1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/lldb-python.h" 11 12 #include "NativeProcessLinux.h" 13 14 // C Includes 15 #include <errno.h> 16 #include <poll.h> 17 #include <string.h> 18 #include <stdint.h> 19 #include <unistd.h> 20 21 // C++ Includes 22 #include <fstream> 23 #include <string> 24 25 // Other libraries and framework includes 26 #include "lldb/Core/Debugger.h" 27 #include "lldb/Core/Error.h" 28 #include "lldb/Core/Module.h" 29 #include "lldb/Core/ModuleSpec.h" 30 #include "lldb/Core/RegisterValue.h" 31 #include "lldb/Core/Scalar.h" 32 #include "lldb/Core/State.h" 33 #include "lldb/Host/common/NativeBreakpoint.h" 34 #include "lldb/Host/common/NativeRegisterContext.h" 35 #include "lldb/Host/Host.h" 36 #include "lldb/Host/HostInfo.h" 37 #include "lldb/Host/HostNativeThread.h" 38 #include "lldb/Host/ThreadLauncher.h" 39 #include "lldb/Symbol/ObjectFile.h" 40 #include "lldb/Target/Process.h" 41 #include "lldb/Target/ProcessLaunchInfo.h" 42 #include "lldb/Utility/PseudoTerminal.h" 43 44 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 45 #include "Plugins/Process/Utility/LinuxSignals.h" 46 #include "Utility/StringExtractor.h" 47 #include "NativeThreadLinux.h" 48 #include "ProcFileReader.h" 49 #include "Procfs.h" 50 #include "ThreadStateCoordinator.h" 51 52 // System includes - They have to be included after framework includes because they define some 53 // macros which collide with variable names in other modules 54 #include <linux/unistd.h> 55 #include <sys/personality.h> 56 #include <sys/ptrace.h> 57 #include <sys/socket.h> 58 #include <sys/syscall.h> 59 #include <sys/types.h> 60 #include <sys/uio.h> 61 #include <sys/user.h> 62 #include <sys/wait.h> 63 64 #if defined (__arm64__) || defined (__aarch64__) 65 // NT_PRSTATUS and NT_FPREGSET definition 66 #include <elf.h> 67 #endif 68 69 #ifdef __ANDROID__ 70 #define __ptrace_request int 71 #define PT_DETACH PTRACE_DETACH 72 #endif 73 74 #define DEBUG_PTRACE_MAXBYTES 20 75 76 // Support ptrace extensions even when compiled without required kernel support 77 #ifndef PT_GETREGS 78 #ifndef PTRACE_GETREGS 79 #define PTRACE_GETREGS 12 80 #endif 81 #endif 82 #ifndef PT_SETREGS 83 #ifndef PTRACE_SETREGS 84 #define PTRACE_SETREGS 13 85 #endif 86 #endif 87 #ifndef PT_GETFPREGS 88 #ifndef PTRACE_GETFPREGS 89 #define PTRACE_GETFPREGS 14 90 #endif 91 #endif 92 #ifndef PT_SETFPREGS 93 #ifndef PTRACE_SETFPREGS 94 #define PTRACE_SETFPREGS 15 95 #endif 96 #endif 97 #ifndef PTRACE_GETREGSET 98 #define PTRACE_GETREGSET 0x4204 99 #endif 100 #ifndef PTRACE_SETREGSET 101 #define PTRACE_SETREGSET 0x4205 102 #endif 103 #ifndef PTRACE_GET_THREAD_AREA 104 #define PTRACE_GET_THREAD_AREA 25 105 #endif 106 #ifndef PTRACE_ARCH_PRCTL 107 #define PTRACE_ARCH_PRCTL 30 108 #endif 109 #ifndef ARCH_GET_FS 110 #define ARCH_SET_GS 0x1001 111 #define ARCH_SET_FS 0x1002 112 #define ARCH_GET_FS 0x1003 113 #define ARCH_GET_GS 0x1004 114 #endif 115 116 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS 0xffffffff 117 118 // Support hardware breakpoints in case it has not been defined 119 #ifndef TRAP_HWBKPT 120 #define TRAP_HWBKPT 4 121 #endif 122 123 // Try to define a macro to encapsulate the tgkill syscall 124 // fall back on kill() if tgkill isn't available 125 #define tgkill(pid, tid, sig) \ 126 syscall(SYS_tgkill, static_cast<::pid_t>(pid), static_cast<::pid_t>(tid), sig) 127 128 // We disable the tracing of ptrace calls for integration builds to 129 // avoid the additional indirection and checks. 130 #ifndef LLDB_CONFIGURATION_BUILDANDINTEGRATION 131 #define PTRACE(req, pid, addr, data, data_size, error) \ 132 PtraceWrapper((req), (pid), (addr), (data), (data_size), (error), #req, __FILE__, __LINE__) 133 #else 134 #define PTRACE(req, pid, addr, data, data_size, error) \ 135 PtraceWrapper((req), (pid), (addr), (data), (data_size), (error)) 136 #endif 137 138 // Private bits we only need internally. 139 namespace 140 { 141 using namespace lldb; 142 using namespace lldb_private; 143 144 static void * const EXIT_OPERATION = nullptr; 145 146 const UnixSignals& 147 GetUnixSignals () 148 { 149 static process_linux::LinuxSignals signals; 150 return signals; 151 } 152 153 ThreadStateCoordinator::LogFunction 154 GetThreadLoggerFunction () 155 { 156 return [](const char *format, va_list args) 157 { 158 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 159 if (log) 160 log->VAPrintf (format, args); 161 }; 162 } 163 164 void 165 CoordinatorErrorHandler (const std::string &error_message) 166 { 167 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 168 if (log) 169 log->Printf ("NativeProcessLinux::%s %s", __FUNCTION__, error_message.c_str ()); 170 assert (false && "ThreadStateCoordinator error reported"); 171 } 172 173 Error 174 ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch) 175 { 176 // Grab process info for the running process. 177 ProcessInstanceInfo process_info; 178 if (!platform.GetProcessInfo (pid, process_info)) 179 return lldb_private::Error("failed to get process info"); 180 181 // Resolve the executable module. 182 ModuleSP exe_module_sp; 183 ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture()); 184 FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ()); 185 Error error = platform.ResolveExecutable( 186 exe_module_spec, 187 exe_module_sp, 188 executable_search_paths.GetSize () ? &executable_search_paths : NULL); 189 190 if (!error.Success ()) 191 return error; 192 193 // Check if we've got our architecture from the exe_module. 194 arch = exe_module_sp->GetArchitecture (); 195 if (arch.IsValid ()) 196 return Error(); 197 else 198 return Error("failed to retrieve a valid architecture from the exe module"); 199 } 200 201 void 202 DisplayBytes (lldb_private::StreamString &s, void *bytes, uint32_t count) 203 { 204 uint8_t *ptr = (uint8_t *)bytes; 205 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 206 for(uint32_t i=0; i<loop_count; i++) 207 { 208 s.Printf ("[%x]", *ptr); 209 ptr++; 210 } 211 } 212 213 void 214 PtraceDisplayBytes(int &req, void *data, size_t data_size) 215 { 216 StreamString buf; 217 Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet ( 218 POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE)); 219 220 if (verbose_log) 221 { 222 switch(req) 223 { 224 case PTRACE_POKETEXT: 225 { 226 DisplayBytes(buf, &data, 8); 227 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData()); 228 break; 229 } 230 case PTRACE_POKEDATA: 231 { 232 DisplayBytes(buf, &data, 8); 233 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData()); 234 break; 235 } 236 case PTRACE_POKEUSER: 237 { 238 DisplayBytes(buf, &data, 8); 239 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData()); 240 break; 241 } 242 case PTRACE_SETREGS: 243 { 244 DisplayBytes(buf, data, data_size); 245 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData()); 246 break; 247 } 248 case PTRACE_SETFPREGS: 249 { 250 DisplayBytes(buf, data, data_size); 251 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData()); 252 break; 253 } 254 case PTRACE_SETSIGINFO: 255 { 256 DisplayBytes(buf, data, sizeof(siginfo_t)); 257 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData()); 258 break; 259 } 260 case PTRACE_SETREGSET: 261 { 262 // Extract iov_base from data, which is a pointer to the struct IOVEC 263 DisplayBytes(buf, *(void **)data, data_size); 264 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData()); 265 break; 266 } 267 default: 268 { 269 } 270 } 271 } 272 } 273 274 // Wrapper for ptrace to catch errors and log calls. 275 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) 276 long 277 PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error, 278 const char* reqName, const char* file, int line) 279 { 280 long int result; 281 282 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE)); 283 284 PtraceDisplayBytes(req, data, data_size); 285 286 error.Clear(); 287 errno = 0; 288 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 289 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data); 290 else 291 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data); 292 293 if (result == -1) 294 error.SetErrorToErrno(); 295 296 if (log) 297 log->Printf("ptrace(%s, %" PRIu64 ", %p, %p, %zu)=%lX called from file %s line %d", 298 reqName, pid, addr, data, data_size, result, file, line); 299 300 PtraceDisplayBytes(req, data, data_size); 301 302 if (log && error.GetError() != 0) 303 { 304 const char* str; 305 switch (error.GetError()) 306 { 307 case ESRCH: str = "ESRCH"; break; 308 case EINVAL: str = "EINVAL"; break; 309 case EBUSY: str = "EBUSY"; break; 310 case EPERM: str = "EPERM"; break; 311 default: str = error.AsCString(); 312 } 313 log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str); 314 } 315 316 return result; 317 } 318 319 #ifdef LLDB_CONFIGURATION_BUILDANDINTEGRATION 320 // Wrapper for ptrace when logging is not required. 321 // Sets errno to 0 prior to calling ptrace. 322 long 323 PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error) 324 { 325 long result = 0; 326 327 error.Clear(); 328 errno = 0; 329 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 330 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data); 331 else 332 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data); 333 334 if (result == -1) 335 error.SetErrorToErrno(); 336 return result; 337 } 338 #endif 339 340 //------------------------------------------------------------------------------ 341 // Static implementations of NativeProcessLinux::ReadMemory and 342 // NativeProcessLinux::WriteMemory. This enables mutual recursion between these 343 // functions without needed to go thru the thread funnel. 344 345 lldb::addr_t 346 DoReadMemory ( 347 lldb::pid_t pid, 348 lldb::addr_t vm_addr, 349 void *buf, 350 lldb::addr_t size, 351 Error &error) 352 { 353 // ptrace word size is determined by the host, not the child 354 static const unsigned word_size = sizeof(void*); 355 unsigned char *dst = static_cast<unsigned char*>(buf); 356 lldb::addr_t bytes_read; 357 lldb::addr_t remainder; 358 long data; 359 360 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); 361 if (log) 362 ProcessPOSIXLog::IncNestLevel(); 363 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) 364 log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__, 365 pid, word_size, (void*)vm_addr, buf, size); 366 367 assert(sizeof(data) >= word_size); 368 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) 369 { 370 data = PTRACE(PTRACE_PEEKDATA, pid, (void*)vm_addr, nullptr, 0, error); 371 if (error.Fail()) 372 { 373 if (log) 374 ProcessPOSIXLog::DecNestLevel(); 375 return bytes_read; 376 } 377 378 remainder = size - bytes_read; 379 remainder = remainder > word_size ? word_size : remainder; 380 381 // Copy the data into our buffer 382 for (unsigned i = 0; i < remainder; ++i) 383 dst[i] = ((data >> i*8) & 0xFF); 384 385 if (log && ProcessPOSIXLog::AtTopNestLevel() && 386 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 387 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 388 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 389 { 390 uintptr_t print_dst = 0; 391 // Format bytes from data by moving into print_dst for log output 392 for (unsigned i = 0; i < remainder; ++i) 393 print_dst |= (((data >> i*8) & 0xFF) << i*8); 394 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 395 (void*)vm_addr, print_dst, (unsigned long)data); 396 } 397 398 vm_addr += word_size; 399 dst += word_size; 400 } 401 402 if (log) 403 ProcessPOSIXLog::DecNestLevel(); 404 return bytes_read; 405 } 406 407 lldb::addr_t 408 DoWriteMemory( 409 lldb::pid_t pid, 410 lldb::addr_t vm_addr, 411 const void *buf, 412 lldb::addr_t size, 413 Error &error) 414 { 415 // ptrace word size is determined by the host, not the child 416 static const unsigned word_size = sizeof(void*); 417 const unsigned char *src = static_cast<const unsigned char*>(buf); 418 lldb::addr_t bytes_written = 0; 419 lldb::addr_t remainder; 420 421 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); 422 if (log) 423 ProcessPOSIXLog::IncNestLevel(); 424 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) 425 log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__, 426 pid, word_size, (void*)vm_addr, buf, size); 427 428 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) 429 { 430 remainder = size - bytes_written; 431 remainder = remainder > word_size ? word_size : remainder; 432 433 if (remainder == word_size) 434 { 435 unsigned long data = 0; 436 assert(sizeof(data) >= word_size); 437 for (unsigned i = 0; i < word_size; ++i) 438 data |= (unsigned long)src[i] << i*8; 439 440 if (log && ProcessPOSIXLog::AtTopNestLevel() && 441 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 442 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 443 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 444 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 445 (void*)vm_addr, *(const unsigned long*)src, data); 446 447 if (PTRACE(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data, 0, error)) 448 { 449 if (log) 450 ProcessPOSIXLog::DecNestLevel(); 451 return bytes_written; 452 } 453 } 454 else 455 { 456 unsigned char buff[8]; 457 if (DoReadMemory(pid, vm_addr, 458 buff, word_size, error) != word_size) 459 { 460 if (log) 461 ProcessPOSIXLog::DecNestLevel(); 462 return bytes_written; 463 } 464 465 memcpy(buff, src, remainder); 466 467 if (DoWriteMemory(pid, vm_addr, 468 buff, word_size, error) != word_size) 469 { 470 if (log) 471 ProcessPOSIXLog::DecNestLevel(); 472 return bytes_written; 473 } 474 475 if (log && ProcessPOSIXLog::AtTopNestLevel() && 476 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 477 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 478 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 479 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 480 (void*)vm_addr, *(const unsigned long*)src, *(unsigned long*)buff); 481 } 482 483 vm_addr += word_size; 484 src += word_size; 485 } 486 if (log) 487 ProcessPOSIXLog::DecNestLevel(); 488 return bytes_written; 489 } 490 491 //------------------------------------------------------------------------------ 492 /// @class Operation 493 /// @brief Represents a NativeProcessLinux operation. 494 /// 495 /// Under Linux, it is not possible to ptrace() from any other thread but the 496 /// one that spawned or attached to the process from the start. Therefore, when 497 /// a NativeProcessLinux is asked to deliver or change the state of an inferior 498 /// process the operation must be "funneled" to a specific thread to perform the 499 /// task. The Operation class provides an abstract base for all services the 500 /// NativeProcessLinux must perform via the single virtual function Execute, thus 501 /// encapsulating the code that needs to run in the privileged context. 502 class Operation 503 { 504 public: 505 Operation () : m_error() { } 506 507 virtual 508 ~Operation() {} 509 510 virtual void 511 Execute (NativeProcessLinux *process) = 0; 512 513 const Error & 514 GetError () const { return m_error; } 515 516 protected: 517 Error m_error; 518 }; 519 520 //------------------------------------------------------------------------------ 521 /// @class ReadOperation 522 /// @brief Implements NativeProcessLinux::ReadMemory. 