1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "NativeProcessLinux.h" 11 12 #include <errno.h> 13 #include <stdint.h> 14 #include <string.h> 15 #include <unistd.h> 16 17 #include <fstream> 18 #include <mutex> 19 #include <sstream> 20 #include <string> 21 #include <unordered_map> 22 23 #include "lldb/Core/EmulateInstruction.h" 24 #include "lldb/Core/ModuleSpec.h" 25 #include "lldb/Host/Host.h" 26 #include "lldb/Host/HostProcess.h" 27 #include "lldb/Host/PseudoTerminal.h" 28 #include "lldb/Host/ThreadLauncher.h" 29 #include "lldb/Host/common/NativeRegisterContext.h" 30 #include "lldb/Host/linux/Ptrace.h" 31 #include "lldb/Host/linux/Uio.h" 32 #include "lldb/Host/posix/ProcessLauncherPosixFork.h" 33 #include "lldb/Symbol/ObjectFile.h" 34 #include "lldb/Target/Process.h" 35 #include "lldb/Target/ProcessLaunchInfo.h" 36 #include "lldb/Target/Target.h" 37 #include "lldb/Utility/LLDBAssert.h" 38 #include "lldb/Utility/RegisterValue.h" 39 #include "lldb/Utility/State.h" 40 #include "lldb/Utility/Status.h" 41 #include "lldb/Utility/StringExtractor.h" 42 #include "llvm/Support/Errno.h" 43 #include "llvm/Support/FileSystem.h" 44 #include "llvm/Support/Threading.h" 45 46 #include "NativeThreadLinux.h" 47 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 48 #include "Plugins/Process/Utility/LinuxProcMaps.h" 49 #include "Procfs.h" 50 51 #include <linux/unistd.h> 52 #include <sys/socket.h> 53 #include <sys/syscall.h> 54 #include <sys/types.h> 55 #include <sys/user.h> 56 #include <sys/wait.h> 57 58 // Support hardware breakpoints in case it has not been defined 59 #ifndef TRAP_HWBKPT 60 #define TRAP_HWBKPT 4 61 #endif 62 63 using namespace lldb; 64 using namespace lldb_private; 65 using namespace lldb_private::process_linux; 66 using namespace llvm; 67 68 // Private bits we only need internally. 69 70 static bool ProcessVmReadvSupported() { 71 static bool is_supported; 72 static llvm::once_flag flag; 73 74 llvm::call_once(flag, [] { 75 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 76 77 uint32_t source = 0x47424742; 78 uint32_t dest = 0; 79 80 struct iovec local, remote; 81 remote.iov_base = &source; 82 local.iov_base = &dest; 83 remote.iov_len = local.iov_len = sizeof source; 84 85 // We shall try if cross-process-memory reads work by attempting to read a 86 // value from our own process. 87 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); 88 is_supported = (res == sizeof(source) && source == dest); 89 if (is_supported) 90 LLDB_LOG(log, 91 "Detected kernel support for process_vm_readv syscall. " 92 "Fast memory reads enabled."); 93 else 94 LLDB_LOG(log, 95 "syscall process_vm_readv failed (error: {0}). Fast memory " 96 "reads disabled.", 97 llvm::sys::StrError()); 98 }); 99 100 return is_supported; 101 } 102 103 namespace { 104 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) { 105 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 106 if (!log) 107 return; 108 109 if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO)) 110 LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec()); 111 else 112 LLDB_LOG(log, "leaving STDIN as is"); 113 114 if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO)) 115 LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec()); 116 else 117 LLDB_LOG(log, "leaving STDOUT as is"); 118 119 if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO)) 120 LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec()); 121 else 122 LLDB_LOG(log, "leaving STDERR as is"); 123 124 int i = 0; 125 for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; 126 ++args, ++i) 127 LLDB_LOG(log, "arg {0}: '{1}'", i, *args); 128 } 129 130 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) { 131 uint8_t *ptr = (uint8_t *)bytes; 132 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 133 for (uint32_t i = 0; i < loop_count; i++) { 134 s.Printf("[%x]", *ptr); 135 ptr++; 136 } 137 } 138 139 void PtraceDisplayBytes(int &req, void *data, size_t data_size) { 140 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 141 if (!log) 142 return; 143 StreamString buf; 144 145 switch (req) { 146 case PTRACE_POKETEXT: { 147 DisplayBytes(buf, &data, 8); 148 LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData()); 149 break; 150 } 151 case PTRACE_POKEDATA: { 152 DisplayBytes(buf, &data, 8); 153 LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData()); 154 break; 155 } 156 case PTRACE_POKEUSER: { 157 DisplayBytes(buf, &data, 8); 158 LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData()); 159 break; 160 } 161 case PTRACE_SETREGS: { 162 DisplayBytes(buf, data, data_size); 163 LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData()); 164 break; 165 } 166 case PTRACE_SETFPREGS: { 167 DisplayBytes(buf, data, data_size); 168 LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData()); 169 break; 170 } 171 case PTRACE_SETSIGINFO: { 172 DisplayBytes(buf, data, sizeof(siginfo_t)); 173 LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData()); 174 break; 175 } 176 case PTRACE_SETREGSET: { 177 // Extract iov_base from data, which is a pointer to the struct iovec 178 DisplayBytes(buf, *(void **)data, data_size); 179 LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData()); 180 break; 181 } 182 default: {} 183 } 184 } 185 186 static constexpr unsigned k_ptrace_word_size = sizeof(void *); 187 static_assert(sizeof(long) >= k_ptrace_word_size, 188 "Size of long must be larger than ptrace word size"); 189 } // end of anonymous namespace 190 191 // Simple helper function to ensure flags are enabled on the given file 192 // descriptor. 193 static Status EnsureFDFlags(int fd, int flags) { 194 Status error; 195 196 int status = fcntl(fd, F_GETFL); 197 if (status == -1) { 198 error.SetErrorToErrno(); 199 return error; 200 } 201 202 if (fcntl(fd, F_SETFL, status | flags) == -1) { 203 error.SetErrorToErrno(); 204 return error; 205 } 206 207 return error; 208 } 209 210 // ----------------------------------------------------------------------------- 211 // Public Static Methods 212 // ----------------------------------------------------------------------------- 213 214 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 215 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info, 216 NativeDelegate &native_delegate, 217 MainLoop &mainloop) const { 218 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 219 220 MaybeLogLaunchInfo(launch_info); 221 222 Status status; 223 ::pid_t pid = ProcessLauncherPosixFork() 224 .LaunchProcess(launch_info, status) 225 .GetProcessId(); 226 LLDB_LOG(log, "pid = {0:x}", pid); 227 if (status.Fail()) { 228 LLDB_LOG(log, "failed to launch process: {0}", status); 229 return status.ToError(); 230 } 231 232 // Wait for the child process to trap on its call to execve. 233 int wstatus; 234 ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0); 235 assert(wpid == pid); 236 (void)wpid; 237 if (!WIFSTOPPED(wstatus)) { 238 LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}", 239 WaitStatus::Decode(wstatus)); 240 return llvm::make_error<StringError>("Could not sync with inferior process", 241 llvm::inconvertibleErrorCode()); 242 } 243 LLDB_LOG(log, "inferior started, now in stopped state"); 244 245 ProcessInstanceInfo Info; 246 if (!Host::GetProcessInfo(pid, Info)) { 247 return llvm::make_error<StringError>("Cannot get process architecture", 248 llvm::inconvertibleErrorCode()); 249 } 250 251 // Set the architecture to the exe architecture. 252 LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid, 253 Info.GetArchitecture().GetArchitectureName()); 254 255 status = SetDefaultPtraceOpts(pid); 256 if (status.Fail()) { 257 LLDB_LOG(log, "failed to set default ptrace options: {0}", status); 258 return status.ToError(); 259 } 260 261 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 262 pid, launch_info.GetPTY().ReleaseMasterFileDescriptor(), native_delegate, 263 Info.GetArchitecture(), mainloop, {pid})); 264 } 265 266 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 267 NativeProcessLinux::Factory::Attach( 268 lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate, 269 MainLoop &mainloop) const { 270 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 271 LLDB_LOG(log, "pid = {0:x}", pid); 272 273 // Retrieve the architecture for the running process. 