1 //===-- NativeProcessLinux.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "NativeProcessLinux.h" 10 11 #include <cerrno> 12 #include <cstdint> 13 #include <cstring> 14 #include <unistd.h> 15 16 #include <fstream> 17 #include <mutex> 18 #include <sstream> 19 #include <string> 20 #include <unordered_map> 21 22 #include "NativeThreadLinux.h" 23 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 24 #include "Plugins/Process/Utility/LinuxProcMaps.h" 25 #include "Procfs.h" 26 #include "lldb/Core/ModuleSpec.h" 27 #include "lldb/Host/Host.h" 28 #include "lldb/Host/HostProcess.h" 29 #include "lldb/Host/ProcessLaunchInfo.h" 30 #include "lldb/Host/PseudoTerminal.h" 31 #include "lldb/Host/ThreadLauncher.h" 32 #include "lldb/Host/common/NativeRegisterContext.h" 33 #include "lldb/Host/linux/Host.h" 34 #include "lldb/Host/linux/Ptrace.h" 35 #include "lldb/Host/linux/Uio.h" 36 #include "lldb/Host/posix/ProcessLauncherPosixFork.h" 37 #include "lldb/Symbol/ObjectFile.h" 38 #include "lldb/Target/Process.h" 39 #include "lldb/Target/Target.h" 40 #include "lldb/Utility/LLDBAssert.h" 41 #include "lldb/Utility/State.h" 42 #include "lldb/Utility/Status.h" 43 #include "lldb/Utility/StringExtractor.h" 44 #include "llvm/ADT/ScopeExit.h" 45 #include "llvm/Support/Errno.h" 46 #include "llvm/Support/FileSystem.h" 47 #include "llvm/Support/Threading.h" 48 49 #include <linux/unistd.h> 50 #include <sys/socket.h> 51 #include <sys/syscall.h> 52 #include <sys/types.h> 53 #include <sys/user.h> 54 #include <sys/wait.h> 55 56 #ifdef __aarch64__ 57 #include <asm/hwcap.h> 58 #include <sys/auxv.h> 59 #endif 60 61 // Support hardware breakpoints in case it has not been defined 62 #ifndef TRAP_HWBKPT 63 #define TRAP_HWBKPT 4 64 #endif 65 66 #ifndef HWCAP2_MTE 67 #define HWCAP2_MTE (1 << 18) 68 #endif 69 70 using namespace lldb; 71 using namespace lldb_private; 72 using namespace lldb_private::process_linux; 73 using namespace llvm; 74 75 // Private bits we only need internally. 76 77 static bool ProcessVmReadvSupported() { 78 static bool is_supported; 79 static llvm::once_flag flag; 80 81 llvm::call_once(flag, [] { 82 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 83 84 uint32_t source = 0x47424742; 85 uint32_t dest = 0; 86 87 struct iovec local, remote; 88 remote.iov_base = &source; 89 local.iov_base = &dest; 90 remote.iov_len = local.iov_len = sizeof source; 91 92 // We shall try if cross-process-memory reads work by attempting to read a 93 // value from our own process. 94 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); 95 is_supported = (res == sizeof(source) && source == dest); 96 if (is_supported) 97 LLDB_LOG(log, 98 "Detected kernel support for process_vm_readv syscall. " 99 "Fast memory reads enabled."); 100 else 101 LLDB_LOG(log, 102 "syscall process_vm_readv failed (error: {0}). Fast memory " 103 "reads disabled.", 104 llvm::sys::StrError()); 105 }); 106 107 return is_supported; 108 } 109 110 static void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) { 111 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 112 if (!log) 113 return; 114 115 if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO)) 116 LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec()); 117 else 118 LLDB_LOG(log, "leaving STDIN as is"); 119 120 if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO)) 121 LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec()); 122 else 123 LLDB_LOG(log, "leaving STDOUT as is"); 124 125 if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO)) 126 LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec()); 127 else 128 LLDB_LOG(log, "leaving STDERR as is"); 129 130 int i = 0; 131 for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; 132 ++args, ++i) 133 LLDB_LOG(log, "arg {0}: '{1}'", i, *args); 134 } 135 136 static void DisplayBytes(StreamString &s, void *bytes, uint32_t count) { 137 uint8_t *ptr = (uint8_t *)bytes; 138 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 139 for (uint32_t i = 0; i < loop_count; i++) { 140 s.Printf("[%x]", *ptr); 141 ptr++; 142 } 143 } 144 145 static void PtraceDisplayBytes(int &req, void *data, size_t data_size) { 146 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 147 if (!log) 148 return; 149 StreamString buf; 150 151 switch (req) { 152 case PTRACE_POKETEXT: { 153 DisplayBytes(buf, &data, 8); 154 LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData()); 155 break; 156 } 157 case PTRACE_POKEDATA: { 158 DisplayBytes(buf, &data, 8); 159 LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData()); 160 break; 161 } 162 case PTRACE_POKEUSER: { 163 DisplayBytes(buf, &data, 8); 164 LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData()); 165 break; 166 } 167 case PTRACE_SETREGS: { 168 DisplayBytes(buf, data, data_size); 169 LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData()); 170 break; 171 } 172 case PTRACE_SETFPREGS: { 173 DisplayBytes(buf, data, data_size); 174 LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData()); 175 break; 176 } 177 case PTRACE_SETSIGINFO: { 178 DisplayBytes(buf, data, sizeof(siginfo_t)); 179 LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData()); 180 break; 181 } 182 case PTRACE_SETREGSET: { 183 // Extract iov_base from data, which is a pointer to the struct iovec 184 DisplayBytes(buf, *(void **)data, data_size); 185 LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData()); 186 break; 187 } 188 default: {} 189 } 190 } 191 192 static constexpr unsigned k_ptrace_word_size = sizeof(void *); 193 static_assert(sizeof(long) >= k_ptrace_word_size, 194 "Size of long must be larger than ptrace word size"); 195 196 // Simple helper function to ensure flags are enabled on the given file 197 // descriptor. 198 static Status EnsureFDFlags(int fd, int flags) { 199 Status error; 200 201 int status = fcntl(fd, F_GETFL); 202 if (status == -1) { 203 error.SetErrorToErrno(); 204 return error; 205 } 206 207 if (fcntl(fd, F_SETFL, status | flags) == -1) { 208 error.SetErrorToErrno(); 209 return error; 210 } 211 212 return error; 213 } 214 215 // Public Static Methods 216 217 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 218 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info, 219 NativeDelegate &native_delegate, 220 MainLoop &mainloop) const { 221 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 222 223 MaybeLogLaunchInfo(launch_info); 224 225 Status status; 226 ::pid_t pid = ProcessLauncherPosixFork() 227 .LaunchProcess(launch_info, status) 228 .GetProcessId(); 229 LLDB_LOG(log, "pid = {0:x}", pid); 230 if (status.Fail()) { 231 LLDB_LOG(log, "failed to launch process: {0}", status); 232 return status.ToError(); 233 } 234 235 // Wait for the child process to trap on its call to execve. 236 int wstatus; 237 ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0); 238 assert(wpid == pid); 239 (void)wpid; 240 if (!WIFSTOPPED(wstatus)) { 241 LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}", 242 WaitStatus::Decode(wstatus)); 243 return llvm::make_error<StringError>("Could not sync with inferior process", 244 llvm::inconvertibleErrorCode()); 245 } 246 LLDB_LOG(log, "inferior started, now in stopped state"); 247 248 ProcessInstanceInfo Info; 249 if (!Host::GetProcessInfo(pid, Info)) { 250 return llvm::make_error<StringError>("Cannot get process architecture", 251 llvm::inconvertibleErrorCode()); 252 } 253 254 // Set the architecture to the exe architecture. 255 LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid, 256 Info.GetArchitecture().GetArchitectureName()); 257 258 status = SetDefaultPtraceOpts(pid); 259 if (status.Fail()) { 260 LLDB_LOG(log, "failed to set default ptrace options: {0}", status); 261 return status.ToError(); 262 } 263 264 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 265 pid, launch_info.GetPTY().ReleasePrimaryFileDescriptor(), native_delegate, 266 Info.GetArchitecture(), mainloop, {pid})); 267 } 268 269 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 270 NativeProcessLinux::Factory::Attach( 271 lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate, 272 MainLoop &mainloop) const { 273 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 274 LLDB_LOG(log, "pid = {0:x}", pid); 275 276 // Retrieve the architecture for the running process. 