1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "NativeProcessLinux.h"
11 
12 // C Includes
13 #include <errno.h>
14 #include <string.h>
15 #include <stdint.h>
16 #include <unistd.h>
17 
18 // C++ Includes
19 #include <fstream>
20 #include <mutex>
21 #include <sstream>
22 #include <string>
23 #include <unordered_map>
24 
25 // Other libraries and framework includes
26 #include "lldb/Core/EmulateInstruction.h"
27 #include "lldb/Core/Error.h"
28 #include "lldb/Core/Module.h"
29 #include "lldb/Core/ModuleSpec.h"
30 #include "lldb/Core/RegisterValue.h"
31 #include "lldb/Core/State.h"
32 #include "lldb/Host/common/NativeBreakpoint.h"
33 #include "lldb/Host/common/NativeRegisterContext.h"
34 #include "lldb/Host/Host.h"
35 #include "lldb/Host/ThreadLauncher.h"
36 #include "lldb/Target/Platform.h"
37 #include "lldb/Target/Process.h"
38 #include "lldb/Target/ProcessLaunchInfo.h"
39 #include "lldb/Target/Target.h"
40 #include "lldb/Utility/LLDBAssert.h"
41 #include "lldb/Utility/PseudoTerminal.h"
42 #include "lldb/Utility/StringExtractor.h"
43 
44 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
45 #include "NativeThreadLinux.h"
46 #include "ProcFileReader.h"
47 #include "Procfs.h"
48 
49 // System includes - They have to be included after framework includes because they define some
50 // macros which collide with variable names in other modules
51 #include <linux/unistd.h>
52 #include <sys/socket.h>
53 
54 #include <sys/syscall.h>
55 #include <sys/types.h>
56 #include <sys/user.h>
57 #include <sys/wait.h>
58 
59 #include "lldb/Host/linux/Personality.h"
60 #include "lldb/Host/linux/Ptrace.h"
61 #include "lldb/Host/linux/Uio.h"
62 #include "lldb/Host/android/Android.h"
63 
64 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS  0xffffffff
65 
66 // Support hardware breakpoints in case it has not been defined
67 #ifndef TRAP_HWBKPT
68   #define TRAP_HWBKPT 4
69 #endif
70 
71 using namespace lldb;
72 using namespace lldb_private;
73 using namespace lldb_private::process_linux;
74 using namespace llvm;
75 
76 // Private bits we only need internally.
77 
78 static bool ProcessVmReadvSupported()
79 {
80     static bool is_supported;
81     static std::once_flag flag;
82 
83     std::call_once(flag, [] {
84         Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
85 
86         uint32_t source = 0x47424742;
87         uint32_t dest = 0;
88 
89         struct iovec local, remote;
90         remote.iov_base = &source;
91         local.iov_base = &dest;
92         remote.iov_len = local.iov_len = sizeof source;
93 
94         // We shall try if cross-process-memory reads work by attempting to read a value from our own process.
95         ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
96         is_supported = (res == sizeof(source) && source == dest);
97         if (log)
98         {
99             if (is_supported)
100                 log->Printf("%s: Detected kernel support for process_vm_readv syscall. Fast memory reads enabled.",
101                         __FUNCTION__);
102             else
103                 log->Printf("%s: syscall process_vm_readv failed (error: %s). Fast memory reads disabled.",
104                         __FUNCTION__, strerror(errno));
105         }
106     });
107 
108     return is_supported;
109 }
110 
111 namespace
112 {
113     Error
114     ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch)
115     {
116         // Grab process info for the running process.
117         ProcessInstanceInfo process_info;
118         if (!platform.GetProcessInfo (pid, process_info))
119             return Error("failed to get process info");
120 
121         // Resolve the executable module.
122         ModuleSP exe_module_sp;
123         ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
124         FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ());
125         Error error = platform.ResolveExecutable(
126             exe_module_spec,
127             exe_module_sp,
128             executable_search_paths.GetSize () ? &executable_search_paths : NULL);
129 
130         if (!error.Success ())
131             return error;
132 
133         // Check if we've got our architecture from the exe_module.
134         arch = exe_module_sp->GetArchitecture ();
135         if (arch.IsValid ())
136             return Error();
137         else
138             return Error("failed to retrieve a valid architecture from the exe module");
139     }
140 
141     void
142     DisplayBytes (StreamString &s, void *bytes, uint32_t count)
143     {
144         uint8_t *ptr = (uint8_t *)bytes;
145         const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
146         for(uint32_t i=0; i<loop_count; i++)
147         {
148             s.Printf ("[%x]", *ptr);
149             ptr++;
150         }
151     }
152 
153     void
154     PtraceDisplayBytes(int &req, void *data, size_t data_size)
155     {
156         StreamString buf;
157         Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (
158                     POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE));
159 
160         if (verbose_log)
161         {
162             switch(req)
163             {
164             case PTRACE_POKETEXT:
165             {
166                 DisplayBytes(buf, &data, 8);
167                 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData());
168                 break;
169             }
170             case PTRACE_POKEDATA:
171             {
172                 DisplayBytes(buf, &data, 8);
173                 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData());
174                 break;
175             }
176             case PTRACE_POKEUSER:
177             {
178                 DisplayBytes(buf, &data, 8);
179                 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData());
180                 break;
181             }
182             case PTRACE_SETREGS:
183             {
184                 DisplayBytes(buf, data, data_size);
185                 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData());
186                 break;
187             }
188             case PTRACE_SETFPREGS:
189             {
190                 DisplayBytes(buf, data, data_size);
191                 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData());
192                 break;
193             }
194             case PTRACE_SETSIGINFO:
195             {
196                 DisplayBytes(buf, data, sizeof(siginfo_t));
197                 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData());
198                 break;
199             }
200             case PTRACE_SETREGSET:
201             {
202                 // Extract iov_base from data, which is a pointer to the struct IOVEC
203                 DisplayBytes(buf, *(void **)data, data_size);
204                 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData());
205                 break;
206             }
207             default:
208             {
209             }
210             }
211         }
212     }
213 
214     static constexpr unsigned k_ptrace_word_size = sizeof(void*);
215     static_assert(sizeof(long) >= k_ptrace_word_size, "Size of long must be larger than ptrace word size");
216 } // end of anonymous namespace
217 
218 // Simple helper function to ensure flags are enabled on the given file
219 // descriptor.
220 static Error
221 EnsureFDFlags(int fd, int flags)
222 {
223     Error error;
224 
225     int status = fcntl(fd, F_GETFL);
226     if (status == -1)
227     {
228         error.SetErrorToErrno();
229         return error;
230     }
231 
232     if (fcntl(fd, F_SETFL, status | flags) == -1)
233     {
234         error.SetErrorToErrno();
235         return error;
236     }
237 
238     return error;
239 }
240 
241 NativeProcessLinux::LaunchArgs::LaunchArgs(Module *module,
242                                        char const **argv,
243                                        char const **envp,
244                                        const FileSpec &stdin_file_spec,
245                                        const FileSpec &stdout_file_spec,
246                                        const FileSpec &stderr_file_spec,
247                                        const FileSpec &working_dir,
248                                        const ProcessLaunchInfo &launch_info)
249     : m_module(module),
250       m_argv(argv),
251       m_envp(envp),
252       m_stdin_file_spec(stdin_file_spec),
253       m_stdout_file_spec(stdout_file_spec),
254       m_stderr_file_spec(stderr_file_spec),
255       m_working_dir(working_dir),
256       m_launch_info(launch_info)
257 {
258 }
259 
260 NativeProcessLinux::LaunchArgs::~LaunchArgs()
261 { }
262 
263 // -----------------------------------------------------------------------------
264 // Public Static Methods
265 // -----------------------------------------------------------------------------
266 
267 Error
268 NativeProcessProtocol::Launch (
269     ProcessLaunchInfo &launch_info,
270     NativeProcessProtocol::NativeDelegate &native_delegate,
271     MainLoop &mainloop,
272     NativeProcessProtocolSP &native_process_sp)
273 {
274     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
275 
276     lldb::ModuleSP exe_module_sp;
277     PlatformSP platform_sp (Platform::GetHostPlatform ());
278     Error error = platform_sp->ResolveExecutable(
279             ModuleSpec(launch_info.GetExecutableFile(), launch_info.GetArchitecture()),
280             exe_module_sp,
281             nullptr);
282 
283     if (! error.Success())
284         return error;
285 
286     // Verify the working directory is valid if one was specified.
287     FileSpec working_dir{launch_info.GetWorkingDirectory()};
288     if (working_dir &&
289             (!working_dir.ResolvePath() ||
290              working_dir.GetFileType() != FileSpec::eFileTypeDirectory))
291     {
292         error.SetErrorStringWithFormat ("No such file or directory: %s",
293                 working_dir.GetCString());
294         return error;
295     }
296 
297     const FileAction *file_action;
298 
299     // Default of empty will mean to use existing open file descriptors.
300     FileSpec stdin_file_spec{};
301     FileSpec stdout_file_spec{};
302     FileSpec stderr_file_spec{};
303 
304     file_action = launch_info.GetFileActionForFD (STDIN_FILENO);
305     if (file_action)
306         stdin_file_spec = file_action->GetFileSpec();
307 
308     file_action = launch_info.GetFileActionForFD (STDOUT_FILENO);
309     if (file_action)
310         stdout_file_spec = file_action->GetFileSpec();
311 
312     file_action = launch_info.GetFileActionForFD (STDERR_FILENO);
313     if (file_action)
314         stderr_file_spec = file_action->GetFileSpec();
315 
316     if (log)
317     {
318         if (stdin_file_spec)
319             log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'",
320                     __FUNCTION__, stdin_file_spec.GetCString());
321         else
322             log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__);
323 
324         if (stdout_file_spec)
325             log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'",
326                     __FUNCTION__, stdout_file_spec.GetCString());
327         else
328             log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__);
329 
330         if (stderr_file_spec)
331             log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'",
332                     __FUNCTION__, stderr_file_spec.GetCString());
333         else
334             log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__);
335     }
336 
337     // Create the NativeProcessLinux in launch mode.
338     native_process_sp.reset (new NativeProcessLinux ());
339 
340     if (log)
341     {
342         int i = 0;
343         for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i)
344         {
345             log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr");
346             ++i;
347         }
348     }
349 
350     if (!native_process_sp->RegisterNativeDelegate (native_delegate))
351     {
352         native_process_sp.reset ();
353         error.SetErrorStringWithFormat ("failed to register the native delegate");
354         return error;
355     }
356 
357     std::static_pointer_cast<NativeProcessLinux> (native_process_sp)->LaunchInferior (
358             mainloop,
359             exe_module_sp.get(),
360             launch_info.GetArguments ().GetConstArgumentVector (),
361             launch_info.GetEnvironmentEntries ().GetConstArgumentVector (),
362             stdin_file_spec,
363             stdout_file_spec,
364             stderr_file_spec,
365             working_dir,
366             launch_info,
367             error);
368 
369     if (error.Fail ())
370     {
371         native_process_sp.reset ();
372         if (log)
373             log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ());
374         return error;
375     }
376 
377     launch_info.SetProcessID (native_process_sp->GetID ());
378 
379     return error;
380 }
381 
382 Error
383 NativeProcessProtocol::Attach (
384     lldb::pid_t pid,
385     NativeProcessProtocol::NativeDelegate &native_delegate,
386     MainLoop &mainloop,
387     NativeProcessProtocolSP &native_process_sp)
388 {
389     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
390     if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE))
391         log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid);
392 
393     // Grab the current platform architecture.  This should be Linux,
394     // since this code is only intended to run on a Linux host.
395     PlatformSP platform_sp (Platform::GetHostPlatform ());
396     if (!platform_sp)
397         return Error("failed to get a valid default platform");
398 
399     // Retrieve the architecture for the running process.
