1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "NativeProcessLinux.h"
11 
12 // C Includes
13 #include <errno.h>
14 #include <semaphore.h>
15 #include <string.h>
16 #include <stdint.h>
17 #include <unistd.h>
18 
19 // C++ Includes
20 #include <fstream>
21 #include <sstream>
22 #include <string>
23 #include <unordered_map>
24 
25 // Other libraries and framework includes
26 #include "lldb/Core/EmulateInstruction.h"
27 #include "lldb/Core/Error.h"
28 #include "lldb/Core/Module.h"
29 #include "lldb/Core/ModuleSpec.h"
30 #include "lldb/Core/RegisterValue.h"
31 #include "lldb/Core/State.h"
32 #include "lldb/Host/common/NativeBreakpoint.h"
33 #include "lldb/Host/common/NativeRegisterContext.h"
34 #include "lldb/Host/Host.h"
35 #include "lldb/Host/ThreadLauncher.h"
36 #include "lldb/Target/Platform.h"
37 #include "lldb/Target/Process.h"
38 #include "lldb/Target/ProcessLaunchInfo.h"
39 #include "lldb/Target/Target.h"
40 #include "lldb/Utility/LLDBAssert.h"
41 #include "lldb/Utility/PseudoTerminal.h"
42 
43 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
44 #include "Plugins/Process/Utility/LinuxSignals.h"
45 #include "Utility/StringExtractor.h"
46 #include "NativeThreadLinux.h"
47 #include "ProcFileReader.h"
48 #include "Procfs.h"
49 
50 // System includes - They have to be included after framework includes because they define some
51 // macros which collide with variable names in other modules
52 #include <linux/unistd.h>
53 #include <sys/socket.h>
54 
55 #include <sys/types.h>
56 #include <sys/uio.h>
57 #include <sys/user.h>
58 #include <sys/wait.h>
59 
60 #include "lldb/Host/linux/Personality.h"
61 #include "lldb/Host/linux/Ptrace.h"
62 #include "lldb/Host/linux/Signalfd.h"
63 #include "lldb/Host/android/Android.h"
64 
65 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS  0xffffffff
66 
67 // Support hardware breakpoints in case it has not been defined
68 #ifndef TRAP_HWBKPT
69   #define TRAP_HWBKPT 4
70 #endif
71 
72 using namespace lldb;
73 using namespace lldb_private;
74 using namespace lldb_private::process_linux;
75 using namespace llvm;
76 
77 // Private bits we only need internally.
78 namespace
79 {
80     const UnixSignals&
81     GetUnixSignals ()
82     {
83         static process_linux::LinuxSignals signals;
84         return signals;
85     }
86 
87     Error
88     ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch)
89     {
90         // Grab process info for the running process.
91         ProcessInstanceInfo process_info;
92         if (!platform.GetProcessInfo (pid, process_info))
93             return Error("failed to get process info");
94 
95         // Resolve the executable module.
96         ModuleSP exe_module_sp;
97         ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
98         FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ());
99         Error error = platform.ResolveExecutable(
100             exe_module_spec,
101             exe_module_sp,
102             executable_search_paths.GetSize () ? &executable_search_paths : NULL);
103 
104         if (!error.Success ())
105             return error;
106 
107         // Check if we've got our architecture from the exe_module.
108         arch = exe_module_sp->GetArchitecture ();
109         if (arch.IsValid ())
110             return Error();
111         else
112             return Error("failed to retrieve a valid architecture from the exe module");
113     }
114 
115     void
116     DisplayBytes (StreamString &s, void *bytes, uint32_t count)
117     {
118         uint8_t *ptr = (uint8_t *)bytes;
119         const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
120         for(uint32_t i=0; i<loop_count; i++)
121         {
122             s.Printf ("[%x]", *ptr);
123             ptr++;
124         }
125     }
126 
127     void
128     PtraceDisplayBytes(int &req, void *data, size_t data_size)
129     {
130         StreamString buf;
131         Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (
132                     POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE));
133 
134         if (verbose_log)
135         {
136             switch(req)
137             {
138             case PTRACE_POKETEXT:
139             {
140                 DisplayBytes(buf, &data, 8);
141                 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData());
142                 break;
143             }
144             case PTRACE_POKEDATA:
145             {
146                 DisplayBytes(buf, &data, 8);
147                 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData());
148                 break;
149             }
150             case PTRACE_POKEUSER:
151             {
152                 DisplayBytes(buf, &data, 8);
153                 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData());
154                 break;
155             }
156             case PTRACE_SETREGS:
157             {
158                 DisplayBytes(buf, data, data_size);
159                 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData());
160                 break;
161             }
162             case PTRACE_SETFPREGS:
163             {
164                 DisplayBytes(buf, data, data_size);
165                 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData());
166                 break;
167             }
168             case PTRACE_SETSIGINFO:
169             {
170                 DisplayBytes(buf, data, sizeof(siginfo_t));
171                 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData());
172                 break;
173             }
174             case PTRACE_SETREGSET:
175             {
176                 // Extract iov_base from data, which is a pointer to the struct IOVEC
177                 DisplayBytes(buf, *(void **)data, data_size);
178                 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData());
179                 break;
180             }
181             default:
182             {
183             }
184             }
185         }
186     }
187 
188     //------------------------------------------------------------------------------
189     // Static implementations of NativeProcessLinux::ReadMemory and
190     // NativeProcessLinux::WriteMemory.  This enables mutual recursion between these
191     // functions without needed to go thru the thread funnel.
192 
193     size_t
194     DoReadMemory(
195         lldb::pid_t pid,
196         lldb::addr_t vm_addr,
197         void *buf,
198         size_t size,
199         Error &error)
200     {
201         // ptrace word size is determined by the host, not the child
202         static const unsigned word_size = sizeof(void*);
203         unsigned char *dst = static_cast<unsigned char*>(buf);
204         size_t bytes_read;
205         size_t remainder;
206         long data;
207 
208         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
209         if (log)
210             ProcessPOSIXLog::IncNestLevel();
211         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
212             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__,
213                     pid, word_size, (void*)vm_addr, buf, size);
214 
215         assert(sizeof(data) >= word_size);
216         for (bytes_read = 0; bytes_read < size; bytes_read += remainder)
217         {
218             data = NativeProcessLinux::PtraceWrapper(PTRACE_PEEKDATA, pid, (void*)vm_addr, nullptr, 0, error);
219             if (error.Fail())
220             {
221                 if (log)
222                     ProcessPOSIXLog::DecNestLevel();
223                 return bytes_read;
224             }
225 
226             remainder = size - bytes_read;
227             remainder = remainder > word_size ? word_size : remainder;
228 
229             // Copy the data into our buffer
230             for (unsigned i = 0; i < remainder; ++i)
231                 dst[i] = ((data >> i*8) & 0xFF);
232 
233             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
234                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
235                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
236                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
237             {
238                 uintptr_t print_dst = 0;
239                 // Format bytes from data by moving into print_dst for log output
240                 for (unsigned i = 0; i < remainder; ++i)
241                     print_dst |= (((data >> i*8) & 0xFF) << i*8);
242                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
243                         (void*)vm_addr, print_dst, (unsigned long)data);
244             }
245 
246             vm_addr += word_size;
247             dst += word_size;
248         }
249 
250         if (log)
251             ProcessPOSIXLog::DecNestLevel();
252         return bytes_read;
253     }
254 
255     size_t
256     DoWriteMemory(
257         lldb::pid_t pid,
258         lldb::addr_t vm_addr,
259         const void *buf,
260         size_t size,
261         Error &error)
262     {
263         // ptrace word size is determined by the host, not the child
264         static const unsigned word_size = sizeof(void*);
265         const unsigned char *src = static_cast<const unsigned char*>(buf);
266         size_t bytes_written = 0;
267         size_t remainder;
268 
269         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
270         if (log)
271             ProcessPOSIXLog::IncNestLevel();
272         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
273             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__,
274                     pid, word_size, (void*)vm_addr, buf, size);
275 
276         for (bytes_written = 0; bytes_written < size; bytes_written += remainder)
277         {
278             remainder = size - bytes_written;
279             remainder = remainder > word_size ? word_size : remainder;
280 
281             if (remainder == word_size)
282             {
283                 unsigned long data = 0;
284                 assert(sizeof(data) >= word_size);
285                 for (unsigned i = 0; i < word_size; ++i)
286                     data |= (unsigned long)src[i] << i*8;
287 
288                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
289                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
290                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
291                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
292                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
293                             (void*)vm_addr, *(const unsigned long*)src, data);
294 
295                 if (NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data, 0, error))
296                 {
297                     if (log)
298                         ProcessPOSIXLog::DecNestLevel();
299                     return bytes_written;
300                 }
301             }
302             else
303             {
304                 unsigned char buff[8];
305                 if (DoReadMemory(pid, vm_addr,
306                                 buff, word_size, error) != word_size)
307                 {
308                     if (log)
309                         ProcessPOSIXLog::DecNestLevel();
310                     return bytes_written;
311                 }
312 
313                 memcpy(buff, src, remainder);
314 
315                 if (DoWriteMemory(pid, vm_addr,
316                                 buff, word_size, error) != word_size)
317                 {
318                     if (log)
319                         ProcessPOSIXLog::DecNestLevel();
320                     return bytes_written;
321                 }
322 
323                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
324                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
325                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
326                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
327                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
328                             (void*)vm_addr, *(const unsigned long*)src, *(unsigned long*)buff);
329             }
330 
331             vm_addr += word_size;
332             src += word_size;
333         }
334         if (log)
335             ProcessPOSIXLog::DecNestLevel();
336         return bytes_written;
337     }
338 
339     //------------------------------------------------------------------------------
340     /// @class ReadOperation
341     /// @brief Implements NativeProcessLinux::ReadMemory.
342     class ReadOperation : public NativeProcessLinux::Operation
343     {
344     public:
345         ReadOperation(
346             lldb::addr_t addr,
347             void *buff,
348             size_t size,
349             size_t &result) :
350             Operation (),
351             m_addr (addr),
352             m_buff (buff),
353             m_size (size),
354             m_result (result)
355             {
356             }
357 
358         void Execute (NativeProcessLinux *process) override;
359 
360     private:
361         lldb::addr_t m_addr;
362         void *m_buff;
363         size_t m_size;
364         size_t &m_result;
365     };
366 
367     void
368     ReadOperation::Execute (NativeProcessLinux *process)
369     {
370         m_result = DoReadMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
371     }
372 
373     //------------------------------------------------------------------------------
374     /// @class WriteOperation
375     /// @brief Implements NativeProcessLinux::WriteMemory.
376     class WriteOperation : public NativeProcessLinux::Operation
377     {
378     public:
379         WriteOperation(
380             lldb::addr_t addr,
381             const void *buff,
382             size_t size,
383             size_t &result) :
384             Operation (),
385             m_addr (addr),
386             m_buff (buff),
387             m_size (size),
388             m_result (result)
389             {
390             }
391 
392         void Execute (NativeProcessLinux *process) override;
393 
394     private:
395         lldb::addr_t m_addr;
396         const void *m_buff;
397         size_t m_size;
398         size_t &m_result;
399     };
400 
401     void
402     WriteOperation::Execute(NativeProcessLinux *process)
403     {
404         m_result = DoWriteMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
405     }
406 
407     //------------------------------------------------------------------------------
408     /// @class ResumeOperation
409     /// @brief Implements NativeProcessLinux::Resume.
410     class ResumeOperation : public NativeProcessLinux::Operation
411     {
412     public:
413         ResumeOperation(lldb::tid_t tid, uint32_t signo) :
414             m_tid(tid), m_signo(signo) { }
415 
416         void Execute(NativeProcessLinux *monitor) override;
417 
418     private:
419         lldb::tid_t m_tid;
420         uint32_t m_signo;
421     };
422 
423     void
424     ResumeOperation::Execute(NativeProcessLinux *monitor)
425     {
426         intptr_t data = 0;
427 
428         if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
429             data = m_signo;
430 
431         NativeProcessLinux::PtraceWrapper(PTRACE_CONT, m_tid, nullptr, (void*)data, 0, m_error);
432         if (m_error.Fail())
433         {
434             Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
435 
436             if (log)
437                 log->Printf ("ResumeOperation (%"  PRIu64 ") failed: %s", m_tid, m_error.AsCString());
438         }
439     }
440 
441     //------------------------------------------------------------------------------
442     /// @class SingleStepOperation
443     /// @brief Implements NativeProcessLinux::SingleStep.
444     class SingleStepOperation : public NativeProcessLinux::Operation
445     {
446     public:
447         SingleStepOperation(lldb::tid_t tid, uint32_t signo)
448             : m_tid(tid), m_signo(signo) { }
449 
450         void Execute(NativeProcessLinux *monitor) override;
451 
452     private:
453         lldb::tid_t m_tid;
454         uint32_t m_signo;
455     };
456 
457     void
458     SingleStepOperation::Execute(NativeProcessLinux *monitor)
459     {
460         intptr_t data = 0;
461 
462         if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
463             data = m_signo;
464 
465         NativeProcessLinux::PtraceWrapper(PTRACE_SINGLESTEP, m_tid, nullptr, (void*)data, 0, m_error);
466     }
467 
468     //------------------------------------------------------------------------------
469     /// @class SiginfoOperation
470     /// @brief Implements NativeProcessLinux::GetSignalInfo.
471     class SiginfoOperation : public NativeProcessLinux::Operation
472     {
473     public:
474         SiginfoOperation(lldb::tid_t tid, void *info)
475             : m_tid(tid), m_info(info) { }
476 
477         void Execute(NativeProcessLinux *monitor) override;
478 
479     private:
480         lldb::tid_t m_tid;
481         void *m_info;
482     };
483 
484     void
485     SiginfoOperation::Execute(NativeProcessLinux *monitor)
486     {
487         NativeProcessLinux::PtraceWrapper(PTRACE_GETSIGINFO, m_tid, nullptr, m_info, 0, m_error);
488     }
489 
490     //------------------------------------------------------------------------------
491     /// @class EventMessageOperation
492     /// @brief Implements NativeProcessLinux::GetEventMessage.
493     class EventMessageOperation : public NativeProcessLinux::Operation
494     {
495     public:
496         EventMessageOperation(lldb::tid_t tid, unsigned long *message)
497             : m_tid(tid), m_message(message) { }
498 
499         void Execute(NativeProcessLinux *monitor) override;
500 
501     private:
502         lldb::tid_t m_tid;
503         unsigned long *m_message;
504     };
505 
506     void
507     EventMessageOperation::Execute(NativeProcessLinux *monitor)
508     {
509         NativeProcessLinux::PtraceWrapper(PTRACE_GETEVENTMSG, m_tid, nullptr, m_message, 0, m_error);
510     }
511 
512     class DetachOperation : public NativeProcessLinux::Operation
513     {
514     public:
515         DetachOperation(lldb::tid_t tid) : m_tid(tid) { }
516 
517         void Execute(NativeProcessLinux *monitor) override;
518 
519     private:
520         lldb::tid_t m_tid;
521     };
522 
523     void
524     DetachOperation::Execute(NativeProcessLinux *monitor)
525     {
526         NativeProcessLinux::PtraceWrapper(PTRACE_DETACH, m_tid, nullptr, 0, 0, m_error);
527     }
528 } // end of anonymous namespace
529 
530 // Simple helper function to ensure flags are enabled on the given file
531 // descriptor.
