1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "NativeProcessLinux.h" 11 12 // C Includes 13 #include <errno.h> 14 #include <semaphore.h> 15 #include <string.h> 16 #include <stdint.h> 17 #include <unistd.h> 18 19 // C++ Includes 20 #include <fstream> 21 #include <mutex> 22 #include <sstream> 23 #include <string> 24 #include <unordered_map> 25 26 // Other libraries and framework includes 27 #include "lldb/Core/EmulateInstruction.h" 28 #include "lldb/Core/Error.h" 29 #include "lldb/Core/Module.h" 30 #include "lldb/Core/ModuleSpec.h" 31 #include "lldb/Core/RegisterValue.h" 32 #include "lldb/Core/State.h" 33 #include "lldb/Host/common/NativeBreakpoint.h" 34 #include "lldb/Host/common/NativeRegisterContext.h" 35 #include "lldb/Host/Host.h" 36 #include "lldb/Host/ThreadLauncher.h" 37 #include "lldb/Target/Platform.h" 38 #include "lldb/Target/Process.h" 39 #include "lldb/Target/ProcessLaunchInfo.h" 40 #include "lldb/Target/Target.h" 41 #include "lldb/Utility/LLDBAssert.h" 42 #include "lldb/Utility/PseudoTerminal.h" 43 #include "lldb/Utility/StringExtractor.h" 44 45 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 46 #include "Plugins/Process/Utility/LinuxSignals.h" 47 #include "NativeThreadLinux.h" 48 #include "ProcFileReader.h" 49 #include "Procfs.h" 50 51 // System includes - They have to be included after framework includes because they define some 52 // macros which collide with variable names in other modules 53 #include <linux/unistd.h> 54 #include <sys/socket.h> 55 56 #include <sys/syscall.h> 57 #include <sys/types.h> 58 #include <sys/user.h> 59 #include <sys/wait.h> 60 61 #include "lldb/Host/linux/Personality.h" 62 #include "lldb/Host/linux/Ptrace.h" 63 #include "lldb/Host/linux/Signalfd.h" 64 #include "lldb/Host/linux/Uio.h" 65 #include "lldb/Host/android/Android.h" 66 67 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS 0xffffffff 68 69 // Support hardware breakpoints in case it has not been defined 70 #ifndef TRAP_HWBKPT 71 #define TRAP_HWBKPT 4 72 #endif 73 74 using namespace lldb; 75 using namespace lldb_private; 76 using namespace lldb_private::process_linux; 77 using namespace llvm; 78 79 // Private bits we only need internally. 80 81 static bool ProcessVmReadvSupported() 82 { 83 static bool is_supported; 84 static std::once_flag flag; 85 86 std::call_once(flag, [] { 87 Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 88 89 uint32_t source = 0x47424742; 90 uint32_t dest = 0; 91 92 struct iovec local, remote; 93 remote.iov_base = &source; 94 local.iov_base = &dest; 95 remote.iov_len = local.iov_len = sizeof source; 96 97 // We shall try if cross-process-memory reads work by attempting to read a value from our own process. 98 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); 99 is_supported = (res == sizeof(source) && source == dest); 100 if (log) 101 { 102 if (is_supported) 103 log->Printf("%s: Detected kernel support for process_vm_readv syscall. Fast memory reads enabled.", 104 __FUNCTION__); 105 else 106 log->Printf("%s: syscall process_vm_readv failed (error: %s). Fast memory reads disabled.", 107 __FUNCTION__, strerror(errno)); 108 } 109 }); 110 111 return is_supported; 112 } 113 114 namespace 115 { 116 const UnixSignals& 117 GetUnixSignals () 118 { 119 static process_linux::LinuxSignals signals; 120 return signals; 121 } 122 123 Error 124 ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch) 125 { 126 // Grab process info for the running process. 127 ProcessInstanceInfo process_info; 128 if (!platform.GetProcessInfo (pid, process_info)) 129 return Error("failed to get process info"); 130 131 // Resolve the executable module. 132 ModuleSP exe_module_sp; 133 ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture()); 134 FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ()); 135 Error error = platform.ResolveExecutable( 136 exe_module_spec, 137 exe_module_sp, 138 executable_search_paths.GetSize () ? &executable_search_paths : NULL); 139 140 if (!error.Success ()) 141 return error; 142 143 // Check if we've got our architecture from the exe_module. 144 arch = exe_module_sp->GetArchitecture (); 145 if (arch.IsValid ()) 146 return Error(); 147 else 148 return Error("failed to retrieve a valid architecture from the exe module"); 149 } 150 151 void 152 DisplayBytes (StreamString &s, void *bytes, uint32_t count) 153 { 154 uint8_t *ptr = (uint8_t *)bytes; 155 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 156 for(uint32_t i=0; i<loop_count; i++) 157 { 158 s.Printf ("[%x]", *ptr); 159 ptr++; 160 } 161 } 162 163 void 164 PtraceDisplayBytes(int &req, void *data, size_t data_size) 165 { 166 StreamString buf; 167 Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet ( 168 POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE)); 169 170 if (verbose_log) 171 { 172 switch(req) 173 { 174 case PTRACE_POKETEXT: 175 { 176 DisplayBytes(buf, &data, 8); 177 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData()); 178 break; 179 } 180 case PTRACE_POKEDATA: 181 { 182 DisplayBytes(buf, &data, 8); 183 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData()); 184 break; 185 } 186 case PTRACE_POKEUSER: 187 { 188 DisplayBytes(buf, &data, 8); 189 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData()); 190 break; 191 } 192 case PTRACE_SETREGS: 193 { 194 DisplayBytes(buf, data, data_size); 195 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData()); 196 break; 197 } 198 case PTRACE_SETFPREGS: 199 { 200 DisplayBytes(buf, data, data_size); 201 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData()); 202 break; 203 } 204 case PTRACE_SETSIGINFO: 205 { 206 DisplayBytes(buf, data, sizeof(siginfo_t)); 207 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData()); 208 break; 209 } 210 case PTRACE_SETREGSET: 211 { 212 // Extract iov_base from data, which is a pointer to the struct IOVEC 213 DisplayBytes(buf, *(void **)data, data_size); 214 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData()); 215 break; 216 } 217 default: 218 { 219 } 220 } 221 } 222 } 223 224 //------------------------------------------------------------------------------ 225 // Static implementations of NativeProcessLinux::ReadMemory and 226 // NativeProcessLinux::WriteMemory. This enables mutual recursion between these 227 // functions without needed to go thru the thread funnel. 228 229 Error 230 DoReadMemory( 231 lldb::pid_t pid, 232 lldb::addr_t vm_addr, 233 void *buf, 234 size_t size, 235 size_t &bytes_read) 236 { 237 // ptrace word size is determined by the host, not the child 238 static const unsigned word_size = sizeof(void*); 239 unsigned char *dst = static_cast<unsigned char*>(buf); 240 size_t remainder; 241 long data; 242 243 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); 244 if (log) 245 ProcessPOSIXLog::IncNestLevel(); 246 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) 247 log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__, 248 pid, word_size, (void*)vm_addr, buf, size); 249 250 assert(sizeof(data) >= word_size); 251 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) 252 { 253 Error error = NativeProcessLinux::PtraceWrapper(PTRACE_PEEKDATA, pid, (void*)vm_addr, nullptr, 0, &data); 254 if (error.Fail()) 255 { 256 if (log) 257 ProcessPOSIXLog::DecNestLevel(); 258 return error; 259 } 260 261 remainder = size - bytes_read; 262 remainder = remainder > word_size ? word_size : remainder; 263 264 // Copy the data into our buffer 265 for (unsigned i = 0; i < remainder; ++i) 266 dst[i] = ((data >> i*8) & 0xFF); 267 268 if (log && ProcessPOSIXLog::AtTopNestLevel() && 269 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 270 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 271 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 272 { 273 uintptr_t print_dst = 0; 274 // Format bytes from data by moving into print_dst for log output 275 for (unsigned i = 0; i < remainder; ++i) 276 print_dst |= (((data >> i*8) & 0xFF) << i*8); 277 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 278 (void*)vm_addr, print_dst, (unsigned long)data); 279 } 280 vm_addr += word_size; 281 dst += word_size; 282 } 283 284 if (log) 285 ProcessPOSIXLog::DecNestLevel(); 286 return Error(); 287 } 288 289 Error 290 DoWriteMemory( 291 lldb::pid_t pid, 292 lldb::addr_t vm_addr, 293 const void *buf, 294 size_t size, 295 size_t &bytes_written) 296 { 297 // ptrace word size is determined by the host, not the child 298 static const unsigned word_size = sizeof(void*); 299 const unsigned char *src = static_cast<const unsigned char*>(buf); 300 size_t remainder; 301 Error error; 302 303 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); 304 if (log) 305 ProcessPOSIXLog::IncNestLevel(); 306 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) 307 log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__, 308 pid, word_size, (void*)vm_addr, buf, size); 309 310 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) 311 { 312 remainder = size - bytes_written; 313 remainder = remainder > word_size ? word_size : remainder; 314 315 if (remainder == word_size) 316 { 317 unsigned long data = 0; 318 assert(sizeof(data) >= word_size); 319 for (unsigned i = 0; i < word_size; ++i) 320 data |= (unsigned long)src[i] << i*8; 321 322 if (log && ProcessPOSIXLog::AtTopNestLevel() && 323 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 324 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 325 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 326 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 327 (void*)vm_addr, *(const unsigned long*)src, data); 328 329 error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data); 330 if (error.Fail()) 331 { 332 if (log) 333 ProcessPOSIXLog::DecNestLevel(); 334 return error; 335 } 336 } 337 else 338 { 339 unsigned char buff[8]; 340 size_t bytes_read; 341 error = DoReadMemory(pid, vm_addr, buff, word_size, bytes_read); 342 if (error.Fail()) 343 { 344 if (log) 345 ProcessPOSIXLog::DecNestLevel(); 346 return error; 347 } 348 349 memcpy(buff, src, remainder); 350 351 size_t bytes_written_rec; 352 error = DoWriteMemory(pid, vm_addr, buff, word_size, bytes_written_rec); 353 if (error.Fail()) 354 { 355 if (log) 356 ProcessPOSIXLog::DecNestLevel(); 357 return error; 358 } 359 360 if (log && ProcessPOSIXLog::AtTopNestLevel() && 361 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 362 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 363 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 364 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 365 (void*)vm_addr, *(const unsigned long*)src, *(unsigned long*)buff); 366 } 367 368 vm_addr += word_size; 369 src += word_size; 370 } 371 if (log) 372 ProcessPOSIXLog::DecNestLevel(); 373 return error; 374 } 375 } // end of anonymous namespace 376 377 // Simple helper function to ensure flags are enabled on the given file 378 // descriptor. 379 static Error 380 EnsureFDFlags(int fd, int flags) 381 { 382 Error error; 383 384 int status = fcntl(fd, F_GETFL); 385 if (status == -1) 386 { 387 error.SetErrorToErrno(); 388 return error; 389 } 390 391 if (fcntl(fd, F_SETFL, status | flags) == -1) 392 { 393 error.SetErrorToErrno(); 394 return error; 395 } 396 397 return error; 398 } 399 400 // This class encapsulates the privileged thread which performs all ptrace and wait operations on 401 // the inferior. The thread consists of a main loop which waits for events and processes them 402 // - SIGCHLD (delivered over a signalfd file descriptor): These signals notify us of events in 403 // the inferior process. Upon receiving this signal we do a waitpid to get more information 404 // and dispatch to NativeProcessLinux::MonitorCallback. 405 // - requests for ptrace operations: These initiated via the DoOperation method, which funnels 406 // them to the Monitor thread via m_operation member. The Monitor thread is signaled over a 407 // pipe, and the completion of the operation is signalled over the semaphore. 408 // - thread exit event: this is signaled from the Monitor destructor by closing the write end 409 // of the command pipe. 410 class NativeProcessLinux::Monitor 411 { 412 private: 413 // The initial monitor operation (launch or attach). It returns a inferior process id. 414 std::unique_ptr<InitialOperation> m_initial_operation_up; 415 416 ::pid_t m_child_pid = -1; 417 NativeProcessLinux * m_native_process; 418 419 enum { READ, WRITE }; 420 int m_pipefd[2] = {-1, -1}; 421 int m_signal_fd = -1; 422 HostThread m_thread; 423 424 // current operation which must be executed on the priviliged thread 425 Mutex m_operation_mutex; 426 const Operation *m_operation = nullptr; 427 sem_t m_operation_sem; 428 Error m_operation_error; 429 430 unsigned m_operation_nesting_level = 0; 431 432 static constexpr char operation_command = 'o'; 433 static constexpr char begin_block_command = '{'; 434 static constexpr char end_block_command = '}'; 435 436 void 437 HandleSignals(); 438 439 void 440 HandleWait(); 441 442 // Returns true if the thread should exit. 443 bool 444 HandleCommands(); 445 446 void 447 MainLoop(); 448 449 static void * 450 RunMonitor(void *arg); 451 452 Error 453 WaitForAck(); 454 455 void 456 BeginOperationBlock() 457 { 458 write(m_pipefd[WRITE], &begin_block_command, sizeof operation_command); 459 WaitForAck(); 460 } 461 462 void 463 EndOperationBlock() 464 { 465 write(m_pipefd[WRITE], &end_block_command, sizeof operation_command); 466 WaitForAck(); 467 } 468 469 public: 470 Monitor(const InitialOperation &initial_operation, 471 NativeProcessLinux *native_process) 472 : m_initial_operation_up(new InitialOperation(initial_operation)), 473 m_native_process(native_process) 474 { 475 sem_init(&m_operation_sem, 0, 0); 476 } 477 478 ~Monitor(); 479 480 Error 481 Initialize(); 482 483 void 484 Terminate(); 485 486 Error 487 DoOperation(const Operation &op); 488 489 class ScopedOperationLock { 490 Monitor &m_monitor; 491 492 public: 493 ScopedOperationLock(Monitor &monitor) 494 : m_monitor(monitor) 495 { m_monitor.BeginOperationBlock(); } 496 497 ~ScopedOperationLock() 498 { m_monitor.EndOperationBlock(); } 499 }; 500 }; 501 constexpr char NativeProcessLinux::Monitor::operation_command; 502 constexpr char NativeProcessLinux::Monitor::begin_block_command; 503 constexpr char NativeProcessLinux::Monitor::end_block_command; 504 505 Error 506 NativeProcessLinux::Monitor::Initialize() 507 { 508 Error error; 509 510 // We get a SIGCHLD every time something interesting happens with the inferior. We shall be 511 // listening for these signals over a signalfd file descriptors. This allows us to wait for 512 // multiple kinds of events with select. 