274 ProcessInstanceInfo Info; 275 if (!Host::GetProcessInfo(pid, Info)) { 276 return llvm::make_error<StringError>("Cannot get process architecture", 277 llvm::inconvertibleErrorCode()); 278 } 279 280 auto tids_or = NativeProcessLinux::Attach(pid); 281 if (!tids_or) 282 return tids_or.takeError(); 283 284 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 285 pid, -1, native_delegate, Info.GetArchitecture(), mainloop, *tids_or)); 286 } 287 288 // ----------------------------------------------------------------------------- 289 // Public Instance Methods 290 // ----------------------------------------------------------------------------- 291 292 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd, 293 NativeDelegate &delegate, 294 const ArchSpec &arch, MainLoop &mainloop, 295 llvm::ArrayRef<::pid_t> tids) 296 : NativeProcessProtocol(pid, terminal_fd, delegate), m_arch(arch) { 297 if (m_terminal_fd != -1) { 298 Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 299 assert(status.Success()); 300 } 301 302 Status status; 303 m_sigchld_handle = mainloop.RegisterSignal( 304 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status); 305 assert(m_sigchld_handle && status.Success()); 306 307 for (const auto &tid : tids) { 308 NativeThreadLinux &thread = AddThread(tid); 309 thread.SetStoppedBySignal(SIGSTOP); 310 ThreadWasCreated(thread); 311 } 312 313 // Let our process instance know the thread has stopped. 314 SetCurrentThreadID(tids[0]); 315 SetState(StateType::eStateStopped, false); 316 317 // Proccess any signals we received before installing our handler 318 SigchldHandler(); 319 } 320 321 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) { 322 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 323 324 Status status; 325 // Use a map to keep track of the threads which we have attached/need to 326 // attach. 327 Host::TidMap tids_to_attach; 328 while (Host::FindProcessThreads(pid, tids_to_attach)) { 329 for (Host::TidMap::iterator it = tids_to_attach.begin(); 330 it != tids_to_attach.end();) { 331 if (it->second == false) { 332 lldb::tid_t tid = it->first; 333 334 // Attach to the requested process. 335 // An attach will cause the thread to stop with a SIGSTOP. 336 if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) { 337 // No such thread. The thread may have exited. More error handling 338 // may be needed. 339 if (status.GetError() == ESRCH) { 340 it = tids_to_attach.erase(it); 341 continue; 342 } 343 return status.ToError(); 344 } 345 346 int wpid = 347 llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL); 348 // Need to use __WALL otherwise we receive an error with errno=ECHLD At 349 // this point we should have a thread stopped if waitpid succeeds. 350 if (wpid < 0) { 351 // No such thread. The thread may have exited. More error handling 352 // may be needed. 353 if (errno == ESRCH) { 354 it = tids_to_attach.erase(it); 355 continue; 356 } 357 return llvm::errorCodeToError( 358 std::error_code(errno, std::generic_category())); 359 } 360 361 if ((status = SetDefaultPtraceOpts(tid)).Fail()) 362 return status.ToError(); 363 364 LLDB_LOG(log, "adding tid = {0}", tid); 365 it->second = true; 366 } 367 368 // move the loop forward 369 ++it; 370 } 371 } 372 373 size_t tid_count = tids_to_attach.size(); 374 if (tid_count == 0) 375 return llvm::make_error<StringError>("No such process", 376 llvm::inconvertibleErrorCode()); 377 378 std::vector<::pid_t> tids; 379 tids.reserve(tid_count); 380 for (const auto &p : tids_to_attach) 381 tids.push_back(p.first); 382 return std::move(tids); 383 } 384 385 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) { 386 long ptrace_opts = 0; 387 388 // Have the child raise an event on exit. This is used to keep the child in 389 // limbo until it is destroyed. 390 ptrace_opts |= PTRACE_O_TRACEEXIT; 391 392 // Have the tracer trace threads which spawn in the inferior process. 393 // TODO: if we want to support tracing the inferiors' child, add the 394 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) 395 ptrace_opts |= PTRACE_O_TRACECLONE; 396 397 // Have the tracer notify us before execve returns (needed to disable legacy 398 // SIGTRAP generation) 399 ptrace_opts |= PTRACE_O_TRACEEXEC; 400 401 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts); 402 } 403 404 // Handles all waitpid events from the inferior process. 405 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited, 406 WaitStatus status) { 407 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 408 409 // Certain activities differ based on whether the pid is the tid of the main 410 // thread. 411 const bool is_main_thread = (pid == GetID()); 412 413 // Handle when the thread exits. 414 if (exited) { 415 LLDB_LOG(log, 416 "got exit signal({0}) , tid = {1} ({2} main thread), process " 417 "state = {3}", 418 signal, pid, is_main_thread ? "is" : "is not", GetState()); 419 420 // This is a thread that exited. Ensure we're not tracking it anymore. 421 StopTrackingThread(pid); 422 423 if (is_main_thread) { 424 // The main thread exited. We're done monitoring. Report to delegate. 425 SetExitStatus(status, true); 426 427 // Notify delegate that our process has exited. 428 SetState(StateType::eStateExited, true); 429 } 430 return; 431 } 432 433 siginfo_t info; 434 const auto info_err = GetSignalInfo(pid, &info); 435 auto thread_sp = GetThreadByID(pid); 436 437 if (!thread_sp) { 438 // Normally, the only situation when we cannot find the thread is if we 439 // have just received a new thread notification. This is indicated by 440 // GetSignalInfo() returning si_code == SI_USER and si_pid == 0 441 LLDB_LOG(log, "received notification about an unknown tid {0}.", pid); 442 443 if (info_err.Fail()) { 444 LLDB_LOG(log, 445 "(tid {0}) GetSignalInfo failed ({1}). " 446 "Ingoring this notification.", 447 pid, info_err); 448 return; 449 } 450 451 LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code, 452 info.si_pid); 453 454 NativeThreadLinux &thread = AddThread(pid); 455 456 // Resume the newly created thread. 457 ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 458 ThreadWasCreated(thread); 459 return; 460 } 461 462 // Get details on the signal raised. 463 if (info_err.Success()) { 464 // We have retrieved the signal info. Dispatch appropriately. 465 if (info.si_signo == SIGTRAP) 466 MonitorSIGTRAP(info, *thread_sp); 467 else 468 MonitorSignal(info, *thread_sp, exited); 469 } else { 470 if (info_err.GetError() == EINVAL) { 471 // This is a group stop reception for this tid. We can reach here if we 472 // reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the tracee, 473 // triggering the group-stop mechanism. Normally receiving these would 474 // stop the process, pending a SIGCONT. Simulating this state in a 475 // debugger is hard and is generally not needed (one use case is 476 // debugging background task being managed by a shell). For general use, 477 // it is sufficient to stop the process in a signal-delivery stop which 478 // happens before the group stop. This done by MonitorSignal and works 479 // correctly for all signals. 480 LLDB_LOG(log, 481 "received a group stop for pid {0} tid {1}. Transparent " 482 "handling of group stops not supported, resuming the " 483 "thread.", 484 GetID(), pid); 485 ResumeThread(*thread_sp, thread_sp->GetState(), 486 LLDB_INVALID_SIGNAL_NUMBER); 487 } else { 488 // ptrace(GETSIGINFO) failed (but not due to group-stop). 489 490 // A return value of ESRCH means the thread/process is no longer on the 491 // system, so it was killed somehow outside of our control. Either way, 492 // we can't do anything with it anymore. 493 494 // Stop tracking the metadata for the thread since it's entirely off the 495 // system now. 496 const bool thread_found = StopTrackingThread(pid); 497 498 LLDB_LOG(log, 499 "GetSignalInfo failed: {0}, tid = {1}, signal = {2}, " 500 "status = {3}, main_thread = {4}, thread_found: {5}", 501 info_err, pid, signal, status, is_main_thread, thread_found); 502 503 if (is_main_thread) { 504 // Notify the delegate - our process is not available but appears to 505 // have been killed outside our control. Is eStateExited the right 506 // exit state in this case? 507 SetExitStatus(status, true); 508 SetState(StateType::eStateExited, true); 509 } else { 510 // This thread was pulled out from underneath us. Anything to do here? 511 // Do we want to do an all stop? 512 LLDB_LOG(log, 513 "pid {0} tid {1} non-main thread exit occurred, didn't " 514 "tell delegate anything since thread disappeared out " 515 "from underneath us", 516 GetID(), pid); 517 } 518 } 519 } 520 } 521 522 void NativeProcessLinux::WaitForNewThread(::pid_t tid) { 523 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 524 525 if (GetThreadByID(tid)) { 526 // We are already tracking the thread - we got the event on the new thread 527 // (see MonitorSignal) before this one. We are done. 528 return; 529 } 530 531 // The thread is not tracked yet, let's wait for it to appear. 532 int status = -1; 533 LLDB_LOG(log, 534 "received thread creation event for tid {0}. tid not tracked " 535 "yet, waiting for thread to appear...", 536 tid); 537 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, &status, __WALL); 538 // Since we are waiting on a specific tid, this must be the creation event. 