1 //===-- NativeProcessLinux.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "NativeProcessLinux.h"
10 
11 #include <cerrno>
12 #include <cstdint>
13 #include <cstring>
14 #include <unistd.h>
15 
16 #include <fstream>
17 #include <mutex>
18 #include <sstream>
19 #include <string>
20 #include <unordered_map>
21 
22 #include "NativeThreadLinux.h"
23 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
24 #include "Plugins/Process/Utility/LinuxProcMaps.h"
25 #include "Procfs.h"
26 #include "lldb/Core/ModuleSpec.h"
27 #include "lldb/Host/Host.h"
28 #include "lldb/Host/HostProcess.h"
29 #include "lldb/Host/ProcessLaunchInfo.h"
30 #include "lldb/Host/PseudoTerminal.h"
31 #include "lldb/Host/ThreadLauncher.h"
32 #include "lldb/Host/common/NativeRegisterContext.h"
33 #include "lldb/Host/linux/Host.h"
34 #include "lldb/Host/linux/Ptrace.h"
35 #include "lldb/Host/linux/Uio.h"
36 #include "lldb/Host/posix/ProcessLauncherPosixFork.h"
37 #include "lldb/Symbol/ObjectFile.h"
38 #include "lldb/Target/Process.h"
39 #include "lldb/Target/Target.h"
40 #include "lldb/Utility/LLDBAssert.h"
41 #include "lldb/Utility/State.h"
42 #include "lldb/Utility/Status.h"
43 #include "lldb/Utility/StringExtractor.h"
44 #include "llvm/ADT/ScopeExit.h"
45 #include "llvm/Support/Errno.h"
46 #include "llvm/Support/FileSystem.h"
47 #include "llvm/Support/Threading.h"
48 
49 #include <linux/unistd.h>
50 #include <sys/socket.h>
51 #include <sys/syscall.h>
52 #include <sys/types.h>
53 #include <sys/user.h>
54 #include <sys/wait.h>
55 
56 #ifdef __aarch64__
57 #include <asm/hwcap.h>
58 #include <sys/auxv.h>
59 #endif
60 
61 // Support hardware breakpoints in case it has not been defined
62 #ifndef TRAP_HWBKPT
63 #define TRAP_HWBKPT 4
64 #endif
65 
66 #ifndef HWCAP2_MTE
67 #define HWCAP2_MTE (1 << 18)
68 #endif
69 
70 using namespace lldb;
71 using namespace lldb_private;
72 using namespace lldb_private::process_linux;
73 using namespace llvm;
74 
75 // Private bits we only need internally.
76 
77 static bool ProcessVmReadvSupported() {
78   static bool is_supported;
79   static llvm::once_flag flag;
80 
81   llvm::call_once(flag, [] {
82     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
83 
84     uint32_t source = 0x47424742;
85     uint32_t dest = 0;
86 
87     struct iovec local, remote;
88     remote.iov_base = &source;
89     local.iov_base = &dest;
90     remote.iov_len = local.iov_len = sizeof source;
91 
92     // We shall try if cross-process-memory reads work by attempting to read a
93     // value from our own process.
94     ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
95     is_supported = (res == sizeof(source) && source == dest);
96     if (is_supported)
97       LLDB_LOG(log,
98                "Detected kernel support for process_vm_readv syscall. "
99                "Fast memory reads enabled.");
100     else
101       LLDB_LOG(log,
102                "syscall process_vm_readv failed (error: {0}). Fast memory "
103                "reads disabled.",
104                llvm::sys::StrError());
105   });
106 
107   return is_supported;
108 }
109 
110 namespace {
111 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) {
112   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
113   if (!log)
114     return;
115 
116   if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO))
117     LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec());
118   else
119     LLDB_LOG(log, "leaving STDIN as is");
120 
121   if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO))
122     LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec());
123   else
124     LLDB_LOG(log, "leaving STDOUT as is");
125 
126   if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO))
127     LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec());
128   else
129     LLDB_LOG(log, "leaving STDERR as is");
130 
131   int i = 0;
132   for (const char **args = info.GetArguments().GetConstArgumentVector(); *args;
133        ++args, ++i)
134     LLDB_LOG(log, "arg {0}: '{1}'", i, *args);
135 }
136 
137 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) {
138   uint8_t *ptr = (uint8_t *)bytes;
139   const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
140   for (uint32_t i = 0; i < loop_count; i++) {
141     s.Printf("[%x]", *ptr);
142     ptr++;
143   }
144 }
145 
146 void PtraceDisplayBytes(int &req, void *data, size_t data_size) {
147   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
148   if (!log)
149     return;
150   StreamString buf;
151 
152   switch (req) {
153   case PTRACE_POKETEXT: {
154     DisplayBytes(buf, &data, 8);
155     LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData());
156     break;
157   }
158   case PTRACE_POKEDATA: {
159     DisplayBytes(buf, &data, 8);
160     LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData());
161     break;
162   }
163   case PTRACE_POKEUSER: {
164     DisplayBytes(buf, &data, 8);
165     LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData());
166     break;
167   }
168   case PTRACE_SETREGS: {
169     DisplayBytes(buf, data, data_size);
170     LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData());
171     break;
172   }
173   case PTRACE_SETFPREGS: {
174     DisplayBytes(buf, data, data_size);
175     LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData());
176     break;
177   }
178   case PTRACE_SETSIGINFO: {
179     DisplayBytes(buf, data, sizeof(siginfo_t));
180     LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData());
181     break;
182   }
183   case PTRACE_SETREGSET: {
184     // Extract iov_base from data, which is a pointer to the struct iovec
185     DisplayBytes(buf, *(void **)data, data_size);
186     LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData());
187     break;
188   }
189   default: {}
190   }
191 }
192 
193 static constexpr unsigned k_ptrace_word_size = sizeof(void *);
194 static_assert(sizeof(long) >= k_ptrace_word_size,
195               "Size of long must be larger than ptrace word size");
196 } // end of anonymous namespace
197 
198 // Simple helper function to ensure flags are enabled on the given file
199 // descriptor.
200 static Status EnsureFDFlags(int fd, int flags) {
201   Status error;
202 
203   int status = fcntl(fd, F_GETFL);
204   if (status == -1) {
205     error.SetErrorToErrno();
206     return error;
207   }
208 
209   if (fcntl(fd, F_SETFL, status | flags) == -1) {
210     error.SetErrorToErrno();
211     return error;
212   }
213 
214   return error;
215 }
216 
217 // Public Static Methods
218 
219 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
220 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info,
221                                     NativeDelegate &native_delegate,
222                                     MainLoop &mainloop) const {
223   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
224 
225   MaybeLogLaunchInfo(launch_info);
226 
227   Status status;
228   ::pid_t pid = ProcessLauncherPosixFork()
229                     .LaunchProcess(launch_info, status)
230                     .GetProcessId();
231   LLDB_LOG(log, "pid = {0:x}", pid);
232   if (status.Fail()) {
233     LLDB_LOG(log, "failed to launch process: {0}", status);
234     return status.ToError();
235   }
236 
237   // Wait for the child process to trap on its call to execve.
238   int wstatus;
239   ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0);
240   assert(wpid == pid);
241   (void)wpid;
242   if (!WIFSTOPPED(wstatus)) {
243     LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}",
244              WaitStatus::Decode(wstatus));
245     return llvm::make_error<StringError>("Could not sync with inferior process",
246                                          llvm::inconvertibleErrorCode());
247   }
248   LLDB_LOG(log, "inferior started, now in stopped state");
249 
250   ProcessInstanceInfo Info;
251   if (!Host::GetProcessInfo(pid, Info)) {
252     return llvm::make_error<StringError>("Cannot get process architecture",
253                                          llvm::inconvertibleErrorCode());
254   }
255 
256   // Set the architecture to the exe architecture.
257   LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid,
258            Info.GetArchitecture().GetArchitectureName());
259 
260   status = SetDefaultPtraceOpts(pid);
261   if (status.Fail()) {
262     LLDB_LOG(log, "failed to set default ptrace options: {0}", status);
263     return status.ToError();
264   }
265 
266   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
267       pid, launch_info.GetPTY().ReleasePrimaryFileDescriptor(), native_delegate,
268       Info.GetArchitecture(), mainloop, {pid}));
269 }
270 
271 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
272 NativeProcessLinux::Factory::Attach(
273     lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate,
274     MainLoop &mainloop) const {
275   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
276   LLDB_LOG(log, "pid = {0:x}", pid);
277 
278   // Retrieve the architecture for the running process.
