1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "NativeProcessLinux.h"
11 
12 // C Includes
13 #include <errno.h>
14 #include <semaphore.h>
15 #include <string.h>
16 #include <stdint.h>
17 #include <unistd.h>
18 
19 // C++ Includes
20 #include <fstream>
21 #include <mutex>
22 #include <sstream>
23 #include <string>
24 #include <unordered_map>
25 
26 // Other libraries and framework includes
27 #include "lldb/Core/EmulateInstruction.h"
28 #include "lldb/Core/Error.h"
29 #include "lldb/Core/Module.h"
30 #include "lldb/Core/ModuleSpec.h"
31 #include "lldb/Core/RegisterValue.h"
32 #include "lldb/Core/State.h"
33 #include "lldb/Host/common/NativeBreakpoint.h"
34 #include "lldb/Host/common/NativeRegisterContext.h"
35 #include "lldb/Host/Host.h"
36 #include "lldb/Host/ThreadLauncher.h"
37 #include "lldb/Target/Platform.h"
38 #include "lldb/Target/Process.h"
39 #include "lldb/Target/ProcessLaunchInfo.h"
40 #include "lldb/Target/Target.h"
41 #include "lldb/Utility/LLDBAssert.h"
42 #include "lldb/Utility/PseudoTerminal.h"
43 
44 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
45 #include "Plugins/Process/Utility/LinuxSignals.h"
46 #include "Utility/StringExtractor.h"
47 #include "NativeThreadLinux.h"
48 #include "ProcFileReader.h"
49 #include "Procfs.h"
50 
51 // System includes - They have to be included after framework includes because they define some
52 // macros which collide with variable names in other modules
53 #include <linux/unistd.h>
54 #include <sys/socket.h>
55 
56 #include <sys/syscall.h>
57 #include <sys/types.h>
58 #include <sys/user.h>
59 #include <sys/wait.h>
60 
61 #include "lldb/Host/linux/Personality.h"
62 #include "lldb/Host/linux/Ptrace.h"
63 #include "lldb/Host/linux/Signalfd.h"
64 #include "lldb/Host/linux/Uio.h"
65 #include "lldb/Host/android/Android.h"
66 
67 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS  0xffffffff
68 
69 // Support hardware breakpoints in case it has not been defined
70 #ifndef TRAP_HWBKPT
71   #define TRAP_HWBKPT 4
72 #endif
73 
74 using namespace lldb;
75 using namespace lldb_private;
76 using namespace lldb_private::process_linux;
77 using namespace llvm;
78 
79 // Private bits we only need internally.
80 
81 static bool ProcessVmReadvSupported()
82 {
83     static bool is_supported;
84     static std::once_flag flag;
85 
86     std::call_once(flag, [] {
87         Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
88 
89         uint32_t source = 0x47424742;
90         uint32_t dest = 0;
91 
92         struct iovec local, remote;
93         remote.iov_base = &source;
94         local.iov_base = &dest;
95         remote.iov_len = local.iov_len = sizeof source;
96 
97         // We shall try if cross-process-memory reads work by attempting to read a value from our own process.
98         ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
99         is_supported = (res == sizeof(source) && source == dest);
100         if (log)
101         {
102             if (is_supported)
103                 log->Printf("%s: Detected kernel support for process_vm_readv syscall. Fast memory reads enabled.",
104                         __FUNCTION__);
105             else
106                 log->Printf("%s: syscall process_vm_readv failed (error: %s). Fast memory reads disabled.",
107                         __FUNCTION__, strerror(errno));
108         }
109     });
110 
111     return is_supported;
112 }
113 
114 namespace
115 {
116     const UnixSignals&
117     GetUnixSignals ()
118     {
119         static process_linux::LinuxSignals signals;
120         return signals;
121     }
122 
123     Error
124     ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch)
125     {
126         // Grab process info for the running process.
127         ProcessInstanceInfo process_info;
128         if (!platform.GetProcessInfo (pid, process_info))
129             return Error("failed to get process info");
130 
131         // Resolve the executable module.
132         ModuleSP exe_module_sp;
133         ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
134         FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ());
135         Error error = platform.ResolveExecutable(
136             exe_module_spec,
137             exe_module_sp,
138             executable_search_paths.GetSize () ? &executable_search_paths : NULL);
139 
140         if (!error.Success ())
141             return error;
142 
143         // Check if we've got our architecture from the exe_module.
144         arch = exe_module_sp->GetArchitecture ();
145         if (arch.IsValid ())
146             return Error();
147         else
148             return Error("failed to retrieve a valid architecture from the exe module");
149     }
150 
151     void
152     DisplayBytes (StreamString &s, void *bytes, uint32_t count)
153     {
154         uint8_t *ptr = (uint8_t *)bytes;
155         const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
156         for(uint32_t i=0; i<loop_count; i++)
157         {
158             s.Printf ("[%x]", *ptr);
159             ptr++;
160         }
161     }
162 
163     void
164     PtraceDisplayBytes(int &req, void *data, size_t data_size)
165     {
166         StreamString buf;
167         Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (
168                     POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE));
169 
170         if (verbose_log)
171         {
172             switch(req)
173             {
174             case PTRACE_POKETEXT:
175             {
176                 DisplayBytes(buf, &data, 8);
177                 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData());
178                 break;
179             }
180             case PTRACE_POKEDATA:
181             {
182                 DisplayBytes(buf, &data, 8);
183                 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData());
184                 break;
185             }
186             case PTRACE_POKEUSER:
187             {
188                 DisplayBytes(buf, &data, 8);
189                 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData());
190                 break;
191             }
192             case PTRACE_SETREGS:
193             {
194                 DisplayBytes(buf, data, data_size);
195                 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData());
196                 break;
197             }
198             case PTRACE_SETFPREGS:
199             {
200                 DisplayBytes(buf, data, data_size);
201                 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData());
202                 break;
203             }
204             case PTRACE_SETSIGINFO:
205             {
206                 DisplayBytes(buf, data, sizeof(siginfo_t));
207                 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData());
208                 break;
209             }
210             case PTRACE_SETREGSET:
211             {
212                 // Extract iov_base from data, which is a pointer to the struct IOVEC
213                 DisplayBytes(buf, *(void **)data, data_size);
214                 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData());
215                 break;
216             }
217             default:
218             {
219             }
220             }
221         }
222     }
223 
224     //------------------------------------------------------------------------------
225     // Static implementations of NativeProcessLinux::ReadMemory and
226     // NativeProcessLinux::WriteMemory.  This enables mutual recursion between these
227     // functions without needed to go thru the thread funnel.
228 
229     size_t
230     DoReadMemory(
231         lldb::pid_t pid,
232         lldb::addr_t vm_addr,
233         void *buf,
234         size_t size,
235         Error &error)
236     {
237         // ptrace word size is determined by the host, not the child
238         static const unsigned word_size = sizeof(void*);
239         unsigned char *dst = static_cast<unsigned char*>(buf);
240         size_t bytes_read;
241         size_t remainder;
242         long data;
243 
244         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
245         if (log)
246             ProcessPOSIXLog::IncNestLevel();
247         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
248             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__,
249                     pid, word_size, (void*)vm_addr, buf, size);
250 
251         assert(sizeof(data) >= word_size);
252         for (bytes_read = 0; bytes_read < size; bytes_read += remainder)
253         {
254             data = NativeProcessLinux::PtraceWrapper(PTRACE_PEEKDATA, pid, (void*)vm_addr, nullptr, 0, error);
255             if (error.Fail())
256             {
257                 if (log)
258                     ProcessPOSIXLog::DecNestLevel();
259                 return bytes_read;
260             }
261 
262             remainder = size - bytes_read;
263             remainder = remainder > word_size ? word_size : remainder;
264 
265             // Copy the data into our buffer
266             for (unsigned i = 0; i < remainder; ++i)
267                 dst[i] = ((data >> i*8) & 0xFF);
268 
269             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
270                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
271                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
272                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
273             {
274                 uintptr_t print_dst = 0;
275                 // Format bytes from data by moving into print_dst for log output
276                 for (unsigned i = 0; i < remainder; ++i)
277                     print_dst |= (((data >> i*8) & 0xFF) << i*8);
278                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
279                         (void*)vm_addr, print_dst, (unsigned long)data);
280             }
281             vm_addr += word_size;
282             dst += word_size;
283         }
284 
285         if (log)
286             ProcessPOSIXLog::DecNestLevel();
287         return bytes_read;
288     }
289 
290     size_t
291     DoWriteMemory(
292         lldb::pid_t pid,
293         lldb::addr_t vm_addr,
294         const void *buf,
295         size_t size,
296         Error &error)
297     {
298         // ptrace word size is determined by the host, not the child
299         static const unsigned word_size = sizeof(void*);
300         const unsigned char *src = static_cast<const unsigned char*>(buf);
301         size_t bytes_written = 0;
302         size_t remainder;
303 
304         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
305         if (log)
306             ProcessPOSIXLog::IncNestLevel();
307         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
308             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__,
309                     pid, word_size, (void*)vm_addr, buf, size);
310 
311         for (bytes_written = 0; bytes_written < size; bytes_written += remainder)
312         {
313             remainder = size - bytes_written;
314             remainder = remainder > word_size ? word_size : remainder;
315 
316             if (remainder == word_size)
317             {
318                 unsigned long data = 0;
319                 assert(sizeof(data) >= word_size);
320                 for (unsigned i = 0; i < word_size; ++i)
321                     data |= (unsigned long)src[i] << i*8;
322 
323                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
324                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
325                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
326                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
327                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
328                             (void*)vm_addr, *(const unsigned long*)src, data);
329 
330                 if (NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data, 0, error))
331                 {
332                     if (log)
333                         ProcessPOSIXLog::DecNestLevel();
334                     return bytes_written;
335                 }
336             }
337             else
338             {
339                 unsigned char buff[8];
340                 if (DoReadMemory(pid, vm_addr,
341                                 buff, word_size, error) != word_size)
342                 {
343                     if (log)
344                         ProcessPOSIXLog::DecNestLevel();
345                     return bytes_written;
346                 }
347 
348                 memcpy(buff, src, remainder);
349 
350                 if (DoWriteMemory(pid, vm_addr,
351                                 buff, word_size, error) != word_size)
352                 {
353                     if (log)
354                         ProcessPOSIXLog::DecNestLevel();
355                     return bytes_written;
356                 }
357 
358                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
359                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
360                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
361                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
362                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
363                             (void*)vm_addr, *(const unsigned long*)src, *(unsigned long*)buff);
364             }
365 
366             vm_addr += word_size;
367             src += word_size;
368         }
369         if (log)
370             ProcessPOSIXLog::DecNestLevel();
371         return bytes_written;
372     }
373 
374     //------------------------------------------------------------------------------
375     /// @class ReadOperation
376     /// @brief Implements NativeProcessLinux::ReadMemory.
377     class ReadOperation : public NativeProcessLinux::Operation
378     {
379     public:
380         ReadOperation(
381             lldb::addr_t addr,
382             void *buff,
383             size_t size,
384             size_t &result) :
385             Operation (),
386             m_addr (addr),
387             m_buff (buff),
388             m_size (size),
389             m_result (result)
390             {
391             }
392 
393         void Execute (NativeProcessLinux *process) override;
394 
395     private:
396         lldb::addr_t m_addr;
397         void *m_buff;
398         size_t m_size;
399         size_t &m_result;
400     };
401 
402     void
403     ReadOperation::Execute (NativeProcessLinux *process)
404     {
405         m_result = DoReadMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
406     }
407 
408     //------------------------------------------------------------------------------
409     /// @class WriteOperation
410     /// @brief Implements NativeProcessLinux::WriteMemory.
411     class WriteOperation : public NativeProcessLinux::Operation
412     {
413     public:
414         WriteOperation(
415             lldb::addr_t addr,
416             const void *buff,
417             size_t size,
418             size_t &result) :
419             Operation (),
420             m_addr (addr),
421             m_buff (buff),
422             m_size (size),
423             m_result (result)
424             {
425             }
426 
427         void Execute (NativeProcessLinux *process) override;
428 
429     private:
430         lldb::addr_t m_addr;
431         const void *m_buff;
432         size_t m_size;
433         size_t &m_result;
434     };
435 
436     void
437     WriteOperation::Execute(NativeProcessLinux *process)
438     {
439         m_result = DoWriteMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
440     }
441 
442     //------------------------------------------------------------------------------
443     /// @class ResumeOperation
444     /// @brief Implements NativeProcessLinux::Resume.
445     class ResumeOperation : public NativeProcessLinux::Operation
446     {
447     public:
448         ResumeOperation(lldb::tid_t tid, uint32_t signo) :
449             m_tid(tid), m_signo(signo) { }
450 
451         void Execute(NativeProcessLinux *monitor) override;
452 
453     private:
454         lldb::tid_t m_tid;
455         uint32_t m_signo;
456     };
457 
458     void
459     ResumeOperation::Execute(NativeProcessLinux *monitor)
460     {
461         intptr_t data = 0;
462 
463         if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
464             data = m_signo;
465 
466         NativeProcessLinux::PtraceWrapper(PTRACE_CONT, m_tid, nullptr, (void*)data, 0, m_error);
467         if (m_error.Fail())
468         {
469             Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
470 
471             if (log)
472                 log->Printf ("ResumeOperation (%"  PRIu64 ") failed: %s", m_tid, m_error.AsCString());
473         }
474     }
475 
476     //------------------------------------------------------------------------------
477     /// @class SingleStepOperation
478     /// @brief Implements NativeProcessLinux::SingleStep.
479     class SingleStepOperation : public NativeProcessLinux::Operation
480     {
481     public:
482         SingleStepOperation(lldb::tid_t tid, uint32_t signo)
483             : m_tid(tid), m_signo(signo) { }
484 
485         void Execute(NativeProcessLinux *monitor) override;
486 
487     private:
488         lldb::tid_t m_tid;
489         uint32_t m_signo;
490     };
491 
492     void
493     SingleStepOperation::Execute(NativeProcessLinux *monitor)
494     {
495         intptr_t data = 0;
496 
497         if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
498             data = m_signo;
499 
500         NativeProcessLinux::PtraceWrapper(PTRACE_SINGLESTEP, m_tid, nullptr, (void*)data, 0, m_error);
501     }
502 
503     //------------------------------------------------------------------------------
504     /// @class SiginfoOperation
505     /// @brief Implements NativeProcessLinux::GetSignalInfo.
506     class SiginfoOperation : public NativeProcessLinux::Operation
507     {
508     public:
509         SiginfoOperation(lldb::tid_t tid, void *info)
510             : m_tid(tid), m_info(info) { }
511 
512         void Execute(NativeProcessLinux *monitor) override;
513 
514     private:
515         lldb::tid_t m_tid;
516         void *m_info;
517     };
518 
519     void
520     SiginfoOperation::Execute(NativeProcessLinux *monitor)
521     {
522         NativeProcessLinux::PtraceWrapper(PTRACE_GETSIGINFO, m_tid, nullptr, m_info, 0, m_error);
523     }
524 
525     //------------------------------------------------------------------------------
526     /// @class EventMessageOperation
527     /// @brief Implements NativeProcessLinux::GetEventMessage.