523 class ReadOperation : public Operation 524 { 525 public: 526 ReadOperation ( 527 lldb::addr_t addr, 528 void *buff, 529 lldb::addr_t size, 530 lldb::addr_t &result) : 531 Operation (), 532 m_addr (addr), 533 m_buff (buff), 534 m_size (size), 535 m_result (result) 536 { 537 } 538 539 void Execute (NativeProcessLinux *process) override; 540 541 private: 542 lldb::addr_t m_addr; 543 void *m_buff; 544 lldb::addr_t m_size; 545 lldb::addr_t &m_result; 546 }; 547 548 void 549 ReadOperation::Execute (NativeProcessLinux *process) 550 { 551 m_result = DoReadMemory (process->GetID (), m_addr, m_buff, m_size, m_error); 552 } 553 554 //------------------------------------------------------------------------------ 555 /// @class WriteOperation 556 /// @brief Implements NativeProcessLinux::WriteMemory. 557 class WriteOperation : public Operation 558 { 559 public: 560 WriteOperation ( 561 lldb::addr_t addr, 562 const void *buff, 563 lldb::addr_t size, 564 lldb::addr_t &result) : 565 Operation (), 566 m_addr (addr), 567 m_buff (buff), 568 m_size (size), 569 m_result (result) 570 { 571 } 572 573 void Execute (NativeProcessLinux *process) override; 574 575 private: 576 lldb::addr_t m_addr; 577 const void *m_buff; 578 lldb::addr_t m_size; 579 lldb::addr_t &m_result; 580 }; 581 582 void 583 WriteOperation::Execute(NativeProcessLinux *process) 584 { 585 m_result = DoWriteMemory (process->GetID (), m_addr, m_buff, m_size, m_error); 586 } 587 588 //------------------------------------------------------------------------------ 589 /// @class ReadRegOperation 590 /// @brief Implements NativeProcessLinux::ReadRegisterValue. 591 class ReadRegOperation : public Operation 592 { 593 public: 594 ReadRegOperation(lldb::tid_t tid, uint32_t offset, const char *reg_name, 595 RegisterValue &value) 596 : m_tid(tid), 597 m_offset(static_cast<uintptr_t> (offset)), 598 m_reg_name(reg_name), 599 m_value(value) 600 { } 601 602 void Execute(NativeProcessLinux *monitor); 603 604 private: 605 lldb::tid_t m_tid; 606 uintptr_t m_offset; 607 const char *m_reg_name; 608 RegisterValue &m_value; 609 }; 610 611 void 612 ReadRegOperation::Execute(NativeProcessLinux *monitor) 613 { 614 #if defined (__arm64__) || defined (__aarch64__) 615 if (m_offset > sizeof(struct user_pt_regs)) 616 { 617 uintptr_t offset = m_offset - sizeof(struct user_pt_regs); 618 if (offset > sizeof(struct user_fpsimd_state)) 619 { 620 m_error.SetErrorString("invalid offset value"); 621 return; 622 } 623 elf_fpregset_t regs; 624 int regset = NT_FPREGSET; 625 struct iovec ioVec; 626 627 ioVec.iov_base = ®s; 628 ioVec.iov_len = sizeof regs; 629 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 630 if (m_error.Success()) 631 { 632 lldb_private::ArchSpec arch; 633 if (monitor->GetArchitecture(arch)) 634 m_value.SetBytes((void *)(((unsigned char *)(®s)) + offset), 16, arch.GetByteOrder()); 635 else 636 m_error.SetErrorString("failed to get architecture"); 637 } 638 } 639 else 640 { 641 elf_gregset_t regs; 642 int regset = NT_PRSTATUS; 643 struct iovec ioVec; 644 645 ioVec.iov_base = ®s; 646 ioVec.iov_len = sizeof regs; 647 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 648 if (m_error.Success()) 649 { 650 lldb_private::ArchSpec arch; 651 if (monitor->GetArchitecture(arch)) 652 m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, arch.GetByteOrder()); 653 else 654 m_error.SetErrorString("failed to get architecture"); 655 } 656 } 657 #else 658 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS)); 659 660 lldb::addr_t data = PTRACE(PTRACE_PEEKUSER, m_tid, (void*)m_offset, nullptr, 0, m_error); 661 if (m_error.Success()) 662 m_value = data; 663 664 if (log) 665 log->Printf ("NativeProcessLinux::%s() reg %s: 0x%" PRIx64, __FUNCTION__, 666 m_reg_name, data); 667 #endif 668 } 669 670 //------------------------------------------------------------------------------ 671 /// @class WriteRegOperation 672 /// @brief Implements NativeProcessLinux::WriteRegisterValue. 673 class WriteRegOperation : public Operation 674 { 675 public: 676 WriteRegOperation(lldb::tid_t tid, unsigned offset, const char *reg_name, 677 const RegisterValue &value) 678 : m_tid(tid), 679 m_offset(offset), 680 m_reg_name(reg_name), 681 m_value(value) 682 { } 683 684 void Execute(NativeProcessLinux *monitor); 685 686 private: 687 lldb::tid_t m_tid; 688 uintptr_t m_offset; 689 const char *m_reg_name; 690 const RegisterValue &m_value; 691 }; 692 693 void 694 WriteRegOperation::Execute(NativeProcessLinux *monitor) 695 { 696 #if defined (__arm64__) || defined (__aarch64__) 697 if (m_offset > sizeof(struct user_pt_regs)) 698 { 699 uintptr_t offset = m_offset - sizeof(struct user_pt_regs); 700 if (offset > sizeof(struct user_fpsimd_state)) 701 { 702 m_error.SetErrorString("invalid offset value"); 703 return; 704 } 705 elf_fpregset_t regs; 706 int regset = NT_FPREGSET; 707 struct iovec ioVec; 708 709 ioVec.iov_base = ®s; 710 ioVec.iov_len = sizeof regs; 711 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 712 if (m_error.Success()) 713 { 714 ::memcpy((void *)(((unsigned char *)(®s)) + offset), m_value.GetBytes(), 16); 715 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 716 } 717 } 718 else 719 { 720 elf_gregset_t regs; 721 int regset = NT_PRSTATUS; 722 struct iovec ioVec; 723 724 ioVec.iov_base = ®s; 725 ioVec.iov_len = sizeof regs; 726 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 727 if (m_error.Success()) 728 { 729 ::memcpy((void *)(((unsigned char *)(®s)) + m_offset), m_value.GetBytes(), 8); 730 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 731 } 732 } 733 #else 734 void* buf; 735 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS)); 736 737 buf = (void*) m_value.GetAsUInt64(); 738 739 if (log) 740 log->Printf ("NativeProcessLinux::%s() reg %s: %p", __FUNCTION__, m_reg_name, buf); 741 PTRACE(PTRACE_POKEUSER, m_tid, (void*)m_offset, buf, 0, m_error); 742 #endif 743 } 744 745 //------------------------------------------------------------------------------ 746 /// @class ReadGPROperation 747 /// @brief Implements NativeProcessLinux::ReadGPR. 748 class ReadGPROperation : public Operation 749 { 750 public: 751 ReadGPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 752 : m_tid(tid), m_buf(buf), m_buf_size(buf_size) 753 { } 754 755 void Execute(NativeProcessLinux *monitor); 756 757 private: 758 lldb::tid_t m_tid; 759 void *m_buf; 760 size_t m_buf_size; 761 }; 762 763 void 764 ReadGPROperation::Execute(NativeProcessLinux *monitor) 765 { 766 #if defined (__arm64__) || defined (__aarch64__) 767 int regset = NT_PRSTATUS; 768 struct iovec ioVec; 769 770 ioVec.iov_base = m_buf; 771 ioVec.iov_len = m_buf_size; 772 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); 773 #else 774 PTRACE(PTRACE_GETREGS, m_tid, nullptr, m_buf, m_buf_size, m_error); 775 #endif 776 } 777 778 //------------------------------------------------------------------------------ 779 /// @class ReadFPROperation 780 /// @brief Implements NativeProcessLinux::ReadFPR. 781 class ReadFPROperation : public Operation 782 { 783 public: 784 ReadFPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 785 : m_tid(tid), 786 m_buf(buf), 787 m_buf_size(buf_size) 788 { } 789 790 void Execute(NativeProcessLinux *monitor); 791 792 private: 793 lldb::tid_t m_tid; 794 void *m_buf; 795 size_t m_buf_size; 796 }; 797 798 void 799 ReadFPROperation::Execute(NativeProcessLinux *monitor) 800 { 801 #if defined (__arm64__) || defined (__aarch64__) 802 int regset = NT_FPREGSET; 803 struct iovec ioVec; 804 805 ioVec.iov_base = m_buf; 806 ioVec.iov_len = m_buf_size; 807 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); 808 #else 809 PTRACE(PTRACE_GETFPREGS, m_tid, nullptr, m_buf, m_buf_size, m_error); 810 #endif 811 } 812 813 //------------------------------------------------------------------------------ 814 /// @class ReadRegisterSetOperation 815 /// @brief Implements NativeProcessLinux::ReadRegisterSet. 816 class ReadRegisterSetOperation : public Operation 817 { 818 public: 819 ReadRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 820 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset) 821 { } 822 823 void Execute(NativeProcessLinux *monitor); 824 825 private: 826 lldb::tid_t m_tid; 827 void *m_buf; 828 size_t m_buf_size; 829 const unsigned int m_regset; 830 }; 831 832 void 833 ReadRegisterSetOperation::Execute(NativeProcessLinux *monitor) 834 { 835 PTRACE(PTRACE_GETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error); 836 } 837 838 //------------------------------------------------------------------------------ 839 /// @class WriteGPROperation 840 /// @brief Implements NativeProcessLinux::WriteGPR. 841 class WriteGPROperation : public Operation 842 { 843 public: 844 WriteGPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 845 : m_tid(tid), m_buf(buf), m_buf_size(buf_size) 846 { } 847 848 void Execute(NativeProcessLinux *monitor); 849 850 private: 851 lldb::tid_t m_tid; 852 void *m_buf; 853 size_t m_buf_size; 854 }; 855 856 void 857 WriteGPROperation::Execute(NativeProcessLinux *monitor) 858 { 859 #if defined (__arm64__) || defined (__aarch64__) 860 int regset = NT_PRSTATUS; 861 struct iovec ioVec; 862 863 ioVec.iov_base = m_buf; 864 ioVec.iov_len = m_buf_size; 865 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); 866 #else 867 PTRACE(PTRACE_SETREGS, m_tid, NULL, m_buf, m_buf_size, m_error); 868 #endif 869 } 870 871 //------------------------------------------------------------------------------ 872 /// @class WriteFPROperation 873 /// @brief Implements NativeProcessLinux::WriteFPR. 874 class WriteFPROperation : public Operation 875 { 876 public: 877 WriteFPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 878 : m_tid(tid), m_buf(buf), m_buf_size(buf_size) 879 { } 880 881 void Execute(NativeProcessLinux *monitor); 882 883 private: 884 lldb::tid_t m_tid; 885 void *m_buf; 886 size_t m_buf_size; 887 }; 888 889 void 890 WriteFPROperation::Execute(NativeProcessLinux *monitor) 891 { 892 #if defined (__arm64__) || defined (__aarch64__) 893 int regset = NT_FPREGSET; 894 struct iovec ioVec; 895 896 ioVec.iov_base = m_buf; 897 ioVec.iov_len = m_buf_size; 898 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); 899 #else 900 PTRACE(PTRACE_SETFPREGS, m_tid, NULL, m_buf, m_buf_size, m_error); 901 #endif 902 } 903 904 //------------------------------------------------------------------------------ 905 /// @class WriteRegisterSetOperation 906 /// @brief Implements NativeProcessLinux::WriteRegisterSet. 907 class WriteRegisterSetOperation : public Operation 908 { 909 public: 910 WriteRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 911 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset) 912 { } 913 914 void Execute(NativeProcessLinux *monitor); 915 916 private: 917 lldb::tid_t m_tid; 918 void *m_buf; 919 size_t m_buf_size; 920 const unsigned int m_regset; 921 }; 922 923 void 924 WriteRegisterSetOperation::Execute(NativeProcessLinux *monitor) 925 { 926 PTRACE(PTRACE_SETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error); 927 } 928 929 //------------------------------------------------------------------------------ 930 /// @class ResumeOperation 931 /// @brief Implements NativeProcessLinux::Resume. 932 class ResumeOperation : public Operation 933 { 934 public: 935 ResumeOperation(lldb::tid_t tid, uint32_t signo) : 936 m_tid(tid), m_signo(signo) { } 937 938 void Execute(NativeProcessLinux *monitor); 939 940 private: 941 lldb::tid_t m_tid; 942 uint32_t m_signo; 943 }; 944 945 void 946 ResumeOperation::Execute(NativeProcessLinux *monitor) 947 { 948 intptr_t data = 0; 949 950 if (m_signo != LLDB_INVALID_SIGNAL_NUMBER) 951 data = m_signo; 952 953 PTRACE(PTRACE_CONT, m_tid, nullptr, (void*)data, 0, m_error); 954 if (m_error.Fail()) 955 { 956 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 957 958 if (log) 959 log->Printf ("ResumeOperation (%" PRIu64 ") failed: %s", m_tid, m_error.AsCString()); 960 } 961 } 962 963 //------------------------------------------------------------------------------ 964 /// @class SingleStepOperation 965 /// @brief Implements NativeProcessLinux::SingleStep. 966 class SingleStepOperation : public Operation 967 { 968 public: 969 SingleStepOperation(lldb::tid_t tid, uint32_t signo) 970 : m_tid(tid), m_signo(signo) { } 971 972 void Execute(NativeProcessLinux *monitor); 973 974 private: 975 lldb::tid_t m_tid; 976 uint32_t m_signo; 977 }; 978 979 void 980 SingleStepOperation::Execute(NativeProcessLinux *monitor) 981 { 982 intptr_t data = 0; 983 984 if (m_signo != LLDB_INVALID_SIGNAL_NUMBER) 985 data = m_signo; 986 987 PTRACE(PTRACE_SINGLESTEP, m_tid, nullptr, (void*)data, 0, m_error); 988 } 989 990 //------------------------------------------------------------------------------ 991 /// @class SiginfoOperation 992 /// @brief Implements NativeProcessLinux::GetSignalInfo. 993 class SiginfoOperation : public Operation 994 { 995 public: 996 SiginfoOperation(lldb::tid_t tid, void *info) 997 : m_tid(tid), m_info(info) { } 998 999 void Execute(NativeProcessLinux *monitor); 1000 1001 private: 1002 lldb::tid_t m_tid; 1003 void *m_info; 1004 }; 1005 1006 void 1007 SiginfoOperation::Execute(NativeProcessLinux *monitor) 1008 { 1009 PTRACE(PTRACE_GETSIGINFO, m_tid, nullptr, m_info, 0, m_error); 1010 } 1011 1012 //------------------------------------------------------------------------------ 1013 /// @class EventMessageOperation 1014 /// @brief Implements NativeProcessLinux::GetEventMessage. 1015 class EventMessageOperation : public Operation 1016 { 1017 public: 1018 EventMessageOperation(lldb::tid_t tid, unsigned long *message) 1019 : m_tid(tid), m_message(message) { } 1020 1021 void Execute(NativeProcessLinux *monitor); 1022 1023 private: 1024 lldb::tid_t m_tid; 1025 unsigned long *m_message; 1026 }; 1027 1028 void 1029 EventMessageOperation::Execute(NativeProcessLinux *monitor) 1030 { 1031 PTRACE(PTRACE_GETEVENTMSG, m_tid, nullptr, m_message, 0, m_error); 1032 } 1033 1034 class DetachOperation : public Operation 1035 { 1036 public: 1037 DetachOperation(lldb::tid_t tid) : m_tid(tid) { } 1038 1039 void Execute(NativeProcessLinux *monitor); 1040 1041 private: 1042 lldb::tid_t m_tid; 1043 }; 1044 1045 void 1046 DetachOperation::Execute(NativeProcessLinux *monitor) 1047 { 1048 PTRACE(PTRACE_DETACH, m_tid, nullptr, 0, 0, m_error); 1049 } 1050 1051 } 1052 1053 using namespace lldb_private; 1054 1055 // Simple helper function to ensure flags are enabled on the given file 1056 // descriptor. 