277 ProcessInstanceInfo Info; 278 if (!Host::GetProcessInfo(pid, Info)) { 279 return llvm::make_error<StringError>("Cannot get process architecture", 280 llvm::inconvertibleErrorCode()); 281 } 282 283 auto tids_or = NativeProcessLinux::Attach(pid); 284 if (!tids_or) 285 return tids_or.takeError(); 286 287 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 288 pid, -1, native_delegate, Info.GetArchitecture(), mainloop, *tids_or)); 289 } 290 291 NativeProcessLinux::Extension 292 NativeProcessLinux::Factory::GetSupportedExtensions() const { 293 NativeProcessLinux::Extension supported = 294 Extension::multiprocess | Extension::fork | Extension::vfork | 295 Extension::pass_signals | Extension::auxv | Extension::libraries_svr4; 296 297 #ifdef __aarch64__ 298 // At this point we do not have a process so read auxv directly. 299 if ((getauxval(AT_HWCAP2) & HWCAP2_MTE)) 300 supported |= Extension::memory_tagging; 301 #endif 302 303 return supported; 304 } 305 306 // Public Instance Methods 307 308 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd, 309 NativeDelegate &delegate, 310 const ArchSpec &arch, MainLoop &mainloop, 311 llvm::ArrayRef<::pid_t> tids) 312 : NativeProcessELF(pid, terminal_fd, delegate), m_arch(arch), 313 m_main_loop(mainloop), m_intel_pt_manager(pid) { 314 if (m_terminal_fd != -1) { 315 Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 316 assert(status.Success()); 317 } 318 319 Status status; 320 m_sigchld_handle = mainloop.RegisterSignal( 321 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status); 322 assert(m_sigchld_handle && status.Success()); 323 324 for (const auto &tid : tids) { 325 NativeThreadLinux &thread = AddThread(tid, /*resume*/ false); 326 ThreadWasCreated(thread); 327 } 328 329 // Let our process instance know the thread has stopped. 330 SetCurrentThreadID(tids[0]); 331 SetState(StateType::eStateStopped, false); 332 333 // Proccess any signals we received before installing our handler 334 SigchldHandler(); 335 } 336 337 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) { 338 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 339 340 Status status; 341 // Use a map to keep track of the threads which we have attached/need to 342 // attach. 343 Host::TidMap tids_to_attach; 344 while (Host::FindProcessThreads(pid, tids_to_attach)) { 345 for (Host::TidMap::iterator it = tids_to_attach.begin(); 346 it != tids_to_attach.end();) { 347 if (it->second == false) { 348 lldb::tid_t tid = it->first; 349 350 // Attach to the requested process. 351 // An attach will cause the thread to stop with a SIGSTOP. 352 if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) { 353 // No such thread. The thread may have exited. More error handling 354 // may be needed. 355 if (status.GetError() == ESRCH) { 356 it = tids_to_attach.erase(it); 357 continue; 358 } 359 return status.ToError(); 360 } 361 362 int wpid = 363 llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL); 364 // Need to use __WALL otherwise we receive an error with errno=ECHLD At 365 // this point we should have a thread stopped if waitpid succeeds. 366 if (wpid < 0) { 367 // No such thread. The thread may have exited. More error handling 368 // may be needed. 369 if (errno == ESRCH) { 370 it = tids_to_attach.erase(it); 371 continue; 372 } 373 return llvm::errorCodeToError( 374 std::error_code(errno, std::generic_category())); 375 } 376 377 if ((status = SetDefaultPtraceOpts(tid)).Fail()) 378 return status.ToError(); 379 380 LLDB_LOG(log, "adding tid = {0}", tid); 381 it->second = true; 382 } 383 384 // move the loop forward 385 ++it; 386 } 387 } 388 389 size_t tid_count = tids_to_attach.size(); 390 if (tid_count == 0) 391 return llvm::make_error<StringError>("No such process", 392 llvm::inconvertibleErrorCode()); 393 394 std::vector<::pid_t> tids; 395 tids.reserve(tid_count); 396 for (const auto &p : tids_to_attach) 397 tids.push_back(p.first); 398 return std::move(tids); 399 } 400 401 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) { 402 long ptrace_opts = 0; 403 404 // Have the child raise an event on exit. This is used to keep the child in 405 // limbo until it is destroyed. 406 ptrace_opts |= PTRACE_O_TRACEEXIT; 407 408 // Have the tracer trace threads which spawn in the inferior process. 409 ptrace_opts |= PTRACE_O_TRACECLONE; 410 411 // Have the tracer notify us before execve returns (needed to disable legacy 412 // SIGTRAP generation) 413 ptrace_opts |= PTRACE_O_TRACEEXEC; 414 415 // Have the tracer trace forked children. 416 ptrace_opts |= PTRACE_O_TRACEFORK; 417 418 // Have the tracer trace vforks. 419 ptrace_opts |= PTRACE_O_TRACEVFORK; 420 421 // Have the tracer trace vfork-done in order to restore breakpoints after 422 // the child finishes sharing memory. 423 ptrace_opts |= PTRACE_O_TRACEVFORKDONE; 424 425 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts); 426 } 427 428 // Handles all waitpid events from the inferior process. 429 void NativeProcessLinux::MonitorCallback(NativeThreadLinux &thread, 430 WaitStatus status) { 431 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 432 433 // Certain activities differ based on whether the pid is the tid of the main 434 // thread. 435 const bool is_main_thread = (thread.GetID() == GetID()); 436 437 // Handle when the thread exits. 438 if (status.type == WaitStatus::Exit || status.type == WaitStatus::Signal) { 439 LLDB_LOG(log, 440 "got exit status({0}) , tid = {1} ({2} main thread), process " 441 "state = {3}", 442 status, thread.GetID(), is_main_thread ? "is" : "is not", 443 GetState()); 444 445 // This is a thread that exited. Ensure we're not tracking it anymore. 446 StopTrackingThread(thread); 447 448 if (is_main_thread) { 449 // The main thread exited. We're done monitoring. Report to delegate. 450 SetExitStatus(status, true); 451 452 // Notify delegate that our process has exited. 453 SetState(StateType::eStateExited, true); 454 } 455 return; 456 } 457 458 siginfo_t info; 459 const auto info_err = GetSignalInfo(thread.GetID(), &info); 460 461 // Get details on the signal raised. 462 if (info_err.Success()) { 463 // We have retrieved the signal info. Dispatch appropriately. 464 if (info.si_signo == SIGTRAP) 465 MonitorSIGTRAP(info, thread); 466 else 467 MonitorSignal(info, thread); 468 } else { 469 if (info_err.GetError() == EINVAL) { 470 // This is a group stop reception for this tid. We can reach here if we 471 // reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the tracee, 472 // triggering the group-stop mechanism. Normally receiving these would 473 // stop the process, pending a SIGCONT. Simulating this state in a 474 // debugger is hard and is generally not needed (one use case is 475 // debugging background task being managed by a shell). For general use, 476 // it is sufficient to stop the process in a signal-delivery stop which 477 // happens before the group stop. This done by MonitorSignal and works 478 // correctly for all signals. 479 LLDB_LOG(log, 480 "received a group stop for pid {0} tid {1}. Transparent " 481 "handling of group stops not supported, resuming the " 482 "thread.", 483 GetID(), thread.GetID()); 484 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 485 } else { 486 // ptrace(GETSIGINFO) failed (but not due to group-stop). 487 488 // A return value of ESRCH means the thread/process is no longer on the 489 // system, so it was killed somehow outside of our control. Either way, 490 // we can't do anything with it anymore. 491 492 // Stop tracking the metadata for the thread since it's entirely off the 493 // system now. 494 StopTrackingThread(thread); 495 496 LLDB_LOG(log, 497 "GetSignalInfo failed: {0}, tid = {1}, status = {2}, " 498 "status = {3}, main_thread = {4}", 499 info_err, thread.GetID(), status, status, is_main_thread); 500 501 if (is_main_thread) { 502 // Notify the delegate - our process is not available but appears to 503 // have been killed outside our control. Is eStateExited the right 504 // exit state in this case? 505 SetExitStatus(status, true); 506 SetState(StateType::eStateExited, true); 507 } else { 508 // This thread was pulled out from underneath us. Anything to do here? 509 // Do we want to do an all stop? 510 LLDB_LOG(log, 511 "pid {0} tid {1} non-main thread exit occurred, didn't " 512 "tell delegate anything since thread disappeared out " 513 "from underneath us", 514 GetID(), thread.GetID()); 515 } 516 } 517 } 518 } 519 520 void NativeProcessLinux::WaitForCloneNotification(::pid_t pid) { 521 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 522 523 // The PID is not tracked yet, let's wait for it to appear. 