528     class EventMessageOperation : public NativeProcessLinux::Operation
529     {
530     public:
531         EventMessageOperation(lldb::tid_t tid, unsigned long *message)
532             : m_tid(tid), m_message(message) { }
533 
534         void Execute(NativeProcessLinux *monitor) override;
535 
536     private:
537         lldb::tid_t m_tid;
538         unsigned long *m_message;
539     };
540 
541     void
542     EventMessageOperation::Execute(NativeProcessLinux *monitor)
543     {
544         NativeProcessLinux::PtraceWrapper(PTRACE_GETEVENTMSG, m_tid, nullptr, m_message, 0, m_error);
545     }
546 
547     class DetachOperation : public NativeProcessLinux::Operation
548     {
549     public:
550         DetachOperation(lldb::tid_t tid) : m_tid(tid) { }
551 
552         void Execute(NativeProcessLinux *monitor) override;
553 
554     private:
555         lldb::tid_t m_tid;
556     };
557 
558     void
559     DetachOperation::Execute(NativeProcessLinux *monitor)
560     {
561         NativeProcessLinux::PtraceWrapper(PTRACE_DETACH, m_tid, nullptr, 0, 0, m_error);
562     }
563 } // end of anonymous namespace
564 
565 // Simple helper function to ensure flags are enabled on the given file
566 // descriptor.
567 static Error
568 EnsureFDFlags(int fd, int flags)
569 {
570     Error error;
571 
572     int status = fcntl(fd, F_GETFL);
573     if (status == -1)
574     {
575         error.SetErrorToErrno();
576         return error;
577     }
578 
579     if (fcntl(fd, F_SETFL, status | flags) == -1)
580     {
581         error.SetErrorToErrno();
582         return error;
583     }
584 
585     return error;
586 }
587 
588 // This class encapsulates the privileged thread which performs all ptrace and wait operations on
589 // the inferior. The thread consists of a main loop which waits for events and processes them
590 //   - SIGCHLD (delivered over a signalfd file descriptor): These signals notify us of events in
591 //     the inferior process. Upon receiving this signal we do a waitpid to get more information
592 //     and dispatch to NativeProcessLinux::MonitorCallback.
593 //   - requests for ptrace operations: These initiated via the DoOperation method, which funnels
594 //     them to the Monitor thread via m_operation member. The Monitor thread is signaled over a
595 //     pipe, and the completion of the operation is signalled over the semaphore.
596 //   - thread exit event: this is signaled from the Monitor destructor by closing the write end
597 //     of the command pipe.
598 class NativeProcessLinux::Monitor
599 {
600 private:
601     // The initial monitor operation (launch or attach). It returns a inferior process id.
602     std::unique_ptr<InitialOperation> m_initial_operation_up;
603 
604     ::pid_t                           m_child_pid = -1;
605     NativeProcessLinux              * m_native_process;
606 
607     enum { READ, WRITE };
608     int        m_pipefd[2] = {-1, -1};
609     int        m_signal_fd = -1;
610     HostThread m_thread;
611 
612     // current operation which must be executed on the priviliged thread
613     Mutex      m_operation_mutex;
614     Operation *m_operation = nullptr;
615     sem_t      m_operation_sem;
616     Error      m_operation_error;
617 
618     unsigned   m_operation_nesting_level = 0;
619 
620     static constexpr char operation_command   = 'o';
621     static constexpr char begin_block_command = '{';
622     static constexpr char end_block_command   = '}';
623 
624     void
625     HandleSignals();
626 
627     void
628     HandleWait();
629 
630     // Returns true if the thread should exit.
631     bool
632     HandleCommands();
633 
634     void
635     MainLoop();
636 
637     static void *
638     RunMonitor(void *arg);
639 
640     Error
641     WaitForAck();
642 
643     void
644     BeginOperationBlock()
645     {
646         write(m_pipefd[WRITE], &begin_block_command, sizeof operation_command);
647         WaitForAck();
648     }
649 
650     void
651     EndOperationBlock()
652     {
653         write(m_pipefd[WRITE], &end_block_command, sizeof operation_command);
654         WaitForAck();
655     }
656 
657 public:
658     Monitor(const InitialOperation &initial_operation,
659             NativeProcessLinux *native_process)
660         : m_initial_operation_up(new InitialOperation(initial_operation)),
661           m_native_process(native_process)
662     {
663         sem_init(&m_operation_sem, 0, 0);
664     }
665 
666     ~Monitor();
667 
668     Error
669     Initialize();
670 
671     void
672     Terminate();
673 
674     void
675     DoOperation(Operation *op);
676 
677     class ScopedOperationLock {
678         Monitor &m_monitor;
679 
680     public:
681         ScopedOperationLock(Monitor &monitor)
682             : m_monitor(monitor)
683         { m_monitor.BeginOperationBlock(); }
684 
685         ~ScopedOperationLock()
686         { m_monitor.EndOperationBlock(); }
687     };
688 };
689 constexpr char NativeProcessLinux::Monitor::operation_command;
690 constexpr char NativeProcessLinux::Monitor::begin_block_command;
691 constexpr char NativeProcessLinux::Monitor::end_block_command;
692 
693 Error
694 NativeProcessLinux::Monitor::Initialize()
695 {
696     Error error;
697 
698     // We get a SIGCHLD every time something interesting happens with the inferior. We shall be
699     // listening for these signals over a signalfd file descriptors. This allows us to wait for
700     // multiple kinds of events with select.
701     sigset_t signals;
702     sigemptyset(&signals);
703     sigaddset(&signals, SIGCHLD);
704     m_signal_fd = signalfd(-1, &signals, SFD_NONBLOCK | SFD_CLOEXEC);
705     if (m_signal_fd < 0)
706     {
707         return Error("NativeProcessLinux::Monitor::%s failed due to signalfd failure. Monitoring the inferior will be impossible: %s",
708                     __FUNCTION__, strerror(errno));
709 
710     }
711 
712     if (pipe2(m_pipefd, O_CLOEXEC) == -1)
713     {
714         error.SetErrorToErrno();
715         return error;
716     }
717 
718     if ((error = EnsureFDFlags(m_pipefd[READ], O_NONBLOCK)).Fail()) {
719         return error;
720     }
721 
722     static const char g_thread_name[] = "lldb.process.nativelinux.monitor";
723     m_thread = ThreadLauncher::LaunchThread(g_thread_name, Monitor::RunMonitor, this, nullptr);
724     if (!m_thread.IsJoinable())
725         return Error("Failed to create monitor thread for NativeProcessLinux.");
726 
727     // Wait for initial operation to complete.
728     return WaitForAck();
729 }
730 
731 void
732 NativeProcessLinux::Monitor::DoOperation(Operation *op)
733 {
734     if (m_thread.EqualsThread(pthread_self())) {
735         // If we're on the Monitor thread, we can simply execute the operation.
736         op->Execute(m_native_process);
737         return;
738     }
739 
740     // Otherwise we need to pass the operation to the Monitor thread so it can handle it.
741     Mutex::Locker lock(m_operation_mutex);
742 
743     m_operation = op;
744 
745     // notify the thread that an operation is ready to be processed
746     write(m_pipefd[WRITE], &operation_command, sizeof operation_command);
747 
748     WaitForAck();
749 }
750 
751 void
752 NativeProcessLinux::Monitor::Terminate()
753 {
754     if (m_pipefd[WRITE] >= 0)
755     {
756         close(m_pipefd[WRITE]);
757         m_pipefd[WRITE] = -1;
758     }
759     if (m_thread.IsJoinable())
760         m_thread.Join(nullptr);
761 }
762 
763 NativeProcessLinux::Monitor::~Monitor()
764 {
765     Terminate();
766     if (m_pipefd[READ] >= 0)
767         close(m_pipefd[READ]);
768     if (m_signal_fd >= 0)
769         close(m_signal_fd);
770     sem_destroy(&m_operation_sem);
771 }
772 
773 void
774 NativeProcessLinux::Monitor::HandleSignals()
775 {
776     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
777 
778     // We don't really care about the content of the SIGCHLD siginfo structure, as we will get
779     // all the information from waitpid(). We just need to read all the signals so that we can
780     // sleep next time we reach select().
781     while (true)
782     {
783         signalfd_siginfo info;
784         ssize_t size = read(m_signal_fd, &info, sizeof info);
785         if (size == -1)
786         {
787             if (errno == EAGAIN || errno == EWOULDBLOCK)
788                 break; // We are done.
789             if (errno == EINTR)
790                 continue;
791             if (log)
792                 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor failed: %s",
793                         __FUNCTION__, strerror(errno));
794             break;
795         }
796         if (size != sizeof info)
797         {
798             // We got incomplete information structure. This should not happen, let's just log
799             // that.
800             if (log)
801                 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor returned incomplete data: "
802                         "structure size is %zd, read returned %zd bytes",
803                         __FUNCTION__, sizeof info, size);
804             break;
805         }
806         if (log)
807             log->Printf("NativeProcessLinux::Monitor::%s received signal %s(%d).", __FUNCTION__,
808                 Host::GetSignalAsCString(info.ssi_signo), info.ssi_signo);
809     }
810 }
811 
812 void
813 NativeProcessLinux::Monitor::HandleWait()
814 {
815     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
816     // Process all pending waitpid notifications.
817     while (true)
818     {
819         int status = -1;
820         ::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG);
821 
822         if (wait_pid == 0)
823             break; // We are done.
824 
825         if (wait_pid == -1)
826         {
827             if (errno == EINTR)
828                 continue;
829 
830             if (log)
831               log->Printf("NativeProcessLinux::Monitor::%s waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG) failed: %s",
832                       __FUNCTION__, strerror(errno));
833             break;
834         }
835 
836         bool exited = false;
837         int signal = 0;
838         int exit_status = 0;
839         const char *status_cstr = NULL;
840         if (WIFSTOPPED(status))
841         {
842             signal = WSTOPSIG(status);
843             status_cstr = "STOPPED";
844         }
845         else if (WIFEXITED(status))
846         {
847             exit_status = WEXITSTATUS(status);
848             status_cstr = "EXITED";
849             exited = true;
850         }
851         else if (WIFSIGNALED(status))
852         {
853             signal = WTERMSIG(status);
854             status_cstr = "SIGNALED";
855             if (wait_pid == m_child_pid) {
856                 exited = true;
857                 exit_status = -1;
858             }
859         }
860         else
861             status_cstr = "(\?\?\?)";
862 
863         if (log)
864             log->Printf("NativeProcessLinux::Monitor::%s: waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG)"
865                 "=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i",
866                 __FUNCTION__, wait_pid, status, status_cstr, signal, exit_status);
867 
868         m_native_process->MonitorCallback (wait_pid, exited, signal, exit_status);
869     }
870 }
871 
872 bool
873 NativeProcessLinux::Monitor::HandleCommands()
874 {
875     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
876 
877     while (true)
878     {
879         char command = 0;
880         ssize_t size = read(m_pipefd[READ], &command, sizeof command);
881         if (size == -1)
882         {
883             if (errno == EAGAIN || errno == EWOULDBLOCK)
884                 return false;
885             if (errno == EINTR)
886                 continue;
887             if (log)
888                 log->Printf("NativeProcessLinux::Monitor::%s exiting because read from command file descriptor failed: %s", __FUNCTION__, strerror(errno));
889             return true;
890         }
891         if (size == 0) // end of file - write end closed
892         {
893             if (log)
894                 log->Printf("NativeProcessLinux::Monitor::%s exit command received, exiting...", __FUNCTION__);
895             assert(m_operation_nesting_level == 0 && "Unbalanced begin/end block commands detected");
896             return true; // We are done.
897         }
898 
899         switch (command)
900         {
901         case operation_command:
902             m_operation->Execute(m_native_process);
903             break;
904         case begin_block_command:
905             ++m_operation_nesting_level;
906             break;
907         case end_block_command:
908             assert(m_operation_nesting_level > 0);
909             --m_operation_nesting_level;
910             break;
911         default:
912             if (log)
913                 log->Printf("NativeProcessLinux::Monitor::%s received unknown command '%c'",
914                         __FUNCTION__, command);
915         }
916 
917         // notify calling thread that the command has been processed
918         sem_post(&m_operation_sem);
919     }
920 }
921 
922 void
923 NativeProcessLinux::Monitor::MainLoop()
924 {
925     ::pid_t child_pid = (*m_initial_operation_up)(m_operation_error);
926     m_initial_operation_up.reset();
927     m_child_pid = child_pid;
928     sem_post(&m_operation_sem);
929 
930     while (true)
931     {
932         fd_set fds;
933         FD_ZERO(&fds);
934         // Only process waitpid events if we are outside of an operation block. Any pending
935         // events will be processed after we leave the block.
936         if (m_operation_nesting_level == 0)
937             FD_SET(m_signal_fd, &fds);
938         FD_SET(m_pipefd[READ], &fds);
939 
940         int max_fd = std::max(m_signal_fd, m_pipefd[READ]) + 1;
941         int r = select(max_fd, &fds, nullptr, nullptr, nullptr);
942         if (r < 0)
943         {
944             Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
945             if (log)
946                 log->Printf("NativeProcessLinux::Monitor::%s exiting because select failed: %s",
947                         __FUNCTION__, strerror(errno));
948             return;
949         }
950 
951         if (FD_ISSET(m_pipefd[READ], &fds))
952         {
953             if (HandleCommands())
954                 return;
955         }
956 
957         if (FD_ISSET(m_signal_fd, &fds))
958         {
959             HandleSignals();
960             HandleWait();
961         }
962     }
963 }
964 
965 Error
966 NativeProcessLinux::Monitor::WaitForAck()
967 {
968     Error error;
969     while (sem_wait(&m_operation_sem) != 0)
970     {
971         if (errno == EINTR)
972             continue;
973 
974         error.SetErrorToErrno();
975         return error;
976     }
977 
978     return m_operation_error;
979 }
980 
981 void *
982 NativeProcessLinux::Monitor::RunMonitor(void *arg)
983 {
984     static_cast<Monitor *>(arg)->MainLoop();
985     return nullptr;
986 }
987 
988 
989 NativeProcessLinux::LaunchArgs::LaunchArgs(Module *module,
990                                        char const **argv,
991                                        char const **envp,
992                                        const FileSpec &stdin_file_spec,
993                                        const FileSpec &stdout_file_spec,
994                                        const FileSpec &stderr_file_spec,
995                                        const FileSpec &working_dir,
996                                        const ProcessLaunchInfo &launch_info)
997     : m_module(module),
998       m_argv(argv),
999       m_envp(envp),
1000       m_stdin_file_spec(stdin_file_spec),
1001       m_stdout_file_spec(stdout_file_spec),
1002       m_stderr_file_spec(stderr_file_spec),
1003       m_working_dir(working_dir),
1004       m_launch_info(launch_info)
1005 {
1006 }
1007 
1008 NativeProcessLinux::LaunchArgs::~LaunchArgs()
1009 { }
1010 
1011 // -----------------------------------------------------------------------------
1012 // Public Static Methods
1013 // -----------------------------------------------------------------------------
1014 
1015 Error
1016 NativeProcessLinux::LaunchProcess (
1017     Module *exe_module,
1018     ProcessLaunchInfo &launch_info,
1019     NativeProcessProtocol::NativeDelegate &native_delegate,
1020     NativeProcessProtocolSP &native_process_sp)
1021 {
1022     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1023 
1024     Error error;
1025 
1026     // Verify the working directory is valid if one was specified.