1057 static bool 1058 EnsureFDFlags(int fd, int flags, Error &error) 1059 { 1060 int status; 1061 1062 if ((status = fcntl(fd, F_GETFL)) == -1) 1063 { 1064 error.SetErrorToErrno(); 1065 return false; 1066 } 1067 1068 if (fcntl(fd, F_SETFL, status | flags) == -1) 1069 { 1070 error.SetErrorToErrno(); 1071 return false; 1072 } 1073 1074 return true; 1075 } 1076 1077 NativeProcessLinux::OperationArgs::OperationArgs(NativeProcessLinux *monitor) 1078 : m_monitor(monitor) 1079 { 1080 sem_init(&m_semaphore, 0, 0); 1081 } 1082 1083 NativeProcessLinux::OperationArgs::~OperationArgs() 1084 { 1085 sem_destroy(&m_semaphore); 1086 } 1087 1088 NativeProcessLinux::LaunchArgs::LaunchArgs(NativeProcessLinux *monitor, 1089 lldb_private::Module *module, 1090 char const **argv, 1091 char const **envp, 1092 const std::string &stdin_path, 1093 const std::string &stdout_path, 1094 const std::string &stderr_path, 1095 const char *working_dir, 1096 const lldb_private::ProcessLaunchInfo &launch_info) 1097 : OperationArgs(monitor), 1098 m_module(module), 1099 m_argv(argv), 1100 m_envp(envp), 1101 m_stdin_path(stdin_path), 1102 m_stdout_path(stdout_path), 1103 m_stderr_path(stderr_path), 1104 m_working_dir(working_dir), 1105 m_launch_info(launch_info) 1106 { 1107 } 1108 1109 NativeProcessLinux::LaunchArgs::~LaunchArgs() 1110 { } 1111 1112 NativeProcessLinux::AttachArgs::AttachArgs(NativeProcessLinux *monitor, 1113 lldb::pid_t pid) 1114 : OperationArgs(monitor), m_pid(pid) { } 1115 1116 NativeProcessLinux::AttachArgs::~AttachArgs() 1117 { } 1118 1119 // ----------------------------------------------------------------------------- 1120 // Public Static Methods 1121 // ----------------------------------------------------------------------------- 1122 1123 lldb_private::Error 1124 NativeProcessLinux::LaunchProcess ( 1125 lldb_private::Module *exe_module, 1126 lldb_private::ProcessLaunchInfo &launch_info, 1127 lldb_private::NativeProcessProtocol::NativeDelegate &native_delegate, 1128 NativeProcessProtocolSP &native_process_sp) 1129 { 1130 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1131 1132 Error error; 1133 1134 // Verify the working directory is valid if one was specified. 1135 const char* working_dir = launch_info.GetWorkingDirectory (); 1136 if (working_dir) 1137 { 1138 FileSpec working_dir_fs (working_dir, true); 1139 if (!working_dir_fs || working_dir_fs.GetFileType () != FileSpec::eFileTypeDirectory) 1140 { 1141 error.SetErrorStringWithFormat ("No such file or directory: %s", working_dir); 1142 return error; 1143 } 1144 } 1145 1146 const lldb_private::FileAction *file_action; 1147 1148 // Default of NULL will mean to use existing open file descriptors. 1149 std::string stdin_path; 1150 std::string stdout_path; 1151 std::string stderr_path; 1152 1153 file_action = launch_info.GetFileActionForFD (STDIN_FILENO); 1154 if (file_action) 1155 stdin_path = file_action->GetPath (); 1156 1157 file_action = launch_info.GetFileActionForFD (STDOUT_FILENO); 1158 if (file_action) 1159 stdout_path = file_action->GetPath (); 1160 1161 file_action = launch_info.GetFileActionForFD (STDERR_FILENO); 1162 if (file_action) 1163 stderr_path = file_action->GetPath (); 1164 1165 if (log) 1166 { 1167 if (!stdin_path.empty ()) 1168 log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'", __FUNCTION__, stdin_path.c_str ()); 1169 else 1170 log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__); 1171 1172 if (!stdout_path.empty ()) 1173 log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'", __FUNCTION__, stdout_path.c_str ()); 1174 else 1175 log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__); 1176 1177 if (!stderr_path.empty ()) 1178 log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'", __FUNCTION__, stderr_path.c_str ()); 1179 else 1180 log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__); 1181 } 1182 1183 // Create the NativeProcessLinux in launch mode. 1184 native_process_sp.reset (new NativeProcessLinux ()); 1185 1186 if (log) 1187 { 1188 int i = 0; 1189 for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i) 1190 { 1191 log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr"); 1192 ++i; 1193 } 1194 } 1195 1196 if (!native_process_sp->RegisterNativeDelegate (native_delegate)) 1197 { 1198 native_process_sp.reset (); 1199 error.SetErrorStringWithFormat ("failed to register the native delegate"); 1200 return error; 1201 } 1202 1203 std::static_pointer_cast<NativeProcessLinux> (native_process_sp)->LaunchInferior ( 1204 exe_module, 1205 launch_info.GetArguments ().GetConstArgumentVector (), 1206 launch_info.GetEnvironmentEntries ().GetConstArgumentVector (), 1207 stdin_path, 1208 stdout_path, 1209 stderr_path, 1210 working_dir, 1211 launch_info, 1212 error); 1213 1214 if (error.Fail ()) 1215 { 1216 native_process_sp.reset (); 1217 if (log) 1218 log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ()); 1219 return error; 1220 } 1221 1222 launch_info.SetProcessID (native_process_sp->GetID ()); 1223 1224 return error; 1225 } 1226 1227 lldb_private::Error 1228 NativeProcessLinux::AttachToProcess ( 1229 lldb::pid_t pid, 1230 lldb_private::NativeProcessProtocol::NativeDelegate &native_delegate, 1231 NativeProcessProtocolSP &native_process_sp) 1232 { 1233 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1234 if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE)) 1235 log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid); 1236 1237 // Grab the current platform architecture. This should be Linux, 1238 // since this code is only intended to run on a Linux host. 1239 PlatformSP platform_sp (Platform::GetHostPlatform ()); 1240 if (!platform_sp) 1241 return Error("failed to get a valid default platform"); 1242 1243 // Retrieve the architecture for the running process. 1244 ArchSpec process_arch; 1245 Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch); 1246 if (!error.Success ()) 1247 return error; 1248 1249 std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ()); 1250 1251 if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate)) 1252 { 1253 error.SetErrorStringWithFormat ("failed to register the native delegate"); 1254 return error; 1255 } 1256 1257 native_process_linux_sp->AttachToInferior (pid, error); 1258 if (!error.Success ()) 1259 return error; 1260 1261 native_process_sp = native_process_linux_sp; 1262 return error; 1263 } 1264 1265 // ----------------------------------------------------------------------------- 1266 // Public Instance Methods 1267 // ----------------------------------------------------------------------------- 1268 1269 NativeProcessLinux::NativeProcessLinux () : 1270 NativeProcessProtocol (LLDB_INVALID_PROCESS_ID), 1271 m_arch (), 1272 m_operation_thread (), 1273 m_monitor_thread (), 1274 m_operation (nullptr), 1275 m_operation_mutex (), 1276 m_operation_pending (), 1277 m_operation_done (), 1278 m_supports_mem_region (eLazyBoolCalculate), 1279 m_mem_region_cache (), 1280 m_mem_region_cache_mutex (), 1281 m_coordinator_up (new ThreadStateCoordinator (GetThreadLoggerFunction ())), 1282 m_coordinator_thread () 1283 { 1284 } 1285 1286 //------------------------------------------------------------------------------ 1287 /// The basic design of the NativeProcessLinux is built around two threads. 1288 /// 1289 /// One thread (@see SignalThread) simply blocks on a call to waitpid() looking 1290 /// for changes in the debugee state. When a change is detected a 1291 /// ProcessMessage is sent to the associated ProcessLinux instance. This thread 1292 /// "drives" state changes in the debugger. 1293 /// 1294 /// The second thread (@see OperationThread) is responsible for two things 1) 1295 /// launching or attaching to the inferior process, and then 2) servicing 1296 /// operations such as register reads/writes, stepping, etc. See the comments 1297 /// on the Operation class for more info as to why this is needed. 1298 void 1299 NativeProcessLinux::LaunchInferior ( 1300 Module *module, 1301 const char *argv[], 1302 const char *envp[], 1303 const std::string &stdin_path, 1304 const std::string &stdout_path, 1305 const std::string &stderr_path, 1306 const char *working_dir, 1307 const lldb_private::ProcessLaunchInfo &launch_info, 1308 lldb_private::Error &error) 1309 { 1310 if (module) 1311 m_arch = module->GetArchitecture (); 1312 1313 SetState (eStateLaunching); 1314 1315 std::unique_ptr<LaunchArgs> args( 1316 new LaunchArgs( 1317 this, module, argv, envp, 1318 stdin_path, stdout_path, stderr_path, 1319 working_dir, launch_info)); 1320 1321 sem_init (&m_operation_pending, 0, 0); 1322 sem_init (&m_operation_done, 0, 0); 1323 1324 StartLaunchOpThread (args.get(), error); 1325 if (!error.Success ()) 1326 return; 1327 1328 error = StartCoordinatorThread (); 1329 if (!error.Success ()) 1330 return; 1331 1332 WAIT_AGAIN: 1333 // Wait for the operation thread to initialize. 1334 if (sem_wait(&args->m_semaphore)) 1335 { 1336 if (errno == EINTR) 1337 goto WAIT_AGAIN; 1338 else 1339 { 1340 error.SetErrorToErrno(); 1341 return; 1342 } 1343 } 1344 1345 // Check that the launch was a success. 1346 if (!args->m_error.Success()) 1347 { 1348 StopOpThread(); 1349 StopCoordinatorThread (); 1350 error = args->m_error; 1351 return; 1352 } 1353 1354 // Finally, start monitoring the child process for change in state. 1355 m_monitor_thread = Host::StartMonitoringChildProcess( 1356 NativeProcessLinux::MonitorCallback, this, GetID(), true); 1357 if (!m_monitor_thread.IsJoinable()) 1358 { 1359 error.SetErrorToGenericError(); 1360 error.SetErrorString ("Process attach failed to create monitor thread for NativeProcessLinux::MonitorCallback."); 1361 return; 1362 } 1363 } 1364 1365 void 1366 NativeProcessLinux::AttachToInferior (lldb::pid_t pid, lldb_private::Error &error) 1367 { 1368 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1369 if (log) 1370 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid); 1371 1372 // We can use the Host for everything except the ResolveExecutable portion. 1373 PlatformSP platform_sp = Platform::GetHostPlatform (); 1374 if (!platform_sp) 1375 { 1376 if (log) 1377 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid); 1378 error.SetErrorString ("no default platform available"); 1379 return; 1380 } 1381 1382 // Gather info about the process. 1383 ProcessInstanceInfo process_info; 1384 if (!platform_sp->GetProcessInfo (pid, process_info)) 1385 { 1386 if (log) 1387 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid); 1388 error.SetErrorString ("failed to get process info"); 1389 return; 1390 } 1391 1392 // Resolve the executable module 1393 ModuleSP exe_module_sp; 1394 FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths()); 1395 ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture()); 1396 error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp, 1397 executable_search_paths.GetSize() ? &executable_search_paths : NULL); 1398 if (!error.Success()) 1399 return; 1400 1401 // Set the architecture to the exe architecture. 1402 m_arch = exe_module_sp->GetArchitecture(); 1403 if (log) 1404 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ()); 1405 1406 m_pid = pid; 1407 SetState(eStateAttaching); 1408 1409 sem_init (&m_operation_pending, 0, 0); 1410 sem_init (&m_operation_done, 0, 0); 1411 1412 std::unique_ptr<AttachArgs> args (new AttachArgs (this, pid)); 1413 1414 StartAttachOpThread(args.get (), error); 1415 if (!error.Success ()) 1416 return; 1417 1418 error = StartCoordinatorThread (); 1419 if (!error.Success ()) 1420 return; 1421 1422 WAIT_AGAIN: 1423 // Wait for the operation thread to initialize. 1424 if (sem_wait (&args->m_semaphore)) 1425 { 1426 if (errno == EINTR) 1427 goto WAIT_AGAIN; 1428 else 1429 { 1430 error.SetErrorToErrno (); 1431 return; 1432 } 1433 } 1434 1435 // Check that the attach was a success. 1436 if (!args->m_error.Success ()) 1437 { 1438 StopOpThread (); 1439 StopCoordinatorThread (); 1440 error = args->m_error; 1441 return; 1442 } 1443 1444 // Finally, start monitoring the child process for change in state. 1445 m_monitor_thread = Host::StartMonitoringChildProcess ( 1446 NativeProcessLinux::MonitorCallback, this, GetID (), true); 1447 if (!m_monitor_thread.IsJoinable()) 1448 { 1449 error.SetErrorToGenericError (); 1450 error.SetErrorString ("Process attach failed to create monitor thread for NativeProcessLinux::MonitorCallback."); 1451 return; 1452 } 1453 } 1454 1455 void 1456 NativeProcessLinux::Terminate () 1457 { 1458 StopMonitor(); 1459 } 1460 1461 //------------------------------------------------------------------------------ 1462 // Thread setup and tear down. 1463 1464 void 1465 NativeProcessLinux::StartLaunchOpThread(LaunchArgs *args, Error &error) 1466 { 1467 static const char *g_thread_name = "lldb.process.nativelinux.operation"; 1468 1469 if (m_operation_thread.IsJoinable()) 1470 return; 1471 1472 m_operation_thread = ThreadLauncher::LaunchThread(g_thread_name, LaunchOpThread, args, &error); 1473 } 1474 1475 void * 1476 NativeProcessLinux::LaunchOpThread(void *arg) 1477 { 1478 LaunchArgs *args = static_cast<LaunchArgs*>(arg); 1479 1480 if (!Launch(args)) { 1481 sem_post(&args->m_semaphore); 1482 return NULL; 1483 } 1484 1485 ServeOperation(args); 1486 return NULL; 1487 } 1488 1489 bool 1490 NativeProcessLinux::Launch(LaunchArgs *args) 1491 { 1492 assert (args && "null args"); 1493 if (!args) 1494 return false; 1495 1496 NativeProcessLinux *monitor = args->m_monitor; 1497 assert (monitor && "monitor is NULL"); 1498 1499 const char **argv = args->m_argv; 1500 const char **envp = args->m_envp; 1501 const char *working_dir = args->m_working_dir; 1502 1503 lldb_utility::PseudoTerminal terminal; 1504 const size_t err_len = 1024; 1505 char err_str[err_len]; 1506 lldb::pid_t pid; 1507 NativeThreadProtocolSP thread_sp; 1508 1509 lldb::ThreadSP inferior; 1510 1511 // Propagate the environment if one is not supplied. 1512 if (envp == NULL || envp[0] == NULL) 1513 envp = const_cast<const char **>(environ); 1514 1515 if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1)) 1516 { 1517 args->m_error.SetErrorToGenericError(); 1518 args->m_error.SetErrorString("Process fork failed."); 1519 return false; 1520 } 1521 1522 // Recognized child exit status codes. 1523 enum { 1524 ePtraceFailed = 1, 1525 eDupStdinFailed, 1526 eDupStdoutFailed, 1527 eDupStderrFailed, 1528 eChdirFailed, 1529 eExecFailed, 1530 eSetGidFailed 1531 }; 1532 1533 // Child process. 1534 if (pid == 0) 1535 { 1536 // FIXME consider opening a pipe between parent/child and have this forked child 1537 // send log info to parent re: launch status, in place of the log lines removed here. 1538 1539 // Start tracing this child that is about to exec. 1540 PTRACE(PTRACE_TRACEME, 0, nullptr, nullptr, 0, args->m_error); 1541 if (args->m_error.Fail()) 1542 exit(ePtraceFailed); 1543 1544 // terminal has already dupped the tty descriptors to stdin/out/err. 1545 // This closes original fd from which they were copied (and avoids 1546 // leaking descriptors to the debugged process. 1547 terminal.CloseSlaveFileDescriptor(); 1548 1549 // Do not inherit setgid powers. 1550 if (setgid(getgid()) != 0) 1551 exit(eSetGidFailed); 1552 1553 // Attempt to have our own process group. 1554 if (setpgid(0, 0) != 0) 1555 { 1556 // FIXME log that this failed. This is common. 1557 // Don't allow this to prevent an inferior exec. 1558 } 1559 1560 // Dup file descriptors if needed. 