state!", 666 GetID()); 667 } 668 669 // Tell coordinator about about the "new" (since exec) stopped main thread. 670 ThreadWasCreated(*main_thread_sp); 671 672 // Let our delegate know we have just exec'd. 673 NotifyDidExec(); 674 675 // If we have a main thread, indicate we are stopped. 676 assert(main_thread_sp && "exec called during ptraced process but no main " 677 "thread metadata tracked"); 678 679 // Let the process know we're stopped. 680 StopRunningThreads(main_thread_sp->GetID()); 681 682 break; 683 } 684 685 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { 686 // The inferior process or one of its threads is about to exit. 687 // We don't want to do anything with the thread so we just resume it. In 688 // case we 689 // want to implement "break on thread exit" functionality, we would need to 690 // stop 691 // here. 692 693 unsigned long data = 0; 694 if (GetEventMessage(thread.GetID(), &data).Fail()) 695 data = -1; 696 697 LLDB_LOG(log, 698 "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, " 699 "WIFSIGNALED={2}, pid = {3}, main_thread = {4}", 700 data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(), 701 is_main_thread); 702 703 if (is_main_thread) 704 SetExitStatus(WaitStatus::Decode(data), true); 705 706 StateType state = thread.GetState(); 707 if (!StateIsRunningState(state)) { 708 // Due to a kernel bug, we may sometimes get this stop after the inferior 709 // gets a 710 // SIGKILL. This confuses our state tracking logic in ResumeThread(), 711 // since normally, 712 // we should not be receiving any ptrace events while the inferior is 713 // stopped. This 714 // makes sure that the inferior is resumed and exits normally. 715 state = eStateRunning; 716 } 717 ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); 718 719 break; 720 } 721 722 case 0: 723 case TRAP_TRACE: // We receive this on single stepping. 724 case TRAP_HWBKPT: // We receive this on watchpoint hit 725 { 726 // If a watchpoint was hit, report it 727 uint32_t wp_index; 728 Status error = thread.GetRegisterContext()->GetWatchpointHitIndex( 729 wp_index, (uintptr_t)info.si_addr); 730 if (error.Fail()) 731 LLDB_LOG(log, 732 "received error while checking for watchpoint hits, pid = " 733 "{0}, error = {1}", 734 thread.GetID(), error); 735 if (wp_index != LLDB_INVALID_INDEX32) { 736 MonitorWatchpoint(thread, wp_index); 737 break; 738 } 739 740 // If a breakpoint was hit, report it 741 uint32_t bp_index; 742 error = thread.GetRegisterContext()->GetHardwareBreakHitIndex( 743 bp_index, (uintptr_t)info.si_addr); 744 if (error.Fail()) 745 LLDB_LOG(log, "received error while checking for hardware " 746 "breakpoint hits, pid = {0}, error = {1}", 747 thread.GetID(), error); 748 if (bp_index != LLDB_INVALID_INDEX32) { 749 MonitorBreakpoint(thread); 750 break; 751 } 752 753 // Otherwise, report step over 754 MonitorTrace(thread); 755 break; 756 } 757 758 case SI_KERNEL: 759 #if defined __mips__ 760 // For mips there is no special signal for watchpoint 761 // So we check for watchpoint in kernel trap 762 { 763 // If a watchpoint was hit, report it 764 uint32_t wp_index; 765 Status error = thread.GetRegisterContext()->GetWatchpointHitIndex( 766 wp_index, LLDB_INVALID_ADDRESS); 767 if (error.Fail()) 768 LLDB_LOG(log, 769 "received error while checking for watchpoint hits, pid = " 770 "{0}, error = {1}", 771 thread.GetID(), error); 772 if (wp_index != LLDB_INVALID_INDEX32) { 773 MonitorWatchpoint(thread, wp_index); 774 break; 775 } 776 } 777 // NO BREAK 778 #endif 779 case TRAP_BRKPT: 780 MonitorBreakpoint(thread); 781 break; 782 783 case SIGTRAP: 784 case (SIGTRAP | 0x80): 785 LLDB_LOG( 786 log, 787 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 788 info.si_code, GetID(), thread.GetID()); 789 790 // Ignore these signals until we know more about them. 791 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 792 break; 793 794 default: 795 LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}", 796 info.si_code, GetID(), thread.GetID()); 797 MonitorSignal(info, thread, false); 798 break; 799 } 800 } 801 802 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) { 803 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 804 LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID()); 805 806 // This thread is currently stopped. 807 thread.SetStoppedByTrace(); 808 809 StopRunningThreads(thread.GetID()); 810 } 811 812 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) { 813 Log *log( 814 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 815 LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID()); 816 817 // Mark the thread as stopped at breakpoint. 818 thread.SetStoppedByBreakpoint(); 819 Status error = FixupBreakpointPCAsNeeded(thread); 820 if (error.Fail()) 821 LLDB_LOG(log, "pid = {0} fixup: {1}", thread.GetID(), error); 822 823 if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != 824 m_threads_stepping_with_breakpoint.end()) 825 thread.SetStoppedByTrace(); 826 827 StopRunningThreads(thread.GetID()); 828 } 829 830 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, 831 uint32_t wp_index) { 832 Log *log( 833 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); 834 LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}", 835 thread.GetID(), wp_index); 836 837 // Mark the thread as stopped at watchpoint. 838 // The address is at (lldb::addr_t)info->si_addr if we need it. 839 thread.SetStoppedByWatchpoint(wp_index); 840 841 // We need to tell all other running threads before we notify the delegate 842 // about this stop. 843 StopRunningThreads(thread.GetID()); 844 } 845 846 void NativeProcessLinux::MonitorSignal(const siginfo_t &info, 847 NativeThreadLinux &thread, bool exited) { 848 const int signo = info.si_signo; 849 const bool is_from_llgs = info.si_pid == getpid(); 850 851 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 852 853 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 854 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a 855 // kill(2) or raise(3). Similarly for tgkill(2) on Linux. 856 // 857 // IOW, user generated signals never generate what we consider to be a 858 // "crash". 859 // 860 // Similarly, ACK signals generated by this monitor. 861 862 // Handle the signal. 863 LLDB_LOG(log, 864 "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, " 865 "waitpid pid = {4})", 866 Host::GetSignalAsCString(signo), signo, info.si_code, 867 thread.GetID()); 868 869 // Check for thread stop notification. 870 if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) { 871 // This is a tgkill()-based stop. 872 LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID()); 873 874 // Check that we're not already marked with a stop reason. 875 // Note this thread really shouldn't already be marked as stopped - if we 876 // were, that would imply that the kernel signaled us with the thread 877 // stopping which we handled and marked as stopped, and that, without an 878 // intervening resume, we received another stop. It is more likely that we 879 // are missing the marking of a run state somewhere if we find that the 880 // thread was marked as stopped. 881 const StateType thread_state = thread.GetState(); 882 if (!StateIsStoppedState(thread_state, false)) { 883 // An inferior thread has stopped because of a SIGSTOP we have sent it. 884 // Generally, these are not important stops and we don't want to report 885 // them as they are just used to stop other threads when one thread (the 886 // one with the *real* stop reason) hits a breakpoint (watchpoint, 887 // etc...). However, in the case of an asynchronous Interrupt(), this *is* 888 // the real stop reason, so we leave the signal intact if this is the 889 // thread that was chosen as the triggering thread. 890 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 891 if (m_pending_notification_tid == thread.GetID()) 892 thread.SetStoppedBySignal(SIGSTOP, &info); 893 else 894 thread.SetStoppedWithNoReason(); 895 896 SetCurrentThreadID(thread.GetID()); 897 SignalIfAllThreadsStopped(); 898 } else { 899 // We can end up here if stop was initiated by LLGS but by this time a 900 // thread stop has occurred - maybe initiated by another event. 