513 sigset_t signals; 514 sigemptyset(&signals); 515 sigaddset(&signals, SIGCHLD); 516 m_signal_fd = signalfd(-1, &signals, SFD_NONBLOCK | SFD_CLOEXEC); 517 if (m_signal_fd < 0) 518 { 519 return Error("NativeProcessLinux::Monitor::%s failed due to signalfd failure. Monitoring the inferior will be impossible: %s", 520 __FUNCTION__, strerror(errno)); 521 522 } 523 524 if (pipe2(m_pipefd, O_CLOEXEC) == -1) 525 { 526 error.SetErrorToErrno(); 527 return error; 528 } 529 530 if ((error = EnsureFDFlags(m_pipefd[READ], O_NONBLOCK)).Fail()) { 531 return error; 532 } 533 534 static const char g_thread_name[] = "lldb.process.nativelinux.monitor"; 535 m_thread = ThreadLauncher::LaunchThread(g_thread_name, Monitor::RunMonitor, this, nullptr); 536 if (!m_thread.IsJoinable()) 537 return Error("Failed to create monitor thread for NativeProcessLinux."); 538 539 // Wait for initial operation to complete. 540 return WaitForAck(); 541 } 542 543 Error 544 NativeProcessLinux::Monitor::DoOperation(const Operation &op) 545 { 546 if (m_thread.EqualsThread(pthread_self())) { 547 // If we're on the Monitor thread, we can simply execute the operation. 548 return op(); 549 } 550 551 // Otherwise we need to pass the operation to the Monitor thread so it can handle it. 552 Mutex::Locker lock(m_operation_mutex); 553 554 m_operation = &op; 555 556 // notify the thread that an operation is ready to be processed 557 write(m_pipefd[WRITE], &operation_command, sizeof operation_command); 558 559 return WaitForAck(); 560 } 561 562 void 563 NativeProcessLinux::Monitor::Terminate() 564 { 565 if (m_pipefd[WRITE] >= 0) 566 { 567 close(m_pipefd[WRITE]); 568 m_pipefd[WRITE] = -1; 569 } 570 if (m_thread.IsJoinable()) 571 m_thread.Join(nullptr); 572 } 573 574 NativeProcessLinux::Monitor::~Monitor() 575 { 576 Terminate(); 577 if (m_pipefd[READ] >= 0) 578 close(m_pipefd[READ]); 579 if (m_signal_fd >= 0) 580 close(m_signal_fd); 581 sem_destroy(&m_operation_sem); 582 } 583 584 void 585 NativeProcessLinux::Monitor::HandleSignals() 586 { 587 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 588 589 // We don't really care about the content of the SIGCHLD siginfo structure, as we will get 590 // all the information from waitpid(). We just need to read all the signals so that we can 591 // sleep next time we reach select(). 592 while (true) 593 { 594 signalfd_siginfo info; 595 ssize_t size = read(m_signal_fd, &info, sizeof info); 596 if (size == -1) 597 { 598 if (errno == EAGAIN || errno == EWOULDBLOCK) 599 break; // We are done. 600 if (errno == EINTR) 601 continue; 602 if (log) 603 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor failed: %s", 604 __FUNCTION__, strerror(errno)); 605 break; 606 } 607 if (size != sizeof info) 608 { 609 // We got incomplete information structure. This should not happen, let's just log 610 // that. 611 if (log) 612 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor returned incomplete data: " 613 "structure size is %zd, read returned %zd bytes", 614 __FUNCTION__, sizeof info, size); 615 break; 616 } 617 if (log) 618 log->Printf("NativeProcessLinux::Monitor::%s received signal %s(%d).", __FUNCTION__, 619 Host::GetSignalAsCString(info.ssi_signo), info.ssi_signo); 620 } 621 } 622 623 void 624 NativeProcessLinux::Monitor::HandleWait() 625 { 626 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 627 // Process all pending waitpid notifications. 628 while (true) 629 { 630 int status = -1; 631 ::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG); 632 633 if (wait_pid == 0) 634 break; // We are done. 635 636 if (wait_pid == -1) 637 { 638 if (errno == EINTR) 639 continue; 640 641 if (log) 642 log->Printf("NativeProcessLinux::Monitor::%s waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG) failed: %s", 643 __FUNCTION__, strerror(errno)); 644 break; 645 } 646 647 bool exited = false; 648 int signal = 0; 649 int exit_status = 0; 650 const char *status_cstr = NULL; 651 if (WIFSTOPPED(status)) 652 { 653 signal = WSTOPSIG(status); 654 status_cstr = "STOPPED"; 655 } 656 else if (WIFEXITED(status)) 657 { 658 exit_status = WEXITSTATUS(status); 659 status_cstr = "EXITED"; 660 exited = true; 661 } 662 else if (WIFSIGNALED(status)) 663 { 664 signal = WTERMSIG(status); 665 status_cstr = "SIGNALED"; 666 if (wait_pid == m_child_pid) { 667 exited = true; 668 exit_status = -1; 669 } 670 } 671 else 672 status_cstr = "(\?\?\?)"; 673 674 if (log) 675 log->Printf("NativeProcessLinux::Monitor::%s: waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG)" 676 "=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i", 677 __FUNCTION__, wait_pid, status, status_cstr, signal, exit_status); 678 679 m_native_process->MonitorCallback (wait_pid, exited, signal, exit_status); 680 } 681 } 682 683 bool 684 NativeProcessLinux::Monitor::HandleCommands() 685 { 686 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 687 688 while (true) 689 { 690 char command = 0; 691 ssize_t size = read(m_pipefd[READ], &command, sizeof command); 692 if (size == -1) 693 { 694 if (errno == EAGAIN || errno == EWOULDBLOCK) 695 return false; 696 if (errno == EINTR) 697 continue; 698 if (log) 699 log->Printf("NativeProcessLinux::Monitor::%s exiting because read from command file descriptor failed: %s", __FUNCTION__, strerror(errno)); 700 return true; 701 } 702 if (size == 0) // end of file - write end closed 703 { 704 if (log) 705 log->Printf("NativeProcessLinux::Monitor::%s exit command received, exiting...", __FUNCTION__); 706 assert(m_operation_nesting_level == 0 && "Unbalanced begin/end block commands detected"); 707 return true; // We are done. 708 } 709 710 switch (command) 711 { 712 case operation_command: 713 m_operation_error = (*m_operation)(); 714 break; 715 case begin_block_command: 716 ++m_operation_nesting_level; 717 break; 718 case end_block_command: 719 assert(m_operation_nesting_level > 0); 720 --m_operation_nesting_level; 721 break; 722 default: 723 if (log) 724 log->Printf("NativeProcessLinux::Monitor::%s received unknown command '%c'", 725 __FUNCTION__, command); 726 } 727 728 // notify calling thread that the command has been processed 729 sem_post(&m_operation_sem); 730 } 731 } 732 733 void 734 NativeProcessLinux::Monitor::MainLoop() 735 { 736 ::pid_t child_pid = (*m_initial_operation_up)(m_operation_error); 737 m_initial_operation_up.reset(); 738 m_child_pid = child_pid; 739 sem_post(&m_operation_sem); 740 741 while (true) 742 { 743 fd_set fds; 744 FD_ZERO(&fds); 745 // Only process waitpid events if we are outside of an operation block. Any pending 746 // events will be processed after we leave the block. 747 if (m_operation_nesting_level == 0) 748 FD_SET(m_signal_fd, &fds); 749 FD_SET(m_pipefd[READ], &fds); 750 751 int max_fd = std::max(m_signal_fd, m_pipefd[READ]) + 1; 752 int r = select(max_fd, &fds, nullptr, nullptr, nullptr); 753 if (r < 0) 754 { 755 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 756 if (log) 757 log->Printf("NativeProcessLinux::Monitor::%s exiting because select failed: %s", 758 __FUNCTION__, strerror(errno)); 759 return; 760 } 761 762 if (FD_ISSET(m_pipefd[READ], &fds)) 763 { 764 if (HandleCommands()) 765 return; 766 } 767 768 if (FD_ISSET(m_signal_fd, &fds)) 769 { 770 HandleSignals(); 771 HandleWait(); 772 } 773 } 774 } 775 776 Error 777 NativeProcessLinux::Monitor::WaitForAck() 778 { 779 Error error; 780 while (sem_wait(&m_operation_sem) != 0) 781 { 782 if (errno == EINTR) 783 continue; 784 785 error.SetErrorToErrno(); 786 return error; 787 } 788 789 return m_operation_error; 790 } 791 792 void * 793 NativeProcessLinux::Monitor::RunMonitor(void *arg) 794 { 795 static_cast<Monitor *>(arg)->MainLoop(); 796 return nullptr; 797 } 798 799 800 NativeProcessLinux::LaunchArgs::LaunchArgs(Module *module, 801 char const **argv, 802 char const **envp, 803 const FileSpec &stdin_file_spec, 804 const FileSpec &stdout_file_spec, 805 const FileSpec &stderr_file_spec, 806 const FileSpec &working_dir, 807 const ProcessLaunchInfo &launch_info) 808 : m_module(module), 809 m_argv(argv), 810 m_envp(envp), 811 m_stdin_file_spec(stdin_file_spec), 812 m_stdout_file_spec(stdout_file_spec), 813 m_stderr_file_spec(stderr_file_spec), 814 m_working_dir(working_dir), 815 m_launch_info(launch_info) 816 { 817 } 818 819 NativeProcessLinux::LaunchArgs::~LaunchArgs() 820 { } 821 822 // ----------------------------------------------------------------------------- 823 // Public Static Methods 824 // ----------------------------------------------------------------------------- 825 826 Error 827 NativeProcessProtocol::Launch ( 828 ProcessLaunchInfo &launch_info, 829 NativeProcessProtocol::NativeDelegate &native_delegate, 830 NativeProcessProtocolSP &native_process_sp) 831 { 832 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 833 834 lldb::ModuleSP exe_module_sp; 835 PlatformSP platform_sp (Platform::GetHostPlatform ()); 836 Error error = platform_sp->ResolveExecutable( 837 ModuleSpec(launch_info.GetExecutableFile(), launch_info.GetArchitecture()), 838 exe_module_sp, 839 nullptr); 840 841 if (! error.Success()) 842 return error; 843 844 // Verify the working directory is valid if one was specified. 845 FileSpec working_dir{launch_info.GetWorkingDirectory()}; 846 if (working_dir && 847 (!working_dir.ResolvePath() || 848 working_dir.GetFileType() != FileSpec::eFileTypeDirectory)) 849 { 850 error.SetErrorStringWithFormat ("No such file or directory: %s", 851 working_dir.GetCString()); 852 return error; 853 } 854 855 const FileAction *file_action; 856 857 // Default of empty will mean to use existing open file descriptors. 858 FileSpec stdin_file_spec{}; 859 FileSpec stdout_file_spec{}; 860 FileSpec stderr_file_spec{}; 861 862 file_action = launch_info.GetFileActionForFD (STDIN_FILENO); 863 if (file_action) 864 stdin_file_spec = file_action->GetFileSpec(); 865 866 file_action = launch_info.GetFileActionForFD (STDOUT_FILENO); 867 if (file_action) 868 stdout_file_spec = file_action->GetFileSpec(); 869 870 file_action = launch_info.GetFileActionForFD (STDERR_FILENO); 871 if (file_action) 872 stderr_file_spec = file_action->GetFileSpec(); 873 874 if (log) 875 { 876 if (stdin_file_spec) 877 log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'", 878 __FUNCTION__, stdin_file_spec.GetCString()); 879 else 880 log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__); 881 882 if (stdout_file_spec) 883 log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'", 884 __FUNCTION__, stdout_file_spec.GetCString()); 885 else 886 log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__); 887 888 if (stderr_file_spec) 889 log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'", 890 __FUNCTION__, stderr_file_spec.GetCString()); 891 else 892 log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__); 893 } 894 895 // Create the NativeProcessLinux in launch mode. 896 native_process_sp.reset (new NativeProcessLinux ()); 897 898 if (log) 899 { 900 int i = 0; 901 for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i) 902 { 903 log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr"); 904 ++i; 905 } 906 } 907 908 if (!native_process_sp->RegisterNativeDelegate (native_delegate)) 909 { 910 native_process_sp.reset (); 911 error.SetErrorStringWithFormat ("failed to register the native delegate"); 912 return error; 913 } 914 915 std::static_pointer_cast<NativeProcessLinux> (native_process_sp)->LaunchInferior ( 916 exe_module_sp.get(), 917 launch_info.GetArguments ().GetConstArgumentVector (), 918 launch_info.GetEnvironmentEntries ().GetConstArgumentVector (), 919 stdin_file_spec, 920 stdout_file_spec, 921 stderr_file_spec, 922 working_dir, 923 launch_info, 924 error); 925 926 if (error.Fail ()) 927 { 928 native_process_sp.reset (); 929 if (log) 930 log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ()); 931 return error; 932 } 933 934 launch_info.SetProcessID (native_process_sp->GetID ()); 935 936 return error; 937 } 938 939 Error 940 NativeProcessProtocol::Attach ( 941 lldb::pid_t pid, 942 NativeProcessProtocol::NativeDelegate &native_delegate, 943 NativeProcessProtocolSP &native_process_sp) 944 { 945 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 946 if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE)) 947 log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid); 948 949 // Grab the current platform architecture. This should be Linux, 950 // since this code is only intended to run on a Linux host. 951 PlatformSP platform_sp (Platform::GetHostPlatform ()); 952 if (!platform_sp) 953 return Error("failed to get a valid default platform"); 954 955 // Retrieve the architecture for the running process. 956 ArchSpec process_arch; 957 Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch); 958 if (!error.Success ()) 959 return error; 960 961 std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ()); 962 963 if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate)) 964 { 965 error.SetErrorStringWithFormat ("failed to register the native delegate"); 966 return error; 967 } 968 969 native_process_linux_sp->AttachToInferior (pid, error); 970 if (!error.Success ()) 971 return error; 972 973 native_process_sp = native_process_linux_sp; 974 return error; 975 } 976 977 // ----------------------------------------------------------------------------- 978 // Public Instance Methods 979 // ----------------------------------------------------------------------------- 980 981 NativeProcessLinux::NativeProcessLinux () : 982 NativeProcessProtocol (LLDB_INVALID_PROCESS_ID), 983 m_arch (), 984 m_supports_mem_region (eLazyBoolCalculate), 985 m_mem_region_cache (), 986 m_mem_region_cache_mutex () 987 { 988 } 989 990 //------------------------------------------------------------------------------ 991 // NativeProcessLinux spawns a new thread which performs all operations on the inferior process. 992 // Refer to Monitor and Operation classes to see why this is necessary. 993 //------------------------------------------------------------------------------ 994 void 995 NativeProcessLinux::LaunchInferior ( 996 Module *module, 997 const char *argv[], 998 const char *envp[], 999 const FileSpec &stdin_file_spec, 1000 const FileSpec &stdout_file_spec, 1001 const FileSpec &stderr_file_spec, 1002 const FileSpec &working_dir, 1003 const ProcessLaunchInfo &launch_info, 1004 Error &error) 1005 { 1006 if (module) 1007 m_arch = module->GetArchitecture (); 1008 1009 SetState (eStateLaunching); 1010 1011 std::unique_ptr<LaunchArgs> args( 1012 new LaunchArgs(module, argv, envp, 1013 stdin_file_spec, 1014 stdout_file_spec, 1015 stderr_file_spec, 1016 working_dir, 1017 launch_info)); 1018 1019 StartMonitorThread ([&] (Error &e) { return Launch(args.get(), e); }, error); 1020 if (!error.Success ()) 1021 return; 1022 } 1023 1024 void 1025 NativeProcessLinux::AttachToInferior (lldb::pid_t pid, Error &error) 1026 { 1027 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1028 if (log) 1029 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid); 1030 1031 // We can use the Host for everything except the ResolveExecutable portion. 