1561 if (!args->m_stdin_path.empty ()) 1562 if (!DupDescriptor(args->m_stdin_path.c_str (), STDIN_FILENO, O_RDONLY)) 1563 exit(eDupStdinFailed); 1564 1565 if (!args->m_stdout_path.empty ()) 1566 if (!DupDescriptor(args->m_stdout_path.c_str (), STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC)) 1567 exit(eDupStdoutFailed); 1568 1569 if (!args->m_stderr_path.empty ()) 1570 if (!DupDescriptor(args->m_stderr_path.c_str (), STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC)) 1571 exit(eDupStderrFailed); 1572 1573 // Change working directory 1574 if (working_dir != NULL && working_dir[0]) 1575 if (0 != ::chdir(working_dir)) 1576 exit(eChdirFailed); 1577 1578 // Disable ASLR if requested. 1579 if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR)) 1580 { 1581 const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS); 1582 if (old_personality == -1) 1583 { 1584 // Can't retrieve Linux personality. Cannot disable ASLR. 1585 } 1586 else 1587 { 1588 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality); 1589 if (new_personality == -1) 1590 { 1591 // Disabling ASLR failed. 1592 } 1593 else 1594 { 1595 // Disabling ASLR succeeded. 1596 } 1597 } 1598 } 1599 1600 // Execute. We should never return... 1601 execve(argv[0], 1602 const_cast<char *const *>(argv), 1603 const_cast<char *const *>(envp)); 1604 1605 // ...unless exec fails. In which case we definitely need to end the child here. 1606 exit(eExecFailed); 1607 } 1608 1609 // 1610 // This is the parent code here. 1611 // 1612 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1613 1614 // Wait for the child process to trap on its call to execve. 1615 ::pid_t wpid; 1616 int status; 1617 if ((wpid = waitpid(pid, &status, 0)) < 0) 1618 { 1619 args->m_error.SetErrorToErrno(); 1620 1621 if (log) 1622 log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s", __FUNCTION__, args->m_error.AsCString ()); 1623 1624 // Mark the inferior as invalid. 1625 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1626 monitor->SetState (StateType::eStateInvalid); 1627 1628 return false; 1629 } 1630 else if (WIFEXITED(status)) 1631 { 1632 // open, dup or execve likely failed for some reason. 1633 args->m_error.SetErrorToGenericError(); 1634 switch (WEXITSTATUS(status)) 1635 { 1636 case ePtraceFailed: 1637 args->m_error.SetErrorString("Child ptrace failed."); 1638 break; 1639 case eDupStdinFailed: 1640 args->m_error.SetErrorString("Child open stdin failed."); 1641 break; 1642 case eDupStdoutFailed: 1643 args->m_error.SetErrorString("Child open stdout failed."); 1644 break; 1645 case eDupStderrFailed: 1646 args->m_error.SetErrorString("Child open stderr failed."); 1647 break; 1648 case eChdirFailed: 1649 args->m_error.SetErrorString("Child failed to set working directory."); 1650 break; 1651 case eExecFailed: 1652 args->m_error.SetErrorString("Child exec failed."); 1653 break; 1654 case eSetGidFailed: 1655 args->m_error.SetErrorString("Child setgid failed."); 1656 break; 1657 default: 1658 args->m_error.SetErrorString("Child returned unknown exit status."); 1659 break; 1660 } 1661 1662 if (log) 1663 { 1664 log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP", 1665 __FUNCTION__, 1666 WEXITSTATUS(status)); 1667 } 1668 1669 // Mark the inferior as invalid. 1670 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1671 monitor->SetState (StateType::eStateInvalid); 1672 1673 return false; 1674 } 1675 assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) && 1676 "Could not sync with inferior process."); 1677 1678 if (log) 1679 log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__); 1680 1681 args->m_error = SetDefaultPtraceOpts(pid); 1682 if (args->m_error.Fail()) 1683 { 1684 if (log) 1685 log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s", 1686 __FUNCTION__, 1687 args->m_error.AsCString ()); 1688 1689 // Mark the inferior as invalid. 1690 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1691 monitor->SetState (StateType::eStateInvalid); 1692 1693 return false; 1694 } 1695 1696 // Release the master terminal descriptor and pass it off to the 1697 // NativeProcessLinux instance. Similarly stash the inferior pid. 1698 monitor->m_terminal_fd = terminal.ReleaseMasterFileDescriptor(); 1699 monitor->m_pid = pid; 1700 1701 // Set the terminal fd to be in non blocking mode (it simplifies the 1702 // implementation of ProcessLinux::GetSTDOUT to have a non-blocking 1703 // descriptor to read from). 1704 if (!EnsureFDFlags(monitor->m_terminal_fd, O_NONBLOCK, args->m_error)) 1705 { 1706 if (log) 1707 log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s", 1708 __FUNCTION__, 1709 args->m_error.AsCString ()); 1710 1711 // Mark the inferior as invalid. 1712 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1713 monitor->SetState (StateType::eStateInvalid); 1714 1715 return false; 1716 } 1717 1718 if (log) 1719 log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid); 1720 1721 thread_sp = monitor->AddThread (pid); 1722 assert (thread_sp && "AddThread() returned a nullptr thread"); 1723 monitor->NotifyThreadCreateStopped (pid); 1724 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP); 1725 1726 // Let our process instance know the thread has stopped. 1727 monitor->SetCurrentThreadID (thread_sp->GetID ()); 1728 monitor->SetState (StateType::eStateStopped); 1729 1730 if (log) 1731 { 1732 if (args->m_error.Success ()) 1733 { 1734 log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__); 1735 } 1736 else 1737 { 1738 log->Printf ("NativeProcessLinux::%s inferior launching failed: %s", 1739 __FUNCTION__, 1740 args->m_error.AsCString ()); 1741 } 1742 } 1743 return args->m_error.Success(); 1744 } 1745 1746 void 1747 NativeProcessLinux::StartAttachOpThread(AttachArgs *args, lldb_private::Error &error) 1748 { 1749 static const char *g_thread_name = "lldb.process.linux.operation"; 1750 1751 if (m_operation_thread.IsJoinable()) 1752 return; 1753 1754 m_operation_thread = ThreadLauncher::LaunchThread(g_thread_name, AttachOpThread, args, &error); 1755 } 1756 1757 void * 1758 NativeProcessLinux::AttachOpThread(void *arg) 1759 { 1760 AttachArgs *args = static_cast<AttachArgs*>(arg); 1761 1762 if (!Attach(args)) { 1763 sem_post(&args->m_semaphore); 1764 return nullptr; 1765 } 1766 1767 ServeOperation(args); 1768 return nullptr; 1769 } 1770 1771 bool 1772 NativeProcessLinux::Attach(AttachArgs *args) 1773 { 1774 lldb::pid_t pid = args->m_pid; 1775 1776 NativeProcessLinux *monitor = args->m_monitor; 1777 lldb::ThreadSP inferior; 1778 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1779 1780 // Use a map to keep track of the threads which we have attached/need to attach. 1781 Host::TidMap tids_to_attach; 1782 if (pid <= 1) 1783 { 1784 args->m_error.SetErrorToGenericError(); 1785 args->m_error.SetErrorString("Attaching to process 1 is not allowed."); 1786 goto FINISH; 1787 } 1788 1789 while (Host::FindProcessThreads(pid, tids_to_attach)) 1790 { 1791 for (Host::TidMap::iterator it = tids_to_attach.begin(); 1792 it != tids_to_attach.end();) 1793 { 1794 if (it->second == false) 1795 { 1796 lldb::tid_t tid = it->first; 1797 1798 // Attach to the requested process. 1799 // An attach will cause the thread to stop with a SIGSTOP. 1800 PTRACE(PTRACE_ATTACH, tid, nullptr, nullptr, 0, args->m_error); 1801 if (args->m_error.Fail()) 1802 { 1803 // No such thread. The thread may have exited. 1804 // More error handling may be needed. 1805 if (args->m_error.GetError() == ESRCH) 1806 { 1807 it = tids_to_attach.erase(it); 1808 continue; 1809 } 1810 else 1811 goto FINISH; 1812 } 1813 1814 int status; 1815 // Need to use __WALL otherwise we receive an error with errno=ECHLD 1816 // At this point we should have a thread stopped if waitpid succeeds. 1817 if ((status = waitpid(tid, NULL, __WALL)) < 0) 1818 { 1819 // No such thread. The thread may have exited. 1820 // More error handling may be needed. 1821 if (errno == ESRCH) 1822 { 1823 it = tids_to_attach.erase(it); 1824 continue; 1825 } 1826 else 1827 { 1828 args->m_error.SetErrorToErrno(); 1829 goto FINISH; 1830 } 1831 } 1832 1833 args->m_error = SetDefaultPtraceOpts(tid); 1834 if (args->m_error.Fail()) 1835 goto FINISH; 1836 1837 1838 if (log) 1839 log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid); 1840 1841 it->second = true; 1842 1843 // Create the thread, mark it as stopped. 1844 NativeThreadProtocolSP thread_sp (monitor->AddThread (static_cast<lldb::tid_t> (tid))); 1845 assert (thread_sp && "AddThread() returned a nullptr"); 1846 1847 // This will notify this is a new thread and tell the system it is stopped. 1848 monitor->NotifyThreadCreateStopped (tid); 1849 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP); 1850 monitor->SetCurrentThreadID (thread_sp->GetID ()); 1851 } 1852 1853 // move the loop forward 1854 ++it; 1855 } 1856 } 1857 1858 if (tids_to_attach.size() > 0) 1859 { 1860 monitor->m_pid = pid; 1861 // Let our process instance know the thread has stopped. 1862 monitor->SetState (StateType::eStateStopped); 1863 } 1864 else 1865 { 1866 args->m_error.SetErrorToGenericError(); 1867 args->m_error.SetErrorString("No such process."); 1868 } 1869 1870 FINISH: 1871 return args->m_error.Success(); 1872 } 1873 1874 Error 1875 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) 1876 { 1877 long ptrace_opts = 0; 1878 1879 // Have the child raise an event on exit. This is used to keep the child in 1880 // limbo until it is destroyed. 1881 ptrace_opts |= PTRACE_O_TRACEEXIT; 1882 1883 // Have the tracer trace threads which spawn in the inferior process. 1884 // TODO: if we want to support tracing the inferiors' child, add the 1885 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) 1886 ptrace_opts |= PTRACE_O_TRACECLONE; 1887 1888 // Have the tracer notify us before execve returns 1889 // (needed to disable legacy SIGTRAP generation) 1890 ptrace_opts |= PTRACE_O_TRACEEXEC; 1891 1892 Error error; 1893 PTRACE(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts, 0, error); 1894 return error; 1895 } 1896 1897 static ExitType convert_pid_status_to_exit_type (int status) 1898 { 1899 if (WIFEXITED (status)) 1900 return ExitType::eExitTypeExit; 1901 else if (WIFSIGNALED (status)) 1902 return ExitType::eExitTypeSignal; 1903 else if (WIFSTOPPED (status)) 1904 return ExitType::eExitTypeStop; 1905 else 1906 { 1907 // We don't know what this is. 1908 return ExitType::eExitTypeInvalid; 1909 } 1910 } 1911 1912 static int convert_pid_status_to_return_code (int status) 1913 { 1914 if (WIFEXITED (status)) 1915 return WEXITSTATUS (status); 1916 else if (WIFSIGNALED (status)) 1917 return WTERMSIG (status); 1918 else if (WIFSTOPPED (status)) 1919 return WSTOPSIG (status); 1920 else 1921 { 1922 // We don't know what this is. 1923 return ExitType::eExitTypeInvalid; 1924 } 1925 } 1926 1927 // Main process monitoring waitpid-loop handler. 1928 bool 1929 NativeProcessLinux::MonitorCallback(void *callback_baton, 1930 lldb::pid_t pid, 1931 bool exited, 1932 int signal, 1933 int status) 1934 { 1935 Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS)); 1936 1937 NativeProcessLinux *const process = static_cast<NativeProcessLinux*>(callback_baton); 1938 assert (process && "process is null"); 1939 if (!process) 1940 { 1941 if (log) 1942 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " callback_baton was null, can't determine process to use", __FUNCTION__, pid); 1943 return true; 1944 } 1945 1946 // Certain activities differ based on whether the pid is the tid of the main thread. 1947 const bool is_main_thread = (pid == process->GetID ()); 1948 1949 // Assume we keep monitoring by default. 1950 bool stop_monitoring = false; 1951 1952 // Handle when the thread exits. 1953 if (exited) 1954 { 1955 if (log) 1956 log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %" PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not"); 1957 1958 // This is a thread that exited. Ensure we're not tracking it anymore. 1959 const bool thread_found = process->StopTrackingThread (pid); 1960 1961 // Make sure the thread state coordinator knows about this. 1962 process->NotifyThreadDeath (pid); 1963 1964 if (is_main_thread) 1965 { 1966 // We only set the exit status and notify the delegate if we haven't already set the process 1967 // state to an exited state. We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8) 1968 // for the main thread. 1969 const bool already_notified = (process->GetState() == StateType::eStateExited) || (process->GetState () == StateType::eStateCrashed); 1970 if (!already_notified) 1971 { 1972 if (log) 1973 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (process->GetState ())); 1974 // The main thread exited. We're done monitoring. Report to delegate. 1975 process->SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); 1976 1977 // Notify delegate that our process has exited. 1978 process->SetState (StateType::eStateExited, true); 1979 } 1980 else 1981 { 1982 if (log) 1983 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); 1984 } 1985 return true; 1986 } 1987 else 1988 { 1989 // Do we want to report to the delegate in this case? I think not. If this was an orderly 1990 // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, 1991 // and we would have done an all-stop then. 1992 if (log) 1993 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); 1994 1995 // Not the main thread, we keep going. 1996 return false; 1997 } 1998 } 1999 2000 // Get details on the signal raised. 2001 siginfo_t info; 2002 const auto err = process->GetSignalInfo(pid, &info); 2003 if (err.Success()) 2004 { 2005 // We have retrieved the signal info. Dispatch appropriately. 2006 if (info.si_signo == SIGTRAP) 2007 process->MonitorSIGTRAP(&info, pid); 2008 else 2009 process->MonitorSignal(&info, pid, exited); 2010 2011 stop_monitoring = false; 2012 } 2013 else 2014 { 2015 if (err.GetError() == EINVAL) 2016 { 2017 // This is a group stop reception for this tid. 2018 if (log) 2019 log->Printf ("NativeThreadLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64, __FUNCTION__, process->GetID (), pid); 2020 process->NotifyThreadStop (pid); 2021 } 2022 else 2023 { 2024 // ptrace(GETSIGINFO) failed (but not due to group-stop). 2025 2026 // A return value of ESRCH means the thread/process is no longer on the system, 2027 // so it was killed somehow outside of our control. Either way, we can't do anything 2028 // with it anymore. 2029 2030 // We stop monitoring if it was the main thread. 