1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "NativeProcessLinux.h"
11 
12 #include <errno.h>
13 #include <stdint.h>
14 #include <string.h>
15 #include <unistd.h>
16 
17 #include <fstream>
18 #include <mutex>
19 #include <sstream>
20 #include <string>
21 #include <unordered_map>
22 
23 #include "lldb/Core/EmulateInstruction.h"
24 #include "lldb/Core/ModuleSpec.h"
25 #include "lldb/Host/Host.h"
26 #include "lldb/Host/HostProcess.h"
27 #include "lldb/Host/PseudoTerminal.h"
28 #include "lldb/Host/ThreadLauncher.h"
29 #include "lldb/Host/common/NativeRegisterContext.h"
30 #include "lldb/Host/linux/Ptrace.h"
31 #include "lldb/Host/linux/Uio.h"
32 #include "lldb/Host/posix/ProcessLauncherPosixFork.h"
33 #include "lldb/Symbol/ObjectFile.h"
34 #include "lldb/Target/Process.h"
35 #include "lldb/Target/ProcessLaunchInfo.h"
36 #include "lldb/Target/Target.h"
37 #include "lldb/Utility/LLDBAssert.h"
38 #include "lldb/Utility/RegisterValue.h"
39 #include "lldb/Utility/State.h"
40 #include "lldb/Utility/Status.h"
41 #include "lldb/Utility/StringExtractor.h"
42 #include "llvm/Support/Errno.h"
43 #include "llvm/Support/FileSystem.h"
44 #include "llvm/Support/Threading.h"
45 
46 #include "NativeThreadLinux.h"
47 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
48 #include "Procfs.h"
49 
50 #include <linux/unistd.h>
51 #include <sys/socket.h>
52 #include <sys/syscall.h>
53 #include <sys/types.h>
54 #include <sys/user.h>
55 #include <sys/wait.h>
56 
57 // Support hardware breakpoints in case it has not been defined
58 #ifndef TRAP_HWBKPT
59 #define TRAP_HWBKPT 4
60 #endif
61 
62 using namespace lldb;
63 using namespace lldb_private;
64 using namespace lldb_private::process_linux;
65 using namespace llvm;
66 
67 // Private bits we only need internally.
68 
69 static bool ProcessVmReadvSupported() {
70   static bool is_supported;
71   static llvm::once_flag flag;
72 
73   llvm::call_once(flag, [] {
74     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
75 
76     uint32_t source = 0x47424742;
77     uint32_t dest = 0;
78 
79     struct iovec local, remote;
80     remote.iov_base = &source;
81     local.iov_base = &dest;
82     remote.iov_len = local.iov_len = sizeof source;
83 
84     // We shall try if cross-process-memory reads work by attempting to read a
85     // value from our own process.
86     ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
87     is_supported = (res == sizeof(source) && source == dest);
88     if (is_supported)
89       LLDB_LOG(log,
90                "Detected kernel support for process_vm_readv syscall. "
91                "Fast memory reads enabled.");
92     else
93       LLDB_LOG(log,
94                "syscall process_vm_readv failed (error: {0}). Fast memory "
95                "reads disabled.",
96                llvm::sys::StrError());
97   });
98 
99   return is_supported;
100 }
101 
102 namespace {
103 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) {
104   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
105   if (!log)
106     return;
107 
108   if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO))
109     LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec());
110   else
111     LLDB_LOG(log, "leaving STDIN as is");
112 
113   if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO))
114     LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec());
115   else
116     LLDB_LOG(log, "leaving STDOUT as is");
117 
118   if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO))
119     LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec());
120   else
121     LLDB_LOG(log, "leaving STDERR as is");
122 
123   int i = 0;
124   for (const char **args = info.GetArguments().GetConstArgumentVector(); *args;
125        ++args, ++i)
126     LLDB_LOG(log, "arg {0}: '{1}'", i, *args);
127 }
128 
129 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) {
130   uint8_t *ptr = (uint8_t *)bytes;
131   const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
132   for (uint32_t i = 0; i < loop_count; i++) {
133     s.Printf("[%x]", *ptr);
134     ptr++;
135   }
136 }
137 
138 void PtraceDisplayBytes(int &req, void *data, size_t data_size) {
139   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
140   if (!log)
141     return;
142   StreamString buf;
143 
144   switch (req) {
145   case PTRACE_POKETEXT: {
146     DisplayBytes(buf, &data, 8);
147     LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData());
148     break;
149   }
150   case PTRACE_POKEDATA: {
151     DisplayBytes(buf, &data, 8);
152     LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData());
153     break;
154   }
155   case PTRACE_POKEUSER: {
156     DisplayBytes(buf, &data, 8);
157     LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData());
158     break;
159   }
160   case PTRACE_SETREGS: {
161     DisplayBytes(buf, data, data_size);
162     LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData());
163     break;
164   }
165   case PTRACE_SETFPREGS: {
166     DisplayBytes(buf, data, data_size);
167     LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData());
168     break;
169   }
170   case PTRACE_SETSIGINFO: {
171     DisplayBytes(buf, data, sizeof(siginfo_t));
172     LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData());
173     break;
174   }
175   case PTRACE_SETREGSET: {
176     // Extract iov_base from data, which is a pointer to the struct iovec
177     DisplayBytes(buf, *(void **)data, data_size);
178     LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData());
179     break;
180   }
181   default: {}
182   }
183 }
184 
185 static constexpr unsigned k_ptrace_word_size = sizeof(void *);
186 static_assert(sizeof(long) >= k_ptrace_word_size,
187               "Size of long must be larger than ptrace word size");
188 } // end of anonymous namespace
189 
190 // Simple helper function to ensure flags are enabled on the given file
191 // descriptor.
192 static Status EnsureFDFlags(int fd, int flags) {
193   Status error;
194 
195   int status = fcntl(fd, F_GETFL);
196   if (status == -1) {
197     error.SetErrorToErrno();
198     return error;
199   }
200 
201   if (fcntl(fd, F_SETFL, status | flags) == -1) {
202     error.SetErrorToErrno();
203     return error;
204   }
205 
206   return error;
207 }
208 
209 // -----------------------------------------------------------------------------
210 // Public Static Methods
211 // -----------------------------------------------------------------------------
212 
213 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
214 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info,
215                                     NativeDelegate &native_delegate,
216                                     MainLoop &mainloop) const {
217   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
218 
219   MaybeLogLaunchInfo(launch_info);
220 
221   Status status;
222   ::pid_t pid = ProcessLauncherPosixFork()
223                     .LaunchProcess(launch_info, status)
224                     .GetProcessId();
225   LLDB_LOG(log, "pid = {0:x}", pid);
226   if (status.Fail()) {
227     LLDB_LOG(log, "failed to launch process: {0}", status);
228     return status.ToError();
229   }
230 
231   // Wait for the child process to trap on its call to execve.
232   int wstatus;
233   ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0);
234   assert(wpid == pid);
235   (void)wpid;
236   if (!WIFSTOPPED(wstatus)) {
237     LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}",
238              WaitStatus::Decode(wstatus));
239     return llvm::make_error<StringError>("Could not sync with inferior process",
240                                          llvm::inconvertibleErrorCode());
241   }
242   LLDB_LOG(log, "inferior started, now in stopped state");
243 
244   ProcessInstanceInfo Info;
245   if (!Host::GetProcessInfo(pid, Info)) {
246     return llvm::make_error<StringError>("Cannot get process architecture",
247                                          llvm::inconvertibleErrorCode());
248   }
249 
250   // Set the architecture to the exe architecture.
251   LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid,
252            Info.GetArchitecture().GetArchitectureName());
253 
254   status = SetDefaultPtraceOpts(pid);
255   if (status.Fail()) {
256     LLDB_LOG(log, "failed to set default ptrace options: {0}", status);
257     return status.ToError();
258   }
259 
260   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
261       pid, launch_info.GetPTY().ReleaseMasterFileDescriptor(), native_delegate,
262       Info.GetArchitecture(), mainloop, {pid}));
263 }
264 
265 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
266 NativeProcessLinux::Factory::Attach(
267     lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate,
268     MainLoop &mainloop) const {
269   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
270   LLDB_LOG(log, "pid = {0:x}", pid);
271 
272   // Retrieve the architecture for the running process.
273   ProcessInstanceInfo Info;
274   if (!Host::GetProcessInfo(pid, Info)) {
275     return llvm::make_error<StringError>("Cannot get process architecture",
276                                          llvm::inconvertibleErrorCode());
277   }
278 
279   auto tids_or = NativeProcessLinux::Attach(pid);
280   if (!tids_or)
281     return tids_or.takeError();
282 
283   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
284       pid, -1, native_delegate, Info.GetArchitecture(), mainloop, *tids_or));
285 }
286 
287 // -----------------------------------------------------------------------------
288 // Public Instance Methods
289 // -----------------------------------------------------------------------------
290 
291 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd,
292                                        NativeDelegate &delegate,
293                                        const ArchSpec &arch, MainLoop &mainloop,
294                                        llvm::ArrayRef<::pid_t> tids)
295     : NativeProcessProtocol(pid, terminal_fd, delegate), m_arch(arch) {
296   if (m_terminal_fd != -1) {
297     Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
298     assert(status.Success());
299   }
300 
301   Status status;
302   m_sigchld_handle = mainloop.RegisterSignal(
303       SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status);
304   assert(m_sigchld_handle && status.Success());
305 
306   for (const auto &tid : tids) {
307     NativeThreadLinux &thread = AddThread(tid);
308     thread.SetStoppedBySignal(SIGSTOP);
309     ThreadWasCreated(thread);
310   }
311 
312   // Let our process instance know the thread has stopped.