539 // But let's do some checks just in case. 540 if (wait_pid != tid) { 541 LLDB_LOG(log, 542 "waiting for tid {0} failed. Assuming the thread has " 543 "disappeared in the meantime", 544 tid); 545 // The only way I know of this could happen is if the whole process was 546 // SIGKILLed in the mean time. In any case, we can't do anything about that 547 // now. 548 return; 549 } 550 if (WIFEXITED(status)) { 551 LLDB_LOG(log, 552 "waiting for tid {0} returned an 'exited' event. Not " 553 "tracking the thread.", 554 tid); 555 // Also a very improbable event. 556 return; 557 } 558 559 LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid); 560 NativeThreadLinux &new_thread = AddThread(tid); 561 562 ResumeThread(new_thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 563 ThreadWasCreated(new_thread); 564 } 565 566 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, 567 NativeThreadLinux &thread) { 568 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 569 const bool is_main_thread = (thread.GetID() == GetID()); 570 571 assert(info.si_signo == SIGTRAP && "Unexpected child signal!"); 572 573 switch (info.si_code) { 574 // TODO: these two cases are required if we want to support tracing of the 575 // inferiors' children. We'd need this to debug a monitor. case (SIGTRAP | 576 // (PTRACE_EVENT_FORK << 8)): case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 577 578 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { 579 // This is the notification on the parent thread which informs us of new 580 // thread creation. We don't want to do anything with the parent thread so 581 // we just resume it. In case we want to implement "break on thread 582 // creation" functionality, we would need to stop here. 583 584 unsigned long event_message = 0; 585 if (GetEventMessage(thread.GetID(), &event_message).Fail()) { 586 LLDB_LOG(log, 587 "pid {0} received thread creation event but " 588 "GetEventMessage failed so we don't know the new tid", 589 thread.GetID()); 590 } else 591 WaitForNewThread(event_message); 592 593 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 594 break; 595 } 596 597 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): { 598 LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP); 599 600 // Exec clears any pending notifications. 601 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 602 603 // Remove all but the main thread here. Linux fork creates a new process 604 // which only copies the main thread. 605 LLDB_LOG(log, "exec received, stop tracking all but main thread"); 606 607 for (auto i = m_threads.begin(); i != m_threads.end();) { 608 if ((*i)->GetID() == GetID()) 609 i = m_threads.erase(i); 610 else 611 ++i; 612 } 613 assert(m_threads.size() == 1); 614 auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get()); 615 616 SetCurrentThreadID(main_thread->GetID()); 617 main_thread->SetStoppedByExec(); 618 619 // Tell coordinator about about the "new" (since exec) stopped main thread. 620 ThreadWasCreated(*main_thread); 621 622 // Let our delegate know we have just exec'd. 623 NotifyDidExec(); 624 625 // Let the process know we're stopped. 626 StopRunningThreads(main_thread->GetID()); 627 628 break; 629 } 630 631 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { 632 // The inferior process or one of its threads is about to exit. We don't 633 // want to do anything with the thread so we just resume it. In case we 634 // want to implement "break on thread exit" functionality, we would need to 635 // stop here. 636 637 unsigned long data = 0; 638 if (GetEventMessage(thread.GetID(), &data).Fail()) 639 data = -1; 640 641 LLDB_LOG(log, 642 "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, " 643 "WIFSIGNALED={2}, pid = {3}, main_thread = {4}", 644 data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(), 645 is_main_thread); 646 647 648 StateType state = thread.GetState(); 649 if (!StateIsRunningState(state)) { 650 // Due to a kernel bug, we may sometimes get this stop after the inferior 651 // gets a SIGKILL. This confuses our state tracking logic in 652 // ResumeThread(), since normally, we should not be receiving any ptrace 653 // events while the inferior is stopped. This makes sure that the 654 // inferior is resumed and exits normally. 655 state = eStateRunning; 656 } 657 ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); 658 659 break; 660 } 661 662 case 0: 663 case TRAP_TRACE: // We receive this on single stepping. 664 case TRAP_HWBKPT: // We receive this on watchpoint hit 665 { 666 // If a watchpoint was hit, report it 667 uint32_t wp_index; 668 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 669 wp_index, (uintptr_t)info.si_addr); 670 if (error.Fail()) 671 LLDB_LOG(log, 672 "received error while checking for watchpoint hits, pid = " 673 "{0}, error = {1}", 674 thread.GetID(), error); 675 if (wp_index != LLDB_INVALID_INDEX32) { 676 MonitorWatchpoint(thread, wp_index); 677 break; 678 } 679 680 // If a breakpoint was hit, report it 681 uint32_t bp_index; 682 error = thread.GetRegisterContext().GetHardwareBreakHitIndex( 683 bp_index, (uintptr_t)info.si_addr); 684 if (error.Fail()) 685 LLDB_LOG(log, "received error while checking for hardware " 686 "breakpoint hits, pid = {0}, error = {1}", 687 thread.GetID(), error); 688 if (bp_index != LLDB_INVALID_INDEX32) { 689 MonitorBreakpoint(thread); 690 break; 691 } 692 693 // Otherwise, report step over 694 MonitorTrace(thread); 695 break; 696 } 697 698 case SI_KERNEL: 699 #if defined __mips__ 700 // For mips there is no special signal for watchpoint So we check for 701 // watchpoint in kernel trap 702 { 703 // If a watchpoint was hit, report it 704 uint32_t wp_index; 705 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 706 wp_index, LLDB_INVALID_ADDRESS); 707 if (error.Fail()) 708 LLDB_LOG(log, 709 "received error while checking for watchpoint hits, pid = " 710 "{0}, error = {1}", 711 thread.GetID(), error); 712 if (wp_index != LLDB_INVALID_INDEX32) { 713 MonitorWatchpoint(thread, wp_index); 714 break; 715 } 716 } 717 // NO BREAK 718 #endif 719 case TRAP_BRKPT: 720 MonitorBreakpoint(thread); 721 break; 722 723 case SIGTRAP: 724 case (SIGTRAP | 0x80): 725 LLDB_LOG( 726 log, 727 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 728 info.si_code, GetID(), thread.GetID()); 729 730 // Ignore these signals until we know more about them. 731 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 732 break; 733 734 default: 735 LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}", 736 info.si_code, GetID(), thread.GetID()); 737 MonitorSignal(info, thread, false); 738 break; 739 } 740 } 741 742 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) { 743 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 744 LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID()); 745 746 // This thread is currently stopped. 747 thread.SetStoppedByTrace(); 748 749 StopRunningThreads(thread.GetID()); 750 } 751 752 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) { 753 Log *log( 754 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 755 LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID()); 756 757 // Mark the thread as stopped at breakpoint. 758 thread.SetStoppedByBreakpoint(); 759 FixupBreakpointPCAsNeeded(thread); 760 761 if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != 762 m_threads_stepping_with_breakpoint.end()) 763 thread.SetStoppedByTrace(); 764 765 StopRunningThreads(thread.GetID()); 766 } 767 768 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, 769 uint32_t wp_index) { 770 Log *log( 771 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); 772 LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}", 773 thread.GetID(), wp_index); 774 775 // Mark the thread as stopped at watchpoint. The address is at 776 // (lldb::addr_t)info->si_addr if we need it. 777 thread.SetStoppedByWatchpoint(wp_index); 778 779 // We need to tell all other running threads before we notify the delegate 780 // about this stop. 781 StopRunningThreads(thread.GetID()); 782 } 783 784 void NativeProcessLinux::MonitorSignal(const siginfo_t &info, 785 NativeThreadLinux &thread, bool exited) { 786 const int signo = info.si_signo; 787 const bool is_from_llgs = info.si_pid == getpid(); 788 789 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 790 791 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 792 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2) 793 // or raise(3). Similarly for tgkill(2) on Linux. 794 // 795 // IOW, user generated signals never generate what we consider to be a 796 // "crash". 797 // 798 // Similarly, ACK signals generated by this monitor. 799 800 // Handle the signal. 801 LLDB_LOG(log, 802 "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, " 803 "waitpid pid = {4})", 804 Host::GetSignalAsCString(signo), signo, info.si_code, 805 thread.GetID()); 806 807 // Check for thread stop notification. 