524 int status = -1; 525 LLDB_LOG(log, 526 "received clone event for pid {0}. pid not tracked yet, " 527 "waiting for it to appear...", 528 pid); 529 ::pid_t wait_pid = 530 llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &status, __WALL); 531 532 // It's theoretically possible to get other events if the entire process was 533 // SIGKILLed before we got a chance to check this. In that case, we'll just 534 // clean everything up when we get the process exit event. 535 536 LLDB_LOG(log, 537 "waitpid({0}, &status, __WALL) => {1} (errno: {2}, status = {3})", 538 pid, wait_pid, errno, WaitStatus::Decode(status)); 539 } 540 541 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, 542 NativeThreadLinux &thread) { 543 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 544 const bool is_main_thread = (thread.GetID() == GetID()); 545 546 assert(info.si_signo == SIGTRAP && "Unexpected child signal!"); 547 548 switch (info.si_code) { 549 case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 550 case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 551 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { 552 // This can either mean a new thread or a new process spawned via 553 // clone(2) without SIGCHLD or CLONE_VFORK flag. Note that clone(2) 554 // can also cause PTRACE_EVENT_FORK and PTRACE_EVENT_VFORK if one 555 // of these flags are passed. 556 557 unsigned long event_message = 0; 558 if (GetEventMessage(thread.GetID(), &event_message).Fail()) { 559 LLDB_LOG(log, 560 "pid {0} received clone() event but GetEventMessage failed " 561 "so we don't know the new pid/tid", 562 thread.GetID()); 563 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 564 } else { 565 MonitorClone(thread, event_message, info.si_code >> 8); 566 } 567 568 break; 569 } 570 571 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): { 572 LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP); 573 574 // Exec clears any pending notifications. 575 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 576 577 // Remove all but the main thread here. Linux fork creates a new process 578 // which only copies the main thread. 579 LLDB_LOG(log, "exec received, stop tracking all but main thread"); 580 581 llvm::erase_if(m_threads, [&](std::unique_ptr<NativeThreadProtocol> &t) { 582 return t->GetID() != GetID(); 583 }); 584 assert(m_threads.size() == 1); 585 auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get()); 586 587 SetCurrentThreadID(main_thread->GetID()); 588 main_thread->SetStoppedByExec(); 589 590 // Tell coordinator about about the "new" (since exec) stopped main thread. 591 ThreadWasCreated(*main_thread); 592 593 // Let our delegate know we have just exec'd. 594 NotifyDidExec(); 595 596 // Let the process know we're stopped. 597 StopRunningThreads(main_thread->GetID()); 598 599 break; 600 } 601 602 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { 603 // The inferior process or one of its threads is about to exit. We don't 604 // want to do anything with the thread so we just resume it. In case we 605 // want to implement "break on thread exit" functionality, we would need to 606 // stop here. 607 608 unsigned long data = 0; 609 if (GetEventMessage(thread.GetID(), &data).Fail()) 610 data = -1; 611 612 LLDB_LOG(log, 613 "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, " 614 "WIFSIGNALED={2}, pid = {3}, main_thread = {4}", 615 data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(), 616 is_main_thread); 617 618 619 StateType state = thread.GetState(); 620 if (!StateIsRunningState(state)) { 621 // Due to a kernel bug, we may sometimes get this stop after the inferior 622 // gets a SIGKILL. This confuses our state tracking logic in 623 // ResumeThread(), since normally, we should not be receiving any ptrace 624 // events while the inferior is stopped. This makes sure that the 625 // inferior is resumed and exits normally. 626 state = eStateRunning; 627 } 628 ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); 629 630 break; 631 } 632 633 case (SIGTRAP | (PTRACE_EVENT_VFORK_DONE << 8)): { 634 if (bool(m_enabled_extensions & Extension::vfork)) { 635 thread.SetStoppedByVForkDone(); 636 StopRunningThreads(thread.GetID()); 637 } 638 else 639 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 640 break; 641 } 642 643 case 0: 644 case TRAP_TRACE: // We receive this on single stepping. 645 case TRAP_HWBKPT: // We receive this on watchpoint hit 646 { 647 // If a watchpoint was hit, report it 648 uint32_t wp_index; 649 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 650 wp_index, (uintptr_t)info.si_addr); 651 if (error.Fail()) 652 LLDB_LOG(log, 653 "received error while checking for watchpoint hits, pid = " 654 "{0}, error = {1}", 655 thread.GetID(), error); 656 if (wp_index != LLDB_INVALID_INDEX32) { 657 MonitorWatchpoint(thread, wp_index); 658 break; 659 } 660 661 // If a breakpoint was hit, report it 662 uint32_t bp_index; 663 error = thread.GetRegisterContext().GetHardwareBreakHitIndex( 664 bp_index, (uintptr_t)info.si_addr); 665 if (error.Fail()) 666 LLDB_LOG(log, "received error while checking for hardware " 667 "breakpoint hits, pid = {0}, error = {1}", 668 thread.GetID(), error); 669 if (bp_index != LLDB_INVALID_INDEX32) { 670 MonitorBreakpoint(thread); 671 break; 672 } 673 674 // Otherwise, report step over 675 MonitorTrace(thread); 676 break; 677 } 678 679 case SI_KERNEL: 680 #if defined __mips__ 681 // For mips there is no special signal for watchpoint So we check for 682 // watchpoint in kernel trap 683 { 684 // If a watchpoint was hit, report it 685 uint32_t wp_index; 686 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 687 wp_index, LLDB_INVALID_ADDRESS); 688 if (error.Fail()) 689 LLDB_LOG(log, 690 "received error while checking for watchpoint hits, pid = " 691 "{0}, error = {1}", 692 thread.GetID(), error); 693 if (wp_index != LLDB_INVALID_INDEX32) { 694 MonitorWatchpoint(thread, wp_index); 695 break; 696 } 697 } 698 // NO BREAK 699 #endif 700 case TRAP_BRKPT: 701 MonitorBreakpoint(thread); 702 break; 703 704 case SIGTRAP: 705 case (SIGTRAP | 0x80): 706 LLDB_LOG( 707 log, 708 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 709 info.si_code, GetID(), thread.GetID()); 710 711 // Ignore these signals until we know more about them. 712 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 713 break; 714 715 default: 716 LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}", 717 info.si_code, GetID(), thread.GetID()); 718 MonitorSignal(info, thread); 719 break; 720 } 721 } 722 723 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) { 724 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 725 LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID()); 726 727 // This thread is currently stopped. 728 thread.SetStoppedByTrace(); 729 730 StopRunningThreads(thread.GetID()); 731 } 732 733 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) { 734 Log *log( 735 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 736 LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID()); 737 738 // Mark the thread as stopped at breakpoint. 739 thread.SetStoppedByBreakpoint(); 740 FixupBreakpointPCAsNeeded(thread); 741 742 if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != 743 m_threads_stepping_with_breakpoint.end()) 744 thread.SetStoppedByTrace(); 745 746 StopRunningThreads(thread.GetID()); 747 } 748 749 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, 750 uint32_t wp_index) { 751 Log *log( 752 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); 753 LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}", 754 thread.GetID(), wp_index); 755 756 // Mark the thread as stopped at watchpoint. The address is at 757 // (lldb::addr_t)info->si_addr if we need it. 758 thread.SetStoppedByWatchpoint(wp_index); 759 760 // We need to tell all other running threads before we notify the delegate 761 // about this stop. 762 StopRunningThreads(thread.GetID()); 763 } 764 765 void NativeProcessLinux::MonitorSignal(const siginfo_t &info, 766 NativeThreadLinux &thread) { 767 const int signo = info.si_signo; 768 const bool is_from_llgs = info.si_pid == getpid(); 769 770 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 771 772 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 773 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2) 774 // or raise(3). Similarly for tgkill(2) on Linux. 775 // 776 // IOW, user generated signals never generate what we consider to be a 777 // "crash". 778 // 779 // Similarly, ACK signals generated by this monitor. 780 781 // Handle the signal. 