1 //===-- NativeProcessLinux.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "NativeProcessLinux.h"
10 
11 #include <cerrno>
12 #include <cstdint>
13 #include <cstring>
14 #include <unistd.h>
15 
16 #include <fstream>
17 #include <mutex>
18 #include <sstream>
19 #include <string>
20 #include <unordered_map>
21 
22 #include "NativeThreadLinux.h"
23 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
24 #include "Plugins/Process/Utility/LinuxProcMaps.h"
25 #include "Procfs.h"
26 #include "lldb/Core/ModuleSpec.h"
27 #include "lldb/Host/Host.h"
28 #include "lldb/Host/HostProcess.h"
29 #include "lldb/Host/ProcessLaunchInfo.h"
30 #include "lldb/Host/PseudoTerminal.h"
31 #include "lldb/Host/ThreadLauncher.h"
32 #include "lldb/Host/common/NativeRegisterContext.h"
33 #include "lldb/Host/linux/Host.h"
34 #include "lldb/Host/linux/Ptrace.h"
35 #include "lldb/Host/linux/Uio.h"
36 #include "lldb/Host/posix/ProcessLauncherPosixFork.h"
37 #include "lldb/Symbol/ObjectFile.h"
38 #include "lldb/Target/Process.h"
39 #include "lldb/Target/Target.h"
40 #include "lldb/Utility/LLDBAssert.h"
41 #include "lldb/Utility/State.h"
42 #include "lldb/Utility/Status.h"
43 #include "lldb/Utility/StringExtractor.h"
44 #include "llvm/ADT/ScopeExit.h"
45 #include "llvm/Support/Errno.h"
46 #include "llvm/Support/FileSystem.h"
47 #include "llvm/Support/Threading.h"
48 
49 #include <linux/unistd.h>
50 #include <sys/socket.h>
51 #include <sys/syscall.h>
52 #include <sys/types.h>
53 #include <sys/user.h>
54 #include <sys/wait.h>
55 
56 #ifdef __aarch64__
57 #include <asm/hwcap.h>
58 #include <sys/auxv.h>
59 #endif
60 
61 // Support hardware breakpoints in case it has not been defined
62 #ifndef TRAP_HWBKPT
63 #define TRAP_HWBKPT 4
64 #endif
65 
66 #ifndef HWCAP2_MTE
67 #define HWCAP2_MTE (1 << 18)
68 #endif
69 
70 using namespace lldb;
71 using namespace lldb_private;
72 using namespace lldb_private::process_linux;
73 using namespace llvm;
74 
75 // Private bits we only need internally.
76 
77 static bool ProcessVmReadvSupported() {
78   static bool is_supported;
79   static llvm::once_flag flag;
80 
81   llvm::call_once(flag, [] {
82     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
83 
84     uint32_t source = 0x47424742;
85     uint32_t dest = 0;
86 
87     struct iovec local, remote;
88     remote.iov_base = &source;
89     local.iov_base = &dest;
90     remote.iov_len = local.iov_len = sizeof source;
91 
92     // We shall try if cross-process-memory reads work by attempting to read a
93     // value from our own process.
94     ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
95     is_supported = (res == sizeof(source) && source == dest);
96     if (is_supported)
97       LLDB_LOG(log,
98                "Detected kernel support for process_vm_readv syscall. "
99                "Fast memory reads enabled.");
100     else
101       LLDB_LOG(log,
102                "syscall process_vm_readv failed (error: {0}). Fast memory "
103                "reads disabled.",
104                llvm::sys::StrError());
105   });
106 
107   return is_supported;
108 }
109 
110 static void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) {
111   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
112   if (!log)
113     return;
114 
115   if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO))
116     LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec());
117   else
118     LLDB_LOG(log, "leaving STDIN as is");
119 
120   if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO))
121     LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec());
122   else
123     LLDB_LOG(log, "leaving STDOUT as is");
124 
125   if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO))
126     LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec());
127   else
128     LLDB_LOG(log, "leaving STDERR as is");
129 
130   int i = 0;
131   for (const char **args = info.GetArguments().GetConstArgumentVector(); *args;
132        ++args, ++i)
133     LLDB_LOG(log, "arg {0}: '{1}'", i, *args);
134 }
135 
136 static void DisplayBytes(StreamString &s, void *bytes, uint32_t count) {
137   uint8_t *ptr = (uint8_t *)bytes;
138   const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
139   for (uint32_t i = 0; i < loop_count; i++) {
140     s.Printf("[%x]", *ptr);
141     ptr++;
142   }
143 }
144 
145 static void PtraceDisplayBytes(int &req, void *data, size_t data_size) {
146   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
147   if (!log)
148     return;
149   StreamString buf;
150 
151   switch (req) {
152   case PTRACE_POKETEXT: {
153     DisplayBytes(buf, &data, 8);
154     LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData());
155     break;
156   }
157   case PTRACE_POKEDATA: {
158     DisplayBytes(buf, &data, 8);
159     LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData());
160     break;
161   }
162   case PTRACE_POKEUSER: {
163     DisplayBytes(buf, &data, 8);
164     LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData());
165     break;
166   }
167   case PTRACE_SETREGS: {
168     DisplayBytes(buf, data, data_size);
169     LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData());
170     break;
171   }
172   case PTRACE_SETFPREGS: {
173     DisplayBytes(buf, data, data_size);
174     LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData());
175     break;
176   }
177   case PTRACE_SETSIGINFO: {
178     DisplayBytes(buf, data, sizeof(siginfo_t));
179     LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData());
180     break;
181   }
182   case PTRACE_SETREGSET: {
183     // Extract iov_base from data, which is a pointer to the struct iovec
184     DisplayBytes(buf, *(void **)data, data_size);
185     LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData());
186     break;
187   }
188   default: {}
189   }
190 }
191 
192 static constexpr unsigned k_ptrace_word_size = sizeof(void *);
193 static_assert(sizeof(long) >= k_ptrace_word_size,
194               "Size of long must be larger than ptrace word size");
195 
196 // Simple helper function to ensure flags are enabled on the given file
197 // descriptor.
198 static Status EnsureFDFlags(int fd, int flags) {
199   Status error;
200 
201   int status = fcntl(fd, F_GETFL);
202   if (status == -1) {
203     error.SetErrorToErrno();
204     return error;
205   }
206 
207   if (fcntl(fd, F_SETFL, status | flags) == -1) {
208     error.SetErrorToErrno();
209     return error;
210   }
211 
212   return error;
213 }
214 
215 // Public Static Methods
216 
217 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
218 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info,
219                                     NativeDelegate &native_delegate,
220                                     MainLoop &mainloop) const {
221   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
222 
223   MaybeLogLaunchInfo(launch_info);
224 
225   Status status;
226   ::pid_t pid = ProcessLauncherPosixFork()
227                     .LaunchProcess(launch_info, status)
228                     .GetProcessId();
229   LLDB_LOG(log, "pid = {0:x}", pid);
230   if (status.Fail()) {
231     LLDB_LOG(log, "failed to launch process: {0}", status);
232     return status.ToError();
233   }
234 
235   // Wait for the child process to trap on its call to execve.
236   int wstatus;
237   ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0);
238   assert(wpid == pid);
239   (void)wpid;
240   if (!WIFSTOPPED(wstatus)) {
241     LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}",
242              WaitStatus::Decode(wstatus));
243     return llvm::make_error<StringError>("Could not sync with inferior process",
244                                          llvm::inconvertibleErrorCode());
245   }
246   LLDB_LOG(log, "inferior started, now in stopped state");
247 
248   ProcessInstanceInfo Info;
249   if (!Host::GetProcessInfo(pid, Info)) {
250     return llvm::make_error<StringError>("Cannot get process architecture",
251                                          llvm::inconvertibleErrorCode());
252   }
253 
254   // Set the architecture to the exe architecture.
255   LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid,
256            Info.GetArchitecture().GetArchitectureName());
257 
258   status = SetDefaultPtraceOpts(pid);
259   if (status.Fail()) {
260     LLDB_LOG(log, "failed to set default ptrace options: {0}", status);
261     return status.ToError();
262   }
263 
264   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
265       pid, launch_info.GetPTY().ReleasePrimaryFileDescriptor(), native_delegate,
266       Info.GetArchitecture(), mainloop, {pid}));
267 }
268 
269 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
270 NativeProcessLinux::Factory::Attach(
271     lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate,
272     MainLoop &mainloop) const {
273   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
274   LLDB_LOG(log, "pid = {0:x}", pid);
275 
276   // Retrieve the architecture for the running process.