400     ArchSpec process_arch;
401     Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch);
402     if (!error.Success ())
403         return error;
404 
405     std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ());
406 
407     if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate))
408     {
409         error.SetErrorStringWithFormat ("failed to register the native delegate");
410         return error;
411     }
412 
413     native_process_linux_sp->AttachToInferior (mainloop, pid, error);
414     if (!error.Success ())
415         return error;
416 
417     native_process_sp = native_process_linux_sp;
418     return error;
419 }
420 
421 // -----------------------------------------------------------------------------
422 // Public Instance Methods
423 // -----------------------------------------------------------------------------
424 
425 NativeProcessLinux::NativeProcessLinux () :
426     NativeProcessProtocol (LLDB_INVALID_PROCESS_ID),
427     m_arch (),
428     m_supports_mem_region (eLazyBoolCalculate),
429     m_mem_region_cache (),
430     m_pending_notification_tid(LLDB_INVALID_THREAD_ID)
431 {
432 }
433 
434 void
435 NativeProcessLinux::LaunchInferior (
436     MainLoop &mainloop,
437     Module *module,
438     const char *argv[],
439     const char *envp[],
440     const FileSpec &stdin_file_spec,
441     const FileSpec &stdout_file_spec,
442     const FileSpec &stderr_file_spec,
443     const FileSpec &working_dir,
444     const ProcessLaunchInfo &launch_info,
445     Error &error)
446 {
447     m_sigchld_handle = mainloop.RegisterSignal(SIGCHLD,
448             [this] (MainLoopBase &) { SigchldHandler(); }, error);
449     if (! m_sigchld_handle)
450         return;
451 
452     if (module)
453         m_arch = module->GetArchitecture ();
454 
455     SetState (eStateLaunching);
456 
457     std::unique_ptr<LaunchArgs> args(
458         new LaunchArgs(module, argv, envp,
459                        stdin_file_spec,
460                        stdout_file_spec,
461                        stderr_file_spec,
462                        working_dir,
463                        launch_info));
464 
465     Launch(args.get(), error);
466 }
467 
468 void
469 NativeProcessLinux::AttachToInferior (MainLoop &mainloop, lldb::pid_t pid, Error &error)
470 {
471     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
472     if (log)
473         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid);
474 
475     m_sigchld_handle = mainloop.RegisterSignal(SIGCHLD,
476             [this] (MainLoopBase &) { SigchldHandler(); }, error);
477     if (! m_sigchld_handle)
478         return;
479 
480     // We can use the Host for everything except the ResolveExecutable portion.
481     PlatformSP platform_sp = Platform::GetHostPlatform ();
482     if (!platform_sp)
483     {
484         if (log)
485             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid);
486         error.SetErrorString ("no default platform available");
487         return;
488     }
489 
490     // Gather info about the process.
491     ProcessInstanceInfo process_info;
492     if (!platform_sp->GetProcessInfo (pid, process_info))
493     {
494         if (log)
495             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid);
496         error.SetErrorString ("failed to get process info");
497         return;
498     }
499 
500     // Resolve the executable module
501     ModuleSP exe_module_sp;
502     FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths());
503     ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
504     error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp,
505                                            executable_search_paths.GetSize() ? &executable_search_paths : NULL);
506     if (!error.Success())
507         return;
508 
509     // Set the architecture to the exe architecture.
510     m_arch = exe_module_sp->GetArchitecture();
511     if (log)
512         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ());
513 
514     m_pid = pid;
515     SetState(eStateAttaching);
516 
517     Attach(pid, error);
518 }
519 
520 ::pid_t
521 NativeProcessLinux::Launch(LaunchArgs *args, Error &error)
522 {
523     assert (args && "null args");
524 
525     const char **argv = args->m_argv;
526     const char **envp = args->m_envp;
527     const FileSpec working_dir = args->m_working_dir;
528 
529     lldb_utility::PseudoTerminal terminal;
530     const size_t err_len = 1024;
531     char err_str[err_len];
532     lldb::pid_t pid;
533 
534     // Propagate the environment if one is not supplied.
535     if (envp == NULL || envp[0] == NULL)
536         envp = const_cast<const char **>(environ);
537 
538     if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1))
539     {
540         error.SetErrorToGenericError();
541         error.SetErrorStringWithFormat("Process fork failed: %s", err_str);
542         return -1;
543     }
544 
545     // Recognized child exit status codes.
546     enum {
547         ePtraceFailed = 1,
548         eDupStdinFailed,
549         eDupStdoutFailed,
550         eDupStderrFailed,
551         eChdirFailed,
552         eExecFailed,
553         eSetGidFailed,
554         eSetSigMaskFailed
555     };
556 
557     // Child process.
558     if (pid == 0)
559     {
560         // First, make sure we disable all logging. If we are logging to stdout, our logs can be
561         // mistaken for inferior output.
562         Log::DisableAllLogChannels(nullptr);
563         // FIXME consider opening a pipe between parent/child and have this forked child
564         // send log info to parent re: launch status.
565 
566         // Start tracing this child that is about to exec.
567         error = PtraceWrapper(PTRACE_TRACEME, 0);
568         if (error.Fail())
569             exit(ePtraceFailed);
570 
571         // terminal has already dupped the tty descriptors to stdin/out/err.
572         // This closes original fd from which they were copied (and avoids
573         // leaking descriptors to the debugged process.
574         terminal.CloseSlaveFileDescriptor();
575 
576         // Do not inherit setgid powers.
577         if (setgid(getgid()) != 0)
578             exit(eSetGidFailed);
579 
580         // Attempt to have our own process group.
581         if (setpgid(0, 0) != 0)
582         {
583             // FIXME log that this failed. This is common.
584             // Don't allow this to prevent an inferior exec.
585         }
586 
587         // Dup file descriptors if needed.
588         if (args->m_stdin_file_spec)
589             if (!DupDescriptor(args->m_stdin_file_spec, STDIN_FILENO, O_RDONLY))
590                 exit(eDupStdinFailed);
591 
592         if (args->m_stdout_file_spec)
593             if (!DupDescriptor(args->m_stdout_file_spec, STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
594                 exit(eDupStdoutFailed);
595 
596         if (args->m_stderr_file_spec)
597             if (!DupDescriptor(args->m_stderr_file_spec, STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
598                 exit(eDupStderrFailed);
599 
600         // Close everything besides stdin, stdout, and stderr that has no file
601         // action to avoid leaking
602         for (int fd = 3; fd < sysconf(_SC_OPEN_MAX); ++fd)
603             if (!args->m_launch_info.GetFileActionForFD(fd))
604                 close(fd);
605 
606         // Change working directory
607         if (working_dir && 0 != ::chdir(working_dir.GetCString()))
608               exit(eChdirFailed);
609 
610         // Disable ASLR if requested.
611         if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR))
612         {
613             const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS);
614             if (old_personality == -1)
615             {
616                 // Can't retrieve Linux personality.  Cannot disable ASLR.
617             }
618             else
619             {
620                 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality);
621                 if (new_personality == -1)
622                 {
623                     // Disabling ASLR failed.
624                 }
625                 else
626                 {
627                     // Disabling ASLR succeeded.
628                 }
629             }
630         }
631 
632         // Clear the signal mask to prevent the child from being affected by
633         // any masking done by the parent.
634         sigset_t set;
635         if (sigemptyset(&set) != 0 || pthread_sigmask(SIG_SETMASK, &set, nullptr) != 0)
636             exit(eSetSigMaskFailed);
637 
638         // Execute.  We should never return...
639         execve(argv[0],
640                const_cast<char *const *>(argv),
641                const_cast<char *const *>(envp));
642 
643         // ...unless exec fails.  In which case we definitely need to end the child here.
644         exit(eExecFailed);
645     }
646 
647     //
648     // This is the parent code here.
649     //
650     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
651 
652     // Wait for the child process to trap on its call to execve.
653     ::pid_t wpid;
654     int status;
655     if ((wpid = waitpid(pid, &status, 0)) < 0)
656     {
657         error.SetErrorToErrno();
658         if (log)
659             log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s",
660                     __FUNCTION__, error.AsCString ());
661 
662         // Mark the inferior as invalid.
663         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
664         SetState (StateType::eStateInvalid);
665 
666         return -1;
667     }
668     else if (WIFEXITED(status))
669     {
670         // open, dup or execve likely failed for some reason.
671         error.SetErrorToGenericError();
672         switch (WEXITSTATUS(status))
673         {
674             case ePtraceFailed:
675                 error.SetErrorString("Child ptrace failed.");
676                 break;
677             case eDupStdinFailed:
678                 error.SetErrorString("Child open stdin failed.");
679                 break;
680             case eDupStdoutFailed:
681                 error.SetErrorString("Child open stdout failed.");
682                 break;
683             case eDupStderrFailed:
684                 error.SetErrorString("Child open stderr failed.");
685                 break;
686             case eChdirFailed:
687                 error.SetErrorString("Child failed to set working directory.");
688                 break;
689             case eExecFailed:
690                 error.SetErrorString("Child exec failed.");
691                 break;
692             case eSetGidFailed:
693                 error.SetErrorString("Child setgid failed.");
694                 break;
695             case eSetSigMaskFailed:
696                 error.SetErrorString("Child failed to set signal mask.");
697                 break;
698             default:
699                 error.SetErrorString("Child returned unknown exit status.");
700                 break;
701         }
702 
703         if (log)
704         {
705             log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP",
706                     __FUNCTION__,
707                     WEXITSTATUS(status));
708         }
709 
710         // Mark the inferior as invalid.
711         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
712         SetState (StateType::eStateInvalid);
713 
714         return -1;
715     }
716     assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) &&
717            "Could not sync with inferior process.");
718 
719     if (log)
720         log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__);
721 
722     error = SetDefaultPtraceOpts(pid);
723     if (error.Fail())
724     {
725         if (log)
726             log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s",
727                     __FUNCTION__, error.AsCString ());
728 
729         // Mark the inferior as invalid.
730         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
731         SetState (StateType::eStateInvalid);
732 
733         return -1;
734     }
735 
736     // Release the master terminal descriptor and pass it off to the
737     // NativeProcessLinux instance.  Similarly stash the inferior pid.
738     m_terminal_fd = terminal.ReleaseMasterFileDescriptor();
739     m_pid = pid;
740 
741     // Set the terminal fd to be in non blocking mode (it simplifies the
742     // implementation of ProcessLinux::GetSTDOUT to have a non-blocking
743     // descriptor to read from).
744     error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
745     if (error.Fail())
746     {
747         if (log)
748             log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s",
749                     __FUNCTION__, error.AsCString ());
750 
751         // Mark the inferior as invalid.
752         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
753         SetState (StateType::eStateInvalid);
754 
755         return -1;
756     }
757 
758     if (log)
759         log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid);
760 
761     NativeThreadLinuxSP thread_sp = AddThread(pid);
762     assert (thread_sp && "AddThread() returned a nullptr thread");
763     thread_sp->SetStoppedBySignal(SIGSTOP);
764     ThreadWasCreated(*thread_sp);
765 
766     // Let our process instance know the thread has stopped.
767     SetCurrentThreadID (thread_sp->GetID ());
768     SetState (StateType::eStateStopped);
769 
770     if (log)
771     {
772         if (error.Success ())
773         {
774             log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__);
775         }
776         else
777         {
778             log->Printf ("NativeProcessLinux::%s inferior launching failed: %s",
779                 __FUNCTION__, error.AsCString ());
780             return -1;
781         }
782     }
783     return pid;
784 }
785 
786 ::pid_t
787 NativeProcessLinux::Attach(lldb::pid_t pid, Error &error)
788 {
789     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
790 
791     // Use a map to keep track of the threads which we have attached/need to attach.
792     Host::TidMap tids_to_attach;
793     if (pid <= 1)
794     {
795         error.SetErrorToGenericError();
796         error.SetErrorString("Attaching to process 1 is not allowed.");
797         return -1;
798     }
799 
800     while (Host::FindProcessThreads(pid, tids_to_attach))
801     {
802         for (Host::TidMap::iterator it = tids_to_attach.begin();
803              it != tids_to_attach.end();)
804         {
805             if (it->second == false)
806             {
807                 lldb::tid_t tid = it->first;
808 
809                 // Attach to the requested process.
810                 // An attach will cause the thread to stop with a SIGSTOP.