782 LLDB_LOG(log, 783 "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, " 784 "waitpid pid = {4})", 785 Host::GetSignalAsCString(signo), signo, info.si_code, 786 thread.GetID()); 787 788 // Check for thread stop notification. 789 if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) { 790 // This is a tgkill()-based stop. 791 LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID()); 792 793 // Check that we're not already marked with a stop reason. Note this thread 794 // really shouldn't already be marked as stopped - if we were, that would 795 // imply that the kernel signaled us with the thread stopping which we 796 // handled and marked as stopped, and that, without an intervening resume, 797 // we received another stop. It is more likely that we are missing the 798 // marking of a run state somewhere if we find that the thread was marked 799 // as stopped. 800 const StateType thread_state = thread.GetState(); 801 if (!StateIsStoppedState(thread_state, false)) { 802 // An inferior thread has stopped because of a SIGSTOP we have sent it. 803 // Generally, these are not important stops and we don't want to report 804 // them as they are just used to stop other threads when one thread (the 805 // one with the *real* stop reason) hits a breakpoint (watchpoint, 806 // etc...). However, in the case of an asynchronous Interrupt(), this 807 // *is* the real stop reason, so we leave the signal intact if this is 808 // the thread that was chosen as the triggering thread. 809 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 810 if (m_pending_notification_tid == thread.GetID()) 811 thread.SetStoppedBySignal(SIGSTOP, &info); 812 else 813 thread.SetStoppedWithNoReason(); 814 815 SetCurrentThreadID(thread.GetID()); 816 SignalIfAllThreadsStopped(); 817 } else { 818 // We can end up here if stop was initiated by LLGS but by this time a 819 // thread stop has occurred - maybe initiated by another event. 820 Status error = ResumeThread(thread, thread.GetState(), 0); 821 if (error.Fail()) 822 LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(), 823 error); 824 } 825 } else { 826 LLDB_LOG(log, 827 "pid {0} tid {1}, thread was already marked as a stopped " 828 "state (state={2}), leaving stop signal as is", 829 GetID(), thread.GetID(), thread_state); 830 SignalIfAllThreadsStopped(); 831 } 832 833 // Done handling. 834 return; 835 } 836 837 // Check if debugger should stop at this signal or just ignore it and resume 838 // the inferior. 839 if (m_signals_to_ignore.contains(signo)) { 840 ResumeThread(thread, thread.GetState(), signo); 841 return; 842 } 843 844 // This thread is stopped. 845 LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo)); 846 thread.SetStoppedBySignal(signo, &info); 847 848 // Send a stop to the debugger after we get all other threads to stop. 849 StopRunningThreads(thread.GetID()); 850 } 851 852 bool NativeProcessLinux::MonitorClone(NativeThreadLinux &parent, 853 lldb::pid_t child_pid, int event) { 854 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 855 LLDB_LOG(log, "parent_tid={0}, child_pid={1}, event={2}", parent.GetID(), 856 child_pid, event); 857 858 WaitForCloneNotification(child_pid); 859 860 switch (event) { 861 case PTRACE_EVENT_CLONE: { 862 // PTRACE_EVENT_CLONE can either mean a new thread or a new process. 863 // Try to grab the new process' PGID to figure out which one it is. 864 // If PGID is the same as the PID, then it's a new process. Otherwise, 865 // it's a thread. 866 auto tgid_ret = getPIDForTID(child_pid); 867 if (tgid_ret != child_pid) { 868 // A new thread should have PGID matching our process' PID. 869 assert(!tgid_ret || tgid_ret.getValue() == GetID()); 870 871 NativeThreadLinux &child_thread = AddThread(child_pid, /*resume*/ true); 872 ThreadWasCreated(child_thread); 873 874 // Resume the parent. 875 ResumeThread(parent, parent.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 876 break; 877 } 878 } 879 LLVM_FALLTHROUGH; 880 case PTRACE_EVENT_FORK: 881 case PTRACE_EVENT_VFORK: { 882 bool is_vfork = event == PTRACE_EVENT_VFORK; 883 std::unique_ptr<NativeProcessLinux> child_process{new NativeProcessLinux( 884 static_cast<::pid_t>(child_pid), m_terminal_fd, m_delegate, m_arch, 885 m_main_loop, {static_cast<::pid_t>(child_pid)})}; 886 if (!is_vfork) 887 child_process->m_software_breakpoints = m_software_breakpoints; 888 889 Extension expected_ext = is_vfork ? Extension::vfork : Extension::fork; 890 if (bool(m_enabled_extensions & expected_ext)) { 891 m_delegate.NewSubprocess(this, std::move(child_process)); 892 // NB: non-vfork clone() is reported as fork 893 parent.SetStoppedByFork(is_vfork, child_pid); 894 StopRunningThreads(parent.GetID()); 895 } else { 896 child_process->Detach(); 897 ResumeThread(parent, parent.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 898 } 899 break; 900 } 901 default: 902 llvm_unreachable("unknown clone_info.event"); 903 } 904 905 return true; 906 } 907 908 bool NativeProcessLinux::SupportHardwareSingleStepping() const { 909 if (m_arch.GetMachine() == llvm::Triple::arm || m_arch.IsMIPS()) 910 return false; 911 return true; 912 } 913 914 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) { 915 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 916 LLDB_LOG(log, "pid {0}", GetID()); 917 918 bool software_single_step = !SupportHardwareSingleStepping(); 919 920 if (software_single_step) { 921 for (const auto &thread : m_threads) { 922 assert(thread && "thread list should not contain NULL threads"); 923 924 const ResumeAction *const action = 925 resume_actions.GetActionForThread(thread->GetID(), true); 926 if (action == nullptr) 927 continue; 928 929 if (action->state == eStateStepping) { 930 Status error = SetupSoftwareSingleStepping( 931 static_cast<NativeThreadLinux &>(*thread)); 932 if (error.Fail()) 933 return error; 934 } 935 } 936 } 937 938 for (const auto &thread : m_threads) { 939 assert(thread && "thread list should not contain NULL threads"); 940 941 const ResumeAction *const action = 942 resume_actions.GetActionForThread(thread->GetID(), true); 943 944 if (action == nullptr) { 945 LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(), 946 thread->GetID()); 947 continue; 948 } 949 950 LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}", 951 action->state, GetID(), thread->GetID()); 952 953 switch (action->state) { 954 case eStateRunning: 955 case eStateStepping: { 956 // Run the thread, possibly feeding it the signal. 957 const int signo = action->signal; 958 ResumeThread(static_cast<NativeThreadLinux &>(*thread), action->state, 959 signo); 960 break; 961 } 962 963 case eStateSuspended: 964 case eStateStopped: 965 llvm_unreachable("Unexpected state"); 966 967 default: 968 return Status("NativeProcessLinux::%s (): unexpected state %s specified " 969 "for pid %" PRIu64 ", tid %" PRIu64, 970 __FUNCTION__, StateAsCString(action->state), GetID(), 971 thread->GetID()); 972 } 973 } 974 975 return Status(); 976 } 977 978 Status NativeProcessLinux::Halt() { 979 Status error; 980 981 if (kill(GetID(), SIGSTOP) != 0) 982 error.SetErrorToErrno(); 983 984 return error; 985 } 986 987 Status NativeProcessLinux::Detach() { 988 Status error; 989 990 // Stop monitoring the inferior. 991 m_sigchld_handle.reset(); 992 993 // Tell ptrace to detach from the process. 994 if (GetID() == LLDB_INVALID_PROCESS_ID) 995 return error; 996 997 for (const auto &thread : m_threads) { 998 Status e = Detach(thread->GetID()); 999 if (e.Fail()) 1000 error = 1001 e; // Save the error, but still attempt to detach from other threads. 1002 } 1003 1004 m_intel_pt_manager.Clear(); 1005 1006 return error; 1007 } 1008 1009 Status NativeProcessLinux::Signal(int signo) { 1010 Status error; 1011 1012 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1013 LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo, 1014 Host::GetSignalAsCString(signo), GetID()); 1015 1016 if (kill(GetID(), signo)) 1017 error.SetErrorToErrno(); 1018 1019 return error; 1020 } 1021 1022 Status NativeProcessLinux::Interrupt() { 1023 // Pick a running thread (or if none, a not-dead stopped thread) as the 1024 // chosen thread that will be the stop-reason thread. 1025 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1026 1027 NativeThreadProtocol *running_thread = nullptr; 1028 NativeThreadProtocol *stopped_thread = nullptr; 1029 1030 LLDB_LOG(log, "selecting running thread for interrupt target"); 1031 for (const auto &thread : m_threads) { 1032 // If we have a running or stepping thread, we'll call that the target of 1033 // the interrupt. 