277   ProcessInstanceInfo Info;
278   if (!Host::GetProcessInfo(pid, Info)) {
279     return llvm::make_error<StringError>("Cannot get process architecture",
280                                          llvm::inconvertibleErrorCode());
281   }
282 
283   auto tids_or = NativeProcessLinux::Attach(pid);
284   if (!tids_or)
285     return tids_or.takeError();
286 
287   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
288       pid, -1, native_delegate, Info.GetArchitecture(), mainloop, *tids_or));
289 }
290 
291 NativeProcessLinux::Extension
292 NativeProcessLinux::Factory::GetSupportedExtensions() const {
293   NativeProcessLinux::Extension supported =
294       Extension::multiprocess | Extension::fork | Extension::vfork |
295       Extension::pass_signals | Extension::auxv | Extension::libraries_svr4;
296 
297 #ifdef __aarch64__
298   // At this point we do not have a process so read auxv directly.
299   if ((getauxval(AT_HWCAP2) & HWCAP2_MTE))
300     supported |= Extension::memory_tagging;
301 #endif
302 
303   return supported;
304 }
305 
306 // Public Instance Methods
307 
308 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd,
309                                        NativeDelegate &delegate,
310                                        const ArchSpec &arch, MainLoop &mainloop,
311                                        llvm::ArrayRef<::pid_t> tids)
312     : NativeProcessELF(pid, terminal_fd, delegate), m_arch(arch),
313       m_main_loop(mainloop), m_intel_pt_manager(pid) {
314   if (m_terminal_fd != -1) {
315     Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
316     assert(status.Success());
317   }
318 
319   Status status;
320   m_sigchld_handle = mainloop.RegisterSignal(
321       SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status);
322   assert(m_sigchld_handle && status.Success());
323 
324   for (const auto &tid : tids) {
325     NativeThreadLinux &thread = AddThread(tid, /*resume*/ false);
326     ThreadWasCreated(thread);
327   }
328 
329   // Let our process instance know the thread has stopped.
330   SetCurrentThreadID(tids[0]);
331   SetState(StateType::eStateStopped, false);
332 
333   // Proccess any signals we received before installing our handler
334   SigchldHandler();
335 }
336 
337 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) {
338   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
339 
340   Status status;
341   // Use a map to keep track of the threads which we have attached/need to
342   // attach.
343   Host::TidMap tids_to_attach;
344   while (Host::FindProcessThreads(pid, tids_to_attach)) {
345     for (Host::TidMap::iterator it = tids_to_attach.begin();
346          it != tids_to_attach.end();) {
347       if (it->second == false) {
348         lldb::tid_t tid = it->first;
349 
350         // Attach to the requested process.
351         // An attach will cause the thread to stop with a SIGSTOP.
352         if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) {
353           // No such thread. The thread may have exited. More error handling
354           // may be needed.
355           if (status.GetError() == ESRCH) {
356             it = tids_to_attach.erase(it);
357             continue;
358           }
359           return status.ToError();
360         }
361 
362         int wpid =
363             llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL);
364         // Need to use __WALL otherwise we receive an error with errno=ECHLD At
365         // this point we should have a thread stopped if waitpid succeeds.
366         if (wpid < 0) {
367           // No such thread. The thread may have exited. More error handling
368           // may be needed.
369           if (errno == ESRCH) {
370             it = tids_to_attach.erase(it);
371             continue;
372           }
373           return llvm::errorCodeToError(
374               std::error_code(errno, std::generic_category()));
375         }
376 
377         if ((status = SetDefaultPtraceOpts(tid)).Fail())
378           return status.ToError();
379 
380         LLDB_LOG(log, "adding tid = {0}", tid);
381         it->second = true;
382       }
383 
384       // move the loop forward
385       ++it;
386     }
387   }
388 
389   size_t tid_count = tids_to_attach.size();
390   if (tid_count == 0)
391     return llvm::make_error<StringError>("No such process",
392                                          llvm::inconvertibleErrorCode());
393 
394   std::vector<::pid_t> tids;
395   tids.reserve(tid_count);
396   for (const auto &p : tids_to_attach)
397     tids.push_back(p.first);
398   return std::move(tids);
399 }
400 
401 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) {
402   long ptrace_opts = 0;
403 
404   // Have the child raise an event on exit.  This is used to keep the child in
405   // limbo until it is destroyed.
406   ptrace_opts |= PTRACE_O_TRACEEXIT;
407 
408   // Have the tracer trace threads which spawn in the inferior process.
409   ptrace_opts |= PTRACE_O_TRACECLONE;
410 
411   // Have the tracer notify us before execve returns (needed to disable legacy
412   // SIGTRAP generation)
413   ptrace_opts |= PTRACE_O_TRACEEXEC;
414 
415   // Have the tracer trace forked children.
416   ptrace_opts |= PTRACE_O_TRACEFORK;
417 
418   // Have the tracer trace vforks.
419   ptrace_opts |= PTRACE_O_TRACEVFORK;
420 
421   // Have the tracer trace vfork-done in order to restore breakpoints after
422   // the child finishes sharing memory.
423   ptrace_opts |= PTRACE_O_TRACEVFORKDONE;
424 
425   return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts);
426 }
427 
428 // Handles all waitpid events from the inferior process.
429 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, WaitStatus status) {
430   Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
431 
432   // Certain activities differ based on whether the pid is the tid of the main
433   // thread.
434   const bool is_main_thread = (pid == GetID());
435 
436   // Handle when the thread exits.
437   if (status.type == WaitStatus::Exit || status.type == WaitStatus::Signal) {
438     LLDB_LOG(log,
439              "got exit status({0}) , tid = {1} ({2} main thread), process "
440              "state = {3}",
441              status, pid, is_main_thread ? "is" : "is not", GetState());
442 
443     // This is a thread that exited.  Ensure we're not tracking it anymore.
444     StopTrackingThread(pid);
445 
446     if (is_main_thread) {
447       // The main thread exited.  We're done monitoring.  Report to delegate.
448       SetExitStatus(status, true);
449 
450       // Notify delegate that our process has exited.
451       SetState(StateType::eStateExited, true);
452     }
453     return;
454   }
455 
456   siginfo_t info;
457   const auto info_err = GetSignalInfo(pid, &info);
458   auto thread_sp = GetThreadByID(pid);
459 
460   if (!thread_sp) {
461     // Normally, the only situation when we cannot find the thread is if we
462     // have just received a new thread notification. This is indicated by
463     // GetSignalInfo() returning si_code == SI_USER and si_pid == 0
464     LLDB_LOG(log, "received notification about an unknown tid {0}.", pid);
465 
466     if (info_err.Fail()) {
467       LLDB_LOG(log,
468                "(tid {0}) GetSignalInfo failed ({1}). "
469                "Ingoring this notification.",
470                pid, info_err);
471       return;
472     }
473 
474     LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code,
475              info.si_pid);
476 
477     MonitorClone(pid, llvm::None);
478     return;
479   }
480 
481   // Get details on the signal raised.
482   if (info_err.Success()) {
483     // We have retrieved the signal info.  Dispatch appropriately.
484     if (info.si_signo == SIGTRAP)
485       MonitorSIGTRAP(info, *thread_sp);
486     else
487       MonitorSignal(info, *thread_sp);
488   } else {
489     if (info_err.GetError() == EINVAL) {
490       // This is a group stop reception for this tid. We can reach here if we
491       // reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the tracee,
492       // triggering the group-stop mechanism. Normally receiving these would
493       // stop the process, pending a SIGCONT. Simulating this state in a
494       // debugger is hard and is generally not needed (one use case is
495       // debugging background task being managed by a shell). For general use,
496       // it is sufficient to stop the process in a signal-delivery stop which
497       // happens before the group stop. This done by MonitorSignal and works
498       // correctly for all signals.
499       LLDB_LOG(log,
500                "received a group stop for pid {0} tid {1}. Transparent "
501                "handling of group stops not supported, resuming the "
502                "thread.",
503                GetID(), pid);
504       ResumeThread(*thread_sp, thread_sp->GetState(),
505                    LLDB_INVALID_SIGNAL_NUMBER);
506     } else {
507       // ptrace(GETSIGINFO) failed (but not due to group-stop).
508 
509       // A return value of ESRCH means the thread/process is no longer on the
510       // system, so it was killed somehow outside of our control.  Either way,
511       // we can't do anything with it anymore.
512 
513       // Stop tracking the metadata for the thread since it's entirely off the
514       // system now.
515       const bool thread_found = StopTrackingThread(pid);
516 
517       LLDB_LOG(log,
518                "GetSignalInfo failed: {0}, tid = {1}, status = {2}, "
519                "status = {3}, main_thread = {4}, thread_found: {5}",
520                info_err, pid, status, status, is_main_thread, thread_found);
521 
522       if (is_main_thread) {
523         // Notify the delegate - our process is not available but appears to
524         // have been killed outside our control.  Is eStateExited the right
525         // exit state in this case?
526         SetExitStatus(status, true);
527         SetState(StateType::eStateExited, true);
528       } else {
529         // This thread was pulled out from underneath us.  Anything to do here?
530         // Do we want to do an all stop?