901 Status error = ResumeThread(thread, thread.GetState(), 0); 902 if (error.Fail()) 903 LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(), 904 error); 905 } 906 } else { 907 LLDB_LOG(log, 908 "pid {0} tid {1}, thread was already marked as a stopped " 909 "state (state={2}), leaving stop signal as is", 910 GetID(), thread.GetID(), thread_state); 911 SignalIfAllThreadsStopped(); 912 } 913 914 // Done handling. 915 return; 916 } 917 918 // Check if debugger should stop at this signal or just ignore it 919 // and resume the inferior. 920 if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) { 921 ResumeThread(thread, thread.GetState(), signo); 922 return; 923 } 924 925 // This thread is stopped. 926 LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo)); 927 thread.SetStoppedBySignal(signo, &info); 928 929 // Send a stop to the debugger after we get all other threads to stop. 930 StopRunningThreads(thread.GetID()); 931 } 932 933 namespace { 934 935 struct EmulatorBaton { 936 NativeProcessLinux *m_process; 937 NativeRegisterContext *m_reg_context; 938 939 // eRegisterKindDWARF -> RegsiterValue 940 std::unordered_map<uint32_t, RegisterValue> m_register_values; 941 942 EmulatorBaton(NativeProcessLinux *process, NativeRegisterContext *reg_context) 943 : m_process(process), m_reg_context(reg_context) {} 944 }; 945 946 } // anonymous namespace 947 948 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton, 949 const EmulateInstruction::Context &context, 950 lldb::addr_t addr, void *dst, size_t length) { 951 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 952 953 size_t bytes_read; 954 emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read); 955 return bytes_read; 956 } 957 958 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton, 959 const RegisterInfo *reg_info, 960 RegisterValue ®_value) { 961 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 962 963 auto it = emulator_baton->m_register_values.find( 964 reg_info->kinds[eRegisterKindDWARF]); 965 if (it != emulator_baton->m_register_values.end()) { 966 reg_value = it->second; 967 return true; 968 } 969 970 // The emulator only fill in the dwarf regsiter numbers (and in some case 971 // the generic register numbers). Get the full register info from the 972 // register context based on the dwarf register numbers. 973 const RegisterInfo *full_reg_info = 974 emulator_baton->m_reg_context->GetRegisterInfo( 975 eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]); 976 977 Status error = 978 emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value); 979 if (error.Success()) 980 return true; 981 982 return false; 983 } 984 985 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton, 986 const EmulateInstruction::Context &context, 987 const RegisterInfo *reg_info, 988 const RegisterValue ®_value) { 989 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 990 emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = 991 reg_value; 992 return true; 993 } 994 995 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton, 996 const EmulateInstruction::Context &context, 997 lldb::addr_t addr, const void *dst, 998 size_t length) { 999 return length; 1000 } 1001 1002 static lldb::addr_t ReadFlags(NativeRegisterContext *regsiter_context) { 1003 const RegisterInfo *flags_info = regsiter_context->GetRegisterInfo( 1004 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 1005 return regsiter_context->ReadRegisterAsUnsigned(flags_info, 1006 LLDB_INVALID_ADDRESS); 1007 } 1008 1009 Status 1010 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) { 1011 Status error; 1012 NativeRegisterContextSP register_context_sp = thread.GetRegisterContext(); 1013 1014 std::unique_ptr<EmulateInstruction> emulator_ap( 1015 EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, 1016 nullptr)); 1017 1018 if (emulator_ap == nullptr) 1019 return Status("Instruction emulator not found!"); 1020 1021 EmulatorBaton baton(this, register_context_sp.get()); 1022 emulator_ap->SetBaton(&baton); 1023 emulator_ap->SetReadMemCallback(&ReadMemoryCallback); 1024 emulator_ap->SetReadRegCallback(&ReadRegisterCallback); 1025 emulator_ap->SetWriteMemCallback(&WriteMemoryCallback); 1026 emulator_ap->SetWriteRegCallback(&WriteRegisterCallback); 1027 1028 if (!emulator_ap->ReadInstruction()) 1029 return Status("Read instruction failed!"); 1030 1031 bool emulation_result = 1032 emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC); 1033 1034 const RegisterInfo *reg_info_pc = register_context_sp->GetRegisterInfo( 1035 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); 1036 const RegisterInfo *reg_info_flags = register_context_sp->GetRegisterInfo( 1037 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 1038 1039 auto pc_it = 1040 baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]); 1041 auto flags_it = 1042 baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]); 1043 1044 lldb::addr_t next_pc; 1045 lldb::addr_t next_flags; 1046 if (emulation_result) { 1047 assert(pc_it != baton.m_register_values.end() && 1048 "Emulation was successfull but PC wasn't updated"); 1049 next_pc = pc_it->second.GetAsUInt64(); 1050 1051 if (flags_it != baton.m_register_values.end()) 1052 next_flags = flags_it->second.GetAsUInt64(); 1053 else 1054 next_flags = ReadFlags(register_context_sp.get()); 1055 } else if (pc_it == baton.m_register_values.end()) { 1056 // Emulate instruction failed and it haven't changed PC. Advance PC 1057 // with the size of the current opcode because the emulation of all 1058 // PC modifying instruction should be successful. The failure most 1059 // likely caused by a not supported instruction which don't modify PC. 1060 next_pc = 1061 register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize(); 1062 next_flags = ReadFlags(register_context_sp.get()); 1063 } else { 1064 // The instruction emulation failed after it modified the PC. It is an 1065 // unknown error where we can't continue because the next instruction is 1066 // modifying the PC but we don't know how. 1067 return Status("Instruction emulation failed unexpectedly."); 1068 } 1069 1070 if (m_arch.GetMachine() == llvm::Triple::arm) { 1071 if (next_flags & 0x20) { 1072 // Thumb mode 1073 error = SetSoftwareBreakpoint(next_pc, 2); 1074 } else { 1075 // Arm mode 1076 error = SetSoftwareBreakpoint(next_pc, 4); 1077 } 1078 } else if (m_arch.GetMachine() == llvm::Triple::mips64 || 1079 m_arch.GetMachine() == llvm::Triple::mips64el || 1080 m_arch.GetMachine() == llvm::Triple::mips || 1081 m_arch.GetMachine() == llvm::Triple::mipsel) 1082 error = SetSoftwareBreakpoint(next_pc, 4); 1083 else { 1084 // No size hint is given for the next breakpoint 1085 error = SetSoftwareBreakpoint(next_pc, 0); 1086 } 1087 1088 // If setting the breakpoint fails because next_pc is out of 1089 // the address space, ignore it and let the debugee segfault. 1090 if (error.GetError() == EIO || error.GetError() == EFAULT) { 1091 return Status(); 1092 } else if (error.Fail()) 1093 return error; 1094 1095 m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc}); 1096 1097 return Status(); 1098 } 1099 1100 bool NativeProcessLinux::SupportHardwareSingleStepping() const { 1101 if (m_arch.GetMachine() == llvm::Triple::arm || 1102 m_arch.GetMachine() == llvm::Triple::mips64 || 1103 m_arch.GetMachine() == llvm::Triple::mips64el || 1104 m_arch.GetMachine() == llvm::Triple::mips || 1105 m_arch.GetMachine() == llvm::Triple::mipsel) 1106 return false; 1107 return true; 1108 } 1109 1110 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) { 1111 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1112 LLDB_LOG(log, "pid {0}", GetID()); 1113 1114 bool software_single_step = !SupportHardwareSingleStepping(); 1115 1116 if (software_single_step) { 1117 for (auto thread_sp : m_threads) { 1118 assert(thread_sp && "thread list should not contain NULL threads"); 1119 1120 const ResumeAction *const action = 1121 resume_actions.GetActionForThread(thread_sp->GetID(), true); 1122 if (action == nullptr) 1123 continue; 1124 1125 if (action->state == eStateStepping) { 1126 Status error = SetupSoftwareSingleStepping( 1127 static_cast<NativeThreadLinux &>(*thread_sp)); 1128 if (error.Fail()) 1129 return error; 1130 } 1131 } 1132 } 1133 1134 for (auto thread_sp : m_threads) { 1135 assert(thread_sp && "thread list should not contain NULL threads"); 1136 1137 const ResumeAction *const action = 1138 resume_actions.GetActionForThread(thread_sp->GetID(), true); 1139 1140 if (action == nullptr) { 1141 LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(), 1142 thread_sp->GetID()); 1143 continue; 1144 } 1145 1146 LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}", 1147 action->state, GetID(), thread_sp->GetID()); 1148 1149 switch (action->state) { 1150 case eStateRunning: 1151 case eStateStepping: { 1152 // Run the thread, possibly feeding it the signal. 