1034 const auto thread_state = thread->GetState(); 1035 if (thread_state == eStateRunning || thread_state == eStateStepping) { 1036 running_thread = thread.get(); 1037 break; 1038 } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) { 1039 // Remember the first non-dead stopped thread. We'll use that as a 1040 // backup if there are no running threads. 1041 stopped_thread = thread.get(); 1042 } 1043 } 1044 1045 if (!running_thread && !stopped_thread) { 1046 Status error("found no running/stepping or live stopped threads as target " 1047 "for interrupt"); 1048 LLDB_LOG(log, "skipping due to error: {0}", error); 1049 1050 return error; 1051 } 1052 1053 NativeThreadProtocol *deferred_signal_thread = 1054 running_thread ? running_thread : stopped_thread; 1055 1056 LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(), 1057 running_thread ? "running" : "stopped", 1058 deferred_signal_thread->GetID()); 1059 1060 StopRunningThreads(deferred_signal_thread->GetID()); 1061 1062 return Status(); 1063 } 1064 1065 Status NativeProcessLinux::Kill() { 1066 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1067 LLDB_LOG(log, "pid {0}", GetID()); 1068 1069 Status error; 1070 1071 switch (m_state) { 1072 case StateType::eStateInvalid: 1073 case StateType::eStateExited: 1074 case StateType::eStateCrashed: 1075 case StateType::eStateDetached: 1076 case StateType::eStateUnloaded: 1077 // Nothing to do - the process is already dead. 1078 LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(), 1079 m_state); 1080 return error; 1081 1082 case StateType::eStateConnected: 1083 case StateType::eStateAttaching: 1084 case StateType::eStateLaunching: 1085 case StateType::eStateStopped: 1086 case StateType::eStateRunning: 1087 case StateType::eStateStepping: 1088 case StateType::eStateSuspended: 1089 // We can try to kill a process in these states. 1090 break; 1091 } 1092 1093 if (kill(GetID(), SIGKILL) != 0) { 1094 error.SetErrorToErrno(); 1095 return error; 1096 } 1097 1098 return error; 1099 } 1100 1101 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr, 1102 MemoryRegionInfo &range_info) { 1103 // FIXME review that the final memory region returned extends to the end of 1104 // the virtual address space, 1105 // with no perms if it is not mapped. 1106 1107 // Use an approach that reads memory regions from /proc/{pid}/maps. Assume 1108 // proc maps entries are in ascending order. 1109 // FIXME assert if we find differently. 1110 1111 if (m_supports_mem_region == LazyBool::eLazyBoolNo) { 1112 // We're done. 1113 return Status("unsupported"); 1114 } 1115 1116 Status error = PopulateMemoryRegionCache(); 1117 if (error.Fail()) { 1118 return error; 1119 } 1120 1121 lldb::addr_t prev_base_address = 0; 1122 1123 // FIXME start by finding the last region that is <= target address using 1124 // binary search. Data is sorted. 1125 // There can be a ton of regions on pthreads apps with lots of threads. 1126 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end(); 1127 ++it) { 1128 MemoryRegionInfo &proc_entry_info = it->first; 1129 1130 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 1131 assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) && 1132 "descending /proc/pid/maps entries detected, unexpected"); 1133 prev_base_address = proc_entry_info.GetRange().GetRangeBase(); 1134 UNUSED_IF_ASSERT_DISABLED(prev_base_address); 1135 1136 // If the target address comes before this entry, indicate distance to next 1137 // region. 1138 if (load_addr < proc_entry_info.GetRange().GetRangeBase()) { 1139 range_info.GetRange().SetRangeBase(load_addr); 1140 range_info.GetRange().SetByteSize( 1141 proc_entry_info.GetRange().GetRangeBase() - load_addr); 1142 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1143 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1144 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1145 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1146 1147 return error; 1148 } else if (proc_entry_info.GetRange().Contains(load_addr)) { 1149 // The target address is within the memory region we're processing here. 1150 range_info = proc_entry_info; 1151 return error; 1152 } 1153 1154 // The target memory address comes somewhere after the region we just 1155 // parsed. 1156 } 1157 1158 // If we made it here, we didn't find an entry that contained the given 1159 // address. Return the load_addr as start and the amount of bytes betwwen 1160 // load address and the end of the memory as size. 1161 range_info.GetRange().SetRangeBase(load_addr); 1162 range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS); 1163 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1164 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1165 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1166 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1167 return error; 1168 } 1169 1170 Status NativeProcessLinux::PopulateMemoryRegionCache() { 1171 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1172 1173 // If our cache is empty, pull the latest. There should always be at least 1174 // one memory region if memory region handling is supported. 1175 if (!m_mem_region_cache.empty()) { 1176 LLDB_LOG(log, "reusing {0} cached memory region entries", 1177 m_mem_region_cache.size()); 1178 return Status(); 1179 } 1180 1181 Status Result; 1182 LinuxMapCallback callback = [&](llvm::Expected<MemoryRegionInfo> Info) { 1183 if (Info) { 1184 FileSpec file_spec(Info->GetName().GetCString()); 1185 FileSystem::Instance().Resolve(file_spec); 1186 m_mem_region_cache.emplace_back(*Info, file_spec); 1187 return true; 1188 } 1189 1190 Result = Info.takeError(); 1191 m_supports_mem_region = LazyBool::eLazyBoolNo; 1192 LLDB_LOG(log, "failed to parse proc maps: {0}", Result); 1193 return false; 1194 }; 1195 1196 // Linux kernel since 2.6.14 has /proc/{pid}/smaps 1197 // if CONFIG_PROC_PAGE_MONITOR is enabled 1198 auto BufferOrError = getProcFile(GetID(), "smaps"); 1199 if (BufferOrError) 1200 ParseLinuxSMapRegions(BufferOrError.get()->getBuffer(), callback); 1201 else { 1202 BufferOrError = getProcFile(GetID(), "maps"); 1203 if (!BufferOrError) { 1204 m_supports_mem_region = LazyBool::eLazyBoolNo; 1205 return BufferOrError.getError(); 1206 } 1207 1208 ParseLinuxMapRegions(BufferOrError.get()->getBuffer(), callback); 1209 } 1210 1211 if (Result.Fail()) 1212 return Result; 1213 1214 if (m_mem_region_cache.empty()) { 1215 // No entries after attempting to read them. This shouldn't happen if 1216 // /proc/{pid}/maps is supported. Assume we don't support map entries via 1217 // procfs. 1218 m_supports_mem_region = LazyBool::eLazyBoolNo; 1219 LLDB_LOG(log, 1220 "failed to find any procfs maps entries, assuming no support " 1221 "for memory region metadata retrieval"); 1222 return Status("not supported"); 1223 } 1224 1225 LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps", 1226 m_mem_region_cache.size(), GetID()); 1227 1228 // We support memory retrieval, remember that. 1229 m_supports_mem_region = LazyBool::eLazyBoolYes; 1230 return Status(); 1231 } 1232 1233 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) { 1234 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1235 LLDB_LOG(log, "newBumpId={0}", newBumpId); 1236 LLDB_LOG(log, "clearing {0} entries from memory region cache", 1237 m_mem_region_cache.size()); 1238 m_mem_region_cache.clear(); 1239 } 1240 1241 llvm::Expected<uint64_t> 1242 NativeProcessLinux::Syscall(llvm::ArrayRef<uint64_t> args) { 1243 PopulateMemoryRegionCache(); 1244 auto region_it = llvm::find_if(m_mem_region_cache, [](const auto &pair) { 1245 return pair.first.GetExecutable() == MemoryRegionInfo::eYes; 1246 }); 1247 if (region_it == m_mem_region_cache.end()) 1248 return llvm::createStringError(llvm::inconvertibleErrorCode(), 1249 "No executable memory region found!"); 1250 1251 addr_t exe_addr = region_it->first.GetRange().GetRangeBase(); 1252 1253 NativeThreadLinux &thread = *GetThreadByID(GetID()); 1254 assert(thread.GetState() == eStateStopped); 1255 NativeRegisterContextLinux ®_ctx = thread.GetRegisterContext(); 1256 1257 NativeRegisterContextLinux::SyscallData syscall_data = 1258 *reg_ctx.GetSyscallData(); 1259 1260 DataBufferSP registers_sp; 1261 if (llvm::Error Err = reg_ctx.ReadAllRegisterValues(registers_sp).ToError()) 1262 return std::move(Err); 1263 auto restore_regs = llvm::make_scope_exit( 1264 [&] { reg_ctx.WriteAllRegisterValues(registers_sp); }); 1265 1266 llvm::SmallVector<uint8_t, 8> memory(syscall_data.Insn.size()); 1267 size_t bytes_read; 1268 if (llvm::Error Err = 1269 ReadMemory(exe_addr, memory.data(), memory.size(), bytes_read) 1270 .ToError()) { 1271 return std::move(Err); 1272 } 1273 1274 auto restore_mem = llvm::make_scope_exit( 1275 [&] { WriteMemory(exe_addr, memory.data(), memory.size(), bytes_read); }); 1276 1277 if (llvm::Error Err = reg_ctx.SetPC(exe_addr).ToError()) 1278 return std::move(Err); 1279 1280 for (const auto &zip : llvm::zip_first(args, syscall_data.Args)) { 1281 if (llvm::Error Err = 1282 reg_ctx 1283 .WriteRegisterFromUnsigned(std::get<1>(zip), std::get<0>(zip)) 1284 .ToError()) { 1285 return std::move(Err); 1286 } 1287 } 1288 if (llvm::Error Err = WriteMemory(exe_addr, syscall_data.Insn.data(), 1289 syscall_data.Insn.size(), bytes_read) 1290 .ToError()) 1291 return std::move(Err); 1292 1293 m_mem_region_cache.clear(); 1294 1295 // With software single stepping the syscall insn buffer must also include a 1296 // trap instruction to stop the process. 