531         LLDB_LOG(log,
532                  "pid {0} tid {1} non-main thread exit occurred, didn't "
533                  "tell delegate anything since thread disappeared out "
534                  "from underneath us",
535                  GetID(), pid);
536       }
537     }
538   }
539 }
540 
541 void NativeProcessLinux::WaitForCloneNotification(::pid_t pid) {
542   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
543 
544   // The PID is not tracked yet, let's wait for it to appear.
545   int status = -1;
546   LLDB_LOG(log,
547            "received clone event for pid {0}. pid not tracked yet, "
548            "waiting for it to appear...",
549            pid);
550   ::pid_t wait_pid =
551       llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &status, __WALL);
552   // Since we are waiting on a specific pid, this must be the creation event.
553   // But let's do some checks just in case.
554   if (wait_pid != pid) {
555     LLDB_LOG(log,
556              "waiting for pid {0} failed. Assuming the pid has "
557              "disappeared in the meantime",
558              pid);
559     // The only way I know of this could happen is if the whole process was
560     // SIGKILLed in the mean time. In any case, we can't do anything about that
561     // now.
562     return;
563   }
564   if (WIFEXITED(status)) {
565     LLDB_LOG(log,
566              "waiting for pid {0} returned an 'exited' event. Not "
567              "tracking it.",
568              pid);
569     // Also a very improbable event.
570     m_pending_pid_map.erase(pid);
571     return;
572   }
573 
574   MonitorClone(pid, llvm::None);
575 }
576 
577 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info,
578                                         NativeThreadLinux &thread) {
579   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
580   const bool is_main_thread = (thread.GetID() == GetID());
581 
582   assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
583 
584   switch (info.si_code) {
585   case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
586   case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
587   case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): {
588     // This can either mean a new thread or a new process spawned via
589     // clone(2) without SIGCHLD or CLONE_VFORK flag.  Note that clone(2)
590     // can also cause PTRACE_EVENT_FORK and PTRACE_EVENT_VFORK if one
591     // of these flags are passed.
592 
593     unsigned long event_message = 0;
594     if (GetEventMessage(thread.GetID(), &event_message).Fail()) {
595       LLDB_LOG(log,
596                "pid {0} received clone() event but GetEventMessage failed "
597                "so we don't know the new pid/tid",
598                thread.GetID());
599       ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
600     } else {
601       if (!MonitorClone(event_message, {{(info.si_code >> 8), thread.GetID()}}))
602         WaitForCloneNotification(event_message);
603     }
604 
605     break;
606   }
607 
608   case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): {
609     LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP);
610 
611     // Exec clears any pending notifications.
612     m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
613 
614     // Remove all but the main thread here.  Linux fork creates a new process
615     // which only copies the main thread.
616     LLDB_LOG(log, "exec received, stop tracking all but main thread");
617 
618     llvm::erase_if(m_threads, [&](std::unique_ptr<NativeThreadProtocol> &t) {
619       return t->GetID() != GetID();
620     });
621     assert(m_threads.size() == 1);
622     auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get());
623 
624     SetCurrentThreadID(main_thread->GetID());
625     main_thread->SetStoppedByExec();
626 
627     // Tell coordinator about about the "new" (since exec) stopped main thread.
628     ThreadWasCreated(*main_thread);
629 
630     // Let our delegate know we have just exec'd.
631     NotifyDidExec();
632 
633     // Let the process know we're stopped.
634     StopRunningThreads(main_thread->GetID());
635 
636     break;
637   }
638 
639   case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): {
640     // The inferior process or one of its threads is about to exit. We don't
641     // want to do anything with the thread so we just resume it. In case we
642     // want to implement "break on thread exit" functionality, we would need to
643     // stop here.
644 
645     unsigned long data = 0;
646     if (GetEventMessage(thread.GetID(), &data).Fail())
647       data = -1;
648 
649     LLDB_LOG(log,
650              "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, "
651              "WIFSIGNALED={2}, pid = {3}, main_thread = {4}",
652              data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(),
653              is_main_thread);
654 
655 
656     StateType state = thread.GetState();
657     if (!StateIsRunningState(state)) {
658       // Due to a kernel bug, we may sometimes get this stop after the inferior
659       // gets a SIGKILL. This confuses our state tracking logic in
660       // ResumeThread(), since normally, we should not be receiving any ptrace
661       // events while the inferior is stopped. This makes sure that the
662       // inferior is resumed and exits normally.
663       state = eStateRunning;
664     }
665     ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
666 
667     break;
668   }
669 
670   case (SIGTRAP | (PTRACE_EVENT_VFORK_DONE << 8)): {
671     if (bool(m_enabled_extensions & Extension::vfork)) {
672       thread.SetStoppedByVForkDone();
673       StopRunningThreads(thread.GetID());
674     }
675     else
676       ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
677     break;
678   }
679 
680   case 0:
681   case TRAP_TRACE:  // We receive this on single stepping.
682   case TRAP_HWBKPT: // We receive this on watchpoint hit
683   {
684     // If a watchpoint was hit, report it
685     uint32_t wp_index;
686     Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
687         wp_index, (uintptr_t)info.si_addr);
688     if (error.Fail())
689       LLDB_LOG(log,
690                "received error while checking for watchpoint hits, pid = "
691                "{0}, error = {1}",
692                thread.GetID(), error);
693     if (wp_index != LLDB_INVALID_INDEX32) {
694       MonitorWatchpoint(thread, wp_index);
695       break;
696     }
697 
698     // If a breakpoint was hit, report it
699     uint32_t bp_index;
700     error = thread.GetRegisterContext().GetHardwareBreakHitIndex(
701         bp_index, (uintptr_t)info.si_addr);
702     if (error.Fail())
703       LLDB_LOG(log, "received error while checking for hardware "
704                     "breakpoint hits, pid = {0}, error = {1}",
705                thread.GetID(), error);
706     if (bp_index != LLDB_INVALID_INDEX32) {
707       MonitorBreakpoint(thread);
708       break;
709     }
710 
711     // Otherwise, report step over
712     MonitorTrace(thread);
713     break;
714   }
715 
716   case SI_KERNEL:
717 #if defined __mips__
718     // For mips there is no special signal for watchpoint So we check for
719     // watchpoint in kernel trap
720     {
721       // If a watchpoint was hit, report it
722       uint32_t wp_index;
723       Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
724           wp_index, LLDB_INVALID_ADDRESS);
725       if (error.Fail())
726         LLDB_LOG(log,
727                  "received error while checking for watchpoint hits, pid = "
728                  "{0}, error = {1}",
729                  thread.GetID(), error);
730       if (wp_index != LLDB_INVALID_INDEX32) {
731         MonitorWatchpoint(thread, wp_index);
732         break;
733       }
734     }
735 // NO BREAK
736 #endif
737   case TRAP_BRKPT:
738     MonitorBreakpoint(thread);
739     break;
740 
741   case SIGTRAP:
742   case (SIGTRAP | 0x80):
743     LLDB_LOG(
744         log,
745         "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming",
746         info.si_code, GetID(), thread.GetID());
747 
748     // Ignore these signals until we know more about them.
749     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
750     break;
751 
752   default:
753     LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}",
754              info.si_code, GetID(), thread.GetID());
755     MonitorSignal(info, thread);
756     break;
757   }
758 }
759 
760 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) {
761   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
762   LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID());
763 
764   // This thread is currently stopped.
765   thread.SetStoppedByTrace();
766 
767   StopRunningThreads(thread.GetID());
768 }
769 
770 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) {
771   Log *log(
772       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
773   LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID());
774 
775   // Mark the thread as stopped at breakpoint.
776   thread.SetStoppedByBreakpoint();
777   FixupBreakpointPCAsNeeded(thread);
778 
779   if (m_threads_stepping_with_breakpoint.find(thread.GetID()) !=
780       m_threads_stepping_with_breakpoint.end())
781     thread.SetStoppedByTrace();
782 
783   StopRunningThreads(thread.GetID());
784 }
785 
786 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread,
787                                            uint32_t wp_index) {
788   Log *log(
789       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
790   LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}",
791            thread.GetID(), wp_index);
792 
793   // Mark the thread as stopped at watchpoint. The address is at
794   // (lldb::addr_t)info->si_addr if we need it.
795   thread.SetStoppedByWatchpoint(wp_index);
796 
797   // We need to tell all other running threads before we notify the delegate
798   // about this stop.
799   StopRunningThreads(thread.GetID());
800 }
801 
802 void NativeProcessLinux::MonitorSignal(const siginfo_t &info,
803                                        NativeThreadLinux &thread) {
804   const int signo = info.si_signo;
805   const bool is_from_llgs = info.si_pid == getpid();
806 
807   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
808 
809   // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
810   // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2)
811   // or raise(3).  Similarly for tgkill(2) on Linux.
812   //
813   // IOW, user generated signals never generate what we consider to be a
814   // "crash".
815   //
816   // Similarly, ACK signals generated by this monitor.
817 
818   // Handle the signal.