313   SetCurrentThreadID(tids[0]);
314   SetState(StateType::eStateStopped, false);
315 
316   // Proccess any signals we received before installing our handler
317   SigchldHandler();
318 }
319 
320 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) {
321   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
322 
323   Status status;
324   // Use a map to keep track of the threads which we have attached/need to
325   // attach.
326   Host::TidMap tids_to_attach;
327   while (Host::FindProcessThreads(pid, tids_to_attach)) {
328     for (Host::TidMap::iterator it = tids_to_attach.begin();
329          it != tids_to_attach.end();) {
330       if (it->second == false) {
331         lldb::tid_t tid = it->first;
332 
333         // Attach to the requested process.
334         // An attach will cause the thread to stop with a SIGSTOP.
335         if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) {
336           // No such thread. The thread may have exited. More error handling
337           // may be needed.
338           if (status.GetError() == ESRCH) {
339             it = tids_to_attach.erase(it);
340             continue;
341           }
342           return status.ToError();
343         }
344 
345         int wpid =
346             llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL);
347         // Need to use __WALL otherwise we receive an error with errno=ECHLD At
348         // this point we should have a thread stopped if waitpid succeeds.
349         if (wpid < 0) {
350           // No such thread. The thread may have exited. More error handling
351           // may be needed.
352           if (errno == ESRCH) {
353             it = tids_to_attach.erase(it);
354             continue;
355           }
356           return llvm::errorCodeToError(
357               std::error_code(errno, std::generic_category()));
358         }
359 
360         if ((status = SetDefaultPtraceOpts(tid)).Fail())
361           return status.ToError();
362 
363         LLDB_LOG(log, "adding tid = {0}", tid);
364         it->second = true;
365       }
366 
367       // move the loop forward
368       ++it;
369     }
370   }
371 
372   size_t tid_count = tids_to_attach.size();
373   if (tid_count == 0)
374     return llvm::make_error<StringError>("No such process",
375                                          llvm::inconvertibleErrorCode());
376 
377   std::vector<::pid_t> tids;
378   tids.reserve(tid_count);
379   for (const auto &p : tids_to_attach)
380     tids.push_back(p.first);
381   return std::move(tids);
382 }
383 
384 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) {
385   long ptrace_opts = 0;
386 
387   // Have the child raise an event on exit.  This is used to keep the child in
388   // limbo until it is destroyed.
389   ptrace_opts |= PTRACE_O_TRACEEXIT;
390 
391   // Have the tracer trace threads which spawn in the inferior process.
392   // TODO: if we want to support tracing the inferiors' child, add the
393   // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
394   ptrace_opts |= PTRACE_O_TRACECLONE;
395 
396   // Have the tracer notify us before execve returns (needed to disable legacy
397   // SIGTRAP generation)
398   ptrace_opts |= PTRACE_O_TRACEEXEC;
399 
400   return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts);
401 }
402 
403 // Handles all waitpid events from the inferior process.
404 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited,
405                                          WaitStatus status) {
406   Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
407 
408   // Certain activities differ based on whether the pid is the tid of the main
409   // thread.
410   const bool is_main_thread = (pid == GetID());
411 
412   // Handle when the thread exits.
413   if (exited) {
414     LLDB_LOG(log,
415              "got exit signal({0}) , tid = {1} ({2} main thread), process "
416              "state = {3}",
417              signal, pid, is_main_thread ? "is" : "is not", GetState());
418 
419     // This is a thread that exited.  Ensure we're not tracking it anymore.
420     StopTrackingThread(pid);
421 
422     if (is_main_thread) {
423       // The main thread exited.  We're done monitoring.  Report to delegate.
424       SetExitStatus(status, true);
425 
426       // Notify delegate that our process has exited.
427       SetState(StateType::eStateExited, true);
428     }
429     return;
430   }
431 
432   siginfo_t info;
433   const auto info_err = GetSignalInfo(pid, &info);
434   auto thread_sp = GetThreadByID(pid);
435 
436   if (!thread_sp) {
437     // Normally, the only situation when we cannot find the thread is if we
438     // have just received a new thread notification. This is indicated by
439     // GetSignalInfo() returning si_code == SI_USER and si_pid == 0
440     LLDB_LOG(log, "received notification about an unknown tid {0}.", pid);
441 
442     if (info_err.Fail()) {
443       LLDB_LOG(log,
444                "(tid {0}) GetSignalInfo failed ({1}). "
445                "Ingoring this notification.",
446                pid, info_err);
447       return;
448     }
449 
450     LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code,
451              info.si_pid);
452 
453     NativeThreadLinux &thread = AddThread(pid);
454 
455     // Resume the newly created thread.
456     ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
457     ThreadWasCreated(thread);
458     return;
459   }
460 
461   // Get details on the signal raised.
462   if (info_err.Success()) {
463     // We have retrieved the signal info.  Dispatch appropriately.
464     if (info.si_signo == SIGTRAP)
465       MonitorSIGTRAP(info, *thread_sp);
466     else
467       MonitorSignal(info, *thread_sp, exited);
468   } else {
469     if (info_err.GetError() == EINVAL) {
470       // This is a group stop reception for this tid. We can reach here if we
471       // reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the tracee,
472       // triggering the group-stop mechanism. Normally receiving these would
473       // stop the process, pending a SIGCONT. Simulating this state in a
474       // debugger is hard and is generally not needed (one use case is
475       // debugging background task being managed by a shell). For general use,
476       // it is sufficient to stop the process in a signal-delivery stop which
477       // happens before the group stop. This done by MonitorSignal and works
478       // correctly for all signals.
479       LLDB_LOG(log,
480                "received a group stop for pid {0} tid {1}. Transparent "
481                "handling of group stops not supported, resuming the "
482                "thread.",
483                GetID(), pid);
484       ResumeThread(*thread_sp, thread_sp->GetState(),
485                    LLDB_INVALID_SIGNAL_NUMBER);
486     } else {
487       // ptrace(GETSIGINFO) failed (but not due to group-stop).
488 
489       // A return value of ESRCH means the thread/process is no longer on the
490       // system, so it was killed somehow outside of our control.  Either way,
491       // we can't do anything with it anymore.
492 
493       // Stop tracking the metadata for the thread since it's entirely off the
494       // system now.
495       const bool thread_found = StopTrackingThread(pid);
496 
497       LLDB_LOG(log,
498                "GetSignalInfo failed: {0}, tid = {1}, signal = {2}, "
499                "status = {3}, main_thread = {4}, thread_found: {5}",
500                info_err, pid, signal, status, is_main_thread, thread_found);
501 
502       if (is_main_thread) {
503         // Notify the delegate - our process is not available but appears to
504         // have been killed outside our control.  Is eStateExited the right
505         // exit state in this case?
506         SetExitStatus(status, true);
507         SetState(StateType::eStateExited, true);
508       } else {
509         // This thread was pulled out from underneath us.  Anything to do here?
510         // Do we want to do an all stop?
511         LLDB_LOG(log,
512                  "pid {0} tid {1} non-main thread exit occurred, didn't "
513                  "tell delegate anything since thread disappeared out "
514                  "from underneath us",
515                  GetID(), pid);
516       }
517     }
518   }
519 }
520 
521 void NativeProcessLinux::WaitForNewThread(::pid_t tid) {
522   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
523 
524   if (GetThreadByID(tid)) {
525     // We are already tracking the thread - we got the event on the new thread
526     // (see MonitorSignal) before this one. We are done.
527     return;
528   }
529 
530   // The thread is not tracked yet, let's wait for it to appear.
531   int status = -1;
532   LLDB_LOG(log,
533            "received thread creation event for tid {0}. tid not tracked "
534            "yet, waiting for thread to appear...",
535            tid);
536   ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, &status, __WALL);
537   // Since we are waiting on a specific tid, this must be the creation event.
538   // But let's do some checks just in case.
539   if (wait_pid != tid) {
540     LLDB_LOG(log,
541              "waiting for tid {0} failed. Assuming the thread has "
542              "disappeared in the meantime",
543              tid);
544     // The only way I know of this could happen is if the whole process was
545     // SIGKILLed in the mean time. In any case, we can't do anything about that
546     // now.
547     return;
548   }
549   if (WIFEXITED(status)) {
550     LLDB_LOG(log,
551              "waiting for tid {0} returned an 'exited' event. Not "
552              "tracking the thread.",
553              tid);
554     // Also a very improbable event.
555     return;
556   }
557 
558   LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid);
559   NativeThreadLinux &new_thread = AddThread(tid);
560 
561   ResumeThread(new_thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
562   ThreadWasCreated(new_thread);
563 }
564 
565 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info,
566                                         NativeThreadLinux &thread) {
567   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
568   const bool is_main_thread = (thread.GetID() == GetID());
569 
570   assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
571 
572   switch (info.si_code) {
573   // TODO: these two cases are required if we want to support tracing of the
574   // inferiors' children.  We'd need this to debug a monitor. case (SIGTRAP |
575   // (PTRACE_EVENT_FORK << 8)): case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
576 
577   case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): {
578     // This is the notification on the parent thread which informs us of new
579     // thread creation. We don't want to do anything with the parent thread so
580     // we just resume it. In case we want to implement "break on thread
581     // creation" functionality, we would need to stop here.