808 if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) { 809 // This is a tgkill()-based stop. 810 LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID()); 811 812 // Check that we're not already marked with a stop reason. Note this thread 813 // really shouldn't already be marked as stopped - if we were, that would 814 // imply that the kernel signaled us with the thread stopping which we 815 // handled and marked as stopped, and that, without an intervening resume, 816 // we received another stop. It is more likely that we are missing the 817 // marking of a run state somewhere if we find that the thread was marked 818 // as stopped. 819 const StateType thread_state = thread.GetState(); 820 if (!StateIsStoppedState(thread_state, false)) { 821 // An inferior thread has stopped because of a SIGSTOP we have sent it. 822 // Generally, these are not important stops and we don't want to report 823 // them as they are just used to stop other threads when one thread (the 824 // one with the *real* stop reason) hits a breakpoint (watchpoint, 825 // etc...). However, in the case of an asynchronous Interrupt(), this 826 // *is* the real stop reason, so we leave the signal intact if this is 827 // the thread that was chosen as the triggering thread. 828 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 829 if (m_pending_notification_tid == thread.GetID()) 830 thread.SetStoppedBySignal(SIGSTOP, &info); 831 else 832 thread.SetStoppedWithNoReason(); 833 834 SetCurrentThreadID(thread.GetID()); 835 SignalIfAllThreadsStopped(); 836 } else { 837 // We can end up here if stop was initiated by LLGS but by this time a 838 // thread stop has occurred - maybe initiated by another event. 839 Status error = ResumeThread(thread, thread.GetState(), 0); 840 if (error.Fail()) 841 LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(), 842 error); 843 } 844 } else { 845 LLDB_LOG(log, 846 "pid {0} tid {1}, thread was already marked as a stopped " 847 "state (state={2}), leaving stop signal as is", 848 GetID(), thread.GetID(), thread_state); 849 SignalIfAllThreadsStopped(); 850 } 851 852 // Done handling. 853 return; 854 } 855 856 // Check if debugger should stop at this signal or just ignore it and resume 857 // the inferior. 858 if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) { 859 ResumeThread(thread, thread.GetState(), signo); 860 return; 861 } 862 863 // This thread is stopped. 864 LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo)); 865 thread.SetStoppedBySignal(signo, &info); 866 867 // Send a stop to the debugger after we get all other threads to stop. 868 StopRunningThreads(thread.GetID()); 869 } 870 871 namespace { 872 873 struct EmulatorBaton { 874 NativeProcessLinux &m_process; 875 NativeRegisterContext &m_reg_context; 876 877 // eRegisterKindDWARF -> RegsiterValue 878 std::unordered_map<uint32_t, RegisterValue> m_register_values; 879 880 EmulatorBaton(NativeProcessLinux &process, NativeRegisterContext ®_context) 881 : m_process(process), m_reg_context(reg_context) {} 882 }; 883 884 } // anonymous namespace 885 886 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton, 887 const EmulateInstruction::Context &context, 888 lldb::addr_t addr, void *dst, size_t length) { 889 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 890 891 size_t bytes_read; 892 emulator_baton->m_process.ReadMemory(addr, dst, length, bytes_read); 893 return bytes_read; 894 } 895 896 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton, 897 const RegisterInfo *reg_info, 898 RegisterValue ®_value) { 899 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 900 901 auto it = emulator_baton->m_register_values.find( 902 reg_info->kinds[eRegisterKindDWARF]); 903 if (it != emulator_baton->m_register_values.end()) { 904 reg_value = it->second; 905 return true; 906 } 907 908 // The emulator only fill in the dwarf regsiter numbers (and in some case the 909 // generic register numbers). Get the full register info from the register 910 // context based on the dwarf register numbers. 911 const RegisterInfo *full_reg_info = 912 emulator_baton->m_reg_context.GetRegisterInfo( 913 eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]); 914 915 Status error = 916 emulator_baton->m_reg_context.ReadRegister(full_reg_info, reg_value); 917 if (error.Success()) 918 return true; 919 920 return false; 921 } 922 923 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton, 924 const EmulateInstruction::Context &context, 925 const RegisterInfo *reg_info, 926 const RegisterValue ®_value) { 927 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 928 emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = 929 reg_value; 930 return true; 931 } 932 933 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton, 934 const EmulateInstruction::Context &context, 935 lldb::addr_t addr, const void *dst, 936 size_t length) { 937 return length; 938 } 939 940 static lldb::addr_t ReadFlags(NativeRegisterContext ®siter_context) { 941 const RegisterInfo *flags_info = regsiter_context.GetRegisterInfo( 942 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 943 return regsiter_context.ReadRegisterAsUnsigned(flags_info, 944 LLDB_INVALID_ADDRESS); 945 } 946 947 Status 948 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) { 949 Status error; 950 NativeRegisterContext& register_context = thread.GetRegisterContext(); 951 952 std::unique_ptr<EmulateInstruction> emulator_ap( 953 EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, 954 nullptr)); 955 956 if (emulator_ap == nullptr) 957 return Status("Instruction emulator not found!"); 958 959 EmulatorBaton baton(*this, register_context); 960 emulator_ap->SetBaton(&baton); 961 emulator_ap->SetReadMemCallback(&ReadMemoryCallback); 962 emulator_ap->SetReadRegCallback(&ReadRegisterCallback); 963 emulator_ap->SetWriteMemCallback(&WriteMemoryCallback); 964 emulator_ap->SetWriteRegCallback(&WriteRegisterCallback); 965 966 if (!emulator_ap->ReadInstruction()) 967 return Status("Read instruction failed!"); 968 969 bool emulation_result = 970 emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC); 971 972 const RegisterInfo *reg_info_pc = register_context.GetRegisterInfo( 973 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); 974 const RegisterInfo *reg_info_flags = register_context.GetRegisterInfo( 975 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 976 977 auto pc_it = 978 baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]); 979 auto flags_it = 980 baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]); 981 982 lldb::addr_t next_pc; 983 lldb::addr_t next_flags; 984 if (emulation_result) { 985 assert(pc_it != baton.m_register_values.end() && 986 "Emulation was successfull but PC wasn't updated"); 987 next_pc = pc_it->second.GetAsUInt64(); 988 989 if (flags_it != baton.m_register_values.end()) 990 next_flags = flags_it->second.GetAsUInt64(); 991 else 992 next_flags = ReadFlags(register_context); 993 } else if (pc_it == baton.m_register_values.end()) { 994 // Emulate instruction failed and it haven't changed PC. Advance PC with 995 // the size of the current opcode because the emulation of all 996 // PC modifying instruction should be successful. The failure most 997 // likely caused by a not supported instruction which don't modify PC. 998 next_pc = register_context.GetPC() + emulator_ap->GetOpcode().GetByteSize(); 999 next_flags = ReadFlags(register_context); 1000 } else { 1001 // The instruction emulation failed after it modified the PC. It is an 1002 // unknown error where we can't continue because the next instruction is 1003 // modifying the PC but we don't know how. 1004 return Status("Instruction emulation failed unexpectedly."); 1005 } 1006 1007 if (m_arch.GetMachine() == llvm::Triple::arm) { 1008 if (next_flags & 0x20) { 1009 // Thumb mode 1010 error = SetSoftwareBreakpoint(next_pc, 2); 1011 } else { 1012 // Arm mode 1013 error = SetSoftwareBreakpoint(next_pc, 4); 1014 } 1015 } else if (m_arch.GetMachine() == llvm::Triple::mips64 || 1016 m_arch.GetMachine() == llvm::Triple::mips64el || 1017 m_arch.GetMachine() == llvm::Triple::mips || 1018 m_arch.GetMachine() == llvm::Triple::mipsel || 1019 m_arch.GetMachine() == llvm::Triple::ppc64le) 1020 error = SetSoftwareBreakpoint(next_pc, 4); 1021 else { 1022 // No size hint is given for the next breakpoint 1023 error = SetSoftwareBreakpoint(next_pc, 0); 1024 } 1025 1026 // If setting the breakpoint fails because next_pc is out of the address 1027 // space, ignore it and let the debugee segfault. 