2031 stop_monitoring = is_main_thread; 2032 2033 // Stop tracking the metadata for the thread since it's entirely off the system now. 2034 const bool thread_found = process->StopTrackingThread (pid); 2035 2036 // Make sure the thread state coordinator knows about this. 2037 process->NotifyThreadDeath (pid); 2038 2039 if (log) 2040 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)", 2041 __FUNCTION__, err.AsCString(), pid, signal, status, err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found"); 2042 2043 if (is_main_thread) 2044 { 2045 // Notify the delegate - our process is not available but appears to have been killed outside 2046 // our control. Is eStateExited the right exit state in this case? 2047 process->SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); 2048 process->SetState (StateType::eStateExited, true); 2049 } 2050 else 2051 { 2052 // This thread was pulled out from underneath us. Anything to do here? Do we want to do an all stop? 2053 if (log) 2054 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, process->GetID (), pid); 2055 } 2056 } 2057 } 2058 2059 return stop_monitoring; 2060 } 2061 2062 void 2063 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid) 2064 { 2065 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2066 const bool is_main_thread = (pid == GetID ()); 2067 2068 assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!"); 2069 if (!info) 2070 return; 2071 2072 Mutex::Locker locker (m_threads_mutex); 2073 2074 // See if we can find a thread for this signal. 2075 NativeThreadProtocolSP thread_sp = GetThreadByID (pid); 2076 if (!thread_sp) 2077 { 2078 if (log) 2079 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid); 2080 } 2081 2082 switch (info->si_code) 2083 { 2084 // TODO: these two cases are required if we want to support tracing of the inferiors' children. We'd need this to debug a monitor. 2085 // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 2086 // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 2087 2088 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): 2089 { 2090 lldb::tid_t tid = LLDB_INVALID_THREAD_ID; 2091 2092 // The main thread is stopped here. 2093 if (thread_sp) 2094 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGTRAP); 2095 NotifyThreadStop (pid); 2096 2097 unsigned long event_message = 0; 2098 if (GetEventMessage (pid, &event_message).Success()) 2099 { 2100 tid = static_cast<lldb::tid_t> (event_message); 2101 if (log) 2102 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event for tid %" PRIu64, __FUNCTION__, pid, tid); 2103 2104 // If we don't track the thread yet: create it, mark as stopped. 2105 // If we do track it, this is the wait we needed. Now resume the new thread. 2106 // In all cases, resume the current (i.e. main process) thread. 2107 bool created_now = false; 2108 NativeThreadProtocolSP new_thread_sp = GetOrCreateThread (tid, created_now); 2109 assert (new_thread_sp.get() && "failed to get or create the tracking data for newly created inferior thread"); 2110 2111 // If the thread was already tracked, it means the created thread already received its SI_USER notification of creation. 2112 if (!created_now) 2113 { 2114 // We can now resume the newly created thread since it is fully created. 2115 NotifyThreadCreateStopped (tid); 2116 m_coordinator_up->RequestThreadResume (tid, 2117 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2118 { 2119 std::static_pointer_cast<NativeThreadLinux> (new_thread_sp)->SetRunning (); 2120 return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER); 2121 }, 2122 CoordinatorErrorHandler); 2123 } 2124 else 2125 { 2126 // Mark the thread as currently launching. Need to wait for SIGTRAP clone on the main thread before 2127 // this thread is ready to go. 2128 std::static_pointer_cast<NativeThreadLinux> (new_thread_sp)->SetLaunching (); 2129 } 2130 } 2131 else 2132 { 2133 if (log) 2134 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, pid); 2135 } 2136 2137 // In all cases, we can resume the main thread here. 2138 m_coordinator_up->RequestThreadResume (pid, 2139 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2140 { 2141 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning (); 2142 return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER); 2143 }, 2144 CoordinatorErrorHandler); 2145 2146 break; 2147 } 2148 2149 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): 2150 { 2151 NativeThreadProtocolSP main_thread_sp; 2152 if (log) 2153 log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP); 2154 2155 // The thread state coordinator needs to reset due to the exec. 2156 m_coordinator_up->ResetForExec (); 2157 2158 // Remove all but the main thread here. Linux fork creates a new process which only copies the main thread. Mutexes are in undefined state. 2159 if (log) 2160 log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__); 2161 2162 for (auto thread_sp : m_threads) 2163 { 2164 const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID (); 2165 if (is_main_thread) 2166 { 2167 main_thread_sp = thread_sp; 2168 if (log) 2169 log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ()); 2170 } 2171 else 2172 { 2173 // Tell thread coordinator this thread is dead. 2174 if (log) 2175 log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ()); 2176 } 2177 } 2178 2179 m_threads.clear (); 2180 2181 if (main_thread_sp) 2182 { 2183 m_threads.push_back (main_thread_sp); 2184 SetCurrentThreadID (main_thread_sp->GetID ()); 2185 std::static_pointer_cast<NativeThreadLinux> (main_thread_sp)->SetStoppedByExec (); 2186 } 2187 else 2188 { 2189 SetCurrentThreadID (LLDB_INVALID_THREAD_ID); 2190 if (log) 2191 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ()); 2192 } 2193 2194 // Tell coordinator about about the "new" (since exec) stopped main thread. 2195 const lldb::tid_t main_thread_tid = GetID (); 2196 NotifyThreadCreateStopped (main_thread_tid); 2197 2198 // NOTE: ideally these next statements would execute at the same time as the coordinator thread create was executed. 2199 // Consider a handler that can execute when that happens. 2200 // Let our delegate know we have just exec'd. 2201 NotifyDidExec (); 2202 2203 // If we have a main thread, indicate we are stopped. 2204 assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked"); 2205 2206 // Let the process know we're stopped. 2207 CallAfterRunningThreadsStop (pid, 2208 [=] (lldb::tid_t signaling_tid) 2209 { 2210 SetState (StateType::eStateStopped, true); 2211 }); 2212 2213 break; 2214 } 2215 2216 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): 2217 { 2218 // The inferior process or one of its threads is about to exit. 2219 2220 // This thread is currently stopped. It's not actually dead yet, just about to be. 2221 NotifyThreadStop (pid); 2222 2223 unsigned long data = 0; 2224 if (GetEventMessage(pid, &data).Fail()) 2225 data = -1; 2226 2227 if (log) 2228 { 2229 log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)", 2230 __FUNCTION__, 2231 data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false", 2232 pid, 2233 is_main_thread ? "is main thread" : "not main thread"); 2234 } 2235 2236 if (is_main_thread) 2237 { 2238 SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true); 2239 } 2240 2241 const int signo = static_cast<int> (data); 2242 m_coordinator_up->RequestThreadResume (pid, 2243 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2244 { 2245 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning (); 2246 return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo); 2247 }, 2248 CoordinatorErrorHandler); 2249 2250 break; 2251 } 2252 2253 case 0: 2254 case TRAP_TRACE: 2255 // We receive this on single stepping. 2256 if (log) 2257 log->Printf ("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)", __FUNCTION__, pid); 2258 2259 if (thread_sp) 2260 { 2261 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedByTrace (); 2262 } 2263 2264 // This thread is currently stopped. 2265 NotifyThreadStop (pid); 2266 2267 // Here we don't have to request the rest of the threads to stop or request a deferred stop. 2268 // This would have already happened at the time the Resume() with step operation was signaled. 2269 // At this point, we just need to say we stopped, and the deferred notifcation will fire off 2270 // once all running threads have checked in as stopped. 2271 SetCurrentThreadID (pid); 2272 // Tell the process we have a stop (from software breakpoint). 2273 CallAfterRunningThreadsStop (pid, 2274 [=] (lldb::tid_t signaling_tid) 2275 { 2276 SetState (StateType::eStateStopped, true); 2277 }); 2278 break; 2279 2280 case SI_KERNEL: 2281 case TRAP_BRKPT: 2282 if (log) 2283 log->Printf ("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64, __FUNCTION__, pid); 2284 2285 // This thread is currently stopped. 2286 NotifyThreadStop (pid); 2287 2288 // Mark the thread as stopped at breakpoint. 2289 if (thread_sp) 2290 { 2291 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedByBreakpoint (); 2292 Error error = FixupBreakpointPCAsNeeded (thread_sp); 2293 if (error.Fail ()) 2294 { 2295 if (log) 2296 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s", __FUNCTION__, pid, error.AsCString ()); 2297 } 2298 } 2299 else 2300 { 2301 if (log) 2302 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": warning, cannot process software breakpoint since no thread metadata", __FUNCTION__, pid); 2303 } 2304 2305 2306 // We need to tell all other running threads before we notify the delegate about this stop. 2307 CallAfterRunningThreadsStop (pid, 2308 [=](lldb::tid_t deferred_notification_tid) 2309 { 2310 SetCurrentThreadID (deferred_notification_tid); 2311 // Tell the process we have a stop (from software breakpoint). 2312 SetState (StateType::eStateStopped, true); 2313 }); 2314 break; 2315 2316 case TRAP_HWBKPT: 2317 if (log) 2318 log->Printf ("NativeProcessLinux::%s() received watchpoint event, pid = %" PRIu64, __FUNCTION__, pid); 2319 2320 // This thread is currently stopped. 2321 NotifyThreadStop (pid); 2322 2323 // Mark the thread as stopped at watchpoint. 2324 // The address is at (lldb::addr_t)info->si_addr if we need it. 2325 if (thread_sp) 2326 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedByWatchpoint (); 2327 else 2328 { 2329 if (log) 2330 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ": warning, cannot process hardware breakpoint since no thread metadata", __FUNCTION__, GetID (), pid); 2331 } 2332 2333 // We need to tell all other running threads before we notify the delegate about this stop. 2334 CallAfterRunningThreadsStop (pid, 2335 [=](lldb::tid_t deferred_notification_tid) 2336 { 2337 SetCurrentThreadID (deferred_notification_tid); 2338 // Tell the process we have a stop (from hardware breakpoint). 2339 SetState (StateType::eStateStopped, true); 2340 }); 2341 break; 2342 2343 case SIGTRAP: 2344 case (SIGTRAP | 0x80): 2345 if (log) 2346 log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), pid); 2347 2348 // This thread is currently stopped. 2349 NotifyThreadStop (pid); 2350 if (thread_sp) 2351 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGTRAP); 2352 2353 2354 // Ignore these signals until we know more about them. 2355 m_coordinator_up->RequestThreadResume (pid, 2356 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2357 { 2358 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning (); 2359 return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER); 2360 }, 2361 CoordinatorErrorHandler); 2362 break; 2363 2364 default: 2365 assert(false && "Unexpected SIGTRAP code!"); 2366 if (log) 2367 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%" PRIx64, __FUNCTION__, GetID (), pid, static_cast<uint64_t> (SIGTRAP | (PTRACE_EVENT_CLONE << 8))); 2368 break; 2369 2370 } 2371 } 2372 2373 void 2374 NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited) 2375 { 2376 assert (info && "null info"); 2377 if (!info) 2378 return; 2379 2380 const int signo = info->si_signo; 2381 const bool is_from_llgs = info->si_pid == getpid (); 2382 2383 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2384 2385 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 2386 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a 2387 // kill(2) or raise(3). Similarly for tgkill(2) on Linux. 2388 // 2389 // IOW, user generated signals never generate what we consider to be a 2390 // "crash". 2391 // 2392 // Similarly, ACK signals generated by this monitor. 2393 2394 Mutex::Locker locker (m_threads_mutex); 2395 2396 // See if we can find a thread for this signal. 2397 NativeThreadProtocolSP thread_sp = GetThreadByID (pid); 2398 if (!thread_sp) 2399 { 2400 if (log) 2401 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid); 2402 } 2403 2404 // Handle the signal. 2405 if (info->si_code == SI_TKILL || info->si_code == SI_USER) 2406 { 2407 if (log) 2408 log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")", 2409 __FUNCTION__, 2410 GetUnixSignals ().GetSignalAsCString (signo), 2411 signo, 2412 (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"), 2413 info->si_pid, 2414 is_from_llgs ? "from llgs" : "not from llgs", 2415 pid); 2416 } 2417 2418 // Check for new thread notification. 2419 if ((info->si_pid == 0) && (info->si_code == SI_USER)) 2420 { 2421 // A new thread creation is being signaled. This is one of two parts that come in 2422 // a non-deterministic order. pid is the thread id. 2423 if (log) 2424 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification", 2425 __FUNCTION__, GetID (), pid); 2426 2427 // Did we already create the thread? 2428 bool created_now = false; 2429 thread_sp = GetOrCreateThread (pid, created_now); 2430 assert (thread_sp.get() && "failed to get or create the tracking data for newly created inferior thread"); 2431 2432 // If the thread was already tracked, it means the main thread already received its SIGTRAP for the create. 2433 if (!created_now) 2434 { 2435 // We can now resume the newly created thread since it is fully created. 2436 NotifyThreadCreateStopped (pid); 2437 m_coordinator_up->RequestThreadResume (pid, 2438 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2439 { 2440 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning (); 2441 return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER); 2442 }, 2443 CoordinatorErrorHandler); 2444 } 2445 else 2446 { 2447 // Mark the thread as currently launching. Need to wait for SIGTRAP clone on the main thread before 2448 // this thread is ready to go. 2449 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetLaunching (); 2450 } 2451 2452 // Done handling. 2453 return; 2454 } 2455 2456 // Check for thread stop notification. 2457 if (is_from_llgs && (info->si_code == SI_TKILL) && (signo == SIGSTOP)) 2458 { 2459 // This is a tgkill()-based stop. 2460 if (thread_sp) 2461 { 2462 if (log) 2463 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped", 2464 __FUNCTION__, 2465 GetID (), 2466 pid); 2467 2468 // Check that we're not already marked with a stop reason. 2469 // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that 2470 // the kernel signaled us with the thread stopping which we handled and marked as stopped, 2471 // and that, without an intervening resume, we received another stop. It is more likely 2472 // that we are missing the marking of a run state somewhere if we find that the thread was 2473 // marked as stopped. 