1027     FileSpec working_dir{launch_info.GetWorkingDirectory()};
1028     if (working_dir &&
1029             (!working_dir.ResolvePath() ||
1030              working_dir.GetFileType() != FileSpec::eFileTypeDirectory))
1031     {
1032         error.SetErrorStringWithFormat ("No such file or directory: %s",
1033                 working_dir.GetCString());
1034         return error;
1035     }
1036 
1037     const FileAction *file_action;
1038 
1039     // Default of empty will mean to use existing open file descriptors.
1040     FileSpec stdin_file_spec{};
1041     FileSpec stdout_file_spec{};
1042     FileSpec stderr_file_spec{};
1043 
1044     file_action = launch_info.GetFileActionForFD (STDIN_FILENO);
1045     if (file_action)
1046         stdin_file_spec = file_action->GetFileSpec();
1047 
1048     file_action = launch_info.GetFileActionForFD (STDOUT_FILENO);
1049     if (file_action)
1050         stdout_file_spec = file_action->GetFileSpec();
1051 
1052     file_action = launch_info.GetFileActionForFD (STDERR_FILENO);
1053     if (file_action)
1054         stderr_file_spec = file_action->GetFileSpec();
1055 
1056     if (log)
1057     {
1058         if (stdin_file_spec)
1059             log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'",
1060                     __FUNCTION__, stdin_file_spec.GetCString());
1061         else
1062             log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__);
1063 
1064         if (stdout_file_spec)
1065             log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'",
1066                     __FUNCTION__, stdout_file_spec.GetCString());
1067         else
1068             log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__);
1069 
1070         if (stderr_file_spec)
1071             log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'",
1072                     __FUNCTION__, stderr_file_spec.GetCString());
1073         else
1074             log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__);
1075     }
1076 
1077     // Create the NativeProcessLinux in launch mode.
1078     native_process_sp.reset (new NativeProcessLinux ());
1079 
1080     if (log)
1081     {
1082         int i = 0;
1083         for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i)
1084         {
1085             log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr");
1086             ++i;
1087         }
1088     }
1089 
1090     if (!native_process_sp->RegisterNativeDelegate (native_delegate))
1091     {
1092         native_process_sp.reset ();
1093         error.SetErrorStringWithFormat ("failed to register the native delegate");
1094         return error;
1095     }
1096 
1097     std::static_pointer_cast<NativeProcessLinux> (native_process_sp)->LaunchInferior (
1098             exe_module,
1099             launch_info.GetArguments ().GetConstArgumentVector (),
1100             launch_info.GetEnvironmentEntries ().GetConstArgumentVector (),
1101             stdin_file_spec,
1102             stdout_file_spec,
1103             stderr_file_spec,
1104             working_dir,
1105             launch_info,
1106             error);
1107 
1108     if (error.Fail ())
1109     {
1110         native_process_sp.reset ();
1111         if (log)
1112             log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ());
1113         return error;
1114     }
1115 
1116     launch_info.SetProcessID (native_process_sp->GetID ());
1117 
1118     return error;
1119 }
1120 
1121 Error
1122 NativeProcessLinux::AttachToProcess (
1123     lldb::pid_t pid,
1124     NativeProcessProtocol::NativeDelegate &native_delegate,
1125     NativeProcessProtocolSP &native_process_sp)
1126 {
1127     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1128     if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE))
1129         log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid);
1130 
1131     // Grab the current platform architecture.  This should be Linux,
1132     // since this code is only intended to run on a Linux host.
1133     PlatformSP platform_sp (Platform::GetHostPlatform ());
1134     if (!platform_sp)
1135         return Error("failed to get a valid default platform");
1136 
1137     // Retrieve the architecture for the running process.
1138     ArchSpec process_arch;
1139     Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch);
1140     if (!error.Success ())
1141         return error;
1142 
1143     std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ());
1144 
1145     if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate))
1146     {
1147         error.SetErrorStringWithFormat ("failed to register the native delegate");
1148         return error;
1149     }
1150 
1151     native_process_linux_sp->AttachToInferior (pid, error);
1152     if (!error.Success ())
1153         return error;
1154 
1155     native_process_sp = native_process_linux_sp;
1156     return error;
1157 }
1158 
1159 // -----------------------------------------------------------------------------
1160 // Public Instance Methods
1161 // -----------------------------------------------------------------------------
1162 
1163 NativeProcessLinux::NativeProcessLinux () :
1164     NativeProcessProtocol (LLDB_INVALID_PROCESS_ID),
1165     m_arch (),
1166     m_supports_mem_region (eLazyBoolCalculate),
1167     m_mem_region_cache (),
1168     m_mem_region_cache_mutex ()
1169 {
1170 }
1171 
1172 //------------------------------------------------------------------------------
1173 // NativeProcessLinux spawns a new thread which performs all operations on the inferior process.
1174 // Refer to Monitor and Operation classes to see why this is necessary.
1175 //------------------------------------------------------------------------------
1176 void
1177 NativeProcessLinux::LaunchInferior (
1178     Module *module,
1179     const char *argv[],
1180     const char *envp[],
1181     const FileSpec &stdin_file_spec,
1182     const FileSpec &stdout_file_spec,
1183     const FileSpec &stderr_file_spec,
1184     const FileSpec &working_dir,
1185     const ProcessLaunchInfo &launch_info,
1186     Error &error)
1187 {
1188     if (module)
1189         m_arch = module->GetArchitecture ();
1190 
1191     SetState (eStateLaunching);
1192 
1193     std::unique_ptr<LaunchArgs> args(
1194         new LaunchArgs(module, argv, envp,
1195                        stdin_file_spec,
1196                        stdout_file_spec,
1197                        stderr_file_spec,
1198                        working_dir,
1199                        launch_info));
1200 
1201     StartMonitorThread ([&] (Error &e) { return Launch(args.get(), e); }, error);
1202     if (!error.Success ())
1203         return;
1204 }
1205 
1206 void
1207 NativeProcessLinux::AttachToInferior (lldb::pid_t pid, Error &error)
1208 {
1209     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1210     if (log)
1211         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid);
1212 
1213     // We can use the Host for everything except the ResolveExecutable portion.
1214     PlatformSP platform_sp = Platform::GetHostPlatform ();
1215     if (!platform_sp)
1216     {
1217         if (log)
1218             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid);
1219         error.SetErrorString ("no default platform available");
1220         return;
1221     }
1222 
1223     // Gather info about the process.
1224     ProcessInstanceInfo process_info;
1225     if (!platform_sp->GetProcessInfo (pid, process_info))
1226     {
1227         if (log)
1228             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid);
1229         error.SetErrorString ("failed to get process info");
1230         return;
1231     }
1232 
1233     // Resolve the executable module
1234     ModuleSP exe_module_sp;
1235     FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths());
1236     ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
1237     error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp,
1238                                            executable_search_paths.GetSize() ? &executable_search_paths : NULL);
1239     if (!error.Success())
1240         return;
1241 
1242     // Set the architecture to the exe architecture.
1243     m_arch = exe_module_sp->GetArchitecture();
1244     if (log)
1245         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ());
1246 
1247     m_pid = pid;
1248     SetState(eStateAttaching);
1249 
1250     StartMonitorThread ([=] (Error &e) { return Attach(pid, e); }, error);
1251     if (!error.Success ())
1252         return;
1253 }
1254 
1255 void
1256 NativeProcessLinux::Terminate ()
1257 {
1258     m_monitor_up->Terminate();
1259 }
1260 
1261 ::pid_t
1262 NativeProcessLinux::Launch(LaunchArgs *args, Error &error)
1263 {
1264     assert (args && "null args");
1265 
1266     const char **argv = args->m_argv;
1267     const char **envp = args->m_envp;
1268     const FileSpec working_dir = args->m_working_dir;
1269 
1270     lldb_utility::PseudoTerminal terminal;
1271     const size_t err_len = 1024;
1272     char err_str[err_len];
1273     lldb::pid_t pid;
1274     NativeThreadProtocolSP thread_sp;
1275 
1276     lldb::ThreadSP inferior;
1277 
1278     // Propagate the environment if one is not supplied.
1279     if (envp == NULL || envp[0] == NULL)
1280         envp = const_cast<const char **>(environ);
1281 
1282     if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1))
1283     {
1284         error.SetErrorToGenericError();
1285         error.SetErrorStringWithFormat("Process fork failed: %s", err_str);
1286         return -1;
1287     }
1288 
1289     // Recognized child exit status codes.
1290     enum {
1291         ePtraceFailed = 1,
1292         eDupStdinFailed,
1293         eDupStdoutFailed,
1294         eDupStderrFailed,
1295         eChdirFailed,
1296         eExecFailed,
1297         eSetGidFailed
1298     };
1299 
1300     // Child process.
1301     if (pid == 0)
1302     {
1303         // FIXME consider opening a pipe between parent/child and have this forked child
1304         // send log info to parent re: launch status, in place of the log lines removed here.
1305 
1306         // Start tracing this child that is about to exec.
1307         NativeProcessLinux::PtraceWrapper(PTRACE_TRACEME, 0, nullptr, nullptr, 0, error);
1308         if (error.Fail())
1309             exit(ePtraceFailed);
1310 
1311         // terminal has already dupped the tty descriptors to stdin/out/err.
1312         // This closes original fd from which they were copied (and avoids
1313         // leaking descriptors to the debugged process.
1314         terminal.CloseSlaveFileDescriptor();
1315 
1316         // Do not inherit setgid powers.
1317         if (setgid(getgid()) != 0)
1318             exit(eSetGidFailed);
1319 
1320         // Attempt to have our own process group.
1321         if (setpgid(0, 0) != 0)
1322         {
1323             // FIXME log that this failed. This is common.
1324             // Don't allow this to prevent an inferior exec.
1325         }
1326 
1327         // Dup file descriptors if needed.
1328         if (args->m_stdin_file_spec)
1329             if (!DupDescriptor(args->m_stdin_file_spec, STDIN_FILENO, O_RDONLY))
1330                 exit(eDupStdinFailed);
1331 
1332         if (args->m_stdout_file_spec)
1333             if (!DupDescriptor(args->m_stdout_file_spec, STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
1334                 exit(eDupStdoutFailed);
1335 
1336         if (args->m_stderr_file_spec)
1337             if (!DupDescriptor(args->m_stderr_file_spec, STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
1338                 exit(eDupStderrFailed);
1339 
1340         // Close everything besides stdin, stdout, and stderr that has no file
1341         // action to avoid leaking
1342         for (int fd = 3; fd < sysconf(_SC_OPEN_MAX); ++fd)
1343             if (!args->m_launch_info.GetFileActionForFD(fd))
1344                 close(fd);
1345 
1346         // Change working directory
1347         if (working_dir && 0 != ::chdir(working_dir.GetCString()))
1348               exit(eChdirFailed);
1349 
1350         // Disable ASLR if requested.
1351         if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR))
1352         {
1353             const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS);
1354             if (old_personality == -1)
1355             {
1356                 // Can't retrieve Linux personality.  Cannot disable ASLR.
1357             }
1358             else
1359             {
1360                 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality);
1361                 if (new_personality == -1)
1362                 {
1363                     // Disabling ASLR failed.
1364                 }
1365                 else
1366                 {
1367                     // Disabling ASLR succeeded.
1368                 }
1369             }
1370         }
1371 
1372         // Execute.  We should never return...
1373         execve(argv[0],
1374                const_cast<char *const *>(argv),
1375                const_cast<char *const *>(envp));
1376 
1377         // ...unless exec fails.  In which case we definitely need to end the child here.
1378         exit(eExecFailed);
1379     }
1380 
1381     //
1382     // This is the parent code here.
1383     //
1384     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1385 
1386     // Wait for the child process to trap on its call to execve.
1387     ::pid_t wpid;
1388     int status;
1389     if ((wpid = waitpid(pid, &status, 0)) < 0)
1390     {
1391         error.SetErrorToErrno();
1392         if (log)
1393             log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s",
1394                     __FUNCTION__, error.AsCString ());
1395 
1396         // Mark the inferior as invalid.
1397         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1398         SetState (StateType::eStateInvalid);
1399 
1400         return -1;
1401     }
1402     else if (WIFEXITED(status))
1403     {
1404         // open, dup or execve likely failed for some reason.
1405         error.SetErrorToGenericError();
1406         switch (WEXITSTATUS(status))
1407         {
1408             case ePtraceFailed:
1409                 error.SetErrorString("Child ptrace failed.");
1410                 break;
1411             case eDupStdinFailed:
1412                 error.SetErrorString("Child open stdin failed.");
1413                 break;
1414             case eDupStdoutFailed:
1415                 error.SetErrorString("Child open stdout failed.");
1416                 break;
1417             case eDupStderrFailed:
1418                 error.SetErrorString("Child open stderr failed.");
1419                 break;
1420             case eChdirFailed:
1421                 error.SetErrorString("Child failed to set working directory.");
1422                 break;
1423             case eExecFailed:
1424                 error.SetErrorString("Child exec failed.");
1425                 break;
1426             case eSetGidFailed:
1427                 error.SetErrorString("Child setgid failed.");
1428                 break;
1429             default:
1430                 error.SetErrorString("Child returned unknown exit status.");
1431                 break;
1432         }
1433 
1434         if (log)
1435         {
1436             log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP",
1437                     __FUNCTION__,
1438                     WEXITSTATUS(status));
1439         }
1440 
1441         // Mark the inferior as invalid.
1442         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1443         SetState (StateType::eStateInvalid);
1444 
1445         return -1;
1446     }
1447     assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) &&
1448            "Could not sync with inferior process.");
1449 
1450     if (log)
1451         log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__);
1452 
1453     error = SetDefaultPtraceOpts(pid);
1454     if (error.Fail())
1455     {
1456         if (log)
1457             log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s",
1458                     __FUNCTION__, error.AsCString ());
1459 
1460         // Mark the inferior as invalid.
1461         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1462         SetState (StateType::eStateInvalid);
1463 
1464         return -1;
1465     }
1466 
1467     // Release the master terminal descriptor and pass it off to the
1468     // NativeProcessLinux instance.  Similarly stash the inferior pid.
1469     m_terminal_fd = terminal.ReleaseMasterFileDescriptor();
1470     m_pid = pid;
1471 
1472     // Set the terminal fd to be in non blocking mode (it simplifies the
1473     // implementation of ProcessLinux::GetSTDOUT to have a non-blocking
1474     // descriptor to read from).
1475     error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
1476     if (error.Fail())
1477     {
1478         if (log)
1479             log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s",
1480                     __FUNCTION__, error.AsCString ());
1481 
1482         // Mark the inferior as invalid.