819   LLDB_LOG(log,
820            "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, "
821            "waitpid pid = {4})",
822            Host::GetSignalAsCString(signo), signo, info.si_code,
823            thread.GetID());
824 
825   // Check for thread stop notification.
826   if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) {
827     // This is a tgkill()-based stop.
828     LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID());
829 
830     // Check that we're not already marked with a stop reason. Note this thread
831     // really shouldn't already be marked as stopped - if we were, that would
832     // imply that the kernel signaled us with the thread stopping which we
833     // handled and marked as stopped, and that, without an intervening resume,
834     // we received another stop.  It is more likely that we are missing the
835     // marking of a run state somewhere if we find that the thread was marked
836     // as stopped.
837     const StateType thread_state = thread.GetState();
838     if (!StateIsStoppedState(thread_state, false)) {
839       // An inferior thread has stopped because of a SIGSTOP we have sent it.
840       // Generally, these are not important stops and we don't want to report
841       // them as they are just used to stop other threads when one thread (the
842       // one with the *real* stop reason) hits a breakpoint (watchpoint,
843       // etc...). However, in the case of an asynchronous Interrupt(), this
844       // *is* the real stop reason, so we leave the signal intact if this is
845       // the thread that was chosen as the triggering thread.
846       if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
847         if (m_pending_notification_tid == thread.GetID())
848           thread.SetStoppedBySignal(SIGSTOP, &info);
849         else
850           thread.SetStoppedWithNoReason();
851 
852         SetCurrentThreadID(thread.GetID());
853         SignalIfAllThreadsStopped();
854       } else {
855         // We can end up here if stop was initiated by LLGS but by this time a
856         // thread stop has occurred - maybe initiated by another event.
857         Status error = ResumeThread(thread, thread.GetState(), 0);
858         if (error.Fail())
859           LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(),
860                    error);
861       }
862     } else {
863       LLDB_LOG(log,
864                "pid {0} tid {1}, thread was already marked as a stopped "
865                "state (state={2}), leaving stop signal as is",
866                GetID(), thread.GetID(), thread_state);
867       SignalIfAllThreadsStopped();
868     }
869 
870     // Done handling.
871     return;
872   }
873 
874   // Check if debugger should stop at this signal or just ignore it and resume
875   // the inferior.
876   if (m_signals_to_ignore.contains(signo)) {
877      ResumeThread(thread, thread.GetState(), signo);
878      return;
879   }
880 
881   // This thread is stopped.
882   LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo));
883   thread.SetStoppedBySignal(signo, &info);
884 
885   // Send a stop to the debugger after we get all other threads to stop.
886   StopRunningThreads(thread.GetID());
887 }
888 
889 bool NativeProcessLinux::MonitorClone(
890     lldb::pid_t child_pid,
891     llvm::Optional<NativeProcessLinux::CloneInfo> clone_info) {
892   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
893   LLDB_LOG(log, "clone, child_pid={0}, clone info?={1}", child_pid,
894            clone_info.hasValue());
895 
896   auto find_it = m_pending_pid_map.find(child_pid);
897   if (find_it == m_pending_pid_map.end()) {
898     // not in the map, so this is the first signal for the PID
899     m_pending_pid_map.insert({child_pid, clone_info});
900     return false;
901   }
902   m_pending_pid_map.erase(find_it);
903 
904   // second signal for the pid
905   assert(clone_info.hasValue() != find_it->second.hasValue());
906   if (!clone_info) {
907     // child signal does not indicate the event, so grab the one stored
908     // earlier
909     clone_info = find_it->second;
910   }
911 
912   LLDB_LOG(log, "second signal for child_pid={0}, parent_tid={1}, event={2}",
913            child_pid, clone_info->parent_tid, clone_info->event);
914 
915   auto *parent_thread = GetThreadByID(clone_info->parent_tid);
916   assert(parent_thread);
917 
918   switch (clone_info->event) {
919   case PTRACE_EVENT_CLONE: {
920     // PTRACE_EVENT_CLONE can either mean a new thread or a new process.
921     // Try to grab the new process' PGID to figure out which one it is.
922     // If PGID is the same as the PID, then it's a new process.  Otherwise,
923     // it's a thread.
924     auto tgid_ret = getPIDForTID(child_pid);
925     if (tgid_ret != child_pid) {
926       // A new thread should have PGID matching our process' PID.
927       assert(!tgid_ret || tgid_ret.getValue() == GetID());
928 
929       NativeThreadLinux &child_thread = AddThread(child_pid, /*resume*/ true);
930       ThreadWasCreated(child_thread);
931 
932       // Resume the parent.
933       ResumeThread(*parent_thread, parent_thread->GetState(),
934                    LLDB_INVALID_SIGNAL_NUMBER);
935       break;
936     }
937   }
938     LLVM_FALLTHROUGH;
939   case PTRACE_EVENT_FORK:
940   case PTRACE_EVENT_VFORK: {
941     bool is_vfork = clone_info->event == PTRACE_EVENT_VFORK;
942     std::unique_ptr<NativeProcessLinux> child_process{new NativeProcessLinux(
943         static_cast<::pid_t>(child_pid), m_terminal_fd, m_delegate, m_arch,
944         m_main_loop, {static_cast<::pid_t>(child_pid)})};
945     if (!is_vfork)
946       child_process->m_software_breakpoints = m_software_breakpoints;
947 
948     Extension expected_ext = is_vfork ? Extension::vfork : Extension::fork;
949     if (bool(m_enabled_extensions & expected_ext)) {
950       m_delegate.NewSubprocess(this, std::move(child_process));
951       // NB: non-vfork clone() is reported as fork
952       parent_thread->SetStoppedByFork(is_vfork, child_pid);
953       StopRunningThreads(parent_thread->GetID());
954     } else {
955       child_process->Detach();
956       ResumeThread(*parent_thread, parent_thread->GetState(),
957                    LLDB_INVALID_SIGNAL_NUMBER);
958     }
959     break;
960   }
961   default:
962     llvm_unreachable("unknown clone_info.event");
963   }
964 
965   return true;
966 }
967 
968 bool NativeProcessLinux::SupportHardwareSingleStepping() const {
969   if (m_arch.GetMachine() == llvm::Triple::arm || m_arch.IsMIPS())
970     return false;
971   return true;
972 }
973 
974 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) {
975   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
976   LLDB_LOG(log, "pid {0}", GetID());
977 
978   bool software_single_step = !SupportHardwareSingleStepping();
979 
980   if (software_single_step) {
981     for (const auto &thread : m_threads) {
982       assert(thread && "thread list should not contain NULL threads");
983 
984       const ResumeAction *const action =
985           resume_actions.GetActionForThread(thread->GetID(), true);
986       if (action == nullptr)
987         continue;
988 
989       if (action->state == eStateStepping) {
990         Status error = SetupSoftwareSingleStepping(
991             static_cast<NativeThreadLinux &>(*thread));
992         if (error.Fail())
993           return error;
994       }
995     }
996   }
997 
998   for (const auto &thread : m_threads) {
999     assert(thread && "thread list should not contain NULL threads");
1000 
1001     const ResumeAction *const action =
1002         resume_actions.GetActionForThread(thread->GetID(), true);
1003 
1004     if (action == nullptr) {
1005       LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(),
1006                thread->GetID());
1007       continue;
1008     }
1009 
1010     LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}",
1011              action->state, GetID(), thread->GetID());
1012 
1013     switch (action->state) {
1014     case eStateRunning:
1015     case eStateStepping: {
1016       // Run the thread, possibly feeding it the signal.
1017       const int signo = action->signal;
1018       ResumeThread(static_cast<NativeThreadLinux &>(*thread), action->state,
1019                    signo);
1020       break;
1021     }
1022 
1023     case eStateSuspended:
1024     case eStateStopped:
1025       llvm_unreachable("Unexpected state");
1026 
1027     default:
1028       return Status("NativeProcessLinux::%s (): unexpected state %s specified "
1029                     "for pid %" PRIu64 ", tid %" PRIu64,
1030                     __FUNCTION__, StateAsCString(action->state), GetID(),
1031                     thread->GetID());
1032     }
1033   }
1034 
1035   return Status();
1036 }
1037 
1038 Status NativeProcessLinux::Halt() {
1039   Status error;
1040 
1041   if (kill(GetID(), SIGSTOP) != 0)
1042     error.SetErrorToErrno();
1043 
1044   return error;
1045 }
1046 
1047 Status NativeProcessLinux::Detach() {
1048   Status error;
1049 
1050   // Stop monitoring the inferior.
1051   m_sigchld_handle.reset();
1052 
1053   // Tell ptrace to detach from the process.
1054   if (GetID() == LLDB_INVALID_PROCESS_ID)
1055     return error;
1056 
1057   for (const auto &thread : m_threads) {
1058     Status e = Detach(thread->GetID());
1059     if (e.Fail())
1060       error =
1061           e; // Save the error, but still attempt to detach from other threads.