582 
583     unsigned long event_message = 0;
584     if (GetEventMessage(thread.GetID(), &event_message).Fail()) {
585       LLDB_LOG(log,
586                "pid {0} received thread creation event but "
587                "GetEventMessage failed so we don't know the new tid",
588                thread.GetID());
589     } else
590       WaitForNewThread(event_message);
591 
592     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
593     break;
594   }
595 
596   case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): {
597     LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP);
598 
599     // Exec clears any pending notifications.
600     m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
601 
602     // Remove all but the main thread here.  Linux fork creates a new process
603     // which only copies the main thread.
604     LLDB_LOG(log, "exec received, stop tracking all but main thread");
605 
606     for (auto i = m_threads.begin(); i != m_threads.end();) {
607       if ((*i)->GetID() == GetID())
608         i = m_threads.erase(i);
609       else
610         ++i;
611     }
612     assert(m_threads.size() == 1);
613     auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get());
614 
615     SetCurrentThreadID(main_thread->GetID());
616     main_thread->SetStoppedByExec();
617 
618     // Tell coordinator about about the "new" (since exec) stopped main thread.
619     ThreadWasCreated(*main_thread);
620 
621     // Let our delegate know we have just exec'd.
622     NotifyDidExec();
623 
624     // Let the process know we're stopped.
625     StopRunningThreads(main_thread->GetID());
626 
627     break;
628   }
629 
630   case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): {
631     // The inferior process or one of its threads is about to exit. We don't
632     // want to do anything with the thread so we just resume it. In case we
633     // want to implement "break on thread exit" functionality, we would need to
634     // stop here.
635 
636     unsigned long data = 0;
637     if (GetEventMessage(thread.GetID(), &data).Fail())
638       data = -1;
639 
640     LLDB_LOG(log,
641              "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, "
642              "WIFSIGNALED={2}, pid = {3}, main_thread = {4}",
643              data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(),
644              is_main_thread);
645 
646 
647     StateType state = thread.GetState();
648     if (!StateIsRunningState(state)) {
649       // Due to a kernel bug, we may sometimes get this stop after the inferior
650       // gets a SIGKILL. This confuses our state tracking logic in
651       // ResumeThread(), since normally, we should not be receiving any ptrace
652       // events while the inferior is stopped. This makes sure that the
653       // inferior is resumed and exits normally.
654       state = eStateRunning;
655     }
656     ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
657 
658     break;
659   }
660 
661   case 0:
662   case TRAP_TRACE:  // We receive this on single stepping.
663   case TRAP_HWBKPT: // We receive this on watchpoint hit
664   {
665     // If a watchpoint was hit, report it
666     uint32_t wp_index;
667     Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
668         wp_index, (uintptr_t)info.si_addr);
669     if (error.Fail())
670       LLDB_LOG(log,
671                "received error while checking for watchpoint hits, pid = "
672                "{0}, error = {1}",
673                thread.GetID(), error);
674     if (wp_index != LLDB_INVALID_INDEX32) {
675       MonitorWatchpoint(thread, wp_index);
676       break;
677     }
678 
679     // If a breakpoint was hit, report it
680     uint32_t bp_index;
681     error = thread.GetRegisterContext().GetHardwareBreakHitIndex(
682         bp_index, (uintptr_t)info.si_addr);
683     if (error.Fail())
684       LLDB_LOG(log, "received error while checking for hardware "
685                     "breakpoint hits, pid = {0}, error = {1}",
686                thread.GetID(), error);
687     if (bp_index != LLDB_INVALID_INDEX32) {
688       MonitorBreakpoint(thread);
689       break;
690     }
691 
692     // Otherwise, report step over
693     MonitorTrace(thread);
694     break;
695   }
696 
697   case SI_KERNEL:
698 #if defined __mips__
699     // For mips there is no special signal for watchpoint So we check for
700     // watchpoint in kernel trap
701     {
702       // If a watchpoint was hit, report it
703       uint32_t wp_index;
704       Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
705           wp_index, LLDB_INVALID_ADDRESS);
706       if (error.Fail())
707         LLDB_LOG(log,
708                  "received error while checking for watchpoint hits, pid = "
709                  "{0}, error = {1}",
710                  thread.GetID(), error);
711       if (wp_index != LLDB_INVALID_INDEX32) {
712         MonitorWatchpoint(thread, wp_index);
713         break;
714       }
715     }
716 // NO BREAK
717 #endif
718   case TRAP_BRKPT:
719     MonitorBreakpoint(thread);
720     break;
721 
722   case SIGTRAP:
723   case (SIGTRAP | 0x80):
724     LLDB_LOG(
725         log,
726         "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming",
727         info.si_code, GetID(), thread.GetID());
728 
729     // Ignore these signals until we know more about them.
730     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
731     break;
732 
733   default:
734     LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}",
735              info.si_code, GetID(), thread.GetID());
736     MonitorSignal(info, thread, false);
737     break;
738   }
739 }
740 
741 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) {
742   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
743   LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID());
744 
745   // This thread is currently stopped.
746   thread.SetStoppedByTrace();
747 
748   StopRunningThreads(thread.GetID());
749 }
750 
751 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) {
752   Log *log(
753       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
754   LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID());
755 
756   // Mark the thread as stopped at breakpoint.
757   thread.SetStoppedByBreakpoint();
758   FixupBreakpointPCAsNeeded(thread);
759 
760   if (m_threads_stepping_with_breakpoint.find(thread.GetID()) !=
761       m_threads_stepping_with_breakpoint.end())
762     thread.SetStoppedByTrace();
763 
764   StopRunningThreads(thread.GetID());
765 }
766 
767 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread,
768                                            uint32_t wp_index) {
769   Log *log(
770       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
771   LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}",
772            thread.GetID(), wp_index);
773 
774   // Mark the thread as stopped at watchpoint. The address is at
775   // (lldb::addr_t)info->si_addr if we need it.
776   thread.SetStoppedByWatchpoint(wp_index);
777 
778   // We need to tell all other running threads before we notify the delegate
779   // about this stop.
780   StopRunningThreads(thread.GetID());
781 }
782 
783 void NativeProcessLinux::MonitorSignal(const siginfo_t &info,
784                                        NativeThreadLinux &thread, bool exited) {
785   const int signo = info.si_signo;
786   const bool is_from_llgs = info.si_pid == getpid();
787 
788   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
789 
790   // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
791   // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2)
792   // or raise(3).  Similarly for tgkill(2) on Linux.
793   //
794   // IOW, user generated signals never generate what we consider to be a
795   // "crash".
796   //
797   // Similarly, ACK signals generated by this monitor.
798 
799   // Handle the signal.
800   LLDB_LOG(log,
801            "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, "
802            "waitpid pid = {4})",
803            Host::GetSignalAsCString(signo), signo, info.si_code,
804            thread.GetID());
805 
806   // Check for thread stop notification.
807   if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) {
808     // This is a tgkill()-based stop.
809     LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID());
810 
811     // Check that we're not already marked with a stop reason. Note this thread
812     // really shouldn't already be marked as stopped - if we were, that would
813     // imply that the kernel signaled us with the thread stopping which we
814     // handled and marked as stopped, and that, without an intervening resume,
815     // we received another stop.  It is more likely that we are missing the
816     // marking of a run state somewhere if we find that the thread was marked
817     // as stopped.
818     const StateType thread_state = thread.GetState();
819     if (!StateIsStoppedState(thread_state, false)) {
820       // An inferior thread has stopped because of a SIGSTOP we have sent it.
821       // Generally, these are not important stops and we don't want to report
822       // them as they are just used to stop other threads when one thread (the
823       // one with the *real* stop reason) hits a breakpoint (watchpoint,
824       // etc...). However, in the case of an asynchronous Interrupt(), this
825       // *is* the real stop reason, so we leave the signal intact if this is
826       // the thread that was chosen as the triggering thread.
827       if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
828         if (m_pending_notification_tid == thread.GetID())
829           thread.SetStoppedBySignal(SIGSTOP, &info);
830         else
831           thread.SetStoppedWithNoReason();
832 
833         SetCurrentThreadID(thread.GetID());
834         SignalIfAllThreadsStopped();
835       } else {
836         // We can end up here if stop was initiated by LLGS but by this time a
837         // thread stop has occurred - maybe initiated by another event.
838         Status error = ResumeThread(thread, thread.GetState(), 0);
839         if (error.Fail())
840           LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(),
841                    error);
842       }
843     } else {
844       LLDB_LOG(log,
845                "pid {0} tid {1}, thread was already marked as a stopped "
846                "state (state={2}), leaving stop signal as is",
847                GetID(), thread.GetID(), thread_state);
848       SignalIfAllThreadsStopped();
849     }
850 
851     // Done handling.
852     return;
853   }
854 
855   // Check if debugger should stop at this signal or just ignore it and resume
856   // the inferior.
857   if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) {
858      ResumeThread(thread, thread.GetState(), signo);
859      return;
860   }
861 
862   // This thread is stopped.