1483         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1484         SetState (StateType::eStateInvalid);
1485 
1486         return -1;
1487     }
1488 
1489     if (log)
1490         log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid);
1491 
1492     thread_sp = AddThread (pid);
1493     assert (thread_sp && "AddThread() returned a nullptr thread");
1494     std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP);
1495     ThreadWasCreated(pid);
1496 
1497     // Let our process instance know the thread has stopped.
1498     SetCurrentThreadID (thread_sp->GetID ());
1499     SetState (StateType::eStateStopped);
1500 
1501     if (log)
1502     {
1503         if (error.Success ())
1504         {
1505             log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__);
1506         }
1507         else
1508         {
1509             log->Printf ("NativeProcessLinux::%s inferior launching failed: %s",
1510                 __FUNCTION__, error.AsCString ());
1511             return -1;
1512         }
1513     }
1514     return pid;
1515 }
1516 
1517 ::pid_t
1518 NativeProcessLinux::Attach(lldb::pid_t pid, Error &error)
1519 {
1520     lldb::ThreadSP inferior;
1521     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1522 
1523     // Use a map to keep track of the threads which we have attached/need to attach.
1524     Host::TidMap tids_to_attach;
1525     if (pid <= 1)
1526     {
1527         error.SetErrorToGenericError();
1528         error.SetErrorString("Attaching to process 1 is not allowed.");
1529         return -1;
1530     }
1531 
1532     while (Host::FindProcessThreads(pid, tids_to_attach))
1533     {
1534         for (Host::TidMap::iterator it = tids_to_attach.begin();
1535              it != tids_to_attach.end();)
1536         {
1537             if (it->second == false)
1538             {
1539                 lldb::tid_t tid = it->first;
1540 
1541                 // Attach to the requested process.
1542                 // An attach will cause the thread to stop with a SIGSTOP.
1543                 NativeProcessLinux::PtraceWrapper(PTRACE_ATTACH, tid, nullptr, nullptr, 0, error);
1544                 if (error.Fail())
1545                 {
1546                     // No such thread. The thread may have exited.
1547                     // More error handling may be needed.
1548                     if (error.GetError() == ESRCH)
1549                     {
1550                         it = tids_to_attach.erase(it);
1551                         continue;
1552                     }
1553                     else
1554                         return -1;
1555                 }
1556 
1557                 int status;
1558                 // Need to use __WALL otherwise we receive an error with errno=ECHLD
1559                 // At this point we should have a thread stopped if waitpid succeeds.
1560                 if ((status = waitpid(tid, NULL, __WALL)) < 0)
1561                 {
1562                     // No such thread. The thread may have exited.
1563                     // More error handling may be needed.
1564                     if (errno == ESRCH)
1565                     {
1566                         it = tids_to_attach.erase(it);
1567                         continue;
1568                     }
1569                     else
1570                     {
1571                         error.SetErrorToErrno();
1572                         return -1;
1573                     }
1574                 }
1575 
1576                 error = SetDefaultPtraceOpts(tid);
1577                 if (error.Fail())
1578                     return -1;
1579 
1580                 if (log)
1581                     log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid);
1582 
1583                 it->second = true;
1584 
1585                 // Create the thread, mark it as stopped.
1586                 NativeThreadProtocolSP thread_sp (AddThread (static_cast<lldb::tid_t> (tid)));
1587                 assert (thread_sp && "AddThread() returned a nullptr");
1588 
1589                 // This will notify this is a new thread and tell the system it is stopped.
1590                 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP);
1591                 ThreadWasCreated(tid);
1592                 SetCurrentThreadID (thread_sp->GetID ());
1593             }
1594 
1595             // move the loop forward
1596             ++it;
1597         }
1598     }
1599 
1600     if (tids_to_attach.size() > 0)
1601     {
1602         m_pid = pid;
1603         // Let our process instance know the thread has stopped.
1604         SetState (StateType::eStateStopped);
1605     }
1606     else
1607     {
1608         error.SetErrorToGenericError();
1609         error.SetErrorString("No such process.");
1610         return -1;
1611     }
1612 
1613     return pid;
1614 }
1615 
1616 Error
1617 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid)
1618 {
1619     long ptrace_opts = 0;
1620 
1621     // Have the child raise an event on exit.  This is used to keep the child in
1622     // limbo until it is destroyed.
1623     ptrace_opts |= PTRACE_O_TRACEEXIT;
1624 
1625     // Have the tracer trace threads which spawn in the inferior process.
1626     // TODO: if we want to support tracing the inferiors' child, add the
1627     // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
1628     ptrace_opts |= PTRACE_O_TRACECLONE;
1629 
1630     // Have the tracer notify us before execve returns
1631     // (needed to disable legacy SIGTRAP generation)
1632     ptrace_opts |= PTRACE_O_TRACEEXEC;
1633 
1634     Error error;
1635     NativeProcessLinux::PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts, 0, error);
1636     return error;
1637 }
1638 
1639 static ExitType convert_pid_status_to_exit_type (int status)
1640 {
1641     if (WIFEXITED (status))
1642         return ExitType::eExitTypeExit;
1643     else if (WIFSIGNALED (status))
1644         return ExitType::eExitTypeSignal;
1645     else if (WIFSTOPPED (status))
1646         return ExitType::eExitTypeStop;
1647     else
1648     {
1649         // We don't know what this is.
1650         return ExitType::eExitTypeInvalid;
1651     }
1652 }
1653 
1654 static int convert_pid_status_to_return_code (int status)
1655 {
1656     if (WIFEXITED (status))
1657         return WEXITSTATUS (status);
1658     else if (WIFSIGNALED (status))
1659         return WTERMSIG (status);
1660     else if (WIFSTOPPED (status))
1661         return WSTOPSIG (status);
1662     else
1663     {
1664         // We don't know what this is.
1665         return ExitType::eExitTypeInvalid;
1666     }
1667 }
1668 
1669 // Handles all waitpid events from the inferior process.
1670 void
1671 NativeProcessLinux::MonitorCallback(lldb::pid_t pid,
1672                                     bool exited,
1673                                     int signal,
1674                                     int status)
1675 {
1676     Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS));
1677 
1678     // Certain activities differ based on whether the pid is the tid of the main thread.
1679     const bool is_main_thread = (pid == GetID ());
1680 
1681     // Handle when the thread exits.
1682     if (exited)
1683     {
1684         if (log)
1685             log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %"  PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not");
1686 
1687         // This is a thread that exited.  Ensure we're not tracking it anymore.
1688         const bool thread_found = StopTrackingThread (pid);
1689 
1690         if (is_main_thread)
1691         {
1692             // We only set the exit status and notify the delegate if we haven't already set the process
1693             // state to an exited state.  We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8)
1694             // for the main thread.
1695             const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed);
1696             if (!already_notified)
1697             {
1698                 if (log)
1699                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ()));
1700                 // The main thread exited.  We're done monitoring.  Report to delegate.
1701                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
1702 
1703                 // Notify delegate that our process has exited.
1704                 SetState (StateType::eStateExited, true);
1705             }
1706             else
1707             {
1708                 if (log)
1709                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
1710             }
1711         }
1712         else
1713         {
1714             // Do we want to report to the delegate in this case?  I think not.  If this was an orderly
1715             // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal,
1716             // and we would have done an all-stop then.
1717             if (log)
1718                 log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
1719         }
1720         return;
1721     }
1722 
1723     // Get details on the signal raised.
1724     siginfo_t info;
1725     const auto err = GetSignalInfo(pid, &info);
1726     if (err.Success())
1727     {
1728         // We have retrieved the signal info.  Dispatch appropriately.
1729         if (info.si_signo == SIGTRAP)
1730             MonitorSIGTRAP(&info, pid);
1731         else
1732             MonitorSignal(&info, pid, exited);
1733     }
1734     else
1735     {
1736         if (err.GetError() == EINVAL)
1737         {
1738             // This is a group stop reception for this tid.
1739             // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the
1740             // tracee, triggering the group-stop mechanism. Normally receiving these would stop
1741             // the process, pending a SIGCONT. Simulating this state in a debugger is hard and is
1742             // generally not needed (one use case is debugging background task being managed by a
1743             // shell). For general use, it is sufficient to stop the process in a signal-delivery
1744             // stop which happens before the group stop. This done by MonitorSignal and works
1745             // correctly for all signals.
1746             if (log)
1747                 log->Printf("NativeProcessLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64 ". Transparent handling of group stops not supported, resuming the thread.", __FUNCTION__, GetID (), pid);
1748             Resume(pid, signal);
1749         }
1750         else
1751         {
1752             // ptrace(GETSIGINFO) failed (but not due to group-stop).
1753 
1754             // A return value of ESRCH means the thread/process is no longer on the system,
1755             // so it was killed somehow outside of our control.  Either way, we can't do anything
1756             // with it anymore.
1757 
1758             // Stop tracking the metadata for the thread since it's entirely off the system now.
1759             const bool thread_found = StopTrackingThread (pid);
1760 
1761             if (log)
1762                 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)",
1763                              __FUNCTION__, err.AsCString(), pid, signal, status, err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found");
1764 
1765             if (is_main_thread)
1766             {
1767                 // Notify the delegate - our process is not available but appears to have been killed outside
1768                 // our control.  Is eStateExited the right exit state in this case?
1769                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
1770                 SetState (StateType::eStateExited, true);
1771             }
1772             else
1773             {
1774                 // This thread was pulled out from underneath us.  Anything to do here? Do we want to do an all stop?
1775                 if (log)
1776                     log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid);
1777             }
1778         }
1779     }
1780 }
1781 
1782 void
1783 NativeProcessLinux::WaitForNewThread(::pid_t tid)
1784 {
1785     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1786 
1787     NativeThreadProtocolSP new_thread_sp = GetThreadByID(tid);
1788 
1789     if (new_thread_sp)
1790     {
1791         // We are already tracking the thread - we got the event on the new thread (see
1792         // MonitorSignal) before this one. We are done.
1793         return;
1794     }
1795 
1796     // The thread is not tracked yet, let's wait for it to appear.
1797     int status = -1;
1798     ::pid_t wait_pid;
1799     do
1800     {
1801         if (log)
1802             log->Printf ("NativeProcessLinux::%s() received thread creation event for tid %" PRIu32 ". tid not tracked yet, waiting for thread to appear...", __FUNCTION__, tid);
1803         wait_pid = waitpid(tid, &status, __WALL);
1804     }
1805     while (wait_pid == -1 && errno == EINTR);
1806     // Since we are waiting on a specific tid, this must be the creation event. But let's do
1807     // some checks just in case.
1808     if (wait_pid != tid) {
1809         if (log)
1810             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime", __FUNCTION__, tid);
1811         // The only way I know of this could happen is if the whole process was
1812         // SIGKILLed in the mean time. In any case, we can't do anything about that now.
1813         return;
1814     }
1815     if (WIFEXITED(status))
1816     {
1817         if (log)
1818             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " returned an 'exited' event. Not tracking the thread.", __FUNCTION__, tid);
1819         // Also a very improbable event.
1820         return;
1821     }
1822 
1823     siginfo_t info;
1824     Error error = GetSignalInfo(tid, &info);
1825     if (error.Fail())
1826     {
1827         if (log)
1828             log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime.", __FUNCTION__, tid);
1829         return;
1830     }
1831 
1832     if (((info.si_pid != 0) || (info.si_code != SI_USER)) && log)
1833     {
1834         // We should be getting a thread creation signal here, but we received something
1835         // else. There isn't much we can do about it now, so we will just log that. Since the
1836         // thread is alive and we are receiving events from it, we shall pretend that it was
1837         // created properly.
1838         log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " received unexpected signal with code %d from pid %d.", __FUNCTION__, tid, info.si_code, info.si_pid);
1839     }
1840 
1841     if (log)
1842         log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": tracking new thread tid %" PRIu32,
1843                  __FUNCTION__, GetID (), tid);
1844 
1845     new_thread_sp = AddThread(tid);
1846     std::static_pointer_cast<NativeThreadLinux> (new_thread_sp)->SetRunning ();
1847     Resume (tid, LLDB_INVALID_SIGNAL_NUMBER);
1848     ThreadWasCreated(tid);
1849 }
1850 
1851 void
1852 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid)
1853 {
1854     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1855     const bool is_main_thread = (pid == GetID ());
1856 
1857     assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!");
1858     if (!info)
1859         return;
1860 
1861     Mutex::Locker locker (m_threads_mutex);
1862 
1863     // See if we can find a thread for this signal.
1864     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
1865     if (!thread_sp)
1866     {
1867         if (log)
1868             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
1869     }
1870 
1871     switch (info->si_code)
1872     {
1873     // TODO: these two cases are required if we want to support tracing of the inferiors' children.  We'd need this to debug a monitor.
1874     // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
1875     // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
1876 
1877     case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)):
1878     {
1879         // This is the notification on the parent thread which informs us of new thread
1880         // creation.
1881         // We don't want to do anything with the parent thread so we just resume it. In case we
1882         // want to implement "break on thread creation" functionality, we would need to stop
1883         // here.
1884 
1885         unsigned long event_message = 0;
1886         if (GetEventMessage (pid, &event_message).Fail())
1887         {
1888             if (log)
1889                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, pid);
1890         } else
1891             WaitForNewThread(event_message);
1892 
1893         Resume (pid, LLDB_INVALID_SIGNAL_NUMBER);
1894         break;
1895     }
1896 
1897     case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)):
1898     {
1899         NativeThreadProtocolSP main_thread_sp;
1900         if (log)
1901             log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP);
1902 
1903         // Exec clears any pending notifications.
1904         m_pending_notification_up.reset ();
1905 
1906         // Remove all but the main thread here.  Linux fork creates a new process which only copies the main thread.  Mutexes are in undefined state.
1907         if (log)
1908             log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__);
1909 
1910         for (auto thread_sp : m_threads)
1911         {
1912             const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID ();
1913             if (is_main_thread)
1914             {
1915                 main_thread_sp = thread_sp;
1916                 if (log)
1917                     log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ());
1918             }
1919             else
1920             {
1921                 // Tell thread coordinator this thread is dead.
1922                 if (log)
1923                     log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ());
1924             }
1925         }
1926 
1927         m_threads.clear ();
1928 
1929         if (main_thread_sp)
1930         {
1931             m_threads.push_back (main_thread_sp);
1932             SetCurrentThreadID (main_thread_sp->GetID ());
1933             std::static_pointer_cast<NativeThreadLinux> (main_thread_sp)->SetStoppedByExec ();
1934         }
1935         else
1936         {
1937             SetCurrentThreadID (LLDB_INVALID_THREAD_ID);
1938             if (log)
1939                 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ());
1940         }
1941 
1942         // Tell coordinator about about the "new" (since exec) stopped main thread.
1943         const lldb::tid_t main_thread_tid = GetID ();
1944         ThreadWasCreated(main_thread_tid);
1945 
1946         // NOTE: ideally these next statements would execute at the same time as the coordinator thread create was executed.
1947         // Consider a handler that can execute when that happens.
1948         // Let our delegate know we have just exec'd.
1949         NotifyDidExec ();
1950 
1951         // If we have a main thread, indicate we are stopped.
1952         assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked");
1953 
1954         // Let the process know we're stopped.