811                 error = PtraceWrapper(PTRACE_ATTACH, tid);
812                 if (error.Fail())
813                 {
814                     // No such thread. The thread may have exited.
815                     // More error handling may be needed.
816                     if (error.GetError() == ESRCH)
817                     {
818                         it = tids_to_attach.erase(it);
819                         continue;
820                     }
821                     else
822                         return -1;
823                 }
824 
825                 int status;
826                 // Need to use __WALL otherwise we receive an error with errno=ECHLD
827                 // At this point we should have a thread stopped if waitpid succeeds.
828                 if ((status = waitpid(tid, NULL, __WALL)) < 0)
829                 {
830                     // No such thread. The thread may have exited.
831                     // More error handling may be needed.
832                     if (errno == ESRCH)
833                     {
834                         it = tids_to_attach.erase(it);
835                         continue;
836                     }
837                     else
838                     {
839                         error.SetErrorToErrno();
840                         return -1;
841                     }
842                 }
843 
844                 error = SetDefaultPtraceOpts(tid);
845                 if (error.Fail())
846                     return -1;
847 
848                 if (log)
849                     log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid);
850 
851                 it->second = true;
852 
853                 // Create the thread, mark it as stopped.
854                 NativeThreadLinuxSP thread_sp (AddThread(static_cast<lldb::tid_t>(tid)));
855                 assert (thread_sp && "AddThread() returned a nullptr");
856 
857                 // This will notify this is a new thread and tell the system it is stopped.
858                 thread_sp->SetStoppedBySignal(SIGSTOP);
859                 ThreadWasCreated(*thread_sp);
860                 SetCurrentThreadID (thread_sp->GetID ());
861             }
862 
863             // move the loop forward
864             ++it;
865         }
866     }
867 
868     if (tids_to_attach.size() > 0)
869     {
870         m_pid = pid;
871         // Let our process instance know the thread has stopped.
872         SetState (StateType::eStateStopped);
873     }
874     else
875     {
876         error.SetErrorToGenericError();
877         error.SetErrorString("No such process.");
878         return -1;
879     }
880 
881     return pid;
882 }
883 
884 Error
885 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid)
886 {
887     long ptrace_opts = 0;
888 
889     // Have the child raise an event on exit.  This is used to keep the child in
890     // limbo until it is destroyed.
891     ptrace_opts |= PTRACE_O_TRACEEXIT;
892 
893     // Have the tracer trace threads which spawn in the inferior process.
894     // TODO: if we want to support tracing the inferiors' child, add the
895     // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
896     ptrace_opts |= PTRACE_O_TRACECLONE;
897 
898     // Have the tracer notify us before execve returns
899     // (needed to disable legacy SIGTRAP generation)
900     ptrace_opts |= PTRACE_O_TRACEEXEC;
901 
902     return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts);
903 }
904 
905 static ExitType convert_pid_status_to_exit_type (int status)
906 {
907     if (WIFEXITED (status))
908         return ExitType::eExitTypeExit;
909     else if (WIFSIGNALED (status))
910         return ExitType::eExitTypeSignal;
911     else if (WIFSTOPPED (status))
912         return ExitType::eExitTypeStop;
913     else
914     {
915         // We don't know what this is.
916         return ExitType::eExitTypeInvalid;
917     }
918 }
919 
920 static int convert_pid_status_to_return_code (int status)
921 {
922     if (WIFEXITED (status))
923         return WEXITSTATUS (status);
924     else if (WIFSIGNALED (status))
925         return WTERMSIG (status);
926     else if (WIFSTOPPED (status))
927         return WSTOPSIG (status);
928     else
929     {
930         // We don't know what this is.
931         return ExitType::eExitTypeInvalid;
932     }
933 }
934 
935 // Handles all waitpid events from the inferior process.
936 void
937 NativeProcessLinux::MonitorCallback(lldb::pid_t pid,
938                                     bool exited,
939                                     int signal,
940                                     int status)
941 {
942     Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS));
943 
944     // Certain activities differ based on whether the pid is the tid of the main thread.
945     const bool is_main_thread = (pid == GetID ());
946 
947     // Handle when the thread exits.
948     if (exited)
949     {
950         if (log)
951             log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %"  PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not");
952 
953         // This is a thread that exited.  Ensure we're not tracking it anymore.
954         const bool thread_found = StopTrackingThread (pid);
955 
956         if (is_main_thread)
957         {
958             // We only set the exit status and notify the delegate if we haven't already set the process
959             // state to an exited state.  We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8)
960             // for the main thread.
961             const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed);
962             if (!already_notified)
963             {
964                 if (log)
965                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ()));
966                 // The main thread exited.  We're done monitoring.  Report to delegate.
967                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
968 
969                 // Notify delegate that our process has exited.
970                 SetState (StateType::eStateExited, true);
971             }
972             else
973             {
974                 if (log)
975                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
976             }
977         }
978         else
979         {
980             // Do we want to report to the delegate in this case?  I think not.  If this was an orderly
981             // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal,
982             // and we would have done an all-stop then.
983             if (log)
984                 log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
985         }
986         return;
987     }
988 
989     siginfo_t info;
990     const auto info_err = GetSignalInfo(pid, &info);
991     auto thread_sp = GetThreadByID(pid);
992 
993     if (! thread_sp)
994     {
995         // Normally, the only situation when we cannot find the thread is if we have just
996         // received a new thread notification. This is indicated by GetSignalInfo() returning
997         // si_code == SI_USER and si_pid == 0
998         if (log)
999             log->Printf("NativeProcessLinux::%s received notification about an unknown tid %" PRIu64 ".", __FUNCTION__, pid);
1000 
1001         if (info_err.Fail())
1002         {
1003             if (log)
1004                 log->Printf("NativeProcessLinux::%s (tid %" PRIu64 ") GetSignalInfo failed (%s). Ingoring this notification.", __FUNCTION__, pid, info_err.AsCString());
1005             return;
1006         }
1007 
1008         if (log && (info.si_code != SI_USER || info.si_pid != 0))
1009             log->Printf("NativeProcessLinux::%s (tid %" PRIu64 ") unexpected signal info (si_code: %d, si_pid: %d). Treating as a new thread notification anyway.", __FUNCTION__, pid, info.si_code, info.si_pid);
1010 
1011         auto thread_sp = AddThread(pid);
1012         // Resume the newly created thread.
1013         ResumeThread(*thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
1014         ThreadWasCreated(*thread_sp);
1015         return;
1016     }
1017 
1018     // Get details on the signal raised.
1019     if (info_err.Success())
1020     {
1021         // We have retrieved the signal info.  Dispatch appropriately.
1022         if (info.si_signo == SIGTRAP)
1023             MonitorSIGTRAP(info, *thread_sp);
1024         else
1025             MonitorSignal(info, *thread_sp, exited);
1026     }
1027     else
1028     {
1029         if (info_err.GetError() == EINVAL)
1030         {
1031             // This is a group stop reception for this tid.
1032             // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the
1033             // tracee, triggering the group-stop mechanism. Normally receiving these would stop
1034             // the process, pending a SIGCONT. Simulating this state in a debugger is hard and is
1035             // generally not needed (one use case is debugging background task being managed by a
1036             // shell). For general use, it is sufficient to stop the process in a signal-delivery
1037             // stop which happens before the group stop. This done by MonitorSignal and works
1038             // correctly for all signals.
1039             if (log)
1040                 log->Printf("NativeProcessLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64 ". Transparent handling of group stops not supported, resuming the thread.", __FUNCTION__, GetID (), pid);
1041             ResumeThread(*thread_sp, thread_sp->GetState(), LLDB_INVALID_SIGNAL_NUMBER);
1042         }
1043         else
1044         {
1045             // ptrace(GETSIGINFO) failed (but not due to group-stop).
1046 
1047             // A return value of ESRCH means the thread/process is no longer on the system,
1048             // so it was killed somehow outside of our control.  Either way, we can't do anything
1049             // with it anymore.
1050 
1051             // Stop tracking the metadata for the thread since it's entirely off the system now.
1052             const bool thread_found = StopTrackingThread (pid);
1053 
1054             if (log)
1055                 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)",
1056                              __FUNCTION__, info_err.AsCString(), pid, signal, status, info_err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found");
1057 
1058             if (is_main_thread)
1059             {
1060                 // Notify the delegate - our process is not available but appears to have been killed outside
1061                 // our control.  Is eStateExited the right exit state in this case?
1062                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
1063                 SetState (StateType::eStateExited, true);
1064             }
1065             else
1066             {
1067                 // This thread was pulled out from underneath us.  Anything to do here? Do we want to do an all stop?
1068                 if (log)
1069                     log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid);
1070             }
1071         }
1072     }
1073 }
1074 
1075 void
1076 NativeProcessLinux::WaitForNewThread(::pid_t tid)
1077 {
1078     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1079 
1080     NativeThreadLinuxSP new_thread_sp = GetThreadByID(tid);
1081 
1082     if (new_thread_sp)
1083     {
1084         // We are already tracking the thread - we got the event on the new thread (see
1085         // MonitorSignal) before this one. We are done.
1086         return;
1087     }
1088 
1089     // The thread is not tracked yet, let's wait for it to appear.
1090     int status = -1;
1091     ::pid_t wait_pid;
1092     do
1093     {
1094         if (log)
1095             log->Printf ("NativeProcessLinux::%s() received thread creation event for tid %" PRIu32 ". tid not tracked yet, waiting for thread to appear...", __FUNCTION__, tid);
1096         wait_pid = waitpid(tid, &status, __WALL);
1097     }
1098     while (wait_pid == -1 && errno == EINTR);
1099     // Since we are waiting on a specific tid, this must be the creation event. But let's do
1100     // some checks just in case.
1101     if (wait_pid != tid) {
1102         if (log)
1103             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime", __FUNCTION__, tid);
1104         // The only way I know of this could happen is if the whole process was
1105         // SIGKILLed in the mean time. In any case, we can't do anything about that now.
1106         return;
1107     }
1108     if (WIFEXITED(status))
1109     {
1110         if (log)
1111             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " returned an 'exited' event. Not tracking the thread.", __FUNCTION__, tid);
1112         // Also a very improbable event.
1113         return;
1114     }
1115 
1116     siginfo_t info;
1117     Error error = GetSignalInfo(tid, &info);
1118     if (error.Fail())
1119     {
1120         if (log)
1121             log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime.", __FUNCTION__, tid);
1122         return;
1123     }
1124 
1125     if (((info.si_pid != 0) || (info.si_code != SI_USER)) && log)
1126     {
1127         // We should be getting a thread creation signal here, but we received something
1128         // else. There isn't much we can do about it now, so we will just log that. Since the
1129         // thread is alive and we are receiving events from it, we shall pretend that it was
1130         // created properly.
1131         log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " received unexpected signal with code %d from pid %d.", __FUNCTION__, tid, info.si_code, info.si_pid);
1132     }
1133 
1134     if (log)
1135         log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": tracking new thread tid %" PRIu32,
1136                  __FUNCTION__, GetID (), tid);
1137 
1138     new_thread_sp = AddThread(tid);
1139     ResumeThread(*new_thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
1140     ThreadWasCreated(*new_thread_sp);
1141 }
1142 
1143 void
1144 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, NativeThreadLinux &thread)
1145 {
1146     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1147     const bool is_main_thread = (thread.GetID() == GetID ());
1148 
1149     assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
1150 
1151     switch (info.si_code)
1152     {
1153     // TODO: these two cases are required if we want to support tracing of the inferiors' children.  We'd need this to debug a monitor.
1154     // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
1155     // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
1156 
1157     case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)):
1158     {
1159         // This is the notification on the parent thread which informs us of new thread
1160         // creation.
1161         // We don't want to do anything with the parent thread so we just resume it. In case we
1162         // want to implement "break on thread creation" functionality, we would need to stop
1163         // here.