1297 int req = SupportHardwareSingleStepping() ? PTRACE_SINGLESTEP : PTRACE_CONT; 1298 if (llvm::Error Err = 1299 PtraceWrapper(req, thread.GetID(), nullptr, nullptr).ToError()) 1300 return std::move(Err); 1301 1302 int status; 1303 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, thread.GetID(), 1304 &status, __WALL); 1305 if (wait_pid == -1) { 1306 return llvm::errorCodeToError( 1307 std::error_code(errno, std::generic_category())); 1308 } 1309 assert((unsigned)wait_pid == thread.GetID()); 1310 1311 uint64_t result = reg_ctx.ReadRegisterAsUnsigned(syscall_data.Result, -ESRCH); 1312 1313 // Values larger than this are actually negative errno numbers. 1314 uint64_t errno_threshold = 1315 (uint64_t(-1) >> (64 - 8 * m_arch.GetAddressByteSize())) - 0x1000; 1316 if (result > errno_threshold) { 1317 return llvm::errorCodeToError( 1318 std::error_code(-result & 0xfff, std::generic_category())); 1319 } 1320 1321 return result; 1322 } 1323 1324 llvm::Expected<addr_t> 1325 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions) { 1326 1327 llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data = 1328 GetCurrentThread()->GetRegisterContext().GetMmapData(); 1329 if (!mmap_data) 1330 return llvm::make_error<UnimplementedError>(); 1331 1332 unsigned prot = PROT_NONE; 1333 assert((permissions & (ePermissionsReadable | ePermissionsWritable | 1334 ePermissionsExecutable)) == permissions && 1335 "Unknown permission!"); 1336 if (permissions & ePermissionsReadable) 1337 prot |= PROT_READ; 1338 if (permissions & ePermissionsWritable) 1339 prot |= PROT_WRITE; 1340 if (permissions & ePermissionsExecutable) 1341 prot |= PROT_EXEC; 1342 1343 llvm::Expected<uint64_t> Result = 1344 Syscall({mmap_data->SysMmap, 0, size, prot, MAP_ANONYMOUS | MAP_PRIVATE, 1345 uint64_t(-1), 0}); 1346 if (Result) 1347 m_allocated_memory.try_emplace(*Result, size); 1348 return Result; 1349 } 1350 1351 llvm::Error NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) { 1352 llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data = 1353 GetCurrentThread()->GetRegisterContext().GetMmapData(); 1354 if (!mmap_data) 1355 return llvm::make_error<UnimplementedError>(); 1356 1357 auto it = m_allocated_memory.find(addr); 1358 if (it == m_allocated_memory.end()) 1359 return llvm::createStringError(llvm::errc::invalid_argument, 1360 "Memory not allocated by the debugger."); 1361 1362 llvm::Expected<uint64_t> Result = 1363 Syscall({mmap_data->SysMunmap, addr, it->second}); 1364 if (!Result) 1365 return Result.takeError(); 1366 1367 m_allocated_memory.erase(it); 1368 return llvm::Error::success(); 1369 } 1370 1371 Status NativeProcessLinux::ReadMemoryTags(int32_t type, lldb::addr_t addr, 1372 size_t len, 1373 std::vector<uint8_t> &tags) { 1374 llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details = 1375 GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type); 1376 if (!details) 1377 return Status(details.takeError()); 1378 1379 // Ignore 0 length read 1380 if (!len) 1381 return Status(); 1382 1383 // lldb will align the range it requests but it is not required to by 1384 // the protocol so we'll do it again just in case. 1385 // Remove non address bits too. Ptrace calls may work regardless but that 1386 // is not a guarantee. 1387 MemoryTagManager::TagRange range(details->manager->RemoveNonAddressBits(addr), 1388 len); 1389 range = details->manager->ExpandToGranule(range); 1390 1391 // Allocate enough space for all tags to be read 1392 size_t num_tags = range.GetByteSize() / details->manager->GetGranuleSize(); 1393 tags.resize(num_tags * details->manager->GetTagSizeInBytes()); 1394 1395 struct iovec tags_iovec; 1396 uint8_t *dest = tags.data(); 1397 lldb::addr_t read_addr = range.GetRangeBase(); 1398 1399 // This call can return partial data so loop until we error or 1400 // get all tags back. 1401 while (num_tags) { 1402 tags_iovec.iov_base = dest; 1403 tags_iovec.iov_len = num_tags; 1404 1405 Status error = NativeProcessLinux::PtraceWrapper( 1406 details->ptrace_read_req, GetID(), reinterpret_cast<void *>(read_addr), 1407 static_cast<void *>(&tags_iovec), 0, nullptr); 1408 1409 if (error.Fail()) { 1410 // Discard partial reads 1411 tags.resize(0); 1412 return error; 1413 } 1414 1415 size_t tags_read = tags_iovec.iov_len; 1416 assert(tags_read && (tags_read <= num_tags)); 1417 1418 dest += tags_read * details->manager->GetTagSizeInBytes(); 1419 read_addr += details->manager->GetGranuleSize() * tags_read; 1420 num_tags -= tags_read; 1421 } 1422 1423 return Status(); 1424 } 1425 1426 Status NativeProcessLinux::WriteMemoryTags(int32_t type, lldb::addr_t addr, 1427 size_t len, 1428 const std::vector<uint8_t> &tags) { 1429 llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details = 1430 GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type); 1431 if (!details) 1432 return Status(details.takeError()); 1433 1434 // Ignore 0 length write 1435 if (!len) 1436 return Status(); 1437 1438 // lldb will align the range it requests but it is not required to by 1439 // the protocol so we'll do it again just in case. 1440 // Remove non address bits too. Ptrace calls may work regardless but that 1441 // is not a guarantee. 1442 MemoryTagManager::TagRange range(details->manager->RemoveNonAddressBits(addr), 1443 len); 1444 range = details->manager->ExpandToGranule(range); 1445 1446 // Not checking number of tags here, we may repeat them below 1447 llvm::Expected<std::vector<lldb::addr_t>> unpacked_tags_or_err = 1448 details->manager->UnpackTagsData(tags); 1449 if (!unpacked_tags_or_err) 1450 return Status(unpacked_tags_or_err.takeError()); 1451 1452 llvm::Expected<std::vector<lldb::addr_t>> repeated_tags_or_err = 1453 details->manager->RepeatTagsForRange(*unpacked_tags_or_err, range); 1454 if (!repeated_tags_or_err) 1455 return Status(repeated_tags_or_err.takeError()); 1456 1457 // Repack them for ptrace to use 1458 llvm::Expected<std::vector<uint8_t>> final_tag_data = 1459 details->manager->PackTags(*repeated_tags_or_err); 1460 if (!final_tag_data) 1461 return Status(final_tag_data.takeError()); 1462 1463 struct iovec tags_vec; 1464 uint8_t *src = final_tag_data->data(); 1465 lldb::addr_t write_addr = range.GetRangeBase(); 1466 // unpacked tags size because the number of bytes per tag might not be 1 1467 size_t num_tags = repeated_tags_or_err->size(); 1468 1469 // This call can partially write tags, so we loop until we 1470 // error or all tags have been written. 1471 while (num_tags > 0) { 1472 tags_vec.iov_base = src; 1473 tags_vec.iov_len = num_tags; 1474 1475 Status error = NativeProcessLinux::PtraceWrapper( 1476 details->ptrace_write_req, GetID(), 1477 reinterpret_cast<void *>(write_addr), static_cast<void *>(&tags_vec), 0, 1478 nullptr); 1479 1480 if (error.Fail()) { 1481 // Don't attempt to restore the original values in the case of a partial 1482 // write 1483 return error; 1484 } 1485 1486 size_t tags_written = tags_vec.iov_len; 1487 assert(tags_written && (tags_written <= num_tags)); 1488 1489 src += tags_written * details->manager->GetTagSizeInBytes(); 1490 write_addr += details->manager->GetGranuleSize() * tags_written; 1491 num_tags -= tags_written; 1492 } 1493 1494 return Status(); 1495 } 1496 1497 size_t NativeProcessLinux::UpdateThreads() { 1498 // The NativeProcessLinux monitoring threads are always up to date with 1499 // respect to thread state and they keep the thread list populated properly. 1500 // All this method needs to do is return the thread count. 