2474 std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp); 2475 assert (linux_thread_sp && "linux_thread_sp is null!"); 2476 2477 const StateType thread_state = linux_thread_sp->GetState (); 2478 if (!StateIsStoppedState (thread_state, false)) 2479 { 2480 // An inferior thread just stopped, but was not the primary cause of the process stop. 2481 // Instead, something else (like a breakpoint or step) caused the stop. Mark the 2482 // stop signal as 0 to let lldb know this isn't the important stop. 2483 linux_thread_sp->SetStoppedBySignal (0); 2484 SetCurrentThreadID (thread_sp->GetID ()); 2485 m_coordinator_up->NotifyThreadStop (thread_sp->GetID (), true, CoordinatorErrorHandler); 2486 } 2487 else 2488 { 2489 if (log) 2490 { 2491 // Retrieve the signal name if the thread was stopped by a signal. 2492 int stop_signo = 0; 2493 const bool stopped_by_signal = linux_thread_sp->IsStopped (&stop_signo); 2494 const char *signal_name = stopped_by_signal ? GetUnixSignals ().GetSignalAsCString (stop_signo) : "<not stopped by signal>"; 2495 if (!signal_name) 2496 signal_name = "<no-signal-name>"; 2497 2498 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is", 2499 __FUNCTION__, 2500 GetID (), 2501 linux_thread_sp->GetID (), 2502 StateAsCString (thread_state), 2503 stop_signo, 2504 signal_name); 2505 } 2506 // Tell the thread state coordinator about the stop. 2507 NotifyThreadStop (thread_sp->GetID ()); 2508 } 2509 } 2510 2511 // Done handling. 2512 return; 2513 } 2514 2515 if (log) 2516 log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo)); 2517 2518 // This thread is stopped. 2519 NotifyThreadStop (pid); 2520 2521 switch (signo) 2522 { 2523 case SIGSTOP: 2524 { 2525 if (log) 2526 { 2527 if (is_from_llgs) 2528 log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from llgs, most likely an interrupt", __FUNCTION__, GetID (), pid); 2529 else 2530 log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from outside of debugger", __FUNCTION__, GetID (), pid); 2531 } 2532 2533 // Resume this thread to get the group-stop mechanism to fire off the true group stops. 2534 // This thread will get stopped again as part of the group-stop completion. 2535 m_coordinator_up->RequestThreadResume (pid, 2536 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2537 { 2538 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning (); 2539 // Pass this signal number on to the inferior to handle. 2540 return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo); 2541 }, 2542 CoordinatorErrorHandler); 2543 } 2544 break; 2545 case SIGSEGV: 2546 case SIGILL: 2547 case SIGFPE: 2548 case SIGBUS: 2549 if (thread_sp) 2550 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetCrashedWithException (*info); 2551 break; 2552 default: 2553 // This is just a pre-signal-delivery notification of the incoming signal. 2554 if (thread_sp) 2555 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (signo); 2556 2557 break; 2558 } 2559 2560 // Send a stop to the debugger after we get all other threads to stop. 2561 CallAfterRunningThreadsStop (pid, 2562 [=] (lldb::tid_t signaling_tid) 2563 { 2564 SetCurrentThreadID (signaling_tid); 2565 SetState (StateType::eStateStopped, true); 2566 }); 2567 } 2568 2569 Error 2570 NativeProcessLinux::Resume (const ResumeActionList &resume_actions) 2571 { 2572 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD)); 2573 if (log) 2574 log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ()); 2575 2576 lldb::tid_t deferred_signal_tid = LLDB_INVALID_THREAD_ID; 2577 lldb::tid_t deferred_signal_skip_tid = LLDB_INVALID_THREAD_ID; 2578 int deferred_signo = 0; 2579 NativeThreadProtocolSP deferred_signal_thread_sp; 2580 bool stepping = false; 2581 2582 Mutex::Locker locker (m_threads_mutex); 2583 2584 for (auto thread_sp : m_threads) 2585 { 2586 assert (thread_sp && "thread list should not contain NULL threads"); 2587 2588 const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true); 2589 2590 if (action == nullptr) 2591 { 2592 if (log) 2593 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64, 2594 __FUNCTION__, GetID (), thread_sp->GetID ()); 2595 continue; 2596 } 2597 2598 if (log) 2599 { 2600 log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64, 2601 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); 2602 } 2603 2604 switch (action->state) 2605 { 2606 case eStateRunning: 2607 { 2608 // Run the thread, possibly feeding it the signal. 2609 const int signo = action->signal; 2610 m_coordinator_up->RequestThreadResumeAsNeeded (thread_sp->GetID (), 2611 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2612 { 2613 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning (); 2614 // Pass this signal number on to the inferior to handle. 2615 const auto resume_result = Resume (tid_to_resume, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER); 2616 if (resume_result.Success()) 2617 SetState(eStateRunning, true); 2618 return resume_result; 2619 }, 2620 CoordinatorErrorHandler); 2621 break; 2622 } 2623 2624 case eStateStepping: 2625 { 2626 // Request the step. 2627 const int signo = action->signal; 2628 m_coordinator_up->RequestThreadResume (thread_sp->GetID (), 2629 [=](lldb::tid_t tid_to_step, bool supress_signal) 2630 { 2631 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStepping (); 2632 const auto step_result = SingleStep (tid_to_step,(signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER); 2633 assert (step_result.Success() && "SingleStep() failed"); 2634 if (step_result.Success()) 2635 SetState(eStateStepping, true); 2636 return step_result; 2637 }, 2638 CoordinatorErrorHandler); 2639 stepping = true; 2640 break; 2641 } 2642 2643 case eStateSuspended: 2644 case eStateStopped: 2645 // if we haven't chosen a deferred signal tid yet, use this one. 2646 if (deferred_signal_tid == LLDB_INVALID_THREAD_ID) 2647 { 2648 deferred_signal_tid = thread_sp->GetID (); 2649 deferred_signal_thread_sp = thread_sp; 2650 deferred_signo = SIGSTOP; 2651 } 2652 break; 2653 2654 default: 2655 return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64, 2656 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); 2657 } 2658 } 2659 2660 // If we had any thread stopping, then do a deferred notification of the chosen stop thread id and signal 2661 // after all other running threads have stopped. 2662 // If there is a stepping thread involved we'll be eventually stopped by SIGTRAP trace signal. 2663 if (deferred_signal_tid != LLDB_INVALID_THREAD_ID && !stepping) 2664 { 2665 CallAfterRunningThreadsStopWithSkipTID (deferred_signal_tid, 2666 deferred_signal_skip_tid, 2667 [=](lldb::tid_t deferred_notification_tid) 2668 { 2669 // Set the signal thread to the current thread. 2670 SetCurrentThreadID (deferred_notification_tid); 2671 2672 // Set the thread state as stopped by the deferred signo. 2673 std::static_pointer_cast<NativeThreadLinux> (deferred_signal_thread_sp)->SetStoppedBySignal (deferred_signo); 2674 2675 // Tell the process delegate that the process is in a stopped state. 2676 SetState (StateType::eStateStopped, true); 2677 }); 2678 } 2679 2680 return Error(); 2681 } 2682 2683 Error 2684 NativeProcessLinux::Halt () 2685 { 2686 Error error; 2687 2688 if (kill (GetID (), SIGSTOP) != 0) 2689 error.SetErrorToErrno (); 2690 2691 return error; 2692 } 2693 2694 Error 2695 NativeProcessLinux::Detach () 2696 { 2697 Error error; 2698 2699 // Tell ptrace to detach from the process. 2700 if (GetID () != LLDB_INVALID_PROCESS_ID) 2701 error = Detach (GetID ()); 2702 2703 // Stop monitoring the inferior. 2704 StopMonitor (); 2705 2706 // No error. 2707 return error; 2708 } 2709 2710 Error 2711 NativeProcessLinux::Signal (int signo) 2712 { 2713 Error error; 2714 2715 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2716 if (log) 2717 log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64, 2718 __FUNCTION__, signo, GetUnixSignals ().GetSignalAsCString (signo), GetID ()); 2719 2720 if (kill(GetID(), signo)) 2721 error.SetErrorToErrno(); 2722 2723 return error; 2724 } 2725 2726 Error 2727 NativeProcessLinux::Interrupt () 2728 { 2729 // Pick a running thread (or if none, a not-dead stopped thread) as 2730 // the chosen thread that will be the stop-reason thread. 2731 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2732 2733 NativeThreadProtocolSP running_thread_sp; 2734 NativeThreadProtocolSP stopped_thread_sp; 2735 2736 if (log) 2737 log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__); 2738 2739 Mutex::Locker locker (m_threads_mutex); 2740 2741 for (auto thread_sp : m_threads) 2742 { 2743 // The thread shouldn't be null but lets just cover that here. 2744 if (!thread_sp) 2745 continue; 2746 2747 // If we have a running or stepping thread, we'll call that the 2748 // target of the interrupt. 2749 const auto thread_state = thread_sp->GetState (); 2750 if (thread_state == eStateRunning || 2751 thread_state == eStateStepping) 2752 { 2753 running_thread_sp = thread_sp; 2754 break; 2755 } 2756 else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true)) 2757 { 2758 // Remember the first non-dead stopped thread. We'll use that as a backup if there are no running threads. 2759 stopped_thread_sp = thread_sp; 2760 } 2761 } 2762 2763 if (!running_thread_sp && !stopped_thread_sp) 2764 { 2765 Error error("found no running/stepping or live stopped threads as target for interrupt"); 2766 if (log) 2767 log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ()); 2768 2769 return error; 2770 } 2771 2772 NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp; 2773 2774 if (log) 2775 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target", 2776 __FUNCTION__, 2777 GetID (), 2778 running_thread_sp ? "running" : "stopped", 2779 deferred_signal_thread_sp->GetID ()); 2780 2781 CallAfterRunningThreadsStop (deferred_signal_thread_sp->GetID (), 2782 [=](lldb::tid_t deferred_notification_tid) 2783 { 2784 // Set the signal thread to the current thread. 2785 SetCurrentThreadID (deferred_notification_tid); 2786 2787 // Set the thread state as stopped by the deferred signo. 2788 std::static_pointer_cast<NativeThreadLinux> (deferred_signal_thread_sp)->SetStoppedBySignal (SIGSTOP); 2789 2790 // Tell the process delegate that the process is in a stopped state. 2791 SetState (StateType::eStateStopped, true); 2792 }); 2793 return Error(); 2794 } 2795 2796 Error 2797 NativeProcessLinux::Kill () 2798 { 2799 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2800 if (log) 2801 log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ()); 2802 2803 Error error; 2804 2805 switch (m_state) 2806 { 2807 case StateType::eStateInvalid: 2808 case StateType::eStateExited: 2809 case StateType::eStateCrashed: 2810 case StateType::eStateDetached: 2811 case StateType::eStateUnloaded: 2812 // Nothing to do - the process is already dead. 2813 if (log) 2814 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state)); 2815 return error; 2816 2817 case StateType::eStateConnected: 2818 case StateType::eStateAttaching: 2819 case StateType::eStateLaunching: 2820 case StateType::eStateStopped: 2821 case StateType::eStateRunning: 2822 case StateType::eStateStepping: 2823 case StateType::eStateSuspended: 2824 // We can try to kill a process in these states. 2825 break; 2826 } 2827 2828 if (kill (GetID (), SIGKILL) != 0) 2829 { 2830 error.SetErrorToErrno (); 2831 return error; 2832 } 2833 2834 return error; 2835 } 2836 2837 static Error 2838 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info) 2839 { 2840 memory_region_info.Clear(); 2841 2842 StringExtractor line_extractor (maps_line.c_str ()); 2843 2844 // Format: {address_start_hex}-{address_end_hex} perms offset dev inode pathname 2845 // perms: rwxp (letter is present if set, '-' if not, final character is p=private, s=shared). 2846 2847 // Parse out the starting address 2848 lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0); 2849 2850 // Parse out hyphen separating start and end address from range. 2851 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-')) 2852 return Error ("malformed /proc/{pid}/maps entry, missing dash between address range"); 2853 2854 // Parse out the ending address 2855 lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address); 2856 2857 // Parse out the space after the address. 2858 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' ')) 2859 return Error ("malformed /proc/{pid}/maps entry, missing space after range"); 2860 2861 // Save the range. 2862 memory_region_info.GetRange ().SetRangeBase (start_address); 2863 memory_region_info.GetRange ().SetRangeEnd (end_address); 2864 2865 // Parse out each permission entry. 2866 if (line_extractor.GetBytesLeft () < 4) 2867 return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions"); 2868 2869 // Handle read permission. 2870 const char read_perm_char = line_extractor.GetChar (); 2871 if (read_perm_char == 'r') 2872 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes); 2873 else 2874 { 2875 assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" ); 2876 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 2877 } 2878 2879 // Handle write permission. 2880 const char write_perm_char = line_extractor.GetChar (); 2881 if (write_perm_char == 'w') 2882 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes); 2883 else 2884 { 2885 assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" ); 2886 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 2887 } 2888 2889 // Handle execute permission. 2890 const char exec_perm_char = line_extractor.GetChar (); 2891 if (exec_perm_char == 'x') 2892 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes); 2893 else 2894 { 2895 assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" ); 2896 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 2897 } 2898 2899 return Error (); 2900 } 2901 2902 Error 2903 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info) 2904 { 2905 // FIXME review that the final memory region returned extends to the end of the virtual address space, 2906 // with no perms if it is not mapped. 2907 2908 // Use an approach that reads memory regions from /proc/{pid}/maps. 2909 // Assume proc maps entries are in ascending order. 2910 // FIXME assert if we find differently. 2911 Mutex::Locker locker (m_mem_region_cache_mutex); 2912 2913 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2914 Error error; 2915 2916 if (m_supports_mem_region == LazyBool::eLazyBoolNo) 2917 { 2918 // We're done. 2919 error.SetErrorString ("unsupported"); 2920 return error; 2921 } 2922 2923 // If our cache is empty, pull the latest. There should always be at least one memory region 2924 // if memory region handling is supported. 2925 if (m_mem_region_cache.empty ()) 2926 { 2927 error = ProcFileReader::ProcessLineByLine (GetID (), "maps", 2928 [&] (const std::string &line) -> bool 2929 { 2930 MemoryRegionInfo info; 2931 const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info); 2932 if (parse_error.Success ()) 2933 { 2934 m_mem_region_cache.push_back (info); 2935 return true; 2936 } 2937 else 2938 { 2939 if (log) 2940 log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ()); 2941 return false; 2942 } 2943 }); 2944 2945 // If we had an error, we'll mark unsupported. 