1032 PlatformSP platform_sp = Platform::GetHostPlatform (); 1033 if (!platform_sp) 1034 { 1035 if (log) 1036 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid); 1037 error.SetErrorString ("no default platform available"); 1038 return; 1039 } 1040 1041 // Gather info about the process. 1042 ProcessInstanceInfo process_info; 1043 if (!platform_sp->GetProcessInfo (pid, process_info)) 1044 { 1045 if (log) 1046 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid); 1047 error.SetErrorString ("failed to get process info"); 1048 return; 1049 } 1050 1051 // Resolve the executable module 1052 ModuleSP exe_module_sp; 1053 FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths()); 1054 ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture()); 1055 error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp, 1056 executable_search_paths.GetSize() ? &executable_search_paths : NULL); 1057 if (!error.Success()) 1058 return; 1059 1060 // Set the architecture to the exe architecture. 1061 m_arch = exe_module_sp->GetArchitecture(); 1062 if (log) 1063 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ()); 1064 1065 m_pid = pid; 1066 SetState(eStateAttaching); 1067 1068 StartMonitorThread ([=] (Error &e) { return Attach(pid, e); }, error); 1069 if (!error.Success ()) 1070 return; 1071 } 1072 1073 void 1074 NativeProcessLinux::Terminate () 1075 { 1076 m_monitor_up->Terminate(); 1077 } 1078 1079 ::pid_t 1080 NativeProcessLinux::Launch(LaunchArgs *args, Error &error) 1081 { 1082 assert (args && "null args"); 1083 1084 const char **argv = args->m_argv; 1085 const char **envp = args->m_envp; 1086 const FileSpec working_dir = args->m_working_dir; 1087 1088 lldb_utility::PseudoTerminal terminal; 1089 const size_t err_len = 1024; 1090 char err_str[err_len]; 1091 lldb::pid_t pid; 1092 NativeThreadProtocolSP thread_sp; 1093 1094 lldb::ThreadSP inferior; 1095 1096 // Propagate the environment if one is not supplied. 1097 if (envp == NULL || envp[0] == NULL) 1098 envp = const_cast<const char **>(environ); 1099 1100 if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1)) 1101 { 1102 error.SetErrorToGenericError(); 1103 error.SetErrorStringWithFormat("Process fork failed: %s", err_str); 1104 return -1; 1105 } 1106 1107 // Recognized child exit status codes. 1108 enum { 1109 ePtraceFailed = 1, 1110 eDupStdinFailed, 1111 eDupStdoutFailed, 1112 eDupStderrFailed, 1113 eChdirFailed, 1114 eExecFailed, 1115 eSetGidFailed 1116 }; 1117 1118 // Child process. 1119 if (pid == 0) 1120 { 1121 // FIXME consider opening a pipe between parent/child and have this forked child 1122 // send log info to parent re: launch status, in place of the log lines removed here. 1123 1124 // Start tracing this child that is about to exec. 1125 error = PtraceWrapper(PTRACE_TRACEME, 0); 1126 if (error.Fail()) 1127 exit(ePtraceFailed); 1128 1129 // terminal has already dupped the tty descriptors to stdin/out/err. 1130 // This closes original fd from which they were copied (and avoids 1131 // leaking descriptors to the debugged process. 1132 terminal.CloseSlaveFileDescriptor(); 1133 1134 // Do not inherit setgid powers. 1135 if (setgid(getgid()) != 0) 1136 exit(eSetGidFailed); 1137 1138 // Attempt to have our own process group. 1139 if (setpgid(0, 0) != 0) 1140 { 1141 // FIXME log that this failed. This is common. 1142 // Don't allow this to prevent an inferior exec. 1143 } 1144 1145 // Dup file descriptors if needed. 1146 if (args->m_stdin_file_spec) 1147 if (!DupDescriptor(args->m_stdin_file_spec, STDIN_FILENO, O_RDONLY)) 1148 exit(eDupStdinFailed); 1149 1150 if (args->m_stdout_file_spec) 1151 if (!DupDescriptor(args->m_stdout_file_spec, STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC)) 1152 exit(eDupStdoutFailed); 1153 1154 if (args->m_stderr_file_spec) 1155 if (!DupDescriptor(args->m_stderr_file_spec, STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC)) 1156 exit(eDupStderrFailed); 1157 1158 // Close everything besides stdin, stdout, and stderr that has no file 1159 // action to avoid leaking 1160 for (int fd = 3; fd < sysconf(_SC_OPEN_MAX); ++fd) 1161 if (!args->m_launch_info.GetFileActionForFD(fd)) 1162 close(fd); 1163 1164 // Change working directory 1165 if (working_dir && 0 != ::chdir(working_dir.GetCString())) 1166 exit(eChdirFailed); 1167 1168 // Disable ASLR if requested. 1169 if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR)) 1170 { 1171 const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS); 1172 if (old_personality == -1) 1173 { 1174 // Can't retrieve Linux personality. Cannot disable ASLR. 1175 } 1176 else 1177 { 1178 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality); 1179 if (new_personality == -1) 1180 { 1181 // Disabling ASLR failed. 1182 } 1183 else 1184 { 1185 // Disabling ASLR succeeded. 1186 } 1187 } 1188 } 1189 1190 // Execute. We should never return... 1191 execve(argv[0], 1192 const_cast<char *const *>(argv), 1193 const_cast<char *const *>(envp)); 1194 1195 // ...unless exec fails. In which case we definitely need to end the child here. 1196 exit(eExecFailed); 1197 } 1198 1199 // 1200 // This is the parent code here. 1201 // 1202 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1203 1204 // Wait for the child process to trap on its call to execve. 1205 ::pid_t wpid; 1206 int status; 1207 if ((wpid = waitpid(pid, &status, 0)) < 0) 1208 { 1209 error.SetErrorToErrno(); 1210 if (log) 1211 log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s", 1212 __FUNCTION__, error.AsCString ()); 1213 1214 // Mark the inferior as invalid. 1215 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1216 SetState (StateType::eStateInvalid); 1217 1218 return -1; 1219 } 1220 else if (WIFEXITED(status)) 1221 { 1222 // open, dup or execve likely failed for some reason. 1223 error.SetErrorToGenericError(); 1224 switch (WEXITSTATUS(status)) 1225 { 1226 case ePtraceFailed: 1227 error.SetErrorString("Child ptrace failed."); 1228 break; 1229 case eDupStdinFailed: 1230 error.SetErrorString("Child open stdin failed."); 1231 break; 1232 case eDupStdoutFailed: 1233 error.SetErrorString("Child open stdout failed."); 1234 break; 1235 case eDupStderrFailed: 1236 error.SetErrorString("Child open stderr failed."); 1237 break; 1238 case eChdirFailed: 1239 error.SetErrorString("Child failed to set working directory."); 1240 break; 1241 case eExecFailed: 1242 error.SetErrorString("Child exec failed."); 1243 break; 1244 case eSetGidFailed: 1245 error.SetErrorString("Child setgid failed."); 1246 break; 1247 default: 1248 error.SetErrorString("Child returned unknown exit status."); 1249 break; 1250 } 1251 1252 if (log) 1253 { 1254 log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP", 1255 __FUNCTION__, 1256 WEXITSTATUS(status)); 1257 } 1258 1259 // Mark the inferior as invalid. 1260 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1261 SetState (StateType::eStateInvalid); 1262 1263 return -1; 1264 } 1265 assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) && 1266 "Could not sync with inferior process."); 1267 1268 if (log) 1269 log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__); 1270 1271 error = SetDefaultPtraceOpts(pid); 1272 if (error.Fail()) 1273 { 1274 if (log) 1275 log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s", 1276 __FUNCTION__, error.AsCString ()); 1277 1278 // Mark the inferior as invalid. 1279 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1280 SetState (StateType::eStateInvalid); 1281 1282 return -1; 1283 } 1284 1285 // Release the master terminal descriptor and pass it off to the 1286 // NativeProcessLinux instance. Similarly stash the inferior pid. 1287 m_terminal_fd = terminal.ReleaseMasterFileDescriptor(); 1288 m_pid = pid; 1289 1290 // Set the terminal fd to be in non blocking mode (it simplifies the 1291 // implementation of ProcessLinux::GetSTDOUT to have a non-blocking 1292 // descriptor to read from). 1293 error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 1294 if (error.Fail()) 1295 { 1296 if (log) 1297 log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s", 1298 __FUNCTION__, error.AsCString ()); 1299 1300 // Mark the inferior as invalid. 1301 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1302 SetState (StateType::eStateInvalid); 1303 1304 return -1; 1305 } 1306 1307 if (log) 1308 log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid); 1309 1310 thread_sp = AddThread (pid); 1311 assert (thread_sp && "AddThread() returned a nullptr thread"); 1312 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP); 1313 ThreadWasCreated(pid); 1314 1315 // Let our process instance know the thread has stopped. 1316 SetCurrentThreadID (thread_sp->GetID ()); 1317 SetState (StateType::eStateStopped); 1318 1319 if (log) 1320 { 1321 if (error.Success ()) 1322 { 1323 log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__); 1324 } 1325 else 1326 { 1327 log->Printf ("NativeProcessLinux::%s inferior launching failed: %s", 1328 __FUNCTION__, error.AsCString ()); 1329 return -1; 1330 } 1331 } 1332 return pid; 1333 } 1334 1335 ::pid_t 1336 NativeProcessLinux::Attach(lldb::pid_t pid, Error &error) 1337 { 1338 lldb::ThreadSP inferior; 1339 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1340 1341 // Use a map to keep track of the threads which we have attached/need to attach. 1342 Host::TidMap tids_to_attach; 1343 if (pid <= 1) 1344 { 1345 error.SetErrorToGenericError(); 1346 error.SetErrorString("Attaching to process 1 is not allowed."); 1347 return -1; 1348 } 1349 1350 while (Host::FindProcessThreads(pid, tids_to_attach)) 1351 { 1352 for (Host::TidMap::iterator it = tids_to_attach.begin(); 1353 it != tids_to_attach.end();) 1354 { 1355 if (it->second == false) 1356 { 1357 lldb::tid_t tid = it->first; 1358 1359 // Attach to the requested process. 1360 // An attach will cause the thread to stop with a SIGSTOP. 1361 error = PtraceWrapper(PTRACE_ATTACH, tid); 1362 if (error.Fail()) 1363 { 1364 // No such thread. The thread may have exited. 1365 // More error handling may be needed. 1366 if (error.GetError() == ESRCH) 1367 { 1368 it = tids_to_attach.erase(it); 1369 continue; 1370 } 1371 else 1372 return -1; 1373 } 1374 1375 int status; 1376 // Need to use __WALL otherwise we receive an error with errno=ECHLD 1377 // At this point we should have a thread stopped if waitpid succeeds. 1378 if ((status = waitpid(tid, NULL, __WALL)) < 0) 1379 { 1380 // No such thread. The thread may have exited. 1381 // More error handling may be needed. 1382 if (errno == ESRCH) 1383 { 1384 it = tids_to_attach.erase(it); 1385 continue; 1386 } 1387 else 1388 { 1389 error.SetErrorToErrno(); 1390 return -1; 1391 } 1392 } 1393 1394 error = SetDefaultPtraceOpts(tid); 1395 if (error.Fail()) 1396 return -1; 1397 1398 if (log) 1399 log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid); 1400 1401 it->second = true; 1402 1403 // Create the thread, mark it as stopped. 1404 NativeThreadProtocolSP thread_sp (AddThread (static_cast<lldb::tid_t> (tid))); 1405 assert (thread_sp && "AddThread() returned a nullptr"); 1406 1407 // This will notify this is a new thread and tell the system it is stopped. 1408 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP); 1409 ThreadWasCreated(tid); 1410 SetCurrentThreadID (thread_sp->GetID ()); 1411 } 1412 1413 // move the loop forward 1414 ++it; 1415 } 1416 } 1417 1418 if (tids_to_attach.size() > 0) 1419 { 1420 m_pid = pid; 1421 // Let our process instance know the thread has stopped. 1422 SetState (StateType::eStateStopped); 1423 } 1424 else 1425 { 1426 error.SetErrorToGenericError(); 1427 error.SetErrorString("No such process."); 1428 return -1; 1429 } 1430 1431 return pid; 1432 } 1433 1434 Error 1435 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) 1436 { 1437 long ptrace_opts = 0; 1438 1439 // Have the child raise an event on exit. This is used to keep the child in 1440 // limbo until it is destroyed. 1441 ptrace_opts |= PTRACE_O_TRACEEXIT; 1442 1443 // Have the tracer trace threads which spawn in the inferior process. 1444 // TODO: if we want to support tracing the inferiors' child, add the 1445 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) 1446 ptrace_opts |= PTRACE_O_TRACECLONE; 1447 1448 // Have the tracer notify us before execve returns 1449 // (needed to disable legacy SIGTRAP generation) 1450 ptrace_opts |= PTRACE_O_TRACEEXEC; 1451 1452 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts); 1453 } 1454 1455 static ExitType convert_pid_status_to_exit_type (int status) 1456 { 1457 if (WIFEXITED (status)) 1458 return ExitType::eExitTypeExit; 1459 else if (WIFSIGNALED (status)) 1460 return ExitType::eExitTypeSignal; 1461 else if (WIFSTOPPED (status)) 1462 return ExitType::eExitTypeStop; 1463 else 1464 { 1465 // We don't know what this is. 1466 return ExitType::eExitTypeInvalid; 1467 } 1468 } 1469 1470 static int convert_pid_status_to_return_code (int status) 1471 { 1472 if (WIFEXITED (status)) 1473 return WEXITSTATUS (status); 1474 else if (WIFSIGNALED (status)) 1475 return WTERMSIG (status); 1476 else if (WIFSTOPPED (status)) 1477 return WSTOPSIG (status); 1478 else 1479 { 1480 // We don't know what this is. 1481 return ExitType::eExitTypeInvalid; 1482 } 1483 } 1484 1485 // Handles all waitpid events from the inferior process. 1486 void 1487 NativeProcessLinux::MonitorCallback(lldb::pid_t pid, 1488 bool exited, 1489 int signal, 1490 int status) 1491 { 1492 Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS)); 1493 1494 // Certain activities differ based on whether the pid is the tid of the main thread. 1495 const bool is_main_thread = (pid == GetID ()); 1496 1497 // Handle when the thread exits. 1498 if (exited) 1499 { 1500 if (log) 1501 log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %" PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not"); 1502 1503 // This is a thread that exited. Ensure we're not tracking it anymore. 1504 const bool thread_found = StopTrackingThread (pid); 1505 1506 if (is_main_thread) 1507 { 1508 // We only set the exit status and notify the delegate if we haven't already set the process 1509 // state to an exited state. We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8) 1510 // for the main thread. 