1153 const int signo = action->signal; 1154 ResumeThread(static_cast<NativeThreadLinux &>(*thread_sp), action->state, 1155 signo); 1156 break; 1157 } 1158 1159 case eStateSuspended: 1160 case eStateStopped: 1161 llvm_unreachable("Unexpected state"); 1162 1163 default: 1164 return Status("NativeProcessLinux::%s (): unexpected state %s specified " 1165 "for pid %" PRIu64 ", tid %" PRIu64, 1166 __FUNCTION__, StateAsCString(action->state), GetID(), 1167 thread_sp->GetID()); 1168 } 1169 } 1170 1171 return Status(); 1172 } 1173 1174 Status NativeProcessLinux::Halt() { 1175 Status error; 1176 1177 if (kill(GetID(), SIGSTOP) != 0) 1178 error.SetErrorToErrno(); 1179 1180 return error; 1181 } 1182 1183 Status NativeProcessLinux::Detach() { 1184 Status error; 1185 1186 // Stop monitoring the inferior. 1187 m_sigchld_handle.reset(); 1188 1189 // Tell ptrace to detach from the process. 1190 if (GetID() == LLDB_INVALID_PROCESS_ID) 1191 return error; 1192 1193 for (auto thread_sp : m_threads) { 1194 Status e = Detach(thread_sp->GetID()); 1195 if (e.Fail()) 1196 error = 1197 e; // Save the error, but still attempt to detach from other threads. 1198 } 1199 1200 m_processor_trace_monitor.clear(); 1201 m_pt_proces_trace_id = LLDB_INVALID_UID; 1202 1203 return error; 1204 } 1205 1206 Status NativeProcessLinux::Signal(int signo) { 1207 Status error; 1208 1209 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1210 LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo, 1211 Host::GetSignalAsCString(signo), GetID()); 1212 1213 if (kill(GetID(), signo)) 1214 error.SetErrorToErrno(); 1215 1216 return error; 1217 } 1218 1219 Status NativeProcessLinux::Interrupt() { 1220 // Pick a running thread (or if none, a not-dead stopped thread) as 1221 // the chosen thread that will be the stop-reason thread. 1222 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1223 1224 NativeThreadProtocolSP running_thread_sp; 1225 NativeThreadProtocolSP stopped_thread_sp; 1226 1227 LLDB_LOG(log, "selecting running thread for interrupt target"); 1228 for (auto thread_sp : m_threads) { 1229 // The thread shouldn't be null but lets just cover that here. 1230 if (!thread_sp) 1231 continue; 1232 1233 // If we have a running or stepping thread, we'll call that the 1234 // target of the interrupt. 1235 const auto thread_state = thread_sp->GetState(); 1236 if (thread_state == eStateRunning || thread_state == eStateStepping) { 1237 running_thread_sp = thread_sp; 1238 break; 1239 } else if (!stopped_thread_sp && StateIsStoppedState(thread_state, true)) { 1240 // Remember the first non-dead stopped thread. We'll use that as a backup 1241 // if there are no running threads. 1242 stopped_thread_sp = thread_sp; 1243 } 1244 } 1245 1246 if (!running_thread_sp && !stopped_thread_sp) { 1247 Status error("found no running/stepping or live stopped threads as target " 1248 "for interrupt"); 1249 LLDB_LOG(log, "skipping due to error: {0}", error); 1250 1251 return error; 1252 } 1253 1254 NativeThreadProtocolSP deferred_signal_thread_sp = 1255 running_thread_sp ? running_thread_sp : stopped_thread_sp; 1256 1257 LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(), 1258 running_thread_sp ? "running" : "stopped", 1259 deferred_signal_thread_sp->GetID()); 1260 1261 StopRunningThreads(deferred_signal_thread_sp->GetID()); 1262 1263 return Status(); 1264 } 1265 1266 Status NativeProcessLinux::Kill() { 1267 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1268 LLDB_LOG(log, "pid {0}", GetID()); 1269 1270 Status error; 1271 1272 switch (m_state) { 1273 case StateType::eStateInvalid: 1274 case StateType::eStateExited: 1275 case StateType::eStateCrashed: 1276 case StateType::eStateDetached: 1277 case StateType::eStateUnloaded: 1278 // Nothing to do - the process is already dead. 1279 LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(), 1280 m_state); 1281 return error; 1282 1283 case StateType::eStateConnected: 1284 case StateType::eStateAttaching: 1285 case StateType::eStateLaunching: 1286 case StateType::eStateStopped: 1287 case StateType::eStateRunning: 1288 case StateType::eStateStepping: 1289 case StateType::eStateSuspended: 1290 // We can try to kill a process in these states. 1291 break; 1292 } 1293 1294 if (kill(GetID(), SIGKILL) != 0) { 1295 error.SetErrorToErrno(); 1296 return error; 1297 } 1298 1299 return error; 1300 } 1301 1302 static Status 1303 ParseMemoryRegionInfoFromProcMapsLine(llvm::StringRef &maps_line, 1304 MemoryRegionInfo &memory_region_info) { 1305 memory_region_info.Clear(); 1306 1307 StringExtractor line_extractor(maps_line); 1308 1309 // Format: {address_start_hex}-{address_end_hex} perms offset dev inode 1310 // pathname 1311 // perms: rwxp (letter is present if set, '-' if not, final character is 1312 // p=private, s=shared). 1313 1314 // Parse out the starting address 1315 lldb::addr_t start_address = line_extractor.GetHexMaxU64(false, 0); 1316 1317 // Parse out hyphen separating start and end address from range. 1318 if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != '-')) 1319 return Status( 1320 "malformed /proc/{pid}/maps entry, missing dash between address range"); 1321 1322 // Parse out the ending address 1323 lldb::addr_t end_address = line_extractor.GetHexMaxU64(false, start_address); 1324 1325 // Parse out the space after the address. 1326 if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != ' ')) 1327 return Status( 1328 "malformed /proc/{pid}/maps entry, missing space after range"); 1329 1330 // Save the range. 1331 memory_region_info.GetRange().SetRangeBase(start_address); 1332 memory_region_info.GetRange().SetRangeEnd(end_address); 1333 1334 // Any memory region in /proc/{pid}/maps is by definition mapped into the 1335 // process. 1336 memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes); 1337 1338 // Parse out each permission entry. 1339 if (line_extractor.GetBytesLeft() < 4) 1340 return Status("malformed /proc/{pid}/maps entry, missing some portion of " 1341 "permissions"); 1342 1343 // Handle read permission. 1344 const char read_perm_char = line_extractor.GetChar(); 1345 if (read_perm_char == 'r') 1346 memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eYes); 1347 else if (read_perm_char == '-') 1348 memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1349 else 1350 return Status("unexpected /proc/{pid}/maps read permission char"); 1351 1352 // Handle write permission. 1353 const char write_perm_char = line_extractor.GetChar(); 1354 if (write_perm_char == 'w') 1355 memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eYes); 1356 else if (write_perm_char == '-') 1357 memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1358 else 1359 return Status("unexpected /proc/{pid}/maps write permission char"); 1360 1361 // Handle execute permission. 