2946 if (error.Fail ()) 2947 { 2948 m_supports_mem_region = LazyBool::eLazyBoolNo; 2949 return error; 2950 } 2951 else if (m_mem_region_cache.empty ()) 2952 { 2953 // No entries after attempting to read them. This shouldn't happen if /proc/{pid}/maps 2954 // is supported. Assume we don't support map entries via procfs. 2955 if (log) 2956 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__); 2957 m_supports_mem_region = LazyBool::eLazyBoolNo; 2958 error.SetErrorString ("not supported"); 2959 return error; 2960 } 2961 2962 if (log) 2963 log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ()); 2964 2965 // We support memory retrieval, remember that. 2966 m_supports_mem_region = LazyBool::eLazyBoolYes; 2967 } 2968 else 2969 { 2970 if (log) 2971 log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ())); 2972 } 2973 2974 lldb::addr_t prev_base_address = 0; 2975 2976 // FIXME start by finding the last region that is <= target address using binary search. Data is sorted. 2977 // There can be a ton of regions on pthreads apps with lots of threads. 2978 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it) 2979 { 2980 MemoryRegionInfo &proc_entry_info = *it; 2981 2982 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 2983 assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected"); 2984 prev_base_address = proc_entry_info.GetRange ().GetRangeBase (); 2985 2986 // If the target address comes before this entry, indicate distance to next region. 2987 if (load_addr < proc_entry_info.GetRange ().GetRangeBase ()) 2988 { 2989 range_info.GetRange ().SetRangeBase (load_addr); 2990 range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr); 2991 range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 2992 range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 2993 range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 2994 2995 return error; 2996 } 2997 else if (proc_entry_info.GetRange ().Contains (load_addr)) 2998 { 2999 // The target address is within the memory region we're processing here. 3000 range_info = proc_entry_info; 3001 return error; 3002 } 3003 3004 // The target memory address comes somewhere after the region we just parsed. 3005 } 3006 3007 // If we made it here, we didn't find an entry that contained the given address. 3008 error.SetErrorString ("address comes after final region"); 3009 3010 if (log) 3011 log->Printf ("NativeProcessLinux::%s failed to find map entry for address 0x%" PRIx64 ": %s", __FUNCTION__, load_addr, error.AsCString ()); 3012 3013 return error; 3014 } 3015 3016 void 3017 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId) 3018 { 3019 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3020 if (log) 3021 log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId); 3022 3023 { 3024 Mutex::Locker locker (m_mem_region_cache_mutex); 3025 if (log) 3026 log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ())); 3027 m_mem_region_cache.clear (); 3028 } 3029 } 3030 3031 Error 3032 NativeProcessLinux::AllocateMemory ( 3033 lldb::addr_t size, 3034 uint32_t permissions, 3035 lldb::addr_t &addr) 3036 { 3037 // FIXME implementing this requires the equivalent of 3038 // InferiorCallPOSIX::InferiorCallMmap, which depends on 3039 // functional ThreadPlans working with Native*Protocol. 3040 #if 1 3041 return Error ("not implemented yet"); 3042 #else 3043 addr = LLDB_INVALID_ADDRESS; 3044 3045 unsigned prot = 0; 3046 if (permissions & lldb::ePermissionsReadable) 3047 prot |= eMmapProtRead; 3048 if (permissions & lldb::ePermissionsWritable) 3049 prot |= eMmapProtWrite; 3050 if (permissions & lldb::ePermissionsExecutable) 3051 prot |= eMmapProtExec; 3052 3053 // TODO implement this directly in NativeProcessLinux 3054 // (and lift to NativeProcessPOSIX if/when that class is 3055 // refactored out). 3056 if (InferiorCallMmap(this, addr, 0, size, prot, 3057 eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { 3058 m_addr_to_mmap_size[addr] = size; 3059 return Error (); 3060 } else { 3061 addr = LLDB_INVALID_ADDRESS; 3062 return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions)); 3063 } 3064 #endif 3065 } 3066 3067 Error 3068 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr) 3069 { 3070 // FIXME see comments in AllocateMemory - required lower-level 3071 // bits not in place yet (ThreadPlans) 3072 return Error ("not implemented"); 3073 } 3074 3075 lldb::addr_t 3076 NativeProcessLinux::GetSharedLibraryInfoAddress () 3077 { 3078 #if 1 3079 // punt on this for now 3080 return LLDB_INVALID_ADDRESS; 3081 #else 3082 // Return the image info address for the exe module 3083 #if 1 3084 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3085 3086 ModuleSP module_sp; 3087 Error error = GetExeModuleSP (module_sp); 3088 if (error.Fail ()) 3089 { 3090 if (log) 3091 log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ()); 3092 return LLDB_INVALID_ADDRESS; 3093 } 3094 3095 if (module_sp == nullptr) 3096 { 3097 if (log) 3098 log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__); 3099 return LLDB_INVALID_ADDRESS; 3100 } 3101 3102 ObjectFileSP object_file_sp = module_sp->GetObjectFile (); 3103 if (object_file_sp == nullptr) 3104 { 3105 if (log) 3106 log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__); 3107 return LLDB_INVALID_ADDRESS; 3108 } 3109 3110 return obj_file_sp->GetImageInfoAddress(); 3111 #else 3112 Target *target = &GetTarget(); 3113 ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile(); 3114 Address addr = obj_file->GetImageInfoAddress(target); 3115 3116 if (addr.IsValid()) 3117 return addr.GetLoadAddress(target); 3118 return LLDB_INVALID_ADDRESS; 3119 #endif 3120 #endif // punt on this for now 3121 } 3122 3123 size_t 3124 NativeProcessLinux::UpdateThreads () 3125 { 3126 // The NativeProcessLinux monitoring threads are always up to date 3127 // with respect to thread state and they keep the thread list 3128 // populated properly. All this method needs to do is return the 3129 // thread count. 3130 Mutex::Locker locker (m_threads_mutex); 3131 return m_threads.size (); 3132 } 3133 3134 bool 3135 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const 3136 { 3137 arch = m_arch; 3138 return true; 3139 } 3140 3141 Error 3142 NativeProcessLinux::GetSoftwareBreakpointSize (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size) 3143 { 3144 // FIXME put this behind a breakpoint protocol class that can be 3145 // set per architecture. Need ARM, MIPS support here. 3146 static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 }; 3147 static const uint8_t g_i386_opcode [] = { 0xCC }; 3148 3149 switch (m_arch.GetMachine ()) 3150 { 3151 case llvm::Triple::aarch64: 3152 actual_opcode_size = static_cast<uint32_t> (sizeof(g_aarch64_opcode)); 3153 return Error (); 3154 3155 case llvm::Triple::x86: 3156 case llvm::Triple::x86_64: 3157 actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode)); 3158 return Error (); 3159 3160 default: 3161 assert(false && "CPU type not supported!"); 3162 return Error ("CPU type not supported"); 3163 } 3164 } 3165 3166 Error 3167 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware) 3168 { 3169 if (hardware) 3170 return Error ("NativeProcessLinux does not support hardware breakpoints"); 3171 else 3172 return SetSoftwareBreakpoint (addr, size); 3173 } 3174 3175 Error 3176 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint, size_t &actual_opcode_size, const uint8_t *&trap_opcode_bytes) 3177 { 3178 // FIXME put this behind a breakpoint protocol class that can be 3179 // set per architecture. Need ARM, MIPS support here. 3180 static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 }; 3181 static const uint8_t g_i386_opcode [] = { 0xCC }; 3182 static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d }; 3183 3184 switch (m_arch.GetMachine ()) 3185 { 3186 case llvm::Triple::aarch64: 3187 trap_opcode_bytes = g_aarch64_opcode; 3188 actual_opcode_size = sizeof(g_aarch64_opcode); 3189 return Error (); 3190 3191 case llvm::Triple::x86: 3192 case llvm::Triple::x86_64: 3193 trap_opcode_bytes = g_i386_opcode; 3194 actual_opcode_size = sizeof(g_i386_opcode); 3195 return Error (); 3196 3197 case llvm::Triple::mips64: 3198 case llvm::Triple::mips64el: 3199 trap_opcode_bytes = g_mips64_opcode; 3200 actual_opcode_size = sizeof(g_mips64_opcode); 3201 return Error (); 3202 3203 default: 3204 assert(false && "CPU type not supported!"); 3205 return Error ("CPU type not supported"); 3206 } 3207 } 3208 3209 #if 0 3210 ProcessMessage::CrashReason 3211 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info) 3212 { 3213 ProcessMessage::CrashReason reason; 3214 assert(info->si_signo == SIGSEGV); 3215 3216 reason = ProcessMessage::eInvalidCrashReason; 3217 3218 switch (info->si_code) 3219 { 3220 default: 3221 assert(false && "unexpected si_code for SIGSEGV"); 3222 break; 3223 case SI_KERNEL: 3224 // Linux will occasionally send spurious SI_KERNEL codes. 3225 // (this is poorly documented in sigaction) 3226 // One way to get this is via unaligned SIMD loads. 3227 reason = ProcessMessage::eInvalidAddress; // for lack of anything better 3228 break; 3229 case SEGV_MAPERR: 3230 reason = ProcessMessage::eInvalidAddress; 3231 break; 3232 case SEGV_ACCERR: 3233 reason = ProcessMessage::ePrivilegedAddress; 3234 break; 3235 } 3236 3237 return reason; 3238 } 3239 #endif 3240 3241 3242 #if 0 3243 ProcessMessage::CrashReason 3244 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info) 3245 { 3246 ProcessMessage::CrashReason reason; 3247 assert(info->si_signo == SIGILL); 3248 3249 reason = ProcessMessage::eInvalidCrashReason; 3250 3251 switch (info->si_code) 3252 { 3253 default: 3254 assert(false && "unexpected si_code for SIGILL"); 3255 break; 3256 case ILL_ILLOPC: 3257 reason = ProcessMessage::eIllegalOpcode; 3258 break; 3259 case ILL_ILLOPN: 3260 reason = ProcessMessage::eIllegalOperand; 3261 break; 3262 case ILL_ILLADR: 3263 reason = ProcessMessage::eIllegalAddressingMode; 3264 break; 3265 case ILL_ILLTRP: 3266 reason = ProcessMessage::eIllegalTrap; 3267 break; 3268 case ILL_PRVOPC: 3269 reason = ProcessMessage::ePrivilegedOpcode; 3270 break; 3271 case ILL_PRVREG: 3272 reason = ProcessMessage::ePrivilegedRegister; 3273 break; 3274 case ILL_COPROC: 3275 reason = ProcessMessage::eCoprocessorError; 3276 break; 3277 case ILL_BADSTK: 3278 reason = ProcessMessage::eInternalStackError; 3279 break; 3280 } 3281 3282 return reason; 3283 } 3284 #endif 3285 3286 #if 0 3287 ProcessMessage::CrashReason 3288 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info) 3289 { 3290 ProcessMessage::CrashReason reason; 3291 assert(info->si_signo == SIGFPE); 3292 3293 reason = ProcessMessage::eInvalidCrashReason; 3294 3295 switch (info->si_code) 3296 { 3297 default: 3298 assert(false && "unexpected si_code for SIGFPE"); 3299 break; 3300 case FPE_INTDIV: 3301 reason = ProcessMessage::eIntegerDivideByZero; 3302 break; 3303 case FPE_INTOVF: 3304 reason = ProcessMessage::eIntegerOverflow; 3305 break; 3306 case FPE_FLTDIV: 3307 reason = ProcessMessage::eFloatDivideByZero; 3308 break; 3309 case FPE_FLTOVF: 3310 reason = ProcessMessage::eFloatOverflow; 3311 break; 3312 case FPE_FLTUND: 3313 reason = ProcessMessage::eFloatUnderflow; 3314 break; 3315 case FPE_FLTRES: 3316 reason = ProcessMessage::eFloatInexactResult; 3317 break; 3318 case FPE_FLTINV: 3319 reason = ProcessMessage::eFloatInvalidOperation; 3320 break; 3321 case FPE_FLTSUB: 3322 reason = ProcessMessage::eFloatSubscriptRange; 3323 break; 3324 } 3325 3326 return reason; 3327 } 3328 #endif 3329 3330 #if 0 3331 ProcessMessage::CrashReason 3332 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info) 3333 { 3334 ProcessMessage::CrashReason reason; 3335 assert(info->si_signo == SIGBUS); 3336 3337 reason = ProcessMessage::eInvalidCrashReason; 3338 3339 switch (info->si_code) 3340 { 3341 default: 3342 assert(false && "unexpected si_code for SIGBUS"); 3343 break; 3344 case BUS_ADRALN: 3345 reason = ProcessMessage::eIllegalAlignment; 3346 break; 3347 case BUS_ADRERR: 3348 reason = ProcessMessage::eIllegalAddress; 3349 break; 3350 case BUS_OBJERR: 3351 reason = ProcessMessage::eHardwareError; 3352 break; 3353 } 3354 3355 return reason; 3356 } 3357 #endif 3358 3359 void 3360 NativeProcessLinux::ServeOperation(OperationArgs *args) 3361 { 3362 NativeProcessLinux *monitor = args->m_monitor; 3363 3364 // We are finised with the arguments and are ready to go. Sync with the 3365 // parent thread and start serving operations on the inferior. 3366 sem_post(&args->m_semaphore); 3367 3368 for(;;) 3369 { 3370 // wait for next pending operation 3371 if (sem_wait(&monitor->m_operation_pending)) 3372 { 3373 if (errno == EINTR) 3374 continue; 3375 assert(false && "Unexpected errno from sem_wait"); 3376 } 3377 3378 // EXIT_OPERATION used to stop the operation thread because Cancel() isn't supported on 3379 // android. We don't have to send a post to the m_operation_done semaphore because in this 3380 // case the synchronization is achieved by a Join() call 3381 if (monitor->m_operation == EXIT_OPERATION) 3382 break; 3383 3384 static_cast<Operation*>(monitor->m_operation)->Execute(monitor); 3385 3386 // notify calling thread that operation is complete 3387 sem_post(&monitor->m_operation_done); 3388 } 3389 } 3390 3391 void 3392 NativeProcessLinux::DoOperation(void *op) 3393 { 3394 Mutex::Locker lock(m_operation_mutex); 3395 3396 m_operation = op; 3397 3398 // notify operation thread that an operation is ready to be processed 3399 sem_post(&m_operation_pending); 3400 3401 // Don't wait for the operation to complete in case of an exit operation. The operation thread 3402 // will exit without posting to the semaphore 3403 if (m_operation == EXIT_OPERATION) 3404 return; 3405 3406 // wait for operation to complete 3407 while (sem_wait(&m_operation_done)) 3408 { 3409 if (errno == EINTR) 3410 continue; 3411 assert(false && "Unexpected errno from sem_wait"); 3412 } 3413 } 3414 3415 Error 3416 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, lldb::addr_t size, lldb::addr_t &bytes_read) 3417 { 3418 ReadOperation op(addr, buf, size, bytes_read); 3419 DoOperation(&op); 3420 return op.GetError (); 3421 } 3422 3423 Error 3424 NativeProcessLinux::WriteMemory (lldb::addr_t addr, const void *buf, lldb::addr_t size, lldb::addr_t &bytes_written) 3425 { 3426 WriteOperation op(addr, buf, size, bytes_written); 3427 DoOperation(&op); 3428 return op.GetError (); 3429 } 3430 3431 Error 3432 NativeProcessLinux::ReadRegisterValue(lldb::tid_t tid, uint32_t offset, const char* reg_name, 3433 uint32_t size, RegisterValue &value) 3434 { 3435 ReadRegOperation op(tid, offset, reg_name, value); 3436 DoOperation(&op); 3437 return op.GetError(); 3438 } 3439 3440 Error 3441 NativeProcessLinux::WriteRegisterValue(lldb::tid_t tid, unsigned offset, 3442 const char* reg_name, const RegisterValue &value) 3443 { 3444 WriteRegOperation op(tid, offset, reg_name, value); 3445 DoOperation(&op); 3446 return op.GetError(); 3447 } 3448 3449 Error 3450 NativeProcessLinux::ReadGPR(lldb::tid_t tid, void *buf, size_t buf_size) 3451 { 3452 ReadGPROperation op(tid, buf, buf_size); 3453 