863   LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo));
864   thread.SetStoppedBySignal(signo, &info);
865 
866   // Send a stop to the debugger after we get all other threads to stop.
867   StopRunningThreads(thread.GetID());
868 }
869 
870 namespace {
871 
872 struct EmulatorBaton {
873   NativeProcessLinux &m_process;
874   NativeRegisterContext &m_reg_context;
875 
876   // eRegisterKindDWARF -> RegsiterValue
877   std::unordered_map<uint32_t, RegisterValue> m_register_values;
878 
879   EmulatorBaton(NativeProcessLinux &process, NativeRegisterContext &reg_context)
880       : m_process(process), m_reg_context(reg_context) {}
881 };
882 
883 } // anonymous namespace
884 
885 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton,
886                                  const EmulateInstruction::Context &context,
887                                  lldb::addr_t addr, void *dst, size_t length) {
888   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
889 
890   size_t bytes_read;
891   emulator_baton->m_process.ReadMemory(addr, dst, length, bytes_read);
892   return bytes_read;
893 }
894 
895 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton,
896                                  const RegisterInfo *reg_info,
897                                  RegisterValue &reg_value) {
898   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
899 
900   auto it = emulator_baton->m_register_values.find(
901       reg_info->kinds[eRegisterKindDWARF]);
902   if (it != emulator_baton->m_register_values.end()) {
903     reg_value = it->second;
904     return true;
905   }
906 
907   // The emulator only fill in the dwarf regsiter numbers (and in some case the
908   // generic register numbers). Get the full register info from the register
909   // context based on the dwarf register numbers.
910   const RegisterInfo *full_reg_info =
911       emulator_baton->m_reg_context.GetRegisterInfo(
912           eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
913 
914   Status error =
915       emulator_baton->m_reg_context.ReadRegister(full_reg_info, reg_value);
916   if (error.Success())
917     return true;
918 
919   return false;
920 }
921 
922 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton,
923                                   const EmulateInstruction::Context &context,
924                                   const RegisterInfo *reg_info,
925                                   const RegisterValue &reg_value) {
926   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
927   emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] =
928       reg_value;
929   return true;
930 }
931 
932 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton,
933                                   const EmulateInstruction::Context &context,
934                                   lldb::addr_t addr, const void *dst,
935                                   size_t length) {
936   return length;
937 }
938 
939 static lldb::addr_t ReadFlags(NativeRegisterContext &regsiter_context) {
940   const RegisterInfo *flags_info = regsiter_context.GetRegisterInfo(
941       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
942   return regsiter_context.ReadRegisterAsUnsigned(flags_info,
943                                                  LLDB_INVALID_ADDRESS);
944 }
945 
946 Status
947 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) {
948   Status error;
949   NativeRegisterContext& register_context = thread.GetRegisterContext();
950 
951   std::unique_ptr<EmulateInstruction> emulator_ap(
952       EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying,
953                                      nullptr));
954 
955   if (emulator_ap == nullptr)
956     return Status("Instruction emulator not found!");
957 
958   EmulatorBaton baton(*this, register_context);
959   emulator_ap->SetBaton(&baton);
960   emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
961   emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
962   emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
963   emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
964 
965   if (!emulator_ap->ReadInstruction())
966     return Status("Read instruction failed!");
967 
968   bool emulation_result =
969       emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
970 
971   const RegisterInfo *reg_info_pc = register_context.GetRegisterInfo(
972       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
973   const RegisterInfo *reg_info_flags = register_context.GetRegisterInfo(
974       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
975 
976   auto pc_it =
977       baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
978   auto flags_it =
979       baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
980 
981   lldb::addr_t next_pc;
982   lldb::addr_t next_flags;
983   if (emulation_result) {
984     assert(pc_it != baton.m_register_values.end() &&
985            "Emulation was successfull but PC wasn't updated");
986     next_pc = pc_it->second.GetAsUInt64();
987 
988     if (flags_it != baton.m_register_values.end())
989       next_flags = flags_it->second.GetAsUInt64();
990     else
991       next_flags = ReadFlags(register_context);
992   } else if (pc_it == baton.m_register_values.end()) {
993     // Emulate instruction failed and it haven't changed PC. Advance PC with
994     // the size of the current opcode because the emulation of all
995     // PC modifying instruction should be successful. The failure most
996     // likely caused by a not supported instruction which don't modify PC.
997     next_pc = register_context.GetPC() + emulator_ap->GetOpcode().GetByteSize();
998     next_flags = ReadFlags(register_context);
999   } else {
1000     // The instruction emulation failed after it modified the PC. It is an
1001     // unknown error where we can't continue because the next instruction is
1002     // modifying the PC but we don't  know how.
1003     return Status("Instruction emulation failed unexpectedly.");
1004   }
1005 
1006   if (m_arch.GetMachine() == llvm::Triple::arm) {
1007     if (next_flags & 0x20) {
1008       // Thumb mode
1009       error = SetSoftwareBreakpoint(next_pc, 2);
1010     } else {
1011       // Arm mode
1012       error = SetSoftwareBreakpoint(next_pc, 4);
1013     }
1014   } else if (m_arch.GetMachine() == llvm::Triple::mips64 ||
1015              m_arch.GetMachine() == llvm::Triple::mips64el ||
1016              m_arch.GetMachine() == llvm::Triple::mips ||
1017              m_arch.GetMachine() == llvm::Triple::mipsel ||
1018              m_arch.GetMachine() == llvm::Triple::ppc64le)
1019     error = SetSoftwareBreakpoint(next_pc, 4);
1020   else {
1021     // No size hint is given for the next breakpoint
1022     error = SetSoftwareBreakpoint(next_pc, 0);
1023   }
1024 
1025   // If setting the breakpoint fails because next_pc is out of the address
1026   // space, ignore it and let the debugee segfault.
1027   if (error.GetError() == EIO || error.GetError() == EFAULT) {
1028     return Status();
1029   } else if (error.Fail())
1030     return error;
1031 
1032   m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc});
1033 
1034   return Status();
1035 }
1036 
1037 bool NativeProcessLinux::SupportHardwareSingleStepping() const {
1038   if (m_arch.GetMachine() == llvm::Triple::arm ||
1039       m_arch.GetMachine() == llvm::Triple::mips64 ||
1040       m_arch.GetMachine() == llvm::Triple::mips64el ||
1041       m_arch.GetMachine() == llvm::Triple::mips ||
1042       m_arch.GetMachine() == llvm::Triple::mipsel)
1043     return false;
1044   return true;
1045 }
1046 
1047 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) {
1048   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1049   LLDB_LOG(log, "pid {0}", GetID());
1050 
1051   bool software_single_step = !SupportHardwareSingleStepping();
1052 
1053   if (software_single_step) {
1054     for (const auto &thread : m_threads) {
1055       assert(thread && "thread list should not contain NULL threads");
1056 
1057       const ResumeAction *const action =
1058           resume_actions.GetActionForThread(thread->GetID(), true);
1059       if (action == nullptr)
1060         continue;
1061 
1062       if (action->state == eStateStepping) {
1063         Status error = SetupSoftwareSingleStepping(
1064             static_cast<NativeThreadLinux &>(*thread));
1065         if (error.Fail())
1066           return error;
1067       }
1068     }
1069   }
1070 
1071   for (const auto &thread : m_threads) {
1072     assert(thread && "thread list should not contain NULL threads");
1073 
1074     const ResumeAction *const action =
1075         resume_actions.GetActionForThread(thread->GetID(), true);
1076 
1077     if (action == nullptr) {
1078       LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(),
1079                thread->GetID());
1080       continue;
1081     }
1082 
1083     LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}",
1084              action->state, GetID(), thread->GetID());
1085 
1086     switch (action->state) {
1087     case eStateRunning:
1088     case eStateStepping: {
1089       // Run the thread, possibly feeding it the signal.
1090       const int signo = action->signal;
1091       ResumeThread(static_cast<NativeThreadLinux &>(*thread), action->state,
1092                    signo);
1093       break;
1094     }
1095 
1096     case eStateSuspended:
1097     case eStateStopped:
1098       llvm_unreachable("Unexpected state");
1099 
1100     default:
1101       return Status("NativeProcessLinux::%s (): unexpected state %s specified "
1102                     "for pid %" PRIu64 ", tid %" PRIu64,
1103                     __FUNCTION__, StateAsCString(action->state), GetID(),
1104                     thread->GetID());
1105     }
1106   }
1107 
1108   return Status();
1109 }
1110 
1111 Status NativeProcessLinux::Halt() {
1112   Status error;
1113 
1114   if (kill(GetID(), SIGSTOP) != 0)
1115     error.SetErrorToErrno();
1116 
1117   return error;
1118 }
1119 
1120 Status NativeProcessLinux::Detach() {
1121   Status error;
1122 
1123   // Stop monitoring the inferior.
1124   m_sigchld_handle.reset();
1125 
1126   // Tell ptrace to detach from the process.
1127   if (GetID() == LLDB_INVALID_PROCESS_ID)
1128     return error;
1129 
1130   for (const auto &thread : m_threads) {
1131     Status e = Detach(thread->GetID());
1132     if (e.Fail())
1133       error =
1134           e; // Save the error, but still attempt to detach from other threads.