1511 const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed); 1512 if (!already_notified) 1513 { 1514 if (log) 1515 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ())); 1516 // The main thread exited. We're done monitoring. Report to delegate. 1517 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); 1518 1519 // Notify delegate that our process has exited. 1520 SetState (StateType::eStateExited, true); 1521 } 1522 else 1523 { 1524 if (log) 1525 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); 1526 } 1527 } 1528 else 1529 { 1530 // Do we want to report to the delegate in this case? I think not. If this was an orderly 1531 // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, 1532 // and we would have done an all-stop then. 1533 if (log) 1534 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); 1535 } 1536 return; 1537 } 1538 1539 // Get details on the signal raised. 1540 siginfo_t info; 1541 const auto err = GetSignalInfo(pid, &info); 1542 if (err.Success()) 1543 { 1544 // We have retrieved the signal info. Dispatch appropriately. 1545 if (info.si_signo == SIGTRAP) 1546 MonitorSIGTRAP(&info, pid); 1547 else 1548 MonitorSignal(&info, pid, exited); 1549 } 1550 else 1551 { 1552 if (err.GetError() == EINVAL) 1553 { 1554 // This is a group stop reception for this tid. 1555 // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the 1556 // tracee, triggering the group-stop mechanism. Normally receiving these would stop 1557 // the process, pending a SIGCONT. Simulating this state in a debugger is hard and is 1558 // generally not needed (one use case is debugging background task being managed by a 1559 // shell). For general use, it is sufficient to stop the process in a signal-delivery 1560 // stop which happens before the group stop. This done by MonitorSignal and works 1561 // correctly for all signals. 1562 if (log) 1563 log->Printf("NativeProcessLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64 ". Transparent handling of group stops not supported, resuming the thread.", __FUNCTION__, GetID (), pid); 1564 Resume(pid, signal); 1565 } 1566 else 1567 { 1568 // ptrace(GETSIGINFO) failed (but not due to group-stop). 1569 1570 // A return value of ESRCH means the thread/process is no longer on the system, 1571 // so it was killed somehow outside of our control. Either way, we can't do anything 1572 // with it anymore. 1573 1574 // Stop tracking the metadata for the thread since it's entirely off the system now. 1575 const bool thread_found = StopTrackingThread (pid); 1576 1577 if (log) 1578 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)", 1579 __FUNCTION__, err.AsCString(), pid, signal, status, err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found"); 1580 1581 if (is_main_thread) 1582 { 1583 // Notify the delegate - our process is not available but appears to have been killed outside 1584 // our control. Is eStateExited the right exit state in this case? 1585 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); 1586 SetState (StateType::eStateExited, true); 1587 } 1588 else 1589 { 1590 // This thread was pulled out from underneath us. Anything to do here? Do we want to do an all stop? 1591 if (log) 1592 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid); 1593 } 1594 } 1595 } 1596 } 1597 1598 void 1599 NativeProcessLinux::WaitForNewThread(::pid_t tid) 1600 { 1601 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1602 1603 NativeThreadProtocolSP new_thread_sp = GetThreadByID(tid); 1604 1605 if (new_thread_sp) 1606 { 1607 // We are already tracking the thread - we got the event on the new thread (see 1608 // MonitorSignal) before this one. We are done. 1609 return; 1610 } 1611 1612 // The thread is not tracked yet, let's wait for it to appear. 1613 int status = -1; 1614 ::pid_t wait_pid; 1615 do 1616 { 1617 if (log) 1618 log->Printf ("NativeProcessLinux::%s() received thread creation event for tid %" PRIu32 ". tid not tracked yet, waiting for thread to appear...", __FUNCTION__, tid); 1619 wait_pid = waitpid(tid, &status, __WALL); 1620 } 1621 while (wait_pid == -1 && errno == EINTR); 1622 // Since we are waiting on a specific tid, this must be the creation event. But let's do 1623 // some checks just in case. 1624 if (wait_pid != tid) { 1625 if (log) 1626 log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime", __FUNCTION__, tid); 1627 // The only way I know of this could happen is if the whole process was 1628 // SIGKILLed in the mean time. In any case, we can't do anything about that now. 1629 return; 1630 } 1631 if (WIFEXITED(status)) 1632 { 1633 if (log) 1634 log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " returned an 'exited' event. Not tracking the thread.", __FUNCTION__, tid); 1635 // Also a very improbable event. 1636 return; 1637 } 1638 1639 siginfo_t info; 1640 Error error = GetSignalInfo(tid, &info); 1641 if (error.Fail()) 1642 { 1643 if (log) 1644 log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime.", __FUNCTION__, tid); 1645 return; 1646 } 1647 1648 if (((info.si_pid != 0) || (info.si_code != SI_USER)) && log) 1649 { 1650 // We should be getting a thread creation signal here, but we received something 1651 // else. There isn't much we can do about it now, so we will just log that. Since the 1652 // thread is alive and we are receiving events from it, we shall pretend that it was 1653 // created properly. 1654 log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " received unexpected signal with code %d from pid %d.", __FUNCTION__, tid, info.si_code, info.si_pid); 1655 } 1656 1657 if (log) 1658 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": tracking new thread tid %" PRIu32, 1659 __FUNCTION__, GetID (), tid); 1660 1661 new_thread_sp = AddThread(tid); 1662 std::static_pointer_cast<NativeThreadLinux> (new_thread_sp)->SetRunning (); 1663 Resume (tid, LLDB_INVALID_SIGNAL_NUMBER); 1664 ThreadWasCreated(tid); 1665 } 1666 1667 void 1668 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid) 1669 { 1670 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1671 const bool is_main_thread = (pid == GetID ()); 1672 1673 assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!"); 1674 if (!info) 1675 return; 1676 1677 Mutex::Locker locker (m_threads_mutex); 1678 1679 // See if we can find a thread for this signal. 1680 NativeThreadProtocolSP thread_sp = GetThreadByID (pid); 1681 if (!thread_sp) 1682 { 1683 if (log) 1684 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid); 1685 } 1686 1687 switch (info->si_code) 1688 { 1689 // TODO: these two cases are required if we want to support tracing of the inferiors' children. We'd need this to debug a monitor. 1690 // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 1691 // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 1692 1693 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): 1694 { 1695 // This is the notification on the parent thread which informs us of new thread 1696 // creation. 1697 // We don't want to do anything with the parent thread so we just resume it. In case we 1698 // want to implement "break on thread creation" functionality, we would need to stop 1699 // here. 1700 1701 unsigned long event_message = 0; 1702 if (GetEventMessage (pid, &event_message).Fail()) 1703 { 1704 if (log) 1705 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, pid); 1706 } else 1707 WaitForNewThread(event_message); 1708 1709 Resume (pid, LLDB_INVALID_SIGNAL_NUMBER); 1710 break; 1711 } 1712 1713 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): 1714 { 1715 NativeThreadProtocolSP main_thread_sp; 1716 if (log) 1717 log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP); 1718 1719 // Exec clears any pending notifications. 1720 m_pending_notification_up.reset (); 1721 1722 // Remove all but the main thread here. Linux fork creates a new process which only copies the main thread. Mutexes are in undefined state. 1723 if (log) 1724 log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__); 1725 1726 for (auto thread_sp : m_threads) 1727 { 1728 const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID (); 1729 if (is_main_thread) 1730 { 1731 main_thread_sp = thread_sp; 1732 if (log) 1733 log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ()); 1734 } 1735 else 1736 { 1737 // Tell thread coordinator this thread is dead. 1738 if (log) 1739 log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ()); 1740 } 1741 } 1742 1743 m_threads.clear (); 1744 1745 if (main_thread_sp) 1746 { 1747 m_threads.push_back (main_thread_sp); 1748 SetCurrentThreadID (main_thread_sp->GetID ()); 1749 std::static_pointer_cast<NativeThreadLinux> (main_thread_sp)->SetStoppedByExec (); 1750 } 1751 else 1752 { 1753 SetCurrentThreadID (LLDB_INVALID_THREAD_ID); 1754 if (log) 1755 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ()); 1756 } 1757 1758 // Tell coordinator about about the "new" (since exec) stopped main thread. 1759 const lldb::tid_t main_thread_tid = GetID (); 1760 ThreadWasCreated(main_thread_tid); 1761 1762 // NOTE: ideally these next statements would execute at the same time as the coordinator thread create was executed. 1763 // Consider a handler that can execute when that happens. 1764 // Let our delegate know we have just exec'd. 1765 NotifyDidExec (); 1766 1767 // If we have a main thread, indicate we are stopped. 1768 assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked"); 1769 1770 // Let the process know we're stopped. 1771 StopRunningThreads (pid); 1772 1773 break; 1774 } 1775 1776 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): 1777 { 1778 // The inferior process or one of its threads is about to exit. 1779 // We don't want to do anything with the thread so we just resume it. In case we 1780 // want to implement "break on thread exit" functionality, we would need to stop 1781 // here. 1782 1783 unsigned long data = 0; 1784 if (GetEventMessage(pid, &data).Fail()) 1785 data = -1; 1786 1787 if (log) 1788 { 1789 log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)", 1790 __FUNCTION__, 1791 data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false", 1792 pid, 1793 is_main_thread ? "is main thread" : "not main thread"); 1794 } 1795 1796 if (is_main_thread) 1797 { 1798 SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true); 1799 } 1800 1801 Resume(pid, LLDB_INVALID_SIGNAL_NUMBER); 1802 1803 break; 1804 } 1805 1806 case 0: 1807 case TRAP_TRACE: // We receive this on single stepping. 1808 case TRAP_HWBKPT: // We receive this on watchpoint hit 1809 if (thread_sp) 1810 { 1811 // If a watchpoint was hit, report it 1812 uint32_t wp_index; 1813 Error error = thread_sp->GetRegisterContext()->GetWatchpointHitIndex(wp_index, (lldb::addr_t)info->si_addr); 1814 if (error.Fail() && log) 1815 log->Printf("NativeProcessLinux::%s() " 1816 "received error while checking for watchpoint hits, " 1817 "pid = %" PRIu64 " error = %s", 1818 __FUNCTION__, pid, error.AsCString()); 1819 if (wp_index != LLDB_INVALID_INDEX32) 1820 { 1821 MonitorWatchpoint(pid, thread_sp, wp_index); 1822 break; 1823 } 1824 } 1825 // Otherwise, report step over 1826 MonitorTrace(pid, thread_sp); 1827 break; 1828 1829 case SI_KERNEL: 1830 #if defined __mips__ 1831 // For mips there is no special signal for watchpoint 1832 // So we check for watchpoint in kernel trap 1833 if (thread_sp) 1834 { 1835 // If a watchpoint was hit, report it 1836 uint32_t wp_index; 1837 Error error = thread_sp->GetRegisterContext()->GetWatchpointHitIndex(wp_index, LLDB_INVALID_ADDRESS); 1838 if (error.Fail() && log) 1839 log->Printf("NativeProcessLinux::%s() " 1840 "received error while checking for watchpoint hits, " 1841 "pid = %" PRIu64 " error = %s", 1842 __FUNCTION__, pid, error.AsCString()); 1843 if (wp_index != LLDB_INVALID_INDEX32) 1844 { 1845 MonitorWatchpoint(pid, thread_sp, wp_index); 1846 break; 1847 } 1848 } 1849 // NO BREAK 1850 #endif 1851 case TRAP_BRKPT: 1852 MonitorBreakpoint(pid, thread_sp); 1853 break; 1854 1855 case SIGTRAP: 1856 case (SIGTRAP | 0x80): 1857 if (log) 1858 log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), pid); 1859 1860 // Ignore these signals until we know more about them. 1861 Resume(pid, LLDB_INVALID_SIGNAL_NUMBER); 1862 break; 1863 1864 default: 1865 assert(false && "Unexpected SIGTRAP code!"); 1866 if (log) 1867 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%d", 1868 __FUNCTION__, GetID (), pid, info->si_code); 1869 break; 1870 1871 } 1872 } 1873 1874 void 1875 NativeProcessLinux::MonitorTrace(lldb::pid_t pid, NativeThreadProtocolSP thread_sp) 1876 { 1877 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1878 if (log) 1879 log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)", 1880 __FUNCTION__, pid); 1881 1882 if (thread_sp) 1883 std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace(); 1884 1885 // This thread is currently stopped. 1886 ThreadDidStop(pid, false); 1887 1888 // Here we don't have to request the rest of the threads to stop or request a deferred stop. 1889 // This would have already happened at the time the Resume() with step operation was signaled. 1890 // At this point, we just need to say we stopped, and the deferred notifcation will fire off 1891 // once all running threads have checked in as stopped. 1892 SetCurrentThreadID(pid); 1893 // Tell the process we have a stop (from software breakpoint). 1894 StopRunningThreads(pid); 1895 } 1896 1897 void 1898 NativeProcessLinux::MonitorBreakpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp) 1899 { 1900 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 1901 if (log) 1902 log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64, 1903 __FUNCTION__, pid); 1904 1905 // This thread is currently stopped. 1906 ThreadDidStop(pid, false); 1907 1908 // Mark the thread as stopped at breakpoint. 1909 if (thread_sp) 1910 { 1911 std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByBreakpoint(); 1912 Error error = FixupBreakpointPCAsNeeded(thread_sp); 1913 if (error.Fail()) 1914 if (log) 1915 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s", 1916 __FUNCTION__, pid, error.AsCString()); 1917 1918 if (m_threads_stepping_with_breakpoint.find(pid) != m_threads_stepping_with_breakpoint.end()) 1919 std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace(); 1920 } 1921 else 1922 if (log) 1923 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 ": " 1924 "warning, cannot process software breakpoint since no thread metadata", 1925 __FUNCTION__, pid); 1926 1927 1928 // We need to tell all other running threads before we notify the delegate about this stop. 1929 StopRunningThreads(pid); 1930 } 1931 1932 void 1933 NativeProcessLinux::MonitorWatchpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp, uint32_t wp_index) 1934 { 1935 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); 1936 if (log) 1937 log->Printf("NativeProcessLinux::%s() received watchpoint event, " 1938 "pid = %" PRIu64 ", wp_index = %" PRIu32, 1939 __FUNCTION__, pid, wp_index); 1940 1941 // This thread is currently stopped. 