1501 return m_threads.size(); 1502 } 1503 1504 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size, 1505 bool hardware) { 1506 if (hardware) 1507 return SetHardwareBreakpoint(addr, size); 1508 else 1509 return SetSoftwareBreakpoint(addr, size); 1510 } 1511 1512 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) { 1513 if (hardware) 1514 return RemoveHardwareBreakpoint(addr); 1515 else 1516 return NativeProcessProtocol::RemoveBreakpoint(addr); 1517 } 1518 1519 llvm::Expected<llvm::ArrayRef<uint8_t>> 1520 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(size_t size_hint) { 1521 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 1522 // linux kernel does otherwise. 1523 static const uint8_t g_arm_opcode[] = {0xf0, 0x01, 0xf0, 0xe7}; 1524 static const uint8_t g_thumb_opcode[] = {0x01, 0xde}; 1525 1526 switch (GetArchitecture().GetMachine()) { 1527 case llvm::Triple::arm: 1528 switch (size_hint) { 1529 case 2: 1530 return llvm::makeArrayRef(g_thumb_opcode); 1531 case 4: 1532 return llvm::makeArrayRef(g_arm_opcode); 1533 default: 1534 return llvm::createStringError(llvm::inconvertibleErrorCode(), 1535 "Unrecognised trap opcode size hint!"); 1536 } 1537 default: 1538 return NativeProcessProtocol::GetSoftwareBreakpointTrapOpcode(size_hint); 1539 } 1540 } 1541 1542 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size, 1543 size_t &bytes_read) { 1544 if (ProcessVmReadvSupported()) { 1545 // The process_vm_readv path is about 50 times faster than ptrace api. We 1546 // want to use this syscall if it is supported. 1547 1548 const ::pid_t pid = GetID(); 1549 1550 struct iovec local_iov, remote_iov; 1551 local_iov.iov_base = buf; 1552 local_iov.iov_len = size; 1553 remote_iov.iov_base = reinterpret_cast<void *>(addr); 1554 remote_iov.iov_len = size; 1555 1556 bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0); 1557 const bool success = bytes_read == size; 1558 1559 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1560 LLDB_LOG(log, 1561 "using process_vm_readv to read {0} bytes from inferior " 1562 "address {1:x}: {2}", 1563 size, addr, success ? "Success" : llvm::sys::StrError(errno)); 1564 1565 if (success) 1566 return Status(); 1567 // else the call failed for some reason, let's retry the read using ptrace 1568 // api. 1569 } 1570 1571 unsigned char *dst = static_cast<unsigned char *>(buf); 1572 size_t remainder; 1573 long data; 1574 1575 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1576 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1577 1578 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { 1579 Status error = NativeProcessLinux::PtraceWrapper( 1580 PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data); 1581 if (error.Fail()) 1582 return error; 1583 1584 remainder = size - bytes_read; 1585 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1586 1587 // Copy the data into our buffer 1588 memcpy(dst, &data, remainder); 1589 1590 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1591 addr += k_ptrace_word_size; 1592 dst += k_ptrace_word_size; 1593 } 1594 return Status(); 1595 } 1596 1597 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, 1598 size_t size, size_t &bytes_written) { 1599 const unsigned char *src = static_cast<const unsigned char *>(buf); 1600 size_t remainder; 1601 Status error; 1602 1603 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1604 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1605 1606 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { 1607 remainder = size - bytes_written; 1608 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1609 1610 if (remainder == k_ptrace_word_size) { 1611 unsigned long data = 0; 1612 memcpy(&data, src, k_ptrace_word_size); 1613 1614 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1615 error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), 1616 (void *)addr, (void *)data); 1617 if (error.Fail()) 1618 return error; 1619 } else { 1620 unsigned char buff[8]; 1621 size_t bytes_read; 1622 error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read); 1623 if (error.Fail()) 1624 return error; 1625 1626 memcpy(buff, src, remainder); 1627 1628 size_t bytes_written_rec; 1629 error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec); 1630 if (error.Fail()) 1631 return error; 1632 1633 LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src, 1634 *(unsigned long *)buff); 1635 } 1636 1637 addr += k_ptrace_word_size; 1638 src += k_ptrace_word_size; 1639 } 1640 return error; 1641 } 1642 1643 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) { 1644 return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); 1645 } 1646 1647 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid, 1648 unsigned long *message) { 1649 return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); 1650 } 1651 1652 Status NativeProcessLinux::Detach(lldb::tid_t tid) { 1653 if (tid == LLDB_INVALID_THREAD_ID) 1654 return Status(); 1655 1656 return PtraceWrapper(PTRACE_DETACH, tid); 1657 } 1658 1659 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) { 1660 for (const auto &thread : m_threads) { 1661 assert(thread && "thread list should not contain NULL threads"); 1662 if (thread->GetID() == thread_id) { 1663 // We have this thread. 1664 return true; 1665 } 1666 } 1667 1668 // We don't have this thread. 1669 return false; 1670 } 1671 1672 void NativeProcessLinux::StopTrackingThread(NativeThreadLinux &thread) { 1673 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1674 lldb::tid_t thread_id = thread.GetID(); 1675 LLDB_LOG(log, "tid: {0}", thread_id); 1676 1677 auto it = llvm::find_if(m_threads, [&](const auto &thread_up) { 1678 return thread_up.get() == &thread; 1679 }); 1680 assert(it != m_threads.end()); 1681 m_threads.erase(it); 1682 1683 NotifyTracersOfThreadDestroyed(thread_id); 1684 SignalIfAllThreadsStopped(); 1685 } 1686 1687 Status NativeProcessLinux::NotifyTracersOfNewThread(lldb::tid_t tid) { 1688 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD)); 1689 Status error(m_intel_pt_manager.OnThreadCreated(tid)); 1690 if (error.Fail()) 1691 LLDB_LOG(log, "Failed to trace a new thread with intel-pt, tid = {0}. {1}", 1692 tid, error.AsCString()); 1693 return error; 1694 } 1695 1696 Status NativeProcessLinux::NotifyTracersOfThreadDestroyed(lldb::tid_t tid) { 1697 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD)); 1698 Status error(m_intel_pt_manager.OnThreadDestroyed(tid)); 1699 if (error.Fail()) 1700 LLDB_LOG(log, 1701 "Failed to stop a destroyed thread with intel-pt, tid = {0}. {1}", 1702 tid, error.AsCString()); 1703 return error; 1704 } 1705 1706 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id, 1707 bool resume) { 1708 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD)); 1709 LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id); 1710 1711 assert(!HasThreadNoLock(thread_id) && 1712 "attempted to add a thread by id that already exists"); 1713 1714 // If this is the first thread, save it as the current thread 1715 if (m_threads.empty()) 1716 SetCurrentThreadID(thread_id); 1717 1718 m_threads.push_back(std::make_unique<NativeThreadLinux>(*this, thread_id)); 1719 NativeThreadLinux &thread = 1720 static_cast<NativeThreadLinux &>(*m_threads.back()); 1721 1722 Status tracing_error = NotifyTracersOfNewThread(thread.GetID()); 1723 if (tracing_error.Fail()) { 1724 thread.SetStoppedByProcessorTrace(tracing_error.AsCString()); 1725 StopRunningThreads(thread.GetID()); 1726 } else if (resume) 1727 ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 1728 else 1729 thread.SetStoppedBySignal(SIGSTOP); 1730 1731 return thread; 1732 } 1733 1734 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path, 1735 FileSpec &file_spec) { 1736 Status error = PopulateMemoryRegionCache(); 1737 if (error.Fail()) 1738 return error; 1739 1740 FileSpec module_file_spec(module_path); 1741 FileSystem::Instance().Resolve(module_file_spec); 1742 1743 file_spec.Clear(); 1744 for (const auto &it : m_mem_region_cache) { 1745 if (it.second.GetFilename() == module_file_spec.GetFilename()) { 1746 file_spec = it.second; 1747 return Status(); 1748 } 1749 } 1750 return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 1751 module_file_spec.GetFilename().AsCString(), GetID()); 1752 } 1753 1754 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name, 1755 lldb::addr_t &load_addr) { 1756 load_addr = LLDB_INVALID_ADDRESS; 1757 Status error = PopulateMemoryRegionCache(); 1758 if (error.Fail()) 1759 return error; 1760 1761 FileSpec file(file_name); 1762 for (const auto &it : m_mem_region_cache) { 1763 if (it.second == file) { 1764 load_addr = it.first.GetRange().GetRangeBase(); 1765 return Status(); 1766 } 1767 } 1768 return Status("No load address found for specified file."); 1769 } 1770 1771 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) { 1772 return static_cast<NativeThreadLinux *>( 1773 NativeProcessProtocol::GetThreadByID(tid)); 1774 } 1775 1776 NativeThreadLinux *NativeProcessLinux::GetCurrentThread() { 1777 return static_cast<NativeThreadLinux *>( 1778 NativeProcessProtocol::GetCurrentThread()); 1779 } 1780 1781 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, 1782 lldb::StateType state, int signo) { 1783 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1784 LLDB_LOG(log, "tid: {0}", thread.GetID()); 1785 1786 // Before we do the resume below, first check if we have a pending stop 1787 // notification that is currently waiting for all threads to stop. This is 1788 // potentially a buggy situation since we're ostensibly waiting for threads 1789 // to stop before we send out the pending notification, and here we are 1790 // resuming one before we send out the pending stop notification. 