1362 const char exec_perm_char = line_extractor.GetChar(); 1363 if (exec_perm_char == 'x') 1364 memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eYes); 1365 else if (exec_perm_char == '-') 1366 memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1367 else 1368 return Status("unexpected /proc/{pid}/maps exec permission char"); 1369 1370 line_extractor.GetChar(); // Read the private bit 1371 line_extractor.SkipSpaces(); // Skip the separator 1372 line_extractor.GetHexMaxU64(false, 0); // Read the offset 1373 line_extractor.GetHexMaxU64(false, 0); // Read the major device number 1374 line_extractor.GetChar(); // Read the device id separator 1375 line_extractor.GetHexMaxU64(false, 0); // Read the major device number 1376 line_extractor.SkipSpaces(); // Skip the separator 1377 line_extractor.GetU64(0, 10); // Read the inode number 1378 1379 line_extractor.SkipSpaces(); 1380 const char *name = line_extractor.Peek(); 1381 if (name) 1382 memory_region_info.SetName(name); 1383 1384 return Status(); 1385 } 1386 1387 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr, 1388 MemoryRegionInfo &range_info) { 1389 // FIXME review that the final memory region returned extends to the end of 1390 // the virtual address space, 1391 // with no perms if it is not mapped. 1392 1393 // Use an approach that reads memory regions from /proc/{pid}/maps. 1394 // Assume proc maps entries are in ascending order. 1395 // FIXME assert if we find differently. 1396 1397 if (m_supports_mem_region == LazyBool::eLazyBoolNo) { 1398 // We're done. 1399 return Status("unsupported"); 1400 } 1401 1402 Status error = PopulateMemoryRegionCache(); 1403 if (error.Fail()) { 1404 return error; 1405 } 1406 1407 lldb::addr_t prev_base_address = 0; 1408 1409 // FIXME start by finding the last region that is <= target address using 1410 // binary search. Data is sorted. 1411 // There can be a ton of regions on pthreads apps with lots of threads. 1412 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end(); 1413 ++it) { 1414 MemoryRegionInfo &proc_entry_info = it->first; 1415 1416 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 1417 assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) && 1418 "descending /proc/pid/maps entries detected, unexpected"); 1419 prev_base_address = proc_entry_info.GetRange().GetRangeBase(); 1420 UNUSED_IF_ASSERT_DISABLED(prev_base_address); 1421 1422 // If the target address comes before this entry, indicate distance to next 1423 // region. 1424 if (load_addr < proc_entry_info.GetRange().GetRangeBase()) { 1425 range_info.GetRange().SetRangeBase(load_addr); 1426 range_info.GetRange().SetByteSize( 1427 proc_entry_info.GetRange().GetRangeBase() - load_addr); 1428 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1429 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1430 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1431 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1432 1433 return error; 1434 } else if (proc_entry_info.GetRange().Contains(load_addr)) { 1435 // The target address is within the memory region we're processing here. 1436 range_info = proc_entry_info; 1437 return error; 1438 } 1439 1440 // The target memory address comes somewhere after the region we just 1441 // parsed. 1442 } 1443 1444 // If we made it here, we didn't find an entry that contained the given 1445 // address. Return the 1446 // load_addr as start and the amount of bytes betwwen load address and the end 1447 // of the memory as 1448 // size. 1449 range_info.GetRange().SetRangeBase(load_addr); 1450 range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS); 1451 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1452 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1453 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1454 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1455 return error; 1456 } 1457 1458 Status NativeProcessLinux::PopulateMemoryRegionCache() { 1459 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1460 1461 // If our cache is empty, pull the latest. There should always be at least 1462 // one memory region if memory region handling is supported. 1463 if (!m_mem_region_cache.empty()) { 1464 LLDB_LOG(log, "reusing {0} cached memory region entries", 1465 m_mem_region_cache.size()); 1466 return Status(); 1467 } 1468 1469 auto BufferOrError = getProcFile(GetID(), "maps"); 1470 if (!BufferOrError) { 1471 m_supports_mem_region = LazyBool::eLazyBoolNo; 1472 return BufferOrError.getError(); 1473 } 1474 StringRef Rest = BufferOrError.get()->getBuffer(); 1475 while (! Rest.empty()) { 1476 StringRef Line; 1477 std::tie(Line, Rest) = Rest.split('\n'); 1478 MemoryRegionInfo info; 1479 const Status parse_error = 1480 ParseMemoryRegionInfoFromProcMapsLine(Line, info); 1481 if (parse_error.Fail()) { 1482 LLDB_LOG(log, "failed to parse proc maps line '{0}': {1}", Line, 1483 parse_error); 1484 m_supports_mem_region = LazyBool::eLazyBoolNo; 1485 return parse_error; 1486 } 1487 m_mem_region_cache.emplace_back( 1488 info, FileSpec(info.GetName().GetCString(), true)); 1489 } 1490 1491 if (m_mem_region_cache.empty()) { 1492 // No entries after attempting to read them. This shouldn't happen if 1493 // /proc/{pid}/maps is supported. Assume we don't support map entries 1494 // via procfs. 1495 m_supports_mem_region = LazyBool::eLazyBoolNo; 1496 LLDB_LOG(log, 1497 "failed to find any procfs maps entries, assuming no support " 1498 "for memory region metadata retrieval"); 1499 return Status("not supported"); 1500 } 1501 1502 LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps", 1503 m_mem_region_cache.size(), GetID()); 1504 1505 // We support memory retrieval, remember that. 1506 m_supports_mem_region = LazyBool::eLazyBoolYes; 1507 return Status(); 1508 } 1509 1510 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) { 1511 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1512 LLDB_LOG(log, "newBumpId={0}", newBumpId); 1513 LLDB_LOG(log, "clearing {0} entries from memory region cache", 1514 m_mem_region_cache.size()); 1515 m_mem_region_cache.clear(); 1516 } 1517 1518 Status NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, 1519 lldb::addr_t &addr) { 1520 // FIXME implementing this requires the equivalent of 1521 // InferiorCallPOSIX::InferiorCallMmap, which depends on 1522 // functional ThreadPlans working with Native*Protocol. 1523 #if 1 1524 return Status("not implemented yet"); 1525 #else 1526 addr = LLDB_INVALID_ADDRESS; 1527 1528 unsigned prot = 0; 1529 if (permissions & lldb::ePermissionsReadable) 1530 prot |= eMmapProtRead; 1531 if (permissions & lldb::ePermissionsWritable) 1532 prot |= eMmapProtWrite; 1533 if (permissions & lldb::ePermissionsExecutable) 1534 prot |= eMmapProtExec; 1535 1536 // TODO implement this directly in NativeProcessLinux 1537 // (and lift to NativeProcessPOSIX if/when that class is 1538 // refactored out). 1539 if (InferiorCallMmap(this, addr, 0, size, prot, 1540 eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { 1541 m_addr_to_mmap_size[addr] = size; 1542 return Status(); 1543 } else { 1544 addr = LLDB_INVALID_ADDRESS; 1545 return Status("unable to allocate %" PRIu64 1546 " bytes of memory with permissions %s", 1547 size, GetPermissionsAsCString(permissions)); 1548 } 1549 #endif 1550 } 1551 1552 Status NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) { 1553 // FIXME see comments in AllocateMemory - required lower-level 1554 // bits not in place yet (ThreadPlans) 1555 return Status("not implemented"); 1556 } 1557 1558 lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress() { 1559 // punt on this for now 1560 return LLDB_INVALID_ADDRESS; 1561 } 1562 1563 size_t NativeProcessLinux::UpdateThreads() { 1564 // The NativeProcessLinux monitoring threads are always up to date 1565 // with respect to thread state and they keep the thread list 1566 // populated properly. All this method needs to do is return the 1567 // thread count. 