279   ProcessInstanceInfo Info;
280   if (!Host::GetProcessInfo(pid, Info)) {
281     return llvm::make_error<StringError>("Cannot get process architecture",
282                                          llvm::inconvertibleErrorCode());
283   }
284 
285   auto tids_or = NativeProcessLinux::Attach(pid);
286   if (!tids_or)
287     return tids_or.takeError();
288 
289   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
290       pid, -1, native_delegate, Info.GetArchitecture(), mainloop, *tids_or));
291 }
292 
293 NativeProcessLinux::Extension
294 NativeProcessLinux::Factory::GetSupportedExtensions() const {
295   NativeProcessLinux::Extension supported =
296       Extension::multiprocess | Extension::fork | Extension::vfork |
297       Extension::pass_signals | Extension::auxv | Extension::libraries_svr4;
298 
299 #ifdef __aarch64__
300   // At this point we do not have a process so read auxv directly.
301   if ((getauxval(AT_HWCAP2) & HWCAP2_MTE))
302     supported |= Extension::memory_tagging;
303 #endif
304 
305   return supported;
306 }
307 
308 // Public Instance Methods
309 
310 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd,
311                                        NativeDelegate &delegate,
312                                        const ArchSpec &arch, MainLoop &mainloop,
313                                        llvm::ArrayRef<::pid_t> tids)
314     : NativeProcessELF(pid, terminal_fd, delegate), m_arch(arch),
315       m_main_loop(mainloop), m_intel_pt_manager(pid) {
316   if (m_terminal_fd != -1) {
317     Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
318     assert(status.Success());
319   }
320 
321   Status status;
322   m_sigchld_handle = mainloop.RegisterSignal(
323       SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status);
324   assert(m_sigchld_handle && status.Success());
325 
326   for (const auto &tid : tids) {
327     NativeThreadLinux &thread = AddThread(tid, /*resume*/ false);
328     ThreadWasCreated(thread);
329   }
330 
331   // Let our process instance know the thread has stopped.
332   SetCurrentThreadID(tids[0]);
333   SetState(StateType::eStateStopped, false);
334 
335   // Proccess any signals we received before installing our handler
336   SigchldHandler();
337 }
338 
339 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) {
340   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
341 
342   Status status;
343   // Use a map to keep track of the threads which we have attached/need to
344   // attach.
345   Host::TidMap tids_to_attach;
346   while (Host::FindProcessThreads(pid, tids_to_attach)) {
347     for (Host::TidMap::iterator it = tids_to_attach.begin();
348          it != tids_to_attach.end();) {
349       if (it->second == false) {
350         lldb::tid_t tid = it->first;
351 
352         // Attach to the requested process.
353         // An attach will cause the thread to stop with a SIGSTOP.
354         if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) {
355           // No such thread. The thread may have exited. More error handling
356           // may be needed.
357           if (status.GetError() == ESRCH) {
358             it = tids_to_attach.erase(it);
359             continue;
360           }
361           return status.ToError();
362         }
363 
364         int wpid =
365             llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL);
366         // Need to use __WALL otherwise we receive an error with errno=ECHLD At
367         // this point we should have a thread stopped if waitpid succeeds.
368         if (wpid < 0) {
369           // No such thread. The thread may have exited. More error handling
370           // may be needed.
371           if (errno == ESRCH) {
372             it = tids_to_attach.erase(it);
373             continue;
374           }
375           return llvm::errorCodeToError(
376               std::error_code(errno, std::generic_category()));
377         }
378 
379         if ((status = SetDefaultPtraceOpts(tid)).Fail())
380           return status.ToError();
381 
382         LLDB_LOG(log, "adding tid = {0}", tid);
383         it->second = true;
384       }
385 
386       // move the loop forward
387       ++it;
388     }
389   }
390 
391   size_t tid_count = tids_to_attach.size();
392   if (tid_count == 0)
393     return llvm::make_error<StringError>("No such process",
394                                          llvm::inconvertibleErrorCode());
395 
396   std::vector<::pid_t> tids;
397   tids.reserve(tid_count);
398   for (const auto &p : tids_to_attach)
399     tids.push_back(p.first);
400   return std::move(tids);
401 }
402 
403 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) {
404   long ptrace_opts = 0;
405 
406   // Have the child raise an event on exit.  This is used to keep the child in
407   // limbo until it is destroyed.
408   ptrace_opts |= PTRACE_O_TRACEEXIT;
409 
410   // Have the tracer trace threads which spawn in the inferior process.
411   ptrace_opts |= PTRACE_O_TRACECLONE;
412 
413   // Have the tracer notify us before execve returns (needed to disable legacy
414   // SIGTRAP generation)
415   ptrace_opts |= PTRACE_O_TRACEEXEC;
416 
417   // Have the tracer trace forked children.
418   ptrace_opts |= PTRACE_O_TRACEFORK;
419 
420   // Have the tracer trace vforks.
421   ptrace_opts |= PTRACE_O_TRACEVFORK;
422 
423   // Have the tracer trace vfork-done in order to restore breakpoints after
424   // the child finishes sharing memory.
425   ptrace_opts |= PTRACE_O_TRACEVFORKDONE;
426 
427   return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts);
428 }
429 
430 // Handles all waitpid events from the inferior process.
431 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited,
432                                          WaitStatus status) {
433   Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
434 
435   // Certain activities differ based on whether the pid is the tid of the main
436   // thread.
437   const bool is_main_thread = (pid == GetID());
438 
439   // Handle when the thread exits.
440   if (exited) {
441     LLDB_LOG(log,
442              "got exit status({0}) , tid = {1} ({2} main thread), process "
443              "state = {3}",
444              status, pid, is_main_thread ? "is" : "is not", GetState());
445 
446     // This is a thread that exited.  Ensure we're not tracking it anymore.
447     StopTrackingThread(pid);
448 
449     if (is_main_thread) {
450       // The main thread exited.  We're done monitoring.  Report to delegate.
451       SetExitStatus(status, true);
452 
453       // Notify delegate that our process has exited.
454       SetState(StateType::eStateExited, true);
455     }
456     return;
457   }
458 
459   siginfo_t info;
460   const auto info_err = GetSignalInfo(pid, &info);
461   auto thread_sp = GetThreadByID(pid);
462 
463   if (!thread_sp) {
464     // Normally, the only situation when we cannot find the thread is if we
465     // have just received a new thread notification. This is indicated by
466     // GetSignalInfo() returning si_code == SI_USER and si_pid == 0
467     LLDB_LOG(log, "received notification about an unknown tid {0}.", pid);
468 
469     if (info_err.Fail()) {
470       LLDB_LOG(log,
471                "(tid {0}) GetSignalInfo failed ({1}). "
472                "Ingoring this notification.",
473                pid, info_err);
474       return;
475     }
476 
477     LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code,
478              info.si_pid);
479 
480     MonitorClone(pid, llvm::None);
481     return;
482   }
483 
484   // Get details on the signal raised.
485   if (info_err.Success()) {
486     // We have retrieved the signal info.  Dispatch appropriately.
487     if (info.si_signo == SIGTRAP)
488       MonitorSIGTRAP(info, *thread_sp);
489     else
490       MonitorSignal(info, *thread_sp, exited);
491   } else {
492     if (info_err.GetError() == EINVAL) {
493       // This is a group stop reception for this tid. We can reach here if we
494       // reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the tracee,
495       // triggering the group-stop mechanism. Normally receiving these would
496       // stop the process, pending a SIGCONT. Simulating this state in a
497       // debugger is hard and is generally not needed (one use case is
498       // debugging background task being managed by a shell). For general use,
499       // it is sufficient to stop the process in a signal-delivery stop which
500       // happens before the group stop. This done by MonitorSignal and works
501       // correctly for all signals.
502       LLDB_LOG(log,
503                "received a group stop for pid {0} tid {1}. Transparent "
504                "handling of group stops not supported, resuming the "
505                "thread.",
506                GetID(), pid);
507       ResumeThread(*thread_sp, thread_sp->GetState(),
508                    LLDB_INVALID_SIGNAL_NUMBER);
509     } else {
510       // ptrace(GETSIGINFO) failed (but not due to group-stop).
511 
512       // A return value of ESRCH means the thread/process is no longer on the
513       // system, so it was killed somehow outside of our control.  Either way,
514       // we can't do anything with it anymore.
515 
516       // Stop tracking the metadata for the thread since it's entirely off the
517       // system now.