1164 
1165         unsigned long event_message = 0;
1166         if (GetEventMessage(thread.GetID(), &event_message).Fail())
1167         {
1168             if (log)
1169                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, thread.GetID());
1170         } else
1171             WaitForNewThread(event_message);
1172 
1173         ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
1174         break;
1175     }
1176 
1177     case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)):
1178     {
1179         NativeThreadLinuxSP main_thread_sp;
1180         if (log)
1181             log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info.si_code ^ SIGTRAP);
1182 
1183         // Exec clears any pending notifications.
1184         m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
1185 
1186         // Remove all but the main thread here.  Linux fork creates a new process which only copies the main thread.
1187         if (log)
1188             log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__);
1189 
1190         for (auto thread_sp : m_threads)
1191         {
1192             const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID ();
1193             if (is_main_thread)
1194             {
1195                 main_thread_sp = std::static_pointer_cast<NativeThreadLinux>(thread_sp);
1196                 if (log)
1197                     log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ());
1198             }
1199             else
1200             {
1201                 if (log)
1202                     log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ());
1203             }
1204         }
1205 
1206         m_threads.clear ();
1207 
1208         if (main_thread_sp)
1209         {
1210             m_threads.push_back (main_thread_sp);
1211             SetCurrentThreadID (main_thread_sp->GetID ());
1212             main_thread_sp->SetStoppedByExec();
1213         }
1214         else
1215         {
1216             SetCurrentThreadID (LLDB_INVALID_THREAD_ID);
1217             if (log)
1218                 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ());
1219         }
1220 
1221         // Tell coordinator about about the "new" (since exec) stopped main thread.
1222         ThreadWasCreated(*main_thread_sp);
1223 
1224         // Let our delegate know we have just exec'd.
1225         NotifyDidExec ();
1226 
1227         // If we have a main thread, indicate we are stopped.
1228         assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked");
1229 
1230         // Let the process know we're stopped.
1231         StopRunningThreads(main_thread_sp->GetID());
1232 
1233         break;
1234     }
1235 
1236     case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)):
1237     {
1238         // The inferior process or one of its threads is about to exit.
1239         // We don't want to do anything with the thread so we just resume it. In case we
1240         // want to implement "break on thread exit" functionality, we would need to stop
1241         // here.
1242 
1243         unsigned long data = 0;
1244         if (GetEventMessage(thread.GetID(), &data).Fail())
1245             data = -1;
1246 
1247         if (log)
1248         {
1249             log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)",
1250                          __FUNCTION__,
1251                          data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false",
1252                          thread.GetID(),
1253                     is_main_thread ? "is main thread" : "not main thread");
1254         }
1255 
1256         if (is_main_thread)
1257         {
1258             SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true);
1259         }
1260 
1261         StateType state = thread.GetState();
1262         if (! StateIsRunningState(state))
1263         {
1264             // Due to a kernel bug, we may sometimes get this stop after the inferior gets a
1265             // SIGKILL. This confuses our state tracking logic in ResumeThread(), since normally,
1266             // we should not be receiving any ptrace events while the inferior is stopped. This
1267             // makes sure that the inferior is resumed and exits normally.
1268             state = eStateRunning;
1269         }
1270         ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
1271 
1272         break;
1273     }
1274 
1275     case 0:
1276     case TRAP_TRACE:  // We receive this on single stepping.
1277     case TRAP_HWBKPT: // We receive this on watchpoint hit
1278     {
1279         // If a watchpoint was hit, report it
1280         uint32_t wp_index;
1281         Error error = thread.GetRegisterContext()->GetWatchpointHitIndex(wp_index, (uintptr_t)info.si_addr);
1282         if (error.Fail() && log)
1283             log->Printf("NativeProcessLinux::%s() "
1284                         "received error while checking for watchpoint hits, "
1285                         "pid = %" PRIu64 " error = %s",
1286                         __FUNCTION__, thread.GetID(), error.AsCString());
1287         if (wp_index != LLDB_INVALID_INDEX32)
1288         {
1289             MonitorWatchpoint(thread, wp_index);
1290             break;
1291         }
1292 
1293         // Otherwise, report step over
1294         MonitorTrace(thread);
1295         break;
1296     }
1297 
1298     case SI_KERNEL:
1299 #if defined __mips__
1300         // For mips there is no special signal for watchpoint
1301         // So we check for watchpoint in kernel trap
1302     {
1303         // If a watchpoint was hit, report it
1304         uint32_t wp_index;
1305         Error error = thread.GetRegisterContext()->GetWatchpointHitIndex(wp_index, LLDB_INVALID_ADDRESS);
1306         if (error.Fail() && log)
1307             log->Printf("NativeProcessLinux::%s() "
1308                         "received error while checking for watchpoint hits, "
1309                         "pid = %" PRIu64 " error = %s",
1310                         __FUNCTION__, thread.GetID(), error.AsCString());
1311         if (wp_index != LLDB_INVALID_INDEX32)
1312         {
1313             MonitorWatchpoint(thread, wp_index);
1314             break;
1315         }
1316     }
1317         // NO BREAK
1318 #endif
1319     case TRAP_BRKPT:
1320         MonitorBreakpoint(thread);
1321         break;
1322 
1323     case SIGTRAP:
1324     case (SIGTRAP | 0x80):
1325         if (log)
1326             log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), thread.GetID());
1327 
1328         // Ignore these signals until we know more about them.
1329         ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
1330         break;
1331 
1332     default:
1333         assert(false && "Unexpected SIGTRAP code!");
1334         if (log)
1335             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%d",
1336                     __FUNCTION__, GetID(), thread.GetID(), info.si_code);
1337         break;
1338 
1339     }
1340 }
1341 
1342 void
1343 NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread)
1344 {
1345     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1346     if (log)
1347         log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)",
1348                 __FUNCTION__, thread.GetID());
1349 
1350     // This thread is currently stopped.
1351     thread.SetStoppedByTrace();
1352 
1353     StopRunningThreads(thread.GetID());
1354 }
1355 
1356 void
1357 NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread)
1358 {
1359     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
1360     if (log)
1361         log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64,
1362                 __FUNCTION__, thread.GetID());
1363 
1364     // Mark the thread as stopped at breakpoint.
1365     thread.SetStoppedByBreakpoint();
1366     Error error = FixupBreakpointPCAsNeeded(thread);
1367     if (error.Fail())
1368         if (log)
1369             log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s",
1370                     __FUNCTION__, thread.GetID(), error.AsCString());
1371 
1372     if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != m_threads_stepping_with_breakpoint.end())
1373         thread.SetStoppedByTrace();
1374 
1375     StopRunningThreads(thread.GetID());
1376 }
1377 
1378 void
1379 NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, uint32_t wp_index)
1380 {
1381     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
1382     if (log)
1383         log->Printf("NativeProcessLinux::%s() received watchpoint event, "
1384                     "pid = %" PRIu64 ", wp_index = %" PRIu32,
1385                     __FUNCTION__, thread.GetID(), wp_index);
1386 
1387     // Mark the thread as stopped at watchpoint.
1388     // The address is at (lldb::addr_t)info->si_addr if we need it.
1389     thread.SetStoppedByWatchpoint(wp_index);
1390 
1391     // We need to tell all other running threads before we notify the delegate about this stop.
1392     StopRunningThreads(thread.GetID());
1393 }
1394 
1395 void
1396 NativeProcessLinux::MonitorSignal(const siginfo_t &info, NativeThreadLinux &thread, bool exited)
1397 {
1398     const int signo = info.si_signo;
1399     const bool is_from_llgs = info.si_pid == getpid ();
1400 
1401     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1402 
1403     // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
1404     // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
1405     // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
1406     //
1407     // IOW, user generated signals never generate what we consider to be a
1408     // "crash".
1409     //
1410     // Similarly, ACK signals generated by this monitor.
1411 
1412     // Handle the signal.
1413     if (info.si_code == SI_TKILL || info.si_code == SI_USER)
1414     {
1415         if (log)
1416             log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")",
1417                             __FUNCTION__,
1418                             Host::GetSignalAsCString(signo),
1419                             signo,
1420                             (info.si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"),
1421                             info.si_pid,
1422                             is_from_llgs ? "from llgs" : "not from llgs",
1423                             thread.GetID());
1424     }
1425 
1426     // Check for thread stop notification.
1427     if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP))
1428     {
1429         // This is a tgkill()-based stop.
1430         if (log)
1431             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped",
1432                          __FUNCTION__,
1433                          GetID (),
1434                          thread.GetID());
1435 
1436         // Check that we're not already marked with a stop reason.
1437         // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that
1438         // the kernel signaled us with the thread stopping which we handled and marked as stopped,
1439         // and that, without an intervening resume, we received another stop.  It is more likely
1440         // that we are missing the marking of a run state somewhere if we find that the thread was
1441         // marked as stopped.
1442         const StateType thread_state = thread.GetState();
1443         if (!StateIsStoppedState (thread_state, false))
1444         {
1445             // An inferior thread has stopped because of a SIGSTOP we have sent it.
1446             // Generally, these are not important stops and we don't want to report them as
1447             // they are just used to stop other threads when one thread (the one with the
1448             // *real* stop reason) hits a breakpoint (watchpoint, etc...). However, in the
1449             // case of an asynchronous Interrupt(), this *is* the real stop reason, so we
1450             // leave the signal intact if this is the thread that was chosen as the
1451             // triggering thread.
1452             if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID)
1453             {
1454                 if (m_pending_notification_tid == thread.GetID())
1455                     thread.SetStoppedBySignal(SIGSTOP, &info);
1456                 else
1457                     thread.SetStoppedWithNoReason();
1458 
1459                 SetCurrentThreadID (thread.GetID ());
1460                 SignalIfAllThreadsStopped();
1461             }
1462             else
1463             {
1464                 // We can end up here if stop was initiated by LLGS but by this time a
1465                 // thread stop has occurred - maybe initiated by another event.
1466                 Error error = ResumeThread(thread, thread.GetState(), 0);
1467                 if (error.Fail() && log)
1468                 {
1469                     log->Printf("NativeProcessLinux::%s failed to resume thread tid  %" PRIu64 ": %s",
1470                             __FUNCTION__, thread.GetID(), error.AsCString());
1471                 }
1472             }
1473         }
1474         else
1475         {
1476             if (log)
1477             {
1478                 // Retrieve the signal name if the thread was stopped by a signal.
1479                 int stop_signo = 0;
1480                 const bool stopped_by_signal = thread.IsStopped(&stop_signo);
1481                 const char *signal_name = stopped_by_signal ? Host::GetSignalAsCString(stop_signo) : "<not stopped by signal>";
1482                 if (!signal_name)
1483                     signal_name = "<no-signal-name>";
1484 
1485                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is",
1486                              __FUNCTION__,
1487                              GetID (),
1488                              thread.GetID(),
1489                              StateAsCString (thread_state),
1490                              stop_signo,
1491                              signal_name);
1492             }
1493             SignalIfAllThreadsStopped();
1494         }
1495 
1496         // Done handling.
1497         return;
1498     }
1499 
1500     if (log)
1501         log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, Host::GetSignalAsCString(signo));
1502 
1503     // This thread is stopped.
1504     thread.SetStoppedBySignal(signo, &info);
1505 
1506     // Send a stop to the debugger after we get all other threads to stop.
1507     StopRunningThreads(thread.GetID());
1508 }
1509 
1510 namespace {
1511 
1512 struct EmulatorBaton
1513 {
1514     NativeProcessLinux* m_process;
1515     NativeRegisterContext* m_reg_context;
1516 
1517     // eRegisterKindDWARF -> RegsiterValue
1518     std::unordered_map<uint32_t, RegisterValue> m_register_values;
1519 
1520     EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) :
1521             m_process(process), m_reg_context(reg_context) {}
1522 };
1523 
1524 } // anonymous namespace
1525 
1526 static size_t
1527 ReadMemoryCallback (EmulateInstruction *instruction,
1528                     void *baton,
1529                     const EmulateInstruction::Context &context,
1530                     lldb::addr_t addr,
1531                     void *dst,
1532                     size_t length)
1533 {
1534     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
1535 
1536     size_t bytes_read;
1537     emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read);
1538     return bytes_read;
1539 }
1540 
1541 static bool
1542 ReadRegisterCallback (EmulateInstruction *instruction,
1543                       void *baton,
1544                       const RegisterInfo *reg_info,
1545                       RegisterValue &reg_value)
1546 {
1547     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
1548 
1549     auto it = emulator_baton->m_register_values.find(reg_info->kinds[eRegisterKindDWARF]);
1550     if (it != emulator_baton->m_register_values.end())
1551     {
1552         reg_value = it->second;
1553         return true;
1554     }
1555 
1556     // The emulator only fill in the dwarf regsiter numbers (and in some case
1557     // the generic register numbers). Get the full register info from the
1558     // register context based on the dwarf register numbers.