1568 return m_threads.size(); 1569 } 1570 1571 bool NativeProcessLinux::GetArchitecture(ArchSpec &arch) const { 1572 arch = m_arch; 1573 return true; 1574 } 1575 1576 Status NativeProcessLinux::GetSoftwareBreakpointPCOffset( 1577 uint32_t &actual_opcode_size) { 1578 // FIXME put this behind a breakpoint protocol class that can be 1579 // set per architecture. Need ARM, MIPS support here. 1580 static const uint8_t g_i386_opcode[] = {0xCC}; 1581 static const uint8_t g_s390x_opcode[] = {0x00, 0x01}; 1582 1583 switch (m_arch.GetMachine()) { 1584 case llvm::Triple::x86: 1585 case llvm::Triple::x86_64: 1586 actual_opcode_size = static_cast<uint32_t>(sizeof(g_i386_opcode)); 1587 return Status(); 1588 1589 case llvm::Triple::systemz: 1590 actual_opcode_size = static_cast<uint32_t>(sizeof(g_s390x_opcode)); 1591 return Status(); 1592 1593 case llvm::Triple::arm: 1594 case llvm::Triple::aarch64: 1595 case llvm::Triple::mips64: 1596 case llvm::Triple::mips64el: 1597 case llvm::Triple::mips: 1598 case llvm::Triple::mipsel: 1599 // On these architectures the PC don't get updated for breakpoint hits 1600 actual_opcode_size = 0; 1601 return Status(); 1602 1603 default: 1604 assert(false && "CPU type not supported!"); 1605 return Status("CPU type not supported"); 1606 } 1607 } 1608 1609 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size, 1610 bool hardware) { 1611 if (hardware) 1612 return SetHardwareBreakpoint(addr, size); 1613 else 1614 return SetSoftwareBreakpoint(addr, size); 1615 } 1616 1617 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) { 1618 if (hardware) 1619 return RemoveHardwareBreakpoint(addr); 1620 else 1621 return NativeProcessProtocol::RemoveBreakpoint(addr); 1622 } 1623 1624 Status NativeProcessLinux::GetSoftwareBreakpointTrapOpcode( 1625 size_t trap_opcode_size_hint, size_t &actual_opcode_size, 1626 const uint8_t *&trap_opcode_bytes) { 1627 // FIXME put this behind a breakpoint protocol class that can be set per 1628 // architecture. Need MIPS support here. 1629 static const uint8_t g_aarch64_opcode[] = {0x00, 0x00, 0x20, 0xd4}; 1630 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 1631 // linux kernel does otherwise. 1632 static const uint8_t g_arm_breakpoint_opcode[] = {0xf0, 0x01, 0xf0, 0xe7}; 1633 static const uint8_t g_i386_opcode[] = {0xCC}; 1634 static const uint8_t g_mips64_opcode[] = {0x00, 0x00, 0x00, 0x0d}; 1635 static const uint8_t g_mips64el_opcode[] = {0x0d, 0x00, 0x00, 0x00}; 1636 static const uint8_t g_s390x_opcode[] = {0x00, 0x01}; 1637 static const uint8_t g_thumb_breakpoint_opcode[] = {0x01, 0xde}; 1638 1639 switch (m_arch.GetMachine()) { 1640 case llvm::Triple::aarch64: 1641 trap_opcode_bytes = g_aarch64_opcode; 1642 actual_opcode_size = sizeof(g_aarch64_opcode); 1643 return Status(); 1644 1645 case llvm::Triple::arm: 1646 switch (trap_opcode_size_hint) { 1647 case 2: 1648 trap_opcode_bytes = g_thumb_breakpoint_opcode; 1649 actual_opcode_size = sizeof(g_thumb_breakpoint_opcode); 1650 return Status(); 1651 case 4: 1652 trap_opcode_bytes = g_arm_breakpoint_opcode; 1653 actual_opcode_size = sizeof(g_arm_breakpoint_opcode); 1654 return Status(); 1655 default: 1656 assert(false && "Unrecognised trap opcode size hint!"); 1657 return Status("Unrecognised trap opcode size hint!"); 1658 } 1659 1660 case llvm::Triple::x86: 1661 case llvm::Triple::x86_64: 1662 trap_opcode_bytes = g_i386_opcode; 1663 actual_opcode_size = sizeof(g_i386_opcode); 1664 return Status(); 1665 1666 case llvm::Triple::mips: 1667 case llvm::Triple::mips64: 1668 trap_opcode_bytes = g_mips64_opcode; 1669 actual_opcode_size = sizeof(g_mips64_opcode); 1670 return Status(); 1671 1672 case llvm::Triple::mipsel: 1673 case llvm::Triple::mips64el: 1674 trap_opcode_bytes = g_mips64el_opcode; 1675 actual_opcode_size = sizeof(g_mips64el_opcode); 1676 return Status(); 1677 1678 case llvm::Triple::systemz: 1679 trap_opcode_bytes = g_s390x_opcode; 1680 actual_opcode_size = sizeof(g_s390x_opcode); 1681 return Status(); 1682 1683 default: 1684 assert(false && "CPU type not supported!"); 1685 return Status("CPU type not supported"); 1686 } 1687 } 1688 1689 #if 0 1690 ProcessMessage::CrashReason 1691 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info) 1692 { 1693 ProcessMessage::CrashReason reason; 1694 assert(info->si_signo == SIGSEGV); 1695 1696 reason = ProcessMessage::eInvalidCrashReason; 1697 1698 switch (info->si_code) 1699 { 1700 default: 1701 assert(false && "unexpected si_code for SIGSEGV"); 1702 break; 1703 case SI_KERNEL: 1704 // Linux will occasionally send spurious SI_KERNEL codes. 1705 // (this is poorly documented in sigaction) 1706 // One way to get this is via unaligned SIMD loads. 1707 reason = ProcessMessage::eInvalidAddress; // for lack of anything better 1708 break; 1709 case SEGV_MAPERR: 1710 reason = ProcessMessage::eInvalidAddress; 1711 break; 1712 case SEGV_ACCERR: 1713 reason = ProcessMessage::ePrivilegedAddress; 1714 break; 1715 } 1716 1717 return reason; 1718 } 1719 #endif 1720 1721 #if 0 1722 ProcessMessage::CrashReason 1723 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info) 1724 { 1725 ProcessMessage::CrashReason reason; 1726 assert(info->si_signo == SIGILL); 1727 1728 reason = ProcessMessage::eInvalidCrashReason; 1729 1730 switch (info->si_code) 1731 { 1732 default: 1733 assert(false && "unexpected si_code for SIGILL"); 1734 break; 1735 case ILL_ILLOPC: 1736 reason = ProcessMessage::eIllegalOpcode; 1737 break; 1738 case ILL_ILLOPN: 1739 reason = ProcessMessage::eIllegalOperand; 1740 break; 1741 case ILL_ILLADR: 1742 reason = ProcessMessage::eIllegalAddressingMode; 1743 break; 1744 case ILL_ILLTRP: 1745 reason = ProcessMessage::eIllegalTrap; 1746 break; 1747 case ILL_PRVOPC: 1748 reason = ProcessMessage::ePrivilegedOpcode; 1749 break; 1750 case ILL_PRVREG: 1751 reason = ProcessMessage::ePrivilegedRegister; 1752 break; 1753 case ILL_COPROC: 1754 reason = ProcessMessage::eCoprocessorError; 1755 break; 1756 case ILL_BADSTK: 1757 reason = ProcessMessage::eInternalStackError; 1758 break; 1759 } 1760 1761 return reason; 1762 } 1763 #endif 1764 1765 #if 0 1766 ProcessMessage::CrashReason 1767 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info) 1768 { 1769 ProcessMessage::CrashReason reason; 1770 assert(info->si_signo == SIGFPE); 1771 1772 reason = ProcessMessage::eInvalidCrashReason; 1773 1774 switch (info->si_code) 1775 { 1776 default: 1777 assert(false && "unexpected si_code for SIGFPE"); 1778 break; 1779 case FPE_INTDIV: 1780 reason = ProcessMessage::eIntegerDivideByZero; 1781 break; 1782 case FPE_INTOVF: 1783 reason = ProcessMessage::eIntegerOverflow; 1784 break; 1785 case FPE_FLTDIV: 1786 reason = ProcessMessage::eFloatDivideByZero; 1787 break; 1788 case FPE_FLTOVF: 1789 reason = ProcessMessage::eFloatOverflow; 1790 break; 1791 case FPE_FLTUND: 1792 reason = ProcessMessage::eFloatUnderflow; 1793 break; 1794 case FPE_FLTRES: 1795 reason = ProcessMessage::eFloatInexactResult; 1796 break; 1797 case FPE_FLTINV: 1798 reason = ProcessMessage::eFloatInvalidOperation; 1799 break; 1800 case FPE_FLTSUB: 1801 reason = ProcessMessage::eFloatSubscriptRange; 1802 break; 1803 } 1804 1805 return reason; 1806 } 1807 #endif 1808 1809 #if 0 1810 ProcessMessage::CrashReason 1811 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info) 1812 { 1813 ProcessMessage::CrashReason reason; 1814 assert(info->si_signo == SIGBUS); 1815 1816 reason = ProcessMessage::eInvalidCrashReason; 1817 1818 switch (info->si_code) 1819 { 1820 default: 1821 assert(false && "unexpected si_code for SIGBUS"); 1822 break; 1823 case BUS_ADRALN: 1824 reason = ProcessMessage::eIllegalAlignment; 1825 break; 1826 case BUS_ADRERR: 1827 reason = ProcessMessage::eIllegalAddress; 1828 break; 1829 case BUS_OBJERR: 1830 reason = ProcessMessage::eHardwareError; 1831 break; 1832 } 1833 1834 return reason; 1835 } 1836 #endif 1837 1838 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size, 1839 size_t &bytes_read) { 1840 if (ProcessVmReadvSupported()) { 1841 // The process_vm_readv path is about 50 times faster than ptrace api. We 1842 // want to use 1843 // this syscall if it is supported. 