1135   }
1136 
1137   m_processor_trace_monitor.clear();
1138   m_pt_proces_trace_id = LLDB_INVALID_UID;
1139 
1140   return error;
1141 }
1142 
1143 Status NativeProcessLinux::Signal(int signo) {
1144   Status error;
1145 
1146   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1147   LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo,
1148            Host::GetSignalAsCString(signo), GetID());
1149 
1150   if (kill(GetID(), signo))
1151     error.SetErrorToErrno();
1152 
1153   return error;
1154 }
1155 
1156 Status NativeProcessLinux::Interrupt() {
1157   // Pick a running thread (or if none, a not-dead stopped thread) as the
1158   // chosen thread that will be the stop-reason thread.
1159   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1160 
1161   NativeThreadProtocol *running_thread = nullptr;
1162   NativeThreadProtocol *stopped_thread = nullptr;
1163 
1164   LLDB_LOG(log, "selecting running thread for interrupt target");
1165   for (const auto &thread : m_threads) {
1166     // If we have a running or stepping thread, we'll call that the target of
1167     // the interrupt.
1168     const auto thread_state = thread->GetState();
1169     if (thread_state == eStateRunning || thread_state == eStateStepping) {
1170       running_thread = thread.get();
1171       break;
1172     } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) {
1173       // Remember the first non-dead stopped thread.  We'll use that as a
1174       // backup if there are no running threads.
1175       stopped_thread = thread.get();
1176     }
1177   }
1178 
1179   if (!running_thread && !stopped_thread) {
1180     Status error("found no running/stepping or live stopped threads as target "
1181                  "for interrupt");
1182     LLDB_LOG(log, "skipping due to error: {0}", error);
1183 
1184     return error;
1185   }
1186 
1187   NativeThreadProtocol *deferred_signal_thread =
1188       running_thread ? running_thread : stopped_thread;
1189 
1190   LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(),
1191            running_thread ? "running" : "stopped",
1192            deferred_signal_thread->GetID());
1193 
1194   StopRunningThreads(deferred_signal_thread->GetID());
1195 
1196   return Status();
1197 }
1198 
1199 Status NativeProcessLinux::Kill() {
1200   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1201   LLDB_LOG(log, "pid {0}", GetID());
1202 
1203   Status error;
1204 
1205   switch (m_state) {
1206   case StateType::eStateInvalid:
1207   case StateType::eStateExited:
1208   case StateType::eStateCrashed:
1209   case StateType::eStateDetached:
1210   case StateType::eStateUnloaded:
1211     // Nothing to do - the process is already dead.
1212     LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(),
1213              m_state);
1214     return error;
1215 
1216   case StateType::eStateConnected:
1217   case StateType::eStateAttaching:
1218   case StateType::eStateLaunching:
1219   case StateType::eStateStopped:
1220   case StateType::eStateRunning:
1221   case StateType::eStateStepping:
1222   case StateType::eStateSuspended:
1223     // We can try to kill a process in these states.
1224     break;
1225   }
1226 
1227   if (kill(GetID(), SIGKILL) != 0) {
1228     error.SetErrorToErrno();
1229     return error;
1230   }
1231 
1232   return error;
1233 }
1234 
1235 static Status
1236 ParseMemoryRegionInfoFromProcMapsLine(llvm::StringRef &maps_line,
1237                                       MemoryRegionInfo &memory_region_info) {
1238   memory_region_info.Clear();
1239 
1240   StringExtractor line_extractor(maps_line);
1241 
1242   // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode
1243   // pathname perms: rwxp   (letter is present if set, '-' if not, final
1244   // character is p=private, s=shared).
1245 
1246   // Parse out the starting address
1247   lldb::addr_t start_address = line_extractor.GetHexMaxU64(false, 0);
1248 
1249   // Parse out hyphen separating start and end address from range.
1250   if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != '-'))
1251     return Status(
1252         "malformed /proc/{pid}/maps entry, missing dash between address range");
1253 
1254   // Parse out the ending address
1255   lldb::addr_t end_address = line_extractor.GetHexMaxU64(false, start_address);
1256 
1257   // Parse out the space after the address.
1258   if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != ' '))
1259     return Status(
1260         "malformed /proc/{pid}/maps entry, missing space after range");
1261 
1262   // Save the range.
1263   memory_region_info.GetRange().SetRangeBase(start_address);
1264   memory_region_info.GetRange().SetRangeEnd(end_address);
1265 
1266   // Any memory region in /proc/{pid}/maps is by definition mapped into the
1267   // process.
1268   memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes);
1269 
1270   // Parse out each permission entry.
1271   if (line_extractor.GetBytesLeft() < 4)
1272     return Status("malformed /proc/{pid}/maps entry, missing some portion of "
1273                   "permissions");
1274 
1275   // Handle read permission.
1276   const char read_perm_char = line_extractor.GetChar();
1277   if (read_perm_char == 'r')
1278     memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eYes);
1279   else if (read_perm_char == '-')
1280     memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1281   else
1282     return Status("unexpected /proc/{pid}/maps read permission char");
1283 
1284   // Handle write permission.
1285   const char write_perm_char = line_extractor.GetChar();
1286   if (write_perm_char == 'w')
1287     memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eYes);
1288   else if (write_perm_char == '-')
1289     memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1290   else
1291     return Status("unexpected /proc/{pid}/maps write permission char");
1292 
1293   // Handle execute permission.
1294   const char exec_perm_char = line_extractor.GetChar();
1295   if (exec_perm_char == 'x')
1296     memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eYes);
1297   else if (exec_perm_char == '-')
1298     memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1299   else
1300     return Status("unexpected /proc/{pid}/maps exec permission char");
1301 
1302   line_extractor.GetChar();              // Read the private bit
1303   line_extractor.SkipSpaces();           // Skip the separator
1304   line_extractor.GetHexMaxU64(false, 0); // Read the offset
1305   line_extractor.GetHexMaxU64(false, 0); // Read the major device number
1306   line_extractor.GetChar();              // Read the device id separator
1307   line_extractor.GetHexMaxU64(false, 0); // Read the major device number
1308   line_extractor.SkipSpaces();           // Skip the separator
1309   line_extractor.GetU64(0, 10);          // Read the inode number
1310 
1311   line_extractor.SkipSpaces();
1312   const char *name = line_extractor.Peek();
1313   if (name)
1314     memory_region_info.SetName(name);
1315 
1316   return Status();
1317 }
1318 
1319 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr,
1320                                                MemoryRegionInfo &range_info) {
1321   // FIXME review that the final memory region returned extends to the end of
1322   // the virtual address space,
1323   // with no perms if it is not mapped.
1324 
1325   // Use an approach that reads memory regions from /proc/{pid}/maps. Assume
1326   // proc maps entries are in ascending order.
1327   // FIXME assert if we find differently.
1328 
1329   if (m_supports_mem_region == LazyBool::eLazyBoolNo) {
1330     // We're done.
1331     return Status("unsupported");
1332   }
1333 
1334   Status error = PopulateMemoryRegionCache();
1335   if (error.Fail()) {
1336     return error;
1337   }
1338 
1339   lldb::addr_t prev_base_address = 0;
1340 
1341   // FIXME start by finding the last region that is <= target address using
1342   // binary search.  Data is sorted.
1343   // There can be a ton of regions on pthreads apps with lots of threads.
1344   for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end();
1345        ++it) {
1346     MemoryRegionInfo &proc_entry_info = it->first;
1347 
1348     // Sanity check assumption that /proc/{pid}/maps entries are ascending.
1349     assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) &&
1350            "descending /proc/pid/maps entries detected, unexpected");
1351     prev_base_address = proc_entry_info.GetRange().GetRangeBase();
1352     UNUSED_IF_ASSERT_DISABLED(prev_base_address);
1353 
1354     // If the target address comes before this entry, indicate distance to next
1355     // region.
1356     if (load_addr < proc_entry_info.GetRange().GetRangeBase()) {
1357       range_info.GetRange().SetRangeBase(load_addr);
1358       range_info.GetRange().SetByteSize(
1359           proc_entry_info.GetRange().GetRangeBase() - load_addr);
1360       range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1361       range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1362       range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1363       range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1364 
1365       return error;
1366     } else if (proc_entry_info.GetRange().Contains(load_addr)) {
1367       // The target address is within the memory region we're processing here.
1368       range_info = proc_entry_info;
1369       return error;
1370     }
1371 
1372     // The target memory address comes somewhere after the region we just
1373     // parsed.
1374   }
1375 
1376   // If we made it here, we didn't find an entry that contained the given
1377   // address. Return the load_addr as start and the amount of bytes betwwen
1378   // load address and the end of the memory as size.
1379   range_info.GetRange().SetRangeBase(load_addr);
1380   range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS);
1381   range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1382   range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1383   range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1384   range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1385   return error;
1386 }
1387 
1388 Status NativeProcessLinux::PopulateMemoryRegionCache() {
1389   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1390 
1391   // If our cache is empty, pull the latest.  There should always be at least
1392   // one memory region if memory region handling is supported.