518       const bool thread_found = StopTrackingThread(pid);
519 
520       LLDB_LOG(log,
521                "GetSignalInfo failed: {0}, tid = {1}, status = {2}, "
522                "status = {3}, main_thread = {4}, thread_found: {5}",
523                info_err, pid, status, status, is_main_thread, thread_found);
524 
525       if (is_main_thread) {
526         // Notify the delegate - our process is not available but appears to
527         // have been killed outside our control.  Is eStateExited the right
528         // exit state in this case?
529         SetExitStatus(status, true);
530         SetState(StateType::eStateExited, true);
531       } else {
532         // This thread was pulled out from underneath us.  Anything to do here?
533         // Do we want to do an all stop?
534         LLDB_LOG(log,
535                  "pid {0} tid {1} non-main thread exit occurred, didn't "
536                  "tell delegate anything since thread disappeared out "
537                  "from underneath us",
538                  GetID(), pid);
539       }
540     }
541   }
542 }
543 
544 void NativeProcessLinux::WaitForCloneNotification(::pid_t pid) {
545   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
546 
547   // The PID is not tracked yet, let's wait for it to appear.
548   int status = -1;
549   LLDB_LOG(log,
550            "received clone event for pid {0}. pid not tracked yet, "
551            "waiting for it to appear...",
552            pid);
553   ::pid_t wait_pid =
554       llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &status, __WALL);
555   // Since we are waiting on a specific pid, this must be the creation event.
556   // But let's do some checks just in case.
557   if (wait_pid != pid) {
558     LLDB_LOG(log,
559              "waiting for pid {0} failed. Assuming the pid has "
560              "disappeared in the meantime",
561              pid);
562     // The only way I know of this could happen is if the whole process was
563     // SIGKILLed in the mean time. In any case, we can't do anything about that
564     // now.
565     return;
566   }
567   if (WIFEXITED(status)) {
568     LLDB_LOG(log,
569              "waiting for pid {0} returned an 'exited' event. Not "
570              "tracking it.",
571              pid);
572     // Also a very improbable event.
573     m_pending_pid_map.erase(pid);
574     return;
575   }
576 
577   MonitorClone(pid, llvm::None);
578 }
579 
580 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info,
581                                         NativeThreadLinux &thread) {
582   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
583   const bool is_main_thread = (thread.GetID() == GetID());
584 
585   assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
586 
587   switch (info.si_code) {
588   case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
589   case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
590   case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): {
591     // This can either mean a new thread or a new process spawned via
592     // clone(2) without SIGCHLD or CLONE_VFORK flag.  Note that clone(2)
593     // can also cause PTRACE_EVENT_FORK and PTRACE_EVENT_VFORK if one
594     // of these flags are passed.
595 
596     unsigned long event_message = 0;
597     if (GetEventMessage(thread.GetID(), &event_message).Fail()) {
598       LLDB_LOG(log,
599                "pid {0} received clone() event but GetEventMessage failed "
600                "so we don't know the new pid/tid",
601                thread.GetID());
602       ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
603     } else {
604       if (!MonitorClone(event_message, {{(info.si_code >> 8), thread.GetID()}}))
605         WaitForCloneNotification(event_message);
606     }
607 
608     break;
609   }
610 
611   case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): {
612     LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP);
613 
614     // Exec clears any pending notifications.
615     m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
616 
617     // Remove all but the main thread here.  Linux fork creates a new process
618     // which only copies the main thread.
619     LLDB_LOG(log, "exec received, stop tracking all but main thread");
620 
621     llvm::erase_if(m_threads, [&](std::unique_ptr<NativeThreadProtocol> &t) {
622       return t->GetID() != GetID();
623     });
624     assert(m_threads.size() == 1);
625     auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get());
626 
627     SetCurrentThreadID(main_thread->GetID());
628     main_thread->SetStoppedByExec();
629 
630     // Tell coordinator about about the "new" (since exec) stopped main thread.
631     ThreadWasCreated(*main_thread);
632 
633     // Let our delegate know we have just exec'd.
634     NotifyDidExec();
635 
636     // Let the process know we're stopped.
637     StopRunningThreads(main_thread->GetID());
638 
639     break;
640   }
641 
642   case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): {
643     // The inferior process or one of its threads is about to exit. We don't
644     // want to do anything with the thread so we just resume it. In case we
645     // want to implement "break on thread exit" functionality, we would need to
646     // stop here.
647 
648     unsigned long data = 0;
649     if (GetEventMessage(thread.GetID(), &data).Fail())
650       data = -1;
651 
652     LLDB_LOG(log,
653              "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, "
654              "WIFSIGNALED={2}, pid = {3}, main_thread = {4}",
655              data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(),
656              is_main_thread);
657 
658 
659     StateType state = thread.GetState();
660     if (!StateIsRunningState(state)) {
661       // Due to a kernel bug, we may sometimes get this stop after the inferior
662       // gets a SIGKILL. This confuses our state tracking logic in
663       // ResumeThread(), since normally, we should not be receiving any ptrace
664       // events while the inferior is stopped. This makes sure that the
665       // inferior is resumed and exits normally.
666       state = eStateRunning;
667     }
668     ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
669 
670     break;
671   }
672 
673   case (SIGTRAP | (PTRACE_EVENT_VFORK_DONE << 8)): {
674     if (bool(m_enabled_extensions & Extension::vfork)) {
675       thread.SetStoppedByVForkDone();
676       StopRunningThreads(thread.GetID());
677     }
678     else
679       ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
680     break;
681   }
682 
683   case 0:
684   case TRAP_TRACE:  // We receive this on single stepping.
685   case TRAP_HWBKPT: // We receive this on watchpoint hit
686   {
687     // If a watchpoint was hit, report it
688     uint32_t wp_index;
689     Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
690         wp_index, (uintptr_t)info.si_addr);
691     if (error.Fail())
692       LLDB_LOG(log,
693                "received error while checking for watchpoint hits, pid = "
694                "{0}, error = {1}",
695                thread.GetID(), error);
696     if (wp_index != LLDB_INVALID_INDEX32) {
697       MonitorWatchpoint(thread, wp_index);
698       break;
699     }
700 
701     // If a breakpoint was hit, report it
702     uint32_t bp_index;
703     error = thread.GetRegisterContext().GetHardwareBreakHitIndex(
704         bp_index, (uintptr_t)info.si_addr);
705     if (error.Fail())
706       LLDB_LOG(log, "received error while checking for hardware "
707                     "breakpoint hits, pid = {0}, error = {1}",
708                thread.GetID(), error);
709     if (bp_index != LLDB_INVALID_INDEX32) {
710       MonitorBreakpoint(thread);
711       break;
712     }
713 
714     // Otherwise, report step over
715     MonitorTrace(thread);
716     break;
717   }
718 
719   case SI_KERNEL:
720 #if defined __mips__
721     // For mips there is no special signal for watchpoint So we check for
722     // watchpoint in kernel trap
723     {
724       // If a watchpoint was hit, report it
725       uint32_t wp_index;
726       Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
727           wp_index, LLDB_INVALID_ADDRESS);
728       if (error.Fail())
729         LLDB_LOG(log,
730                  "received error while checking for watchpoint hits, pid = "
731                  "{0}, error = {1}",
732                  thread.GetID(), error);
733       if (wp_index != LLDB_INVALID_INDEX32) {
734         MonitorWatchpoint(thread, wp_index);
735         break;
736       }
737     }
738 // NO BREAK
739 #endif
740   case TRAP_BRKPT:
741     MonitorBreakpoint(thread);
742     break;
743 
744   case SIGTRAP:
745   case (SIGTRAP | 0x80):
746     LLDB_LOG(
747         log,
748         "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming",
749         info.si_code, GetID(), thread.GetID());
750 
751     // Ignore these signals until we know more about them.
752     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
753     break;
754 
755   default:
756     LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}",
757              info.si_code, GetID(), thread.GetID());
758     MonitorSignal(info, thread, false);
759     break;
760   }
761 }
762 
763 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) {
764   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
765   LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID());
766 
767   // This thread is currently stopped.
768   thread.SetStoppedByTrace();
769 
770   StopRunningThreads(thread.GetID());
771 }
772 
773 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) {
774   Log *log(
775       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
776   LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID());
777 
778   // Mark the thread as stopped at breakpoint.
779   thread.SetStoppedByBreakpoint();
780   FixupBreakpointPCAsNeeded(thread);
781 
782   if (m_threads_stepping_with_breakpoint.find(thread.GetID()) !=
783       m_threads_stepping_with_breakpoint.end())
784     thread.SetStoppedByTrace();
785 
786   StopRunningThreads(thread.GetID());
787 }
788 
789 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread,
790                                            uint32_t wp_index) {
791   Log *log(
792       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
793   LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}",
794            thread.GetID(), wp_index);
795 
796   // Mark the thread as stopped at watchpoint. The address is at
797   // (lldb::addr_t)info->si_addr if we need it.