1791 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 1792 LLDB_LOG(log, 1793 "about to resume tid {0} per explicit request but we have a " 1794 "pending stop notification (tid {1}) that is actively " 1795 "waiting for this thread to stop. Valid sequence of events?", 1796 thread.GetID(), m_pending_notification_tid); 1797 } 1798 1799 // Request a resume. We expect this to be synchronous and the system to 1800 // reflect it is running after this completes. 1801 switch (state) { 1802 case eStateRunning: { 1803 const auto resume_result = thread.Resume(signo); 1804 if (resume_result.Success()) 1805 SetState(eStateRunning, true); 1806 return resume_result; 1807 } 1808 case eStateStepping: { 1809 const auto step_result = thread.SingleStep(signo); 1810 if (step_result.Success()) 1811 SetState(eStateRunning, true); 1812 return step_result; 1813 } 1814 default: 1815 LLDB_LOG(log, "Unhandled state {0}.", state); 1816 llvm_unreachable("Unhandled state for resume"); 1817 } 1818 } 1819 1820 //===----------------------------------------------------------------------===// 1821 1822 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) { 1823 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1824 LLDB_LOG(log, "about to process event: (triggering_tid: {0})", 1825 triggering_tid); 1826 1827 m_pending_notification_tid = triggering_tid; 1828 1829 // Request a stop for all the thread stops that need to be stopped and are 1830 // not already known to be stopped. 1831 for (const auto &thread : m_threads) { 1832 if (StateIsRunningState(thread->GetState())) 1833 static_cast<NativeThreadLinux *>(thread.get())->RequestStop(); 1834 } 1835 1836 SignalIfAllThreadsStopped(); 1837 LLDB_LOG(log, "event processing done"); 1838 } 1839 1840 void NativeProcessLinux::SignalIfAllThreadsStopped() { 1841 if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) 1842 return; // No pending notification. Nothing to do. 1843 1844 for (const auto &thread_sp : m_threads) { 1845 if (StateIsRunningState(thread_sp->GetState())) 1846 return; // Some threads are still running. Don't signal yet. 1847 } 1848 1849 // We have a pending notification and all threads have stopped. 1850 Log *log( 1851 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 1852 1853 // Clear any temporary breakpoints we used to implement software single 1854 // stepping. 1855 for (const auto &thread_info : m_threads_stepping_with_breakpoint) { 1856 Status error = RemoveBreakpoint(thread_info.second); 1857 if (error.Fail()) 1858 LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}", 1859 thread_info.first, error); 1860 } 1861 m_threads_stepping_with_breakpoint.clear(); 1862 1863 // Notify the delegate about the stop 1864 SetCurrentThreadID(m_pending_notification_tid); 1865 SetState(StateType::eStateStopped, true); 1866 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 1867 } 1868 1869 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) { 1870 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1871 LLDB_LOG(log, "tid: {0}", thread.GetID()); 1872 1873 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && 1874 StateIsRunningState(thread.GetState())) { 1875 // We will need to wait for this new thread to stop as well before firing 1876 // the notification. 1877 thread.RequestStop(); 1878 } 1879 } 1880 1881 void NativeProcessLinux::SigchldHandler() { 1882 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1883 1884 // Threads can appear or disappear as a result of event processing, so gather 1885 // the events upfront. 1886 llvm::DenseMap<lldb::tid_t, WaitStatus> tid_events; 1887 for (const auto &thread_up : m_threads) { 1888 int status = -1; 1889 ::pid_t wait_pid = 1890 llvm::sys::RetryAfterSignal(-1, ::waitpid, thread_up->GetID(), &status, 1891 __WALL | __WNOTHREAD | WNOHANG); 1892 1893 if (wait_pid == 0) 1894 continue; // Nothing to do for this thread. 1895 1896 if (wait_pid == -1) { 1897 Status error(errno, eErrorTypePOSIX); 1898 LLDB_LOG(log, "waitpid({0}, &status, _) failed: {1}", thread_up->GetID(), 1899 error); 1900 continue; 1901 } 1902 1903 assert(wait_pid == static_cast<::pid_t>(thread_up->GetID())); 1904 1905 WaitStatus wait_status = WaitStatus::Decode(status); 1906 1907 LLDB_LOG(log, "waitpid({0}) got status = {1}", thread_up->GetID(), 1908 wait_status); 1909 tid_events.try_emplace(thread_up->GetID(), wait_status); 1910 } 1911 1912 for (auto &KV : tid_events) { 1913 LLDB_LOG(log, "processing {0}({1}) ...", KV.first, KV.second); 1914 NativeThreadLinux *thread = GetThreadByID(KV.first); 1915 if (thread) { 1916 MonitorCallback(*thread, KV.second); 1917 } else { 1918 // This can happen if one of the events is an main thread exit. 1919 LLDB_LOG(log, "... but the thread has disappeared"); 1920 } 1921 } 1922 } 1923 1924 // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets 1925 // errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) 1926 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, 1927 void *data, size_t data_size, 1928 long *result) { 1929 Status error; 1930 long int ret; 1931 1932 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 1933 1934 PtraceDisplayBytes(req, data, data_size); 1935 1936 errno = 0; 1937 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 1938 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 1939 *(unsigned int *)addr, data); 1940 else 1941 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 1942 addr, data); 1943 1944 if (ret == -1) 1945 error.SetErrorToErrno(); 1946 1947 if (result) 1948 *result = ret; 1949 1950 LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data, 1951 data_size, ret); 1952 1953 PtraceDisplayBytes(req, data, data_size); 1954 1955 if (error.Fail()) 1956 LLDB_LOG(log, "ptrace() failed: {0}", error); 1957 1958 return error; 1959 } 1960 1961 llvm::Expected<TraceSupportedResponse> NativeProcessLinux::TraceSupported() { 1962 if (IntelPTManager::IsSupported()) 1963 return TraceSupportedResponse{"intel-pt", "Intel Processor Trace"}; 1964 return NativeProcessProtocol::TraceSupported(); 1965 } 1966 1967 Error NativeProcessLinux::TraceStart(StringRef json_request, StringRef type) { 1968 if (type == "intel-pt") { 1969 if (Expected<TraceIntelPTStartRequest> request = 1970 json::parse<TraceIntelPTStartRequest>(json_request, 1971 "TraceIntelPTStartRequest")) { 1972 std::vector<lldb::tid_t> process_threads; 1973 for (auto &thread : m_threads) 1974 process_threads.push_back(thread->GetID()); 1975 return m_intel_pt_manager.TraceStart(*request, process_threads); 1976 } else 1977 return request.takeError(); 1978 } 1979 1980 return NativeProcessProtocol::TraceStart(json_request, type); 1981 } 1982 1983 Error NativeProcessLinux::TraceStop(const TraceStopRequest &request) { 1984 if (request.type == "intel-pt") 1985 return m_intel_pt_manager.TraceStop(request); 1986 return NativeProcessProtocol::TraceStop(request); 1987 } 1988 1989 Expected<json::Value> NativeProcessLinux::TraceGetState(StringRef type) { 1990 if (type == "intel-pt") 1991 return m_intel_pt_manager.GetState(); 1992 return NativeProcessProtocol::TraceGetState(type); 1993 } 1994 1995 Expected<std::vector<uint8_t>> NativeProcessLinux::TraceGetBinaryData( 1996 const TraceGetBinaryDataRequest &request) { 1997 if (request.type == "intel-pt") 1998 return m_intel_pt_manager.GetBinaryData(request); 1999 return NativeProcessProtocol::TraceGetBinaryData(request); 2000 } 2001