1062   }
1063 
1064   m_intel_pt_manager.Clear();
1065 
1066   return error;
1067 }
1068 
1069 Status NativeProcessLinux::Signal(int signo) {
1070   Status error;
1071 
1072   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1073   LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo,
1074            Host::GetSignalAsCString(signo), GetID());
1075 
1076   if (kill(GetID(), signo))
1077     error.SetErrorToErrno();
1078 
1079   return error;
1080 }
1081 
1082 Status NativeProcessLinux::Interrupt() {
1083   // Pick a running thread (or if none, a not-dead stopped thread) as the
1084   // chosen thread that will be the stop-reason thread.
1085   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1086 
1087   NativeThreadProtocol *running_thread = nullptr;
1088   NativeThreadProtocol *stopped_thread = nullptr;
1089 
1090   LLDB_LOG(log, "selecting running thread for interrupt target");
1091   for (const auto &thread : m_threads) {
1092     // If we have a running or stepping thread, we'll call that the target of
1093     // the interrupt.
1094     const auto thread_state = thread->GetState();
1095     if (thread_state == eStateRunning || thread_state == eStateStepping) {
1096       running_thread = thread.get();
1097       break;
1098     } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) {
1099       // Remember the first non-dead stopped thread.  We'll use that as a
1100       // backup if there are no running threads.
1101       stopped_thread = thread.get();
1102     }
1103   }
1104 
1105   if (!running_thread && !stopped_thread) {
1106     Status error("found no running/stepping or live stopped threads as target "
1107                  "for interrupt");
1108     LLDB_LOG(log, "skipping due to error: {0}", error);
1109 
1110     return error;
1111   }
1112 
1113   NativeThreadProtocol *deferred_signal_thread =
1114       running_thread ? running_thread : stopped_thread;
1115 
1116   LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(),
1117            running_thread ? "running" : "stopped",
1118            deferred_signal_thread->GetID());
1119 
1120   StopRunningThreads(deferred_signal_thread->GetID());
1121 
1122   return Status();
1123 }
1124 
1125 Status NativeProcessLinux::Kill() {
1126   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1127   LLDB_LOG(log, "pid {0}", GetID());
1128 
1129   Status error;
1130 
1131   switch (m_state) {
1132   case StateType::eStateInvalid:
1133   case StateType::eStateExited:
1134   case StateType::eStateCrashed:
1135   case StateType::eStateDetached:
1136   case StateType::eStateUnloaded:
1137     // Nothing to do - the process is already dead.
1138     LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(),
1139              m_state);
1140     return error;
1141 
1142   case StateType::eStateConnected:
1143   case StateType::eStateAttaching:
1144   case StateType::eStateLaunching:
1145   case StateType::eStateStopped:
1146   case StateType::eStateRunning:
1147   case StateType::eStateStepping:
1148   case StateType::eStateSuspended:
1149     // We can try to kill a process in these states.
1150     break;
1151   }
1152 
1153   if (kill(GetID(), SIGKILL) != 0) {
1154     error.SetErrorToErrno();
1155     return error;
1156   }
1157 
1158   return error;
1159 }
1160 
1161 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr,
1162                                                MemoryRegionInfo &range_info) {
1163   // FIXME review that the final memory region returned extends to the end of
1164   // the virtual address space,
1165   // with no perms if it is not mapped.
1166 
1167   // Use an approach that reads memory regions from /proc/{pid}/maps. Assume
1168   // proc maps entries are in ascending order.
1169   // FIXME assert if we find differently.
1170 
1171   if (m_supports_mem_region == LazyBool::eLazyBoolNo) {
1172     // We're done.
1173     return Status("unsupported");
1174   }
1175 
1176   Status error = PopulateMemoryRegionCache();
1177   if (error.Fail()) {
1178     return error;
1179   }
1180 
1181   lldb::addr_t prev_base_address = 0;
1182 
1183   // FIXME start by finding the last region that is <= target address using
1184   // binary search.  Data is sorted.
1185   // There can be a ton of regions on pthreads apps with lots of threads.
1186   for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end();
1187        ++it) {
1188     MemoryRegionInfo &proc_entry_info = it->first;
1189 
1190     // Sanity check assumption that /proc/{pid}/maps entries are ascending.
1191     assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) &&
1192            "descending /proc/pid/maps entries detected, unexpected");
1193     prev_base_address = proc_entry_info.GetRange().GetRangeBase();
1194     UNUSED_IF_ASSERT_DISABLED(prev_base_address);
1195 
1196     // If the target address comes before this entry, indicate distance to next
1197     // region.
1198     if (load_addr < proc_entry_info.GetRange().GetRangeBase()) {
1199       range_info.GetRange().SetRangeBase(load_addr);
1200       range_info.GetRange().SetByteSize(
1201           proc_entry_info.GetRange().GetRangeBase() - load_addr);
1202       range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1203       range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1204       range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1205       range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1206 
1207       return error;
1208     } else if (proc_entry_info.GetRange().Contains(load_addr)) {
1209       // The target address is within the memory region we're processing here.
1210       range_info = proc_entry_info;
1211       return error;
1212     }
1213 
1214     // The target memory address comes somewhere after the region we just
1215     // parsed.
1216   }
1217 
1218   // If we made it here, we didn't find an entry that contained the given
1219   // address. Return the load_addr as start and the amount of bytes betwwen
1220   // load address and the end of the memory as size.
1221   range_info.GetRange().SetRangeBase(load_addr);
1222   range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS);
1223   range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1224   range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1225   range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1226   range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1227   return error;
1228 }
1229 
1230 Status NativeProcessLinux::PopulateMemoryRegionCache() {
1231   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1232 
1233   // If our cache is empty, pull the latest.  There should always be at least
1234   // one memory region if memory region handling is supported.
1235   if (!m_mem_region_cache.empty()) {
1236     LLDB_LOG(log, "reusing {0} cached memory region entries",
1237              m_mem_region_cache.size());
1238     return Status();
1239   }
1240 
1241   Status Result;
1242   LinuxMapCallback callback = [&](llvm::Expected<MemoryRegionInfo> Info) {
1243     if (Info) {
1244       FileSpec file_spec(Info->GetName().GetCString());
1245       FileSystem::Instance().Resolve(file_spec);
1246       m_mem_region_cache.emplace_back(*Info, file_spec);
1247       return true;
1248     }
1249 
1250     Result = Info.takeError();
1251     m_supports_mem_region = LazyBool::eLazyBoolNo;
1252     LLDB_LOG(log, "failed to parse proc maps: {0}", Result);
1253     return false;
1254   };
1255 
1256   // Linux kernel since 2.6.14 has /proc/{pid}/smaps
1257   // if CONFIG_PROC_PAGE_MONITOR is enabled
1258   auto BufferOrError = getProcFile(GetID(), "smaps");
1259   if (BufferOrError)
1260     ParseLinuxSMapRegions(BufferOrError.get()->getBuffer(), callback);
1261   else {
1262     BufferOrError = getProcFile(GetID(), "maps");
1263     if (!BufferOrError) {
1264       m_supports_mem_region = LazyBool::eLazyBoolNo;
1265       return BufferOrError.getError();
1266     }
1267 
1268     ParseLinuxMapRegions(BufferOrError.get()->getBuffer(), callback);
1269   }
1270 
1271   if (Result.Fail())
1272     return Result;
1273 
1274   if (m_mem_region_cache.empty()) {
1275     // No entries after attempting to read them.  This shouldn't happen if
1276     // /proc/{pid}/maps is supported. Assume we don't support map entries via
1277     // procfs.
1278     m_supports_mem_region = LazyBool::eLazyBoolNo;
1279     LLDB_LOG(log,
1280              "failed to find any procfs maps entries, assuming no support "
1281              "for memory region metadata retrieval");
1282     return Status("not supported");
1283   }
1284 
1285   LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps",
1286            m_mem_region_cache.size(), GetID());
1287 
1288   // We support memory retrieval, remember that.