798   thread.SetStoppedByWatchpoint(wp_index);
799 
800   // We need to tell all other running threads before we notify the delegate
801   // about this stop.
802   StopRunningThreads(thread.GetID());
803 }
804 
805 void NativeProcessLinux::MonitorSignal(const siginfo_t &info,
806                                        NativeThreadLinux &thread, bool exited) {
807   const int signo = info.si_signo;
808   const bool is_from_llgs = info.si_pid == getpid();
809 
810   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
811 
812   // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
813   // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2)
814   // or raise(3).  Similarly for tgkill(2) on Linux.
815   //
816   // IOW, user generated signals never generate what we consider to be a
817   // "crash".
818   //
819   // Similarly, ACK signals generated by this monitor.
820 
821   // Handle the signal.
822   LLDB_LOG(log,
823            "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, "
824            "waitpid pid = {4})",
825            Host::GetSignalAsCString(signo), signo, info.si_code,
826            thread.GetID());
827 
828   // Check for thread stop notification.
829   if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) {
830     // This is a tgkill()-based stop.
831     LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID());
832 
833     // Check that we're not already marked with a stop reason. Note this thread
834     // really shouldn't already be marked as stopped - if we were, that would
835     // imply that the kernel signaled us with the thread stopping which we
836     // handled and marked as stopped, and that, without an intervening resume,
837     // we received another stop.  It is more likely that we are missing the
838     // marking of a run state somewhere if we find that the thread was marked
839     // as stopped.
840     const StateType thread_state = thread.GetState();
841     if (!StateIsStoppedState(thread_state, false)) {
842       // An inferior thread has stopped because of a SIGSTOP we have sent it.
843       // Generally, these are not important stops and we don't want to report
844       // them as they are just used to stop other threads when one thread (the
845       // one with the *real* stop reason) hits a breakpoint (watchpoint,
846       // etc...). However, in the case of an asynchronous Interrupt(), this
847       // *is* the real stop reason, so we leave the signal intact if this is
848       // the thread that was chosen as the triggering thread.
849       if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
850         if (m_pending_notification_tid == thread.GetID())
851           thread.SetStoppedBySignal(SIGSTOP, &info);
852         else
853           thread.SetStoppedWithNoReason();
854 
855         SetCurrentThreadID(thread.GetID());
856         SignalIfAllThreadsStopped();
857       } else {
858         // We can end up here if stop was initiated by LLGS but by this time a
859         // thread stop has occurred - maybe initiated by another event.
860         Status error = ResumeThread(thread, thread.GetState(), 0);
861         if (error.Fail())
862           LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(),
863                    error);
864       }
865     } else {
866       LLDB_LOG(log,
867                "pid {0} tid {1}, thread was already marked as a stopped "
868                "state (state={2}), leaving stop signal as is",
869                GetID(), thread.GetID(), thread_state);
870       SignalIfAllThreadsStopped();
871     }
872 
873     // Done handling.
874     return;
875   }
876 
877   // Check if debugger should stop at this signal or just ignore it and resume
878   // the inferior.
879   if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) {
880      ResumeThread(thread, thread.GetState(), signo);
881      return;
882   }
883 
884   // This thread is stopped.
885   LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo));
886   thread.SetStoppedBySignal(signo, &info);
887 
888   // Send a stop to the debugger after we get all other threads to stop.
889   StopRunningThreads(thread.GetID());
890 }
891 
892 bool NativeProcessLinux::MonitorClone(
893     lldb::pid_t child_pid,
894     llvm::Optional<NativeProcessLinux::CloneInfo> clone_info) {
895   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
896   LLDB_LOG(log, "clone, child_pid={0}, clone info?={1}", child_pid,
897            clone_info.hasValue());
898 
899   auto find_it = m_pending_pid_map.find(child_pid);
900   if (find_it == m_pending_pid_map.end()) {
901     // not in the map, so this is the first signal for the PID
902     m_pending_pid_map.insert({child_pid, clone_info});
903     return false;
904   }
905   m_pending_pid_map.erase(find_it);
906 
907   // second signal for the pid
908   assert(clone_info.hasValue() != find_it->second.hasValue());
909   if (!clone_info) {
910     // child signal does not indicate the event, so grab the one stored
911     // earlier
912     clone_info = find_it->second;
913   }
914 
915   LLDB_LOG(log, "second signal for child_pid={0}, parent_tid={1}, event={2}",
916            child_pid, clone_info->parent_tid, clone_info->event);
917 
918   auto *parent_thread = GetThreadByID(clone_info->parent_tid);
919   assert(parent_thread);
920 
921   switch (clone_info->event) {
922   case PTRACE_EVENT_CLONE: {
923     // PTRACE_EVENT_CLONE can either mean a new thread or a new process.
924     // Try to grab the new process' PGID to figure out which one it is.
925     // If PGID is the same as the PID, then it's a new process.  Otherwise,
926     // it's a thread.
927     auto tgid_ret = getPIDForTID(child_pid);
928     if (tgid_ret != child_pid) {
929       // A new thread should have PGID matching our process' PID.
930       assert(!tgid_ret || tgid_ret.getValue() == GetID());
931 
932       NativeThreadLinux &child_thread = AddThread(child_pid, /*resume*/ true);
933       ThreadWasCreated(child_thread);
934 
935       // Resume the parent.
936       ResumeThread(*parent_thread, parent_thread->GetState(),
937                    LLDB_INVALID_SIGNAL_NUMBER);
938       break;
939     }
940   }
941     LLVM_FALLTHROUGH;
942   case PTRACE_EVENT_FORK:
943   case PTRACE_EVENT_VFORK: {
944     bool is_vfork = clone_info->event == PTRACE_EVENT_VFORK;
945     std::unique_ptr<NativeProcessLinux> child_process{new NativeProcessLinux(
946         static_cast<::pid_t>(child_pid), m_terminal_fd, m_delegate, m_arch,
947         m_main_loop, {static_cast<::pid_t>(child_pid)})};
948     if (!is_vfork)
949       child_process->m_software_breakpoints = m_software_breakpoints;
950 
951     Extension expected_ext = is_vfork ? Extension::vfork : Extension::fork;
952     if (bool(m_enabled_extensions & expected_ext)) {
953       m_delegate.NewSubprocess(this, std::move(child_process));
954       // NB: non-vfork clone() is reported as fork
955       parent_thread->SetStoppedByFork(is_vfork, child_pid);
956       StopRunningThreads(parent_thread->GetID());
957     } else {
958       child_process->Detach();
959       ResumeThread(*parent_thread, parent_thread->GetState(),
960                    LLDB_INVALID_SIGNAL_NUMBER);
961     }
962     break;
963   }
964   default:
965     llvm_unreachable("unknown clone_info.event");
966   }
967 
968   return true;
969 }
970 
971 bool NativeProcessLinux::SupportHardwareSingleStepping() const {
972   if (m_arch.GetMachine() == llvm::Triple::arm || m_arch.IsMIPS())
973     return false;
974   return true;
975 }
976 
977 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) {
978   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
979   LLDB_LOG(log, "pid {0}", GetID());
980 
981   bool software_single_step = !SupportHardwareSingleStepping();
982 
983   if (software_single_step) {
984     for (const auto &thread : m_threads) {
985       assert(thread && "thread list should not contain NULL threads");
986 
987       const ResumeAction *const action =
988           resume_actions.GetActionForThread(thread->GetID(), true);
989       if (action == nullptr)
990         continue;
991 
992       if (action->state == eStateStepping) {
993         Status error = SetupSoftwareSingleStepping(
994             static_cast<NativeThreadLinux &>(*thread));
995         if (error.Fail())
996           return error;
997       }
998     }
999   }
1000 
1001   for (const auto &thread : m_threads) {
1002     assert(thread && "thread list should not contain NULL threads");
1003 
1004     const ResumeAction *const action =
1005         resume_actions.GetActionForThread(thread->GetID(), true);
1006 
1007     if (action == nullptr) {
1008       LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(),
1009                thread->GetID());
1010       continue;
1011     }
1012 
1013     LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}",
1014              action->state, GetID(), thread->GetID());
1015 
1016     switch (action->state) {
1017     case eStateRunning:
1018     case eStateStepping: {
1019       // Run the thread, possibly feeding it the signal.