1942 ThreadDidStop(pid, false); 1943 1944 // Mark the thread as stopped at watchpoint. 1945 // The address is at (lldb::addr_t)info->si_addr if we need it. 1946 lldbassert(thread_sp && "thread_sp cannot be NULL"); 1947 std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByWatchpoint(wp_index); 1948 1949 // We need to tell all other running threads before we notify the delegate about this stop. 1950 StopRunningThreads(pid); 1951 } 1952 1953 void 1954 NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited) 1955 { 1956 assert (info && "null info"); 1957 if (!info) 1958 return; 1959 1960 const int signo = info->si_signo; 1961 const bool is_from_llgs = info->si_pid == getpid (); 1962 1963 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1964 1965 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 1966 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a 1967 // kill(2) or raise(3). Similarly for tgkill(2) on Linux. 1968 // 1969 // IOW, user generated signals never generate what we consider to be a 1970 // "crash". 1971 // 1972 // Similarly, ACK signals generated by this monitor. 1973 1974 Mutex::Locker locker (m_threads_mutex); 1975 1976 // See if we can find a thread for this signal. 1977 NativeThreadProtocolSP thread_sp = GetThreadByID (pid); 1978 if (!thread_sp) 1979 { 1980 if (log) 1981 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid); 1982 } 1983 1984 // Handle the signal. 1985 if (info->si_code == SI_TKILL || info->si_code == SI_USER) 1986 { 1987 if (log) 1988 log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")", 1989 __FUNCTION__, 1990 GetUnixSignals ().GetSignalAsCString (signo), 1991 signo, 1992 (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"), 1993 info->si_pid, 1994 is_from_llgs ? "from llgs" : "not from llgs", 1995 pid); 1996 } 1997 1998 // Check for new thread notification. 1999 if ((info->si_pid == 0) && (info->si_code == SI_USER)) 2000 { 2001 // A new thread creation is being signaled. This is one of two parts that come in 2002 // a non-deterministic order. This code handles the case where the new thread event comes 2003 // before the event on the parent thread. For the opposite case see code in 2004 // MonitorSIGTRAP. 2005 if (log) 2006 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification", 2007 __FUNCTION__, GetID (), pid); 2008 2009 thread_sp = AddThread(pid); 2010 assert (thread_sp.get() && "failed to create the tracking data for newly created inferior thread"); 2011 // We can now resume the newly created thread. 2012 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning (); 2013 Resume (pid, LLDB_INVALID_SIGNAL_NUMBER); 2014 ThreadWasCreated(pid); 2015 // Done handling. 2016 return; 2017 } 2018 2019 // Check for thread stop notification. 2020 if (is_from_llgs && (info->si_code == SI_TKILL) && (signo == SIGSTOP)) 2021 { 2022 // This is a tgkill()-based stop. 2023 if (thread_sp) 2024 { 2025 if (log) 2026 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped", 2027 __FUNCTION__, 2028 GetID (), 2029 pid); 2030 2031 // Check that we're not already marked with a stop reason. 2032 // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that 2033 // the kernel signaled us with the thread stopping which we handled and marked as stopped, 2034 // and that, without an intervening resume, we received another stop. It is more likely 2035 // that we are missing the marking of a run state somewhere if we find that the thread was 2036 // marked as stopped. 2037 std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp); 2038 assert (linux_thread_sp && "linux_thread_sp is null!"); 2039 2040 const StateType thread_state = linux_thread_sp->GetState (); 2041 if (!StateIsStoppedState (thread_state, false)) 2042 { 2043 // An inferior thread has stopped because of a SIGSTOP we have sent it. 2044 // Generally, these are not important stops and we don't want to report them as 2045 // they are just used to stop other threads when one thread (the one with the 2046 // *real* stop reason) hits a breakpoint (watchpoint, etc...). However, in the 2047 // case of an asynchronous Interrupt(), this *is* the real stop reason, so we 2048 // leave the signal intact if this is the thread that was chosen as the 2049 // triggering thread. 2050 if (m_pending_notification_up && m_pending_notification_up->triggering_tid == pid) 2051 linux_thread_sp->SetStoppedBySignal(SIGSTOP, info); 2052 else 2053 linux_thread_sp->SetStoppedBySignal(0); 2054 2055 SetCurrentThreadID (thread_sp->GetID ()); 2056 ThreadDidStop (thread_sp->GetID (), true); 2057 } 2058 else 2059 { 2060 if (log) 2061 { 2062 // Retrieve the signal name if the thread was stopped by a signal. 2063 int stop_signo = 0; 2064 const bool stopped_by_signal = linux_thread_sp->IsStopped (&stop_signo); 2065 const char *signal_name = stopped_by_signal ? GetUnixSignals ().GetSignalAsCString (stop_signo) : "<not stopped by signal>"; 2066 if (!signal_name) 2067 signal_name = "<no-signal-name>"; 2068 2069 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is", 2070 __FUNCTION__, 2071 GetID (), 2072 linux_thread_sp->GetID (), 2073 StateAsCString (thread_state), 2074 stop_signo, 2075 signal_name); 2076 } 2077 ThreadDidStop (thread_sp->GetID (), false); 2078 } 2079 } 2080 2081 // Done handling. 2082 return; 2083 } 2084 2085 if (log) 2086 log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo)); 2087 2088 // This thread is stopped. 2089 ThreadDidStop (pid, false); 2090 2091 if (thread_sp) 2092 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal(signo, info); 2093 2094 // Send a stop to the debugger after we get all other threads to stop. 2095 StopRunningThreads (pid); 2096 } 2097 2098 namespace { 2099 2100 struct EmulatorBaton 2101 { 2102 NativeProcessLinux* m_process; 2103 NativeRegisterContext* m_reg_context; 2104 2105 // eRegisterKindDWARF -> RegsiterValue 2106 std::unordered_map<uint32_t, RegisterValue> m_register_values; 2107 2108 EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) : 2109 m_process(process), m_reg_context(reg_context) {} 2110 }; 2111 2112 } // anonymous namespace 2113 2114 static size_t 2115 ReadMemoryCallback (EmulateInstruction *instruction, 2116 void *baton, 2117 const EmulateInstruction::Context &context, 2118 lldb::addr_t addr, 2119 void *dst, 2120 size_t length) 2121 { 2122 EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton); 2123 2124 size_t bytes_read; 2125 emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read); 2126 return bytes_read; 2127 } 2128 2129 static bool 2130 ReadRegisterCallback (EmulateInstruction *instruction, 2131 void *baton, 2132 const RegisterInfo *reg_info, 2133 RegisterValue ®_value) 2134 { 2135 EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton); 2136 2137 auto it = emulator_baton->m_register_values.find(reg_info->kinds[eRegisterKindDWARF]); 2138 if (it != emulator_baton->m_register_values.end()) 2139 { 2140 reg_value = it->second; 2141 return true; 2142 } 2143 2144 // The emulator only fill in the dwarf regsiter numbers (and in some case 2145 // the generic register numbers). Get the full register info from the 2146 // register context based on the dwarf register numbers. 2147 const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo( 2148 eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]); 2149 2150 Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value); 2151 if (error.Success()) 2152 return true; 2153 2154 return false; 2155 } 2156 2157 static bool 2158 WriteRegisterCallback (EmulateInstruction *instruction, 2159 void *baton, 2160 const EmulateInstruction::Context &context, 2161 const RegisterInfo *reg_info, 2162 const RegisterValue ®_value) 2163 { 2164 EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton); 2165 emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value; 2166 return true; 2167 } 2168 2169 static size_t 2170 WriteMemoryCallback (EmulateInstruction *instruction, 2171 void *baton, 2172 const EmulateInstruction::Context &context, 2173 lldb::addr_t addr, 2174 const void *dst, 2175 size_t length) 2176 { 2177 return length; 2178 } 2179 2180 static lldb::addr_t 2181 ReadFlags (NativeRegisterContext* regsiter_context) 2182 { 2183 const RegisterInfo* flags_info = regsiter_context->GetRegisterInfo( 2184 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 2185 return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS); 2186 } 2187 2188 Error 2189 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadProtocolSP thread_sp) 2190 { 2191 Error error; 2192 NativeRegisterContextSP register_context_sp = thread_sp->GetRegisterContext(); 2193 2194 std::unique_ptr<EmulateInstruction> emulator_ap( 2195 EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr)); 2196 2197 if (emulator_ap == nullptr) 2198 return Error("Instruction emulator not found!"); 2199 2200 EmulatorBaton baton(this, register_context_sp.get()); 2201 emulator_ap->SetBaton(&baton); 2202 emulator_ap->SetReadMemCallback(&ReadMemoryCallback); 2203 emulator_ap->SetReadRegCallback(&ReadRegisterCallback); 2204 emulator_ap->SetWriteMemCallback(&WriteMemoryCallback); 2205 emulator_ap->SetWriteRegCallback(&WriteRegisterCallback); 2206 2207 if (!emulator_ap->ReadInstruction()) 2208 return Error("Read instruction failed!"); 2209 2210 bool emulation_result = emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC); 2211 2212 const RegisterInfo* reg_info_pc = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); 2213 const RegisterInfo* reg_info_flags = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 2214 2215 auto pc_it = baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]); 2216 auto flags_it = baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]); 2217 2218 lldb::addr_t next_pc; 2219 lldb::addr_t next_flags; 2220 if (emulation_result) 2221 { 2222 assert(pc_it != baton.m_register_values.end() && "Emulation was successfull but PC wasn't updated"); 2223 next_pc = pc_it->second.GetAsUInt64(); 2224 2225 if (flags_it != baton.m_register_values.end()) 2226 next_flags = flags_it->second.GetAsUInt64(); 2227 else 2228 next_flags = ReadFlags (register_context_sp.get()); 2229 } 2230 else if (pc_it == baton.m_register_values.end()) 2231 { 2232 // Emulate instruction failed and it haven't changed PC. Advance PC 2233 // with the size of the current opcode because the emulation of all 2234 // PC modifying instruction should be successful. The failure most 2235 // likely caused by a not supported instruction which don't modify PC. 2236 next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize(); 2237 next_flags = ReadFlags (register_context_sp.get()); 2238 } 2239 else 2240 { 2241 // The instruction emulation failed after it modified the PC. It is an 2242 // unknown error where we can't continue because the next instruction is 2243 // modifying the PC but we don't know how. 2244 return Error ("Instruction emulation failed unexpectedly."); 2245 } 2246 2247 if (m_arch.GetMachine() == llvm::Triple::arm) 2248 { 2249 if (next_flags & 0x20) 2250 { 2251 // Thumb mode 2252 error = SetSoftwareBreakpoint(next_pc, 2); 2253 } 2254 else 2255 { 2256 // Arm mode 2257 error = SetSoftwareBreakpoint(next_pc, 4); 2258 } 2259 } 2260 else if (m_arch.GetMachine() == llvm::Triple::mips64 2261 || m_arch.GetMachine() == llvm::Triple::mips64el 2262 || m_arch.GetMachine() == llvm::Triple::mips 2263 || m_arch.GetMachine() == llvm::Triple::mipsel) 2264 error = SetSoftwareBreakpoint(next_pc, 4); 2265 else 2266 { 2267 // No size hint is given for the next breakpoint 2268 error = SetSoftwareBreakpoint(next_pc, 0); 2269 } 2270 2271 if (error.Fail()) 2272 return error; 2273 2274 m_threads_stepping_with_breakpoint.insert({thread_sp->GetID(), next_pc}); 2275 2276 return Error(); 2277 } 2278 2279 bool 2280 NativeProcessLinux::SupportHardwareSingleStepping() const 2281 { 2282 if (m_arch.GetMachine() == llvm::Triple::arm 2283 || m_arch.GetMachine() == llvm::Triple::mips64 || m_arch.GetMachine() == llvm::Triple::mips64el 2284 || m_arch.GetMachine() == llvm::Triple::mips || m_arch.GetMachine() == llvm::Triple::mipsel) 2285 return false; 2286 return true; 2287 } 2288 2289 Error 2290 NativeProcessLinux::Resume (const ResumeActionList &resume_actions) 2291 { 2292 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD)); 2293 if (log) 2294 log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ()); 2295 2296 bool software_single_step = !SupportHardwareSingleStepping(); 2297 2298 Monitor::ScopedOperationLock monitor_lock(*m_monitor_up); 2299 Mutex::Locker locker (m_threads_mutex); 2300 2301 if (software_single_step) 2302 { 2303 for (auto thread_sp : m_threads) 2304 { 2305 assert (thread_sp && "thread list should not contain NULL threads"); 2306 2307 const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true); 2308 if (action == nullptr) 2309 continue; 2310 2311 if (action->state == eStateStepping) 2312 { 2313 Error error = SetupSoftwareSingleStepping(thread_sp); 2314 if (error.Fail()) 2315 return error; 2316 } 2317 } 2318 } 2319 2320 for (auto thread_sp : m_threads) 2321 { 2322 assert (thread_sp && "thread list should not contain NULL threads"); 2323 2324 const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true); 2325 2326 if (action == nullptr) 2327 { 2328 if (log) 2329 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64, 2330 __FUNCTION__, GetID (), thread_sp->GetID ()); 2331 continue; 2332 } 2333 2334 if (log) 2335 { 2336 log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64, 2337 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); 2338 } 2339 2340 switch (action->state) 2341 { 2342 case eStateRunning: 2343 { 2344 // Run the thread, possibly feeding it the signal. 2345 const int signo = action->signal; 2346 ResumeThread(thread_sp->GetID (), 2347 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2348 { 2349 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning (); 2350 // Pass this signal number on to the inferior to handle. 