1289   m_supports_mem_region = LazyBool::eLazyBoolYes;
1290   return Status();
1291 }
1292 
1293 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) {
1294   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1295   LLDB_LOG(log, "newBumpId={0}", newBumpId);
1296   LLDB_LOG(log, "clearing {0} entries from memory region cache",
1297            m_mem_region_cache.size());
1298   m_mem_region_cache.clear();
1299 }
1300 
1301 llvm::Expected<uint64_t>
1302 NativeProcessLinux::Syscall(llvm::ArrayRef<uint64_t> args) {
1303   PopulateMemoryRegionCache();
1304   auto region_it = llvm::find_if(m_mem_region_cache, [](const auto &pair) {
1305     return pair.first.GetExecutable() == MemoryRegionInfo::eYes;
1306   });
1307   if (region_it == m_mem_region_cache.end())
1308     return llvm::createStringError(llvm::inconvertibleErrorCode(),
1309                                    "No executable memory region found!");
1310 
1311   addr_t exe_addr = region_it->first.GetRange().GetRangeBase();
1312 
1313   NativeThreadLinux &thread = *GetThreadByID(GetID());
1314   assert(thread.GetState() == eStateStopped);
1315   NativeRegisterContextLinux &reg_ctx = thread.GetRegisterContext();
1316 
1317   NativeRegisterContextLinux::SyscallData syscall_data =
1318       *reg_ctx.GetSyscallData();
1319 
1320   DataBufferSP registers_sp;
1321   if (llvm::Error Err = reg_ctx.ReadAllRegisterValues(registers_sp).ToError())
1322     return std::move(Err);
1323   auto restore_regs = llvm::make_scope_exit(
1324       [&] { reg_ctx.WriteAllRegisterValues(registers_sp); });
1325 
1326   llvm::SmallVector<uint8_t, 8> memory(syscall_data.Insn.size());
1327   size_t bytes_read;
1328   if (llvm::Error Err =
1329           ReadMemory(exe_addr, memory.data(), memory.size(), bytes_read)
1330               .ToError()) {
1331     return std::move(Err);
1332   }
1333 
1334   auto restore_mem = llvm::make_scope_exit(
1335       [&] { WriteMemory(exe_addr, memory.data(), memory.size(), bytes_read); });
1336 
1337   if (llvm::Error Err = reg_ctx.SetPC(exe_addr).ToError())
1338     return std::move(Err);
1339 
1340   for (const auto &zip : llvm::zip_first(args, syscall_data.Args)) {
1341     if (llvm::Error Err =
1342             reg_ctx
1343                 .WriteRegisterFromUnsigned(std::get<1>(zip), std::get<0>(zip))
1344                 .ToError()) {
1345       return std::move(Err);
1346     }
1347   }
1348   if (llvm::Error Err = WriteMemory(exe_addr, syscall_data.Insn.data(),
1349                                     syscall_data.Insn.size(), bytes_read)
1350                             .ToError())
1351     return std::move(Err);
1352 
1353   m_mem_region_cache.clear();
1354 
1355   // With software single stepping the syscall insn buffer must also include a
1356   // trap instruction to stop the process.
1357   int req = SupportHardwareSingleStepping() ? PTRACE_SINGLESTEP : PTRACE_CONT;
1358   if (llvm::Error Err =
1359           PtraceWrapper(req, thread.GetID(), nullptr, nullptr).ToError())
1360     return std::move(Err);
1361 
1362   int status;
1363   ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, thread.GetID(),
1364                                                  &status, __WALL);
1365   if (wait_pid == -1) {
1366     return llvm::errorCodeToError(
1367         std::error_code(errno, std::generic_category()));
1368   }
1369   assert((unsigned)wait_pid == thread.GetID());
1370 
1371   uint64_t result = reg_ctx.ReadRegisterAsUnsigned(syscall_data.Result, -ESRCH);
1372 
1373   // Values larger than this are actually negative errno numbers.
1374   uint64_t errno_threshold =
1375       (uint64_t(-1) >> (64 - 8 * m_arch.GetAddressByteSize())) - 0x1000;
1376   if (result > errno_threshold) {
1377     return llvm::errorCodeToError(
1378         std::error_code(-result & 0xfff, std::generic_category()));
1379   }
1380 
1381   return result;
1382 }
1383 
1384 llvm::Expected<addr_t>
1385 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions) {
1386 
1387   llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data =
1388       GetCurrentThread()->GetRegisterContext().GetMmapData();
1389   if (!mmap_data)
1390     return llvm::make_error<UnimplementedError>();
1391 
1392   unsigned prot = PROT_NONE;
1393   assert((permissions & (ePermissionsReadable | ePermissionsWritable |
1394                          ePermissionsExecutable)) == permissions &&
1395          "Unknown permission!");
1396   if (permissions & ePermissionsReadable)
1397     prot |= PROT_READ;
1398   if (permissions & ePermissionsWritable)
1399     prot |= PROT_WRITE;
1400   if (permissions & ePermissionsExecutable)
1401     prot |= PROT_EXEC;
1402 
1403   llvm::Expected<uint64_t> Result =
1404       Syscall({mmap_data->SysMmap, 0, size, prot, MAP_ANONYMOUS | MAP_PRIVATE,
1405                uint64_t(-1), 0});
1406   if (Result)
1407     m_allocated_memory.try_emplace(*Result, size);
1408   return Result;
1409 }
1410 
1411 llvm::Error NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) {
1412   llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data =
1413       GetCurrentThread()->GetRegisterContext().GetMmapData();
1414   if (!mmap_data)
1415     return llvm::make_error<UnimplementedError>();
1416 
1417   auto it = m_allocated_memory.find(addr);
1418   if (it == m_allocated_memory.end())
1419     return llvm::createStringError(llvm::errc::invalid_argument,
1420                                    "Memory not allocated by the debugger.");
1421 
1422   llvm::Expected<uint64_t> Result =
1423       Syscall({mmap_data->SysMunmap, addr, it->second});
1424   if (!Result)
1425     return Result.takeError();
1426 
1427   m_allocated_memory.erase(it);
1428   return llvm::Error::success();
1429 }
1430 
1431 Status NativeProcessLinux::ReadMemoryTags(int32_t type, lldb::addr_t addr,
1432                                           size_t len,
1433                                           std::vector<uint8_t> &tags) {
1434   llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details =
1435       GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type);
1436   if (!details)
1437     return Status(details.takeError());
1438 
1439   // Ignore 0 length read
1440   if (!len)
1441     return Status();
1442 
1443   // lldb will align the range it requests but it is not required to by
1444   // the protocol so we'll do it again just in case.
1445   // Remove non address bits too. Ptrace calls may work regardless but that
1446   // is not a guarantee.
1447   MemoryTagManager::TagRange range(details->manager->RemoveNonAddressBits(addr),
1448                                    len);
1449   range = details->manager->ExpandToGranule(range);
1450 
1451   // Allocate enough space for all tags to be read
1452   size_t num_tags = range.GetByteSize() / details->manager->GetGranuleSize();
1453   tags.resize(num_tags * details->manager->GetTagSizeInBytes());
1454 
1455   struct iovec tags_iovec;
1456   uint8_t *dest = tags.data();
1457   lldb::addr_t read_addr = range.GetRangeBase();
1458 
1459   // This call can return partial data so loop until we error or
1460   // get all tags back.
1461   while (num_tags) {
1462     tags_iovec.iov_base = dest;
1463     tags_iovec.iov_len = num_tags;
1464 
1465     Status error = NativeProcessLinux::PtraceWrapper(
1466         details->ptrace_read_req, GetID(), reinterpret_cast<void *>(read_addr),
1467         static_cast<void *>(&tags_iovec), 0, nullptr);
1468 
1469     if (error.Fail()) {
1470       // Discard partial reads
1471       tags.resize(0);
1472       return error;
1473     }
1474 
1475     size_t tags_read = tags_iovec.iov_len;
1476     assert(tags_read && (tags_read <= num_tags));
1477 
1478     dest += tags_read * details->manager->GetTagSizeInBytes();
1479     read_addr += details->manager->GetGranuleSize() * tags_read;
1480     num_tags -= tags_read;
1481   }
1482 
1483   return Status();
1484 }
1485 
1486 Status NativeProcessLinux::WriteMemoryTags(int32_t type, lldb::addr_t addr,
1487                                            size_t len,
1488                                            const std::vector<uint8_t> &tags) {
1489   llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details =
1490       GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type);
1491   if (!details)
1492     return Status(details.takeError());
1493 
1494   // Ignore 0 length write
1495   if (!len)
1496     return Status();
1497 
1498   // lldb will align the range it requests but it is not required to by
1499   // the protocol so we'll do it again just in case.
1500   // Remove non address bits too. Ptrace calls may work regardless but that
1501   // is not a guarantee.
1502   MemoryTagManager::TagRange range(details->manager->RemoveNonAddressBits(addr),
1503                                    len);
1504   range = details->manager->ExpandToGranule(range);
1505 
1506   // Not checking number of tags here, we may repeat them below
1507   llvm::Expected<std::vector<lldb::addr_t>> unpacked_tags_or_err =
1508       details->manager->UnpackTagsData(tags);
1509   if (!unpacked_tags_or_err)
1510     return Status(unpacked_tags_or_err.takeError());
1511 
1512   llvm::Expected<std::vector<lldb::addr_t>> repeated_tags_or_err =
1513       details->manager->RepeatTagsForRange(*unpacked_tags_or_err, range);
1514   if (!repeated_tags_or_err)
1515     return Status(repeated_tags_or_err.takeError());
1516 
1517   // Repack them for ptrace to use
1518   llvm::Expected<std::vector<uint8_t>> final_tag_data =
1519       details->manager->PackTags(*repeated_tags_or_err);
1520   if (!final_tag_data)
1521     return Status(final_tag_data.takeError());
1522 
1523   struct iovec tags_vec;
1524   uint8_t *src = final_tag_data->data();
1525   lldb::addr_t write_addr = range.GetRangeBase();
1526   // unpacked tags size because the number of bytes per tag might not be 1
1527   size_t num_tags = repeated_tags_or_err->size();
1528 
1529   // This call can partially write tags, so we loop until we
1530   // error or all tags have been written.