1020       const int signo = action->signal;
1021       ResumeThread(static_cast<NativeThreadLinux &>(*thread), action->state,
1022                    signo);
1023       break;
1024     }
1025 
1026     case eStateSuspended:
1027     case eStateStopped:
1028       llvm_unreachable("Unexpected state");
1029 
1030     default:
1031       return Status("NativeProcessLinux::%s (): unexpected state %s specified "
1032                     "for pid %" PRIu64 ", tid %" PRIu64,
1033                     __FUNCTION__, StateAsCString(action->state), GetID(),
1034                     thread->GetID());
1035     }
1036   }
1037 
1038   return Status();
1039 }
1040 
1041 Status NativeProcessLinux::Halt() {
1042   Status error;
1043 
1044   if (kill(GetID(), SIGSTOP) != 0)
1045     error.SetErrorToErrno();
1046 
1047   return error;
1048 }
1049 
1050 Status NativeProcessLinux::Detach() {
1051   Status error;
1052 
1053   // Stop monitoring the inferior.
1054   m_sigchld_handle.reset();
1055 
1056   // Tell ptrace to detach from the process.
1057   if (GetID() == LLDB_INVALID_PROCESS_ID)
1058     return error;
1059 
1060   for (const auto &thread : m_threads) {
1061     Status e = Detach(thread->GetID());
1062     if (e.Fail())
1063       error =
1064           e; // Save the error, but still attempt to detach from other threads.
1065   }
1066 
1067   m_intel_pt_manager.Clear();
1068 
1069   return error;
1070 }
1071 
1072 Status NativeProcessLinux::Signal(int signo) {
1073   Status error;
1074 
1075   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1076   LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo,
1077            Host::GetSignalAsCString(signo), GetID());
1078 
1079   if (kill(GetID(), signo))
1080     error.SetErrorToErrno();
1081 
1082   return error;
1083 }
1084 
1085 Status NativeProcessLinux::Interrupt() {
1086   // Pick a running thread (or if none, a not-dead stopped thread) as the
1087   // chosen thread that will be the stop-reason thread.
1088   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1089 
1090   NativeThreadProtocol *running_thread = nullptr;
1091   NativeThreadProtocol *stopped_thread = nullptr;
1092 
1093   LLDB_LOG(log, "selecting running thread for interrupt target");
1094   for (const auto &thread : m_threads) {
1095     // If we have a running or stepping thread, we'll call that the target of
1096     // the interrupt.
1097     const auto thread_state = thread->GetState();
1098     if (thread_state == eStateRunning || thread_state == eStateStepping) {
1099       running_thread = thread.get();
1100       break;
1101     } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) {
1102       // Remember the first non-dead stopped thread.  We'll use that as a
1103       // backup if there are no running threads.
1104       stopped_thread = thread.get();
1105     }
1106   }
1107 
1108   if (!running_thread && !stopped_thread) {
1109     Status error("found no running/stepping or live stopped threads as target "
1110                  "for interrupt");
1111     LLDB_LOG(log, "skipping due to error: {0}", error);
1112 
1113     return error;
1114   }
1115 
1116   NativeThreadProtocol *deferred_signal_thread =
1117       running_thread ? running_thread : stopped_thread;
1118 
1119   LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(),
1120            running_thread ? "running" : "stopped",
1121            deferred_signal_thread->GetID());
1122 
1123   StopRunningThreads(deferred_signal_thread->GetID());
1124 
1125   return Status();
1126 }
1127 
1128 Status NativeProcessLinux::Kill() {
1129   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1130   LLDB_LOG(log, "pid {0}", GetID());
1131 
1132   Status error;
1133 
1134   switch (m_state) {
1135   case StateType::eStateInvalid:
1136   case StateType::eStateExited:
1137   case StateType::eStateCrashed:
1138   case StateType::eStateDetached:
1139   case StateType::eStateUnloaded:
1140     // Nothing to do - the process is already dead.
1141     LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(),
1142              m_state);
1143     return error;
1144 
1145   case StateType::eStateConnected:
1146   case StateType::eStateAttaching:
1147   case StateType::eStateLaunching:
1148   case StateType::eStateStopped:
1149   case StateType::eStateRunning:
1150   case StateType::eStateStepping:
1151   case StateType::eStateSuspended:
1152     // We can try to kill a process in these states.
1153     break;
1154   }
1155 
1156   if (kill(GetID(), SIGKILL) != 0) {
1157     error.SetErrorToErrno();
1158     return error;
1159   }
1160 
1161   return error;
1162 }
1163 
1164 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr,
1165                                                MemoryRegionInfo &range_info) {
1166   // FIXME review that the final memory region returned extends to the end of
1167   // the virtual address space,
1168   // with no perms if it is not mapped.
1169 
1170   // Use an approach that reads memory regions from /proc/{pid}/maps. Assume
1171   // proc maps entries are in ascending order.
1172   // FIXME assert if we find differently.
1173 
1174   if (m_supports_mem_region == LazyBool::eLazyBoolNo) {
1175     // We're done.
1176     return Status("unsupported");
1177   }
1178 
1179   Status error = PopulateMemoryRegionCache();
1180   if (error.Fail()) {
1181     return error;
1182   }
1183 
1184   lldb::addr_t prev_base_address = 0;
1185 
1186   // FIXME start by finding the last region that is <= target address using
1187   // binary search.  Data is sorted.
1188   // There can be a ton of regions on pthreads apps with lots of threads.
1189   for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end();
1190        ++it) {
1191     MemoryRegionInfo &proc_entry_info = it->first;
1192 
1193     // Sanity check assumption that /proc/{pid}/maps entries are ascending.
1194     assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) &&
1195            "descending /proc/pid/maps entries detected, unexpected");
1196     prev_base_address = proc_entry_info.GetRange().GetRangeBase();
1197     UNUSED_IF_ASSERT_DISABLED(prev_base_address);
1198 
1199     // If the target address comes before this entry, indicate distance to next
1200     // region.
1201     if (load_addr < proc_entry_info.GetRange().GetRangeBase()) {
1202       range_info.GetRange().SetRangeBase(load_addr);
1203       range_info.GetRange().SetByteSize(
1204           proc_entry_info.GetRange().GetRangeBase() - load_addr);
1205       range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1206       range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1207       range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1208       range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1209 
1210       return error;
1211     } else if (proc_entry_info.GetRange().Contains(load_addr)) {
1212       // The target address is within the memory region we're processing here.
1213       range_info = proc_entry_info;
1214       return error;
1215     }
1216 
1217     // The target memory address comes somewhere after the region we just
1218     // parsed.
1219   }
1220 
1221   // If we made it here, we didn't find an entry that contained the given
1222   // address. Return the load_addr as start and the amount of bytes betwwen
1223   // load address and the end of the memory as size.
1224   range_info.GetRange().SetRangeBase(load_addr);
1225   range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS);
1226   range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1227   range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1228   range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1229   range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1230   return error;
1231 }
1232 
1233 Status NativeProcessLinux::PopulateMemoryRegionCache() {
1234   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1235 
1236   // If our cache is empty, pull the latest.  There should always be at least
1237   // one memory region if memory region handling is supported.
1238   if (!m_mem_region_cache.empty()) {
1239     LLDB_LOG(log, "reusing {0} cached memory region entries",
1240              m_mem_region_cache.size());
1241     return Status();
1242   }
1243 
1244   Status Result;
1245   LinuxMapCallback callback = [&](llvm::Expected<MemoryRegionInfo> Info) {
1246     if (Info) {
1247       FileSpec file_spec(Info->GetName().GetCString());
1248       FileSystem::Instance().Resolve(file_spec);
1249       m_mem_region_cache.emplace_back(*Info, file_spec);
1250       return true;
1251     }
1252 
1253     Result = Info.takeError();
1254     m_supports_mem_region = LazyBool::eLazyBoolNo;
1255     LLDB_LOG(log, "failed to parse proc maps: {0}", Result);
1256     return false;
1257   };
1258 
1259   // Linux kernel since 2.6.14 has /proc/{pid}/smaps
1260   // if CONFIG_PROC_PAGE_MONITOR is enabled
1261   auto BufferOrError = getProcFile(GetID(), "smaps");
1262   if (BufferOrError)
1263     ParseLinuxSMapRegions(BufferOrError.get()->getBuffer(), callback);
1264   else {
1265     BufferOrError = getProcFile(GetID(), "maps");
1266     if (!BufferOrError) {
1267       m_supports_mem_region = LazyBool::eLazyBoolNo;
1268       return BufferOrError.getError();
1269     }
1270 
1271     ParseLinuxMapRegions(BufferOrError.get()->getBuffer(), callback);
1272   }
1273 
1274   if (Result.Fail())
1275     return Result;
1276 
1277   if (m_mem_region_cache.empty()) {
1278     // No entries after attempting to read them.  This shouldn't happen if
1279     // /proc/{pid}/maps is supported. Assume we don't support map entries via
1280     // procfs.