1393   if (!m_mem_region_cache.empty()) {
1394     LLDB_LOG(log, "reusing {0} cached memory region entries",
1395              m_mem_region_cache.size());
1396     return Status();
1397   }
1398 
1399   auto BufferOrError = getProcFile(GetID(), "maps");
1400   if (!BufferOrError) {
1401     m_supports_mem_region = LazyBool::eLazyBoolNo;
1402     return BufferOrError.getError();
1403   }
1404   StringRef Rest = BufferOrError.get()->getBuffer();
1405   while (! Rest.empty()) {
1406     StringRef Line;
1407     std::tie(Line, Rest) = Rest.split('\n');
1408     MemoryRegionInfo info;
1409     const Status parse_error =
1410         ParseMemoryRegionInfoFromProcMapsLine(Line, info);
1411     if (parse_error.Fail()) {
1412       LLDB_LOG(log, "failed to parse proc maps line '{0}': {1}", Line,
1413                parse_error);
1414       m_supports_mem_region = LazyBool::eLazyBoolNo;
1415       return parse_error;
1416     }
1417     FileSpec file_spec(info.GetName().GetCString());
1418     FileSystem::Instance().Resolve(file_spec);
1419     m_mem_region_cache.emplace_back(info, file_spec);
1420   }
1421 
1422   if (m_mem_region_cache.empty()) {
1423     // No entries after attempting to read them.  This shouldn't happen if
1424     // /proc/{pid}/maps is supported. Assume we don't support map entries via
1425     // procfs.
1426     m_supports_mem_region = LazyBool::eLazyBoolNo;
1427     LLDB_LOG(log,
1428              "failed to find any procfs maps entries, assuming no support "
1429              "for memory region metadata retrieval");
1430     return Status("not supported");
1431   }
1432 
1433   LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps",
1434            m_mem_region_cache.size(), GetID());
1435 
1436   // We support memory retrieval, remember that.
1437   m_supports_mem_region = LazyBool::eLazyBoolYes;
1438   return Status();
1439 }
1440 
1441 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) {
1442   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1443   LLDB_LOG(log, "newBumpId={0}", newBumpId);
1444   LLDB_LOG(log, "clearing {0} entries from memory region cache",
1445            m_mem_region_cache.size());
1446   m_mem_region_cache.clear();
1447 }
1448 
1449 Status NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions,
1450                                           lldb::addr_t &addr) {
1451 // FIXME implementing this requires the equivalent of
1452 // InferiorCallPOSIX::InferiorCallMmap, which depends on functional ThreadPlans
1453 // working with Native*Protocol.
1454 #if 1
1455   return Status("not implemented yet");
1456 #else
1457   addr = LLDB_INVALID_ADDRESS;
1458 
1459   unsigned prot = 0;
1460   if (permissions & lldb::ePermissionsReadable)
1461     prot |= eMmapProtRead;
1462   if (permissions & lldb::ePermissionsWritable)
1463     prot |= eMmapProtWrite;
1464   if (permissions & lldb::ePermissionsExecutable)
1465     prot |= eMmapProtExec;
1466 
1467   // TODO implement this directly in NativeProcessLinux
1468   // (and lift to NativeProcessPOSIX if/when that class is refactored out).
1469   if (InferiorCallMmap(this, addr, 0, size, prot,
1470                        eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
1471     m_addr_to_mmap_size[addr] = size;
1472     return Status();
1473   } else {
1474     addr = LLDB_INVALID_ADDRESS;
1475     return Status("unable to allocate %" PRIu64
1476                   " bytes of memory with permissions %s",
1477                   size, GetPermissionsAsCString(permissions));
1478   }
1479 #endif
1480 }
1481 
1482 Status NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) {
1483   // FIXME see comments in AllocateMemory - required lower-level
1484   // bits not in place yet (ThreadPlans)
1485   return Status("not implemented");
1486 }
1487 
1488 lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress() {
1489   // punt on this for now
1490   return LLDB_INVALID_ADDRESS;
1491 }
1492 
1493 size_t NativeProcessLinux::UpdateThreads() {
1494   // The NativeProcessLinux monitoring threads are always up to date with
1495   // respect to thread state and they keep the thread list populated properly.
1496   // All this method needs to do is return the thread count.
1497   return m_threads.size();
1498 }
1499 
1500 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size,
1501                                          bool hardware) {
1502   if (hardware)
1503     return SetHardwareBreakpoint(addr, size);
1504   else
1505     return SetSoftwareBreakpoint(addr, size);
1506 }
1507 
1508 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) {
1509   if (hardware)
1510     return RemoveHardwareBreakpoint(addr);
1511   else
1512     return NativeProcessProtocol::RemoveBreakpoint(addr);
1513 }
1514 
1515 llvm::Expected<llvm::ArrayRef<uint8_t>>
1516 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(size_t size_hint) {
1517   // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
1518   // linux kernel does otherwise.
1519   static const uint8_t g_arm_opcode[] = {0xf0, 0x01, 0xf0, 0xe7};
1520   static const uint8_t g_thumb_opcode[] = {0x01, 0xde};
1521 
1522   switch (GetArchitecture().GetMachine()) {
1523   case llvm::Triple::arm:
1524     switch (size_hint) {
1525     case 2:
1526       return llvm::makeArrayRef(g_thumb_opcode);
1527     case 4:
1528       return llvm::makeArrayRef(g_arm_opcode);
1529     default:
1530       return llvm::createStringError(llvm::inconvertibleErrorCode(),
1531                                      "Unrecognised trap opcode size hint!");
1532     }
1533   default:
1534     return NativeProcessProtocol::GetSoftwareBreakpointTrapOpcode(size_hint);
1535   }
1536 }
1537 
1538 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size,
1539                                       size_t &bytes_read) {
1540   if (ProcessVmReadvSupported()) {
1541     // The process_vm_readv path is about 50 times faster than ptrace api. We
1542     // want to use this syscall if it is supported.
1543 
1544     const ::pid_t pid = GetID();
1545 
1546     struct iovec local_iov, remote_iov;
1547     local_iov.iov_base = buf;
1548     local_iov.iov_len = size;
1549     remote_iov.iov_base = reinterpret_cast<void *>(addr);
1550     remote_iov.iov_len = size;
1551 
1552     bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
1553     const bool success = bytes_read == size;
1554 
1555     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1556     LLDB_LOG(log,
1557              "using process_vm_readv to read {0} bytes from inferior "
1558              "address {1:x}: {2}",
1559              size, addr, success ? "Success" : llvm::sys::StrError(errno));
1560 
1561     if (success)
1562       return Status();
1563     // else the call failed for some reason, let's retry the read using ptrace
1564     // api.
1565   }
1566 
1567   unsigned char *dst = static_cast<unsigned char *>(buf);
1568   size_t remainder;
1569   long data;
1570 
1571   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1572   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1573 
1574   for (bytes_read = 0; bytes_read < size; bytes_read += remainder) {
1575     Status error = NativeProcessLinux::PtraceWrapper(
1576         PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data);
1577     if (error.Fail())
1578       return error;
1579 
1580     remainder = size - bytes_read;
1581     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1582 
1583     // Copy the data into our buffer
1584     memcpy(dst, &data, remainder);
1585 
1586     LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1587     addr += k_ptrace_word_size;
1588     dst += k_ptrace_word_size;
1589   }
1590   return Status();
1591 }
1592 
1593 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf,
1594                                        size_t size, size_t &bytes_written) {
1595   const unsigned char *src = static_cast<const unsigned char *>(buf);
1596   size_t remainder;
1597   Status error;
1598 
1599   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1600   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1601 
1602   for (bytes_written = 0; bytes_written < size; bytes_written += remainder) {
1603     remainder = size - bytes_written;
1604     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1605 
1606     if (remainder == k_ptrace_word_size) {
1607       unsigned long data = 0;
1608       memcpy(&data, src, k_ptrace_word_size);
1609 
1610       LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1611       error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(),
1612                                                 (void *)addr, (void *)data);
1613       if (error.Fail())
1614         return error;
1615     } else {
1616       unsigned char buff[8];
1617       size_t bytes_read;
1618       error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
1619       if (error.Fail())
1620         return error;
1621 
1622       memcpy(buff, src, remainder);
1623 
1624       size_t bytes_written_rec;
1625       error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
1626       if (error.Fail())
1627         return error;
1628 
1629       LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src,
1630                *(unsigned long *)buff);
1631     }
1632 
1633     addr += k_ptrace_word_size;
1634     src += k_ptrace_word_size;
1635   }
1636   return error;
1637 }
1638 
1639 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) {
1640   return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
1641 }
1642 
1643 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid,
1644                                            unsigned long *message) {
1645   return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
1646 }
1647 
1648 Status NativeProcessLinux::Detach(lldb::tid_t tid) {
1649   if (tid == LLDB_INVALID_THREAD_ID)
1650     return Status();
1651 
1652   return PtraceWrapper(PTRACE_DETACH, tid);
1653 }
1654 
1655 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) {
1656   for (const auto &thread : m_threads) {
1657     assert(thread && "thread list should not contain NULL threads");
1658     if (thread->GetID() == thread_id) {
1659       // We have this thread.
1660       return true;
1661     }
1662   }
1663 
1664   // We don't have this thread.