1531   while (num_tags > 0) {
1532     tags_vec.iov_base = src;
1533     tags_vec.iov_len = num_tags;
1534 
1535     Status error = NativeProcessLinux::PtraceWrapper(
1536         details->ptrace_write_req, GetID(),
1537         reinterpret_cast<void *>(write_addr), static_cast<void *>(&tags_vec), 0,
1538         nullptr);
1539 
1540     if (error.Fail()) {
1541       // Don't attempt to restore the original values in the case of a partial
1542       // write
1543       return error;
1544     }
1545 
1546     size_t tags_written = tags_vec.iov_len;
1547     assert(tags_written && (tags_written <= num_tags));
1548 
1549     src += tags_written * details->manager->GetTagSizeInBytes();
1550     write_addr += details->manager->GetGranuleSize() * tags_written;
1551     num_tags -= tags_written;
1552   }
1553 
1554   return Status();
1555 }
1556 
1557 size_t NativeProcessLinux::UpdateThreads() {
1558   // The NativeProcessLinux monitoring threads are always up to date with
1559   // respect to thread state and they keep the thread list populated properly.
1560   // All this method needs to do is return the thread count.
1561   return m_threads.size();
1562 }
1563 
1564 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size,
1565                                          bool hardware) {
1566   if (hardware)
1567     return SetHardwareBreakpoint(addr, size);
1568   else
1569     return SetSoftwareBreakpoint(addr, size);
1570 }
1571 
1572 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) {
1573   if (hardware)
1574     return RemoveHardwareBreakpoint(addr);
1575   else
1576     return NativeProcessProtocol::RemoveBreakpoint(addr);
1577 }
1578 
1579 llvm::Expected<llvm::ArrayRef<uint8_t>>
1580 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(size_t size_hint) {
1581   // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
1582   // linux kernel does otherwise.
1583   static const uint8_t g_arm_opcode[] = {0xf0, 0x01, 0xf0, 0xe7};
1584   static const uint8_t g_thumb_opcode[] = {0x01, 0xde};
1585 
1586   switch (GetArchitecture().GetMachine()) {
1587   case llvm::Triple::arm:
1588     switch (size_hint) {
1589     case 2:
1590       return llvm::makeArrayRef(g_thumb_opcode);
1591     case 4:
1592       return llvm::makeArrayRef(g_arm_opcode);
1593     default:
1594       return llvm::createStringError(llvm::inconvertibleErrorCode(),
1595                                      "Unrecognised trap opcode size hint!");
1596     }
1597   default:
1598     return NativeProcessProtocol::GetSoftwareBreakpointTrapOpcode(size_hint);
1599   }
1600 }
1601 
1602 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size,
1603                                       size_t &bytes_read) {
1604   if (ProcessVmReadvSupported()) {
1605     // The process_vm_readv path is about 50 times faster than ptrace api. We
1606     // want to use this syscall if it is supported.
1607 
1608     const ::pid_t pid = GetID();
1609 
1610     struct iovec local_iov, remote_iov;
1611     local_iov.iov_base = buf;
1612     local_iov.iov_len = size;
1613     remote_iov.iov_base = reinterpret_cast<void *>(addr);
1614     remote_iov.iov_len = size;
1615 
1616     bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
1617     const bool success = bytes_read == size;
1618 
1619     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1620     LLDB_LOG(log,
1621              "using process_vm_readv to read {0} bytes from inferior "
1622              "address {1:x}: {2}",
1623              size, addr, success ? "Success" : llvm::sys::StrError(errno));
1624 
1625     if (success)
1626       return Status();
1627     // else the call failed for some reason, let's retry the read using ptrace
1628     // api.
1629   }
1630 
1631   unsigned char *dst = static_cast<unsigned char *>(buf);
1632   size_t remainder;
1633   long data;
1634 
1635   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1636   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1637 
1638   for (bytes_read = 0; bytes_read < size; bytes_read += remainder) {
1639     Status error = NativeProcessLinux::PtraceWrapper(
1640         PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data);
1641     if (error.Fail())
1642       return error;
1643 
1644     remainder = size - bytes_read;
1645     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1646 
1647     // Copy the data into our buffer
1648     memcpy(dst, &data, remainder);
1649 
1650     LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1651     addr += k_ptrace_word_size;
1652     dst += k_ptrace_word_size;
1653   }
1654   return Status();
1655 }
1656 
1657 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf,
1658                                        size_t size, size_t &bytes_written) {
1659   const unsigned char *src = static_cast<const unsigned char *>(buf);
1660   size_t remainder;
1661   Status error;
1662 
1663   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1664   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1665 
1666   for (bytes_written = 0; bytes_written < size; bytes_written += remainder) {
1667     remainder = size - bytes_written;
1668     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1669 
1670     if (remainder == k_ptrace_word_size) {
1671       unsigned long data = 0;
1672       memcpy(&data, src, k_ptrace_word_size);
1673 
1674       LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1675       error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(),
1676                                                 (void *)addr, (void *)data);
1677       if (error.Fail())
1678         return error;
1679     } else {
1680       unsigned char buff[8];
1681       size_t bytes_read;
1682       error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
1683       if (error.Fail())
1684         return error;
1685 
1686       memcpy(buff, src, remainder);
1687 
1688       size_t bytes_written_rec;
1689       error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
1690       if (error.Fail())
1691         return error;
1692 
1693       LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src,
1694                *(unsigned long *)buff);
1695     }
1696 
1697     addr += k_ptrace_word_size;
1698     src += k_ptrace_word_size;
1699   }
1700   return error;
1701 }
1702 
1703 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) {
1704   return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
1705 }
1706 
1707 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid,
1708                                            unsigned long *message) {
1709   return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
1710 }
1711 
1712 Status NativeProcessLinux::Detach(lldb::tid_t tid) {
1713   if (tid == LLDB_INVALID_THREAD_ID)
1714     return Status();
1715 
1716   return PtraceWrapper(PTRACE_DETACH, tid);
1717 }
1718 
1719 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) {
1720   for (const auto &thread : m_threads) {
1721     assert(thread && "thread list should not contain NULL threads");
1722     if (thread->GetID() == thread_id) {
1723       // We have this thread.
1724       return true;
1725     }
1726   }
1727 
1728   // We don't have this thread.
1729   return false;
1730 }
1731 
1732 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) {
1733   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1734   LLDB_LOG(log, "tid: {0})", thread_id);
1735 
1736   bool found = false;
1737   for (auto it = m_threads.begin(); it != m_threads.end(); ++it) {
1738     if (*it && ((*it)->GetID() == thread_id)) {
1739       m_threads.erase(it);
1740       found = true;
1741       break;
1742     }
1743   }
1744 
1745   if (found)
1746     NotifyTracersOfThreadDestroyed(thread_id);
1747 
1748   SignalIfAllThreadsStopped();
1749   return found;
1750 }
1751 
1752 Status NativeProcessLinux::NotifyTracersOfNewThread(lldb::tid_t tid) {
1753   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD));
1754   Status error(m_intel_pt_manager.OnThreadCreated(tid));
1755   if (error.Fail())
1756     LLDB_LOG(log, "Failed to trace a new thread with intel-pt, tid = {0}. {1}",
1757              tid, error.AsCString());
1758   return error;
1759 }
1760 
1761 Status NativeProcessLinux::NotifyTracersOfThreadDestroyed(lldb::tid_t tid) {
1762   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD));
1763   Status error(m_intel_pt_manager.OnThreadDestroyed(tid));
1764   if (error.Fail())
1765     LLDB_LOG(log,
1766              "Failed to stop a destroyed thread with intel-pt, tid = {0}. {1}",
1767              tid, error.AsCString());
1768   return error;
1769 }
1770 
1771 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id,
1772                                                  bool resume) {
1773   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD));
1774   LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id);
1775 
1776   assert(!HasThreadNoLock(thread_id) &&
1777          "attempted to add a thread by id that already exists");
1778 
1779   // If this is the first thread, save it as the current thread
1780   if (m_threads.empty())
1781     SetCurrentThreadID(thread_id);
1782 
1783   m_threads.push_back(std::make_unique<NativeThreadLinux>(*this, thread_id));
1784   NativeThreadLinux &thread =
1785       static_cast<NativeThreadLinux &>(*m_threads.back());
1786 
1787   Status tracing_error = NotifyTracersOfNewThread(thread.GetID());
1788   if (tracing_error.Fail()) {
1789     thread.SetStoppedByProcessorTrace(tracing_error.AsCString());
1790     StopRunningThreads(thread.GetID());
1791   } else if (resume)
1792     ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
1793   else
1794     thread.SetStoppedBySignal(SIGSTOP);
1795 
1796   return thread;
1797 }
1798 
1799 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path,
1800                                                    FileSpec &file_spec) {
1801   Status error = PopulateMemoryRegionCache();
1802   if (error.Fail())
1803     return error;
1804 
1805   FileSpec module_file_spec(module_path);
1806   FileSystem::Instance().Resolve(module_file_spec);
1807 
1808   file_spec.Clear();
1809   for (const auto &it : m_mem_region_cache) {
1810     if (it.second.GetFilename() == module_file_spec.GetFilename()) {
1811       file_spec = it.second;
1812       return Status();
1813     }
1814   }
1815   return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
1816                 module_file_spec.GetFilename().AsCString(), GetID());
1817 }
1818 
1819 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name,
1820                                               lldb::addr_t &load_addr) {
1821   load_addr = LLDB_INVALID_ADDRESS;
1822   Status error = PopulateMemoryRegionCache();
1823   if (error.Fail())
1824     return error;
1825 
1826   FileSpec file(file_name);
1827   for (const auto &it : m_mem_region_cache) {
1828     if (it.second == file) {
1829       load_addr = it.first.GetRange().GetRangeBase();
1830       return Status();
1831     }
1832   }
1833   return Status("No load address found for specified file.");
1834 }
1835 
1836 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) {
1837   return static_cast<NativeThreadLinux *>(
1838       NativeProcessProtocol::GetThreadByID(tid));
1839 }
1840 
1841 NativeThreadLinux *NativeProcessLinux::GetCurrentThread() {
1842   return static_cast<NativeThreadLinux *>(
1843       NativeProcessProtocol::GetCurrentThread());
1844 }
1845 
1846 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread,
1847                                         lldb::StateType state, int signo) {
1848   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1849   LLDB_LOG(log, "tid: {0}", thread.GetID());
1850 
1851   // Before we do the resume below, first check if we have a pending stop
1852   // notification that is currently waiting for all threads to stop.  This is
1853   // potentially a buggy situation since we're ostensibly waiting for threads
1854   // to stop before we send out the pending notification, and here we are
1855   // resuming one before we send out the pending stop notification.