1281     m_supports_mem_region = LazyBool::eLazyBoolNo;
1282     LLDB_LOG(log,
1283              "failed to find any procfs maps entries, assuming no support "
1284              "for memory region metadata retrieval");
1285     return Status("not supported");
1286   }
1287 
1288   LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps",
1289            m_mem_region_cache.size(), GetID());
1290 
1291   // We support memory retrieval, remember that.
1292   m_supports_mem_region = LazyBool::eLazyBoolYes;
1293   return Status();
1294 }
1295 
1296 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) {
1297   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1298   LLDB_LOG(log, "newBumpId={0}", newBumpId);
1299   LLDB_LOG(log, "clearing {0} entries from memory region cache",
1300            m_mem_region_cache.size());
1301   m_mem_region_cache.clear();
1302 }
1303 
1304 llvm::Expected<uint64_t>
1305 NativeProcessLinux::Syscall(llvm::ArrayRef<uint64_t> args) {
1306   PopulateMemoryRegionCache();
1307   auto region_it = llvm::find_if(m_mem_region_cache, [](const auto &pair) {
1308     return pair.first.GetExecutable() == MemoryRegionInfo::eYes;
1309   });
1310   if (region_it == m_mem_region_cache.end())
1311     return llvm::createStringError(llvm::inconvertibleErrorCode(),
1312                                    "No executable memory region found!");
1313 
1314   addr_t exe_addr = region_it->first.GetRange().GetRangeBase();
1315 
1316   NativeThreadLinux &thread = *GetThreadByID(GetID());
1317   assert(thread.GetState() == eStateStopped);
1318   NativeRegisterContextLinux &reg_ctx = thread.GetRegisterContext();
1319 
1320   NativeRegisterContextLinux::SyscallData syscall_data =
1321       *reg_ctx.GetSyscallData();
1322 
1323   DataBufferSP registers_sp;
1324   if (llvm::Error Err = reg_ctx.ReadAllRegisterValues(registers_sp).ToError())
1325     return std::move(Err);
1326   auto restore_regs = llvm::make_scope_exit(
1327       [&] { reg_ctx.WriteAllRegisterValues(registers_sp); });
1328 
1329   llvm::SmallVector<uint8_t, 8> memory(syscall_data.Insn.size());
1330   size_t bytes_read;
1331   if (llvm::Error Err =
1332           ReadMemory(exe_addr, memory.data(), memory.size(), bytes_read)
1333               .ToError()) {
1334     return std::move(Err);
1335   }
1336 
1337   auto restore_mem = llvm::make_scope_exit(
1338       [&] { WriteMemory(exe_addr, memory.data(), memory.size(), bytes_read); });
1339 
1340   if (llvm::Error Err = reg_ctx.SetPC(exe_addr).ToError())
1341     return std::move(Err);
1342 
1343   for (const auto &zip : llvm::zip_first(args, syscall_data.Args)) {
1344     if (llvm::Error Err =
1345             reg_ctx
1346                 .WriteRegisterFromUnsigned(std::get<1>(zip), std::get<0>(zip))
1347                 .ToError()) {
1348       return std::move(Err);
1349     }
1350   }
1351   if (llvm::Error Err = WriteMemory(exe_addr, syscall_data.Insn.data(),
1352                                     syscall_data.Insn.size(), bytes_read)
1353                             .ToError())
1354     return std::move(Err);
1355 
1356   m_mem_region_cache.clear();
1357 
1358   // With software single stepping the syscall insn buffer must also include a
1359   // trap instruction to stop the process.
1360   int req = SupportHardwareSingleStepping() ? PTRACE_SINGLESTEP : PTRACE_CONT;
1361   if (llvm::Error Err =
1362           PtraceWrapper(req, thread.GetID(), nullptr, nullptr).ToError())
1363     return std::move(Err);
1364 
1365   int status;
1366   ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, thread.GetID(),
1367                                                  &status, __WALL);
1368   if (wait_pid == -1) {
1369     return llvm::errorCodeToError(
1370         std::error_code(errno, std::generic_category()));
1371   }
1372   assert((unsigned)wait_pid == thread.GetID());
1373 
1374   uint64_t result = reg_ctx.ReadRegisterAsUnsigned(syscall_data.Result, -ESRCH);
1375 
1376   // Values larger than this are actually negative errno numbers.
1377   uint64_t errno_threshold =
1378       (uint64_t(-1) >> (64 - 8 * m_arch.GetAddressByteSize())) - 0x1000;
1379   if (result > errno_threshold) {
1380     return llvm::errorCodeToError(
1381         std::error_code(-result & 0xfff, std::generic_category()));
1382   }
1383 
1384   return result;
1385 }
1386 
1387 llvm::Expected<addr_t>
1388 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions) {
1389 
1390   llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data =
1391       GetCurrentThread()->GetRegisterContext().GetMmapData();
1392   if (!mmap_data)
1393     return llvm::make_error<UnimplementedError>();
1394 
1395   unsigned prot = PROT_NONE;
1396   assert((permissions & (ePermissionsReadable | ePermissionsWritable |
1397                          ePermissionsExecutable)) == permissions &&
1398          "Unknown permission!");
1399   if (permissions & ePermissionsReadable)
1400     prot |= PROT_READ;
1401   if (permissions & ePermissionsWritable)
1402     prot |= PROT_WRITE;
1403   if (permissions & ePermissionsExecutable)
1404     prot |= PROT_EXEC;
1405 
1406   llvm::Expected<uint64_t> Result =
1407       Syscall({mmap_data->SysMmap, 0, size, prot, MAP_ANONYMOUS | MAP_PRIVATE,
1408                uint64_t(-1), 0});
1409   if (Result)
1410     m_allocated_memory.try_emplace(*Result, size);
1411   return Result;
1412 }
1413 
1414 llvm::Error NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) {
1415   llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data =
1416       GetCurrentThread()->GetRegisterContext().GetMmapData();
1417   if (!mmap_data)
1418     return llvm::make_error<UnimplementedError>();
1419 
1420   auto it = m_allocated_memory.find(addr);
1421   if (it == m_allocated_memory.end())
1422     return llvm::createStringError(llvm::errc::invalid_argument,
1423                                    "Memory not allocated by the debugger.");
1424 
1425   llvm::Expected<uint64_t> Result =
1426       Syscall({mmap_data->SysMunmap, addr, it->second});
1427   if (!Result)
1428     return Result.takeError();
1429 
1430   m_allocated_memory.erase(it);
1431   return llvm::Error::success();
1432 }
1433 
1434 Status NativeProcessLinux::ReadMemoryTags(int32_t type, lldb::addr_t addr,
1435                                           size_t len,
1436                                           std::vector<uint8_t> &tags) {
1437   llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details =
1438       GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type);
1439   if (!details)
1440     return Status(details.takeError());
1441 
1442   // Ignore 0 length read
1443   if (!len)
1444     return Status();
1445 
1446   // lldb will align the range it requests but it is not required to by
1447   // the protocol so we'll do it again just in case.
1448   // Remove non address bits too. Ptrace calls may work regardless but that
1449   // is not a guarantee.
1450   MemoryTagManager::TagRange range(details->manager->RemoveNonAddressBits(addr),
1451                                    len);
1452   range = details->manager->ExpandToGranule(range);
1453 
1454   // Allocate enough space for all tags to be read
1455   size_t num_tags = range.GetByteSize() / details->manager->GetGranuleSize();
1456   tags.resize(num_tags * details->manager->GetTagSizeInBytes());
1457 
1458   struct iovec tags_iovec;
1459   uint8_t *dest = tags.data();
1460   lldb::addr_t read_addr = range.GetRangeBase();
1461 
1462   // This call can return partial data so loop until we error or
1463   // get all tags back.