532 static Error
533 EnsureFDFlags(int fd, int flags)
534 {
535     Error error;
536 
537     int status = fcntl(fd, F_GETFL);
538     if (status == -1)
539     {
540         error.SetErrorToErrno();
541         return error;
542     }
543 
544     if (fcntl(fd, F_SETFL, status | flags) == -1)
545     {
546         error.SetErrorToErrno();
547         return error;
548     }
549 
550     return error;
551 }
552 
553 // This class encapsulates the privileged thread which performs all ptrace and wait operations on
554 // the inferior. The thread consists of a main loop which waits for events and processes them
555 //   - SIGCHLD (delivered over a signalfd file descriptor): These signals notify us of events in
556 //     the inferior process. Upon receiving this signal we do a waitpid to get more information
557 //     and dispatch to NativeProcessLinux::MonitorCallback.
558 //   - requests for ptrace operations: These initiated via the DoOperation method, which funnels
559 //     them to the Monitor thread via m_operation member. The Monitor thread is signaled over a
560 //     pipe, and the completion of the operation is signalled over the semaphore.
561 //   - thread exit event: this is signaled from the Monitor destructor by closing the write end
562 //     of the command pipe.
563 class NativeProcessLinux::Monitor
564 {
565 private:
566     // The initial monitor operation (launch or attach). It returns a inferior process id.
567     std::unique_ptr<InitialOperation> m_initial_operation_up;
568 
569     ::pid_t                           m_child_pid = -1;
570     NativeProcessLinux              * m_native_process;
571 
572     enum { READ, WRITE };
573     int        m_pipefd[2] = {-1, -1};
574     int        m_signal_fd = -1;
575     HostThread m_thread;
576 
577     // current operation which must be executed on the priviliged thread
578     Mutex      m_operation_mutex;
579     Operation *m_operation = nullptr;
580     sem_t      m_operation_sem;
581     Error      m_operation_error;
582 
583     unsigned   m_operation_nesting_level = 0;
584 
585     static constexpr char operation_command   = 'o';
586     static constexpr char begin_block_command = '{';
587     static constexpr char end_block_command   = '}';
588 
589     void
590     HandleSignals();
591 
592     void
593     HandleWait();
594 
595     // Returns true if the thread should exit.
596     bool
597     HandleCommands();
598 
599     void
600     MainLoop();
601 
602     static void *
603     RunMonitor(void *arg);
604 
605     Error
606     WaitForAck();
607 
608     void
609     BeginOperationBlock()
610     {
611         write(m_pipefd[WRITE], &begin_block_command, sizeof operation_command);
612         WaitForAck();
613     }
614 
615     void
616     EndOperationBlock()
617     {
618         write(m_pipefd[WRITE], &end_block_command, sizeof operation_command);
619         WaitForAck();
620     }
621 
622 public:
623     Monitor(const InitialOperation &initial_operation,
624             NativeProcessLinux *native_process)
625         : m_initial_operation_up(new InitialOperation(initial_operation)),
626           m_native_process(native_process)
627     {
628         sem_init(&m_operation_sem, 0, 0);
629     }
630 
631     ~Monitor();
632 
633     Error
634     Initialize();
635 
636     void
637     Terminate();
638 
639     void
640     DoOperation(Operation *op);
641 
642     class ScopedOperationLock {
643         Monitor &m_monitor;
644 
645     public:
646         ScopedOperationLock(Monitor &monitor)
647             : m_monitor(monitor)
648         { m_monitor.BeginOperationBlock(); }
649 
650         ~ScopedOperationLock()
651         { m_monitor.EndOperationBlock(); }
652     };
653 };
654 constexpr char NativeProcessLinux::Monitor::operation_command;
655 constexpr char NativeProcessLinux::Monitor::begin_block_command;
656 constexpr char NativeProcessLinux::Monitor::end_block_command;
657 
658 Error
659 NativeProcessLinux::Monitor::Initialize()
660 {
661     Error error;
662 
663     // We get a SIGCHLD every time something interesting happens with the inferior. We shall be
664     // listening for these signals over a signalfd file descriptors. This allows us to wait for
665     // multiple kinds of events with select.
666     sigset_t signals;
667     sigemptyset(&signals);
668     sigaddset(&signals, SIGCHLD);
669     m_signal_fd = signalfd(-1, &signals, SFD_NONBLOCK | SFD_CLOEXEC);
670     if (m_signal_fd < 0)
671     {
672         return Error("NativeProcessLinux::Monitor::%s failed due to signalfd failure. Monitoring the inferior will be impossible: %s",
673                     __FUNCTION__, strerror(errno));
674 
675     }
676 
677     if (pipe2(m_pipefd, O_CLOEXEC) == -1)
678     {
679         error.SetErrorToErrno();
680         return error;
681     }
682 
683     if ((error = EnsureFDFlags(m_pipefd[READ], O_NONBLOCK)).Fail()) {
684         return error;
685     }
686 
687     static const char g_thread_name[] = "lldb.process.nativelinux.monitor";
688     m_thread = ThreadLauncher::LaunchThread(g_thread_name, Monitor::RunMonitor, this, nullptr);
689     if (!m_thread.IsJoinable())
690         return Error("Failed to create monitor thread for NativeProcessLinux.");
691 
692     // Wait for initial operation to complete.
693     return WaitForAck();
694 }
695 
696 void
697 NativeProcessLinux::Monitor::DoOperation(Operation *op)
698 {
699     if (m_thread.EqualsThread(pthread_self())) {
700         // If we're on the Monitor thread, we can simply execute the operation.
701         op->Execute(m_native_process);
702         return;
703     }
704 
705     // Otherwise we need to pass the operation to the Monitor thread so it can handle it.
706     Mutex::Locker lock(m_operation_mutex);
707 
708     m_operation = op;
709 
710     // notify the thread that an operation is ready to be processed
711     write(m_pipefd[WRITE], &operation_command, sizeof operation_command);
712 
713     WaitForAck();
714 }
715 
716 void
717 NativeProcessLinux::Monitor::Terminate()
718 {
719     if (m_pipefd[WRITE] >= 0)
720     {
721         close(m_pipefd[WRITE]);
722         m_pipefd[WRITE] = -1;
723     }
724     if (m_thread.IsJoinable())
725         m_thread.Join(nullptr);
726 }
727 
728 NativeProcessLinux::Monitor::~Monitor()
729 {
730     Terminate();
731     if (m_pipefd[READ] >= 0)
732         close(m_pipefd[READ]);
733     if (m_signal_fd >= 0)
734         close(m_signal_fd);
735     sem_destroy(&m_operation_sem);
736 }
737 
738 void
739 NativeProcessLinux::Monitor::HandleSignals()
740 {
741     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
742 
743     // We don't really care about the content of the SIGCHLD siginfo structure, as we will get
744     // all the information from waitpid(). We just need to read all the signals so that we can
745     // sleep next time we reach select().
746     while (true)
747     {
748         signalfd_siginfo info;
749         ssize_t size = read(m_signal_fd, &info, sizeof info);
750         if (size == -1)
751         {
752             if (errno == EAGAIN || errno == EWOULDBLOCK)
753                 break; // We are done.
754             if (errno == EINTR)
755                 continue;
756             if (log)
757                 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor failed: %s",
758                         __FUNCTION__, strerror(errno));
759             break;
760         }
761         if (size != sizeof info)
762         {
763             // We got incomplete information structure. This should not happen, let's just log
764             // that.
765             if (log)
766                 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor returned incomplete data: "
767                         "structure size is %zd, read returned %zd bytes",
768                         __FUNCTION__, sizeof info, size);
769             break;
770         }
771         if (log)
772             log->Printf("NativeProcessLinux::Monitor::%s received signal %s(%d).", __FUNCTION__,
773                 Host::GetSignalAsCString(info.ssi_signo), info.ssi_signo);
774     }
775 }
776 
777 void
778 NativeProcessLinux::Monitor::HandleWait()
779 {
780     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
781     // Process all pending waitpid notifications.
782     while (true)
783     {
784         int status = -1;
785         ::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG);
786 
787         if (wait_pid == 0)
788             break; // We are done.
789 
790         if (wait_pid == -1)
791         {
792             if (errno == EINTR)
793                 continue;
794 
795             if (log)
796               log->Printf("NativeProcessLinux::Monitor::%s waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG) failed: %s",
797                       __FUNCTION__, strerror(errno));
798             break;
799         }
800 
801         bool exited = false;
802         int signal = 0;
803         int exit_status = 0;
804         const char *status_cstr = NULL;
805         if (WIFSTOPPED(status))
806         {
807             signal = WSTOPSIG(status);
808             status_cstr = "STOPPED";
809         }
810         else if (WIFEXITED(status))
811         {
812             exit_status = WEXITSTATUS(status);
813             status_cstr = "EXITED";
814             exited = true;
815         }
816         else if (WIFSIGNALED(status))
817         {
818             signal = WTERMSIG(status);
819             status_cstr = "SIGNALED";
820             if (wait_pid == m_child_pid) {
821                 exited = true;
822                 exit_status = -1;
823             }
824         }
825         else
826             status_cstr = "(\?\?\?)";
827 
828         if (log)
829             log->Printf("NativeProcessLinux::Monitor::%s: waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG)"
830                 "=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i",
831                 __FUNCTION__, wait_pid, status, status_cstr, signal, exit_status);
832 
833         m_native_process->MonitorCallback (wait_pid, exited, signal, exit_status);
834     }
835 }
836 
837 bool
838 NativeProcessLinux::Monitor::HandleCommands()
839 {
840     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
841 
842     while (true)
843     {
844         char command = 0;
845         ssize_t size = read(m_pipefd[READ], &command, sizeof command);
846         if (size == -1)
847         {
848             if (errno == EAGAIN || errno == EWOULDBLOCK)
849                 return false;
850             if (errno == EINTR)
851                 continue;
852             if (log)
853                 log->Printf("NativeProcessLinux::Monitor::%s exiting because read from command file descriptor failed: %s", __FUNCTION__, strerror(errno));
854             return true;
855         }
856         if (size == 0) // end of file - write end closed
857         {
858             if (log)
859                 log->Printf("NativeProcessLinux::Monitor::%s exit command received, exiting...", __FUNCTION__);
860             assert(m_operation_nesting_level == 0 && "Unbalanced begin/end block commands detected");
861             return true; // We are done.
862         }
863 
864         switch (command)
865         {
866         case operation_command:
867             m_operation->Execute(m_native_process);
868             break;
869         case begin_block_command:
870             ++m_operation_nesting_level;
871             break;
872         case end_block_command:
873             assert(m_operation_nesting_level > 0);
874             --m_operation_nesting_level;
875             break;
876         default:
877             if (log)
878                 log->Printf("NativeProcessLinux::Monitor::%s received unknown command '%c'",
879                         __FUNCTION__, command);
880         }
881 
882         // notify calling thread that the command has been processed
883         sem_post(&m_operation_sem);
884     }
885 }
886 
887 void
888 NativeProcessLinux::Monitor::MainLoop()
889 {
890     ::pid_t child_pid = (*m_initial_operation_up)(m_operation_error);
891     m_initial_operation_up.reset();
892     m_child_pid = child_pid;
893     sem_post(&m_operation_sem);
894 
895     while (true)
896     {
897         fd_set fds;
898         FD_ZERO(&fds);
899         // Only process waitpid events if we are outside of an operation block. Any pending
900         // events will be processed after we leave the block.
901         if (m_operation_nesting_level == 0)
902             FD_SET(m_signal_fd, &fds);
903         FD_SET(m_pipefd[READ], &fds);
904 
905         int max_fd = std::max(m_signal_fd, m_pipefd[READ]) + 1;
906         int r = select(max_fd, &fds, nullptr, nullptr, nullptr);
907         if (r < 0)
908         {
909             Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
910             if (log)
911                 log->Printf("NativeProcessLinux::Monitor::%s exiting because select failed: %s",
912                         __FUNCTION__, strerror(errno));
913             return;
914         }
915 
916         if (FD_ISSET(m_pipefd[READ], &fds))
917         {
918             if (HandleCommands())
919                 return;
920         }
921 
922         if (FD_ISSET(m_signal_fd, &fds))
923         {
924             HandleSignals();
925             HandleWait();
926         }
927     }
928 }
929 
930 Error
931 NativeProcessLinux::Monitor::WaitForAck()
932 {
933     Error error;
934     while (sem_wait(&m_operation_sem) != 0)
935     {
936         if (errno == EINTR)
937             continue;
938 
939         error.SetErrorToErrno();
940         return error;
941     }
942 
943     return m_operation_error;
944 }
945 
946 void *
947 NativeProcessLinux::Monitor::RunMonitor(void *arg)
948 {
949     static_cast<Monitor *>(arg)->MainLoop();
950     return nullptr;
951 }
952 
953 
954 NativeProcessLinux::LaunchArgs::LaunchArgs(Module *module,
955                                        char const **argv,
956                                        char const **envp,
957                                        const FileSpec &stdin_file_spec,
958                                        const FileSpec &stdout_file_spec,
959                                        const FileSpec &stderr_file_spec,
960                                        const FileSpec &working_dir,
961                                        const ProcessLaunchInfo &launch_info)
962     : m_module(module),
963       m_argv(argv),
964       m_envp(envp),
965       m_stdin_file_spec(stdin_file_spec),
966       m_stdout_file_spec(stdout_file_spec),
967       m_stderr_file_spec(stderr_file_spec),
968       m_working_dir(working_dir),
969       m_launch_info(launch_info)
970 {
971 }
972 
973 NativeProcessLinux::LaunchArgs::~LaunchArgs()
974 { }
975 
976 // -----------------------------------------------------------------------------
977 // Public Static Methods
978 // -----------------------------------------------------------------------------
979 
980 Error
981 NativeProcessLinux::LaunchProcess (
982     Module *exe_module,
983     ProcessLaunchInfo &launch_info,
984     NativeProcessProtocol::NativeDelegate &native_delegate,
985     NativeProcessProtocolSP &native_process_sp)
986 {
987     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
988 
989     Error error;
990 
991     // Verify the working directory is valid if one was specified.