1559     const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo(
1560             eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
1561 
1562     Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value);
1563     if (error.Success())
1564         return true;
1565 
1566     return false;
1567 }
1568 
1569 static bool
1570 WriteRegisterCallback (EmulateInstruction *instruction,
1571                        void *baton,
1572                        const EmulateInstruction::Context &context,
1573                        const RegisterInfo *reg_info,
1574                        const RegisterValue &reg_value)
1575 {
1576     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
1577     emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value;
1578     return true;
1579 }
1580 
1581 static size_t
1582 WriteMemoryCallback (EmulateInstruction *instruction,
1583                      void *baton,
1584                      const EmulateInstruction::Context &context,
1585                      lldb::addr_t addr,
1586                      const void *dst,
1587                      size_t length)
1588 {
1589     return length;
1590 }
1591 
1592 static lldb::addr_t
1593 ReadFlags (NativeRegisterContext* regsiter_context)
1594 {
1595     const RegisterInfo* flags_info = regsiter_context->GetRegisterInfo(
1596             eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1597     return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS);
1598 }
1599 
1600 Error
1601 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread)
1602 {
1603     Error error;
1604     NativeRegisterContextSP register_context_sp = thread.GetRegisterContext();
1605 
1606     std::unique_ptr<EmulateInstruction> emulator_ap(
1607         EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr));
1608 
1609     if (emulator_ap == nullptr)
1610         return Error("Instruction emulator not found!");
1611 
1612     EmulatorBaton baton(this, register_context_sp.get());
1613     emulator_ap->SetBaton(&baton);
1614     emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
1615     emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
1616     emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
1617     emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
1618 
1619     if (!emulator_ap->ReadInstruction())
1620         return Error("Read instruction failed!");
1621 
1622     bool emulation_result = emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
1623 
1624     const RegisterInfo* reg_info_pc = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
1625     const RegisterInfo* reg_info_flags = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1626 
1627     auto pc_it = baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
1628     auto flags_it = baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
1629 
1630     lldb::addr_t next_pc;
1631     lldb::addr_t next_flags;
1632     if (emulation_result)
1633     {
1634         assert(pc_it != baton.m_register_values.end() && "Emulation was successfull but PC wasn't updated");
1635         next_pc = pc_it->second.GetAsUInt64();
1636 
1637         if (flags_it != baton.m_register_values.end())
1638             next_flags = flags_it->second.GetAsUInt64();
1639         else
1640             next_flags = ReadFlags (register_context_sp.get());
1641     }
1642     else if (pc_it == baton.m_register_values.end())
1643     {
1644         // Emulate instruction failed and it haven't changed PC. Advance PC
1645         // with the size of the current opcode because the emulation of all
1646         // PC modifying instruction should be successful. The failure most
1647         // likely caused by a not supported instruction which don't modify PC.
1648         next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize();
1649         next_flags = ReadFlags (register_context_sp.get());
1650     }
1651     else
1652     {
1653         // The instruction emulation failed after it modified the PC. It is an
1654         // unknown error where we can't continue because the next instruction is
1655         // modifying the PC but we don't  know how.
1656         return Error ("Instruction emulation failed unexpectedly.");
1657     }
1658 
1659     if (m_arch.GetMachine() == llvm::Triple::arm)
1660     {
1661         if (next_flags & 0x20)
1662         {
1663             // Thumb mode
1664             error = SetSoftwareBreakpoint(next_pc, 2);
1665         }
1666         else
1667         {
1668             // Arm mode
1669             error = SetSoftwareBreakpoint(next_pc, 4);
1670         }
1671     }
1672     else if (m_arch.GetMachine() == llvm::Triple::mips64
1673             || m_arch.GetMachine() == llvm::Triple::mips64el
1674             || m_arch.GetMachine() == llvm::Triple::mips
1675             || m_arch.GetMachine() == llvm::Triple::mipsel)
1676         error = SetSoftwareBreakpoint(next_pc, 4);
1677     else
1678     {
1679         // No size hint is given for the next breakpoint
1680         error = SetSoftwareBreakpoint(next_pc, 0);
1681     }
1682 
1683     if (error.Fail())
1684         return error;
1685 
1686     m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc});
1687 
1688     return Error();
1689 }
1690 
1691 bool
1692 NativeProcessLinux::SupportHardwareSingleStepping() const
1693 {
1694     if (m_arch.GetMachine() == llvm::Triple::arm
1695         || m_arch.GetMachine() == llvm::Triple::mips64 || m_arch.GetMachine() == llvm::Triple::mips64el
1696         || m_arch.GetMachine() == llvm::Triple::mips || m_arch.GetMachine() == llvm::Triple::mipsel)
1697         return false;
1698     return true;
1699 }
1700 
1701 Error
1702 NativeProcessLinux::Resume (const ResumeActionList &resume_actions)
1703 {
1704     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD));
1705     if (log)
1706         log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ());
1707 
1708     bool software_single_step = !SupportHardwareSingleStepping();
1709 
1710     if (software_single_step)
1711     {
1712         for (auto thread_sp : m_threads)
1713         {
1714             assert (thread_sp && "thread list should not contain NULL threads");
1715 
1716             const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
1717             if (action == nullptr)
1718                 continue;
1719 
1720             if (action->state == eStateStepping)
1721             {
1722                 Error error = SetupSoftwareSingleStepping(static_cast<NativeThreadLinux &>(*thread_sp));
1723                 if (error.Fail())
1724                     return error;
1725             }
1726         }
1727     }
1728 
1729     for (auto thread_sp : m_threads)
1730     {
1731         assert (thread_sp && "thread list should not contain NULL threads");
1732 
1733         const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
1734 
1735         if (action == nullptr)
1736         {
1737             if (log)
1738                 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64,
1739                     __FUNCTION__, GetID (), thread_sp->GetID ());
1740             continue;
1741         }
1742 
1743         if (log)
1744         {
1745             log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64,
1746                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
1747         }
1748 
1749         switch (action->state)
1750         {
1751         case eStateRunning:
1752         case eStateStepping:
1753         {
1754             // Run the thread, possibly feeding it the signal.
1755             const int signo = action->signal;
1756             ResumeThread(static_cast<NativeThreadLinux &>(*thread_sp), action->state, signo);
1757             break;
1758         }
1759 
1760         case eStateSuspended:
1761         case eStateStopped:
1762             lldbassert(0 && "Unexpected state");
1763 
1764         default:
1765             return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64,
1766                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
1767         }
1768     }
1769 
1770     return Error();
1771 }
1772 
1773 Error
1774 NativeProcessLinux::Halt ()
1775 {
1776     Error error;
1777 
1778     if (kill (GetID (), SIGSTOP) != 0)
1779         error.SetErrorToErrno ();
1780 
1781     return error;
1782 }
1783 
1784 Error
1785 NativeProcessLinux::Detach ()
1786 {
1787     Error error;
1788 
1789     // Stop monitoring the inferior.
1790     m_sigchld_handle.reset();
1791 
1792     // Tell ptrace to detach from the process.
1793     if (GetID () == LLDB_INVALID_PROCESS_ID)
1794         return error;
1795 
1796     for (auto thread_sp : m_threads)
1797     {
1798         Error e = Detach(thread_sp->GetID());
1799         if (e.Fail())
1800             error = e; // Save the error, but still attempt to detach from other threads.
1801     }
1802 
1803     return error;
1804 }
1805 
1806 Error
1807 NativeProcessLinux::Signal (int signo)
1808 {
1809     Error error;
1810 
1811     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1812     if (log)
1813         log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64,
1814                 __FUNCTION__, signo, Host::GetSignalAsCString(signo), GetID());
1815 
1816     if (kill(GetID(), signo))
1817         error.SetErrorToErrno();
1818 
1819     return error;
1820 }
1821 
1822 Error
1823 NativeProcessLinux::Interrupt ()
1824 {
1825     // Pick a running thread (or if none, a not-dead stopped thread) as
1826     // the chosen thread that will be the stop-reason thread.
1827     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1828 
1829     NativeThreadProtocolSP running_thread_sp;
1830     NativeThreadProtocolSP stopped_thread_sp;
1831 
1832     if (log)
1833         log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__);
1834 
1835     for (auto thread_sp : m_threads)
1836     {
1837         // The thread shouldn't be null but lets just cover that here.
1838         if (!thread_sp)
1839             continue;
1840 
1841         // If we have a running or stepping thread, we'll call that the
1842         // target of the interrupt.
1843         const auto thread_state = thread_sp->GetState ();
1844         if (thread_state == eStateRunning ||
1845             thread_state == eStateStepping)
1846         {
1847             running_thread_sp = thread_sp;
1848             break;
1849         }
1850         else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true))
1851         {
1852             // Remember the first non-dead stopped thread.  We'll use that as a backup if there are no running threads.
1853             stopped_thread_sp = thread_sp;
1854         }
1855     }
1856 
1857     if (!running_thread_sp && !stopped_thread_sp)
1858     {
1859         Error error("found no running/stepping or live stopped threads as target for interrupt");
1860         if (log)
1861             log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ());
1862 
1863         return error;
1864     }
1865 
1866     NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp;
1867 
1868     if (log)
1869         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target",
1870                      __FUNCTION__,
1871                      GetID (),
1872                      running_thread_sp ? "running" : "stopped",
1873                      deferred_signal_thread_sp->GetID ());
1874 
1875     StopRunningThreads(deferred_signal_thread_sp->GetID());
1876 
1877     return Error();
1878 }
1879 
1880 Error
1881 NativeProcessLinux::Kill ()
1882 {
1883     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1884     if (log)
1885         log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ());
1886 
1887     Error error;
1888 
1889     switch (m_state)
1890     {
1891         case StateType::eStateInvalid:
1892         case StateType::eStateExited:
1893         case StateType::eStateCrashed:
1894         case StateType::eStateDetached:
1895         case StateType::eStateUnloaded:
1896             // Nothing to do - the process is already dead.
1897             if (log)
1898                 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state));
1899             return error;
1900 
1901         case StateType::eStateConnected:
1902         case StateType::eStateAttaching:
1903         case StateType::eStateLaunching:
1904         case StateType::eStateStopped:
1905         case StateType::eStateRunning:
1906         case StateType::eStateStepping:
1907         case StateType::eStateSuspended:
1908             // We can try to kill a process in these states.
1909             break;
1910     }
1911 
1912     if (kill (GetID (), SIGKILL) != 0)
1913     {
1914         error.SetErrorToErrno ();
1915         return error;
1916     }
1917 
1918     return error;
1919 }
1920 
1921 static Error
1922 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info)
1923 {
1924     memory_region_info.Clear();
1925 
1926     StringExtractor line_extractor (maps_line.c_str ());
1927 
1928     // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode   pathname
1929     // perms: rwxp   (letter is present if set, '-' if not, final character is p=private, s=shared).
1930 
1931     // Parse out the starting address
1932     lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0);
1933 
1934     // Parse out hyphen separating start and end address from range.
1935     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-'))
1936         return Error ("malformed /proc/{pid}/maps entry, missing dash between address range");
1937 
1938     // Parse out the ending address
1939     lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address);
1940 
1941     // Parse out the space after the address.
1942     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' '))
1943         return Error ("malformed /proc/{pid}/maps entry, missing space after range");
1944 
1945     // Save the range.
1946     memory_region_info.GetRange ().SetRangeBase (start_address);
1947     memory_region_info.GetRange ().SetRangeEnd (end_address);
1948 
1949     // Parse out each permission entry.