1464   while (num_tags) {
1465     tags_iovec.iov_base = dest;
1466     tags_iovec.iov_len = num_tags;
1467 
1468     Status error = NativeProcessLinux::PtraceWrapper(
1469         details->ptrace_read_req, GetID(), reinterpret_cast<void *>(read_addr),
1470         static_cast<void *>(&tags_iovec), 0, nullptr);
1471 
1472     if (error.Fail()) {
1473       // Discard partial reads
1474       tags.resize(0);
1475       return error;
1476     }
1477 
1478     size_t tags_read = tags_iovec.iov_len;
1479     assert(tags_read && (tags_read <= num_tags));
1480 
1481     dest += tags_read * details->manager->GetTagSizeInBytes();
1482     read_addr += details->manager->GetGranuleSize() * tags_read;
1483     num_tags -= tags_read;
1484   }
1485 
1486   return Status();
1487 }
1488 
1489 size_t NativeProcessLinux::UpdateThreads() {
1490   // The NativeProcessLinux monitoring threads are always up to date with
1491   // respect to thread state and they keep the thread list populated properly.
1492   // All this method needs to do is return the thread count.
1493   return m_threads.size();
1494 }
1495 
1496 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size,
1497                                          bool hardware) {
1498   if (hardware)
1499     return SetHardwareBreakpoint(addr, size);
1500   else
1501     return SetSoftwareBreakpoint(addr, size);
1502 }
1503 
1504 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) {
1505   if (hardware)
1506     return RemoveHardwareBreakpoint(addr);
1507   else
1508     return NativeProcessProtocol::RemoveBreakpoint(addr);
1509 }
1510 
1511 llvm::Expected<llvm::ArrayRef<uint8_t>>
1512 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(size_t size_hint) {
1513   // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
1514   // linux kernel does otherwise.
1515   static const uint8_t g_arm_opcode[] = {0xf0, 0x01, 0xf0, 0xe7};
1516   static const uint8_t g_thumb_opcode[] = {0x01, 0xde};
1517 
1518   switch (GetArchitecture().GetMachine()) {
1519   case llvm::Triple::arm:
1520     switch (size_hint) {
1521     case 2:
1522       return llvm::makeArrayRef(g_thumb_opcode);
1523     case 4:
1524       return llvm::makeArrayRef(g_arm_opcode);
1525     default:
1526       return llvm::createStringError(llvm::inconvertibleErrorCode(),
1527                                      "Unrecognised trap opcode size hint!");
1528     }
1529   default:
1530     return NativeProcessProtocol::GetSoftwareBreakpointTrapOpcode(size_hint);
1531   }
1532 }
1533 
1534 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size,
1535                                       size_t &bytes_read) {
1536   if (ProcessVmReadvSupported()) {
1537     // The process_vm_readv path is about 50 times faster than ptrace api. We
1538     // want to use this syscall if it is supported.
1539 
1540     const ::pid_t pid = GetID();
1541 
1542     struct iovec local_iov, remote_iov;
1543     local_iov.iov_base = buf;
1544     local_iov.iov_len = size;
1545     remote_iov.iov_base = reinterpret_cast<void *>(addr);
1546     remote_iov.iov_len = size;
1547 
1548     bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
1549     const bool success = bytes_read == size;
1550 
1551     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1552     LLDB_LOG(log,
1553              "using process_vm_readv to read {0} bytes from inferior "
1554              "address {1:x}: {2}",
1555              size, addr, success ? "Success" : llvm::sys::StrError(errno));
1556 
1557     if (success)
1558       return Status();
1559     // else the call failed for some reason, let's retry the read using ptrace
1560     // api.
1561   }
1562 
1563   unsigned char *dst = static_cast<unsigned char *>(buf);
1564   size_t remainder;
1565   long data;
1566 
1567   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1568   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1569 
1570   for (bytes_read = 0; bytes_read < size; bytes_read += remainder) {
1571     Status error = NativeProcessLinux::PtraceWrapper(
1572         PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data);
1573     if (error.Fail())
1574       return error;
1575 
1576     remainder = size - bytes_read;
1577     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1578 
1579     // Copy the data into our buffer
1580     memcpy(dst, &data, remainder);
1581 
1582     LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1583     addr += k_ptrace_word_size;
1584     dst += k_ptrace_word_size;
1585   }
1586   return Status();
1587 }
1588 
1589 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf,
1590                                        size_t size, size_t &bytes_written) {
1591   const unsigned char *src = static_cast<const unsigned char *>(buf);
1592   size_t remainder;
1593   Status error;
1594 
1595   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1596   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1597 
1598   for (bytes_written = 0; bytes_written < size; bytes_written += remainder) {
1599     remainder = size - bytes_written;
1600     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1601 
1602     if (remainder == k_ptrace_word_size) {
1603       unsigned long data = 0;
1604       memcpy(&data, src, k_ptrace_word_size);
1605 
1606       LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1607       error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(),
1608                                                 (void *)addr, (void *)data);
1609       if (error.Fail())
1610         return error;
1611     } else {
1612       unsigned char buff[8];
1613       size_t bytes_read;
1614       error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
1615       if (error.Fail())
1616         return error;
1617 
1618       memcpy(buff, src, remainder);
1619 
1620       size_t bytes_written_rec;
1621       error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
1622       if (error.Fail())
1623         return error;
1624 
1625       LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src,
1626                *(unsigned long *)buff);
1627     }
1628 
1629     addr += k_ptrace_word_size;
1630     src += k_ptrace_word_size;
1631   }
1632   return error;
1633 }
1634 
1635 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) {
1636   return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
1637 }
1638 
1639 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid,
1640                                            unsigned long *message) {
1641   return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
1642 }
1643 
1644 Status NativeProcessLinux::Detach(lldb::tid_t tid) {
1645   if (tid == LLDB_INVALID_THREAD_ID)
1646     return Status();
1647 
1648   return PtraceWrapper(PTRACE_DETACH, tid);
1649 }
1650 
1651 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) {
1652   for (const auto &thread : m_threads) {
1653     assert(thread && "thread list should not contain NULL threads");
1654     if (thread->GetID() == thread_id) {
1655       // We have this thread.
1656       return true;
1657     }
1658   }
1659 
1660   // We don't have this thread.
1661   return false;
1662 }
1663 
1664 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) {
1665   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1666   LLDB_LOG(log, "tid: {0})", thread_id);
1667 
1668   bool found = false;
1669   for (auto it = m_threads.begin(); it != m_threads.end(); ++it) {
1670     if (*it && ((*it)->GetID() == thread_id)) {
1671       m_threads.erase(it);
1672       found = true;
1673       break;
1674     }
1675   }
1676 
1677   if (found)
1678     NotifyTracersOfThreadDestroyed(thread_id);
1679 
1680   SignalIfAllThreadsStopped();
1681   return found;
1682 }
1683 
1684 Status NativeProcessLinux::NotifyTracersOfNewThread(lldb::tid_t tid) {
1685   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD));
1686   Status error(m_intel_pt_manager.OnThreadCreated(tid));
1687   if (error.Fail())
1688     LLDB_LOG(log, "Failed to trace a new thread with intel-pt, tid = {0}. {1}",
1689              tid, error.AsCString());
1690   return error;
1691 }
1692 
1693 Status NativeProcessLinux::NotifyTracersOfThreadDestroyed(lldb::tid_t tid) {
1694   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD));
1695   Status error(m_intel_pt_manager.OnThreadDestroyed(tid));
1696   if (error.Fail())
1697     LLDB_LOG(log,
1698              "Failed to stop a destroyed thread with intel-pt, tid = {0}. {1}",
1699              tid, error.AsCString());
1700   return error;
1701 }
1702 
1703 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id,
1704                                                  bool resume) {
1705   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD));
1706   LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id);
1707 
1708   assert(!HasThreadNoLock(thread_id) &&
1709          "attempted to add a thread by id that already exists");
1710 
1711   // If this is the first thread, save it as the current thread
1712   if (m_threads.empty())
1713     SetCurrentThreadID(thread_id);
1714 
1715   m_threads.push_back(std::make_unique<NativeThreadLinux>(*this, thread_id));
1716   NativeThreadLinux &thread =
1717       static_cast<NativeThreadLinux &>(*m_threads.back());
1718 
1719   Status tracing_error = NotifyTracersOfNewThread(thread.GetID());
1720   if (tracing_error.Fail()) {
1721     thread.SetStoppedByProcessorTrace(tracing_error.AsCString());
1722     StopRunningThreads(thread.GetID());
1723   } else if (resume)
1724     ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
1725   else
1726     thread.SetStoppedBySignal(SIGSTOP);
1727 
1728   return thread;
1729 }
1730 
1731 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path,
1732                                                    FileSpec &file_spec) {
1733   Status error = PopulateMemoryRegionCache();
1734   if (error.Fail())
1735     return error;
1736 
1737   FileSpec module_file_spec(module_path);
1738   FileSystem::Instance().Resolve(module_file_spec);
1739 
1740   file_spec.Clear();
1741   for (const auto &it : m_mem_region_cache) {
1742     if (it.second.GetFilename() == module_file_spec.GetFilename()) {
1743       file_spec = it.second;
1744       return Status();
1745     }
1746   }
1747   return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
1748                 module_file_spec.GetFilename().AsCString(), GetID());
1749 }
1750 
1751 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name,
1752                                               lldb::addr_t &load_addr) {
1753   load_addr = LLDB_INVALID_ADDRESS;
1754   Status error = PopulateMemoryRegionCache();
1755   if (error.Fail())
1756     return error;
1757 
1758   FileSpec file(file_name);
1759   for (const auto &it : m_mem_region_cache) {
1760     if (it.second == file) {
1761       load_addr = it.first.GetRange().GetRangeBase();
1762       return Status();
1763     }
1764   }
1765   return Status("No load address found for specified file.");
1766 }
1767 
1768 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) {
1769   return static_cast<NativeThreadLinux *>(
1770       NativeProcessProtocol::GetThreadByID(tid));
1771 }
1772 
1773 NativeThreadLinux *NativeProcessLinux::GetCurrentThread() {
1774   return static_cast<NativeThreadLinux *>(
1775       NativeProcessProtocol::GetCurrentThread());
1776 }
1777 
1778 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread,
1779                                         lldb::StateType state, int signo) {
1780   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1781   LLDB_LOG(log, "tid: {0}", thread.GetID());
1782 
1783   // Before we do the resume below, first check if we have a pending stop
1784   // notification that is currently waiting for all threads to stop.  This is
1785   // potentially a buggy situation since we're ostensibly waiting for threads
1786   // to stop before we send out the pending notification, and here we are
1787   // resuming one before we send out the pending stop notification.