1028 if (error.GetError() == EIO || error.GetError() == EFAULT) { 1029 return Status(); 1030 } else if (error.Fail()) 1031 return error; 1032 1033 m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc}); 1034 1035 return Status(); 1036 } 1037 1038 bool NativeProcessLinux::SupportHardwareSingleStepping() const { 1039 if (m_arch.GetMachine() == llvm::Triple::arm || 1040 m_arch.GetMachine() == llvm::Triple::mips64 || 1041 m_arch.GetMachine() == llvm::Triple::mips64el || 1042 m_arch.GetMachine() == llvm::Triple::mips || 1043 m_arch.GetMachine() == llvm::Triple::mipsel) 1044 return false; 1045 return true; 1046 } 1047 1048 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) { 1049 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1050 LLDB_LOG(log, "pid {0}", GetID()); 1051 1052 bool software_single_step = !SupportHardwareSingleStepping(); 1053 1054 if (software_single_step) { 1055 for (const auto &thread : m_threads) { 1056 assert(thread && "thread list should not contain NULL threads"); 1057 1058 const ResumeAction *const action = 1059 resume_actions.GetActionForThread(thread->GetID(), true); 1060 if (action == nullptr) 1061 continue; 1062 1063 if (action->state == eStateStepping) { 1064 Status error = SetupSoftwareSingleStepping( 1065 static_cast<NativeThreadLinux &>(*thread)); 1066 if (error.Fail()) 1067 return error; 1068 } 1069 } 1070 } 1071 1072 for (const auto &thread : m_threads) { 1073 assert(thread && "thread list should not contain NULL threads"); 1074 1075 const ResumeAction *const action = 1076 resume_actions.GetActionForThread(thread->GetID(), true); 1077 1078 if (action == nullptr) { 1079 LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(), 1080 thread->GetID()); 1081 continue; 1082 } 1083 1084 LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}", 1085 action->state, GetID(), thread->GetID()); 1086 1087 switch (action->state) { 1088 case eStateRunning: 1089 case eStateStepping: { 1090 // Run the thread, possibly feeding it the signal. 1091 const int signo = action->signal; 1092 ResumeThread(static_cast<NativeThreadLinux &>(*thread), action->state, 1093 signo); 1094 break; 1095 } 1096 1097 case eStateSuspended: 1098 case eStateStopped: 1099 llvm_unreachable("Unexpected state"); 1100 1101 default: 1102 return Status("NativeProcessLinux::%s (): unexpected state %s specified " 1103 "for pid %" PRIu64 ", tid %" PRIu64, 1104 __FUNCTION__, StateAsCString(action->state), GetID(), 1105 thread->GetID()); 1106 } 1107 } 1108 1109 return Status(); 1110 } 1111 1112 Status NativeProcessLinux::Halt() { 1113 Status error; 1114 1115 if (kill(GetID(), SIGSTOP) != 0) 1116 error.SetErrorToErrno(); 1117 1118 return error; 1119 } 1120 1121 Status NativeProcessLinux::Detach() { 1122 Status error; 1123 1124 // Stop monitoring the inferior. 1125 m_sigchld_handle.reset(); 1126 1127 // Tell ptrace to detach from the process. 1128 if (GetID() == LLDB_INVALID_PROCESS_ID) 1129 return error; 1130 1131 for (const auto &thread : m_threads) { 1132 Status e = Detach(thread->GetID()); 1133 if (e.Fail()) 1134 error = 1135 e; // Save the error, but still attempt to detach from other threads. 1136 } 1137 1138 m_processor_trace_monitor.clear(); 1139 m_pt_proces_trace_id = LLDB_INVALID_UID; 1140 1141 return error; 1142 } 1143 1144 Status NativeProcessLinux::Signal(int signo) { 1145 Status error; 1146 1147 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1148 LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo, 1149 Host::GetSignalAsCString(signo), GetID()); 1150 1151 if (kill(GetID(), signo)) 1152 error.SetErrorToErrno(); 1153 1154 return error; 1155 } 1156 1157 Status NativeProcessLinux::Interrupt() { 1158 // Pick a running thread (or if none, a not-dead stopped thread) as the 1159 // chosen thread that will be the stop-reason thread. 1160 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1161 1162 NativeThreadProtocol *running_thread = nullptr; 1163 NativeThreadProtocol *stopped_thread = nullptr; 1164 1165 LLDB_LOG(log, "selecting running thread for interrupt target"); 1166 for (const auto &thread : m_threads) { 1167 // If we have a running or stepping thread, we'll call that the target of 1168 // the interrupt. 1169 const auto thread_state = thread->GetState(); 1170 if (thread_state == eStateRunning || thread_state == eStateStepping) { 1171 running_thread = thread.get(); 1172 break; 1173 } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) { 1174 // Remember the first non-dead stopped thread. We'll use that as a 1175 // backup if there are no running threads. 1176 stopped_thread = thread.get(); 1177 } 1178 } 1179 1180 if (!running_thread && !stopped_thread) { 1181 Status error("found no running/stepping or live stopped threads as target " 1182 "for interrupt"); 1183 LLDB_LOG(log, "skipping due to error: {0}", error); 1184 1185 return error; 1186 } 1187 1188 NativeThreadProtocol *deferred_signal_thread = 1189 running_thread ? running_thread : stopped_thread; 1190 1191 LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(), 1192 running_thread ? "running" : "stopped", 1193 deferred_signal_thread->GetID()); 1194 1195 StopRunningThreads(deferred_signal_thread->GetID()); 1196 1197 return Status(); 1198 } 1199 1200 Status NativeProcessLinux::Kill() { 1201 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1202 LLDB_LOG(log, "pid {0}", GetID()); 1203 1204 Status error; 1205 1206 switch (m_state) { 1207 case StateType::eStateInvalid: 1208 case StateType::eStateExited: 1209 case StateType::eStateCrashed: 1210 case StateType::eStateDetached: 1211 case StateType::eStateUnloaded: 1212 // Nothing to do - the process is already dead. 1213 LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(), 1214 m_state); 1215 return error; 1216 1217 case StateType::eStateConnected: 1218 case StateType::eStateAttaching: 1219 case StateType::eStateLaunching: 1220 case StateType::eStateStopped: 1221 case StateType::eStateRunning: 1222 case StateType::eStateStepping: 1223 case StateType::eStateSuspended: 1224 // We can try to kill a process in these states. 1225 break; 1226 } 1227 1228 if (kill(GetID(), SIGKILL) != 0) { 1229 error.SetErrorToErrno(); 1230 return error; 1231 } 1232 1233 return error; 1234 } 1235 1236 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr, 1237 MemoryRegionInfo &range_info) { 1238 // FIXME review that the final memory region returned extends to the end of 1239 // the virtual address space, 1240 // with no perms if it is not mapped. 1241 1242 // Use an approach that reads memory regions from /proc/{pid}/maps. Assume 1243 // proc maps entries are in ascending order. 1244 // FIXME assert if we find differently. 1245 1246 if (m_supports_mem_region == LazyBool::eLazyBoolNo) { 1247 // We're done. 1248 return Status("unsupported"); 1249 } 1250 1251 Status error = PopulateMemoryRegionCache(); 1252 if (error.Fail()) { 1253 return error; 1254 } 1255 1256 lldb::addr_t prev_base_address = 0; 1257 1258 // FIXME start by finding the last region that is <= target address using 1259 // binary search. Data is sorted. 1260 // There can be a ton of regions on pthreads apps with lots of threads. 1261 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end(); 1262 ++it) { 1263 MemoryRegionInfo &proc_entry_info = it->first; 1264 1265 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 1266 assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) && 1267 "descending /proc/pid/maps entries detected, unexpected"); 1268 prev_base_address = proc_entry_info.GetRange().GetRangeBase(); 1269 UNUSED_IF_ASSERT_DISABLED(prev_base_address); 1270 1271 // If the target address comes before this entry, indicate distance to next 1272 // region. 1273 if (load_addr < proc_entry_info.GetRange().GetRangeBase()) { 1274 range_info.GetRange().SetRangeBase(load_addr); 1275 range_info.GetRange().SetByteSize( 1276 proc_entry_info.GetRange().GetRangeBase() - load_addr); 1277 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1278 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1279 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1280 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1281 1282 return error; 1283 } else if (proc_entry_info.GetRange().Contains(load_addr)) { 1284 // The target address is within the memory region we're processing here. 1285 range_info = proc_entry_info; 1286 return error; 1287 } 1288 1289 // The target memory address comes somewhere after the region we just 1290 // parsed. 1291 } 1292 1293 // If we made it here, we didn't find an entry that contained the given 1294 // address. Return the load_addr as start and the amount of bytes betwwen 1295 // load address and the end of the memory as size. 1296 range_info.GetRange().SetRangeBase(load_addr); 1297 range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS); 1298 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1299 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1300 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1301 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1302 return error; 1303 } 1304 1305 Status NativeProcessLinux::PopulateMemoryRegionCache() { 1306 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1307 1308 // If our cache is empty, pull the latest. There should always be at least 1309 // one memory region if memory region handling is supported. 