1665   return false;
1666 }
1667 
1668 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) {
1669   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1670   LLDB_LOG(log, "tid: {0})", thread_id);
1671 
1672   bool found = false;
1673   for (auto it = m_threads.begin(); it != m_threads.end(); ++it) {
1674     if (*it && ((*it)->GetID() == thread_id)) {
1675       m_threads.erase(it);
1676       found = true;
1677       break;
1678     }
1679   }
1680 
1681   if (found)
1682     StopTracingForThread(thread_id);
1683   SignalIfAllThreadsStopped();
1684   return found;
1685 }
1686 
1687 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id) {
1688   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD));
1689   LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id);
1690 
1691   assert(!HasThreadNoLock(thread_id) &&
1692          "attempted to add a thread by id that already exists");
1693 
1694   // If this is the first thread, save it as the current thread
1695   if (m_threads.empty())
1696     SetCurrentThreadID(thread_id);
1697 
1698   m_threads.push_back(llvm::make_unique<NativeThreadLinux>(*this, thread_id));
1699 
1700   if (m_pt_proces_trace_id != LLDB_INVALID_UID) {
1701     auto traceMonitor = ProcessorTraceMonitor::Create(
1702         GetID(), thread_id, m_pt_process_trace_config, true);
1703     if (traceMonitor) {
1704       m_pt_traced_thread_group.insert(thread_id);
1705       m_processor_trace_monitor.insert(
1706           std::make_pair(thread_id, std::move(*traceMonitor)));
1707     } else {
1708       LLDB_LOG(log, "failed to start trace on thread {0}", thread_id);
1709       Status error(traceMonitor.takeError());
1710       LLDB_LOG(log, "error {0}", error);
1711     }
1712   }
1713 
1714   return static_cast<NativeThreadLinux &>(*m_threads.back());
1715 }
1716 
1717 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path,
1718                                                    FileSpec &file_spec) {
1719   Status error = PopulateMemoryRegionCache();
1720   if (error.Fail())
1721     return error;
1722 
1723   FileSpec module_file_spec(module_path);
1724   FileSystem::Instance().Resolve(module_file_spec);
1725 
1726   file_spec.Clear();
1727   for (const auto &it : m_mem_region_cache) {
1728     if (it.second.GetFilename() == module_file_spec.GetFilename()) {
1729       file_spec = it.second;
1730       return Status();
1731     }
1732   }
1733   return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
1734                 module_file_spec.GetFilename().AsCString(), GetID());
1735 }
1736 
1737 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name,
1738                                               lldb::addr_t &load_addr) {
1739   load_addr = LLDB_INVALID_ADDRESS;
1740   Status error = PopulateMemoryRegionCache();
1741   if (error.Fail())
1742     return error;
1743 
1744   FileSpec file(file_name);
1745   for (const auto &it : m_mem_region_cache) {
1746     if (it.second == file) {
1747       load_addr = it.first.GetRange().GetRangeBase();
1748       return Status();
1749     }
1750   }
1751   return Status("No load address found for specified file.");
1752 }
1753 
1754 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) {
1755   return static_cast<NativeThreadLinux *>(
1756       NativeProcessProtocol::GetThreadByID(tid));
1757 }
1758 
1759 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread,
1760                                         lldb::StateType state, int signo) {
1761   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1762   LLDB_LOG(log, "tid: {0}", thread.GetID());
1763 
1764   // Before we do the resume below, first check if we have a pending stop
1765   // notification that is currently waiting for all threads to stop.  This is
1766   // potentially a buggy situation since we're ostensibly waiting for threads
1767   // to stop before we send out the pending notification, and here we are
1768   // resuming one before we send out the pending stop notification.
1769   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
1770     LLDB_LOG(log,
1771              "about to resume tid {0} per explicit request but we have a "
1772              "pending stop notification (tid {1}) that is actively "
1773              "waiting for this thread to stop. Valid sequence of events?",
1774              thread.GetID(), m_pending_notification_tid);
1775   }
1776 
1777   // Request a resume.  We expect this to be synchronous and the system to
1778   // reflect it is running after this completes.
1779   switch (state) {
1780   case eStateRunning: {
1781     const auto resume_result = thread.Resume(signo);
1782     if (resume_result.Success())
1783       SetState(eStateRunning, true);
1784     return resume_result;
1785   }
1786   case eStateStepping: {
1787     const auto step_result = thread.SingleStep(signo);
1788     if (step_result.Success())
1789       SetState(eStateRunning, true);
1790     return step_result;
1791   }
1792   default:
1793     LLDB_LOG(log, "Unhandled state {0}.", state);
1794     llvm_unreachable("Unhandled state for resume");
1795   }
1796 }
1797 
1798 //===----------------------------------------------------------------------===//
1799 
1800 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) {
1801   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1802   LLDB_LOG(log, "about to process event: (triggering_tid: {0})",
1803            triggering_tid);
1804 
1805   m_pending_notification_tid = triggering_tid;
1806 
1807   // Request a stop for all the thread stops that need to be stopped and are
1808   // not already known to be stopped.
1809   for (const auto &thread : m_threads) {
1810     if (StateIsRunningState(thread->GetState()))
1811       static_cast<NativeThreadLinux *>(thread.get())->RequestStop();
1812   }
1813 
1814   SignalIfAllThreadsStopped();
1815   LLDB_LOG(log, "event processing done");
1816 }
1817 
1818 void NativeProcessLinux::SignalIfAllThreadsStopped() {
1819   if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
1820     return; // No pending notification. Nothing to do.
1821 
1822   for (const auto &thread_sp : m_threads) {
1823     if (StateIsRunningState(thread_sp->GetState()))
1824       return; // Some threads are still running. Don't signal yet.
1825   }
1826 
1827   // We have a pending notification and all threads have stopped.
1828   Log *log(
1829       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
1830 
1831   // Clear any temporary breakpoints we used to implement software single
1832   // stepping.
1833   for (const auto &thread_info : m_threads_stepping_with_breakpoint) {
1834     Status error = RemoveBreakpoint(thread_info.second);
1835     if (error.Fail())
1836       LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}",
1837                thread_info.first, error);
1838   }
1839   m_threads_stepping_with_breakpoint.clear();
1840 
1841   // Notify the delegate about the stop
1842   SetCurrentThreadID(m_pending_notification_tid);
1843   SetState(StateType::eStateStopped, true);
1844   m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
1845 }
1846 
1847 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) {
1848   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1849   LLDB_LOG(log, "tid: {0}", thread.GetID());
1850 
1851   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID &&
1852       StateIsRunningState(thread.GetState())) {
1853     // We will need to wait for this new thread to stop as well before firing
1854     // the notification.
1855     thread.RequestStop();
1856   }
1857 }
1858 
1859 void NativeProcessLinux::SigchldHandler() {
1860   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1861   // Process all pending waitpid notifications.
1862   while (true) {
1863     int status = -1;
1864     ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, -1, &status,
1865                                           __WALL | __WNOTHREAD | WNOHANG);
1866 
1867     if (wait_pid == 0)
1868       break; // We are done.