992     FileSpec working_dir{launch_info.GetWorkingDirectory()};
993     if (working_dir &&
994             (!working_dir.ResolvePath() ||
995              working_dir.GetFileType() != FileSpec::eFileTypeDirectory))
996     {
997         error.SetErrorStringWithFormat ("No such file or directory: %s",
998                 working_dir.GetCString());
999         return error;
1000     }
1001 
1002     const FileAction *file_action;
1003 
1004     // Default of empty will mean to use existing open file descriptors.
1005     FileSpec stdin_file_spec{};
1006     FileSpec stdout_file_spec{};
1007     FileSpec stderr_file_spec{};
1008 
1009     file_action = launch_info.GetFileActionForFD (STDIN_FILENO);
1010     if (file_action)
1011         stdin_file_spec = file_action->GetFileSpec();
1012 
1013     file_action = launch_info.GetFileActionForFD (STDOUT_FILENO);
1014     if (file_action)
1015         stdout_file_spec = file_action->GetFileSpec();
1016 
1017     file_action = launch_info.GetFileActionForFD (STDERR_FILENO);
1018     if (file_action)
1019         stderr_file_spec = file_action->GetFileSpec();
1020 
1021     if (log)
1022     {
1023         if (stdin_file_spec)
1024             log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'",
1025                     __FUNCTION__, stdin_file_spec.GetCString());
1026         else
1027             log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__);
1028 
1029         if (stdout_file_spec)
1030             log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'",
1031                     __FUNCTION__, stdout_file_spec.GetCString());
1032         else
1033             log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__);
1034 
1035         if (stderr_file_spec)
1036             log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'",
1037                     __FUNCTION__, stderr_file_spec.GetCString());
1038         else
1039             log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__);
1040     }
1041 
1042     // Create the NativeProcessLinux in launch mode.
1043     native_process_sp.reset (new NativeProcessLinux ());
1044 
1045     if (log)
1046     {
1047         int i = 0;
1048         for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i)
1049         {
1050             log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr");
1051             ++i;
1052         }
1053     }
1054 
1055     if (!native_process_sp->RegisterNativeDelegate (native_delegate))
1056     {
1057         native_process_sp.reset ();
1058         error.SetErrorStringWithFormat ("failed to register the native delegate");
1059         return error;
1060     }
1061 
1062     std::static_pointer_cast<NativeProcessLinux> (native_process_sp)->LaunchInferior (
1063             exe_module,
1064             launch_info.GetArguments ().GetConstArgumentVector (),
1065             launch_info.GetEnvironmentEntries ().GetConstArgumentVector (),
1066             stdin_file_spec,
1067             stdout_file_spec,
1068             stderr_file_spec,
1069             working_dir,
1070             launch_info,
1071             error);
1072 
1073     if (error.Fail ())
1074     {
1075         native_process_sp.reset ();
1076         if (log)
1077             log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ());
1078         return error;
1079     }
1080 
1081     launch_info.SetProcessID (native_process_sp->GetID ());
1082 
1083     return error;
1084 }
1085 
1086 Error
1087 NativeProcessLinux::AttachToProcess (
1088     lldb::pid_t pid,
1089     NativeProcessProtocol::NativeDelegate &native_delegate,
1090     NativeProcessProtocolSP &native_process_sp)
1091 {
1092     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1093     if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE))
1094         log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid);
1095 
1096     // Grab the current platform architecture.  This should be Linux,
1097     // since this code is only intended to run on a Linux host.
1098     PlatformSP platform_sp (Platform::GetHostPlatform ());
1099     if (!platform_sp)
1100         return Error("failed to get a valid default platform");
1101 
1102     // Retrieve the architecture for the running process.
1103     ArchSpec process_arch;
1104     Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch);
1105     if (!error.Success ())
1106         return error;
1107 
1108     std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ());
1109 
1110     if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate))
1111     {
1112         error.SetErrorStringWithFormat ("failed to register the native delegate");
1113         return error;
1114     }
1115 
1116     native_process_linux_sp->AttachToInferior (pid, error);
1117     if (!error.Success ())
1118         return error;
1119 
1120     native_process_sp = native_process_linux_sp;
1121     return error;
1122 }
1123 
1124 // -----------------------------------------------------------------------------
1125 // Public Instance Methods
1126 // -----------------------------------------------------------------------------
1127 
1128 NativeProcessLinux::NativeProcessLinux () :
1129     NativeProcessProtocol (LLDB_INVALID_PROCESS_ID),
1130     m_arch (),
1131     m_supports_mem_region (eLazyBoolCalculate),
1132     m_mem_region_cache (),
1133     m_mem_region_cache_mutex ()
1134 {
1135 }
1136 
1137 //------------------------------------------------------------------------------
1138 // NativeProcessLinux spawns a new thread which performs all operations on the inferior process.
1139 // Refer to Monitor and Operation classes to see why this is necessary.
1140 //------------------------------------------------------------------------------
1141 void
1142 NativeProcessLinux::LaunchInferior (
1143     Module *module,
1144     const char *argv[],
1145     const char *envp[],
1146     const FileSpec &stdin_file_spec,
1147     const FileSpec &stdout_file_spec,
1148     const FileSpec &stderr_file_spec,
1149     const FileSpec &working_dir,
1150     const ProcessLaunchInfo &launch_info,
1151     Error &error)
1152 {
1153     if (module)
1154         m_arch = module->GetArchitecture ();
1155 
1156     SetState (eStateLaunching);
1157 
1158     std::unique_ptr<LaunchArgs> args(
1159         new LaunchArgs(module, argv, envp,
1160                        stdin_file_spec,
1161                        stdout_file_spec,
1162                        stderr_file_spec,
1163                        working_dir,
1164                        launch_info));
1165 
1166     StartMonitorThread ([&] (Error &e) { return Launch(args.get(), e); }, error);
1167     if (!error.Success ())
1168         return;
1169 }
1170 
1171 void
1172 NativeProcessLinux::AttachToInferior (lldb::pid_t pid, Error &error)
1173 {
1174     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1175     if (log)
1176         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid);
1177 
1178     // We can use the Host for everything except the ResolveExecutable portion.
1179     PlatformSP platform_sp = Platform::GetHostPlatform ();
1180     if (!platform_sp)
1181     {
1182         if (log)
1183             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid);
1184         error.SetErrorString ("no default platform available");
1185         return;
1186     }
1187 
1188     // Gather info about the process.
1189     ProcessInstanceInfo process_info;
1190     if (!platform_sp->GetProcessInfo (pid, process_info))
1191     {
1192         if (log)
1193             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid);
1194         error.SetErrorString ("failed to get process info");
1195         return;
1196     }
1197 
1198     // Resolve the executable module
1199     ModuleSP exe_module_sp;
1200     FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths());
1201     ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
1202     error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp,
1203                                            executable_search_paths.GetSize() ? &executable_search_paths : NULL);
1204     if (!error.Success())
1205         return;
1206 
1207     // Set the architecture to the exe architecture.
1208     m_arch = exe_module_sp->GetArchitecture();
1209     if (log)
1210         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ());
1211 
1212     m_pid = pid;
1213     SetState(eStateAttaching);
1214 
1215     StartMonitorThread ([=] (Error &e) { return Attach(pid, e); }, error);
1216     if (!error.Success ())
1217         return;
1218 }
1219 
1220 void
1221 NativeProcessLinux::Terminate ()
1222 {
1223     m_monitor_up->Terminate();
1224 }
1225 
1226 ::pid_t
1227 NativeProcessLinux::Launch(LaunchArgs *args, Error &error)
1228 {
1229     assert (args && "null args");
1230 
1231     const char **argv = args->m_argv;
1232     const char **envp = args->m_envp;
1233     const FileSpec working_dir = args->m_working_dir;
1234 
1235     lldb_utility::PseudoTerminal terminal;
1236     const size_t err_len = 1024;
1237     char err_str[err_len];
1238     lldb::pid_t pid;
1239     NativeThreadProtocolSP thread_sp;
1240 
1241     lldb::ThreadSP inferior;
1242 
1243     // Propagate the environment if one is not supplied.
1244     if (envp == NULL || envp[0] == NULL)
1245         envp = const_cast<const char **>(environ);
1246 
1247     if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1))
1248     {
1249         error.SetErrorToGenericError();
1250         error.SetErrorStringWithFormat("Process fork failed: %s", err_str);
1251         return -1;
1252     }
1253 
1254     // Recognized child exit status codes.
1255     enum {
1256         ePtraceFailed = 1,
1257         eDupStdinFailed,
1258         eDupStdoutFailed,
1259         eDupStderrFailed,
1260         eChdirFailed,
1261         eExecFailed,
1262         eSetGidFailed
1263     };
1264 
1265     // Child process.
1266     if (pid == 0)
1267     {
1268         // FIXME consider opening a pipe between parent/child and have this forked child
1269         // send log info to parent re: launch status, in place of the log lines removed here.
1270 
1271         // Start tracing this child that is about to exec.
1272         NativeProcessLinux::PtraceWrapper(PTRACE_TRACEME, 0, nullptr, nullptr, 0, error);
1273         if (error.Fail())
1274             exit(ePtraceFailed);
1275 
1276         // terminal has already dupped the tty descriptors to stdin/out/err.
1277         // This closes original fd from which they were copied (and avoids
1278         // leaking descriptors to the debugged process.
1279         terminal.CloseSlaveFileDescriptor();
1280 
1281         // Do not inherit setgid powers.
1282         if (setgid(getgid()) != 0)
1283             exit(eSetGidFailed);
1284 
1285         // Attempt to have our own process group.
1286         if (setpgid(0, 0) != 0)
1287         {
1288             // FIXME log that this failed. This is common.
1289             // Don't allow this to prevent an inferior exec.
1290         }
1291 
1292         // Dup file descriptors if needed.
1293         if (args->m_stdin_file_spec)
1294             if (!DupDescriptor(args->m_stdin_file_spec, STDIN_FILENO, O_RDONLY))
1295                 exit(eDupStdinFailed);
1296 
1297         if (args->m_stdout_file_spec)
1298             if (!DupDescriptor(args->m_stdout_file_spec, STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
1299                 exit(eDupStdoutFailed);
1300 
1301         if (args->m_stderr_file_spec)
1302             if (!DupDescriptor(args->m_stderr_file_spec, STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
1303                 exit(eDupStderrFailed);
1304 
1305         // Close everything besides stdin, stdout, and stderr that has no file
1306         // action to avoid leaking
1307         for (int fd = 3; fd < sysconf(_SC_OPEN_MAX); ++fd)
1308             if (!args->m_launch_info.GetFileActionForFD(fd))
1309                 close(fd);
1310 
1311         // Change working directory
1312         if (working_dir && 0 != ::chdir(working_dir.GetCString()))
1313               exit(eChdirFailed);
1314 
1315         // Disable ASLR if requested.
1316         if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR))
1317         {
1318             const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS);
1319             if (old_personality == -1)
1320             {
1321                 // Can't retrieve Linux personality.  Cannot disable ASLR.
1322             }
1323             else
1324             {
1325                 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality);
1326                 if (new_personality == -1)
1327                 {
1328                     // Disabling ASLR failed.
1329                 }
1330                 else
1331                 {
1332                     // Disabling ASLR succeeded.
1333                 }
1334             }
1335         }
1336 
1337         // Execute.  We should never return...
1338         execve(argv[0],
1339                const_cast<char *const *>(argv),
1340                const_cast<char *const *>(envp));
1341 
1342         // ...unless exec fails.  In which case we definitely need to end the child here.
1343         exit(eExecFailed);
1344     }
1345 
1346     //
1347     // This is the parent code here.
1348     //
1349     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1350 
1351     // Wait for the child process to trap on its call to execve.
1352     ::pid_t wpid;
1353     int status;
1354     if ((wpid = waitpid(pid, &status, 0)) < 0)
1355     {
1356         error.SetErrorToErrno();
1357         if (log)
1358             log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s",
1359                     __FUNCTION__, error.AsCString ());
1360 
1361         // Mark the inferior as invalid.
1362         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1363         SetState (StateType::eStateInvalid);
1364 
1365         return -1;
1366     }
1367     else if (WIFEXITED(status))
1368     {
1369         // open, dup or execve likely failed for some reason.
1370         error.SetErrorToGenericError();
1371         switch (WEXITSTATUS(status))
1372         {
1373             case ePtraceFailed:
1374                 error.SetErrorString("Child ptrace failed.");
1375                 break;
1376             case eDupStdinFailed:
1377                 error.SetErrorString("Child open stdin failed.");
1378                 break;
1379             case eDupStdoutFailed:
1380                 error.SetErrorString("Child open stdout failed.");
1381                 break;
1382             case eDupStderrFailed:
1383                 error.SetErrorString("Child open stderr failed.");
1384                 break;
1385             case eChdirFailed:
1386                 error.SetErrorString("Child failed to set working directory.");
1387                 break;
1388             case eExecFailed:
1389                 error.SetErrorString("Child exec failed.");
1390                 break;
1391             case eSetGidFailed:
1392                 error.SetErrorString("Child setgid failed.");
1393                 break;
1394             default:
1395                 error.SetErrorString("Child returned unknown exit status.");
1396                 break;
1397         }
1398 
1399         if (log)
1400         {
1401             log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP",
1402                     __FUNCTION__,
1403                     WEXITSTATUS(status));
1404         }
1405 
1406         // Mark the inferior as invalid.
1407         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1408         SetState (StateType::eStateInvalid);
1409 
1410         return -1;
1411     }
1412     assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) &&
1413            "Could not sync with inferior process.");
1414 
1415     if (log)
1416         log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__);
1417 
1418     error = SetDefaultPtraceOpts(pid);
1419     if (error.Fail())
1420     {
1421         if (log)
1422             log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s",
1423                     __FUNCTION__, error.AsCString ());
1424 
1425         // Mark the inferior as invalid.
1426         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1427         SetState (StateType::eStateInvalid);
1428 
1429         return -1;
1430     }
1431 
1432     // Release the master terminal descriptor and pass it off to the
1433     // NativeProcessLinux instance.  Similarly stash the inferior pid.
1434     m_terminal_fd = terminal.ReleaseMasterFileDescriptor();
1435     m_pid = pid;
1436 
1437     // Set the terminal fd to be in non blocking mode (it simplifies the
1438     // implementation of ProcessLinux::GetSTDOUT to have a non-blocking
1439     // descriptor to read from).
1440     error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
1441     if (error.Fail())
1442     {
1443         if (log)
1444             log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s",
1445                     __FUNCTION__, error.AsCString ());
1446 
1447         // Mark the inferior as invalid.
1448         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1449         SetState (StateType::eStateInvalid);
1450 
1451         return -1;
1452     }
1453 
1454     if (log)
1455         log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid);
1456 
1457     thread_sp = AddThread (pid);
1458     assert (thread_sp && "AddThread() returned a nullptr thread");
1459     std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP);
1460     ThreadWasCreated(pid);
1461 
1462     // Let our process instance know the thread has stopped.