1955         StopRunningThreads (pid);
1956 
1957         break;
1958     }
1959 
1960     case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)):
1961     {
1962         // The inferior process or one of its threads is about to exit.
1963         // We don't want to do anything with the thread so we just resume it. In case we
1964         // want to implement "break on thread exit" functionality, we would need to stop
1965         // here.
1966 
1967         unsigned long data = 0;
1968         if (GetEventMessage(pid, &data).Fail())
1969             data = -1;
1970 
1971         if (log)
1972         {
1973             log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)",
1974                          __FUNCTION__,
1975                          data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false",
1976                          pid,
1977                     is_main_thread ? "is main thread" : "not main thread");
1978         }
1979 
1980         if (is_main_thread)
1981         {
1982             SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true);
1983         }
1984 
1985         Resume(pid, LLDB_INVALID_SIGNAL_NUMBER);
1986 
1987         break;
1988     }
1989 
1990     case 0:
1991     case TRAP_TRACE:  // We receive this on single stepping.
1992     case TRAP_HWBKPT: // We receive this on watchpoint hit
1993         if (thread_sp)
1994         {
1995             // If a watchpoint was hit, report it
1996             uint32_t wp_index;
1997             Error error = thread_sp->GetRegisterContext()->GetWatchpointHitIndex(wp_index, (lldb::addr_t)info->si_addr);
1998             if (error.Fail() && log)
1999                 log->Printf("NativeProcessLinux::%s() "
2000                             "received error while checking for watchpoint hits, "
2001                             "pid = %" PRIu64 " error = %s",
2002                             __FUNCTION__, pid, error.AsCString());
2003             if (wp_index != LLDB_INVALID_INDEX32)
2004             {
2005                 MonitorWatchpoint(pid, thread_sp, wp_index);
2006                 break;
2007             }
2008         }
2009         // Otherwise, report step over
2010         MonitorTrace(pid, thread_sp);
2011         break;
2012 
2013     case SI_KERNEL:
2014     case TRAP_BRKPT:
2015         MonitorBreakpoint(pid, thread_sp);
2016         break;
2017 
2018     case SIGTRAP:
2019     case (SIGTRAP | 0x80):
2020         if (log)
2021             log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), pid);
2022 
2023         // Ignore these signals until we know more about them.
2024         Resume(pid, LLDB_INVALID_SIGNAL_NUMBER);
2025         break;
2026 
2027     default:
2028         assert(false && "Unexpected SIGTRAP code!");
2029         if (log)
2030             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%d",
2031                     __FUNCTION__, GetID (), pid, info->si_code);
2032         break;
2033 
2034     }
2035 }
2036 
2037 void
2038 NativeProcessLinux::MonitorTrace(lldb::pid_t pid, NativeThreadProtocolSP thread_sp)
2039 {
2040     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2041     if (log)
2042         log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)",
2043                 __FUNCTION__, pid);
2044 
2045     if (thread_sp)
2046         std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace();
2047 
2048     // This thread is currently stopped.
2049     ThreadDidStop(pid, false);
2050 
2051     // Here we don't have to request the rest of the threads to stop or request a deferred stop.
2052     // This would have already happened at the time the Resume() with step operation was signaled.
2053     // At this point, we just need to say we stopped, and the deferred notifcation will fire off
2054     // once all running threads have checked in as stopped.
2055     SetCurrentThreadID(pid);
2056     // Tell the process we have a stop (from software breakpoint).
2057     StopRunningThreads(pid);
2058 }
2059 
2060 void
2061 NativeProcessLinux::MonitorBreakpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp)
2062 {
2063     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
2064     if (log)
2065         log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64,
2066                 __FUNCTION__, pid);
2067 
2068     // This thread is currently stopped.
2069     ThreadDidStop(pid, false);
2070 
2071     // Mark the thread as stopped at breakpoint.
2072     if (thread_sp)
2073     {
2074         std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByBreakpoint();
2075         Error error = FixupBreakpointPCAsNeeded(thread_sp);
2076         if (error.Fail())
2077             if (log)
2078                 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s",
2079                         __FUNCTION__, pid, error.AsCString());
2080 
2081         if (m_threads_stepping_with_breakpoint.find(pid) != m_threads_stepping_with_breakpoint.end())
2082             std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace();
2083     }
2084     else
2085         if (log)
2086             log->Printf("NativeProcessLinux::%s()  pid = %" PRIu64 ": "
2087                     "warning, cannot process software breakpoint since no thread metadata",
2088                     __FUNCTION__, pid);
2089 
2090 
2091     // We need to tell all other running threads before we notify the delegate about this stop.
2092     StopRunningThreads(pid);
2093 }
2094 
2095 void
2096 NativeProcessLinux::MonitorWatchpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp, uint32_t wp_index)
2097 {
2098     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
2099     if (log)
2100         log->Printf("NativeProcessLinux::%s() received watchpoint event, "
2101                     "pid = %" PRIu64 ", wp_index = %" PRIu32,
2102                     __FUNCTION__, pid, wp_index);
2103 
2104     // This thread is currently stopped.
2105     ThreadDidStop(pid, false);
2106 
2107     // Mark the thread as stopped at watchpoint.
2108     // The address is at (lldb::addr_t)info->si_addr if we need it.
2109     lldbassert(thread_sp && "thread_sp cannot be NULL");
2110     std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByWatchpoint(wp_index);
2111 
2112     // We need to tell all other running threads before we notify the delegate about this stop.
2113     StopRunningThreads(pid);
2114 }
2115 
2116 void
2117 NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited)
2118 {
2119     assert (info && "null info");
2120     if (!info)
2121         return;
2122 
2123     const int signo = info->si_signo;
2124     const bool is_from_llgs = info->si_pid == getpid ();
2125 
2126     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2127 
2128     // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
2129     // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
2130     // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
2131     //
2132     // IOW, user generated signals never generate what we consider to be a
2133     // "crash".
2134     //
2135     // Similarly, ACK signals generated by this monitor.
2136 
2137     Mutex::Locker locker (m_threads_mutex);
2138 
2139     // See if we can find a thread for this signal.
2140     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
2141     if (!thread_sp)
2142     {
2143         if (log)
2144             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
2145     }
2146 
2147     // Handle the signal.
2148     if (info->si_code == SI_TKILL || info->si_code == SI_USER)
2149     {
2150         if (log)
2151             log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")",
2152                             __FUNCTION__,
2153                             GetUnixSignals ().GetSignalAsCString (signo),
2154                             signo,
2155                             (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"),
2156                             info->si_pid,
2157                             is_from_llgs ? "from llgs" : "not from llgs",
2158                             pid);
2159     }
2160 
2161     // Check for new thread notification.
2162     if ((info->si_pid == 0) && (info->si_code == SI_USER))
2163     {
2164         // A new thread creation is being signaled. This is one of two parts that come in
2165         // a non-deterministic order. This code handles the case where the new thread event comes
2166         // before the event on the parent thread. For the opposite case see code in
2167         // MonitorSIGTRAP.
2168         if (log)
2169             log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification",
2170                      __FUNCTION__, GetID (), pid);
2171 
2172         thread_sp = AddThread(pid);
2173         assert (thread_sp.get() && "failed to create the tracking data for newly created inferior thread");
2174         // We can now resume the newly created thread.
2175         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2176         Resume (pid, LLDB_INVALID_SIGNAL_NUMBER);
2177         ThreadWasCreated(pid);
2178         // Done handling.
2179         return;
2180     }
2181 
2182     // Check for thread stop notification.
2183     if (is_from_llgs && (info->si_code == SI_TKILL) && (signo == SIGSTOP))
2184     {
2185         // This is a tgkill()-based stop.
2186         if (thread_sp)
2187         {
2188             if (log)
2189                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped",
2190                              __FUNCTION__,
2191                              GetID (),
2192                              pid);
2193 
2194             // Check that we're not already marked with a stop reason.
2195             // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that
2196             // the kernel signaled us with the thread stopping which we handled and marked as stopped,
2197             // and that, without an intervening resume, we received another stop.  It is more likely
2198             // that we are missing the marking of a run state somewhere if we find that the thread was
2199             // marked as stopped.
2200             std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp);
2201             assert (linux_thread_sp && "linux_thread_sp is null!");
2202 
2203             const StateType thread_state = linux_thread_sp->GetState ();
2204             if (!StateIsStoppedState (thread_state, false))
2205             {
2206                 // An inferior thread has stopped because of a SIGSTOP we have sent it.
2207                 // Generally, these are not important stops and we don't want to report them as
2208                 // they are just used to stop other threads when one thread (the one with the
2209                 // *real* stop reason) hits a breakpoint (watchpoint, etc...). However, in the
2210                 // case of an asynchronous Interrupt(), this *is* the real stop reason, so we
2211                 // leave the signal intact if this is the thread that was chosen as the
2212                 // triggering thread.
2213                 if (m_pending_notification_up && m_pending_notification_up->triggering_tid == pid)
2214                     linux_thread_sp->SetStoppedBySignal(SIGSTOP, info);
2215                 else
2216                     linux_thread_sp->SetStoppedBySignal(0);
2217 
2218                 SetCurrentThreadID (thread_sp->GetID ());
2219                 ThreadDidStop (thread_sp->GetID (), true);
2220             }
2221             else
2222             {
2223                 if (log)
2224                 {
2225                     // Retrieve the signal name if the thread was stopped by a signal.
2226                     int stop_signo = 0;
2227                     const bool stopped_by_signal = linux_thread_sp->IsStopped (&stop_signo);
2228                     const char *signal_name = stopped_by_signal ? GetUnixSignals ().GetSignalAsCString (stop_signo) : "<not stopped by signal>";
2229                     if (!signal_name)
2230                         signal_name = "<no-signal-name>";
2231 
2232                     log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is",
2233                                  __FUNCTION__,
2234                                  GetID (),
2235                                  linux_thread_sp->GetID (),
2236                                  StateAsCString (thread_state),
2237                                  stop_signo,
2238                                  signal_name);
2239                 }
2240                 ThreadDidStop (thread_sp->GetID (), false);
2241             }
2242         }
2243 
2244         // Done handling.
2245         return;
2246     }
2247 
2248     if (log)
2249         log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo));
2250 
2251     // This thread is stopped.
2252     ThreadDidStop (pid, false);
2253 
2254     if (thread_sp)
2255         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal(signo, info);
2256 
2257     // Send a stop to the debugger after we get all other threads to stop.
2258     StopRunningThreads (pid);
2259 }
2260 
2261 namespace {
2262 
2263 struct EmulatorBaton
2264 {
2265     NativeProcessLinux* m_process;
2266     NativeRegisterContext* m_reg_context;
2267 
2268     // eRegisterKindDWARF -> RegsiterValue
2269     std::unordered_map<uint32_t, RegisterValue> m_register_values;
2270 
2271     EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) :
2272             m_process(process), m_reg_context(reg_context) {}
2273 };
2274 
2275 } // anonymous namespace
2276 
2277 static size_t
2278 ReadMemoryCallback (EmulateInstruction *instruction,
2279                     void *baton,
2280                     const EmulateInstruction::Context &context,
2281                     lldb::addr_t addr,
2282                     void *dst,
2283                     size_t length)
2284 {
2285     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2286 
2287     size_t bytes_read;
2288     emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read);
2289     return bytes_read;
2290 }
2291 
2292 static bool
2293 ReadRegisterCallback (EmulateInstruction *instruction,
2294                       void *baton,
2295                       const RegisterInfo *reg_info,
2296                       RegisterValue &reg_value)
2297 {
2298     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2299 
2300     auto it = emulator_baton->m_register_values.find(reg_info->kinds[eRegisterKindDWARF]);
2301     if (it != emulator_baton->m_register_values.end())
2302     {
2303         reg_value = it->second;
2304         return true;
2305     }
2306 
2307     // The emulator only fill in the dwarf regsiter numbers (and in some case
2308     // the generic register numbers). Get the full register info from the
2309     // register context based on the dwarf register numbers.
2310     const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo(
2311             eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
2312 
2313     Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value);
2314     if (error.Success())
2315         return true;
2316 
2317     return false;
2318 }
2319 
2320 static bool
2321 WriteRegisterCallback (EmulateInstruction *instruction,
2322                        void *baton,
2323                        const EmulateInstruction::Context &context,
2324                        const RegisterInfo *reg_info,
2325                        const RegisterValue &reg_value)
2326 {
2327     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2328     emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value;
2329     return true;
2330 }
2331 
2332 static size_t
2333 WriteMemoryCallback (EmulateInstruction *instruction,
2334                      void *baton,
2335                      const EmulateInstruction::Context &context,
2336                      lldb::addr_t addr,
2337                      const void *dst,
2338                      size_t length)
2339 {
2340     return length;
2341 }
2342 
2343 static lldb::addr_t
2344 ReadFlags (NativeRegisterContext* regsiter_context)
2345 {
2346     const RegisterInfo* flags_info = regsiter_context->GetRegisterInfo(
2347             eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
2348     return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS);
2349 }
2350 
2351 Error
2352 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadProtocolSP thread_sp)
2353 {
2354     Error error;
2355     NativeRegisterContextSP register_context_sp = thread_sp->GetRegisterContext();
2356 
2357     std::unique_ptr<EmulateInstruction> emulator_ap(
2358         EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr));
2359 
2360     if (emulator_ap == nullptr)
2361         return Error("Instruction emulator not found!");
2362 
2363     EmulatorBaton baton(this, register_context_sp.get());
2364     emulator_ap->SetBaton(&baton);
2365     emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
2366     emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
2367     emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
2368     emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
2369 
2370     if (!emulator_ap->ReadInstruction())
2371         return Error("Read instruction failed!");
2372 
2373     bool emulation_result = emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
2374 
2375     const RegisterInfo* reg_info_pc = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
2376     const RegisterInfo* reg_info_flags = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
2377 
2378     auto pc_it = baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
2379     auto flags_it = baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
2380 
2381     lldb::addr_t next_pc;
2382     lldb::addr_t next_flags;
2383     if (emulation_result)
2384     {
2385         assert(pc_it != baton.m_register_values.end() && "Emulation was successfull but PC wasn't updated");
2386         next_pc = pc_it->second.GetAsUInt64();
2387 
2388         if (flags_it != baton.m_register_values.end())
2389             next_flags = flags_it->second.GetAsUInt64();
2390         else
2391             next_flags = ReadFlags (register_context_sp.get());
2392     }
2393     else if (pc_it == baton.m_register_values.end())
2394     {
2395         // Emulate instruction failed and it haven't changed PC. Advance PC
2396         // with the size of the current opcode because the emulation of all
2397         // PC modifying instruction should be successful. The failure most
2398         // likely caused by a not supported instruction which don't modify PC.
2399         next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize();
2400         next_flags = ReadFlags (register_context_sp.get());
2401     }
2402     else
2403     {
2404         // The instruction emulation failed after it modified the PC. It is an
2405         // unknown error where we can't continue because the next instruction is
2406         // modifying the PC but we don't  know how.