1844 1845 const ::pid_t pid = GetID(); 1846 1847 struct iovec local_iov, remote_iov; 1848 local_iov.iov_base = buf; 1849 local_iov.iov_len = size; 1850 remote_iov.iov_base = reinterpret_cast<void *>(addr); 1851 remote_iov.iov_len = size; 1852 1853 bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0); 1854 const bool success = bytes_read == size; 1855 1856 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1857 LLDB_LOG(log, 1858 "using process_vm_readv to read {0} bytes from inferior " 1859 "address {1:x}: {2}", 1860 size, addr, success ? "Success" : llvm::sys::StrError(errno)); 1861 1862 if (success) 1863 return Status(); 1864 // else the call failed for some reason, let's retry the read using ptrace 1865 // api. 1866 } 1867 1868 unsigned char *dst = static_cast<unsigned char *>(buf); 1869 size_t remainder; 1870 long data; 1871 1872 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1873 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1874 1875 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { 1876 Status error = NativeProcessLinux::PtraceWrapper( 1877 PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data); 1878 if (error.Fail()) 1879 return error; 1880 1881 remainder = size - bytes_read; 1882 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1883 1884 // Copy the data into our buffer 1885 memcpy(dst, &data, remainder); 1886 1887 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1888 addr += k_ptrace_word_size; 1889 dst += k_ptrace_word_size; 1890 } 1891 return Status(); 1892 } 1893 1894 Status NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, 1895 size_t size, 1896 size_t &bytes_read) { 1897 Status error = ReadMemory(addr, buf, size, bytes_read); 1898 if (error.Fail()) 1899 return error; 1900 return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size); 1901 } 1902 1903 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, 1904 size_t size, size_t &bytes_written) { 1905 const unsigned char *src = static_cast<const unsigned char *>(buf); 1906 size_t remainder; 1907 Status error; 1908 1909 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1910 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1911 1912 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { 1913 remainder = size - bytes_written; 1914 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1915 1916 if (remainder == k_ptrace_word_size) { 1917 unsigned long data = 0; 1918 memcpy(&data, src, k_ptrace_word_size); 1919 1920 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1921 error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), 1922 (void *)addr, (void *)data); 1923 if (error.Fail()) 1924 return error; 1925 } else { 1926 unsigned char buff[8]; 1927 size_t bytes_read; 1928 error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read); 1929 if (error.Fail()) 1930 return error; 1931 1932 memcpy(buff, src, remainder); 1933 1934 size_t bytes_written_rec; 1935 error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec); 1936 if (error.Fail()) 1937 return error; 1938 1939 LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src, 1940 *(unsigned long *)buff); 1941 } 1942 1943 addr += k_ptrace_word_size; 1944 src += k_ptrace_word_size; 1945 } 1946 return error; 1947 } 1948 1949 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) { 1950 return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); 1951 } 1952 1953 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid, 1954 unsigned long *message) { 1955 return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); 1956 } 1957 1958 Status NativeProcessLinux::Detach(lldb::tid_t tid) { 1959 if (tid == LLDB_INVALID_THREAD_ID) 1960 return Status(); 1961 1962 return PtraceWrapper(PTRACE_DETACH, tid); 1963 } 1964 1965 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) { 1966 for (auto thread_sp : m_threads) { 1967 assert(thread_sp && "thread list should not contain NULL threads"); 1968 if (thread_sp->GetID() == thread_id) { 1969 // We have this thread. 1970 return true; 1971 } 1972 } 1973 1974 // We don't have this thread. 1975 return false; 1976 } 1977 1978 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) { 1979 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1980 LLDB_LOG(log, "tid: {0})", thread_id); 1981 1982 bool found = false; 1983 for (auto it = m_threads.begin(); it != m_threads.end(); ++it) { 1984 if (*it && ((*it)->GetID() == thread_id)) { 1985 m_threads.erase(it); 1986 found = true; 1987 break; 1988 } 1989 } 1990 1991 if (found) 1992 StopTracingForThread(thread_id); 1993 SignalIfAllThreadsStopped(); 1994 return found; 1995 } 1996 1997 NativeThreadLinuxSP NativeProcessLinux::AddThread(lldb::tid_t thread_id) { 1998 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD)); 1999 LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id); 2000 2001 assert(!HasThreadNoLock(thread_id) && 2002 "attempted to add a thread by id that already exists"); 2003 2004 // If this is the first thread, save it as the current thread 2005 if (m_threads.empty()) 2006 SetCurrentThreadID(thread_id); 2007 2008 auto thread_sp = std::make_shared<NativeThreadLinux>(*this, thread_id); 2009 m_threads.push_back(thread_sp); 2010 2011 if (m_pt_proces_trace_id != LLDB_INVALID_UID) { 2012 auto traceMonitor = ProcessorTraceMonitor::Create( 2013 GetID(), thread_id, m_pt_process_trace_config, true); 2014 if (traceMonitor) { 2015 m_pt_traced_thread_group.insert(thread_id); 2016 m_processor_trace_monitor.insert( 2017 std::make_pair(thread_id, std::move(*traceMonitor))); 2018 } else { 2019 LLDB_LOG(log, "failed to start trace on thread {0}", thread_id); 2020 Status error(traceMonitor.takeError()); 2021 LLDB_LOG(log, "error {0}", error); 2022 } 2023 } 2024 2025 return thread_sp; 2026 } 2027 2028 Status 2029 NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread) { 2030 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 2031 2032 Status error; 2033 2034 // Find out the size of a breakpoint (might depend on where we are in the 2035 // code). 2036 NativeRegisterContextSP context_sp = thread.GetRegisterContext(); 2037 if (!context_sp) { 2038 error.SetErrorString("cannot get a NativeRegisterContext for the thread"); 2039 LLDB_LOG(log, "failed: {0}", error); 2040 return error; 2041 } 2042 2043 uint32_t breakpoint_size = 0; 2044 error = GetSoftwareBreakpointPCOffset(breakpoint_size); 2045 if (error.Fail()) { 2046 LLDB_LOG(log, "GetBreakpointSize() failed: {0}", error); 2047 return error; 2048 } else 2049 LLDB_LOG(log, "breakpoint size: {0}", breakpoint_size); 2050 2051 // First try probing for a breakpoint at a software breakpoint location: PC - 2052 // breakpoint size. 2053 const lldb::addr_t initial_pc_addr = 2054 context_sp->GetPCfromBreakpointLocation(); 2055 lldb::addr_t breakpoint_addr = initial_pc_addr; 2056 if (breakpoint_size > 0) { 2057 // Do not allow breakpoint probe to wrap around. 2058 if (breakpoint_addr >= breakpoint_size) 2059 breakpoint_addr -= breakpoint_size; 2060 } 2061 2062 // Check if we stopped because of a breakpoint. 2063 NativeBreakpointSP breakpoint_sp; 2064 error = m_breakpoint_list.GetBreakpoint(breakpoint_addr, breakpoint_sp); 2065 if (!error.Success() || !breakpoint_sp) { 2066 // We didn't find one at a software probe location. Nothing to do. 2067 LLDB_LOG(log, 2068 "pid {0} no lldb breakpoint found at current pc with " 2069 "adjustment: {1}", 2070 GetID(), breakpoint_addr); 2071 return Status(); 2072 } 2073 2074 // If the breakpoint is not a software breakpoint, nothing to do. 2075 if (!breakpoint_sp->IsSoftwareBreakpoint()) { 2076 LLDB_LOG( 2077 log, 2078 "pid {0} breakpoint found at {1:x}, not software, nothing to adjust", 2079 GetID(), breakpoint_addr); 2080 return Status(); 2081 } 2082 2083 // 2084 // We have a software breakpoint and need to adjust the PC. 2085 // 2086 2087 // Sanity check. 2088 if (breakpoint_size == 0) { 2089 // Nothing to do! How did we get here? 2090 LLDB_LOG(log, 2091 "pid {0} breakpoint found at {1:x}, it is software, but the " 2092 "size is zero, nothing to do (unexpected)", 2093 GetID(), breakpoint_addr); 2094 return Status(); 2095 } 2096 2097 // Change the program counter. 