1856   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
1857     LLDB_LOG(log,
1858              "about to resume tid {0} per explicit request but we have a "
1859              "pending stop notification (tid {1}) that is actively "
1860              "waiting for this thread to stop. Valid sequence of events?",
1861              thread.GetID(), m_pending_notification_tid);
1862   }
1863 
1864   // Request a resume.  We expect this to be synchronous and the system to
1865   // reflect it is running after this completes.
1866   switch (state) {
1867   case eStateRunning: {
1868     const auto resume_result = thread.Resume(signo);
1869     if (resume_result.Success())
1870       SetState(eStateRunning, true);
1871     return resume_result;
1872   }
1873   case eStateStepping: {
1874     const auto step_result = thread.SingleStep(signo);
1875     if (step_result.Success())
1876       SetState(eStateRunning, true);
1877     return step_result;
1878   }
1879   default:
1880     LLDB_LOG(log, "Unhandled state {0}.", state);
1881     llvm_unreachable("Unhandled state for resume");
1882   }
1883 }
1884 
1885 //===----------------------------------------------------------------------===//
1886 
1887 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) {
1888   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1889   LLDB_LOG(log, "about to process event: (triggering_tid: {0})",
1890            triggering_tid);
1891 
1892   m_pending_notification_tid = triggering_tid;
1893 
1894   // Request a stop for all the thread stops that need to be stopped and are
1895   // not already known to be stopped.
1896   for (const auto &thread : m_threads) {
1897     if (StateIsRunningState(thread->GetState()))
1898       static_cast<NativeThreadLinux *>(thread.get())->RequestStop();
1899   }
1900 
1901   SignalIfAllThreadsStopped();
1902   LLDB_LOG(log, "event processing done");
1903 }
1904 
1905 void NativeProcessLinux::SignalIfAllThreadsStopped() {
1906   if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
1907     return; // No pending notification. Nothing to do.
1908 
1909   for (const auto &thread_sp : m_threads) {
1910     if (StateIsRunningState(thread_sp->GetState()))
1911       return; // Some threads are still running. Don't signal yet.
1912   }
1913 
1914   // We have a pending notification and all threads have stopped.
1915   Log *log(
1916       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
1917 
1918   // Clear any temporary breakpoints we used to implement software single
1919   // stepping.
1920   for (const auto &thread_info : m_threads_stepping_with_breakpoint) {
1921     Status error = RemoveBreakpoint(thread_info.second);
1922     if (error.Fail())
1923       LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}",
1924                thread_info.first, error);
1925   }
1926   m_threads_stepping_with_breakpoint.clear();
1927 
1928   // Notify the delegate about the stop
1929   SetCurrentThreadID(m_pending_notification_tid);
1930   SetState(StateType::eStateStopped, true);
1931   m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
1932 }
1933 
1934 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) {
1935   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1936   LLDB_LOG(log, "tid: {0}", thread.GetID());
1937 
1938   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID &&
1939       StateIsRunningState(thread.GetState())) {
1940     // We will need to wait for this new thread to stop as well before firing
1941     // the notification.
1942     thread.RequestStop();
1943   }
1944 }
1945 
1946 void NativeProcessLinux::SigchldHandler() {
1947   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1948   // Process all pending waitpid notifications.
1949   while (true) {
1950     int status = -1;
1951     ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, -1, &status,
1952                                           __WALL | __WNOTHREAD | WNOHANG);
1953 
1954     if (wait_pid == 0)
1955       break; // We are done.
1956 
1957     if (wait_pid == -1) {
1958       Status error(errno, eErrorTypePOSIX);
1959       LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error);
1960       break;
1961     }
1962 
1963     WaitStatus wait_status = WaitStatus::Decode(status);
1964 
1965     LLDB_LOG(log, "waitpid (-1, &status, _) => pid = {0}, status = {1}",
1966              wait_pid, wait_status);
1967 
1968     MonitorCallback(wait_pid, wait_status);
1969   }
1970 }
1971 
1972 // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets
1973 // errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
1974 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr,
1975                                          void *data, size_t data_size,
1976                                          long *result) {
1977   Status error;
1978   long int ret;
1979 
1980   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1981 
1982   PtraceDisplayBytes(req, data, data_size);
1983 
1984   errno = 0;
1985   if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
1986     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
1987                  *(unsigned int *)addr, data);
1988   else
1989     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
1990                  addr, data);
1991 
1992   if (ret == -1)
1993     error.SetErrorToErrno();
1994 
1995   if (result)
1996     *result = ret;
1997 
1998   LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data,
1999            data_size, ret);
2000 
2001   PtraceDisplayBytes(req, data, data_size);
2002 
2003   if (error.Fail())
2004     LLDB_LOG(log, "ptrace() failed: {0}", error);
2005 
2006   return error;
2007 }
2008 
2009 llvm::Expected<TraceSupportedResponse> NativeProcessLinux::TraceSupported() {
2010   if (IntelPTManager::IsSupported())
2011     return TraceSupportedResponse{"intel-pt", "Intel Processor Trace"};
2012   return NativeProcessProtocol::TraceSupported();
2013 }
2014 
2015 Error NativeProcessLinux::TraceStart(StringRef json_request, StringRef type) {
2016   if (type == "intel-pt") {
2017     if (Expected<TraceIntelPTStartRequest> request =
2018             json::parse<TraceIntelPTStartRequest>(json_request,
2019                                                   "TraceIntelPTStartRequest")) {
2020       std::vector<lldb::tid_t> process_threads;
2021       for (auto &thread : m_threads)
2022         process_threads.push_back(thread->GetID());
2023       return m_intel_pt_manager.TraceStart(*request, process_threads);
2024     } else
2025       return request.takeError();
2026   }
2027 
2028   return NativeProcessProtocol::TraceStart(json_request, type);
2029 }
2030 
2031 Error NativeProcessLinux::TraceStop(const TraceStopRequest &request) {
2032   if (request.type == "intel-pt")
2033     return m_intel_pt_manager.TraceStop(request);
2034   return NativeProcessProtocol::TraceStop(request);
2035 }
2036 
2037 Expected<json::Value> NativeProcessLinux::TraceGetState(StringRef type) {
2038   if (type == "intel-pt")
2039     return m_intel_pt_manager.GetState();
2040   return NativeProcessProtocol::TraceGetState(type);
2041 }
2042 
2043 Expected<std::vector<uint8_t>> NativeProcessLinux::TraceGetBinaryData(
2044     const TraceGetBinaryDataRequest &request) {
2045   if (request.type == "intel-pt")
2046     return m_intel_pt_manager.GetBinaryData(request);
2047   return NativeProcessProtocol::TraceGetBinaryData(request);
2048 }
2049