2407         return Error ("Instruction emulation failed unexpectedly.");
2408     }
2409 
2410     if (m_arch.GetMachine() == llvm::Triple::arm)
2411     {
2412         if (next_flags & 0x20)
2413         {
2414             // Thumb mode
2415             error = SetSoftwareBreakpoint(next_pc, 2);
2416         }
2417         else
2418         {
2419             // Arm mode
2420             error = SetSoftwareBreakpoint(next_pc, 4);
2421         }
2422     }
2423     else if (m_arch.GetMachine() == llvm::Triple::mips64
2424             || m_arch.GetMachine() == llvm::Triple::mips64el)
2425         error = SetSoftwareBreakpoint(next_pc, 4);
2426     else
2427     {
2428         // No size hint is given for the next breakpoint
2429         error = SetSoftwareBreakpoint(next_pc, 0);
2430     }
2431 
2432     if (error.Fail())
2433         return error;
2434 
2435     m_threads_stepping_with_breakpoint.insert({thread_sp->GetID(), next_pc});
2436 
2437     return Error();
2438 }
2439 
2440 bool
2441 NativeProcessLinux::SupportHardwareSingleStepping() const
2442 {
2443     if (m_arch.GetMachine() == llvm::Triple::arm
2444         || m_arch.GetMachine() == llvm::Triple::mips64 || m_arch.GetMachine() == llvm::Triple::mips64el)
2445         return false;
2446     return true;
2447 }
2448 
2449 Error
2450 NativeProcessLinux::Resume (const ResumeActionList &resume_actions)
2451 {
2452     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD));
2453     if (log)
2454         log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ());
2455 
2456     bool software_single_step = !SupportHardwareSingleStepping();
2457 
2458     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
2459     Mutex::Locker locker (m_threads_mutex);
2460 
2461     if (software_single_step)
2462     {
2463         for (auto thread_sp : m_threads)
2464         {
2465             assert (thread_sp && "thread list should not contain NULL threads");
2466 
2467             const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
2468             if (action == nullptr)
2469                 continue;
2470 
2471             if (action->state == eStateStepping)
2472             {
2473                 Error error = SetupSoftwareSingleStepping(thread_sp);
2474                 if (error.Fail())
2475                     return error;
2476             }
2477         }
2478     }
2479 
2480     for (auto thread_sp : m_threads)
2481     {
2482         assert (thread_sp && "thread list should not contain NULL threads");
2483 
2484         const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
2485 
2486         if (action == nullptr)
2487         {
2488             if (log)
2489                 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64,
2490                     __FUNCTION__, GetID (), thread_sp->GetID ());
2491             continue;
2492         }
2493 
2494         if (log)
2495         {
2496             log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64,
2497                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
2498         }
2499 
2500         switch (action->state)
2501         {
2502         case eStateRunning:
2503         {
2504             // Run the thread, possibly feeding it the signal.
2505             const int signo = action->signal;
2506             ResumeThread(thread_sp->GetID (),
2507                     [=](lldb::tid_t tid_to_resume, bool supress_signal)
2508                     {
2509                         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2510                         // Pass this signal number on to the inferior to handle.
2511                         const auto resume_result = Resume (tid_to_resume, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
2512                         if (resume_result.Success())
2513                             SetState(eStateRunning, true);
2514                         return resume_result;
2515                     },
2516                     false);
2517             break;
2518         }
2519 
2520         case eStateStepping:
2521         {
2522             // Request the step.
2523             const int signo = action->signal;
2524             ResumeThread(thread_sp->GetID (),
2525                     [=](lldb::tid_t tid_to_step, bool supress_signal)
2526                     {
2527                         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStepping ();
2528 
2529                         Error step_result;
2530                         if (software_single_step)
2531                             step_result = Resume (tid_to_step, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
2532                         else
2533                             step_result = SingleStep (tid_to_step,(signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
2534 
2535                         assert (step_result.Success() && "SingleStep() failed");
2536                         if (step_result.Success())
2537                             SetState(eStateStepping, true);
2538                         return step_result;
2539                     },
2540                     false);
2541             break;
2542         }
2543 
2544         case eStateSuspended:
2545         case eStateStopped:
2546             lldbassert(0 && "Unexpected state");
2547 
2548         default:
2549             return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64,
2550                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
2551         }
2552     }
2553 
2554     return Error();
2555 }
2556 
2557 Error
2558 NativeProcessLinux::Halt ()
2559 {
2560     Error error;
2561 
2562     if (kill (GetID (), SIGSTOP) != 0)
2563         error.SetErrorToErrno ();
2564 
2565     return error;
2566 }
2567 
2568 Error
2569 NativeProcessLinux::Detach ()
2570 {
2571     Error error;
2572 
2573     // Tell ptrace to detach from the process.
2574     if (GetID () != LLDB_INVALID_PROCESS_ID)
2575         error = Detach (GetID ());
2576 
2577     // Stop monitoring the inferior.
2578     m_monitor_up->Terminate();
2579 
2580     // No error.
2581     return error;
2582 }
2583 
2584 Error
2585 NativeProcessLinux::Signal (int signo)
2586 {
2587     Error error;
2588 
2589     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2590     if (log)
2591         log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64,
2592                 __FUNCTION__, signo,  GetUnixSignals ().GetSignalAsCString (signo), GetID ());
2593 
2594     if (kill(GetID(), signo))
2595         error.SetErrorToErrno();
2596 
2597     return error;
2598 }
2599 
2600 Error
2601 NativeProcessLinux::Interrupt ()
2602 {
2603     // Pick a running thread (or if none, a not-dead stopped thread) as
2604     // the chosen thread that will be the stop-reason thread.
2605     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2606 
2607     NativeThreadProtocolSP running_thread_sp;
2608     NativeThreadProtocolSP stopped_thread_sp;
2609 
2610     if (log)
2611         log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__);
2612 
2613     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
2614     Mutex::Locker locker (m_threads_mutex);
2615 
2616     for (auto thread_sp : m_threads)
2617     {
2618         // The thread shouldn't be null but lets just cover that here.
2619         if (!thread_sp)
2620             continue;
2621 
2622         // If we have a running or stepping thread, we'll call that the
2623         // target of the interrupt.
2624         const auto thread_state = thread_sp->GetState ();
2625         if (thread_state == eStateRunning ||
2626             thread_state == eStateStepping)
2627         {
2628             running_thread_sp = thread_sp;
2629             break;
2630         }
2631         else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true))
2632         {
2633             // Remember the first non-dead stopped thread.  We'll use that as a backup if there are no running threads.
2634             stopped_thread_sp = thread_sp;
2635         }
2636     }
2637 
2638     if (!running_thread_sp && !stopped_thread_sp)
2639     {
2640         Error error("found no running/stepping or live stopped threads as target for interrupt");
2641         if (log)
2642             log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ());
2643 
2644         return error;
2645     }
2646 
2647     NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp;
2648 
2649     if (log)
2650         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target",
2651                      __FUNCTION__,
2652                      GetID (),
2653                      running_thread_sp ? "running" : "stopped",
2654                      deferred_signal_thread_sp->GetID ());
2655 
2656     StopRunningThreads(deferred_signal_thread_sp->GetID());
2657 
2658     return Error();
2659 }
2660 
2661 Error
2662 NativeProcessLinux::Kill ()
2663 {
2664     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2665     if (log)
2666         log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ());
2667 
2668     Error error;
2669 
2670     switch (m_state)
2671     {
2672         case StateType::eStateInvalid:
2673         case StateType::eStateExited:
2674         case StateType::eStateCrashed:
2675         case StateType::eStateDetached:
2676         case StateType::eStateUnloaded:
2677             // Nothing to do - the process is already dead.
2678             if (log)
2679                 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state));
2680             return error;
2681 
2682         case StateType::eStateConnected:
2683         case StateType::eStateAttaching:
2684         case StateType::eStateLaunching:
2685         case StateType::eStateStopped:
2686         case StateType::eStateRunning:
2687         case StateType::eStateStepping:
2688         case StateType::eStateSuspended:
2689             // We can try to kill a process in these states.
2690             break;
2691     }
2692 
2693     if (kill (GetID (), SIGKILL) != 0)
2694     {
2695         error.SetErrorToErrno ();
2696         return error;
2697     }
2698 
2699     return error;
2700 }
2701 
2702 static Error
2703 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info)
2704 {
2705     memory_region_info.Clear();
2706 
2707     StringExtractor line_extractor (maps_line.c_str ());
2708 
2709     // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode   pathname
2710     // perms: rwxp   (letter is present if set, '-' if not, final character is p=private, s=shared).
2711 
2712     // Parse out the starting address
2713     lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0);
2714 
2715     // Parse out hyphen separating start and end address from range.
2716     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-'))
2717         return Error ("malformed /proc/{pid}/maps entry, missing dash between address range");
2718 
2719     // Parse out the ending address
2720     lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address);
2721 
2722     // Parse out the space after the address.
2723     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' '))
2724         return Error ("malformed /proc/{pid}/maps entry, missing space after range");
2725 
2726     // Save the range.
2727     memory_region_info.GetRange ().SetRangeBase (start_address);
2728     memory_region_info.GetRange ().SetRangeEnd (end_address);
2729 
2730     // Parse out each permission entry.
2731     if (line_extractor.GetBytesLeft () < 4)
2732         return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions");
2733 
2734     // Handle read permission.
2735     const char read_perm_char = line_extractor.GetChar ();
2736     if (read_perm_char == 'r')
2737         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes);
2738     else
2739     {
2740         assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" );
2741         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2742     }
2743 
2744     // Handle write permission.
2745     const char write_perm_char = line_extractor.GetChar ();
2746     if (write_perm_char == 'w')
2747         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes);
2748     else
2749     {
2750         assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" );
2751         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2752     }
2753 
2754     // Handle execute permission.
2755     const char exec_perm_char = line_extractor.GetChar ();
2756     if (exec_perm_char == 'x')
2757         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes);
2758     else
2759     {
2760         assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" );
2761         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2762     }
2763 
2764     return Error ();
2765 }
2766 
2767 Error
2768 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info)
2769 {
2770     // FIXME review that the final memory region returned extends to the end of the virtual address space,
2771     // with no perms if it is not mapped.
2772 
2773     // Use an approach that reads memory regions from /proc/{pid}/maps.
2774     // Assume proc maps entries are in ascending order.
2775     // FIXME assert if we find differently.
2776     Mutex::Locker locker (m_mem_region_cache_mutex);
2777 
2778     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2779     Error error;
2780 
2781     if (m_supports_mem_region == LazyBool::eLazyBoolNo)
2782     {
2783         // We're done.
2784         error.SetErrorString ("unsupported");
2785         return error;
2786     }
2787 
2788     // If our cache is empty, pull the latest.  There should always be at least one memory region
2789     // if memory region handling is supported.
2790     if (m_mem_region_cache.empty ())
2791     {
2792         error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
2793              [&] (const std::string &line) -> bool
2794              {
2795                  MemoryRegionInfo info;
2796                  const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info);
2797                  if (parse_error.Success ())
2798                  {
2799                      m_mem_region_cache.push_back (info);
2800                      return true;
2801                  }
2802                  else
2803                  {
2804                      if (log)
2805                          log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ());
2806                      return false;
2807                  }
2808              });
2809 
2810         // If we had an error, we'll mark unsupported.
2811         if (error.Fail ())
2812         {
2813             m_supports_mem_region = LazyBool::eLazyBoolNo;
2814             return error;
2815         }
2816         else if (m_mem_region_cache.empty ())
2817         {
2818             // No entries after attempting to read them.  This shouldn't happen if /proc/{pid}/maps
2819             // is supported.  Assume we don't support map entries via procfs.
2820             if (log)
2821                 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__);
2822             m_supports_mem_region = LazyBool::eLazyBoolNo;
2823             error.SetErrorString ("not supported");
2824             return error;
2825         }
2826 
2827         if (log)
2828             log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ());
2829 
2830         // We support memory retrieval, remember that.
2831         m_supports_mem_region = LazyBool::eLazyBoolYes;
2832     }
2833     else
2834     {
2835         if (log)
2836             log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
2837     }
2838 
2839     lldb::addr_t prev_base_address = 0;
2840 
2841     // FIXME start by finding the last region that is <= target address using binary search.  Data is sorted.
2842     // There can be a ton of regions on pthreads apps with lots of threads.
2843     for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it)
2844     {
2845         MemoryRegionInfo &proc_entry_info = *it;
2846 
2847         // Sanity check assumption that /proc/{pid}/maps entries are ascending.
2848         assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected");
2849         prev_base_address = proc_entry_info.GetRange ().GetRangeBase ();
2850 
2851         // If the target address comes before this entry, indicate distance to next region.
2852         if (load_addr < proc_entry_info.GetRange ().GetRangeBase ())
2853         {
2854             range_info.GetRange ().SetRangeBase (load_addr);
2855             range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr);
2856             range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2857             range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2858             range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2859 
2860             return error;
2861         }
2862         else if (proc_entry_info.GetRange ().Contains (load_addr))
2863         {
2864             // The target address is within the memory region we're processing here.
2865             range_info = proc_entry_info;
2866             return error;
2867         }
2868 
2869         // The target memory address comes somewhere after the region we just parsed.
2870     }
2871 
2872     // If we made it here, we didn't find an entry that contained the given address.
2873     error.SetErrorString ("address comes after final region");
2874 
2875     if (log)
2876         log->Printf ("NativeProcessLinux::%s failed to find map entry for address 0x%" PRIx64 ": %s", __FUNCTION__, load_addr, error.AsCString ());
2877 
2878     return error;
2879 }
2880 
2881 void
2882 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId)
2883 {
2884     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2885     if (log)
2886         log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId);
2887 
2888     {
2889         Mutex::Locker locker (m_mem_region_cache_mutex);
2890         if (log)
2891             log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
2892         m_mem_region_cache.clear ();
2893     }
2894 }
2895 
2896 Error
2897 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, lldb::addr_t &addr)
2898 {
2899     // FIXME implementing this requires the equivalent of
2900     // InferiorCallPOSIX::InferiorCallMmap, which depends on
2901     // functional ThreadPlans working with Native*Protocol.
2902 #if 1
2903     return Error ("not implemented yet");
2904 #else
2905     addr = LLDB_INVALID_ADDRESS;
2906 
2907     unsigned prot = 0;
2908     if (permissions & lldb::ePermissionsReadable)
2909         prot |= eMmapProtRead;
2910     if (permissions & lldb::ePermissionsWritable)
2911         prot |= eMmapProtWrite;
2912     if (permissions & lldb::ePermissionsExecutable)
2913         prot |= eMmapProtExec;
2914 
2915     // TODO implement this directly in NativeProcessLinux
2916     // (and lift to NativeProcessPOSIX if/when that class is
2917     // refactored out).