1463     SetCurrentThreadID (thread_sp->GetID ());
1464     SetState (StateType::eStateStopped);
1465 
1466     if (log)
1467     {
1468         if (error.Success ())
1469         {
1470             log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__);
1471         }
1472         else
1473         {
1474             log->Printf ("NativeProcessLinux::%s inferior launching failed: %s",
1475                 __FUNCTION__, error.AsCString ());
1476             return -1;
1477         }
1478     }
1479     return pid;
1480 }
1481 
1482 ::pid_t
1483 NativeProcessLinux::Attach(lldb::pid_t pid, Error &error)
1484 {
1485     lldb::ThreadSP inferior;
1486     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1487 
1488     // Use a map to keep track of the threads which we have attached/need to attach.
1489     Host::TidMap tids_to_attach;
1490     if (pid <= 1)
1491     {
1492         error.SetErrorToGenericError();
1493         error.SetErrorString("Attaching to process 1 is not allowed.");
1494         return -1;
1495     }
1496 
1497     while (Host::FindProcessThreads(pid, tids_to_attach))
1498     {
1499         for (Host::TidMap::iterator it = tids_to_attach.begin();
1500              it != tids_to_attach.end();)
1501         {
1502             if (it->second == false)
1503             {
1504                 lldb::tid_t tid = it->first;
1505 
1506                 // Attach to the requested process.
1507                 // An attach will cause the thread to stop with a SIGSTOP.
1508                 NativeProcessLinux::PtraceWrapper(PTRACE_ATTACH, tid, nullptr, nullptr, 0, error);
1509                 if (error.Fail())
1510                 {
1511                     // No such thread. The thread may have exited.
1512                     // More error handling may be needed.
1513                     if (error.GetError() == ESRCH)
1514                     {
1515                         it = tids_to_attach.erase(it);
1516                         continue;
1517                     }
1518                     else
1519                         return -1;
1520                 }
1521 
1522                 int status;
1523                 // Need to use __WALL otherwise we receive an error with errno=ECHLD
1524                 // At this point we should have a thread stopped if waitpid succeeds.
1525                 if ((status = waitpid(tid, NULL, __WALL)) < 0)
1526                 {
1527                     // No such thread. The thread may have exited.
1528                     // More error handling may be needed.
1529                     if (errno == ESRCH)
1530                     {
1531                         it = tids_to_attach.erase(it);
1532                         continue;
1533                     }
1534                     else
1535                     {
1536                         error.SetErrorToErrno();
1537                         return -1;
1538                     }
1539                 }
1540 
1541                 error = SetDefaultPtraceOpts(tid);
1542                 if (error.Fail())
1543                     return -1;
1544 
1545                 if (log)
1546                     log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid);
1547 
1548                 it->second = true;
1549 
1550                 // Create the thread, mark it as stopped.
1551                 NativeThreadProtocolSP thread_sp (AddThread (static_cast<lldb::tid_t> (tid)));
1552                 assert (thread_sp && "AddThread() returned a nullptr");
1553 
1554                 // This will notify this is a new thread and tell the system it is stopped.
1555                 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP);
1556                 ThreadWasCreated(tid);
1557                 SetCurrentThreadID (thread_sp->GetID ());
1558             }
1559 
1560             // move the loop forward
1561             ++it;
1562         }
1563     }
1564 
1565     if (tids_to_attach.size() > 0)
1566     {
1567         m_pid = pid;
1568         // Let our process instance know the thread has stopped.
1569         SetState (StateType::eStateStopped);
1570     }
1571     else
1572     {
1573         error.SetErrorToGenericError();
1574         error.SetErrorString("No such process.");
1575         return -1;
1576     }
1577 
1578     return pid;
1579 }
1580 
1581 Error
1582 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid)
1583 {
1584     long ptrace_opts = 0;
1585 
1586     // Have the child raise an event on exit.  This is used to keep the child in
1587     // limbo until it is destroyed.
1588     ptrace_opts |= PTRACE_O_TRACEEXIT;
1589 
1590     // Have the tracer trace threads which spawn in the inferior process.
1591     // TODO: if we want to support tracing the inferiors' child, add the
1592     // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
1593     ptrace_opts |= PTRACE_O_TRACECLONE;
1594 
1595     // Have the tracer notify us before execve returns
1596     // (needed to disable legacy SIGTRAP generation)
1597     ptrace_opts |= PTRACE_O_TRACEEXEC;
1598 
1599     Error error;
1600     NativeProcessLinux::PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts, 0, error);
1601     return error;
1602 }
1603 
1604 static ExitType convert_pid_status_to_exit_type (int status)
1605 {
1606     if (WIFEXITED (status))
1607         return ExitType::eExitTypeExit;
1608     else if (WIFSIGNALED (status))
1609         return ExitType::eExitTypeSignal;
1610     else if (WIFSTOPPED (status))
1611         return ExitType::eExitTypeStop;
1612     else
1613     {
1614         // We don't know what this is.
1615         return ExitType::eExitTypeInvalid;
1616     }
1617 }
1618 
1619 static int convert_pid_status_to_return_code (int status)
1620 {
1621     if (WIFEXITED (status))
1622         return WEXITSTATUS (status);
1623     else if (WIFSIGNALED (status))
1624         return WTERMSIG (status);
1625     else if (WIFSTOPPED (status))
1626         return WSTOPSIG (status);
1627     else
1628     {
1629         // We don't know what this is.
1630         return ExitType::eExitTypeInvalid;
1631     }
1632 }
1633 
1634 // Handles all waitpid events from the inferior process.
1635 void
1636 NativeProcessLinux::MonitorCallback(lldb::pid_t pid,
1637                                     bool exited,
1638                                     int signal,
1639                                     int status)
1640 {
1641     Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS));
1642 
1643     // Certain activities differ based on whether the pid is the tid of the main thread.
1644     const bool is_main_thread = (pid == GetID ());
1645 
1646     // Handle when the thread exits.
1647     if (exited)
1648     {
1649         if (log)
1650             log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %"  PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not");
1651 
1652         // This is a thread that exited.  Ensure we're not tracking it anymore.
1653         const bool thread_found = StopTrackingThread (pid);
1654 
1655         if (is_main_thread)
1656         {
1657             // We only set the exit status and notify the delegate if we haven't already set the process
1658             // state to an exited state.  We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8)
1659             // for the main thread.
1660             const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed);
1661             if (!already_notified)
1662             {
1663                 if (log)
1664                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ()));
1665                 // The main thread exited.  We're done monitoring.  Report to delegate.
1666                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
1667 
1668                 // Notify delegate that our process has exited.
1669                 SetState (StateType::eStateExited, true);
1670             }
1671             else
1672             {
1673                 if (log)
1674                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
1675             }
1676         }
1677         else
1678         {
1679             // Do we want to report to the delegate in this case?  I think not.  If this was an orderly
1680             // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal,
1681             // and we would have done an all-stop then.
1682             if (log)
1683                 log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
1684         }
1685         return;
1686     }
1687 
1688     // Get details on the signal raised.
1689     siginfo_t info;
1690     const auto err = GetSignalInfo(pid, &info);
1691     if (err.Success())
1692     {
1693         // We have retrieved the signal info.  Dispatch appropriately.
1694         if (info.si_signo == SIGTRAP)
1695             MonitorSIGTRAP(&info, pid);
1696         else
1697             MonitorSignal(&info, pid, exited);
1698     }
1699     else
1700     {
1701         if (err.GetError() == EINVAL)
1702         {
1703             // This is a group stop reception for this tid.
1704             // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the
1705             // tracee, triggering the group-stop mechanism. Normally receiving these would stop
1706             // the process, pending a SIGCONT. Simulating this state in a debugger is hard and is
1707             // generally not needed (one use case is debugging background task being managed by a
1708             // shell). For general use, it is sufficient to stop the process in a signal-delivery
1709             // stop which happens before the group stop. This done by MonitorSignal and works
1710             // correctly for all signals.
1711             if (log)
1712                 log->Printf("NativeProcessLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64 ". Transparent handling of group stops not supported, resuming the thread.", __FUNCTION__, GetID (), pid);
1713             Resume(pid, signal);
1714         }
1715         else
1716         {
1717             // ptrace(GETSIGINFO) failed (but not due to group-stop).
1718 
1719             // A return value of ESRCH means the thread/process is no longer on the system,
1720             // so it was killed somehow outside of our control.  Either way, we can't do anything
1721             // with it anymore.
1722 
1723             // Stop tracking the metadata for the thread since it's entirely off the system now.
1724             const bool thread_found = StopTrackingThread (pid);
1725 
1726             if (log)
1727                 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)",
1728                              __FUNCTION__, err.AsCString(), pid, signal, status, err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found");
1729 
1730             if (is_main_thread)
1731             {
1732                 // Notify the delegate - our process is not available but appears to have been killed outside
1733                 // our control.  Is eStateExited the right exit state in this case?
1734                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
1735                 SetState (StateType::eStateExited, true);
1736             }
1737             else
1738             {
1739                 // This thread was pulled out from underneath us.  Anything to do here? Do we want to do an all stop?
1740                 if (log)
1741                     log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid);
1742             }
1743         }
1744     }
1745 }
1746 
1747 void
1748 NativeProcessLinux::WaitForNewThread(::pid_t tid)
1749 {
1750     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1751 
1752     NativeThreadProtocolSP new_thread_sp = GetThreadByID(tid);
1753 
1754     if (new_thread_sp)
1755     {
1756         // We are already tracking the thread - we got the event on the new thread (see
1757         // MonitorSignal) before this one. We are done.
1758         return;
1759     }
1760 
1761     // The thread is not tracked yet, let's wait for it to appear.
1762     int status = -1;
1763     ::pid_t wait_pid;
1764     do
1765     {
1766         if (log)
1767             log->Printf ("NativeProcessLinux::%s() received thread creation event for tid %" PRIu32 ". tid not tracked yet, waiting for thread to appear...", __FUNCTION__, tid);
1768         wait_pid = waitpid(tid, &status, __WALL);
1769     }
1770     while (wait_pid == -1 && errno == EINTR);
1771     // Since we are waiting on a specific tid, this must be the creation event. But let's do
1772     // some checks just in case.
1773     if (wait_pid != tid) {
1774         if (log)
1775             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime", __FUNCTION__, tid);
1776         // The only way I know of this could happen is if the whole process was
1777         // SIGKILLed in the mean time. In any case, we can't do anything about that now.
1778         return;
1779     }
1780     if (WIFEXITED(status))
1781     {
1782         if (log)
1783             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " returned an 'exited' event. Not tracking the thread.", __FUNCTION__, tid);
1784         // Also a very improbable event.
1785         return;
1786     }
1787 
1788     siginfo_t info;
1789     Error error = GetSignalInfo(tid, &info);
1790     if (error.Fail())
1791     {
1792         if (log)
1793             log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime.", __FUNCTION__, tid);
1794         return;
1795     }
1796 
1797     if (((info.si_pid != 0) || (info.si_code != SI_USER)) && log)
1798     {
1799         // We should be getting a thread creation signal here, but we received something
1800         // else. There isn't much we can do about it now, so we will just log that. Since the
1801         // thread is alive and we are receiving events from it, we shall pretend that it was
1802         // created properly.
1803         log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " received unexpected signal with code %d from pid %d.", __FUNCTION__, tid, info.si_code, info.si_pid);
1804     }
1805 
1806     if (log)
1807         log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": tracking new thread tid %" PRIu32,
1808                  __FUNCTION__, GetID (), tid);
1809 
1810     new_thread_sp = AddThread(tid);
1811     std::static_pointer_cast<NativeThreadLinux> (new_thread_sp)->SetRunning ();
1812     Resume (tid, LLDB_INVALID_SIGNAL_NUMBER);
1813     ThreadWasCreated(tid);
1814 }
1815 
1816 void
1817 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid)
1818 {
1819     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1820     const bool is_main_thread = (pid == GetID ());
1821 
1822     assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!");
1823     if (!info)
1824         return;
1825 
1826     Mutex::Locker locker (m_threads_mutex);
1827 
1828     // See if we can find a thread for this signal.
1829     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
1830     if (!thread_sp)
1831     {
1832         if (log)
1833             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
1834     }
1835 
1836     switch (info->si_code)
1837     {
1838     // TODO: these two cases are required if we want to support tracing of the inferiors' children.  We'd need this to debug a monitor.
1839     // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
1840     // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
1841 
1842     case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)):
1843     {
1844         // This is the notification on the parent thread which informs us of new thread
1845         // creation.
1846         // We don't want to do anything with the parent thread so we just resume it. In case we
1847         // want to implement "break on thread creation" functionality, we would need to stop
1848         // here.
1849 
1850         unsigned long event_message = 0;
1851         if (GetEventMessage (pid, &event_message).Fail())
1852         {
1853             if (log)
1854                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, pid);
1855         } else
1856             WaitForNewThread(event_message);
1857 
1858         Resume (pid, LLDB_INVALID_SIGNAL_NUMBER);
1859         break;
1860     }
1861 
1862     case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)):
1863     {
1864         NativeThreadProtocolSP main_thread_sp;
1865         if (log)
1866             log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP);
1867 
1868         // Exec clears any pending notifications.
1869         m_pending_notification_up.reset ();
1870 
1871         // Remove all but the main thread here.  Linux fork creates a new process which only copies the main thread.  Mutexes are in undefined state.
1872         if (log)
1873             log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__);
1874 
1875         for (auto thread_sp : m_threads)
1876         {
1877             const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID ();
1878             if (is_main_thread)
1879             {
1880                 main_thread_sp = thread_sp;
1881                 if (log)
1882                     log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ());
1883             }
1884             else
1885             {
1886                 // Tell thread coordinator this thread is dead.
1887                 if (log)
1888                     log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ());
1889             }
1890         }
1891 
1892         m_threads.clear ();
1893 
1894         if (main_thread_sp)
1895         {
1896             m_threads.push_back (main_thread_sp);
1897             SetCurrentThreadID (main_thread_sp->GetID ());
1898             std::static_pointer_cast<NativeThreadLinux> (main_thread_sp)->SetStoppedByExec ();
1899         }
1900         else
1901         {
1902             SetCurrentThreadID (LLDB_INVALID_THREAD_ID);
1903             if (log)
1904                 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ());
1905         }
1906 
1907         // Tell coordinator about about the "new" (since exec) stopped main thread.
1908         const lldb::tid_t main_thread_tid = GetID ();
1909         ThreadWasCreated(main_thread_tid);
1910 
1911         // NOTE: ideally these next statements would execute at the same time as the coordinator thread create was executed.
1912         // Consider a handler that can execute when that happens.
1913         // Let our delegate know we have just exec'd.
1914         NotifyDidExec ();
1915 
1916         // If we have a main thread, indicate we are stopped.
1917         assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked");
1918 
1919         // Let the process know we're stopped.