2351 const auto resume_result = Resume (tid_to_resume, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER); 2352 if (resume_result.Success()) 2353 SetState(eStateRunning, true); 2354 return resume_result; 2355 }, 2356 false); 2357 break; 2358 } 2359 2360 case eStateStepping: 2361 { 2362 // Request the step. 2363 const int signo = action->signal; 2364 ResumeThread(thread_sp->GetID (), 2365 [=](lldb::tid_t tid_to_step, bool supress_signal) 2366 { 2367 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStepping (); 2368 2369 Error step_result; 2370 if (software_single_step) 2371 step_result = Resume (tid_to_step, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER); 2372 else 2373 step_result = SingleStep (tid_to_step,(signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER); 2374 2375 assert (step_result.Success() && "SingleStep() failed"); 2376 if (step_result.Success()) 2377 SetState(eStateStepping, true); 2378 return step_result; 2379 }, 2380 false); 2381 break; 2382 } 2383 2384 case eStateSuspended: 2385 case eStateStopped: 2386 lldbassert(0 && "Unexpected state"); 2387 2388 default: 2389 return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64, 2390 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); 2391 } 2392 } 2393 2394 return Error(); 2395 } 2396 2397 Error 2398 NativeProcessLinux::Halt () 2399 { 2400 Error error; 2401 2402 if (kill (GetID (), SIGSTOP) != 0) 2403 error.SetErrorToErrno (); 2404 2405 return error; 2406 } 2407 2408 Error 2409 NativeProcessLinux::Detach () 2410 { 2411 Error error; 2412 2413 // Tell ptrace to detach from the process. 2414 if (GetID () != LLDB_INVALID_PROCESS_ID) 2415 error = Detach (GetID ()); 2416 2417 // Stop monitoring the inferior. 2418 m_monitor_up->Terminate(); 2419 2420 // No error. 2421 return error; 2422 } 2423 2424 Error 2425 NativeProcessLinux::Signal (int signo) 2426 { 2427 Error error; 2428 2429 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2430 if (log) 2431 log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64, 2432 __FUNCTION__, signo, GetUnixSignals ().GetSignalAsCString (signo), GetID ()); 2433 2434 if (kill(GetID(), signo)) 2435 error.SetErrorToErrno(); 2436 2437 return error; 2438 } 2439 2440 Error 2441 NativeProcessLinux::Interrupt () 2442 { 2443 // Pick a running thread (or if none, a not-dead stopped thread) as 2444 // the chosen thread that will be the stop-reason thread. 2445 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2446 2447 NativeThreadProtocolSP running_thread_sp; 2448 NativeThreadProtocolSP stopped_thread_sp; 2449 2450 if (log) 2451 log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__); 2452 2453 Monitor::ScopedOperationLock monitor_lock(*m_monitor_up); 2454 Mutex::Locker locker (m_threads_mutex); 2455 2456 for (auto thread_sp : m_threads) 2457 { 2458 // The thread shouldn't be null but lets just cover that here. 2459 if (!thread_sp) 2460 continue; 2461 2462 // If we have a running or stepping thread, we'll call that the 2463 // target of the interrupt. 2464 const auto thread_state = thread_sp->GetState (); 2465 if (thread_state == eStateRunning || 2466 thread_state == eStateStepping) 2467 { 2468 running_thread_sp = thread_sp; 2469 break; 2470 } 2471 else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true)) 2472 { 2473 // Remember the first non-dead stopped thread. We'll use that as a backup if there are no running threads. 2474 stopped_thread_sp = thread_sp; 2475 } 2476 } 2477 2478 if (!running_thread_sp && !stopped_thread_sp) 2479 { 2480 Error error("found no running/stepping or live stopped threads as target for interrupt"); 2481 if (log) 2482 log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ()); 2483 2484 return error; 2485 } 2486 2487 NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp; 2488 2489 if (log) 2490 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target", 2491 __FUNCTION__, 2492 GetID (), 2493 running_thread_sp ? "running" : "stopped", 2494 deferred_signal_thread_sp->GetID ()); 2495 2496 StopRunningThreads(deferred_signal_thread_sp->GetID()); 2497 2498 return Error(); 2499 } 2500 2501 Error 2502 NativeProcessLinux::Kill () 2503 { 2504 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2505 if (log) 2506 log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ()); 2507 2508 Error error; 2509 2510 switch (m_state) 2511 { 2512 case StateType::eStateInvalid: 2513 case StateType::eStateExited: 2514 case StateType::eStateCrashed: 2515 case StateType::eStateDetached: 2516 case StateType::eStateUnloaded: 2517 // Nothing to do - the process is already dead. 2518 if (log) 2519 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state)); 2520 return error; 2521 2522 case StateType::eStateConnected: 2523 case StateType::eStateAttaching: 2524 case StateType::eStateLaunching: 2525 case StateType::eStateStopped: 2526 case StateType::eStateRunning: 2527 case StateType::eStateStepping: 2528 case StateType::eStateSuspended: 2529 // We can try to kill a process in these states. 2530 break; 2531 } 2532 2533 if (kill (GetID (), SIGKILL) != 0) 2534 { 2535 error.SetErrorToErrno (); 2536 return error; 2537 } 2538 2539 return error; 2540 } 2541 2542 static Error 2543 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info) 2544 { 2545 memory_region_info.Clear(); 2546 2547 StringExtractor line_extractor (maps_line.c_str ()); 2548 2549 // Format: {address_start_hex}-{address_end_hex} perms offset dev inode pathname 2550 // perms: rwxp (letter is present if set, '-' if not, final character is p=private, s=shared). 2551 2552 // Parse out the starting address 2553 lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0); 2554 2555 // Parse out hyphen separating start and end address from range. 2556 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-')) 2557 return Error ("malformed /proc/{pid}/maps entry, missing dash between address range"); 2558 2559 // Parse out the ending address 2560 lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address); 2561 2562 // Parse out the space after the address. 2563 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' ')) 2564 return Error ("malformed /proc/{pid}/maps entry, missing space after range"); 2565 2566 // Save the range. 2567 memory_region_info.GetRange ().SetRangeBase (start_address); 2568 memory_region_info.GetRange ().SetRangeEnd (end_address); 2569 2570 // Parse out each permission entry. 2571 if (line_extractor.GetBytesLeft () < 4) 2572 return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions"); 2573 2574 // Handle read permission. 2575 const char read_perm_char = line_extractor.GetChar (); 2576 if (read_perm_char == 'r') 2577 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes); 2578 else 2579 { 2580 assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" ); 2581 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 2582 } 2583 2584 // Handle write permission. 2585 const char write_perm_char = line_extractor.GetChar (); 2586 if (write_perm_char == 'w') 2587 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes); 2588 else 2589 { 2590 assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" ); 2591 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 2592 } 2593 2594 // Handle execute permission. 2595 const char exec_perm_char = line_extractor.GetChar (); 2596 if (exec_perm_char == 'x') 2597 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes); 2598 else 2599 { 2600 assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" ); 2601 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 2602 } 2603 2604 return Error (); 2605 } 2606 2607 Error 2608 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info) 2609 { 2610 // FIXME review that the final memory region returned extends to the end of the virtual address space, 2611 // with no perms if it is not mapped. 2612 2613 // Use an approach that reads memory regions from /proc/{pid}/maps. 2614 // Assume proc maps entries are in ascending order. 2615 // FIXME assert if we find differently. 2616 Mutex::Locker locker (m_mem_region_cache_mutex); 2617 2618 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2619 Error error; 2620 2621 if (m_supports_mem_region == LazyBool::eLazyBoolNo) 2622 { 2623 // We're done. 2624 error.SetErrorString ("unsupported"); 2625 return error; 2626 } 2627 2628 // If our cache is empty, pull the latest. There should always be at least one memory region 2629 // if memory region handling is supported. 2630 if (m_mem_region_cache.empty ()) 2631 { 2632 error = ProcFileReader::ProcessLineByLine (GetID (), "maps", 2633 [&] (const std::string &line) -> bool 2634 { 2635 MemoryRegionInfo info; 2636 const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info); 2637 if (parse_error.Success ()) 2638 { 2639 m_mem_region_cache.push_back (info); 2640 return true; 2641 } 2642 else 2643 { 2644 if (log) 2645 log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ()); 2646 return false; 2647 } 2648 }); 2649 2650 // If we had an error, we'll mark unsupported. 2651 if (error.Fail ()) 2652 { 2653 m_supports_mem_region = LazyBool::eLazyBoolNo; 2654 return error; 2655 } 2656 else if (m_mem_region_cache.empty ()) 2657 { 2658 // No entries after attempting to read them. This shouldn't happen if /proc/{pid}/maps 2659 // is supported. Assume we don't support map entries via procfs. 2660 if (log) 2661 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__); 2662 m_supports_mem_region = LazyBool::eLazyBoolNo; 2663 error.SetErrorString ("not supported"); 2664 return error; 2665 } 2666 2667 if (log) 2668 log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ()); 2669 2670 // We support memory retrieval, remember that. 2671 m_supports_mem_region = LazyBool::eLazyBoolYes; 2672 } 2673 else 2674 { 2675 if (log) 2676 log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ())); 2677 } 2678 2679 lldb::addr_t prev_base_address = 0; 2680 2681 // FIXME start by finding the last region that is <= target address using binary search. Data is sorted. 2682 // There can be a ton of regions on pthreads apps with lots of threads. 2683 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it) 2684 { 2685 MemoryRegionInfo &proc_entry_info = *it; 2686 2687 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 2688 assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected"); 2689 prev_base_address = proc_entry_info.GetRange ().GetRangeBase (); 2690 2691 // If the target address comes before this entry, indicate distance to next region. 2692 if (load_addr < proc_entry_info.GetRange ().GetRangeBase ()) 2693 { 2694 range_info.GetRange ().SetRangeBase (load_addr); 2695 range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr); 2696 range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 2697 range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 2698 range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 2699 2700 return error; 2701 } 2702 else if (proc_entry_info.GetRange ().Contains (load_addr)) 2703 { 2704 // The target address is within the memory region we're processing here. 2705 range_info = proc_entry_info; 2706 return error; 2707 } 2708 2709 // The target memory address comes somewhere after the region we just parsed. 2710 } 2711 2712 // If we made it here, we didn't find an entry that contained the given address. Return the 2713 // load_addr as start and the amount of bytes betwwen load address and the end of the memory as 2714 // size. 2715 range_info.GetRange ().SetRangeBase (load_addr); 2716 switch (m_arch.GetAddressByteSize()) 2717 { 2718 case 4: 2719 range_info.GetRange ().SetByteSize (0x100000000ull - load_addr); 2720 break; 2721 case 8: 2722 range_info.GetRange ().SetByteSize (0ull - load_addr); 2723 break; 2724 default: 2725 assert(false && "Unrecognized data byte size"); 2726 break; 2727 } 2728 range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 2729 range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 2730 range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 2731 return error; 2732 } 2733 2734 void 2735 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId) 2736 { 2737 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2738 if (log) 2739 log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId); 2740 2741 { 2742 Mutex::Locker locker (m_mem_region_cache_mutex); 2743 if (log) 2744 log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ())); 2745 m_mem_region_cache.clear (); 2746 } 2747 } 2748 2749 Error 2750 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, lldb::addr_t &addr) 2751 { 2752 // FIXME implementing this requires the equivalent of 2753 // InferiorCallPOSIX::InferiorCallMmap, which depends on 2754 // functional ThreadPlans working with Native*Protocol. 2755 #if 1 2756 return Error ("not implemented yet"); 2757 #else 2758 addr = LLDB_INVALID_ADDRESS; 2759 2760 unsigned prot = 0; 2761 if (permissions & lldb::ePermissionsReadable) 2762 prot |= eMmapProtRead; 2763 if (permissions & lldb::ePermissionsWritable) 2764 prot |= eMmapProtWrite; 2765 if (permissions & lldb::ePermissionsExecutable) 2766 prot |= eMmapProtExec; 2767 2768 // TODO implement this directly in NativeProcessLinux 2769 // (and lift to NativeProcessPOSIX if/when that class is 2770 // refactored out). 2771 if (InferiorCallMmap(this, addr, 0, size, prot, 2772 eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { 2773 m_addr_to_mmap_size[addr] = size; 2774 return Error (); 2775 } else { 2776 addr = LLDB_INVALID_ADDRESS; 2777 return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions)); 2778 } 2779 #endif 2780 } 2781 2782 Error 2783 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr) 2784 { 2785 // FIXME see comments in AllocateMemory - required lower-level 2786 // bits not in place yet (ThreadPlans) 2787 return Error ("not implemented"); 2788 } 2789 2790 lldb::addr_t 2791 NativeProcessLinux::GetSharedLibraryInfoAddress () 2792 { 2793 #if 1 2794 // punt on this for now 2795 return LLDB_INVALID_ADDRESS; 2796 #else 2797 // Return the image info address for the exe module 2798 #if 1 2799 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2800 2801 ModuleSP module_sp; 2802 Error error = GetExeModuleSP (module_sp); 2803 if (error.Fail ()) 2804 { 2805 if (log) 2806 log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ()); 2807 return LLDB_INVALID_ADDRESS; 2808 } 2809 2810 if (module_sp == nullptr) 2811 { 2812 if (log) 2813 log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__); 2814 return LLDB_INVALID_ADDRESS; 2815 } 2816 2817 ObjectFileSP object_file_sp = module_sp->GetObjectFile (); 2818 if (object_file_sp == nullptr) 2819 { 2820 if (log) 2821 log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__); 2822 return LLDB_INVALID_ADDRESS; 2823 } 2824 2825 return obj_file_sp->GetImageInfoAddress(); 2826 #else 2827 Target *target = &GetTarget(); 2828 ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile(); 2829 Address addr = obj_file->GetImageInfoAddress(target); 2830 2831 if (addr.IsValid()) 2832 return addr.GetLoadAddress(target); 2833 return LLDB_INVALID_ADDRESS; 2834 #endif 2835 #endif // punt on this for now 2836 } 2837 2838 size_t 2839 NativeProcessLinux::UpdateThreads () 2840 { 2841 // The NativeProcessLinux monitoring threads are always up to date 2842 // with respect to thread state and they keep the thread list 2843 // populated properly. All this method needs to do is return the 2844 // thread count. 