2098 LLDB_LOG(log, "pid {0} tid {1}: changing PC from {2:x} to {3:x}", GetID(), 2099 thread.GetID(), initial_pc_addr, breakpoint_addr); 2100 2101 error = context_sp->SetPC(breakpoint_addr); 2102 if (error.Fail()) { 2103 LLDB_LOG(log, "pid {0} tid {1}: failed to set PC: {2}", GetID(), 2104 thread.GetID(), error); 2105 return error; 2106 } 2107 2108 return error; 2109 } 2110 2111 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path, 2112 FileSpec &file_spec) { 2113 Status error = PopulateMemoryRegionCache(); 2114 if (error.Fail()) 2115 return error; 2116 2117 FileSpec module_file_spec(module_path, true); 2118 2119 file_spec.Clear(); 2120 for (const auto &it : m_mem_region_cache) { 2121 if (it.second.GetFilename() == module_file_spec.GetFilename()) { 2122 file_spec = it.second; 2123 return Status(); 2124 } 2125 } 2126 return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 2127 module_file_spec.GetFilename().AsCString(), GetID()); 2128 } 2129 2130 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name, 2131 lldb::addr_t &load_addr) { 2132 load_addr = LLDB_INVALID_ADDRESS; 2133 Status error = PopulateMemoryRegionCache(); 2134 if (error.Fail()) 2135 return error; 2136 2137 FileSpec file(file_name, false); 2138 for (const auto &it : m_mem_region_cache) { 2139 if (it.second == file) { 2140 load_addr = it.first.GetRange().GetRangeBase(); 2141 return Status(); 2142 } 2143 } 2144 return Status("No load address found for specified file."); 2145 } 2146 2147 NativeThreadLinuxSP NativeProcessLinux::GetThreadByID(lldb::tid_t tid) { 2148 return std::static_pointer_cast<NativeThreadLinux>( 2149 NativeProcessProtocol::GetThreadByID(tid)); 2150 } 2151 2152 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, 2153 lldb::StateType state, int signo) { 2154 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2155 LLDB_LOG(log, "tid: {0}", thread.GetID()); 2156 2157 // Before we do the resume below, first check if we have a pending 2158 // stop notification that is currently waiting for 2159 // all threads to stop. This is potentially a buggy situation since 2160 // we're ostensibly waiting for threads to stop before we send out the 2161 // pending notification, and here we are resuming one before we send 2162 // out the pending stop notification. 2163 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 2164 LLDB_LOG(log, 2165 "about to resume tid {0} per explicit request but we have a " 2166 "pending stop notification (tid {1}) that is actively " 2167 "waiting for this thread to stop. Valid sequence of events?", 2168 thread.GetID(), m_pending_notification_tid); 2169 } 2170 2171 // Request a resume. We expect this to be synchronous and the system 2172 // to reflect it is running after this completes. 2173 switch (state) { 2174 case eStateRunning: { 2175 const auto resume_result = thread.Resume(signo); 2176 if (resume_result.Success()) 2177 SetState(eStateRunning, true); 2178 return resume_result; 2179 } 2180 case eStateStepping: { 2181 const auto step_result = thread.SingleStep(signo); 2182 if (step_result.Success()) 2183 SetState(eStateRunning, true); 2184 return step_result; 2185 } 2186 default: 2187 LLDB_LOG(log, "Unhandled state {0}.", state); 2188 llvm_unreachable("Unhandled state for resume"); 2189 } 2190 } 2191 2192 //===----------------------------------------------------------------------===// 2193 2194 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) { 2195 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2196 LLDB_LOG(log, "about to process event: (triggering_tid: {0})", 2197 triggering_tid); 2198 2199 m_pending_notification_tid = triggering_tid; 2200 2201 // Request a stop for all the thread stops that need to be stopped 2202 // and are not already known to be stopped. 2203 for (const auto &thread_sp : m_threads) { 2204 if (StateIsRunningState(thread_sp->GetState())) 2205 static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop(); 2206 } 2207 2208 SignalIfAllThreadsStopped(); 2209 LLDB_LOG(log, "event processing done"); 2210 } 2211 2212 void NativeProcessLinux::SignalIfAllThreadsStopped() { 2213 if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) 2214 return; // No pending notification. Nothing to do. 2215 2216 for (const auto &thread_sp : m_threads) { 2217 if (StateIsRunningState(thread_sp->GetState())) 2218 return; // Some threads are still running. Don't signal yet. 2219 } 2220 2221 // We have a pending notification and all threads have stopped. 2222 Log *log( 2223 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 2224 2225 // Clear any temporary breakpoints we used to implement software single 2226 // stepping. 2227 for (const auto &thread_info : m_threads_stepping_with_breakpoint) { 2228 Status error = RemoveBreakpoint(thread_info.second); 2229 if (error.Fail()) 2230 LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}", 2231 thread_info.first, error); 2232 } 2233 m_threads_stepping_with_breakpoint.clear(); 2234 2235 // Notify the delegate about the stop 2236 SetCurrentThreadID(m_pending_notification_tid); 2237 SetState(StateType::eStateStopped, true); 2238 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 2239 } 2240 2241 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) { 2242 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2243 LLDB_LOG(log, "tid: {0}", thread.GetID()); 2244 2245 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && 2246 StateIsRunningState(thread.GetState())) { 2247 // We will need to wait for this new thread to stop as well before firing 2248 // the 2249 // notification. 2250 thread.RequestStop(); 2251 } 2252 } 2253 2254 void NativeProcessLinux::SigchldHandler() { 2255 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 2256 // Process all pending waitpid notifications. 2257 while (true) { 2258 int status = -1; 2259 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, -1, &status, 2260 __WALL | __WNOTHREAD | WNOHANG); 2261 2262 if (wait_pid == 0) 2263 break; // We are done. 2264 2265 if (wait_pid == -1) { 2266 Status error(errno, eErrorTypePOSIX); 2267 LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error); 2268 break; 2269 } 2270 2271 WaitStatus wait_status = WaitStatus::Decode(status); 2272 bool exited = wait_status.type == WaitStatus::Exit || 2273 (wait_status.type == WaitStatus::Signal && 2274 wait_pid == static_cast<::pid_t>(GetID())); 2275 2276 LLDB_LOG( 2277 log, 2278 "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}", 2279 wait_pid, wait_status, exited); 2280 2281 MonitorCallback(wait_pid, exited, wait_status); 2282 } 2283 } 2284 2285 // Wrapper for ptrace to catch errors and log calls. 2286 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. 2287 // for PTRACE_PEEK*) 2288 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, 2289 void *data, size_t data_size, 2290 long *result) { 2291 Status error; 2292 long int ret; 2293 2294 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2295 2296 PtraceDisplayBytes(req, data, data_size); 2297 2298 errno = 0; 2299 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 2300 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 2301 *(unsigned int *)addr, data); 2302 else 2303 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 2304 addr, data); 2305 2306 if (ret == -1) 2307 error.SetErrorToErrno(); 2308 2309 if (result) 2310 *result = ret; 2311 2312 LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data, 2313 data_size, ret); 2314 2315 PtraceDisplayBytes(req, data, data_size); 2316 2317 if (error.Fail()) 2318 LLDB_LOG(log, "ptrace() failed: {0}", error); 2319 2320 return error; 2321 } 2322 2323 llvm::Expected<ProcessorTraceMonitor &> 2324 NativeProcessLinux::LookupProcessorTraceInstance(lldb::user_id_t traceid, 2325 lldb::tid_t thread) { 2326 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2327 if (thread == LLDB_INVALID_THREAD_ID && traceid == m_pt_proces_trace_id) { 2328 LLDB_LOG(log, "thread not specified: {0}", traceid); 2329 return Status("tracing not active thread not specified").ToError(); 2330 } 2331 2332 for (auto& iter : m_processor_trace_monitor) { 2333 if (traceid == iter.second->GetTraceID() && 2334 (thread == iter.first || thread == LLDB_INVALID_THREAD_ID)) 2335 return *(iter.second); 2336 } 2337 2338 