1869 
1870     if (wait_pid == -1) {
1871       Status error(errno, eErrorTypePOSIX);
1872       LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error);
1873       break;
1874     }
1875 
1876     WaitStatus wait_status = WaitStatus::Decode(status);
1877     bool exited = wait_status.type == WaitStatus::Exit ||
1878                   (wait_status.type == WaitStatus::Signal &&
1879                    wait_pid == static_cast<::pid_t>(GetID()));
1880 
1881     LLDB_LOG(
1882         log,
1883         "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}",
1884         wait_pid, wait_status, exited);
1885 
1886     MonitorCallback(wait_pid, exited, wait_status);
1887   }
1888 }
1889 
1890 // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets
1891 // errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
1892 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr,
1893                                          void *data, size_t data_size,
1894                                          long *result) {
1895   Status error;
1896   long int ret;
1897 
1898   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1899 
1900   PtraceDisplayBytes(req, data, data_size);
1901 
1902   errno = 0;
1903   if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
1904     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
1905                  *(unsigned int *)addr, data);
1906   else
1907     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
1908                  addr, data);
1909 
1910   if (ret == -1)
1911     error.SetErrorToErrno();
1912 
1913   if (result)
1914     *result = ret;
1915 
1916   LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data,
1917            data_size, ret);
1918 
1919   PtraceDisplayBytes(req, data, data_size);
1920 
1921   if (error.Fail())
1922     LLDB_LOG(log, "ptrace() failed: {0}", error);
1923 
1924   return error;
1925 }
1926 
1927 llvm::Expected<ProcessorTraceMonitor &>
1928 NativeProcessLinux::LookupProcessorTraceInstance(lldb::user_id_t traceid,
1929                                                  lldb::tid_t thread) {
1930   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1931   if (thread == LLDB_INVALID_THREAD_ID && traceid == m_pt_proces_trace_id) {
1932     LLDB_LOG(log, "thread not specified: {0}", traceid);
1933     return Status("tracing not active thread not specified").ToError();
1934   }
1935 
1936   for (auto& iter : m_processor_trace_monitor) {
1937     if (traceid == iter.second->GetTraceID() &&
1938         (thread == iter.first || thread == LLDB_INVALID_THREAD_ID))
1939       return *(iter.second);
1940   }
1941 
1942   LLDB_LOG(log, "traceid not being traced: {0}", traceid);
1943   return Status("tracing not active for this thread").ToError();
1944 }
1945 
1946 Status NativeProcessLinux::GetMetaData(lldb::user_id_t traceid,
1947                                        lldb::tid_t thread,
1948                                        llvm::MutableArrayRef<uint8_t> &buffer,
1949                                        size_t offset) {
1950   TraceOptions trace_options;
1951   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1952   Status error;
1953 
1954   LLDB_LOG(log, "traceid {0}", traceid);
1955 
1956   auto perf_monitor = LookupProcessorTraceInstance(traceid, thread);
1957   if (!perf_monitor) {
1958     LLDB_LOG(log, "traceid not being traced: {0}", traceid);
1959     buffer = buffer.slice(buffer.size());
1960     error = perf_monitor.takeError();
1961     return error;
1962   }
1963   return (*perf_monitor).ReadPerfTraceData(buffer, offset);
1964 }
1965 
1966 Status NativeProcessLinux::GetData(lldb::user_id_t traceid, lldb::tid_t thread,
1967                                    llvm::MutableArrayRef<uint8_t> &buffer,
1968                                    size_t offset) {
1969   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1970   Status error;
1971 
1972   LLDB_LOG(log, "traceid {0}", traceid);
1973 
1974   auto perf_monitor = LookupProcessorTraceInstance(traceid, thread);
1975   if (!perf_monitor) {
1976     LLDB_LOG(log, "traceid not being traced: {0}", traceid);
1977     buffer = buffer.slice(buffer.size());
1978     error = perf_monitor.takeError();
1979     return error;
1980   }
1981   return (*perf_monitor).ReadPerfTraceAux(buffer, offset);
1982 }
1983 
1984 Status NativeProcessLinux::GetTraceConfig(lldb::user_id_t traceid,
1985                                           TraceOptions &config) {
1986   Status error;
1987   if (config.getThreadID() == LLDB_INVALID_THREAD_ID &&
1988       m_pt_proces_trace_id == traceid) {
1989     if (m_pt_proces_trace_id == LLDB_INVALID_UID) {
1990       error.SetErrorString("tracing not active for this process");
1991       return error;
1992     }
1993     config = m_pt_process_trace_config;
1994   } else {
1995     auto perf_monitor =
1996         LookupProcessorTraceInstance(traceid, config.getThreadID());
1997     if (!perf_monitor) {
1998       error = perf_monitor.takeError();
1999       return error;
2000     }
2001     error = (*perf_monitor).GetTraceConfig(config);
2002   }
2003   return error;
2004 }
2005 
2006 lldb::user_id_t
2007 NativeProcessLinux::StartTraceGroup(const TraceOptions &config,
2008                                            Status &error) {
2009 
2010   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2011   if (config.getType() != TraceType::eTraceTypeProcessorTrace)
2012     return LLDB_INVALID_UID;
2013 
2014   if (m_pt_proces_trace_id != LLDB_INVALID_UID) {
2015     error.SetErrorString("tracing already active on this process");
2016     return m_pt_proces_trace_id;
2017   }
2018 
2019   for (const auto &thread_sp : m_threads) {
2020     if (auto traceInstance = ProcessorTraceMonitor::Create(
2021             GetID(), thread_sp->GetID(), config, true)) {
2022       m_pt_traced_thread_group.insert(thread_sp->GetID());
2023       m_processor_trace_monitor.insert(
2024           std::make_pair(thread_sp->GetID(), std::move(*traceInstance)));
2025     }
2026   }
2027 
2028   m_pt_process_trace_config = config;
2029   error = ProcessorTraceMonitor::GetCPUType(m_pt_process_trace_config);
2030 
2031   // Trace on Complete process will have traceid of 0
2032   m_pt_proces_trace_id = 0;
2033 
2034   LLDB_LOG(log, "Process Trace ID {0}", m_pt_proces_trace_id);
2035   return m_pt_proces_trace_id;
2036 }
2037 
2038 lldb::user_id_t NativeProcessLinux::StartTrace(const TraceOptions &config,
2039                                                Status &error) {
2040   if (config.getType() != TraceType::eTraceTypeProcessorTrace)
2041     return NativeProcessProtocol::StartTrace(config, error);
2042 
2043   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2044 
2045   lldb::tid_t threadid = config.getThreadID();
2046 
2047   if (threadid == LLDB_INVALID_THREAD_ID)
2048     return StartTraceGroup(config, error);
2049 
2050   auto thread_sp = GetThreadByID(threadid);
2051   if (!thread_sp) {
2052     // Thread not tracked by lldb so don't trace.
2053     error.SetErrorString("invalid thread id");
2054     return LLDB_INVALID_UID;
2055   }
2056 
2057   const auto &iter = m_processor_trace_monitor.find(threadid);
2058   if (iter != m_processor_trace_monitor.end()) {
2059     LLDB_LOG(log, "Thread already being traced");
2060     error.SetErrorString("tracing already active on this thread");
2061     return LLDB_INVALID_UID;
2062   }
2063 
2064   auto traceMonitor =
2065       ProcessorTraceMonitor::Create(GetID(), threadid, config, false);
2066   if (!traceMonitor) {
2067     error = traceMonitor.takeError();
2068     LLDB_LOG(log, "error {0}", error);
2069     return LLDB_INVALID_UID;
2070   }
2071   lldb::user_id_t ret_trace_id = (*traceMonitor)->GetTraceID();
2072   m_processor_trace_monitor.insert(
2073       std::make_pair(threadid, std::move(*traceMonitor)));
2074   return ret_trace_id;
2075 }
2076 
2077 Status NativeProcessLinux::StopTracingForThread(lldb::tid_t thread) {
2078   Status error;
2079   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2080   LLDB_LOG(log, "Thread {0}", thread);
2081 
2082   const auto& iter = m_processor_trace_monitor.find(thread);
2083   if (iter == m_processor_trace_monitor.end()) {
2084     error.SetErrorString("tracing not active for this thread");
2085     return error;
2086   }
2087 
2088   if (iter->second->GetTraceID() == m_pt_proces_trace_id) {
2089     // traceid maps to the whole process so we have to erase it from the thread
2090     // group.
2091     LLDB_LOG(log, "traceid maps to process");
2092     m_pt_traced_thread_group.erase(thread);
2093   }
2094   m_processor_trace_monitor.erase(iter);
2095 
2096   return error;
2097 }
2098 
2099 Status NativeProcessLinux::StopTrace(lldb::user_id_t traceid,
2100                                      lldb::tid_t thread) {
2101   Status error;
2102 
2103   TraceOptions trace_options;
2104   trace_options.setThreadID(thread);
2105   error = NativeProcessLinux::GetTraceConfig(traceid, trace_options);
2106 
2107   if (error.Fail())
2108     return error;
2109 
2110   switch (trace_options.getType()) {
2111   case lldb::TraceType::eTraceTypeProcessorTrace:
2112     if (traceid == m_pt_proces_trace_id &&
2113         thread == LLDB_INVALID_THREAD_ID)
2114       StopProcessorTracingOnProcess();
2115     else
2116       error = StopProcessorTracingOnThread(traceid, thread);
2117     break;
2118   default:
2119     error.SetErrorString("trace not supported");
2120     break;
2121   }
2122 
2123   return error;
2124 }
2125 
2126 void NativeProcessLinux::StopProcessorTracingOnProcess() {
2127   for (auto thread_id_iter : m_pt_traced_thread_group)
2128     m_processor_trace_monitor.erase(thread_id_iter);
2129   m_pt_traced_thread_group.clear();
2130   m_pt_proces_trace_id = LLDB_INVALID_UID;
2131 }
2132 
2133 Status NativeProcessLinux::StopProcessorTracingOnThread(lldb::user_id_t traceid,
2134                                                         lldb::tid_t thread) {
2135   Status error;
2136   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2137 
2138   if (thread == LLDB_INVALID_THREAD_ID) {
2139     for (auto& iter : m_processor_trace_monitor) {
2140       if (iter.second->GetTraceID() == traceid) {
2141         // Stopping a trace instance for an individual thread hence there will
2142         // only be one traceid that can match.
2143         m_processor_trace_monitor.erase(iter.first);
2144         return error;
2145       }
2146       LLDB_LOG(log, "Trace ID {0}", iter.second->GetTraceID());
2147     }
2148 
2149     LLDB_LOG(log, "Invalid TraceID");
2150     error.SetErrorString("invalid trace id");
2151     return error;
2152   }
2153 
2154   // thread is specified so we can use find function on the map.
2155   const auto& iter = m_processor_trace_monitor.find(thread);
2156   if (iter == m_processor_trace_monitor.end()) {
2157     // thread not found in our map.
2158     LLDB_LOG(log, "thread not being traced");
2159     error.SetErrorString("tracing not active for this thread");
2160     return error;
2161   }
2162   if (iter->second->GetTraceID() != traceid) {
2163     // traceid did not match so it has to be invalid.
2164     LLDB_LOG(log, "Invalid TraceID");
2165     error.SetErrorString("invalid trace id");
2166     return error;
2167   }
2168 
2169   LLDB_LOG(log, "UID - {0} , Thread -{1}", traceid, thread);
2170 
2171   if (traceid == m_pt_proces_trace_id) {
2172     // traceid maps to the whole process so we have to erase it from the thread
2173     // group.
2174     LLDB_LOG(log, "traceid maps to process");
2175     m_pt_traced_thread_group.erase(thread);
2176   }
2177   m_processor_trace_monitor.erase(iter);
2178 
2179   return error;
2180 }
2181