2845 Mutex::Locker locker (m_threads_mutex); 2846 return m_threads.size (); 2847 } 2848 2849 bool 2850 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const 2851 { 2852 arch = m_arch; 2853 return true; 2854 } 2855 2856 Error 2857 NativeProcessLinux::GetSoftwareBreakpointPCOffset (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size) 2858 { 2859 // FIXME put this behind a breakpoint protocol class that can be 2860 // set per architecture. Need ARM, MIPS support here. 2861 static const uint8_t g_i386_opcode [] = { 0xCC }; 2862 2863 switch (m_arch.GetMachine ()) 2864 { 2865 case llvm::Triple::x86: 2866 case llvm::Triple::x86_64: 2867 actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode)); 2868 return Error (); 2869 2870 case llvm::Triple::arm: 2871 case llvm::Triple::aarch64: 2872 case llvm::Triple::mips64: 2873 case llvm::Triple::mips64el: 2874 case llvm::Triple::mips: 2875 case llvm::Triple::mipsel: 2876 // On these architectures the PC don't get updated for breakpoint hits 2877 actual_opcode_size = 0; 2878 return Error (); 2879 2880 default: 2881 assert(false && "CPU type not supported!"); 2882 return Error ("CPU type not supported"); 2883 } 2884 } 2885 2886 Error 2887 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware) 2888 { 2889 if (hardware) 2890 return Error ("NativeProcessLinux does not support hardware breakpoints"); 2891 else 2892 return SetSoftwareBreakpoint (addr, size); 2893 } 2894 2895 Error 2896 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint, 2897 size_t &actual_opcode_size, 2898 const uint8_t *&trap_opcode_bytes) 2899 { 2900 // FIXME put this behind a breakpoint protocol class that can be set per 2901 // architecture. Need MIPS support here. 2902 static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 }; 2903 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 2904 // linux kernel does otherwise. 2905 static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 }; 2906 static const uint8_t g_i386_opcode [] = { 0xCC }; 2907 static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d }; 2908 static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 }; 2909 static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde }; 2910 2911 switch (m_arch.GetMachine ()) 2912 { 2913 case llvm::Triple::aarch64: 2914 trap_opcode_bytes = g_aarch64_opcode; 2915 actual_opcode_size = sizeof(g_aarch64_opcode); 2916 return Error (); 2917 2918 case llvm::Triple::arm: 2919 switch (trap_opcode_size_hint) 2920 { 2921 case 2: 2922 trap_opcode_bytes = g_thumb_breakpoint_opcode; 2923 actual_opcode_size = sizeof(g_thumb_breakpoint_opcode); 2924 return Error (); 2925 case 4: 2926 trap_opcode_bytes = g_arm_breakpoint_opcode; 2927 actual_opcode_size = sizeof(g_arm_breakpoint_opcode); 2928 return Error (); 2929 default: 2930 assert(false && "Unrecognised trap opcode size hint!"); 2931 return Error ("Unrecognised trap opcode size hint!"); 2932 } 2933 2934 case llvm::Triple::x86: 2935 case llvm::Triple::x86_64: 2936 trap_opcode_bytes = g_i386_opcode; 2937 actual_opcode_size = sizeof(g_i386_opcode); 2938 return Error (); 2939 2940 case llvm::Triple::mips: 2941 case llvm::Triple::mips64: 2942 trap_opcode_bytes = g_mips64_opcode; 2943 actual_opcode_size = sizeof(g_mips64_opcode); 2944 return Error (); 2945 2946 case llvm::Triple::mipsel: 2947 case llvm::Triple::mips64el: 2948 trap_opcode_bytes = g_mips64el_opcode; 2949 actual_opcode_size = sizeof(g_mips64el_opcode); 2950 return Error (); 2951 2952 default: 2953 assert(false && "CPU type not supported!"); 2954 return Error ("CPU type not supported"); 2955 } 2956 } 2957 2958 #if 0 2959 ProcessMessage::CrashReason 2960 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info) 2961 { 2962 ProcessMessage::CrashReason reason; 2963 assert(info->si_signo == SIGSEGV); 2964 2965 reason = ProcessMessage::eInvalidCrashReason; 2966 2967 switch (info->si_code) 2968 { 2969 default: 2970 assert(false && "unexpected si_code for SIGSEGV"); 2971 break; 2972 case SI_KERNEL: 2973 // Linux will occasionally send spurious SI_KERNEL codes. 2974 // (this is poorly documented in sigaction) 2975 // One way to get this is via unaligned SIMD loads. 2976 reason = ProcessMessage::eInvalidAddress; // for lack of anything better 2977 break; 2978 case SEGV_MAPERR: 2979 reason = ProcessMessage::eInvalidAddress; 2980 break; 2981 case SEGV_ACCERR: 2982 reason = ProcessMessage::ePrivilegedAddress; 2983 break; 2984 } 2985 2986 return reason; 2987 } 2988 #endif 2989 2990 2991 #if 0 2992 ProcessMessage::CrashReason 2993 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info) 2994 { 2995 ProcessMessage::CrashReason reason; 2996 assert(info->si_signo == SIGILL); 2997 2998 reason = ProcessMessage::eInvalidCrashReason; 2999 3000 switch (info->si_code) 3001 { 3002 default: 3003 assert(false && "unexpected si_code for SIGILL"); 3004 break; 3005 case ILL_ILLOPC: 3006 reason = ProcessMessage::eIllegalOpcode; 3007 break; 3008 case ILL_ILLOPN: 3009 reason = ProcessMessage::eIllegalOperand; 3010 break; 3011 case ILL_ILLADR: 3012 reason = ProcessMessage::eIllegalAddressingMode; 3013 break; 3014 case ILL_ILLTRP: 3015 reason = ProcessMessage::eIllegalTrap; 3016 break; 3017 case ILL_PRVOPC: 3018 reason = ProcessMessage::ePrivilegedOpcode; 3019 break; 3020 case ILL_PRVREG: 3021 reason = ProcessMessage::ePrivilegedRegister; 3022 break; 3023 case ILL_COPROC: 3024 reason = ProcessMessage::eCoprocessorError; 3025 break; 3026 case ILL_BADSTK: 3027 reason = ProcessMessage::eInternalStackError; 3028 break; 3029 } 3030 3031 return reason; 3032 } 3033 #endif 3034 3035 #if 0 3036 ProcessMessage::CrashReason 3037 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info) 3038 { 3039 ProcessMessage::CrashReason reason; 3040 assert(info->si_signo == SIGFPE); 3041 3042 reason = ProcessMessage::eInvalidCrashReason; 3043 3044 switch (info->si_code) 3045 { 3046 default: 3047 assert(false && "unexpected si_code for SIGFPE"); 3048 break; 3049 case FPE_INTDIV: 3050 reason = ProcessMessage::eIntegerDivideByZero; 3051 break; 3052 case FPE_INTOVF: 3053 reason = ProcessMessage::eIntegerOverflow; 3054 break; 3055 case FPE_FLTDIV: 3056 reason = ProcessMessage::eFloatDivideByZero; 3057 break; 3058 case FPE_FLTOVF: 3059 reason = ProcessMessage::eFloatOverflow; 3060 break; 3061 case FPE_FLTUND: 3062 reason = ProcessMessage::eFloatUnderflow; 3063 break; 3064 case FPE_FLTRES: 3065 reason = ProcessMessage::eFloatInexactResult; 3066 break; 3067 case FPE_FLTINV: 3068 reason = ProcessMessage::eFloatInvalidOperation; 3069 break; 3070 case FPE_FLTSUB: 3071 reason = ProcessMessage::eFloatSubscriptRange; 3072 break; 3073 } 3074 3075 return reason; 3076 } 3077 #endif 3078 3079 #if 0 3080 ProcessMessage::CrashReason 3081 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info) 3082 { 3083 ProcessMessage::CrashReason reason; 3084 assert(info->si_signo == SIGBUS); 3085 3086 reason = ProcessMessage::eInvalidCrashReason; 3087 3088 switch (info->si_code) 3089 { 3090 default: 3091 assert(false && "unexpected si_code for SIGBUS"); 3092 break; 3093 case BUS_ADRALN: 3094 reason = ProcessMessage::eIllegalAlignment; 3095 break; 3096 case BUS_ADRERR: 3097 reason = ProcessMessage::eIllegalAddress; 3098 break; 3099 case BUS_OBJERR: 3100 reason = ProcessMessage::eHardwareError; 3101 break; 3102 } 3103 3104 return reason; 3105 } 3106 #endif 3107 3108 Error 3109 NativeProcessLinux::SetWatchpoint (lldb::addr_t addr, size_t size, uint32_t watch_flags, bool hardware) 3110 { 3111 // The base SetWatchpoint will end up executing monitor operations. Let's lock the monitor 3112 // for it. 3113 Monitor::ScopedOperationLock monitor_lock(*m_monitor_up); 3114 return NativeProcessProtocol::SetWatchpoint(addr, size, watch_flags, hardware); 3115 } 3116 3117 Error 3118 NativeProcessLinux::RemoveWatchpoint (lldb::addr_t addr) 3119 { 3120 // The base RemoveWatchpoint will end up executing monitor operations. Let's lock the monitor 3121 // for it. 3122 Monitor::ScopedOperationLock monitor_lock(*m_monitor_up); 3123 return NativeProcessProtocol::RemoveWatchpoint(addr); 3124 } 3125 3126 Error 3127 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read) 3128 { 3129 if (ProcessVmReadvSupported()) { 3130 // The process_vm_readv path is about 50 times faster than ptrace api. We want to use 3131 // this syscall if it is supported. 3132 3133 const ::pid_t pid = GetID(); 3134 3135 struct iovec local_iov, remote_iov; 3136 local_iov.iov_base = buf; 3137 local_iov.iov_len = size; 3138 remote_iov.iov_base = reinterpret_cast<void *>(addr); 3139 remote_iov.iov_len = size; 3140 3141 bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0); 3142 const bool success = bytes_read == size; 3143 3144 Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3145 if (log) 3146 log->Printf ("NativeProcessLinux::%s using process_vm_readv to read %zd bytes from inferior address 0x%" PRIx64": %s", 3147 __FUNCTION__, size, addr, success ? "Success" : strerror(errno)); 3148 3149 if (success) 3150 return Error(); 3151 // else 3152 // the call failed for some reason, let's retry the read using ptrace api. 3153 } 3154 3155 return DoOperation([&] { return DoReadMemory(GetID(), addr, buf, size, bytes_read); }); 3156 } 3157 3158 Error 3159 NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read) 3160 { 3161 Error error = ReadMemory(addr, buf, size, bytes_read); 3162 if (error.Fail()) return error; 3163 return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size); 3164 } 3165 3166 Error 3167 NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, size_t size, size_t &bytes_written) 3168 { 3169 return DoOperation([&] { return DoWriteMemory(GetID(), addr, buf, size, bytes_written); }); 3170 } 3171 3172 Error 3173 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo) 3174 { 3175 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3176 3177 if (log) 3178 log->Printf ("NativeProcessLinux::%s() resuming thread = %" PRIu64 " with signal %s", __FUNCTION__, tid, 3179 GetUnixSignals().GetSignalAsCString (signo)); 3180 3181 3182 3183 intptr_t data = 0; 3184 3185 if (signo != LLDB_INVALID_SIGNAL_NUMBER) 3186 data = signo; 3187 3188 Error error = DoOperation([&] { return PtraceWrapper(PTRACE_CONT, tid, nullptr, (void*)data); }); 3189 3190 if (log) 3191 log->Printf ("NativeProcessLinux::%s() resuming thread = %" PRIu64 " result = %s", __FUNCTION__, tid, error.Success() ? "true" : "false"); 3192 return error; 3193 } 3194 3195 Error 3196 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo) 3197 { 3198 intptr_t data = 0; 3199 3200 if (signo != LLDB_INVALID_SIGNAL_NUMBER) 3201 data = signo; 3202 3203 return DoOperation([&] { return PtraceWrapper(PTRACE_SINGLESTEP, tid, nullptr, (void*)data); }); 3204 } 3205 3206 Error 3207 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) 3208 { 3209 return DoOperation([&] { return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); }); 3210 } 3211 3212 Error 3213 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message) 3214 { 3215 return DoOperation([&] { return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); }); 3216 } 3217 3218 Error 3219 NativeProcessLinux::Detach(lldb::tid_t tid) 3220 { 3221 if (tid == LLDB_INVALID_THREAD_ID) 3222 return Error(); 3223 3224 return DoOperation([&] { return PtraceWrapper(PTRACE_DETACH, tid); }); 3225 } 3226 3227 bool 3228 NativeProcessLinux::DupDescriptor(const FileSpec &file_spec, int fd, int flags) 3229 { 3230 int target_fd = open(file_spec.GetCString(), flags, 0666); 3231 3232 if (target_fd == -1) 3233 return false; 3234 3235 if (dup2(target_fd, fd) == -1) 3236 return false; 3237 3238 return (close(target_fd) == -1) ? false : true; 3239 } 3240 3241 void 3242 NativeProcessLinux::StartMonitorThread(const InitialOperation &initial_operation, Error &error) 3243 { 3244 m_monitor_up.reset(new Monitor(initial_operation, this)); 3245 error = m_monitor_up->Initialize(); 3246 if (error.Fail()) { 3247 m_monitor_up.reset(); 3248 } 3249 } 3250 3251 bool 3252 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id) 3253 { 3254 for (auto thread_sp : m_threads) 3255 { 3256 assert (thread_sp && "thread list should not contain NULL threads"); 3257 if (thread_sp->GetID () == thread_id) 3258 { 3259 // We have this thread. 3260 return true; 3261 } 3262 } 3263 3264 // We don't have this thread. 3265 return false; 3266 } 3267 3268 NativeThreadProtocolSP 3269 NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id) 3270 { 3271 // CONSIDER organize threads by map - we can do better than linear. 3272 for (auto thread_sp : m_threads) 3273 { 3274 if (thread_sp->GetID () == thread_id) 3275 return thread_sp; 3276 } 3277 3278 // We don't have this thread. 3279 return NativeThreadProtocolSP (); 3280 } 3281 3282 bool 3283 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id) 3284 { 3285 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 3286 3287 if (log) 3288 log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread_id); 3289 3290 bool found = false; 3291 3292 Mutex::Locker locker (m_threads_mutex); 3293 for (auto it = m_threads.begin (); it != m_threads.end (); ++it) 3294 { 3295 if (*it && ((*it)->GetID () == thread_id)) 3296 { 3297 m_threads.erase (it); 3298 found = true; 3299 break; 3300 } 3301 } 3302 3303 // If we have a pending notification, remove this from the set. 3304 if (m_pending_notification_up) 3305 { 3306 m_pending_notification_up->wait_for_stop_tids.erase(thread_id); 3307 SignalIfAllThreadsStopped(); 3308 } 3309 3310 return found; 3311 } 3312 3313 NativeThreadProtocolSP 3314 NativeProcessLinux::AddThread (lldb::tid_t thread_id) 3315 { 3316 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3317 3318 Mutex::Locker locker (m_threads_mutex); 3319 3320 if (log) 3321 { 3322 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64, 3323 __FUNCTION__, 3324 GetID (), 3325 thread_id); 3326 } 3327 3328 assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists"); 3329 3330 // If this is the first thread, save it as the current thread 3331 if (m_threads.empty ()) 3332 SetCurrentThreadID (thread_id); 3333 3334 NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id)); 3335 m_threads.push_back (thread_sp); 3336 3337 return thread_sp; 3338 } 3339 3340 Error 3341 NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp) 3342 { 3343 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS)); 3344 3345 Error error; 3346 3347 // Get a linux thread pointer. 