1920         StopRunningThreads (pid);
1921 
1922         break;
1923     }
1924 
1925     case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)):
1926     {
1927         // The inferior process or one of its threads is about to exit.
1928         // We don't want to do anything with the thread so we just resume it. In case we
1929         // want to implement "break on thread exit" functionality, we would need to stop
1930         // here.
1931 
1932         unsigned long data = 0;
1933         if (GetEventMessage(pid, &data).Fail())
1934             data = -1;
1935 
1936         if (log)
1937         {
1938             log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)",
1939                          __FUNCTION__,
1940                          data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false",
1941                          pid,
1942                     is_main_thread ? "is main thread" : "not main thread");
1943         }
1944 
1945         if (is_main_thread)
1946         {
1947             SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true);
1948         }
1949 
1950         Resume(pid, LLDB_INVALID_SIGNAL_NUMBER);
1951 
1952         break;
1953     }
1954 
1955     case 0:
1956     case TRAP_TRACE:  // We receive this on single stepping.
1957     case TRAP_HWBKPT: // We receive this on watchpoint hit
1958         if (thread_sp)
1959         {
1960             // If a watchpoint was hit, report it
1961             uint32_t wp_index;
1962             Error error = thread_sp->GetRegisterContext()->GetWatchpointHitIndex(wp_index, (lldb::addr_t)info->si_addr);
1963             if (error.Fail() && log)
1964                 log->Printf("NativeProcessLinux::%s() "
1965                             "received error while checking for watchpoint hits, "
1966                             "pid = %" PRIu64 " error = %s",
1967                             __FUNCTION__, pid, error.AsCString());
1968             if (wp_index != LLDB_INVALID_INDEX32)
1969             {
1970                 MonitorWatchpoint(pid, thread_sp, wp_index);
1971                 break;
1972             }
1973         }
1974         // Otherwise, report step over
1975         MonitorTrace(pid, thread_sp);
1976         break;
1977 
1978     case SI_KERNEL:
1979     case TRAP_BRKPT:
1980         MonitorBreakpoint(pid, thread_sp);
1981         break;
1982 
1983     case SIGTRAP:
1984     case (SIGTRAP | 0x80):
1985         if (log)
1986             log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), pid);
1987 
1988         // Ignore these signals until we know more about them.
1989         Resume(pid, LLDB_INVALID_SIGNAL_NUMBER);
1990         break;
1991 
1992     default:
1993         assert(false && "Unexpected SIGTRAP code!");
1994         if (log)
1995             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%d",
1996                     __FUNCTION__, GetID (), pid, info->si_code);
1997         break;
1998 
1999     }
2000 }
2001 
2002 void
2003 NativeProcessLinux::MonitorTrace(lldb::pid_t pid, NativeThreadProtocolSP thread_sp)
2004 {
2005     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2006     if (log)
2007         log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)",
2008                 __FUNCTION__, pid);
2009 
2010     if (thread_sp)
2011         std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace();
2012 
2013     // This thread is currently stopped.
2014     ThreadDidStop(pid, false);
2015 
2016     // Here we don't have to request the rest of the threads to stop or request a deferred stop.
2017     // This would have already happened at the time the Resume() with step operation was signaled.
2018     // At this point, we just need to say we stopped, and the deferred notifcation will fire off
2019     // once all running threads have checked in as stopped.
2020     SetCurrentThreadID(pid);
2021     // Tell the process we have a stop (from software breakpoint).
2022     StopRunningThreads(pid);
2023 }
2024 
2025 void
2026 NativeProcessLinux::MonitorBreakpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp)
2027 {
2028     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
2029     if (log)
2030         log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64,
2031                 __FUNCTION__, pid);
2032 
2033     // This thread is currently stopped.
2034     ThreadDidStop(pid, false);
2035 
2036     // Mark the thread as stopped at breakpoint.
2037     if (thread_sp)
2038     {
2039         std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByBreakpoint();
2040         Error error = FixupBreakpointPCAsNeeded(thread_sp);
2041         if (error.Fail())
2042             if (log)
2043                 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s",
2044                         __FUNCTION__, pid, error.AsCString());
2045 
2046         if (m_threads_stepping_with_breakpoint.find(pid) != m_threads_stepping_with_breakpoint.end())
2047             std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace();
2048     }
2049     else
2050         if (log)
2051             log->Printf("NativeProcessLinux::%s()  pid = %" PRIu64 ": "
2052                     "warning, cannot process software breakpoint since no thread metadata",
2053                     __FUNCTION__, pid);
2054 
2055 
2056     // We need to tell all other running threads before we notify the delegate about this stop.
2057     StopRunningThreads(pid);
2058 }
2059 
2060 void
2061 NativeProcessLinux::MonitorWatchpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp, uint32_t wp_index)
2062 {
2063     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
2064     if (log)
2065         log->Printf("NativeProcessLinux::%s() received watchpoint event, "
2066                     "pid = %" PRIu64 ", wp_index = %" PRIu32,
2067                     __FUNCTION__, pid, wp_index);
2068 
2069     // This thread is currently stopped.
2070     ThreadDidStop(pid, false);
2071 
2072     // Mark the thread as stopped at watchpoint.
2073     // The address is at (lldb::addr_t)info->si_addr if we need it.
2074     lldbassert(thread_sp && "thread_sp cannot be NULL");
2075     std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByWatchpoint(wp_index);
2076 
2077     // We need to tell all other running threads before we notify the delegate about this stop.
2078     StopRunningThreads(pid);
2079 }
2080 
2081 void
2082 NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited)
2083 {
2084     assert (info && "null info");
2085     if (!info)
2086         return;
2087 
2088     const int signo = info->si_signo;
2089     const bool is_from_llgs = info->si_pid == getpid ();
2090 
2091     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2092 
2093     // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
2094     // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
2095     // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
2096     //
2097     // IOW, user generated signals never generate what we consider to be a
2098     // "crash".
2099     //
2100     // Similarly, ACK signals generated by this monitor.
2101 
2102     Mutex::Locker locker (m_threads_mutex);
2103 
2104     // See if we can find a thread for this signal.
2105     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
2106     if (!thread_sp)
2107     {
2108         if (log)
2109             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
2110     }
2111 
2112     // Handle the signal.
2113     if (info->si_code == SI_TKILL || info->si_code == SI_USER)
2114     {
2115         if (log)
2116             log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")",
2117                             __FUNCTION__,
2118                             GetUnixSignals ().GetSignalAsCString (signo),
2119                             signo,
2120                             (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"),
2121                             info->si_pid,
2122                             is_from_llgs ? "from llgs" : "not from llgs",
2123                             pid);
2124     }
2125 
2126     // Check for new thread notification.
2127     if ((info->si_pid == 0) && (info->si_code == SI_USER))
2128     {
2129         // A new thread creation is being signaled. This is one of two parts that come in
2130         // a non-deterministic order. This code handles the case where the new thread event comes
2131         // before the event on the parent thread. For the opposite case see code in
2132         // MonitorSIGTRAP.
2133         if (log)
2134             log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification",
2135                      __FUNCTION__, GetID (), pid);
2136 
2137         thread_sp = AddThread(pid);
2138         assert (thread_sp.get() && "failed to create the tracking data for newly created inferior thread");
2139         // We can now resume the newly created thread.
2140         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2141         Resume (pid, LLDB_INVALID_SIGNAL_NUMBER);
2142         ThreadWasCreated(pid);
2143         // Done handling.
2144         return;
2145     }
2146 
2147     // Check for thread stop notification.
2148     if (is_from_llgs && (info->si_code == SI_TKILL) && (signo == SIGSTOP))
2149     {
2150         // This is a tgkill()-based stop.
2151         if (thread_sp)
2152         {
2153             if (log)
2154                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped",
2155                              __FUNCTION__,
2156                              GetID (),
2157                              pid);
2158 
2159             // Check that we're not already marked with a stop reason.
2160             // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that
2161             // the kernel signaled us with the thread stopping which we handled and marked as stopped,
2162             // and that, without an intervening resume, we received another stop.  It is more likely
2163             // that we are missing the marking of a run state somewhere if we find that the thread was
2164             // marked as stopped.
2165             std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp);
2166             assert (linux_thread_sp && "linux_thread_sp is null!");
2167 
2168             const StateType thread_state = linux_thread_sp->GetState ();
2169             if (!StateIsStoppedState (thread_state, false))
2170             {
2171                 // An inferior thread has stopped because of a SIGSTOP we have sent it.
2172                 // Generally, these are not important stops and we don't want to report them as
2173                 // they are just used to stop other threads when one thread (the one with the
2174                 // *real* stop reason) hits a breakpoint (watchpoint, etc...). However, in the
2175                 // case of an asynchronous Interrupt(), this *is* the real stop reason, so we
2176                 // leave the signal intact if this is the thread that was chosen as the
2177                 // triggering thread.
2178                 if (m_pending_notification_up && m_pending_notification_up->triggering_tid == pid)
2179                     linux_thread_sp->SetStoppedBySignal(SIGSTOP, info);
2180                 else
2181                     linux_thread_sp->SetStoppedBySignal(0);
2182 
2183                 SetCurrentThreadID (thread_sp->GetID ());
2184                 ThreadDidStop (thread_sp->GetID (), true);
2185             }
2186             else
2187             {
2188                 if (log)
2189                 {
2190                     // Retrieve the signal name if the thread was stopped by a signal.
2191                     int stop_signo = 0;
2192                     const bool stopped_by_signal = linux_thread_sp->IsStopped (&stop_signo);
2193                     const char *signal_name = stopped_by_signal ? GetUnixSignals ().GetSignalAsCString (stop_signo) : "<not stopped by signal>";
2194                     if (!signal_name)
2195                         signal_name = "<no-signal-name>";
2196 
2197                     log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is",
2198                                  __FUNCTION__,
2199                                  GetID (),
2200                                  linux_thread_sp->GetID (),
2201                                  StateAsCString (thread_state),
2202                                  stop_signo,
2203                                  signal_name);
2204                 }
2205                 ThreadDidStop (thread_sp->GetID (), false);
2206             }
2207         }
2208 
2209         // Done handling.
2210         return;
2211     }
2212 
2213     if (log)
2214         log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo));
2215 
2216     // This thread is stopped.
2217     ThreadDidStop (pid, false);
2218 
2219     if (thread_sp)
2220         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal(signo, info);
2221 
2222     // Send a stop to the debugger after we get all other threads to stop.
2223     StopRunningThreads (pid);
2224 }
2225 
2226 namespace {
2227 
2228 struct EmulatorBaton
2229 {
2230     NativeProcessLinux* m_process;
2231     NativeRegisterContext* m_reg_context;
2232 
2233     // eRegisterKindDWARF -> RegsiterValue
2234     std::unordered_map<uint32_t, RegisterValue> m_register_values;
2235 
2236     EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) :
2237             m_process(process), m_reg_context(reg_context) {}
2238 };
2239 
2240 } // anonymous namespace
2241 
2242 static size_t
2243 ReadMemoryCallback (EmulateInstruction *instruction,
2244                     void *baton,
2245                     const EmulateInstruction::Context &context,
2246                     lldb::addr_t addr,
2247                     void *dst,
2248                     size_t length)
2249 {
2250     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2251 
2252     size_t bytes_read;
2253     emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read);
2254     return bytes_read;
2255 }
2256 
2257 static bool
2258 ReadRegisterCallback (EmulateInstruction *instruction,
2259                       void *baton,
2260                       const RegisterInfo *reg_info,
2261                       RegisterValue &reg_value)
2262 {
2263     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2264 
2265     auto it = emulator_baton->m_register_values.find(reg_info->kinds[eRegisterKindDWARF]);
2266     if (it != emulator_baton->m_register_values.end())
2267     {
2268         reg_value = it->second;
2269         return true;
2270     }
2271 
2272     // The emulator only fill in the dwarf regsiter numbers (and in some case
2273     // the generic register numbers). Get the full register info from the
2274     // register context based on the dwarf register numbers.
2275     const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo(
2276             eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
2277 
2278     Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value);
2279     if (error.Success())
2280         return true;
2281 
2282     return false;
2283 }
2284 
2285 static bool
2286 WriteRegisterCallback (EmulateInstruction *instruction,
2287                        void *baton,
2288                        const EmulateInstruction::Context &context,
2289                        const RegisterInfo *reg_info,
2290                        const RegisterValue &reg_value)
2291 {
2292     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2293     emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value;
2294     return true;
2295 }
2296 
2297 static size_t
2298 WriteMemoryCallback (EmulateInstruction *instruction,
2299                      void *baton,
2300                      const EmulateInstruction::Context &context,
2301                      lldb::addr_t addr,
2302                      const void *dst,
2303                      size_t length)
2304 {
2305     return length;
2306 }
2307 
2308 static lldb::addr_t
2309 ReadFlags (NativeRegisterContext* regsiter_context)
2310 {
2311     const RegisterInfo* flags_info = regsiter_context->GetRegisterInfo(
2312             eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
2313     return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS);
2314 }
2315 
2316 Error
2317 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadProtocolSP thread_sp)
2318 {
2319     Error error;
2320     NativeRegisterContextSP register_context_sp = thread_sp->GetRegisterContext();
2321 
2322     std::unique_ptr<EmulateInstruction> emulator_ap(
2323         EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr));
2324 
2325     if (emulator_ap == nullptr)
2326         return Error("Instruction emulator not found!");
2327 
2328     EmulatorBaton baton(this, register_context_sp.get());
2329     emulator_ap->SetBaton(&baton);
2330     emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
2331     emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
2332     emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
2333     emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
2334 
2335     if (!emulator_ap->ReadInstruction())
2336         return Error("Read instruction failed!");
2337 
2338     bool emulation_result = emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
2339 
2340     const RegisterInfo* reg_info_pc = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
2341     const RegisterInfo* reg_info_flags = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
2342 
2343     auto pc_it = baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
2344     auto flags_it = baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
2345 
2346     lldb::addr_t next_pc;
2347     lldb::addr_t next_flags;
2348     if (emulation_result)
2349     {
2350         assert(pc_it != baton.m_register_values.end() && "Emulation was successfull but PC wasn't updated");
2351         next_pc = pc_it->second.GetAsUInt64();
2352 
2353         if (flags_it != baton.m_register_values.end())
2354             next_flags = flags_it->second.GetAsUInt64();
2355         else
2356             next_flags = ReadFlags (register_context_sp.get());
2357     }
2358     else if (pc_it == baton.m_register_values.end())
2359     {
2360         // Emulate instruction failed and it haven't changed PC. Advance PC
2361         // with the size of the current opcode because the emulation of all
2362         // PC modifying instruction should be successful. The failure most
2363         // likely caused by a not supported instruction which don't modify PC.