1950     if (line_extractor.GetBytesLeft () < 4)
1951         return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions");
1952 
1953     // Handle read permission.
1954     const char read_perm_char = line_extractor.GetChar ();
1955     if (read_perm_char == 'r')
1956         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes);
1957     else
1958     {
1959         assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" );
1960         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
1961     }
1962 
1963     // Handle write permission.
1964     const char write_perm_char = line_extractor.GetChar ();
1965     if (write_perm_char == 'w')
1966         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes);
1967     else
1968     {
1969         assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" );
1970         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
1971     }
1972 
1973     // Handle execute permission.
1974     const char exec_perm_char = line_extractor.GetChar ();
1975     if (exec_perm_char == 'x')
1976         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes);
1977     else
1978     {
1979         assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" );
1980         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
1981     }
1982 
1983     return Error ();
1984 }
1985 
1986 Error
1987 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info)
1988 {
1989     // FIXME review that the final memory region returned extends to the end of the virtual address space,
1990     // with no perms if it is not mapped.
1991 
1992     // Use an approach that reads memory regions from /proc/{pid}/maps.
1993     // Assume proc maps entries are in ascending order.
1994     // FIXME assert if we find differently.
1995 
1996     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1997     Error error;
1998 
1999     if (m_supports_mem_region == LazyBool::eLazyBoolNo)
2000     {
2001         // We're done.
2002         error.SetErrorString ("unsupported");
2003         return error;
2004     }
2005 
2006     // If our cache is empty, pull the latest.  There should always be at least one memory region
2007     // if memory region handling is supported.
2008     if (m_mem_region_cache.empty ())
2009     {
2010         error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
2011              [&] (const std::string &line) -> bool
2012              {
2013                  MemoryRegionInfo info;
2014                  const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info);
2015                  if (parse_error.Success ())
2016                  {
2017                      m_mem_region_cache.push_back (info);
2018                      return true;
2019                  }
2020                  else
2021                  {
2022                      if (log)
2023                          log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ());
2024                      return false;
2025                  }
2026              });
2027 
2028         // If we had an error, we'll mark unsupported.
2029         if (error.Fail ())
2030         {
2031             m_supports_mem_region = LazyBool::eLazyBoolNo;
2032             return error;
2033         }
2034         else if (m_mem_region_cache.empty ())
2035         {
2036             // No entries after attempting to read them.  This shouldn't happen if /proc/{pid}/maps
2037             // is supported.  Assume we don't support map entries via procfs.
2038             if (log)
2039                 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__);
2040             m_supports_mem_region = LazyBool::eLazyBoolNo;
2041             error.SetErrorString ("not supported");
2042             return error;
2043         }
2044 
2045         if (log)
2046             log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ());
2047 
2048         // We support memory retrieval, remember that.
2049         m_supports_mem_region = LazyBool::eLazyBoolYes;
2050     }
2051     else
2052     {
2053         if (log)
2054             log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
2055     }
2056 
2057     lldb::addr_t prev_base_address = 0;
2058 
2059     // FIXME start by finding the last region that is <= target address using binary search.  Data is sorted.
2060     // There can be a ton of regions on pthreads apps with lots of threads.
2061     for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it)
2062     {
2063         MemoryRegionInfo &proc_entry_info = *it;
2064 
2065         // Sanity check assumption that /proc/{pid}/maps entries are ascending.
2066         assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected");
2067         prev_base_address = proc_entry_info.GetRange ().GetRangeBase ();
2068 
2069         // If the target address comes before this entry, indicate distance to next region.
2070         if (load_addr < proc_entry_info.GetRange ().GetRangeBase ())
2071         {
2072             range_info.GetRange ().SetRangeBase (load_addr);
2073             range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr);
2074             range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2075             range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2076             range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2077 
2078             return error;
2079         }
2080         else if (proc_entry_info.GetRange ().Contains (load_addr))
2081         {
2082             // The target address is within the memory region we're processing here.
2083             range_info = proc_entry_info;
2084             return error;
2085         }
2086 
2087         // The target memory address comes somewhere after the region we just parsed.
2088     }
2089 
2090     // If we made it here, we didn't find an entry that contained the given address. Return the
2091     // load_addr as start and the amount of bytes betwwen load address and the end of the memory as
2092     // size.
2093     range_info.GetRange ().SetRangeBase (load_addr);
2094     switch (m_arch.GetAddressByteSize())
2095     {
2096         case 4:
2097             range_info.GetRange ().SetByteSize (0x100000000ull - load_addr);
2098             break;
2099         case 8:
2100             range_info.GetRange ().SetByteSize (0ull - load_addr);
2101             break;
2102         default:
2103             assert(false && "Unrecognized data byte size");
2104             break;
2105     }
2106     range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2107     range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2108     range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2109     return error;
2110 }
2111 
2112 void
2113 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId)
2114 {
2115     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2116     if (log)
2117         log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId);
2118 
2119         if (log)
2120             log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
2121         m_mem_region_cache.clear ();
2122 }
2123 
2124 Error
2125 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, lldb::addr_t &addr)
2126 {
2127     // FIXME implementing this requires the equivalent of
2128     // InferiorCallPOSIX::InferiorCallMmap, which depends on
2129     // functional ThreadPlans working with Native*Protocol.
2130 #if 1
2131     return Error ("not implemented yet");
2132 #else
2133     addr = LLDB_INVALID_ADDRESS;
2134 
2135     unsigned prot = 0;
2136     if (permissions & lldb::ePermissionsReadable)
2137         prot |= eMmapProtRead;
2138     if (permissions & lldb::ePermissionsWritable)
2139         prot |= eMmapProtWrite;
2140     if (permissions & lldb::ePermissionsExecutable)
2141         prot |= eMmapProtExec;
2142 
2143     // TODO implement this directly in NativeProcessLinux
2144     // (and lift to NativeProcessPOSIX if/when that class is
2145     // refactored out).
2146     if (InferiorCallMmap(this, addr, 0, size, prot,
2147                          eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
2148         m_addr_to_mmap_size[addr] = size;
2149         return Error ();
2150     } else {
2151         addr = LLDB_INVALID_ADDRESS;
2152         return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions));
2153     }
2154 #endif
2155 }
2156 
2157 Error
2158 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr)
2159 {
2160     // FIXME see comments in AllocateMemory - required lower-level
2161     // bits not in place yet (ThreadPlans)
2162     return Error ("not implemented");
2163 }
2164 
2165 lldb::addr_t
2166 NativeProcessLinux::GetSharedLibraryInfoAddress ()
2167 {
2168 #if 1
2169     // punt on this for now
2170     return LLDB_INVALID_ADDRESS;
2171 #else
2172     // Return the image info address for the exe module
2173 #if 1
2174     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2175 
2176     ModuleSP module_sp;
2177     Error error = GetExeModuleSP (module_sp);
2178     if (error.Fail ())
2179     {
2180          if (log)
2181             log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ());
2182         return LLDB_INVALID_ADDRESS;
2183     }
2184 
2185     if (module_sp == nullptr)
2186     {
2187          if (log)
2188             log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__);
2189          return LLDB_INVALID_ADDRESS;
2190     }
2191 
2192     ObjectFileSP object_file_sp = module_sp->GetObjectFile ();
2193     if (object_file_sp == nullptr)
2194     {
2195          if (log)
2196             log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__);
2197          return LLDB_INVALID_ADDRESS;
2198     }
2199 
2200     return obj_file_sp->GetImageInfoAddress();
2201 #else
2202     Target *target = &GetTarget();
2203     ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile();
2204     Address addr = obj_file->GetImageInfoAddress(target);
2205 
2206     if (addr.IsValid())
2207         return addr.GetLoadAddress(target);
2208     return LLDB_INVALID_ADDRESS;
2209 #endif
2210 #endif // punt on this for now
2211 }
2212 
2213 size_t
2214 NativeProcessLinux::UpdateThreads ()
2215 {
2216     // The NativeProcessLinux monitoring threads are always up to date
2217     // with respect to thread state and they keep the thread list
2218     // populated properly. All this method needs to do is return the
2219     // thread count.
2220     return m_threads.size ();
2221 }
2222 
2223 bool
2224 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const
2225 {
2226     arch = m_arch;
2227     return true;
2228 }
2229 
2230 Error
2231 NativeProcessLinux::GetSoftwareBreakpointPCOffset(uint32_t &actual_opcode_size)
2232 {
2233     // FIXME put this behind a breakpoint protocol class that can be
2234     // set per architecture.  Need ARM, MIPS support here.
2235     static const uint8_t g_i386_opcode [] = { 0xCC };
2236     static const uint8_t g_s390x_opcode[] = { 0x00, 0x01 };
2237 
2238     switch (m_arch.GetMachine ())
2239     {
2240         case llvm::Triple::x86:
2241         case llvm::Triple::x86_64:
2242             actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode));
2243             return Error ();
2244 
2245         case llvm::Triple::systemz:
2246             actual_opcode_size = static_cast<uint32_t> (sizeof(g_s390x_opcode));
2247             return Error ();
2248 
2249         case llvm::Triple::arm:
2250         case llvm::Triple::aarch64:
2251         case llvm::Triple::mips64:
2252         case llvm::Triple::mips64el:
2253         case llvm::Triple::mips:
2254         case llvm::Triple::mipsel:
2255             // On these architectures the PC don't get updated for breakpoint hits
2256             actual_opcode_size = 0;
2257             return Error ();
2258 
2259         default:
2260             assert(false && "CPU type not supported!");
2261             return Error ("CPU type not supported");
2262     }
2263 }
2264 
2265 Error
2266 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware)
2267 {
2268     if (hardware)
2269         return Error ("NativeProcessLinux does not support hardware breakpoints");
2270     else
2271         return SetSoftwareBreakpoint (addr, size);
2272 }
2273 
2274 Error
2275 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint,
2276                                                      size_t &actual_opcode_size,
2277                                                      const uint8_t *&trap_opcode_bytes)
2278 {
2279     // FIXME put this behind a breakpoint protocol class that can be set per
2280     // architecture.  Need MIPS support here.
2281     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
2282     // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
2283     // linux kernel does otherwise.
2284     static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 };
2285     static const uint8_t g_i386_opcode [] = { 0xCC };
2286     static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d };
2287     static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 };
2288     static const uint8_t g_s390x_opcode[] = { 0x00, 0x01 };
2289     static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde };
2290 
2291     switch (m_arch.GetMachine ())
2292     {
2293     case llvm::Triple::aarch64:
2294         trap_opcode_bytes = g_aarch64_opcode;
2295         actual_opcode_size = sizeof(g_aarch64_opcode);
2296         return Error ();
2297 
2298     case llvm::Triple::arm:
2299         switch (trap_opcode_size_hint)
2300         {
2301         case 2:
2302             trap_opcode_bytes = g_thumb_breakpoint_opcode;
2303             actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
2304             return Error ();
2305         case 4:
2306             trap_opcode_bytes = g_arm_breakpoint_opcode;
2307             actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
2308             return Error ();
2309         default:
2310             assert(false && "Unrecognised trap opcode size hint!");
2311             return Error ("Unrecognised trap opcode size hint!");
2312         }
2313 
2314     case llvm::Triple::x86:
2315     case llvm::Triple::x86_64:
2316         trap_opcode_bytes = g_i386_opcode;
2317         actual_opcode_size = sizeof(g_i386_opcode);
2318         return Error ();
2319 
2320     case llvm::Triple::mips:
2321     case llvm::Triple::mips64:
2322         trap_opcode_bytes = g_mips64_opcode;
2323         actual_opcode_size = sizeof(g_mips64_opcode);
2324         return Error ();
2325 
2326     case llvm::Triple::mipsel:
2327     case llvm::Triple::mips64el:
2328         trap_opcode_bytes = g_mips64el_opcode;
2329         actual_opcode_size = sizeof(g_mips64el_opcode);
2330         return Error ();
2331 
2332     case llvm::Triple::systemz:
2333         trap_opcode_bytes = g_s390x_opcode;
2334         actual_opcode_size = sizeof(g_s390x_opcode);
2335         return Error ();
2336 
2337     default:
2338         assert(false && "CPU type not supported!");
2339         return Error ("CPU type not supported");
2340     }
2341 }
2342 
2343 #if 0
2344 ProcessMessage::CrashReason
2345 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
2346 {
2347     ProcessMessage::CrashReason reason;
2348     assert(info->si_signo == SIGSEGV);
2349 
2350     reason = ProcessMessage::eInvalidCrashReason;
2351 
2352     switch (info->si_code)
2353     {
2354     default:
2355         assert(false && "unexpected si_code for SIGSEGV");
2356         break;
2357     case SI_KERNEL:
2358         // Linux will occasionally send spurious SI_KERNEL codes.