3348 if (!thread_sp) 3349 { 3350 error.SetErrorString ("null thread_sp"); 3351 if (log) 3352 log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); 3353 return error; 3354 } 3355 std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp); 3356 3357 // Find out the size of a breakpoint (might depend on where we are in the code). 3358 NativeRegisterContextSP context_sp = linux_thread_sp->GetRegisterContext (); 3359 if (!context_sp) 3360 { 3361 error.SetErrorString ("cannot get a NativeRegisterContext for the thread"); 3362 if (log) 3363 log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); 3364 return error; 3365 } 3366 3367 uint32_t breakpoint_size = 0; 3368 error = GetSoftwareBreakpointPCOffset (context_sp, breakpoint_size); 3369 if (error.Fail ()) 3370 { 3371 if (log) 3372 log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ()); 3373 return error; 3374 } 3375 else 3376 { 3377 if (log) 3378 log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size); 3379 } 3380 3381 // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size. 3382 const lldb::addr_t initial_pc_addr = context_sp->GetPCfromBreakpointLocation (); 3383 lldb::addr_t breakpoint_addr = initial_pc_addr; 3384 if (breakpoint_size > 0) 3385 { 3386 // Do not allow breakpoint probe to wrap around. 3387 if (breakpoint_addr >= breakpoint_size) 3388 breakpoint_addr -= breakpoint_size; 3389 } 3390 3391 // Check if we stopped because of a breakpoint. 3392 NativeBreakpointSP breakpoint_sp; 3393 error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp); 3394 if (!error.Success () || !breakpoint_sp) 3395 { 3396 // We didn't find one at a software probe location. Nothing to do. 3397 if (log) 3398 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr); 3399 return Error (); 3400 } 3401 3402 // If the breakpoint is not a software breakpoint, nothing to do. 3403 if (!breakpoint_sp->IsSoftwareBreakpoint ()) 3404 { 3405 if (log) 3406 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr); 3407 return Error (); 3408 } 3409 3410 // 3411 // We have a software breakpoint and need to adjust the PC. 3412 // 3413 3414 // Sanity check. 3415 if (breakpoint_size == 0) 3416 { 3417 // Nothing to do! How did we get here? 3418 if (log) 3419 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr); 3420 return Error (); 3421 } 3422 3423 // Change the program counter. 3424 if (log) 3425 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_sp->GetID (), initial_pc_addr, breakpoint_addr); 3426 3427 error = context_sp->SetPC (breakpoint_addr); 3428 if (error.Fail ()) 3429 { 3430 if (log) 3431 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_sp->GetID (), error.AsCString ()); 3432 return error; 3433 } 3434 3435 return error; 3436 } 3437 3438 Error 3439 NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec) 3440 { 3441 char maps_file_name[32]; 3442 snprintf(maps_file_name, sizeof(maps_file_name), "/proc/%" PRIu64 "/maps", GetID()); 3443 3444 FileSpec maps_file_spec(maps_file_name, false); 3445 if (!maps_file_spec.Exists()) { 3446 file_spec.Clear(); 3447 return Error("/proc/%" PRIu64 "/maps file doesn't exists!", GetID()); 3448 } 3449 3450 FileSpec module_file_spec(module_path, true); 3451 3452 std::ifstream maps_file(maps_file_name); 3453 std::string maps_data_str((std::istreambuf_iterator<char>(maps_file)), std::istreambuf_iterator<char>()); 3454 StringRef maps_data(maps_data_str.c_str()); 3455 3456 while (!maps_data.empty()) 3457 { 3458 StringRef maps_row; 3459 std::tie(maps_row, maps_data) = maps_data.split('\n'); 3460 3461 SmallVector<StringRef, 16> maps_columns; 3462 maps_row.split(maps_columns, StringRef(" "), -1, false); 3463 3464 if (maps_columns.size() >= 6) 3465 { 3466 file_spec.SetFile(maps_columns[5].str().c_str(), false); 3467 if (file_spec.GetFilename() == module_file_spec.GetFilename()) 3468 return Error(); 3469 } 3470 } 3471 3472 file_spec.Clear(); 3473 return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 3474 module_file_spec.GetFilename().AsCString(), GetID()); 3475 } 3476 3477 Error 3478 NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef& file_name, lldb::addr_t& load_addr) 3479 { 3480 load_addr = LLDB_INVALID_ADDRESS; 3481 Error error = ProcFileReader::ProcessLineByLine (GetID (), "maps", 3482 [&] (const std::string &line) -> bool 3483 { 3484 StringRef maps_row(line); 3485 3486 SmallVector<StringRef, 16> maps_columns; 3487 maps_row.split(maps_columns, StringRef(" "), -1, false); 3488 3489 if (maps_columns.size() < 6) 3490 { 3491 // Return true to continue reading the proc file 3492 return true; 3493 } 3494 3495 if (maps_columns[5] == file_name) 3496 { 3497 StringExtractor addr_extractor(maps_columns[0].str().c_str()); 3498 load_addr = addr_extractor.GetHexMaxU64(false, LLDB_INVALID_ADDRESS); 3499 3500 // Return false to stop reading the proc file further 3501 return false; 3502 } 3503 3504 // Return true to continue reading the proc file 3505 return true; 3506 }); 3507 return error; 3508 } 3509 3510 Error 3511 NativeProcessLinux::ResumeThread( 3512 lldb::tid_t tid, 3513 NativeThreadLinux::ResumeThreadFunction request_thread_resume_function, 3514 bool error_when_already_running) 3515 { 3516 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 3517 3518 if (log) 3519 log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ", error_when_already_running: %s)", 3520 __FUNCTION__, tid, error_when_already_running?"true":"false"); 3521 3522 auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid)); 3523 lldbassert(thread_sp != nullptr); 3524 3525 auto& context = thread_sp->GetThreadContext(); 3526 // Tell the thread to resume if we don't already think it is running. 3527 const bool is_stopped = StateIsStoppedState(thread_sp->GetState(), true); 3528 3529 lldbassert(!(error_when_already_running && !is_stopped)); 3530 3531 if (!is_stopped) 3532 { 3533 // It's not an error, just a log, if the error_when_already_running flag is not set. 3534 // This covers cases where, for instance, we're just trying to resume all threads 3535 // from the user side. 3536 if (log) 3537 log->Printf("NativeProcessLinux::%s tid %" PRIu64 " optional resume skipped since it is already running", 3538 __FUNCTION__, 3539 tid); 3540 return Error(); 3541 } 3542 3543 // Before we do the resume below, first check if we have a pending 3544 // stop notification that is currently waiting for 3545 // this thread to stop. This is potentially a buggy situation since 3546 // we're ostensibly waiting for threads to stop before we send out the 3547 // pending notification, and here we are resuming one before we send 3548 // out the pending stop notification. 3549 if (m_pending_notification_up && log && m_pending_notification_up->wait_for_stop_tids.count (tid) > 0) 3550 { 3551 log->Printf("NativeProcessLinux::%s about to resume tid %" PRIu64 " per explicit request but we have a pending stop notification (tid %" PRIu64 ") that is actively waiting for this thread to stop. Valid sequence of events?", __FUNCTION__, tid, m_pending_notification_up->triggering_tid); 3552 } 3553 3554 // Request a resume. We expect this to be synchronous and the system 3555 // to reflect it is running after this completes. 3556 const auto error = request_thread_resume_function (tid, false); 3557 if (error.Success()) 3558 context.request_resume_function = request_thread_resume_function; 3559 else if (log) 3560 { 3561 log->Printf("NativeProcessLinux::%s failed to resume thread tid %" PRIu64 ": %s", 3562 __FUNCTION__, tid, error.AsCString ()); 3563 } 3564 3565 return error; 3566 } 3567 3568 //===----------------------------------------------------------------------===// 3569 3570 void 3571 NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) 3572 { 3573 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 3574 3575 if (log) 3576 { 3577 log->Printf("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ")", 3578 __FUNCTION__, triggering_tid); 3579 } 3580 3581 DoStopThreads(PendingNotificationUP(new PendingNotification(triggering_tid))); 3582 3583 if (log) 3584 { 3585 log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__); 3586 } 3587 } 3588 3589 void 3590 NativeProcessLinux::SignalIfAllThreadsStopped() 3591 { 3592 if (m_pending_notification_up && m_pending_notification_up->wait_for_stop_tids.empty ()) 3593 { 3594 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 3595 3596 // Clear any temporary breakpoints we used to implement software single stepping. 3597 for (const auto &thread_info: m_threads_stepping_with_breakpoint) 3598 { 3599 Error error = RemoveBreakpoint (thread_info.second); 3600 if (error.Fail()) 3601 if (log) 3602 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s", 3603 __FUNCTION__, thread_info.first, error.AsCString()); 3604 } 3605 m_threads_stepping_with_breakpoint.clear(); 3606 3607 // Notify the delegate about the stop 3608 SetCurrentThreadID(m_pending_notification_up->triggering_tid); 3609 SetState(StateType::eStateStopped, true); 3610 m_pending_notification_up.reset(); 3611 } 3612 } 3613 3614 void 3615 NativeProcessLinux::RequestStopOnAllRunningThreads() 3616 { 3617 // Request a stop for all the thread stops that need to be stopped 3618 // and are not already known to be stopped. Keep a list of all the 3619 // threads from which we still need to hear a stop reply. 3620 3621 ThreadIDSet sent_tids; 3622 for (const auto &thread_sp: m_threads) 3623 { 3624 // We only care about running threads 3625 if (StateIsStoppedState(thread_sp->GetState(), true)) 3626 continue; 3627 3628 static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop(); 3629 sent_tids.insert (thread_sp->GetID()); 3630 } 3631 3632 // Set the wait list to the set of tids for which we requested stops. 3633 m_pending_notification_up->wait_for_stop_tids.swap (sent_tids); 3634 } 3635 3636 3637 Error 3638 NativeProcessLinux::ThreadDidStop (lldb::tid_t tid, bool initiated_by_llgs) 3639 { 3640 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 3641 3642 if (log) 3643 log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ", %sinitiated by llgs)", 3644 __FUNCTION__, tid, initiated_by_llgs?"":"not "); 3645 3646 // Ensure we know about the thread. 3647 auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid)); 3648 lldbassert(thread_sp != nullptr); 3649 3650 // Update the global list of known thread states. This one is definitely stopped. 3651 auto& context = thread_sp->GetThreadContext(); 3652 const auto stop_was_requested = context.stop_requested; 3653 context.stop_requested = false; 3654 3655 // If we have a pending notification, remove this from the set. 3656 if (m_pending_notification_up) 3657 { 3658 m_pending_notification_up->wait_for_stop_tids.erase(tid); 3659 SignalIfAllThreadsStopped(); 3660 } 3661 3662 Error error; 3663 if (initiated_by_llgs && context.request_resume_function && !stop_was_requested) 3664 { 3665 // We can end up here if stop was initiated by LLGS but by this time a 3666 // thread stop has occurred - maybe initiated by another event. 3667 if (log) 3668 log->Printf("Resuming thread %" PRIu64 " since stop wasn't requested", tid); 3669 error = context.request_resume_function (tid, true); 3670 if (error.Fail() && log) 3671 { 3672 log->Printf("NativeProcessLinux::%s failed to resume thread tid %" PRIu64 ": %s", 3673 __FUNCTION__, tid, error.AsCString ()); 3674 } 3675 } 3676 return error; 3677 } 3678 3679 void 3680 NativeProcessLinux::DoStopThreads(PendingNotificationUP &¬ification_up) 3681 { 3682 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 3683 if (m_pending_notification_up && log) 3684 { 3685 // Yikes - we've already got a pending signal notification in progress. 3686 // Log this info. We lose the pending notification here. 3687 log->Printf("NativeProcessLinux::%s dropping existing pending signal notification for tid %" PRIu64 ", to be replaced with signal for tid %" PRIu64, 3688 __FUNCTION__, 3689 m_pending_notification_up->triggering_tid, 3690 notification_up->triggering_tid); 3691 } 3692 m_pending_notification_up = std::move(notification_up); 3693 3694 RequestStopOnAllRunningThreads(); 3695 3696 SignalIfAllThreadsStopped(); 3697 } 3698 3699 void 3700 NativeProcessLinux::ThreadWasCreated (lldb::tid_t tid) 3701 { 3702 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 3703 3704 if (log) 3705 log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, tid); 3706 3707 auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid)); 3708 lldbassert(thread_sp != nullptr); 3709 3710 if (m_pending_notification_up && StateIsRunningState(thread_sp->GetState())) 3711 { 3712 // We will need to wait for this new thread to stop as well before firing the 3713 // notification. 3714 m_pending_notification_up->wait_for_stop_tids.insert(tid); 3715 thread_sp->RequestStop(); 3716 } 3717 } 3718 3719 Error 3720 NativeProcessLinux::DoOperation(const Operation &op) 3721 { 3722 return m_monitor_up->DoOperation(op); 3723 } 3724 3725 // Wrapper for ptrace to catch errors and log calls. 3726 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) 3727 Error 3728 NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, long *result) 3729 { 3730 Error error; 3731 long int ret; 3732 3733 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE)); 3734 3735 PtraceDisplayBytes(req, data, data_size); 3736 3737 errno = 0; 3738 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 3739 ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data); 3740 else 3741 ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data); 3742 3743 if (ret == -1) 3744 error.SetErrorToErrno(); 3745 3746 if (result) 3747 *result = ret; 3748 3749 if (log) 3750 log->Printf("ptrace(%d, %" PRIu64 ", %p, %p, %zu)=%lX", req, pid, addr, data, data_size, ret); 3751 3752 PtraceDisplayBytes(req, data, data_size); 3753 3754 if (log && error.GetError() != 0) 3755 { 3756 const char* str; 3757 switch (error.GetError()) 3758 { 3759 case ESRCH: str = "ESRCH"; break; 3760 case EINVAL: str = "EINVAL"; break; 3761 case EBUSY: str = "EBUSY"; break; 3762 case EPERM: str = "EPERM"; break; 3763 default: str = error.AsCString(); 3764 } 3765 log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str); 3766 } 3767 3768 return error; 3769 } 3770