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 2339 return Status("tracing not active for this thread").ToError(); 2340 } 2341 2342 Status NativeProcessLinux::GetMetaData(lldb::user_id_t traceid, 2343 lldb::tid_t thread, 2344 llvm::MutableArrayRef<uint8_t> &buffer, 2345 size_t offset) { 2346 TraceOptions trace_options; 2347 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2348 Status error; 2349 2350 LLDB_LOG(log, "traceid {0}", traceid); 2351 2352 auto perf_monitor = LookupProcessorTraceInstance(traceid, thread); 2353 if (!perf_monitor) { 2354 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 2355 buffer = buffer.slice(buffer.size()); 2356 error = perf_monitor.takeError(); 2357 return error; 2358 } 2359 return (*perf_monitor).ReadPerfTraceData(buffer, offset); 2360 } 2361 2362 Status NativeProcessLinux::GetData(lldb::user_id_t traceid, lldb::tid_t thread, 2363 llvm::MutableArrayRef<uint8_t> &buffer, 2364 size_t offset) { 2365 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2366 Status error; 2367 2368 LLDB_LOG(log, "traceid {0}", traceid); 2369 2370 auto perf_monitor = LookupProcessorTraceInstance(traceid, thread); 2371 if (!perf_monitor) { 2372 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 2373 buffer = buffer.slice(buffer.size()); 2374 error = perf_monitor.takeError(); 2375 return error; 2376 } 2377 return (*perf_monitor).ReadPerfTraceAux(buffer, offset); 2378 } 2379 2380 Status NativeProcessLinux::GetTraceConfig(lldb::user_id_t traceid, 2381 TraceOptions &config) { 2382 Status error; 2383 if (config.getThreadID() == LLDB_INVALID_THREAD_ID && 2384 m_pt_proces_trace_id == traceid) { 2385 if (m_pt_proces_trace_id == LLDB_INVALID_UID) { 2386 error.SetErrorString("tracing not active for this process"); 2387 return error; 2388 } 2389 config = m_pt_process_trace_config; 2390 } else { 2391 auto perf_monitor = 2392 LookupProcessorTraceInstance(traceid, config.getThreadID()); 2393 if (!perf_monitor) { 2394 error = perf_monitor.takeError(); 2395 return error; 2396 } 2397 error = (*perf_monitor).GetTraceConfig(config); 2398 } 2399 return error; 2400 } 2401 2402 lldb::user_id_t 2403 NativeProcessLinux::StartTraceGroup(const TraceOptions &config, 2404 Status &error) { 2405 2406 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2407 if (config.getType() != TraceType::eTraceTypeProcessorTrace) 2408 return LLDB_INVALID_UID; 2409 2410 if (m_pt_proces_trace_id != LLDB_INVALID_UID) { 2411 error.SetErrorString("tracing already active on this process"); 2412 return m_pt_proces_trace_id; 2413 } 2414 2415 for (const auto &thread_sp : m_threads) { 2416 if (auto traceInstance = ProcessorTraceMonitor::Create( 2417 GetID(), thread_sp->GetID(), config, true)) { 2418 m_pt_traced_thread_group.insert(thread_sp->GetID()); 2419 m_processor_trace_monitor.insert( 2420 std::make_pair(thread_sp->GetID(), std::move(*traceInstance))); 2421 } 2422 } 2423 2424 m_pt_process_trace_config = config; 2425 error = ProcessorTraceMonitor::GetCPUType(m_pt_process_trace_config); 2426 2427 // Trace on Complete process will have traceid of 0 2428 m_pt_proces_trace_id = 0; 2429 2430 LLDB_LOG(log, "Process Trace ID {0}", m_pt_proces_trace_id); 2431 return m_pt_proces_trace_id; 2432 } 2433 2434 lldb::user_id_t NativeProcessLinux::StartTrace(const TraceOptions &config, 2435 Status &error) { 2436 if (config.getType() != TraceType::eTraceTypeProcessorTrace) 2437 return NativeProcessProtocol::StartTrace(config, error); 2438 2439 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2440 2441 lldb::tid_t threadid = config.getThreadID(); 2442 2443 if (threadid == LLDB_INVALID_THREAD_ID) 2444 return StartTraceGroup(config, error); 2445 2446 auto thread_sp = GetThreadByID(threadid); 2447 if (!thread_sp) { 2448 // Thread not tracked by lldb so don't trace. 2449 error.SetErrorString("invalid thread id"); 2450 return LLDB_INVALID_UID; 2451 } 2452 2453 const auto &iter = m_processor_trace_monitor.find(threadid); 2454 if (iter != m_processor_trace_monitor.end()) { 2455 LLDB_LOG(log, "Thread already being traced"); 2456 error.SetErrorString("tracing already active on this thread"); 2457 return LLDB_INVALID_UID; 2458 } 2459 2460 auto traceMonitor = 2461 ProcessorTraceMonitor::Create(GetID(), threadid, config, false); 2462 if (!traceMonitor) { 2463 error = traceMonitor.takeError(); 2464 LLDB_LOG(log, "error {0}", error); 2465 return LLDB_INVALID_UID; 2466 } 2467 lldb::user_id_t ret_trace_id = (*traceMonitor)->GetTraceID(); 2468 m_processor_trace_monitor.insert( 2469 std::make_pair(threadid, std::move(*traceMonitor))); 2470 return ret_trace_id; 2471 } 2472 2473 Status NativeProcessLinux::StopTracingForThread(lldb::tid_t thread) { 2474 Status error; 2475 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2476 LLDB_LOG(log, "Thread {0}", thread); 2477 2478 const auto& iter = m_processor_trace_monitor.find(thread); 2479 if (iter == m_processor_trace_monitor.end()) { 2480 error.SetErrorString("tracing not active for this thread"); 2481 return error; 2482 } 2483 2484 if (iter->second->GetTraceID() == m_pt_proces_trace_id) { 2485 // traceid maps to the whole process so we have to erase it from the 2486 // thread group. 2487 LLDB_LOG(log, "traceid maps to process"); 2488 m_pt_traced_thread_group.erase(thread); 2489 } 2490 m_processor_trace_monitor.erase(iter); 2491 2492 return error; 2493 } 2494 2495 Status NativeProcessLinux::StopTrace(lldb::user_id_t traceid, 2496 lldb::tid_t thread) { 2497 Status error; 2498 2499 TraceOptions trace_options; 2500 trace_options.setThreadID(thread); 2501 error = NativeProcessLinux::GetTraceConfig(traceid, trace_options); 2502 2503 if (error.Fail()) 2504 return error; 2505 2506 switch (trace_options.getType()) { 2507 case lldb::TraceType::eTraceTypeProcessorTrace: 2508 if (traceid == m_pt_proces_trace_id && 2509 thread == LLDB_INVALID_THREAD_ID) 2510 StopProcessorTracingOnProcess(); 2511 else 2512 error = StopProcessorTracingOnThread(traceid, thread); 2513 break; 2514 default: 2515 error.SetErrorString("trace not supported"); 2516 break; 2517 } 2518 2519 return error; 2520 } 2521 2522 void NativeProcessLinux::StopProcessorTracingOnProcess() { 2523 for (auto thread_id_iter : m_pt_traced_thread_group) 2524 m_processor_trace_monitor.erase(thread_id_iter); 2525 m_pt_traced_thread_group.clear(); 2526 m_pt_proces_trace_id = LLDB_INVALID_UID; 2527 } 2528 2529 Status NativeProcessLinux::StopProcessorTracingOnThread(lldb::user_id_t traceid, 2530 lldb::tid_t thread) { 2531 Status error; 2532 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2533 2534 if (thread == LLDB_INVALID_THREAD_ID) { 2535 for (auto& iter : m_processor_trace_monitor) { 2536 if (iter.second->GetTraceID() == traceid) { 2537 // Stopping a trace instance for an individual thread 2538 // hence there will only be one traceid that can match. 2539 m_processor_trace_monitor.erase(iter.first); 2540 return error; 2541 } 2542 LLDB_LOG(log, "Trace ID {0}", iter.second->GetTraceID()); 2543 } 2544 2545 LLDB_LOG(log, "Invalid TraceID"); 2546 error.SetErrorString("invalid trace id"); 2547 return error; 2548 } 2549 2550 // thread is specified so we can use find function on the map. 2551 const auto& iter = m_processor_trace_monitor.find(thread); 2552 if (iter == m_processor_trace_monitor.end()) { 2553 // thread not found in our map. 2554 LLDB_LOG(log, "thread not being traced"); 2555 error.SetErrorString("tracing not active for this thread"); 2556 return error; 2557 } 2558 if (iter->second->GetTraceID() != traceid) { 2559 // traceid did not match so it has to be invalid. 2560 LLDB_LOG(log, "Invalid TraceID"); 2561 error.SetErrorString("invalid trace id"); 2562 return error; 2563 } 2564 2565 LLDB_LOG(log, "UID - {0} , Thread -{1}", traceid, thread); 2566 2567 if (traceid == m_pt_proces_trace_id) { 2568 // traceid maps to the whole process so we have to erase it from the 2569 // thread group. 2570 LLDB_LOG(log, "traceid maps to process"); 2571 m_pt_traced_thread_group.erase(thread); 2572 } 2573 m_processor_trace_monitor.erase(iter); 2574 2575 return error; 2576 } 2577