2918     if (InferiorCallMmap(this, addr, 0, size, prot,
2919                          eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
2920         m_addr_to_mmap_size[addr] = size;
2921         return Error ();
2922     } else {
2923         addr = LLDB_INVALID_ADDRESS;
2924         return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions));
2925     }
2926 #endif
2927 }
2928 
2929 Error
2930 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr)
2931 {
2932     // FIXME see comments in AllocateMemory - required lower-level
2933     // bits not in place yet (ThreadPlans)
2934     return Error ("not implemented");
2935 }
2936 
2937 lldb::addr_t
2938 NativeProcessLinux::GetSharedLibraryInfoAddress ()
2939 {
2940 #if 1
2941     // punt on this for now
2942     return LLDB_INVALID_ADDRESS;
2943 #else
2944     // Return the image info address for the exe module
2945 #if 1
2946     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2947 
2948     ModuleSP module_sp;
2949     Error error = GetExeModuleSP (module_sp);
2950     if (error.Fail ())
2951     {
2952          if (log)
2953             log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ());
2954         return LLDB_INVALID_ADDRESS;
2955     }
2956 
2957     if (module_sp == nullptr)
2958     {
2959          if (log)
2960             log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__);
2961          return LLDB_INVALID_ADDRESS;
2962     }
2963 
2964     ObjectFileSP object_file_sp = module_sp->GetObjectFile ();
2965     if (object_file_sp == nullptr)
2966     {
2967          if (log)
2968             log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__);
2969          return LLDB_INVALID_ADDRESS;
2970     }
2971 
2972     return obj_file_sp->GetImageInfoAddress();
2973 #else
2974     Target *target = &GetTarget();
2975     ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile();
2976     Address addr = obj_file->GetImageInfoAddress(target);
2977 
2978     if (addr.IsValid())
2979         return addr.GetLoadAddress(target);
2980     return LLDB_INVALID_ADDRESS;
2981 #endif
2982 #endif // punt on this for now
2983 }
2984 
2985 size_t
2986 NativeProcessLinux::UpdateThreads ()
2987 {
2988     // The NativeProcessLinux monitoring threads are always up to date
2989     // with respect to thread state and they keep the thread list
2990     // populated properly. All this method needs to do is return the
2991     // thread count.
2992     Mutex::Locker locker (m_threads_mutex);
2993     return m_threads.size ();
2994 }
2995 
2996 bool
2997 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const
2998 {
2999     arch = m_arch;
3000     return true;
3001 }
3002 
3003 Error
3004 NativeProcessLinux::GetSoftwareBreakpointPCOffset (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size)
3005 {
3006     // FIXME put this behind a breakpoint protocol class that can be
3007     // set per architecture.  Need ARM, MIPS support here.
3008     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
3009     static const uint8_t g_i386_opcode [] = { 0xCC };
3010     static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d };
3011 
3012     switch (m_arch.GetMachine ())
3013     {
3014         case llvm::Triple::aarch64:
3015             actual_opcode_size = static_cast<uint32_t> (sizeof(g_aarch64_opcode));
3016             return Error ();
3017 
3018         case llvm::Triple::arm:
3019             actual_opcode_size = 0; // On arm the PC don't get updated for breakpoint hits
3020             return Error ();
3021 
3022         case llvm::Triple::x86:
3023         case llvm::Triple::x86_64:
3024             actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode));
3025             return Error ();
3026 
3027         case llvm::Triple::mips64:
3028         case llvm::Triple::mips64el:
3029         case llvm::Triple::mips:
3030         case llvm::Triple::mipsel:
3031             actual_opcode_size = static_cast<uint32_t> (sizeof(g_mips64_opcode));
3032             return Error ();
3033 
3034         default:
3035             assert(false && "CPU type not supported!");
3036             return Error ("CPU type not supported");
3037     }
3038 }
3039 
3040 Error
3041 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware)
3042 {
3043     if (hardware)
3044         return Error ("NativeProcessLinux does not support hardware breakpoints");
3045     else
3046         return SetSoftwareBreakpoint (addr, size);
3047 }
3048 
3049 Error
3050 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint,
3051                                                      size_t &actual_opcode_size,
3052                                                      const uint8_t *&trap_opcode_bytes)
3053 {
3054     // FIXME put this behind a breakpoint protocol class that can be set per
3055     // architecture.  Need MIPS support here.
3056     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
3057     // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
3058     // linux kernel does otherwise.
3059     static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 };
3060     static const uint8_t g_i386_opcode [] = { 0xCC };
3061     static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d };
3062     static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 };
3063     static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde };
3064 
3065     switch (m_arch.GetMachine ())
3066     {
3067     case llvm::Triple::aarch64:
3068         trap_opcode_bytes = g_aarch64_opcode;
3069         actual_opcode_size = sizeof(g_aarch64_opcode);
3070         return Error ();
3071 
3072     case llvm::Triple::arm:
3073         switch (trap_opcode_size_hint)
3074         {
3075         case 2:
3076             trap_opcode_bytes = g_thumb_breakpoint_opcode;
3077             actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
3078             return Error ();
3079         case 4:
3080             trap_opcode_bytes = g_arm_breakpoint_opcode;
3081             actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
3082             return Error ();
3083         default:
3084             assert(false && "Unrecognised trap opcode size hint!");
3085             return Error ("Unrecognised trap opcode size hint!");
3086         }
3087 
3088     case llvm::Triple::x86:
3089     case llvm::Triple::x86_64:
3090         trap_opcode_bytes = g_i386_opcode;
3091         actual_opcode_size = sizeof(g_i386_opcode);
3092         return Error ();
3093 
3094     case llvm::Triple::mips:
3095     case llvm::Triple::mips64:
3096         trap_opcode_bytes = g_mips64_opcode;
3097         actual_opcode_size = sizeof(g_mips64_opcode);
3098         return Error ();
3099 
3100     case llvm::Triple::mipsel:
3101     case llvm::Triple::mips64el:
3102         trap_opcode_bytes = g_mips64el_opcode;
3103         actual_opcode_size = sizeof(g_mips64el_opcode);
3104         return Error ();
3105 
3106     default:
3107         assert(false && "CPU type not supported!");
3108         return Error ("CPU type not supported");
3109     }
3110 }
3111 
3112 #if 0
3113 ProcessMessage::CrashReason
3114 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
3115 {
3116     ProcessMessage::CrashReason reason;
3117     assert(info->si_signo == SIGSEGV);
3118 
3119     reason = ProcessMessage::eInvalidCrashReason;
3120 
3121     switch (info->si_code)
3122     {
3123     default:
3124         assert(false && "unexpected si_code for SIGSEGV");
3125         break;
3126     case SI_KERNEL:
3127         // Linux will occasionally send spurious SI_KERNEL codes.
3128         // (this is poorly documented in sigaction)
3129         // One way to get this is via unaligned SIMD loads.
3130         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
3131         break;
3132     case SEGV_MAPERR:
3133         reason = ProcessMessage::eInvalidAddress;
3134         break;
3135     case SEGV_ACCERR:
3136         reason = ProcessMessage::ePrivilegedAddress;
3137         break;
3138     }
3139 
3140     return reason;
3141 }
3142 #endif
3143 
3144 
3145 #if 0
3146 ProcessMessage::CrashReason
3147 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
3148 {
3149     ProcessMessage::CrashReason reason;
3150     assert(info->si_signo == SIGILL);
3151 
3152     reason = ProcessMessage::eInvalidCrashReason;
3153 
3154     switch (info->si_code)
3155     {
3156     default:
3157         assert(false && "unexpected si_code for SIGILL");
3158         break;
3159     case ILL_ILLOPC:
3160         reason = ProcessMessage::eIllegalOpcode;
3161         break;
3162     case ILL_ILLOPN:
3163         reason = ProcessMessage::eIllegalOperand;
3164         break;
3165     case ILL_ILLADR:
3166         reason = ProcessMessage::eIllegalAddressingMode;
3167         break;
3168     case ILL_ILLTRP:
3169         reason = ProcessMessage::eIllegalTrap;
3170         break;
3171     case ILL_PRVOPC:
3172         reason = ProcessMessage::ePrivilegedOpcode;
3173         break;
3174     case ILL_PRVREG:
3175         reason = ProcessMessage::ePrivilegedRegister;
3176         break;
3177     case ILL_COPROC:
3178         reason = ProcessMessage::eCoprocessorError;
3179         break;
3180     case ILL_BADSTK:
3181         reason = ProcessMessage::eInternalStackError;
3182         break;
3183     }
3184 
3185     return reason;
3186 }
3187 #endif
3188 
3189 #if 0
3190 ProcessMessage::CrashReason
3191 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
3192 {
3193     ProcessMessage::CrashReason reason;
3194     assert(info->si_signo == SIGFPE);
3195 
3196     reason = ProcessMessage::eInvalidCrashReason;
3197 
3198     switch (info->si_code)
3199     {
3200     default:
3201         assert(false && "unexpected si_code for SIGFPE");
3202         break;
3203     case FPE_INTDIV:
3204         reason = ProcessMessage::eIntegerDivideByZero;
3205         break;
3206     case FPE_INTOVF:
3207         reason = ProcessMessage::eIntegerOverflow;
3208         break;
3209     case FPE_FLTDIV:
3210         reason = ProcessMessage::eFloatDivideByZero;
3211         break;
3212     case FPE_FLTOVF:
3213         reason = ProcessMessage::eFloatOverflow;
3214         break;
3215     case FPE_FLTUND:
3216         reason = ProcessMessage::eFloatUnderflow;
3217         break;
3218     case FPE_FLTRES:
3219         reason = ProcessMessage::eFloatInexactResult;
3220         break;
3221     case FPE_FLTINV:
3222         reason = ProcessMessage::eFloatInvalidOperation;
3223         break;
3224     case FPE_FLTSUB:
3225         reason = ProcessMessage::eFloatSubscriptRange;
3226         break;
3227     }
3228 
3229     return reason;
3230 }
3231 #endif
3232 
3233 #if 0
3234 ProcessMessage::CrashReason
3235 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
3236 {
3237     ProcessMessage::CrashReason reason;
3238     assert(info->si_signo == SIGBUS);
3239 
3240     reason = ProcessMessage::eInvalidCrashReason;
3241 
3242     switch (info->si_code)
3243     {
3244     default:
3245         assert(false && "unexpected si_code for SIGBUS");
3246         break;
3247     case BUS_ADRALN:
3248         reason = ProcessMessage::eIllegalAlignment;
3249         break;
3250     case BUS_ADRERR:
3251         reason = ProcessMessage::eIllegalAddress;
3252         break;
3253     case BUS_OBJERR:
3254         reason = ProcessMessage::eHardwareError;
3255         break;
3256     }
3257 
3258     return reason;
3259 }
3260 #endif
3261 
3262 Error
3263 NativeProcessLinux::SetWatchpoint (lldb::addr_t addr, size_t size, uint32_t watch_flags, bool hardware)
3264 {
3265     // The base SetWatchpoint will end up executing monitor operations. Let's lock the monitor
3266     // for it.
3267     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
3268     return NativeProcessProtocol::SetWatchpoint(addr, size, watch_flags, hardware);
3269 }
3270 
3271 Error
3272 NativeProcessLinux::RemoveWatchpoint (lldb::addr_t addr)
3273 {
3274     // The base RemoveWatchpoint will end up executing monitor operations. Let's lock the monitor
3275     // for it.
3276     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
3277     return NativeProcessProtocol::RemoveWatchpoint(addr);
3278 }
3279 
3280 Error
3281 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
3282 {
3283     if (ProcessVmReadvSupported()) {
3284         // The process_vm_readv path is about 50 times faster than ptrace api. We want to use
3285         // this syscall if it is supported.
3286 
3287         const ::pid_t pid = GetID();
3288 
3289         struct iovec local_iov, remote_iov;
3290         local_iov.iov_base = buf;
3291         local_iov.iov_len = size;
3292         remote_iov.iov_base = reinterpret_cast<void *>(addr);
3293         remote_iov.iov_len = size;
3294 
3295         bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
3296         const bool success = bytes_read == size;
3297 
3298         Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3299         if (log)
3300             log->Printf ("NativeProcessLinux::%s using process_vm_readv to read %zd bytes from inferior address 0x%" PRIx64": %s",
3301                     __FUNCTION__, size, addr, success ? "Success" : strerror(errno));
3302 
3303         if (success)
3304             return Error();
3305         // else
3306         //     the call failed for some reason, let's retry the read using ptrace api.
3307     }
3308 
3309     ReadOperation op(addr, buf, size, bytes_read);
3310     m_monitor_up->DoOperation(&op);
3311     return op.GetError ();
3312 }
3313 
3314 Error
3315 NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
3316 {
3317     Error error = ReadMemory(addr, buf, size, bytes_read);
3318     if (error.Fail()) return error;
3319     return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size);
3320 }
3321 
3322 Error
3323 NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, size_t size, size_t &bytes_written)
3324 {
3325     WriteOperation op(addr, buf, size, bytes_written);
3326     m_monitor_up->DoOperation(&op);
3327     return op.GetError ();
3328 }
3329 
3330 Error
3331 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo)
3332 {
3333     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3334 
3335     if (log)
3336         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " with signal %s", __FUNCTION__, tid,
3337                                  GetUnixSignals().GetSignalAsCString (signo));
3338     ResumeOperation op (tid, signo);
3339     m_monitor_up->DoOperation (&op);
3340     if (log)
3341         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " result = %s", __FUNCTION__, tid, op.GetError().Success() ? "true" : "false");
3342     return op.GetError();
3343 }
3344 
3345 Error
3346 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo)
3347 {
3348     SingleStepOperation op(tid, signo);
3349     m_monitor_up->DoOperation(&op);
3350     return op.GetError();
3351 }
3352 
3353 Error
3354 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo)
3355 {
3356     SiginfoOperation op(tid, siginfo);
3357     m_monitor_up->DoOperation(&op);
3358     return op.GetError();
3359 }
3360 
3361 Error
3362 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message)
3363 {
3364     EventMessageOperation op(tid, message);
3365     m_monitor_up->DoOperation(&op);
3366     return op.GetError();
3367 }
3368 
3369 Error
3370 NativeProcessLinux::Detach(lldb::tid_t tid)
3371 {
3372     if (tid == LLDB_INVALID_THREAD_ID)
3373         return Error();
3374 
3375     DetachOperation op(tid);
3376     m_monitor_up->DoOperation(&op);
3377     return op.GetError();
3378 }
3379 
3380 bool
3381 NativeProcessLinux::DupDescriptor(const FileSpec &file_spec, int fd, int flags)
3382 {
3383     int target_fd = open(file_spec.GetCString(), flags, 0666);
3384 
3385     if (target_fd == -1)
3386         return false;
3387 
3388     if (dup2(target_fd, fd) == -1)
3389         return false;
3390 
3391     return (close(target_fd) == -1) ? false : true;
3392 }
3393 
3394 void
3395 NativeProcessLinux::StartMonitorThread(const InitialOperation &initial_operation, Error &error)
3396 {
3397     m_monitor_up.reset(new Monitor(initial_operation, this));
3398     error = m_monitor_up->Initialize();
3399     if (error.Fail()) {
3400         m_monitor_up.reset();
3401     }
3402 }
3403 
3404 bool
3405 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id)
3406 {
3407     for (auto thread_sp : m_threads)
3408     {
3409         assert (thread_sp && "thread list should not contain NULL threads");
3410         if (thread_sp->GetID () == thread_id)
3411         {
3412             // We have this thread.