2364         next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize();
2365         next_flags = ReadFlags (register_context_sp.get());
2366     }
2367     else
2368     {
2369         // The instruction emulation failed after it modified the PC. It is an
2370         // unknown error where we can't continue because the next instruction is
2371         // modifying the PC but we don't  know how.
2372         return Error ("Instruction emulation failed unexpectedly.");
2373     }
2374 
2375     if (m_arch.GetMachine() == llvm::Triple::arm)
2376     {
2377         if (next_flags & 0x20)
2378         {
2379             // Thumb mode
2380             error = SetSoftwareBreakpoint(next_pc, 2);
2381         }
2382         else
2383         {
2384             // Arm mode
2385             error = SetSoftwareBreakpoint(next_pc, 4);
2386         }
2387     }
2388     else if (m_arch.GetMachine() == llvm::Triple::mips64
2389             || m_arch.GetMachine() == llvm::Triple::mips64el)
2390         error = SetSoftwareBreakpoint(next_pc, 4);
2391     else
2392     {
2393         // No size hint is given for the next breakpoint
2394         error = SetSoftwareBreakpoint(next_pc, 0);
2395     }
2396 
2397     if (error.Fail())
2398         return error;
2399 
2400     m_threads_stepping_with_breakpoint.insert({thread_sp->GetID(), next_pc});
2401 
2402     return Error();
2403 }
2404 
2405 bool
2406 NativeProcessLinux::SupportHardwareSingleStepping() const
2407 {
2408     if (m_arch.GetMachine() == llvm::Triple::arm
2409         || m_arch.GetMachine() == llvm::Triple::mips64 || m_arch.GetMachine() == llvm::Triple::mips64el)
2410         return false;
2411     return true;
2412 }
2413 
2414 Error
2415 NativeProcessLinux::Resume (const ResumeActionList &resume_actions)
2416 {
2417     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD));
2418     if (log)
2419         log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ());
2420 
2421     bool software_single_step = !SupportHardwareSingleStepping();
2422 
2423     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
2424     Mutex::Locker locker (m_threads_mutex);
2425 
2426     if (software_single_step)
2427     {
2428         for (auto thread_sp : m_threads)
2429         {
2430             assert (thread_sp && "thread list should not contain NULL threads");
2431 
2432             const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
2433             if (action == nullptr)
2434                 continue;
2435 
2436             if (action->state == eStateStepping)
2437             {
2438                 Error error = SetupSoftwareSingleStepping(thread_sp);
2439                 if (error.Fail())
2440                     return error;
2441             }
2442         }
2443     }
2444 
2445     for (auto thread_sp : m_threads)
2446     {
2447         assert (thread_sp && "thread list should not contain NULL threads");
2448 
2449         const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
2450 
2451         if (action == nullptr)
2452         {
2453             if (log)
2454                 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64,
2455                     __FUNCTION__, GetID (), thread_sp->GetID ());
2456             continue;
2457         }
2458 
2459         if (log)
2460         {
2461             log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64,
2462                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
2463         }
2464 
2465         switch (action->state)
2466         {
2467         case eStateRunning:
2468         {
2469             // Run the thread, possibly feeding it the signal.
2470             const int signo = action->signal;
2471             ResumeThread(thread_sp->GetID (),
2472                     [=](lldb::tid_t tid_to_resume, bool supress_signal)
2473                     {
2474                         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2475                         // Pass this signal number on to the inferior to handle.
2476                         const auto resume_result = Resume (tid_to_resume, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
2477                         if (resume_result.Success())
2478                             SetState(eStateRunning, true);
2479                         return resume_result;
2480                     },
2481                     false);
2482             break;
2483         }
2484 
2485         case eStateStepping:
2486         {
2487             // Request the step.
2488             const int signo = action->signal;
2489             ResumeThread(thread_sp->GetID (),
2490                     [=](lldb::tid_t tid_to_step, bool supress_signal)
2491                     {
2492                         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStepping ();
2493 
2494                         Error step_result;
2495                         if (software_single_step)
2496                             step_result = Resume (tid_to_step, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
2497                         else
2498                             step_result = SingleStep (tid_to_step,(signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
2499 
2500                         assert (step_result.Success() && "SingleStep() failed");
2501                         if (step_result.Success())
2502                             SetState(eStateStepping, true);
2503                         return step_result;
2504                     },
2505                     false);
2506             break;
2507         }
2508 
2509         case eStateSuspended:
2510         case eStateStopped:
2511             lldbassert(0 && "Unexpected state");
2512 
2513         default:
2514             return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64,
2515                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
2516         }
2517     }
2518 
2519     return Error();
2520 }
2521 
2522 Error
2523 NativeProcessLinux::Halt ()
2524 {
2525     Error error;
2526 
2527     if (kill (GetID (), SIGSTOP) != 0)
2528         error.SetErrorToErrno ();
2529 
2530     return error;
2531 }
2532 
2533 Error
2534 NativeProcessLinux::Detach ()
2535 {
2536     Error error;
2537 
2538     // Tell ptrace to detach from the process.
2539     if (GetID () != LLDB_INVALID_PROCESS_ID)
2540         error = Detach (GetID ());
2541 
2542     // Stop monitoring the inferior.
2543     m_monitor_up->Terminate();
2544 
2545     // No error.
2546     return error;
2547 }
2548 
2549 Error
2550 NativeProcessLinux::Signal (int signo)
2551 {
2552     Error error;
2553 
2554     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2555     if (log)
2556         log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64,
2557                 __FUNCTION__, signo,  GetUnixSignals ().GetSignalAsCString (signo), GetID ());
2558 
2559     if (kill(GetID(), signo))
2560         error.SetErrorToErrno();
2561 
2562     return error;
2563 }
2564 
2565 Error
2566 NativeProcessLinux::Interrupt ()
2567 {
2568     // Pick a running thread (or if none, a not-dead stopped thread) as
2569     // the chosen thread that will be the stop-reason thread.
2570     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2571 
2572     NativeThreadProtocolSP running_thread_sp;
2573     NativeThreadProtocolSP stopped_thread_sp;
2574 
2575     if (log)
2576         log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__);
2577 
2578     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
2579     Mutex::Locker locker (m_threads_mutex);
2580 
2581     for (auto thread_sp : m_threads)
2582     {
2583         // The thread shouldn't be null but lets just cover that here.
2584         if (!thread_sp)
2585             continue;
2586 
2587         // If we have a running or stepping thread, we'll call that the
2588         // target of the interrupt.
2589         const auto thread_state = thread_sp->GetState ();
2590         if (thread_state == eStateRunning ||
2591             thread_state == eStateStepping)
2592         {
2593             running_thread_sp = thread_sp;
2594             break;
2595         }
2596         else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true))
2597         {
2598             // Remember the first non-dead stopped thread.  We'll use that as a backup if there are no running threads.
2599             stopped_thread_sp = thread_sp;
2600         }
2601     }
2602 
2603     if (!running_thread_sp && !stopped_thread_sp)
2604     {
2605         Error error("found no running/stepping or live stopped threads as target for interrupt");
2606         if (log)
2607             log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ());
2608 
2609         return error;
2610     }
2611 
2612     NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp;
2613 
2614     if (log)
2615         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target",
2616                      __FUNCTION__,
2617                      GetID (),
2618                      running_thread_sp ? "running" : "stopped",
2619                      deferred_signal_thread_sp->GetID ());
2620 
2621     StopRunningThreads(deferred_signal_thread_sp->GetID());
2622 
2623     return Error();
2624 }
2625 
2626 Error
2627 NativeProcessLinux::Kill ()
2628 {
2629     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2630     if (log)
2631         log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ());
2632 
2633     Error error;
2634 
2635     switch (m_state)
2636     {
2637         case StateType::eStateInvalid:
2638         case StateType::eStateExited:
2639         case StateType::eStateCrashed:
2640         case StateType::eStateDetached:
2641         case StateType::eStateUnloaded:
2642             // Nothing to do - the process is already dead.
2643             if (log)
2644                 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state));
2645             return error;
2646 
2647         case StateType::eStateConnected:
2648         case StateType::eStateAttaching:
2649         case StateType::eStateLaunching:
2650         case StateType::eStateStopped:
2651         case StateType::eStateRunning:
2652         case StateType::eStateStepping:
2653         case StateType::eStateSuspended:
2654             // We can try to kill a process in these states.
2655             break;
2656     }
2657 
2658     if (kill (GetID (), SIGKILL) != 0)
2659     {
2660         error.SetErrorToErrno ();
2661         return error;
2662     }
2663 
2664     return error;
2665 }
2666 
2667 static Error
2668 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info)
2669 {
2670     memory_region_info.Clear();
2671 
2672     StringExtractor line_extractor (maps_line.c_str ());
2673 
2674     // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode   pathname
2675     // perms: rwxp   (letter is present if set, '-' if not, final character is p=private, s=shared).
2676 
2677     // Parse out the starting address
2678     lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0);
2679 
2680     // Parse out hyphen separating start and end address from range.
2681     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-'))
2682         return Error ("malformed /proc/{pid}/maps entry, missing dash between address range");
2683 
2684     // Parse out the ending address
2685     lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address);
2686 
2687     // Parse out the space after the address.
2688     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' '))
2689         return Error ("malformed /proc/{pid}/maps entry, missing space after range");
2690 
2691     // Save the range.
2692     memory_region_info.GetRange ().SetRangeBase (start_address);
2693     memory_region_info.GetRange ().SetRangeEnd (end_address);
2694 
2695     // Parse out each permission entry.
2696     if (line_extractor.GetBytesLeft () < 4)
2697         return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions");
2698 
2699     // Handle read permission.
2700     const char read_perm_char = line_extractor.GetChar ();
2701     if (read_perm_char == 'r')
2702         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes);
2703     else
2704     {
2705         assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" );
2706         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2707     }
2708 
2709     // Handle write permission.
2710     const char write_perm_char = line_extractor.GetChar ();
2711     if (write_perm_char == 'w')
2712         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes);
2713     else
2714     {
2715         assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" );
2716         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2717     }
2718 
2719     // Handle execute permission.
2720     const char exec_perm_char = line_extractor.GetChar ();
2721     if (exec_perm_char == 'x')
2722         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes);
2723     else
2724     {
2725         assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" );
2726         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2727     }
2728 
2729     return Error ();
2730 }
2731 
2732 Error
2733 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info)
2734 {
2735     // FIXME review that the final memory region returned extends to the end of the virtual address space,
2736     // with no perms if it is not mapped.
2737 
2738     // Use an approach that reads memory regions from /proc/{pid}/maps.
2739     // Assume proc maps entries are in ascending order.
2740     // FIXME assert if we find differently.
2741     Mutex::Locker locker (m_mem_region_cache_mutex);
2742 
2743     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2744     Error error;
2745 
2746     if (m_supports_mem_region == LazyBool::eLazyBoolNo)
2747     {
2748         // We're done.
2749         error.SetErrorString ("unsupported");
2750         return error;
2751     }
2752 
2753     // If our cache is empty, pull the latest.  There should always be at least one memory region
2754     // if memory region handling is supported.
2755     if (m_mem_region_cache.empty ())
2756     {
2757         error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
2758              [&] (const std::string &line) -> bool
2759              {
2760                  MemoryRegionInfo info;
2761                  const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info);
2762                  if (parse_error.Success ())
2763                  {
2764                      m_mem_region_cache.push_back (info);
2765                      return true;
2766                  }
2767                  else
2768                  {
2769                      if (log)
2770                          log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ());
2771                      return false;
2772                  }
2773              });
2774 
2775         // If we had an error, we'll mark unsupported.
2776         if (error.Fail ())
2777         {
2778             m_supports_mem_region = LazyBool::eLazyBoolNo;
2779             return error;
2780         }
2781         else if (m_mem_region_cache.empty ())
2782         {
2783             // No entries after attempting to read them.  This shouldn't happen if /proc/{pid}/maps
2784             // is supported.  Assume we don't support map entries via procfs.
2785             if (log)
2786                 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__);
2787             m_supports_mem_region = LazyBool::eLazyBoolNo;
2788             error.SetErrorString ("not supported");
2789             return error;
2790         }
2791 
2792         if (log)
2793             log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ());
2794 
2795         // We support memory retrieval, remember that.
2796         m_supports_mem_region = LazyBool::eLazyBoolYes;
2797     }
2798     else
2799     {
2800         if (log)
2801             log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
2802     }
2803 
2804     lldb::addr_t prev_base_address = 0;
2805 
2806     // FIXME start by finding the last region that is <= target address using binary search.  Data is sorted.
2807     // There can be a ton of regions on pthreads apps with lots of threads.
2808     for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it)
2809     {
2810         MemoryRegionInfo &proc_entry_info = *it;
2811 
2812         // Sanity check assumption that /proc/{pid}/maps entries are ascending.
2813         assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected");
2814         prev_base_address = proc_entry_info.GetRange ().GetRangeBase ();
2815 
2816         // If the target address comes before this entry, indicate distance to next region.
2817         if (load_addr < proc_entry_info.GetRange ().GetRangeBase ())
2818         {
2819             range_info.GetRange ().SetRangeBase (load_addr);
2820             range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr);
2821             range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2822             range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2823             range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2824 
2825             return error;
2826         }
2827         else if (proc_entry_info.GetRange ().Contains (load_addr))
2828         {
2829             // The target address is within the memory region we're processing here.
2830             range_info = proc_entry_info;
2831             return error;
2832         }
2833 
2834         // The target memory address comes somewhere after the region we just parsed.
2835     }
2836 
2837     // If we made it here, we didn't find an entry that contained the given address.
2838     error.SetErrorString ("address comes after final region");
2839 
2840     if (log)
2841         log->Printf ("NativeProcessLinux::%s failed to find map entry for address 0x%" PRIx64 ": %s", __FUNCTION__, load_addr, error.AsCString ());
2842 
2843     return error;
2844 }
2845 
2846 void
2847 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId)
2848 {
2849     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2850     if (log)
2851         log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId);
2852 
2853     {
2854         Mutex::Locker locker (m_mem_region_cache_mutex);
2855         if (log)
2856             log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
2857         m_mem_region_cache.clear ();
2858     }
2859 }
2860 
2861 Error
2862 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, lldb::addr_t &addr)
2863 {
2864     // FIXME implementing this requires the equivalent of
2865     // InferiorCallPOSIX::InferiorCallMmap, which depends on
2866     // functional ThreadPlans working with Native*Protocol.
2867 #if 1
2868     return Error ("not implemented yet");
2869 #else
2870     addr = LLDB_INVALID_ADDRESS;
2871 
2872     unsigned prot = 0;
2873     if (permissions & lldb::ePermissionsReadable)
2874         prot |= eMmapProtRead;
2875     if (permissions & lldb::ePermissionsWritable)
2876         prot |= eMmapProtWrite;
2877     if (permissions & lldb::ePermissionsExecutable)
2878         prot |= eMmapProtExec;
2879 
2880     // TODO implement this directly in NativeProcessLinux
2881     // (and lift to NativeProcessPOSIX if/when that class is
2882     // refactored out).