1310 if (!m_mem_region_cache.empty()) { 1311 LLDB_LOG(log, "reusing {0} cached memory region entries", 1312 m_mem_region_cache.size()); 1313 return Status(); 1314 } 1315 1316 auto BufferOrError = getProcFile(GetID(), "maps"); 1317 if (!BufferOrError) { 1318 m_supports_mem_region = LazyBool::eLazyBoolNo; 1319 return BufferOrError.getError(); 1320 } 1321 Status Result; 1322 ParseLinuxMapRegions(BufferOrError.get()->getBuffer(), 1323 [&](const MemoryRegionInfo &Info, const Status &ST) { 1324 if (ST.Success()) { 1325 FileSpec file_spec(Info.GetName().GetCString()); 1326 FileSystem::Instance().Resolve(file_spec); 1327 m_mem_region_cache.emplace_back(Info, file_spec); 1328 return true; 1329 } else { 1330 m_supports_mem_region = LazyBool::eLazyBoolNo; 1331 LLDB_LOG(log, "failed to parse proc maps: {0}", ST); 1332 Result = ST; 1333 return false; 1334 } 1335 }); 1336 if (Result.Fail()) 1337 return Result; 1338 1339 if (m_mem_region_cache.empty()) { 1340 // No entries after attempting to read them. This shouldn't happen if 1341 // /proc/{pid}/maps is supported. Assume we don't support map entries via 1342 // procfs. 1343 m_supports_mem_region = LazyBool::eLazyBoolNo; 1344 LLDB_LOG(log, 1345 "failed to find any procfs maps entries, assuming no support " 1346 "for memory region metadata retrieval"); 1347 return Status("not supported"); 1348 } 1349 1350 LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps", 1351 m_mem_region_cache.size(), GetID()); 1352 1353 // We support memory retrieval, remember that. 1354 m_supports_mem_region = LazyBool::eLazyBoolYes; 1355 return Status(); 1356 } 1357 1358 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) { 1359 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1360 LLDB_LOG(log, "newBumpId={0}", newBumpId); 1361 LLDB_LOG(log, "clearing {0} entries from memory region cache", 1362 m_mem_region_cache.size()); 1363 m_mem_region_cache.clear(); 1364 } 1365 1366 Status NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, 1367 lldb::addr_t &addr) { 1368 // FIXME implementing this requires the equivalent of 1369 // InferiorCallPOSIX::InferiorCallMmap, which depends on functional ThreadPlans 1370 // working with Native*Protocol. 1371 #if 1 1372 return Status("not implemented yet"); 1373 #else 1374 addr = LLDB_INVALID_ADDRESS; 1375 1376 unsigned prot = 0; 1377 if (permissions & lldb::ePermissionsReadable) 1378 prot |= eMmapProtRead; 1379 if (permissions & lldb::ePermissionsWritable) 1380 prot |= eMmapProtWrite; 1381 if (permissions & lldb::ePermissionsExecutable) 1382 prot |= eMmapProtExec; 1383 1384 // TODO implement this directly in NativeProcessLinux 1385 // (and lift to NativeProcessPOSIX if/when that class is refactored out). 1386 if (InferiorCallMmap(this, addr, 0, size, prot, 1387 eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { 1388 m_addr_to_mmap_size[addr] = size; 1389 return Status(); 1390 } else { 1391 addr = LLDB_INVALID_ADDRESS; 1392 return Status("unable to allocate %" PRIu64 1393 " bytes of memory with permissions %s", 1394 size, GetPermissionsAsCString(permissions)); 1395 } 1396 #endif 1397 } 1398 1399 Status NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) { 1400 // FIXME see comments in AllocateMemory - required lower-level 1401 // bits not in place yet (ThreadPlans) 1402 return Status("not implemented"); 1403 } 1404 1405 lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress() { 1406 // punt on this for now 1407 return LLDB_INVALID_ADDRESS; 1408 } 1409 1410 size_t NativeProcessLinux::UpdateThreads() { 1411 // The NativeProcessLinux monitoring threads are always up to date with 1412 // respect to thread state and they keep the thread list populated properly. 1413 // All this method needs to do is return the thread count. 1414 return m_threads.size(); 1415 } 1416 1417 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size, 1418 bool hardware) { 1419 if (hardware) 1420 return SetHardwareBreakpoint(addr, size); 1421 else 1422 return SetSoftwareBreakpoint(addr, size); 1423 } 1424 1425 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) { 1426 if (hardware) 1427 return RemoveHardwareBreakpoint(addr); 1428 else 1429 return NativeProcessProtocol::RemoveBreakpoint(addr); 1430 } 1431 1432 llvm::Expected<llvm::ArrayRef<uint8_t>> 1433 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(size_t size_hint) { 1434 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 1435 // linux kernel does otherwise. 1436 static const uint8_t g_arm_opcode[] = {0xf0, 0x01, 0xf0, 0xe7}; 1437 static const uint8_t g_thumb_opcode[] = {0x01, 0xde}; 1438 1439 switch (GetArchitecture().GetMachine()) { 1440 case llvm::Triple::arm: 1441 switch (size_hint) { 1442 case 2: 1443 return llvm::makeArrayRef(g_thumb_opcode); 1444 case 4: 1445 return llvm::makeArrayRef(g_arm_opcode); 1446 default: 1447 return llvm::createStringError(llvm::inconvertibleErrorCode(), 1448 "Unrecognised trap opcode size hint!"); 1449 } 1450 default: 1451 return NativeProcessProtocol::GetSoftwareBreakpointTrapOpcode(size_hint); 1452 } 1453 } 1454 1455 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size, 1456 size_t &bytes_read) { 1457 if (ProcessVmReadvSupported()) { 1458 // The process_vm_readv path is about 50 times faster than ptrace api. We 1459 // want to use this syscall if it is supported. 1460 1461 const ::pid_t pid = GetID(); 1462 1463 struct iovec local_iov, remote_iov; 1464 local_iov.iov_base = buf; 1465 local_iov.iov_len = size; 1466 remote_iov.iov_base = reinterpret_cast<void *>(addr); 1467 remote_iov.iov_len = size; 1468 1469 bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0); 1470 const bool success = bytes_read == size; 1471 1472 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1473 LLDB_LOG(log, 1474 "using process_vm_readv to read {0} bytes from inferior " 1475 "address {1:x}: {2}", 1476 size, addr, success ? "Success" : llvm::sys::StrError(errno)); 1477 1478 if (success) 1479 return Status(); 1480 // else the call failed for some reason, let's retry the read using ptrace 1481 // api. 1482 } 1483 1484 unsigned char *dst = static_cast<unsigned char *>(buf); 1485 size_t remainder; 1486 long data; 1487 1488 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1489 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1490 1491 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { 1492 Status error = NativeProcessLinux::PtraceWrapper( 1493 PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data); 1494 if (error.Fail()) 1495 return error; 1496 1497 remainder = size - bytes_read; 1498 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1499 1500 // Copy the data into our buffer 1501 memcpy(dst, &data, remainder); 1502 1503 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1504 addr += k_ptrace_word_size; 1505 dst += k_ptrace_word_size; 1506 } 1507 return Status(); 1508 } 1509 1510 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, 1511 size_t size, size_t &bytes_written) { 1512 const unsigned char *src = static_cast<const unsigned char *>(buf); 1513 size_t remainder; 1514 Status error; 1515 1516 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1517 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1518 1519 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { 1520 remainder = size - bytes_written; 1521 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1522 1523 if (remainder == k_ptrace_word_size) { 1524 unsigned long data = 0; 1525 memcpy(&data, src, k_ptrace_word_size); 1526 1527 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1528 error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), 1529 (void *)addr, (void *)data); 1530 if (error.Fail()) 1531 return error; 1532 } else { 1533 unsigned char buff[8]; 1534 size_t bytes_read; 1535 error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read); 1536 if (error.Fail()) 1537 return error; 1538 1539 memcpy(buff, src, remainder); 1540 1541 size_t bytes_written_rec; 1542 error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec); 1543 if (error.Fail()) 1544 return error; 1545 1546 LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src, 1547 *(unsigned long *)buff); 1548 } 1549 1550 addr += k_ptrace_word_size; 1551 src += k_ptrace_word_size; 1552 } 1553 return error; 1554 } 1555 1556 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) { 1557 return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); 1558 } 1559 1560 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid, 1561 unsigned long *message) { 1562 return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); 1563 } 1564 1565 Status NativeProcessLinux::Detach(lldb::tid_t tid) { 1566 if (tid == LLDB_INVALID_THREAD_ID) 1567 return Status(); 1568 1569 return PtraceWrapper(PTRACE_DETACH, tid); 1570 } 1571 1572 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) { 1573 for (const auto &thread : m_threads) { 1574 assert(thread && "thread list should not contain NULL threads"); 1575 if (thread->GetID() == thread_id) { 1576 // We have this thread. 