2359         // (this is poorly documented in sigaction)
2360         // One way to get this is via unaligned SIMD loads.
2361         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
2362         break;
2363     case SEGV_MAPERR:
2364         reason = ProcessMessage::eInvalidAddress;
2365         break;
2366     case SEGV_ACCERR:
2367         reason = ProcessMessage::ePrivilegedAddress;
2368         break;
2369     }
2370 
2371     return reason;
2372 }
2373 #endif
2374 
2375 
2376 #if 0
2377 ProcessMessage::CrashReason
2378 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
2379 {
2380     ProcessMessage::CrashReason reason;
2381     assert(info->si_signo == SIGILL);
2382 
2383     reason = ProcessMessage::eInvalidCrashReason;
2384 
2385     switch (info->si_code)
2386     {
2387     default:
2388         assert(false && "unexpected si_code for SIGILL");
2389         break;
2390     case ILL_ILLOPC:
2391         reason = ProcessMessage::eIllegalOpcode;
2392         break;
2393     case ILL_ILLOPN:
2394         reason = ProcessMessage::eIllegalOperand;
2395         break;
2396     case ILL_ILLADR:
2397         reason = ProcessMessage::eIllegalAddressingMode;
2398         break;
2399     case ILL_ILLTRP:
2400         reason = ProcessMessage::eIllegalTrap;
2401         break;
2402     case ILL_PRVOPC:
2403         reason = ProcessMessage::ePrivilegedOpcode;
2404         break;
2405     case ILL_PRVREG:
2406         reason = ProcessMessage::ePrivilegedRegister;
2407         break;
2408     case ILL_COPROC:
2409         reason = ProcessMessage::eCoprocessorError;
2410         break;
2411     case ILL_BADSTK:
2412         reason = ProcessMessage::eInternalStackError;
2413         break;
2414     }
2415 
2416     return reason;
2417 }
2418 #endif
2419 
2420 #if 0
2421 ProcessMessage::CrashReason
2422 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
2423 {
2424     ProcessMessage::CrashReason reason;
2425     assert(info->si_signo == SIGFPE);
2426 
2427     reason = ProcessMessage::eInvalidCrashReason;
2428 
2429     switch (info->si_code)
2430     {
2431     default:
2432         assert(false && "unexpected si_code for SIGFPE");
2433         break;
2434     case FPE_INTDIV:
2435         reason = ProcessMessage::eIntegerDivideByZero;
2436         break;
2437     case FPE_INTOVF:
2438         reason = ProcessMessage::eIntegerOverflow;
2439         break;
2440     case FPE_FLTDIV:
2441         reason = ProcessMessage::eFloatDivideByZero;
2442         break;
2443     case FPE_FLTOVF:
2444         reason = ProcessMessage::eFloatOverflow;
2445         break;
2446     case FPE_FLTUND:
2447         reason = ProcessMessage::eFloatUnderflow;
2448         break;
2449     case FPE_FLTRES:
2450         reason = ProcessMessage::eFloatInexactResult;
2451         break;
2452     case FPE_FLTINV:
2453         reason = ProcessMessage::eFloatInvalidOperation;
2454         break;
2455     case FPE_FLTSUB:
2456         reason = ProcessMessage::eFloatSubscriptRange;
2457         break;
2458     }
2459 
2460     return reason;
2461 }
2462 #endif
2463 
2464 #if 0
2465 ProcessMessage::CrashReason
2466 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
2467 {
2468     ProcessMessage::CrashReason reason;
2469     assert(info->si_signo == SIGBUS);
2470 
2471     reason = ProcessMessage::eInvalidCrashReason;
2472 
2473     switch (info->si_code)
2474     {
2475     default:
2476         assert(false && "unexpected si_code for SIGBUS");
2477         break;
2478     case BUS_ADRALN:
2479         reason = ProcessMessage::eIllegalAlignment;
2480         break;
2481     case BUS_ADRERR:
2482         reason = ProcessMessage::eIllegalAddress;
2483         break;
2484     case BUS_OBJERR:
2485         reason = ProcessMessage::eHardwareError;
2486         break;
2487     }
2488 
2489     return reason;
2490 }
2491 #endif
2492 
2493 Error
2494 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
2495 {
2496     if (ProcessVmReadvSupported()) {
2497         // The process_vm_readv path is about 50 times faster than ptrace api. We want to use
2498         // this syscall if it is supported.
2499 
2500         const ::pid_t pid = GetID();
2501 
2502         struct iovec local_iov, remote_iov;
2503         local_iov.iov_base = buf;
2504         local_iov.iov_len = size;
2505         remote_iov.iov_base = reinterpret_cast<void *>(addr);
2506         remote_iov.iov_len = size;
2507 
2508         bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
2509         const bool success = bytes_read == size;
2510 
2511         Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2512         if (log)
2513             log->Printf ("NativeProcessLinux::%s using process_vm_readv to read %zd bytes from inferior address 0x%" PRIx64": %s",
2514                     __FUNCTION__, size, addr, success ? "Success" : strerror(errno));
2515 
2516         if (success)
2517             return Error();
2518         // else
2519         //     the call failed for some reason, let's retry the read using ptrace api.
2520     }
2521 
2522     unsigned char *dst = static_cast<unsigned char*>(buf);
2523     size_t remainder;
2524     long data;
2525 
2526     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
2527     if (log)
2528         ProcessPOSIXLog::IncNestLevel();
2529     if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
2530         log->Printf ("NativeProcessLinux::%s(%p, %p, %zd, _)", __FUNCTION__, (void*)addr, buf, size);
2531 
2532     for (bytes_read = 0; bytes_read < size; bytes_read += remainder)
2533     {
2534         Error error = NativeProcessLinux::PtraceWrapper(PTRACE_PEEKDATA, GetID(), (void*)addr, nullptr, 0, &data);
2535         if (error.Fail())
2536         {
2537             if (log)
2538                 ProcessPOSIXLog::DecNestLevel();
2539             return error;
2540         }
2541 
2542         remainder = size - bytes_read;
2543         remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
2544 
2545         // Copy the data into our buffer
2546         memcpy(dst, &data, remainder);
2547 
2548         if (log && ProcessPOSIXLog::AtTopNestLevel() &&
2549                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
2550                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
2551                                 size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
2552         {
2553             uintptr_t print_dst = 0;
2554             // Format bytes from data by moving into print_dst for log output
2555             for (unsigned i = 0; i < remainder; ++i)
2556                 print_dst |= (((data >> i*8) & 0xFF) << i*8);
2557             log->Printf ("NativeProcessLinux::%s() [0x%" PRIx64 "]:0x%" PRIx64 " (0x%" PRIx64 ")",
2558                     __FUNCTION__, addr, uint64_t(print_dst), uint64_t(data));
2559         }
2560         addr += k_ptrace_word_size;
2561         dst += k_ptrace_word_size;
2562     }
2563 
2564     if (log)
2565         ProcessPOSIXLog::DecNestLevel();
2566     return Error();
2567 }
2568 
2569 Error
2570 NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
2571 {
2572     Error error = ReadMemory(addr, buf, size, bytes_read);
2573     if (error.Fail()) return error;
2574     return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size);
2575 }
2576 
2577 Error
2578 NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, size_t size, size_t &bytes_written)
2579 {
2580     const unsigned char *src = static_cast<const unsigned char*>(buf);
2581     size_t remainder;
2582     Error error;
2583 
2584     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
2585     if (log)
2586         ProcessPOSIXLog::IncNestLevel();
2587     if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
2588         log->Printf ("NativeProcessLinux::%s(0x%" PRIx64 ", %p, %zu)", __FUNCTION__, addr, buf, size);
2589 
2590     for (bytes_written = 0; bytes_written < size; bytes_written += remainder)
2591     {
2592         remainder = size - bytes_written;
2593         remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
2594 
2595         if (remainder == k_ptrace_word_size)
2596         {
2597             unsigned long data = 0;
2598             memcpy(&data, src, k_ptrace_word_size);
2599 
2600             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
2601                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
2602                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
2603                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
2604                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
2605                         (void*)addr, *(const unsigned long*)src, data);
2606 
2607             error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), (void*)addr, (void*)data);
2608             if (error.Fail())
2609             {
2610                 if (log)
2611                     ProcessPOSIXLog::DecNestLevel();
2612                 return error;
2613             }
2614         }
2615         else
2616         {
2617             unsigned char buff[8];
2618             size_t bytes_read;
2619             error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
2620             if (error.Fail())
2621             {
2622                 if (log)
2623                     ProcessPOSIXLog::DecNestLevel();
2624                 return error;
2625             }
2626 
2627             memcpy(buff, src, remainder);
2628 
2629             size_t bytes_written_rec;
2630             error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
2631             if (error.Fail())
2632             {
2633                 if (log)
2634                     ProcessPOSIXLog::DecNestLevel();
2635                 return error;
2636             }
2637 
2638             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
2639                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
2640                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
2641                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
2642                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
2643                         (void*)addr, *(const unsigned long*)src, *(unsigned long*)buff);
2644         }
2645 
2646         addr += k_ptrace_word_size;
2647         src += k_ptrace_word_size;
2648     }
2649     if (log)
2650         ProcessPOSIXLog::DecNestLevel();
2651     return error;
2652 }
2653 
2654 Error
2655 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo)
2656 {
2657     return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
2658 }
2659 
2660 Error
2661 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message)
2662 {
2663     return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
2664 }
2665 
2666 Error
2667 NativeProcessLinux::Detach(lldb::tid_t tid)
2668 {
2669     if (tid == LLDB_INVALID_THREAD_ID)
2670         return Error();
2671 
2672     return PtraceWrapper(PTRACE_DETACH, tid);
2673 }
2674 
2675 bool
2676 NativeProcessLinux::DupDescriptor(const FileSpec &file_spec, int fd, int flags)
2677 {
2678     int target_fd = open(file_spec.GetCString(), flags, 0666);
2679 
2680     if (target_fd == -1)
2681         return false;
2682 
2683     if (dup2(target_fd, fd) == -1)
2684         return false;
2685 
2686     return (close(target_fd) == -1) ? false : true;
2687 }
2688 
2689 bool
2690 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id)
2691 {
2692     for (auto thread_sp : m_threads)
2693     {
2694         assert (thread_sp && "thread list should not contain NULL threads");
2695         if (thread_sp->GetID () == thread_id)
2696         {
2697             // We have this thread.
2698             return true;
2699         }
2700     }
2701 
2702     // We don't have this thread.
2703     return false;
2704 }
2705 
2706 bool
2707 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id)
2708 {
2709     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
2710 
2711     if (log)
2712         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread_id);
2713 
2714     bool found = false;
2715 
2716     for (auto it = m_threads.begin (); it != m_threads.end (); ++it)
2717     {
2718         if (*it && ((*it)->GetID () == thread_id))
2719         {
2720             m_threads.erase (it);
2721             found = true;
2722             break;
2723         }
2724     }
2725 
2726     SignalIfAllThreadsStopped();
2727 
2728     return found;
2729 }
2730 
2731 NativeThreadLinuxSP
2732 NativeProcessLinux::AddThread (lldb::tid_t thread_id)
2733 {
2734     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
2735 
2736     if (log)
2737     {
2738         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64,
2739                 __FUNCTION__,
2740                 GetID (),
2741                 thread_id);
2742     }
2743 
2744     assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists");
2745 
2746     // If this is the first thread, save it as the current thread
2747     if (m_threads.empty ())
2748         SetCurrentThreadID (thread_id);
2749 
2750     auto thread_sp = std::make_shared<NativeThreadLinux>(this, thread_id);
2751     m_threads.push_back (thread_sp);
2752     return thread_sp;
2753 }
2754 
2755 Error
2756 NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread)
2757 {
2758     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS));
2759 
2760     Error error;
2761 
2762     // Find out the size of a breakpoint (might depend on where we are in the code).