3413             return true;
3414         }
3415     }
3416 
3417     // We don't have this thread.
3418     return false;
3419 }
3420 
3421 NativeThreadProtocolSP
3422 NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id)
3423 {
3424     // CONSIDER organize threads by map - we can do better than linear.
3425     for (auto thread_sp : m_threads)
3426     {
3427         if (thread_sp->GetID () == thread_id)
3428             return thread_sp;
3429     }
3430 
3431     // We don't have this thread.
3432     return NativeThreadProtocolSP ();
3433 }
3434 
3435 bool
3436 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id)
3437 {
3438     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3439 
3440     if (log)
3441         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread_id);
3442 
3443     bool found = false;
3444 
3445     Mutex::Locker locker (m_threads_mutex);
3446     for (auto it = m_threads.begin (); it != m_threads.end (); ++it)
3447     {
3448         if (*it && ((*it)->GetID () == thread_id))
3449         {
3450             m_threads.erase (it);
3451             found = true;
3452             break;
3453         }
3454     }
3455 
3456     // If we have a pending notification, remove this from the set.
3457     if (m_pending_notification_up)
3458     {
3459         m_pending_notification_up->wait_for_stop_tids.erase(thread_id);
3460         SignalIfAllThreadsStopped();
3461     }
3462 
3463     return found;
3464 }
3465 
3466 NativeThreadProtocolSP
3467 NativeProcessLinux::AddThread (lldb::tid_t thread_id)
3468 {
3469     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3470 
3471     Mutex::Locker locker (m_threads_mutex);
3472 
3473     if (log)
3474     {
3475         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64,
3476                 __FUNCTION__,
3477                 GetID (),
3478                 thread_id);
3479     }
3480 
3481     assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists");
3482 
3483     // If this is the first thread, save it as the current thread
3484     if (m_threads.empty ())
3485         SetCurrentThreadID (thread_id);
3486 
3487     NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id));
3488     m_threads.push_back (thread_sp);
3489 
3490     return thread_sp;
3491 }
3492 
3493 Error
3494 NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp)
3495 {
3496     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS));
3497 
3498     Error error;
3499 
3500     // Get a linux thread pointer.
3501     if (!thread_sp)
3502     {
3503         error.SetErrorString ("null thread_sp");
3504         if (log)
3505             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
3506         return error;
3507     }
3508     std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp);
3509 
3510     // Find out the size of a breakpoint (might depend on where we are in the code).
3511     NativeRegisterContextSP context_sp = linux_thread_sp->GetRegisterContext ();
3512     if (!context_sp)
3513     {
3514         error.SetErrorString ("cannot get a NativeRegisterContext for the thread");
3515         if (log)
3516             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
3517         return error;
3518     }
3519 
3520     uint32_t breakpoint_size = 0;
3521     error = GetSoftwareBreakpointPCOffset (context_sp, breakpoint_size);
3522     if (error.Fail ())
3523     {
3524         if (log)
3525             log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ());
3526         return error;
3527     }
3528     else
3529     {
3530         if (log)
3531             log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size);
3532     }
3533 
3534     // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size.
3535     const lldb::addr_t initial_pc_addr = context_sp->GetPC ();
3536     lldb::addr_t breakpoint_addr = initial_pc_addr;
3537     if (breakpoint_size > 0)
3538     {
3539         // Do not allow breakpoint probe to wrap around.
3540         if (breakpoint_addr >= breakpoint_size)
3541             breakpoint_addr -= breakpoint_size;
3542     }
3543 
3544     // Check if we stopped because of a breakpoint.
3545     NativeBreakpointSP breakpoint_sp;
3546     error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp);
3547     if (!error.Success () || !breakpoint_sp)
3548     {
3549         // We didn't find one at a software probe location.  Nothing to do.
3550         if (log)
3551             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr);
3552         return Error ();
3553     }
3554 
3555     // If the breakpoint is not a software breakpoint, nothing to do.
3556     if (!breakpoint_sp->IsSoftwareBreakpoint ())
3557     {
3558         if (log)
3559             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr);
3560         return Error ();
3561     }
3562 
3563     //
3564     // We have a software breakpoint and need to adjust the PC.
3565     //
3566 
3567     // Sanity check.
3568     if (breakpoint_size == 0)
3569     {
3570         // Nothing to do!  How did we get here?
3571         if (log)
3572             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr);
3573         return Error ();
3574     }
3575 
3576     // Change the program counter.
3577     if (log)
3578         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_sp->GetID (), initial_pc_addr, breakpoint_addr);
3579 
3580     error = context_sp->SetPC (breakpoint_addr);
3581     if (error.Fail ())
3582     {
3583         if (log)
3584             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_sp->GetID (), error.AsCString ());
3585         return error;
3586     }
3587 
3588     return error;
3589 }
3590 
3591 Error
3592 NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec)
3593 {
3594     char maps_file_name[32];
3595     snprintf(maps_file_name, sizeof(maps_file_name), "/proc/%" PRIu64 "/maps", GetID());
3596 
3597     FileSpec maps_file_spec(maps_file_name, false);
3598     if (!maps_file_spec.Exists()) {
3599         file_spec.Clear();
3600         return Error("/proc/%" PRIu64 "/maps file doesn't exists!", GetID());
3601     }
3602 
3603     FileSpec module_file_spec(module_path, true);
3604 
3605     std::ifstream maps_file(maps_file_name);
3606     std::string maps_data_str((std::istreambuf_iterator<char>(maps_file)), std::istreambuf_iterator<char>());
3607     StringRef maps_data(maps_data_str.c_str());
3608 
3609     while (!maps_data.empty())
3610     {
3611         StringRef maps_row;
3612         std::tie(maps_row, maps_data) = maps_data.split('\n');
3613 
3614         SmallVector<StringRef, 16> maps_columns;
3615         maps_row.split(maps_columns, StringRef(" "), -1, false);
3616 
3617         if (maps_columns.size() >= 6)
3618         {
3619             file_spec.SetFile(maps_columns[5].str().c_str(), false);
3620             if (file_spec.GetFilename() == module_file_spec.GetFilename())
3621                 return Error();
3622         }
3623     }
3624 
3625     file_spec.Clear();
3626     return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
3627                  module_file_spec.GetFilename().AsCString(), GetID());
3628 }
3629 
3630 Error
3631 NativeProcessLinux::ResumeThread(
3632         lldb::tid_t tid,
3633         NativeThreadLinux::ResumeThreadFunction request_thread_resume_function,
3634         bool error_when_already_running)
3635 {
3636     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3637 
3638     if (log)
3639         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ", error_when_already_running: %s)",
3640                 __FUNCTION__, tid, error_when_already_running?"true":"false");
3641 
3642     auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid));
3643     lldbassert(thread_sp != nullptr);
3644 
3645     auto& context = thread_sp->GetThreadContext();
3646     // Tell the thread to resume if we don't already think it is running.
3647     const bool is_stopped = StateIsStoppedState(thread_sp->GetState(), true);
3648 
3649     lldbassert(!(error_when_already_running && !is_stopped));
3650 
3651     if (!is_stopped)
3652     {
3653         // It's not an error, just a log, if the error_when_already_running flag is not set.
3654         // This covers cases where, for instance, we're just trying to resume all threads
3655         // from the user side.
3656         if (log)
3657             log->Printf("NativeProcessLinux::%s tid %" PRIu64 " optional resume skipped since it is already running",
3658                     __FUNCTION__,
3659                     tid);
3660         return Error();
3661     }
3662 
3663     // Before we do the resume below, first check if we have a pending
3664     // stop notification that is currently waiting for
3665     // this thread to stop.  This is potentially a buggy situation since
3666     // we're ostensibly waiting for threads to stop before we send out the
3667     // pending notification, and here we are resuming one before we send
3668     // out the pending stop notification.
3669     if (m_pending_notification_up && log && m_pending_notification_up->wait_for_stop_tids.count (tid) > 0)
3670     {
3671         log->Printf("NativeProcessLinux::%s about to resume tid %" PRIu64 " per explicit request but we have a pending stop notification (tid %" PRIu64 ") that is actively waiting for this thread to stop. Valid sequence of events?", __FUNCTION__, tid, m_pending_notification_up->triggering_tid);
3672     }
3673 
3674     // Request a resume.  We expect this to be synchronous and the system
3675     // to reflect it is running after this completes.
3676     const auto error = request_thread_resume_function (tid, false);
3677     if (error.Success())
3678         context.request_resume_function = request_thread_resume_function;
3679     else if (log)
3680     {
3681         log->Printf("NativeProcessLinux::%s failed to resume thread tid  %" PRIu64 ": %s",
3682                          __FUNCTION__, tid, error.AsCString ());
3683     }
3684 
3685     return error;
3686 }
3687 
3688 //===----------------------------------------------------------------------===//
3689 
3690 void
3691 NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid)
3692 {
3693     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3694 
3695     if (log)
3696     {
3697         log->Printf("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ")",
3698                 __FUNCTION__, triggering_tid);
3699     }
3700 
3701     DoStopThreads(PendingNotificationUP(new PendingNotification(triggering_tid)));
3702 
3703     if (log)
3704     {
3705         log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__);
3706     }
3707 }
3708 
3709 void
3710 NativeProcessLinux::SignalIfAllThreadsStopped()
3711 {
3712     if (m_pending_notification_up && m_pending_notification_up->wait_for_stop_tids.empty ())
3713     {
3714         Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
3715 
3716         // Clear any temporary breakpoints we used to implement software single stepping.
3717         for (const auto &thread_info: m_threads_stepping_with_breakpoint)
3718         {
3719             Error error = RemoveBreakpoint (thread_info.second);
3720             if (error.Fail())
3721                 if (log)
3722                     log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s",
3723                             __FUNCTION__, thread_info.first, error.AsCString());
3724         }
3725         m_threads_stepping_with_breakpoint.clear();
3726 
3727         // Notify the delegate about the stop
3728         SetCurrentThreadID(m_pending_notification_up->triggering_tid);
3729         SetState(StateType::eStateStopped, true);
3730         m_pending_notification_up.reset();
3731     }
3732 }
3733 
3734 void
3735 NativeProcessLinux::RequestStopOnAllRunningThreads()
3736 {
3737     // Request a stop for all the thread stops that need to be stopped
3738     // and are not already known to be stopped.  Keep a list of all the
3739     // threads from which we still need to hear a stop reply.
3740 
3741     ThreadIDSet sent_tids;
3742     for (const auto &thread_sp: m_threads)
3743     {
3744         // We only care about running threads
3745         if (StateIsStoppedState(thread_sp->GetState(), true))
3746             continue;
3747 
3748         static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop();
3749         sent_tids.insert (thread_sp->GetID());
3750     }
3751 
3752     // Set the wait list to the set of tids for which we requested stops.
3753     m_pending_notification_up->wait_for_stop_tids.swap (sent_tids);
3754 }
3755 
3756 
3757 Error
3758 NativeProcessLinux::ThreadDidStop (lldb::tid_t tid, bool initiated_by_llgs)
3759 {
3760     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3761 
3762     if (log)
3763         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ", %sinitiated by llgs)",
3764                 __FUNCTION__, tid, initiated_by_llgs?"":"not ");
3765 
3766     // Ensure we know about the thread.
3767     auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid));
3768     lldbassert(thread_sp != nullptr);
3769 
3770     // Update the global list of known thread states.  This one is definitely stopped.
3771     auto& context = thread_sp->GetThreadContext();
3772     const auto stop_was_requested = context.stop_requested;
3773     context.stop_requested = false;
3774 
3775     // If we have a pending notification, remove this from the set.
3776     if (m_pending_notification_up)
3777     {
3778         m_pending_notification_up->wait_for_stop_tids.erase(tid);
3779         SignalIfAllThreadsStopped();
3780     }
3781 
3782     Error error;
3783     if (initiated_by_llgs && context.request_resume_function && !stop_was_requested)
3784     {
3785         // We can end up here if stop was initiated by LLGS but by this time a
3786         // thread stop has occurred - maybe initiated by another event.
3787         if (log)
3788             log->Printf("Resuming thread %"  PRIu64 " since stop wasn't requested", tid);
3789         error = context.request_resume_function (tid, true);
3790         if (error.Fail() && log)
3791         {
3792                 log->Printf("NativeProcessLinux::%s failed to resume thread tid  %" PRIu64 ": %s",
3793                         __FUNCTION__, tid, error.AsCString ());
3794         }
3795     }
3796     return error;
3797 }
3798 
3799 void
3800 NativeProcessLinux::DoStopThreads(PendingNotificationUP &&notification_up)
3801 {
3802     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3803     if (m_pending_notification_up && log)
3804     {
3805         // Yikes - we've already got a pending signal notification in progress.
3806         // Log this info.  We lose the pending notification here.
3807         log->Printf("NativeProcessLinux::%s dropping existing pending signal notification for tid %" PRIu64 ", to be replaced with signal for tid %" PRIu64,
3808                    __FUNCTION__,
3809                    m_pending_notification_up->triggering_tid,
3810                    notification_up->triggering_tid);
3811     }
3812     m_pending_notification_up = std::move(notification_up);
3813 
3814     RequestStopOnAllRunningThreads();
3815 
3816     SignalIfAllThreadsStopped();
3817 }
3818 
3819 void
3820 NativeProcessLinux::ThreadWasCreated (lldb::tid_t tid)
3821 {
3822     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3823 
3824     if (log)
3825         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, tid);
3826 
3827     auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid));
3828     lldbassert(thread_sp != nullptr);
3829 
3830     if (m_pending_notification_up && StateIsRunningState(thread_sp->GetState()))
3831     {
3832         // We will need to wait for this new thread to stop as well before firing the
3833         // notification.
3834         m_pending_notification_up->wait_for_stop_tids.insert(tid);
3835         thread_sp->RequestStop();
3836     }
3837 }
3838 
3839 Error
3840 NativeProcessLinux::DoOperation(Operation* op)
3841 {
3842     m_monitor_up->DoOperation(op);
3843     return op->GetError();
3844 }
3845 
3846 // Wrapper for ptrace to catch errors and log calls.
3847 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
3848 long
3849 NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error)
3850 {
3851     long int result;
3852 
3853     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE));
3854 
3855     PtraceDisplayBytes(req, data, data_size);
3856 
3857     error.Clear();
3858     errno = 0;
3859     if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
3860         result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
3861     else
3862         result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
3863 
3864     if (result == -1)
3865         error.SetErrorToErrno();
3866 
3867     if (log)
3868         log->Printf("ptrace(%d, %" PRIu64 ", %p, %p, %zu)=%lX", req, pid, addr, data, data_size, result);
3869 
3870     PtraceDisplayBytes(req, data, data_size);
3871 
3872     if (log && error.GetError() != 0)
3873     {
3874         const char* str;
3875         switch (error.GetError())
3876         {
3877         case ESRCH:  str = "ESRCH"; break;
3878         case EINVAL: str = "EINVAL"; break;
3879         case EBUSY:  str = "EBUSY"; break;
3880         case EPERM:  str = "EPERM"; break;
3881         default:     str = error.AsCString();
3882         }
3883         log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str);
3884     }
3885 
3886     return result;
3887 }
3888