2883     if (InferiorCallMmap(this, addr, 0, size, prot,
2884                          eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
2885         m_addr_to_mmap_size[addr] = size;
2886         return Error ();
2887     } else {
2888         addr = LLDB_INVALID_ADDRESS;
2889         return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions));
2890     }
2891 #endif
2892 }
2893 
2894 Error
2895 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr)
2896 {
2897     // FIXME see comments in AllocateMemory - required lower-level
2898     // bits not in place yet (ThreadPlans)
2899     return Error ("not implemented");
2900 }
2901 
2902 lldb::addr_t
2903 NativeProcessLinux::GetSharedLibraryInfoAddress ()
2904 {
2905 #if 1
2906     // punt on this for now
2907     return LLDB_INVALID_ADDRESS;
2908 #else
2909     // Return the image info address for the exe module
2910 #if 1
2911     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2912 
2913     ModuleSP module_sp;
2914     Error error = GetExeModuleSP (module_sp);
2915     if (error.Fail ())
2916     {
2917          if (log)
2918             log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ());
2919         return LLDB_INVALID_ADDRESS;
2920     }
2921 
2922     if (module_sp == nullptr)
2923     {
2924          if (log)
2925             log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__);
2926          return LLDB_INVALID_ADDRESS;
2927     }
2928 
2929     ObjectFileSP object_file_sp = module_sp->GetObjectFile ();
2930     if (object_file_sp == nullptr)
2931     {
2932          if (log)
2933             log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__);
2934          return LLDB_INVALID_ADDRESS;
2935     }
2936 
2937     return obj_file_sp->GetImageInfoAddress();
2938 #else
2939     Target *target = &GetTarget();
2940     ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile();
2941     Address addr = obj_file->GetImageInfoAddress(target);
2942 
2943     if (addr.IsValid())
2944         return addr.GetLoadAddress(target);
2945     return LLDB_INVALID_ADDRESS;
2946 #endif
2947 #endif // punt on this for now
2948 }
2949 
2950 size_t
2951 NativeProcessLinux::UpdateThreads ()
2952 {
2953     // The NativeProcessLinux monitoring threads are always up to date
2954     // with respect to thread state and they keep the thread list
2955     // populated properly. All this method needs to do is return the
2956     // thread count.
2957     Mutex::Locker locker (m_threads_mutex);
2958     return m_threads.size ();
2959 }
2960 
2961 bool
2962 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const
2963 {
2964     arch = m_arch;
2965     return true;
2966 }
2967 
2968 Error
2969 NativeProcessLinux::GetSoftwareBreakpointPCOffset (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size)
2970 {
2971     // FIXME put this behind a breakpoint protocol class that can be
2972     // set per architecture.  Need ARM, MIPS support here.
2973     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
2974     static const uint8_t g_i386_opcode [] = { 0xCC };
2975     static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d };
2976 
2977     switch (m_arch.GetMachine ())
2978     {
2979         case llvm::Triple::aarch64:
2980             actual_opcode_size = static_cast<uint32_t> (sizeof(g_aarch64_opcode));
2981             return Error ();
2982 
2983         case llvm::Triple::arm:
2984             actual_opcode_size = 0; // On arm the PC don't get updated for breakpoint hits
2985             return Error ();
2986 
2987         case llvm::Triple::x86:
2988         case llvm::Triple::x86_64:
2989             actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode));
2990             return Error ();
2991 
2992         case llvm::Triple::mips64:
2993         case llvm::Triple::mips64el:
2994             actual_opcode_size = static_cast<uint32_t> (sizeof(g_mips64_opcode));
2995             return Error ();
2996 
2997         default:
2998             assert(false && "CPU type not supported!");
2999             return Error ("CPU type not supported");
3000     }
3001 }
3002 
3003 Error
3004 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware)
3005 {
3006     if (hardware)
3007         return Error ("NativeProcessLinux does not support hardware breakpoints");
3008     else
3009         return SetSoftwareBreakpoint (addr, size);
3010 }
3011 
3012 Error
3013 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint,
3014                                                      size_t &actual_opcode_size,
3015                                                      const uint8_t *&trap_opcode_bytes)
3016 {
3017     // FIXME put this behind a breakpoint protocol class that can be set per
3018     // architecture.  Need MIPS support here.
3019     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
3020     // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
3021     // linux kernel does otherwise.
3022     static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 };
3023     static const uint8_t g_i386_opcode [] = { 0xCC };
3024     static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d };
3025     static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 };
3026     static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde };
3027 
3028     switch (m_arch.GetMachine ())
3029     {
3030     case llvm::Triple::aarch64:
3031         trap_opcode_bytes = g_aarch64_opcode;
3032         actual_opcode_size = sizeof(g_aarch64_opcode);
3033         return Error ();
3034 
3035     case llvm::Triple::arm:
3036         switch (trap_opcode_size_hint)
3037         {
3038         case 2:
3039             trap_opcode_bytes = g_thumb_breakpoint_opcode;
3040             actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
3041             return Error ();
3042         case 4:
3043             trap_opcode_bytes = g_arm_breakpoint_opcode;
3044             actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
3045             return Error ();
3046         default:
3047             assert(false && "Unrecognised trap opcode size hint!");
3048             return Error ("Unrecognised trap opcode size hint!");
3049         }
3050 
3051     case llvm::Triple::x86:
3052     case llvm::Triple::x86_64:
3053         trap_opcode_bytes = g_i386_opcode;
3054         actual_opcode_size = sizeof(g_i386_opcode);
3055         return Error ();
3056 
3057     case llvm::Triple::mips64:
3058         trap_opcode_bytes = g_mips64_opcode;
3059         actual_opcode_size = sizeof(g_mips64_opcode);
3060         return Error ();
3061 
3062     case llvm::Triple::mips64el:
3063         trap_opcode_bytes = g_mips64el_opcode;
3064         actual_opcode_size = sizeof(g_mips64el_opcode);
3065         return Error ();
3066 
3067     default:
3068         assert(false && "CPU type not supported!");
3069         return Error ("CPU type not supported");
3070     }
3071 }
3072 
3073 #if 0
3074 ProcessMessage::CrashReason
3075 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
3076 {
3077     ProcessMessage::CrashReason reason;
3078     assert(info->si_signo == SIGSEGV);
3079 
3080     reason = ProcessMessage::eInvalidCrashReason;
3081 
3082     switch (info->si_code)
3083     {
3084     default:
3085         assert(false && "unexpected si_code for SIGSEGV");
3086         break;
3087     case SI_KERNEL:
3088         // Linux will occasionally send spurious SI_KERNEL codes.
3089         // (this is poorly documented in sigaction)
3090         // One way to get this is via unaligned SIMD loads.
3091         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
3092         break;
3093     case SEGV_MAPERR:
3094         reason = ProcessMessage::eInvalidAddress;
3095         break;
3096     case SEGV_ACCERR:
3097         reason = ProcessMessage::ePrivilegedAddress;
3098         break;
3099     }
3100 
3101     return reason;
3102 }
3103 #endif
3104 
3105 
3106 #if 0
3107 ProcessMessage::CrashReason
3108 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
3109 {
3110     ProcessMessage::CrashReason reason;
3111     assert(info->si_signo == SIGILL);
3112 
3113     reason = ProcessMessage::eInvalidCrashReason;
3114 
3115     switch (info->si_code)
3116     {
3117     default:
3118         assert(false && "unexpected si_code for SIGILL");
3119         break;
3120     case ILL_ILLOPC:
3121         reason = ProcessMessage::eIllegalOpcode;
3122         break;
3123     case ILL_ILLOPN:
3124         reason = ProcessMessage::eIllegalOperand;
3125         break;
3126     case ILL_ILLADR:
3127         reason = ProcessMessage::eIllegalAddressingMode;
3128         break;
3129     case ILL_ILLTRP:
3130         reason = ProcessMessage::eIllegalTrap;
3131         break;
3132     case ILL_PRVOPC:
3133         reason = ProcessMessage::ePrivilegedOpcode;
3134         break;
3135     case ILL_PRVREG:
3136         reason = ProcessMessage::ePrivilegedRegister;
3137         break;
3138     case ILL_COPROC:
3139         reason = ProcessMessage::eCoprocessorError;
3140         break;
3141     case ILL_BADSTK:
3142         reason = ProcessMessage::eInternalStackError;
3143         break;
3144     }
3145 
3146     return reason;
3147 }
3148 #endif
3149 
3150 #if 0
3151 ProcessMessage::CrashReason
3152 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
3153 {
3154     ProcessMessage::CrashReason reason;
3155     assert(info->si_signo == SIGFPE);
3156 
3157     reason = ProcessMessage::eInvalidCrashReason;
3158 
3159     switch (info->si_code)
3160     {
3161     default:
3162         assert(false && "unexpected si_code for SIGFPE");
3163         break;
3164     case FPE_INTDIV:
3165         reason = ProcessMessage::eIntegerDivideByZero;
3166         break;
3167     case FPE_INTOVF:
3168         reason = ProcessMessage::eIntegerOverflow;
3169         break;
3170     case FPE_FLTDIV:
3171         reason = ProcessMessage::eFloatDivideByZero;
3172         break;
3173     case FPE_FLTOVF:
3174         reason = ProcessMessage::eFloatOverflow;
3175         break;
3176     case FPE_FLTUND:
3177         reason = ProcessMessage::eFloatUnderflow;
3178         break;
3179     case FPE_FLTRES:
3180         reason = ProcessMessage::eFloatInexactResult;
3181         break;
3182     case FPE_FLTINV:
3183         reason = ProcessMessage::eFloatInvalidOperation;
3184         break;
3185     case FPE_FLTSUB:
3186         reason = ProcessMessage::eFloatSubscriptRange;
3187         break;
3188     }
3189 
3190     return reason;
3191 }
3192 #endif
3193 
3194 #if 0
3195 ProcessMessage::CrashReason
3196 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
3197 {
3198     ProcessMessage::CrashReason reason;
3199     assert(info->si_signo == SIGBUS);
3200 
3201     reason = ProcessMessage::eInvalidCrashReason;
3202 
3203     switch (info->si_code)
3204     {
3205     default:
3206         assert(false && "unexpected si_code for SIGBUS");
3207         break;
3208     case BUS_ADRALN:
3209         reason = ProcessMessage::eIllegalAlignment;
3210         break;
3211     case BUS_ADRERR:
3212         reason = ProcessMessage::eIllegalAddress;
3213         break;
3214     case BUS_OBJERR:
3215         reason = ProcessMessage::eHardwareError;
3216         break;
3217     }
3218 
3219     return reason;
3220 }
3221 #endif
3222 
3223 Error
3224 NativeProcessLinux::SetWatchpoint (lldb::addr_t addr, size_t size, uint32_t watch_flags, bool hardware)
3225 {
3226     // The base SetWatchpoint will end up executing monitor operations. Let's lock the monitor
3227     // for it.
3228     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
3229     return NativeProcessProtocol::SetWatchpoint(addr, size, watch_flags, hardware);
3230 }
3231 
3232 Error
3233 NativeProcessLinux::RemoveWatchpoint (lldb::addr_t addr)
3234 {
3235     // The base RemoveWatchpoint will end up executing monitor operations. Let's lock the monitor
3236     // for it.
3237     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
3238     return NativeProcessProtocol::RemoveWatchpoint(addr);
3239 }
3240 
3241 Error
3242 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
3243 {
3244     ReadOperation op(addr, buf, size, bytes_read);
3245     m_monitor_up->DoOperation(&op);
3246     return op.GetError ();
3247 }
3248 
3249 Error
3250 NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
3251 {
3252     Error error = ReadMemory(addr, buf, size, bytes_read);
3253     if (error.Fail()) return error;
3254     return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size);
3255 }
3256 
3257 Error
3258 NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, size_t size, size_t &bytes_written)
3259 {
3260     WriteOperation op(addr, buf, size, bytes_written);
3261     m_monitor_up->DoOperation(&op);
3262     return op.GetError ();
3263 }
3264 
3265 Error
3266 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo)
3267 {
3268     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3269 
3270     if (log)
3271         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " with signal %s", __FUNCTION__, tid,
3272                                  GetUnixSignals().GetSignalAsCString (signo));
3273     ResumeOperation op (tid, signo);
3274     m_monitor_up->DoOperation (&op);
3275     if (log)
3276         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " result = %s", __FUNCTION__, tid, op.GetError().Success() ? "true" : "false");
3277     return op.GetError();
3278 }
3279 
3280 Error
3281 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo)
3282 {
3283     SingleStepOperation op(tid, signo);
3284     m_monitor_up->DoOperation(&op);
3285     return op.GetError();
3286 }
3287 
3288 Error
3289 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo)
3290 {
3291     SiginfoOperation op(tid, siginfo);
3292     m_monitor_up->DoOperation(&op);
3293     return op.GetError();
3294 }
3295 
3296 Error
3297 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message)
3298 {
3299     EventMessageOperation op(tid, message);
3300     m_monitor_up->DoOperation(&op);
3301     return op.GetError();
3302 }
3303 
3304 Error
3305 NativeProcessLinux::Detach(lldb::tid_t tid)
3306 {
3307     if (tid == LLDB_INVALID_THREAD_ID)
3308         return Error();
3309 
3310     DetachOperation op(tid);
3311     m_monitor_up->DoOperation(&op);
3312     return op.GetError();
3313 }
3314 
3315 bool
3316 NativeProcessLinux::DupDescriptor(const FileSpec &file_spec, int fd, int flags)
3317 {
3318     int target_fd = open(file_spec.GetCString(), flags, 0666);
3319 
3320     if (target_fd == -1)
3321         return false;
3322 
3323     if (dup2(target_fd, fd) == -1)
3324         return false;
3325 
3326     return (close(target_fd) == -1) ? false : true;
3327 }
3328 
3329 void
3330 NativeProcessLinux::StartMonitorThread(const InitialOperation &initial_operation, Error &error)
3331 {
3332     m_monitor_up.reset(new Monitor(initial_operation, this));
3333     error = m_monitor_up->Initialize();
3334     if (error.Fail()) {
3335         m_monitor_up.reset();
3336     }
3337 }
3338 
3339 bool
3340 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id)
3341 {
3342     for (auto thread_sp : m_threads)
3343     {
3344         assert (thread_sp && "thread list should not contain NULL threads");
3345         if (thread_sp->GetID () == thread_id)
3346         {
3347             // We have this thread.
3348             return true;
3349         }
3350     }
3351 
3352     // We don't have this thread.
3353     return false;
3354 }
3355 
3356 NativeThreadProtocolSP
3357 NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id)
3358 {
3359     // CONSIDER organize threads by map - we can do better than linear.