1788   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
1789     LLDB_LOG(log,
1790              "about to resume tid {0} per explicit request but we have a "
1791              "pending stop notification (tid {1}) that is actively "
1792              "waiting for this thread to stop. Valid sequence of events?",
1793              thread.GetID(), m_pending_notification_tid);
1794   }
1795 
1796   // Request a resume.  We expect this to be synchronous and the system to
1797   // reflect it is running after this completes.
1798   switch (state) {
1799   case eStateRunning: {
1800     const auto resume_result = thread.Resume(signo);
1801     if (resume_result.Success())
1802       SetState(eStateRunning, true);
1803     return resume_result;
1804   }
1805   case eStateStepping: {
1806     const auto step_result = thread.SingleStep(signo);
1807     if (step_result.Success())
1808       SetState(eStateRunning, true);
1809     return step_result;
1810   }
1811   default:
1812     LLDB_LOG(log, "Unhandled state {0}.", state);
1813     llvm_unreachable("Unhandled state for resume");
1814   }
1815 }
1816 
1817 //===----------------------------------------------------------------------===//
1818 
1819 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) {
1820   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1821   LLDB_LOG(log, "about to process event: (triggering_tid: {0})",
1822            triggering_tid);
1823 
1824   m_pending_notification_tid = triggering_tid;
1825 
1826   // Request a stop for all the thread stops that need to be stopped and are
1827   // not already known to be stopped.
1828   for (const auto &thread : m_threads) {
1829     if (StateIsRunningState(thread->GetState()))
1830       static_cast<NativeThreadLinux *>(thread.get())->RequestStop();
1831   }
1832 
1833   SignalIfAllThreadsStopped();
1834   LLDB_LOG(log, "event processing done");
1835 }
1836 
1837 void NativeProcessLinux::SignalIfAllThreadsStopped() {
1838   if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
1839     return; // No pending notification. Nothing to do.
1840 
1841   for (const auto &thread_sp : m_threads) {
1842     if (StateIsRunningState(thread_sp->GetState()))
1843       return; // Some threads are still running. Don't signal yet.
1844   }
1845 
1846   // We have a pending notification and all threads have stopped.
1847   Log *log(
1848       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
1849 
1850   // Clear any temporary breakpoints we used to implement software single
1851   // stepping.
1852   for (const auto &thread_info : m_threads_stepping_with_breakpoint) {
1853     Status error = RemoveBreakpoint(thread_info.second);
1854     if (error.Fail())
1855       LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}",
1856                thread_info.first, error);
1857   }
1858   m_threads_stepping_with_breakpoint.clear();
1859 
1860   // Notify the delegate about the stop
1861   SetCurrentThreadID(m_pending_notification_tid);
1862   SetState(StateType::eStateStopped, true);
1863   m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
1864 }
1865 
1866 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) {
1867   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1868   LLDB_LOG(log, "tid: {0}", thread.GetID());
1869 
1870   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID &&
1871       StateIsRunningState(thread.GetState())) {
1872     // We will need to wait for this new thread to stop as well before firing
1873     // the notification.
1874     thread.RequestStop();
1875   }
1876 }
1877 
1878 void NativeProcessLinux::SigchldHandler() {
1879   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1880   // Process all pending waitpid notifications.
1881   while (true) {
1882     int status = -1;
1883     ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, -1, &status,
1884                                           __WALL | __WNOTHREAD | WNOHANG);
1885 
1886     if (wait_pid == 0)
1887       break; // We are done.
1888 
1889     if (wait_pid == -1) {
1890       Status error(errno, eErrorTypePOSIX);
1891       LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error);
1892       break;
1893     }
1894 
1895     WaitStatus wait_status = WaitStatus::Decode(status);
1896     bool exited = wait_status.type == WaitStatus::Exit ||
1897                   (wait_status.type == WaitStatus::Signal &&
1898                    wait_pid == static_cast<::pid_t>(GetID()));
1899 
1900     LLDB_LOG(
1901         log,
1902         "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}",
1903         wait_pid, wait_status, exited);
1904 
1905     MonitorCallback(wait_pid, exited, wait_status);
1906   }
1907 }
1908 
1909 // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets
1910 // errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
1911 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr,
1912                                          void *data, size_t data_size,
1913                                          long *result) {
1914   Status error;
1915   long int ret;
1916 
1917   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1918 
1919   PtraceDisplayBytes(req, data, data_size);
1920 
1921   errno = 0;
1922   if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
1923     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
1924                  *(unsigned int *)addr, data);
1925   else
1926     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
1927                  addr, data);
1928 
1929   if (ret == -1)
1930     error.SetErrorToErrno();
1931 
1932   if (result)
1933     *result = ret;
1934 
1935   LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data,
1936            data_size, ret);
1937 
1938   PtraceDisplayBytes(req, data, data_size);
1939 
1940   if (error.Fail())
1941     LLDB_LOG(log, "ptrace() failed: {0}", error);
1942 
1943   return error;
1944 }
1945 
1946 llvm::Expected<TraceSupportedResponse> NativeProcessLinux::TraceSupported() {
1947   if (IntelPTManager::IsSupported())
1948     return TraceSupportedResponse{"intel-pt", "Intel Processor Trace"};
1949   return NativeProcessProtocol::TraceSupported();
1950 }
1951 
1952 Error NativeProcessLinux::TraceStart(StringRef json_request, StringRef type) {
1953   if (type == "intel-pt") {
1954     if (Expected<TraceIntelPTStartRequest> request =
1955             json::parse<TraceIntelPTStartRequest>(json_request,
1956                                                   "TraceIntelPTStartRequest")) {
1957       std::vector<lldb::tid_t> process_threads;
1958       for (auto &thread : m_threads)
1959         process_threads.push_back(thread->GetID());
1960       return m_intel_pt_manager.TraceStart(*request, process_threads);
1961     } else
1962       return request.takeError();
1963   }
1964 
1965   return NativeProcessProtocol::TraceStart(json_request, type);
1966 }
1967 
1968 Error NativeProcessLinux::TraceStop(const TraceStopRequest &request) {
1969   if (request.type == "intel-pt")
1970     return m_intel_pt_manager.TraceStop(request);
1971   return NativeProcessProtocol::TraceStop(request);
1972 }
1973 
1974 Expected<json::Value> NativeProcessLinux::TraceGetState(StringRef type) {
1975   if (type == "intel-pt")
1976     return m_intel_pt_manager.GetState();
1977   return NativeProcessProtocol::TraceGetState(type);
1978 }
1979 
1980 Expected<std::vector<uint8_t>> NativeProcessLinux::TraceGetBinaryData(
1981     const TraceGetBinaryDataRequest &request) {
1982   if (request.type == "intel-pt")
1983     return m_intel_pt_manager.GetBinaryData(request);
1984   return NativeProcessProtocol::TraceGetBinaryData(request);
1985 }
1986