2763     NativeRegisterContextSP context_sp = thread.GetRegisterContext();
2764     if (!context_sp)
2765     {
2766         error.SetErrorString ("cannot get a NativeRegisterContext for the thread");
2767         if (log)
2768             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
2769         return error;
2770     }
2771 
2772     uint32_t breakpoint_size = 0;
2773     error = GetSoftwareBreakpointPCOffset(breakpoint_size);
2774     if (error.Fail ())
2775     {
2776         if (log)
2777             log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ());
2778         return error;
2779     }
2780     else
2781     {
2782         if (log)
2783             log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size);
2784     }
2785 
2786     // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size.
2787     const lldb::addr_t initial_pc_addr = context_sp->GetPCfromBreakpointLocation ();
2788     lldb::addr_t breakpoint_addr = initial_pc_addr;
2789     if (breakpoint_size > 0)
2790     {
2791         // Do not allow breakpoint probe to wrap around.
2792         if (breakpoint_addr >= breakpoint_size)
2793             breakpoint_addr -= breakpoint_size;
2794     }
2795 
2796     // Check if we stopped because of a breakpoint.
2797     NativeBreakpointSP breakpoint_sp;
2798     error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp);
2799     if (!error.Success () || !breakpoint_sp)
2800     {
2801         // We didn't find one at a software probe location.  Nothing to do.
2802         if (log)
2803             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr);
2804         return Error ();
2805     }
2806 
2807     // If the breakpoint is not a software breakpoint, nothing to do.
2808     if (!breakpoint_sp->IsSoftwareBreakpoint ())
2809     {
2810         if (log)
2811             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr);
2812         return Error ();
2813     }
2814 
2815     //
2816     // We have a software breakpoint and need to adjust the PC.
2817     //
2818 
2819     // Sanity check.
2820     if (breakpoint_size == 0)
2821     {
2822         // Nothing to do!  How did we get here?
2823         if (log)
2824             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr);
2825         return Error ();
2826     }
2827 
2828     // Change the program counter.
2829     if (log)
2830         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID(), thread.GetID(), initial_pc_addr, breakpoint_addr);
2831 
2832     error = context_sp->SetPC (breakpoint_addr);
2833     if (error.Fail ())
2834     {
2835         if (log)
2836             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID(), thread.GetID(), error.AsCString ());
2837         return error;
2838     }
2839 
2840     return error;
2841 }
2842 
2843 Error
2844 NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec)
2845 {
2846     FileSpec module_file_spec(module_path, true);
2847 
2848     bool found = false;
2849     file_spec.Clear();
2850     ProcFileReader::ProcessLineByLine(GetID(), "maps",
2851         [&] (const std::string &line)
2852         {
2853             SmallVector<StringRef, 16> columns;
2854             StringRef(line).split(columns, " ", -1, false);
2855             if (columns.size() < 6)
2856                 return true; // continue searching
2857 
2858             FileSpec this_file_spec(columns[5].str().c_str(), false);
2859             if (this_file_spec.GetFilename() != module_file_spec.GetFilename())
2860                 return true; // continue searching
2861 
2862             file_spec = this_file_spec;
2863             found = true;
2864             return false; // we are done
2865         });
2866 
2867     if (! found)
2868         return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
2869                 module_file_spec.GetFilename().AsCString(), GetID());
2870 
2871     return Error();
2872 }
2873 
2874 Error
2875 NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef& file_name, lldb::addr_t& load_addr)
2876 {
2877     load_addr = LLDB_INVALID_ADDRESS;
2878     Error error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
2879         [&] (const std::string &line) -> bool
2880         {
2881             StringRef maps_row(line);
2882 
2883             SmallVector<StringRef, 16> maps_columns;
2884             maps_row.split(maps_columns, StringRef(" "), -1, false);
2885 
2886             if (maps_columns.size() < 6)
2887             {
2888                 // Return true to continue reading the proc file
2889                 return true;
2890             }
2891 
2892             if (maps_columns[5] == file_name)
2893             {
2894                 StringExtractor addr_extractor(maps_columns[0].str().c_str());
2895                 load_addr = addr_extractor.GetHexMaxU64(false, LLDB_INVALID_ADDRESS);
2896 
2897                 // Return false to stop reading the proc file further
2898                 return false;
2899             }
2900 
2901             // Return true to continue reading the proc file
2902             return true;
2903         });
2904     return error;
2905 }
2906 
2907 NativeThreadLinuxSP
2908 NativeProcessLinux::GetThreadByID(lldb::tid_t tid)
2909 {
2910     return std::static_pointer_cast<NativeThreadLinux>(NativeProcessProtocol::GetThreadByID(tid));
2911 }
2912 
2913 Error
2914 NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, lldb::StateType state, int signo)
2915 {
2916     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
2917 
2918     if (log)
2919         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")",
2920                 __FUNCTION__, thread.GetID());
2921 
2922     // Before we do the resume below, first check if we have a pending
2923     // stop notification that is currently waiting for
2924     // all threads to stop.  This is potentially a buggy situation since
2925     // we're ostensibly waiting for threads to stop before we send out the
2926     // pending notification, and here we are resuming one before we send
2927     // out the pending stop notification.
2928     if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && log)
2929     {
2930         log->Printf("NativeProcessLinux::%s about to resume tid %" PRIu64 " per explicit request but we have a pending stop notification (tid %" PRIu64 ") that is actively waiting for this thread to stop. Valid sequence of events?", __FUNCTION__, thread.GetID(), m_pending_notification_tid);
2931     }
2932 
2933     // Request a resume.  We expect this to be synchronous and the system
2934     // to reflect it is running after this completes.
2935     switch (state)
2936     {
2937     case eStateRunning:
2938     {
2939         const auto resume_result = thread.Resume(signo);
2940         if (resume_result.Success())
2941             SetState(eStateRunning, true);
2942         return resume_result;
2943     }
2944     case eStateStepping:
2945     {
2946         const auto step_result = thread.SingleStep(signo);
2947         if (step_result.Success())
2948             SetState(eStateRunning, true);
2949         return step_result;
2950     }
2951     default:
2952         if (log)
2953             log->Printf("NativeProcessLinux::%s Unhandled state %s.",
2954                     __FUNCTION__, StateAsCString(state));
2955         llvm_unreachable("Unhandled state for resume");
2956     }
2957 }
2958 
2959 //===----------------------------------------------------------------------===//
2960 
2961 void
2962 NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid)
2963 {
2964     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
2965 
2966     if (log)
2967     {
2968         log->Printf("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ")",
2969                 __FUNCTION__, triggering_tid);
2970     }
2971 
2972     m_pending_notification_tid = triggering_tid;
2973 
2974     // Request a stop for all the thread stops that need to be stopped
2975     // and are not already known to be stopped.
2976     for (const auto &thread_sp: m_threads)
2977     {
2978         if (StateIsRunningState(thread_sp->GetState()))
2979             static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop();
2980     }
2981 
2982     SignalIfAllThreadsStopped();
2983 
2984     if (log)
2985     {
2986         log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__);
2987     }
2988 }
2989 
2990 void
2991 NativeProcessLinux::SignalIfAllThreadsStopped()
2992 {
2993     if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
2994         return; // No pending notification. Nothing to do.
2995 
2996     for (const auto &thread_sp: m_threads)
2997     {
2998         if (StateIsRunningState(thread_sp->GetState()))
2999             return; // Some threads are still running. Don't signal yet.
3000     }
3001 
3002     // We have a pending notification and all threads have stopped.
3003     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
3004 
3005     // Clear any temporary breakpoints we used to implement software single stepping.
3006     for (const auto &thread_info: m_threads_stepping_with_breakpoint)
3007     {
3008         Error error = RemoveBreakpoint (thread_info.second);
3009         if (error.Fail())
3010             if (log)
3011                 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s",
3012                         __FUNCTION__, thread_info.first, error.AsCString());
3013     }
3014     m_threads_stepping_with_breakpoint.clear();
3015 
3016     // Notify the delegate about the stop
3017     SetCurrentThreadID(m_pending_notification_tid);
3018     SetState(StateType::eStateStopped, true);
3019     m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
3020 }
3021 
3022 void
3023 NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread)
3024 {
3025     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3026 
3027     if (log)
3028         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread.GetID());
3029 
3030     if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && StateIsRunningState(thread.GetState()))
3031     {
3032         // We will need to wait for this new thread to stop as well before firing the
3033         // notification.
3034         thread.RequestStop();
3035     }
3036 }
3037 
3038 void
3039 NativeProcessLinux::SigchldHandler()
3040 {
3041     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3042     // Process all pending waitpid notifications.
3043     while (true)
3044     {
3045         int status = -1;
3046         ::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG);
3047 
3048         if (wait_pid == 0)
3049             break; // We are done.
3050 
3051         if (wait_pid == -1)
3052         {
3053             if (errno == EINTR)
3054                 continue;
3055 
3056             Error error(errno, eErrorTypePOSIX);
3057             if (log)
3058                 log->Printf("NativeProcessLinux::%s waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG) failed: %s",
3059                         __FUNCTION__, error.AsCString());
3060             break;
3061         }
3062 
3063         bool exited = false;
3064         int signal = 0;
3065         int exit_status = 0;
3066         const char *status_cstr = nullptr;
3067         if (WIFSTOPPED(status))
3068         {
3069             signal = WSTOPSIG(status);
3070             status_cstr = "STOPPED";
3071         }
3072         else if (WIFEXITED(status))
3073         {
3074             exit_status = WEXITSTATUS(status);
3075             status_cstr = "EXITED";
3076             exited = true;
3077         }
3078         else if (WIFSIGNALED(status))
3079         {
3080             signal = WTERMSIG(status);
3081             status_cstr = "SIGNALED";
3082             if (wait_pid == static_cast< ::pid_t>(GetID())) {
3083                 exited = true;
3084                 exit_status = -1;
3085             }
3086         }
3087         else
3088             status_cstr = "(\?\?\?)";
3089 
3090         if (log)
3091             log->Printf("NativeProcessLinux::%s: waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG)"
3092                 "=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i",
3093                 __FUNCTION__, wait_pid, status, status_cstr, signal, exit_status);
3094 
3095         MonitorCallback (wait_pid, exited, signal, exit_status);
3096     }
3097 }
3098 
3099 // Wrapper for ptrace to catch errors and log calls.
3100 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
3101 Error
3102 NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, long *result)
3103 {
3104     Error error;
3105     long int ret;
3106 
3107     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE));
3108 
3109     PtraceDisplayBytes(req, data, data_size);
3110 
3111     errno = 0;
3112     if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
3113         ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
3114     else
3115         ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
3116 
3117     if (ret == -1)
3118         error.SetErrorToErrno();
3119 
3120     if (result)
3121         *result = ret;
3122 
3123     if (log)
3124         log->Printf("ptrace(%d, %" PRIu64 ", %p, %p, %zu)=%lX", req, pid, addr, data, data_size, ret);
3125 
3126     PtraceDisplayBytes(req, data, data_size);
3127 
3128     if (log && error.GetError() != 0)
3129     {
3130         const char* str;
3131         switch (error.GetError())
3132         {
3133         case ESRCH:  str = "ESRCH"; break;
3134         case EINVAL: str = "EINVAL"; break;
3135         case EBUSY:  str = "EBUSY"; break;
3136         case EPERM:  str = "EPERM"; break;
3137         default:     str = error.AsCString();
3138         }
3139         log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str);
3140     }
3141 
3142     return error;
3143 }
3144