1577 return true; 1578 } 1579 } 1580 1581 // We don't have this thread. 1582 return false; 1583 } 1584 1585 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) { 1586 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1587 LLDB_LOG(log, "tid: {0})", thread_id); 1588 1589 bool found = false; 1590 for (auto it = m_threads.begin(); it != m_threads.end(); ++it) { 1591 if (*it && ((*it)->GetID() == thread_id)) { 1592 m_threads.erase(it); 1593 found = true; 1594 break; 1595 } 1596 } 1597 1598 if (found) 1599 StopTracingForThread(thread_id); 1600 SignalIfAllThreadsStopped(); 1601 return found; 1602 } 1603 1604 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id) { 1605 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD)); 1606 LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id); 1607 1608 assert(!HasThreadNoLock(thread_id) && 1609 "attempted to add a thread by id that already exists"); 1610 1611 // If this is the first thread, save it as the current thread 1612 if (m_threads.empty()) 1613 SetCurrentThreadID(thread_id); 1614 1615 m_threads.push_back(llvm::make_unique<NativeThreadLinux>(*this, thread_id)); 1616 1617 if (m_pt_proces_trace_id != LLDB_INVALID_UID) { 1618 auto traceMonitor = ProcessorTraceMonitor::Create( 1619 GetID(), thread_id, m_pt_process_trace_config, true); 1620 if (traceMonitor) { 1621 m_pt_traced_thread_group.insert(thread_id); 1622 m_processor_trace_monitor.insert( 1623 std::make_pair(thread_id, std::move(*traceMonitor))); 1624 } else { 1625 LLDB_LOG(log, "failed to start trace on thread {0}", thread_id); 1626 Status error(traceMonitor.takeError()); 1627 LLDB_LOG(log, "error {0}", error); 1628 } 1629 } 1630 1631 return static_cast<NativeThreadLinux &>(*m_threads.back()); 1632 } 1633 1634 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path, 1635 FileSpec &file_spec) { 1636 Status error = PopulateMemoryRegionCache(); 1637 if (error.Fail()) 1638 return error; 1639 1640 FileSpec module_file_spec(module_path); 1641 FileSystem::Instance().Resolve(module_file_spec); 1642 1643 file_spec.Clear(); 1644 for (const auto &it : m_mem_region_cache) { 1645 if (it.second.GetFilename() == module_file_spec.GetFilename()) { 1646 file_spec = it.second; 1647 return Status(); 1648 } 1649 } 1650 return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 1651 module_file_spec.GetFilename().AsCString(), GetID()); 1652 } 1653 1654 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name, 1655 lldb::addr_t &load_addr) { 1656 load_addr = LLDB_INVALID_ADDRESS; 1657 Status error = PopulateMemoryRegionCache(); 1658 if (error.Fail()) 1659 return error; 1660 1661 FileSpec file(file_name); 1662 for (const auto &it : m_mem_region_cache) { 1663 if (it.second == file) { 1664 load_addr = it.first.GetRange().GetRangeBase(); 1665 return Status(); 1666 } 1667 } 1668 return Status("No load address found for specified file."); 1669 } 1670 1671 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) { 1672 return static_cast<NativeThreadLinux *>( 1673 NativeProcessProtocol::GetThreadByID(tid)); 1674 } 1675 1676 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, 1677 lldb::StateType state, int signo) { 1678 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1679 LLDB_LOG(log, "tid: {0}", thread.GetID()); 1680 1681 // Before we do the resume below, first check if we have a pending stop 1682 // notification that is currently waiting for all threads to stop. This is 1683 // potentially a buggy situation since we're ostensibly waiting for threads 1684 // to stop before we send out the pending notification, and here we are 1685 // resuming one before we send out the pending stop notification. 1686 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 1687 LLDB_LOG(log, 1688 "about to resume tid {0} per explicit request but we have a " 1689 "pending stop notification (tid {1}) that is actively " 1690 "waiting for this thread to stop. Valid sequence of events?", 1691 thread.GetID(), m_pending_notification_tid); 1692 } 1693 1694 // Request a resume. We expect this to be synchronous and the system to 1695 // reflect it is running after this completes. 1696 switch (state) { 1697 case eStateRunning: { 1698 const auto resume_result = thread.Resume(signo); 1699 if (resume_result.Success()) 1700 SetState(eStateRunning, true); 1701 return resume_result; 1702 } 1703 case eStateStepping: { 1704 const auto step_result = thread.SingleStep(signo); 1705 if (step_result.Success()) 1706 SetState(eStateRunning, true); 1707 return step_result; 1708 } 1709 default: 1710 LLDB_LOG(log, "Unhandled state {0}.", state); 1711 llvm_unreachable("Unhandled state for resume"); 1712 } 1713 } 1714 1715 //===----------------------------------------------------------------------===// 1716 1717 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) { 1718 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1719 LLDB_LOG(log, "about to process event: (triggering_tid: {0})", 1720 triggering_tid); 1721 1722 m_pending_notification_tid = triggering_tid; 1723 1724 // Request a stop for all the thread stops that need to be stopped and are 1725 // not already known to be stopped. 1726 for (const auto &thread : m_threads) { 1727 if (StateIsRunningState(thread->GetState())) 1728 static_cast<NativeThreadLinux *>(thread.get())->RequestStop(); 1729 } 1730 1731 SignalIfAllThreadsStopped(); 1732 LLDB_LOG(log, "event processing done"); 1733 } 1734 1735 void NativeProcessLinux::SignalIfAllThreadsStopped() { 1736 if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) 1737 return; // No pending notification. Nothing to do. 1738 1739 for (const auto &thread_sp : m_threads) { 1740 if (StateIsRunningState(thread_sp->GetState())) 1741 return; // Some threads are still running. Don't signal yet. 1742 } 1743 1744 // We have a pending notification and all threads have stopped. 1745 Log *log( 1746 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 1747 1748 // Clear any temporary breakpoints we used to implement software single 1749 // stepping. 1750 for (const auto &thread_info : m_threads_stepping_with_breakpoint) { 1751 Status error = RemoveBreakpoint(thread_info.second); 1752 if (error.Fail()) 1753 LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}", 1754 thread_info.first, error); 1755 } 1756 m_threads_stepping_with_breakpoint.clear(); 1757 1758 // Notify the delegate about the stop 1759 SetCurrentThreadID(m_pending_notification_tid); 1760 SetState(StateType::eStateStopped, true); 1761 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 1762 } 1763 1764 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) { 1765 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1766 LLDB_LOG(log, "tid: {0}", thread.GetID()); 1767 1768 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && 1769 StateIsRunningState(thread.GetState())) { 1770 // We will need to wait for this new thread to stop as well before firing 1771 // the notification. 1772 thread.RequestStop(); 1773 } 1774 } 1775 1776 void NativeProcessLinux::SigchldHandler() { 1777 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1778 // Process all pending waitpid notifications. 1779 while (true) { 1780 int status = -1; 1781 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, -1, &status, 1782 __WALL | __WNOTHREAD | WNOHANG); 1783 1784 if (wait_pid == 0) 1785 break; // We are done. 1786 1787 if (wait_pid == -1) { 1788 Status error(errno, eErrorTypePOSIX); 1789 LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error); 1790 break; 1791 } 1792 1793 WaitStatus wait_status = WaitStatus::Decode(status); 1794 bool exited = wait_status.type == WaitStatus::Exit || 1795 (wait_status.type == WaitStatus::Signal && 1796 wait_pid == static_cast<::pid_t>(GetID())); 1797 1798 LLDB_LOG( 1799 log, 1800 "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}", 1801 wait_pid, wait_status, exited); 1802 1803 MonitorCallback(wait_pid, exited, wait_status); 1804 } 1805 } 1806 1807 // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets 1808 // errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) 1809 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, 1810 void *data, size_t data_size, 1811 long *result) { 1812 Status error; 1813 long int ret; 1814 1815 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 1816 1817 PtraceDisplayBytes(req, data, data_size); 1818 1819 errno = 0; 1820 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 1821 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 1822 *(unsigned int *)addr, data); 1823 else 1824 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 1825 addr, data); 1826 1827 if (ret == -1) 1828 error.SetErrorToErrno(); 1829 1830 if (result) 1831 *result = ret; 1832 1833 LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data, 1834 data_size, ret); 