DoOperation(&op); 3454 return op.GetError(); 3455 } 3456 3457 Error 3458 NativeProcessLinux::ReadFPR(lldb::tid_t tid, void *buf, size_t buf_size) 3459 { 3460 ReadFPROperation op(tid, buf, buf_size); 3461 DoOperation(&op); 3462 return op.GetError(); 3463 } 3464 3465 Error 3466 NativeProcessLinux::ReadRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 3467 { 3468 ReadRegisterSetOperation op(tid, buf, buf_size, regset); 3469 DoOperation(&op); 3470 return op.GetError(); 3471 } 3472 3473 Error 3474 NativeProcessLinux::WriteGPR(lldb::tid_t tid, void *buf, size_t buf_size) 3475 { 3476 WriteGPROperation op(tid, buf, buf_size); 3477 DoOperation(&op); 3478 return op.GetError(); 3479 } 3480 3481 Error 3482 NativeProcessLinux::WriteFPR(lldb::tid_t tid, void *buf, size_t buf_size) 3483 { 3484 WriteFPROperation op(tid, buf, buf_size); 3485 DoOperation(&op); 3486 return op.GetError(); 3487 } 3488 3489 Error 3490 NativeProcessLinux::WriteRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 3491 { 3492 WriteRegisterSetOperation op(tid, buf, buf_size, regset); 3493 DoOperation(&op); 3494 return op.GetError(); 3495 } 3496 3497 Error 3498 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo) 3499 { 3500 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3501 3502 if (log) 3503 log->Printf ("NativeProcessLinux::%s() resuming thread = %" PRIu64 " with signal %s", __FUNCTION__, tid, 3504 GetUnixSignals().GetSignalAsCString (signo)); 3505 ResumeOperation op (tid, signo); 3506 DoOperation (&op); 3507 if (log) 3508 log->Printf ("NativeProcessLinux::%s() resuming thread = %" PRIu64 " result = %s", __FUNCTION__, tid, op.GetError().Success() ? "true" : "false"); 3509 return op.GetError(); 3510 } 3511 3512 Error 3513 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo) 3514 { 3515 SingleStepOperation op(tid, signo); 3516 DoOperation(&op); 3517 return op.GetError(); 3518 } 3519 3520 Error 3521 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) 3522 { 3523 SiginfoOperation op(tid, siginfo); 3524 DoOperation(&op); 3525 return op.GetError(); 3526 } 3527 3528 Error 3529 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message) 3530 { 3531 EventMessageOperation op(tid, message); 3532 DoOperation(&op); 3533 return op.GetError(); 3534 } 3535 3536 lldb_private::Error 3537 NativeProcessLinux::Detach(lldb::tid_t tid) 3538 { 3539 if (tid == LLDB_INVALID_THREAD_ID) 3540 return Error(); 3541 3542 DetachOperation op(tid); 3543 DoOperation(&op); 3544 return op.GetError(); 3545 } 3546 3547 bool 3548 NativeProcessLinux::DupDescriptor(const char *path, int fd, int flags) 3549 { 3550 int target_fd = open(path, flags, 0666); 3551 3552 if (target_fd == -1) 3553 return false; 3554 3555 if (dup2(target_fd, fd) == -1) 3556 return false; 3557 3558 return (close(target_fd) == -1) ? false : true; 3559 } 3560 3561 void 3562 NativeProcessLinux::StopMonitorThread() 3563 { 3564 if (m_monitor_thread.IsJoinable()) 3565 { 3566 ::pthread_kill(m_monitor_thread.GetNativeThread().GetSystemHandle(), SIGUSR1); 3567 m_monitor_thread.Join(nullptr); 3568 } 3569 } 3570 3571 void 3572 NativeProcessLinux::StopMonitor() 3573 { 3574 StopMonitorThread(); 3575 StopCoordinatorThread (); 3576 StopOpThread(); 3577 sem_destroy(&m_operation_pending); 3578 sem_destroy(&m_operation_done); 3579 3580 // TODO: validate whether this still holds, fix up comment. 3581 // Note: ProcessPOSIX passes the m_terminal_fd file descriptor to 3582 // Process::SetSTDIOFileDescriptor, which in turn transfers ownership of 3583 // the descriptor to a ConnectionFileDescriptor object. Consequently 3584 // even though still has the file descriptor, we shouldn't close it here. 3585 } 3586 3587 void 3588 NativeProcessLinux::StopOpThread() 3589 { 3590 if (!m_operation_thread.IsJoinable()) 3591 return; 3592 3593 DoOperation(EXIT_OPERATION); 3594 m_operation_thread.Join(nullptr); 3595 } 3596 3597 Error 3598 NativeProcessLinux::StartCoordinatorThread () 3599 { 3600 Error error; 3601 static const char *g_thread_name = "lldb.process.linux.ts_coordinator"; 3602 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3603 3604 // Skip if thread is already running 3605 if (m_coordinator_thread.IsJoinable()) 3606 { 3607 error.SetErrorString ("ThreadStateCoordinator's run loop is already running"); 3608 if (log) 3609 log->Printf ("NativeProcessLinux::%s %s", __FUNCTION__, error.AsCString ()); 3610 return error; 3611 } 3612 3613 // Enable verbose logging if lldb thread logging is enabled. 3614 m_coordinator_up->LogEnableEventProcessing (log != nullptr); 3615 3616 if (log) 3617 log->Printf ("NativeProcessLinux::%s launching ThreadStateCoordinator thread for pid %" PRIu64, __FUNCTION__, GetID ()); 3618 m_coordinator_thread = ThreadLauncher::LaunchThread(g_thread_name, CoordinatorThread, this, &error); 3619 return error; 3620 } 3621 3622 void * 3623 NativeProcessLinux::CoordinatorThread (void *arg) 3624 { 3625 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3626 3627 NativeProcessLinux *const process = static_cast<NativeProcessLinux*> (arg); 3628 assert (process && "null process passed to CoordinatorThread"); 3629 if (!process) 3630 { 3631 if (log) 3632 log->Printf ("NativeProcessLinux::%s null process, exiting ThreadStateCoordinator processing loop", __FUNCTION__); 3633 return nullptr; 3634 } 3635 3636 // Run the thread state coordinator loop until it is done. This call uses 3637 // efficient waiting for an event to be ready. 3638 while (process->m_coordinator_up->ProcessNextEvent () == ThreadStateCoordinator::eventLoopResultContinue) 3639 { 3640 } 3641 3642 if (log) 3643 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " exiting ThreadStateCoordinator processing loop due to coordinator indicating completion", __FUNCTION__, process->GetID ()); 3644 3645 return nullptr; 3646 } 3647 3648 void 3649 NativeProcessLinux::StopCoordinatorThread() 3650 { 3651 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3652 if (log) 3653 log->Printf ("NativeProcessLinux::%s requesting ThreadStateCoordinator stop for pid %" PRIu64, __FUNCTION__, GetID ()); 3654 3655 // Tell the coordinator we're done. This will cause the coordinator 3656 // run loop thread to exit when the processing queue hits this message. 3657 m_coordinator_up->StopCoordinator (); 3658 m_coordinator_thread.Join (nullptr); 3659 } 3660 3661 bool 3662 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id) 3663 { 3664 for (auto thread_sp : m_threads) 3665 { 3666 assert (thread_sp && "thread list should not contain NULL threads"); 3667 if (thread_sp->GetID () == thread_id) 3668 { 3669 // We have this thread. 3670 return true; 3671 } 3672 } 3673 3674 // We don't have this thread. 3675 return false; 3676 } 3677 3678 NativeThreadProtocolSP 3679 NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id) 3680 { 3681 // CONSIDER organize threads by map - we can do better than linear. 3682 for (auto thread_sp : m_threads) 3683 { 3684 if (thread_sp->GetID () == thread_id) 3685 return thread_sp; 3686 } 3687 3688 // We don't have this thread. 3689 return NativeThreadProtocolSP (); 3690 } 3691 3692 bool 3693 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id) 3694 { 3695 Mutex::Locker locker (m_threads_mutex); 3696 for (auto it = m_threads.begin (); it != m_threads.end (); ++it) 3697 { 3698 if (*it && ((*it)->GetID () == thread_id)) 3699 { 3700 m_threads.erase (it); 3701 return true; 3702 } 3703 } 3704 3705 // Didn't find it. 3706 return false; 3707 } 3708 3709 NativeThreadProtocolSP 3710 NativeProcessLinux::AddThread (lldb::tid_t thread_id) 3711 { 3712 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3713 3714 Mutex::Locker locker (m_threads_mutex); 3715 3716 if (log) 3717 { 3718 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64, 3719 __FUNCTION__, 3720 GetID (), 3721 thread_id); 3722 } 3723 3724 assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists"); 3725 3726 // If this is the first thread, save it as the current thread 3727 if (m_threads.empty ()) 3728 SetCurrentThreadID (thread_id); 3729 3730 NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id)); 3731 m_threads.push_back (thread_sp); 3732 3733 return thread_sp; 3734 } 3735 3736 NativeThreadProtocolSP 3737 NativeProcessLinux::GetOrCreateThread (lldb::tid_t thread_id, bool &created) 3738 { 3739 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3740 3741 Mutex::Locker locker (m_threads_mutex); 3742 if (log) 3743 { 3744 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " get/create thread with tid %" PRIu64, 3745 __FUNCTION__, 3746 GetID (), 3747 thread_id); 3748 } 3749 3750 // Retrieve the thread if it is already getting tracked. 3751 NativeThreadProtocolSP thread_sp = MaybeGetThreadNoLock (thread_id); 3752 if (thread_sp) 3753 { 3754 if (log) 3755 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": thread already tracked, returning", 3756 __FUNCTION__, 3757 GetID (), 3758 thread_id); 3759 created = false; 3760 return thread_sp; 3761 3762 } 3763 3764 // Create the thread metadata since it isn't being tracked. 3765 if (log) 3766 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": thread didn't exist, tracking now", 3767 __FUNCTION__, 3768 GetID (), 3769 thread_id); 3770 3771 thread_sp.reset (new NativeThreadLinux (this, thread_id)); 3772 m_threads.push_back (thread_sp); 3773 created = true; 3774 3775 return thread_sp; 3776 } 3777 3778 Error 3779 NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp) 3780 { 3781 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS)); 3782 3783 Error error; 3784 3785 // Get a linux thread pointer. 3786 if (!thread_sp) 3787 { 3788 error.SetErrorString ("null thread_sp"); 3789 if (log) 3790 log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); 3791 return error; 3792 } 3793 std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp); 3794 3795 // Find out the size of a breakpoint (might depend on where we are in the code). 3796 NativeRegisterContextSP context_sp = linux_thread_sp->GetRegisterContext (); 3797 if (!context_sp) 3798 { 3799 error.SetErrorString ("cannot get a NativeRegisterContext for the thread"); 3800 if (log) 3801 log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); 3802 return error; 3803 } 3804 3805 uint32_t breakpoint_size = 0; 3806 error = GetSoftwareBreakpointSize (context_sp, breakpoint_size); 3807 if (error.Fail ()) 3808 { 3809 if (log) 3810 log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ()); 3811 return error; 3812 } 3813 else 3814 { 3815 if (log) 3816 log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size); 3817 } 3818 3819 // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size. 3820 const lldb::addr_t initial_pc_addr = context_sp->GetPC (); 3821 lldb::addr_t breakpoint_addr = initial_pc_addr; 3822 if (breakpoint_size > static_cast<lldb::addr_t> (0)) 3823 { 3824 // Do not allow breakpoint probe to wrap around. 3825 if (breakpoint_addr >= static_cast<lldb::addr_t> (breakpoint_size)) 3826 breakpoint_addr -= static_cast<lldb::addr_t> (breakpoint_size); 3827 } 3828 3829 // Check if we stopped because of a breakpoint. 3830 NativeBreakpointSP breakpoint_sp; 3831 error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp); 3832 if (!error.Success () || !breakpoint_sp) 3833 { 3834 // We didn't find one at a software probe location. Nothing to do. 3835 if (log) 3836 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr); 3837 return Error (); 3838 } 3839 3840 // If the breakpoint is not a software breakpoint, nothing to do. 3841 if (!breakpoint_sp->IsSoftwareBreakpoint ()) 3842 { 3843 if (log) 3844 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr); 3845 return Error (); 3846 } 3847 3848 // 3849 // We have a software breakpoint and need to adjust the PC. 3850 // 3851 3852 // Sanity check. 3853 if (breakpoint_size == 0) 3854 { 3855 // Nothing to do! How did we get here? 3856 if (log) 3857 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr); 3858 return Error (); 3859 } 3860 3861 // Change the program counter. 3862 if (log) 3863 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_sp->GetID (), initial_pc_addr, breakpoint_addr); 3864 3865 error = context_sp->SetPC (breakpoint_addr); 3866 if (error.Fail ()) 3867 { 3868 if (log) 3869 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_sp->GetID (), error.AsCString ()); 3870 return error; 3871 } 3872 3873 return error; 3874 } 3875 3876 void 3877 NativeProcessLinux::NotifyThreadCreateStopped (lldb::tid_t tid) 3878 { 3879 const bool is_stopped = true; 3880 m_coordinator_up->NotifyThreadCreate (tid, is_stopped, CoordinatorErrorHandler); 3881 } 3882 3883 void 3884 NativeProcessLinux::NotifyThreadDeath (lldb::tid_t tid) 3885 { 3886 m_coordinator_up->NotifyThreadDeath (tid, CoordinatorErrorHandler); 3887 } 3888 3889 void 3890 NativeProcessLinux::NotifyThreadStop (lldb::tid_t tid) 3891 { 3892 m_coordinator_up->NotifyThreadStop (tid, false, CoordinatorErrorHandler); 3893 } 3894 3895 void 3896 NativeProcessLinux::CallAfterRunningThreadsStop (lldb::tid_t tid, 3897 const std::function<void (lldb::tid_t tid)> &call_after_function) 3898 { 3899 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3900 if (log) 3901 log->Printf("NativeProcessLinux::%s tid %" PRIu64, __FUNCTION__, tid); 3902 3903 const lldb::pid_t pid = GetID (); 3904 m_coordinator_up->CallAfterRunningThreadsStop (tid, 3905 [=](lldb::tid_t request_stop_tid) 3906 { 3907 return RequestThreadStop(pid, request_stop_tid); 3908 }, 3909 call_after_function, 3910 CoordinatorErrorHandler); 3911 } 3912 3913 void 3914 NativeProcessLinux::CallAfterRunningThreadsStopWithSkipTID (lldb::tid_t deferred_signal_tid, 3915 lldb::tid_t skip_stop_request_tid, 3916 const std::function<void (lldb::tid_t tid)> &call_after_function) 3917 { 3918 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3919 if (log) 3920 log->Printf("NativeProcessLinux::%s deferred_signal_tid %" PRIu64 ", skip_stop_request_tid %" PRIu64, __FUNCTION__, deferred_signal_tid, skip_stop_request_tid); 3921 3922 const lldb::pid_t pid = GetID (); 3923 m_coordinator_up->CallAfterRunningThreadsStopWithSkipTIDs (deferred_signal_tid, 3924 skip_stop_request_tid != LLDB_INVALID_THREAD_ID ? ThreadStateCoordinator::ThreadIDSet {skip_stop_request_tid} : ThreadStateCoordinator::ThreadIDSet (), 3925 [=](lldb::tid_t request_stop_tid) 3926 { 3927 return RequestThreadStop(pid, request_stop_tid); 3928 }, 3929 call_after_function, 3930 CoordinatorErrorHandler); 3931 } 3932 3933 lldb_private::Error 3934 NativeProcessLinux::RequestThreadStop (const lldb::pid_t pid, const lldb::tid_t tid) 3935 { 3936 Log* log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3937 if (log) 3938 log->Printf ("NativeProcessLinux::%s requesting thread stop(pid: %" PRIu64 ", tid: %" PRIu64 ")", __FUNCTION__, pid, tid); 3939 3940 Error err; 3941 errno = 0; 3942 if (::tgkill (pid, tid, SIGSTOP) != 0) 3943 { 3944 err.SetErrorToErrno (); 3945 if (log) 3946 log->Printf ("NativeProcessLinux::%s tgkill(%" PRIu64 ", %" PRIu64 ", SIGSTOP) failed: %s", __FUNCTION__, pid, tid, err.AsCString ()); 3947 } 3948 3949 return err; 3950 } 3951