3360     for (auto thread_sp : m_threads)
3361     {
3362         if (thread_sp->GetID () == thread_id)
3363             return thread_sp;
3364     }
3365 
3366     // We don't have this thread.
3367     return NativeThreadProtocolSP ();
3368 }
3369 
3370 bool
3371 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id)
3372 {
3373     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3374 
3375     if (log)
3376         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread_id);
3377 
3378     bool found = false;
3379 
3380     Mutex::Locker locker (m_threads_mutex);
3381     for (auto it = m_threads.begin (); it != m_threads.end (); ++it)
3382     {
3383         if (*it && ((*it)->GetID () == thread_id))
3384         {
3385             m_threads.erase (it);
3386             found = true;
3387             break;
3388         }
3389     }
3390 
3391     // If we have a pending notification, remove this from the set.
3392     if (m_pending_notification_up)
3393     {
3394         m_pending_notification_up->wait_for_stop_tids.erase(thread_id);
3395         SignalIfAllThreadsStopped();
3396     }
3397 
3398     return found;
3399 }
3400 
3401 NativeThreadProtocolSP
3402 NativeProcessLinux::AddThread (lldb::tid_t thread_id)
3403 {
3404     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3405 
3406     Mutex::Locker locker (m_threads_mutex);
3407 
3408     if (log)
3409     {
3410         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64,
3411                 __FUNCTION__,
3412                 GetID (),
3413                 thread_id);
3414     }
3415 
3416     assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists");
3417 
3418     // If this is the first thread, save it as the current thread
3419     if (m_threads.empty ())
3420         SetCurrentThreadID (thread_id);
3421 
3422     NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id));
3423     m_threads.push_back (thread_sp);
3424 
3425     return thread_sp;
3426 }
3427 
3428 Error
3429 NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp)
3430 {
3431     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS));
3432 
3433     Error error;
3434 
3435     // Get a linux thread pointer.
3436     if (!thread_sp)
3437     {
3438         error.SetErrorString ("null thread_sp");
3439         if (log)
3440             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
3441         return error;
3442     }
3443     std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp);
3444 
3445     // Find out the size of a breakpoint (might depend on where we are in the code).
3446     NativeRegisterContextSP context_sp = linux_thread_sp->GetRegisterContext ();
3447     if (!context_sp)
3448     {
3449         error.SetErrorString ("cannot get a NativeRegisterContext for the thread");
3450         if (log)
3451             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
3452         return error;
3453     }
3454 
3455     uint32_t breakpoint_size = 0;
3456     error = GetSoftwareBreakpointPCOffset (context_sp, breakpoint_size);
3457     if (error.Fail ())
3458     {
3459         if (log)
3460             log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ());
3461         return error;
3462     }
3463     else
3464     {
3465         if (log)
3466             log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size);
3467     }
3468 
3469     // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size.
3470     const lldb::addr_t initial_pc_addr = context_sp->GetPC ();
3471     lldb::addr_t breakpoint_addr = initial_pc_addr;
3472     if (breakpoint_size > 0)
3473     {
3474         // Do not allow breakpoint probe to wrap around.
3475         if (breakpoint_addr >= breakpoint_size)
3476             breakpoint_addr -= breakpoint_size;
3477     }
3478 
3479     // Check if we stopped because of a breakpoint.
3480     NativeBreakpointSP breakpoint_sp;
3481     error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp);
3482     if (!error.Success () || !breakpoint_sp)
3483     {
3484         // We didn't find one at a software probe location.  Nothing to do.
3485         if (log)
3486             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr);
3487         return Error ();
3488     }
3489 
3490     // If the breakpoint is not a software breakpoint, nothing to do.
3491     if (!breakpoint_sp->IsSoftwareBreakpoint ())
3492     {
3493         if (log)
3494             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr);
3495         return Error ();
3496     }
3497 
3498     //
3499     // We have a software breakpoint and need to adjust the PC.
3500     //
3501 
3502     // Sanity check.
3503     if (breakpoint_size == 0)
3504     {
3505         // Nothing to do!  How did we get here?
3506         if (log)
3507             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr);
3508         return Error ();
3509     }
3510 
3511     // Change the program counter.
3512     if (log)
3513         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_sp->GetID (), initial_pc_addr, breakpoint_addr);
3514 
3515     error = context_sp->SetPC (breakpoint_addr);
3516     if (error.Fail ())
3517     {
3518         if (log)
3519             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_sp->GetID (), error.AsCString ());
3520         return error;
3521     }
3522 
3523     return error;
3524 }
3525 
3526 Error
3527 NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec)
3528 {
3529     char maps_file_name[32];
3530     snprintf(maps_file_name, sizeof(maps_file_name), "/proc/%" PRIu64 "/maps", GetID());
3531 
3532     FileSpec maps_file_spec(maps_file_name, false);
3533     if (!maps_file_spec.Exists()) {
3534         file_spec.Clear();
3535         return Error("/proc/%" PRIu64 "/maps file doesn't exists!", GetID());
3536     }
3537 
3538     FileSpec module_file_spec(module_path, true);
3539 
3540     std::ifstream maps_file(maps_file_name);
3541     std::string maps_data_str((std::istreambuf_iterator<char>(maps_file)), std::istreambuf_iterator<char>());
3542     StringRef maps_data(maps_data_str.c_str());
3543 
3544     while (!maps_data.empty())
3545     {
3546         StringRef maps_row;
3547         std::tie(maps_row, maps_data) = maps_data.split('\n');
3548 
3549         SmallVector<StringRef, 16> maps_columns;
3550         maps_row.split(maps_columns, StringRef(" "), -1, false);
3551 
3552         if (maps_columns.size() >= 6)
3553         {
3554             file_spec.SetFile(maps_columns[5].str().c_str(), false);
3555             if (file_spec.GetFilename() == module_file_spec.GetFilename())
3556                 return Error();
3557         }
3558     }
3559 
3560     file_spec.Clear();
3561     return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
3562                  module_file_spec.GetFilename().AsCString(), GetID());
3563 }
3564 
3565 Error
3566 NativeProcessLinux::ResumeThread(
3567         lldb::tid_t tid,
3568         NativeThreadLinux::ResumeThreadFunction request_thread_resume_function,
3569         bool error_when_already_running)
3570 {
3571     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3572 
3573     if (log)
3574         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ", error_when_already_running: %s)",
3575                 __FUNCTION__, tid, error_when_already_running?"true":"false");
3576 
3577     auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid));
3578     lldbassert(thread_sp != nullptr);
3579 
3580     auto& context = thread_sp->GetThreadContext();
3581     // Tell the thread to resume if we don't already think it is running.
3582     const bool is_stopped = StateIsStoppedState(thread_sp->GetState(), true);
3583 
3584     lldbassert(!(error_when_already_running && !is_stopped));
3585 
3586     if (!is_stopped)
3587     {
3588         // It's not an error, just a log, if the error_when_already_running flag is not set.
3589         // This covers cases where, for instance, we're just trying to resume all threads
3590         // from the user side.
3591         if (log)
3592             log->Printf("NativeProcessLinux::%s tid %" PRIu64 " optional resume skipped since it is already running",
3593                     __FUNCTION__,
3594                     tid);
3595         return Error();
3596     }
3597 
3598     // Before we do the resume below, first check if we have a pending
3599     // stop notification that is currently waiting for
3600     // this thread to stop.  This is potentially a buggy situation since
3601     // we're ostensibly waiting for threads to stop before we send out the
3602     // pending notification, and here we are resuming one before we send
3603     // out the pending stop notification.
3604     if (m_pending_notification_up && log && m_pending_notification_up->wait_for_stop_tids.count (tid) > 0)
3605     {
3606         log->Printf("NativeProcessLinux::%s about to resume tid %" PRIu64 " per explicit request but we have a pending stop notification (tid %" PRIu64 ") that is actively waiting for this thread to stop. Valid sequence of events?", __FUNCTION__, tid, m_pending_notification_up->triggering_tid);
3607     }
3608 
3609     // Request a resume.  We expect this to be synchronous and the system
3610     // to reflect it is running after this completes.
3611     const auto error = request_thread_resume_function (tid, false);
3612     if (error.Success())
3613         context.request_resume_function = request_thread_resume_function;
3614     else if (log)
3615     {
3616         log->Printf("NativeProcessLinux::%s failed to resume thread tid  %" PRIu64 ": %s",
3617                          __FUNCTION__, tid, error.AsCString ());
3618     }
3619 
3620     return error;
3621 }
3622 
3623 //===----------------------------------------------------------------------===//
3624 
3625 void
3626 NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid)
3627 {
3628     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3629 
3630     if (log)
3631     {
3632         log->Printf("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ")",
3633                 __FUNCTION__, triggering_tid);
3634     }
3635 
3636     DoStopThreads(PendingNotificationUP(new PendingNotification(triggering_tid)));
3637 
3638     if (log)
3639     {
3640         log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__);
3641     }
3642 }
3643 
3644 void
3645 NativeProcessLinux::SignalIfAllThreadsStopped()
3646 {
3647     if (m_pending_notification_up && m_pending_notification_up->wait_for_stop_tids.empty ())
3648     {
3649         Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
3650 
3651         // Clear any temporary breakpoints we used to implement software single stepping.
3652         for (const auto &thread_info: m_threads_stepping_with_breakpoint)
3653         {
3654             Error error = RemoveBreakpoint (thread_info.second);
3655             if (error.Fail())
3656                 if (log)
3657                     log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s",
3658                             __FUNCTION__, thread_info.first, error.AsCString());
3659         }
3660         m_threads_stepping_with_breakpoint.clear();
3661 
3662         // Notify the delegate about the stop
3663         SetCurrentThreadID(m_pending_notification_up->triggering_tid);
3664         SetState(StateType::eStateStopped, true);
3665         m_pending_notification_up.reset();
3666     }
3667 }
3668 
3669 void
3670 NativeProcessLinux::RequestStopOnAllRunningThreads()
3671 {
3672     // Request a stop for all the thread stops that need to be stopped
3673     // and are not already known to be stopped.  Keep a list of all the
3674     // threads from which we still need to hear a stop reply.
3675 
3676     ThreadIDSet sent_tids;
3677     for (const auto &thread_sp: m_threads)
3678     {
3679         // We only care about running threads
3680         if (StateIsStoppedState(thread_sp->GetState(), true))
3681             continue;
3682 
3683         static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop();
3684         sent_tids.insert (thread_sp->GetID());
3685     }
3686 
3687     // Set the wait list to the set of tids for which we requested stops.
3688     m_pending_notification_up->wait_for_stop_tids.swap (sent_tids);
3689 }
3690 
3691 
3692 Error
3693 NativeProcessLinux::ThreadDidStop (lldb::tid_t tid, bool initiated_by_llgs)
3694 {
3695     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3696 
3697     if (log)
3698         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ", %sinitiated by llgs)",
3699                 __FUNCTION__, tid, initiated_by_llgs?"":"not ");
3700 
3701     // Ensure we know about the thread.
3702     auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid));
3703     lldbassert(thread_sp != nullptr);
3704 
3705     // Update the global list of known thread states.  This one is definitely stopped.
3706     auto& context = thread_sp->GetThreadContext();
3707     const auto stop_was_requested = context.stop_requested;
3708     context.stop_requested = false;
3709 
3710     // If we have a pending notification, remove this from the set.
3711     if (m_pending_notification_up)
3712     {
3713         m_pending_notification_up->wait_for_stop_tids.erase(tid);
3714         SignalIfAllThreadsStopped();
3715     }
3716 
3717     Error error;
3718     if (initiated_by_llgs && context.request_resume_function && !stop_was_requested)
3719     {
3720         // We can end up here if stop was initiated by LLGS but by this time a
3721         // thread stop has occurred - maybe initiated by another event.
3722         if (log)
3723             log->Printf("Resuming thread %"  PRIu64 " since stop wasn't requested", tid);
3724         error = context.request_resume_function (tid, true);
3725         if (error.Fail() && log)
3726         {
3727                 log->Printf("NativeProcessLinux::%s failed to resume thread tid  %" PRIu64 ": %s",
3728                         __FUNCTION__, tid, error.AsCString ());
3729         }
3730     }
3731     return error;
3732 }
3733 
3734 void
3735 NativeProcessLinux::DoStopThreads(PendingNotificationUP &&notification_up)
3736 {
3737     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3738     if (m_pending_notification_up && log)
3739     {
3740         // Yikes - we've already got a pending signal notification in progress.
3741         // Log this info.  We lose the pending notification here.
3742         log->Printf("NativeProcessLinux::%s dropping existing pending signal notification for tid %" PRIu64 ", to be replaced with signal for tid %" PRIu64,
3743                    __FUNCTION__,
3744                    m_pending_notification_up->triggering_tid,
3745                    notification_up->triggering_tid);
3746     }
3747     m_pending_notification_up = std::move(notification_up);
3748 
3749     RequestStopOnAllRunningThreads();
3750 
3751     SignalIfAllThreadsStopped();
3752 }
3753 
3754 void
3755 NativeProcessLinux::ThreadWasCreated (lldb::tid_t tid)
3756 {
3757     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3758 
3759     if (log)
3760         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, tid);
3761 
3762     auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid));
3763     lldbassert(thread_sp != nullptr);
3764 
3765     if (m_pending_notification_up && StateIsRunningState(thread_sp->GetState()))
3766     {
3767         // We will need to wait for this new thread to stop as well before firing the
3768         // notification.
3769         m_pending_notification_up->wait_for_stop_tids.insert(tid);
3770         thread_sp->RequestStop();
3771     }
3772 }
3773 
3774 Error
3775 NativeProcessLinux::DoOperation(Operation* op)
3776 {
3777     m_monitor_up->DoOperation(op);
3778     return op->GetError();
3779 }
3780 
3781 // Wrapper for ptrace to catch errors and log calls.
3782 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
3783 long
3784 NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error)
3785 {
3786     long int result;
3787 
3788     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE));
3789 
3790     PtraceDisplayBytes(req, data, data_size);
3791 
3792     error.Clear();
3793     errno = 0;
3794     if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
3795         result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
3796     else
3797         result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
3798 
3799     if (result == -1)
3800         error.SetErrorToErrno();
3801 
3802     if (log)
3803         log->Printf("ptrace(%d, %" PRIu64 ", %p, %p, %zu)=%lX", req, pid, addr, data, data_size, result);
3804 
3805     PtraceDisplayBytes(req, data, data_size);
3806 
3807     if (log && error.GetError() != 0)
3808     {
3809         const char* str;
3810         switch (error.GetError())
3811         {
3812         case ESRCH:  str = "ESRCH"; break;
3813         case EINVAL: str = "EINVAL"; break;
3814         case EBUSY:  str = "EBUSY"; break;
3815         case EPERM:  str = "EPERM"; break;
3816         default:     str = error.AsCString();
3817         }
3818         log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str);
3819     }
3820 
3821     return result;
3822 }
3823