1835 1836 PtraceDisplayBytes(req, data, data_size); 1837 1838 if (error.Fail()) 1839 LLDB_LOG(log, "ptrace() failed: {0}", error); 1840 1841 return error; 1842 } 1843 1844 llvm::Expected<ProcessorTraceMonitor &> 1845 NativeProcessLinux::LookupProcessorTraceInstance(lldb::user_id_t traceid, 1846 lldb::tid_t thread) { 1847 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 1848 if (thread == LLDB_INVALID_THREAD_ID && traceid == m_pt_proces_trace_id) { 1849 LLDB_LOG(log, "thread not specified: {0}", traceid); 1850 return Status("tracing not active thread not specified").ToError(); 1851 } 1852 1853 for (auto& iter : m_processor_trace_monitor) { 1854 if (traceid == iter.second->GetTraceID() && 1855 (thread == iter.first || thread == LLDB_INVALID_THREAD_ID)) 1856 return *(iter.second); 1857 } 1858 1859 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 1860 return Status("tracing not active for this thread").ToError(); 1861 } 1862 1863 Status NativeProcessLinux::GetMetaData(lldb::user_id_t traceid, 1864 lldb::tid_t thread, 1865 llvm::MutableArrayRef<uint8_t> &buffer, 1866 size_t offset) { 1867 TraceOptions trace_options; 1868 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 1869 Status error; 1870 1871 LLDB_LOG(log, "traceid {0}", traceid); 1872 1873 auto perf_monitor = LookupProcessorTraceInstance(traceid, thread); 1874 if (!perf_monitor) { 1875 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 1876 buffer = buffer.slice(buffer.size()); 1877 error = perf_monitor.takeError(); 1878 return error; 1879 } 1880 return (*perf_monitor).ReadPerfTraceData(buffer, offset); 1881 } 1882 1883 Status NativeProcessLinux::GetData(lldb::user_id_t traceid, lldb::tid_t thread, 1884 llvm::MutableArrayRef<uint8_t> &buffer, 1885 size_t offset) { 1886 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 1887 Status error; 1888 1889 LLDB_LOG(log, "traceid {0}", traceid); 1890 1891 auto perf_monitor = LookupProcessorTraceInstance(traceid, thread); 1892 if (!perf_monitor) { 1893 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 1894 buffer = buffer.slice(buffer.size()); 1895 error = perf_monitor.takeError(); 1896 return error; 1897 } 1898 return (*perf_monitor).ReadPerfTraceAux(buffer, offset); 1899 } 1900 1901 Status NativeProcessLinux::GetTraceConfig(lldb::user_id_t traceid, 1902 TraceOptions &config) { 1903 Status error; 1904 if (config.getThreadID() == LLDB_INVALID_THREAD_ID && 1905 m_pt_proces_trace_id == traceid) { 1906 if (m_pt_proces_trace_id == LLDB_INVALID_UID) { 1907 error.SetErrorString("tracing not active for this process"); 1908 return error; 1909 } 1910 config = m_pt_process_trace_config; 1911 } else { 1912 auto perf_monitor = 1913 LookupProcessorTraceInstance(traceid, config.getThreadID()); 1914 if (!perf_monitor) { 1915 error = perf_monitor.takeError(); 1916 return error; 1917 } 1918 error = (*perf_monitor).GetTraceConfig(config); 1919 } 1920 return error; 1921 } 1922 1923 lldb::user_id_t 1924 NativeProcessLinux::StartTraceGroup(const TraceOptions &config, 1925 Status &error) { 1926 1927 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 1928 if (config.getType() != TraceType::eTraceTypeProcessorTrace) 1929 return LLDB_INVALID_UID; 1930 1931 if (m_pt_proces_trace_id != LLDB_INVALID_UID) { 1932 error.SetErrorString("tracing already active on this process"); 1933 return m_pt_proces_trace_id; 1934 } 1935 1936 for (const auto &thread_sp : m_threads) { 1937 if (auto traceInstance = ProcessorTraceMonitor::Create( 1938 GetID(), thread_sp->GetID(), config, true)) { 1939 m_pt_traced_thread_group.insert(thread_sp->GetID()); 1940 m_processor_trace_monitor.insert( 1941 std::make_pair(thread_sp->GetID(), std::move(*traceInstance))); 1942 } 1943 } 1944 1945 m_pt_process_trace_config = config; 1946 error = ProcessorTraceMonitor::GetCPUType(m_pt_process_trace_config); 1947 1948 // Trace on Complete process will have traceid of 0 1949 m_pt_proces_trace_id = 0; 1950 1951 LLDB_LOG(log, "Process Trace ID {0}", m_pt_proces_trace_id); 1952 return m_pt_proces_trace_id; 1953 } 1954 1955 lldb::user_id_t NativeProcessLinux::StartTrace(const TraceOptions &config, 1956 Status &error) { 1957 if (config.getType() != TraceType::eTraceTypeProcessorTrace) 1958 return NativeProcessProtocol::StartTrace(config, error); 1959 1960 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 1961 1962 lldb::tid_t threadid = config.getThreadID(); 1963 1964 if (threadid == LLDB_INVALID_THREAD_ID) 1965 return StartTraceGroup(config, error); 1966 1967 auto thread_sp = GetThreadByID(threadid); 1968 if (!thread_sp) { 1969 // Thread not tracked by lldb so don't trace. 1970 error.SetErrorString("invalid thread id"); 1971 return LLDB_INVALID_UID; 1972 } 1973 1974 const auto &iter = m_processor_trace_monitor.find(threadid); 1975 if (iter != m_processor_trace_monitor.end()) { 1976 LLDB_LOG(log, "Thread already being traced"); 1977 error.SetErrorString("tracing already active on this thread"); 1978 return LLDB_INVALID_UID; 1979 } 1980 1981 auto traceMonitor = 1982 ProcessorTraceMonitor::Create(GetID(), threadid, config, false); 1983 if (!traceMonitor) { 1984 error = traceMonitor.takeError(); 1985 LLDB_LOG(log, "error {0}", error); 1986 return LLDB_INVALID_UID; 1987 } 1988 lldb::user_id_t ret_trace_id = (*traceMonitor)->GetTraceID(); 1989 m_processor_trace_monitor.insert( 1990 std::make_pair(threadid, std::move(*traceMonitor))); 1991 return ret_trace_id; 1992 } 1993 1994 Status NativeProcessLinux::StopTracingForThread(lldb::tid_t thread) { 1995 Status error; 1996 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 1997 LLDB_LOG(log, "Thread {0}", thread); 1998 1999 const auto& iter = m_processor_trace_monitor.find(thread); 2000 if (iter == m_processor_trace_monitor.end()) { 2001 error.SetErrorString("tracing not active for this thread"); 2002 return error; 2003 } 2004 2005 if (iter->second->GetTraceID() == m_pt_proces_trace_id) { 2006 // traceid maps to the whole process so we have to erase it from the thread 2007 // group. 2008 LLDB_LOG(log, "traceid maps to process"); 2009 m_pt_traced_thread_group.erase(thread); 2010 } 2011 m_processor_trace_monitor.erase(iter); 2012 2013 return error; 2014 } 2015 2016 Status NativeProcessLinux::StopTrace(lldb::user_id_t traceid, 2017 lldb::tid_t thread) { 2018 Status error; 2019 2020 TraceOptions trace_options; 2021 trace_options.setThreadID(thread); 2022 error = NativeProcessLinux::GetTraceConfig(traceid, trace_options); 2023 2024 if (error.Fail()) 2025 return error; 2026 2027 switch (trace_options.getType()) { 2028 case lldb::TraceType::eTraceTypeProcessorTrace: 2029 if (traceid == m_pt_proces_trace_id && 2030 thread == LLDB_INVALID_THREAD_ID) 2031 StopProcessorTracingOnProcess(); 2032 else 2033 error = StopProcessorTracingOnThread(traceid, thread); 2034 break; 2035 default: 2036 error.SetErrorString("trace not supported"); 2037 break; 2038 } 2039 2040 return error; 2041 } 2042 2043 void NativeProcessLinux::StopProcessorTracingOnProcess() { 2044 for (auto thread_id_iter : m_pt_traced_thread_group) 2045 m_processor_trace_monitor.erase(thread_id_iter); 2046 m_pt_traced_thread_group.clear(); 2047 m_pt_proces_trace_id = LLDB_INVALID_UID; 2048 } 2049 2050 Status NativeProcessLinux::StopProcessorTracingOnThread(lldb::user_id_t traceid, 2051 lldb::tid_t thread) { 2052 Status error; 2053 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2054 2055 if (thread == LLDB_INVALID_THREAD_ID) { 2056 for (auto& iter : m_processor_trace_monitor) { 2057 if (iter.second->GetTraceID() == traceid) { 2058 // Stopping a trace instance for an individual thread hence there will 2059 // only be one traceid that can match. 2060 m_processor_trace_monitor.erase(iter.first); 2061 return error; 2062 } 2063 LLDB_LOG(log, "Trace ID {0}", iter.second->GetTraceID()); 2064 } 2065 2066 LLDB_LOG(log, "Invalid TraceID"); 2067 error.SetErrorString("invalid trace id"); 2068 return error; 2069 } 2070 2071 // thread is specified so we can use find function on the map. 2072 const auto& iter = m_processor_trace_monitor.find(thread); 2073 if (iter == m_processor_trace_monitor.end()) { 2074 // thread not found in our map. 2075 LLDB_LOG(log, "thread not being traced"); 2076 error.SetErrorString("tracing not active for this thread"); 2077 return error; 2078 } 2079 if (iter->second->GetTraceID() != traceid) { 2080 // traceid did not match so it has to be invalid. 2081 LLDB_LOG(log, "Invalid TraceID"); 2082 error.SetErrorString("invalid trace id"); 2083 return error; 2084 } 2085 2086 LLDB_LOG(log, "UID - {0} , Thread -{1}", traceid, thread); 2087 2088 if (traceid == m_pt_proces_trace_id) { 2089 // traceid maps to the whole process so we have to erase it from the thread 2090 // group. 2091 LLDB_LOG(log, "traceid maps to process"); 2092 m_pt_traced_thread_group.erase(thread); 2093 } 2094 m_processor_trace_monitor.erase(iter); 2095 2096 return error; 2097 } 2098