1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "NativeProcessLinux.h" 11 12 // C Includes 13 #include <errno.h> 14 #include <semaphore.h> 15 #include <string.h> 16 #include <stdint.h> 17 #include <unistd.h> 18 19 // C++ Includes 20 #include <fstream> 21 #include <mutex> 22 #include <sstream> 23 #include <string> 24 #include <unordered_map> 25 26 // Other libraries and framework includes 27 #include "lldb/Core/EmulateInstruction.h" 28 #include "lldb/Core/Error.h" 29 #include "lldb/Core/Module.h" 30 #include "lldb/Core/ModuleSpec.h" 31 #include "lldb/Core/RegisterValue.h" 32 #include "lldb/Core/State.h" 33 #include "lldb/Host/common/NativeBreakpoint.h" 34 #include "lldb/Host/common/NativeRegisterContext.h" 35 #include "lldb/Host/Host.h" 36 #include "lldb/Host/ThreadLauncher.h" 37 #include "lldb/Target/Platform.h" 38 #include "lldb/Target/Process.h" 39 #include "lldb/Target/ProcessLaunchInfo.h" 40 #include "lldb/Target/Target.h" 41 #include "lldb/Utility/LLDBAssert.h" 42 #include "lldb/Utility/PseudoTerminal.h" 43 44 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 45 #include "Plugins/Process/Utility/LinuxSignals.h" 46 #include "Utility/StringExtractor.h" 47 #include "NativeThreadLinux.h" 48 #include "ProcFileReader.h" 49 #include "Procfs.h" 50 51 // System includes - They have to be included after framework includes because they define some 52 // macros which collide with variable names in other modules 53 #include <linux/unistd.h> 54 #include <sys/socket.h> 55 56 #include <sys/syscall.h> 57 #include <sys/types.h> 58 #include <sys/user.h> 59 #include <sys/wait.h> 60 61 #include "lldb/Host/linux/Personality.h" 62 #include "lldb/Host/linux/Ptrace.h" 63 #include "lldb/Host/linux/Signalfd.h" 64 #include "lldb/Host/linux/Uio.h" 65 #include "lldb/Host/android/Android.h" 66 67 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS 0xffffffff 68 69 // Support hardware breakpoints in case it has not been defined 70 #ifndef TRAP_HWBKPT 71 #define TRAP_HWBKPT 4 72 #endif 73 74 using namespace lldb; 75 using namespace lldb_private; 76 using namespace lldb_private::process_linux; 77 using namespace llvm; 78 79 // Private bits we only need internally. 80 81 static bool ProcessVmReadvSupported() 82 { 83 static bool is_supported; 84 static std::once_flag flag; 85 86 std::call_once(flag, [] { 87 Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 88 89 uint32_t source = 0x47424742; 90 uint32_t dest = 0; 91 92 struct iovec local, remote; 93 remote.iov_base = &source; 94 local.iov_base = &dest; 95 remote.iov_len = local.iov_len = sizeof source; 96 97 // We shall try if cross-process-memory reads work by attempting to read a value from our own process. 98 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); 99 is_supported = (res == sizeof(source) && source == dest); 100 if (log) 101 { 102 if (is_supported) 103 log->Printf("%s: Detected kernel support for process_vm_readv syscall. Fast memory reads enabled.", 104 __FUNCTION__); 105 else 106 log->Printf("%s: syscall process_vm_readv failed (error: %s). Fast memory reads disabled.", 107 __FUNCTION__, strerror(errno)); 108 } 109 }); 110 111 return is_supported; 112 } 113 114 namespace 115 { 116 const UnixSignals& 117 GetUnixSignals () 118 { 119 static process_linux::LinuxSignals signals; 120 return signals; 121 } 122 123 Error 124 ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch) 125 { 126 // Grab process info for the running process. 127 ProcessInstanceInfo process_info; 128 if (!platform.GetProcessInfo (pid, process_info)) 129 return Error("failed to get process info"); 130 131 // Resolve the executable module. 132 ModuleSP exe_module_sp; 133 ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture()); 134 FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ()); 135 Error error = platform.ResolveExecutable( 136 exe_module_spec, 137 exe_module_sp, 138 executable_search_paths.GetSize () ? &executable_search_paths : NULL); 139 140 if (!error.Success ()) 141 return error; 142 143 // Check if we've got our architecture from the exe_module. 144 arch = exe_module_sp->GetArchitecture (); 145 if (arch.IsValid ()) 146 return Error(); 147 else 148 return Error("failed to retrieve a valid architecture from the exe module"); 149 } 150 151 void 152 DisplayBytes (StreamString &s, void *bytes, uint32_t count) 153 { 154 uint8_t *ptr = (uint8_t *)bytes; 155 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 156 for(uint32_t i=0; i<loop_count; i++) 157 { 158 s.Printf ("[%x]", *ptr); 159 ptr++; 160 } 161 } 162 163 void 164 PtraceDisplayBytes(int &req, void *data, size_t data_size) 165 { 166 StreamString buf; 167 Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet ( 168 POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE)); 169 170 if (verbose_log) 171 { 172 switch(req) 173 { 174 case PTRACE_POKETEXT: 175 { 176 DisplayBytes(buf, &data, 8); 177 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData()); 178 break; 179 } 180 case PTRACE_POKEDATA: 181 { 182 DisplayBytes(buf, &data, 8); 183 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData()); 184 break; 185 } 186 case PTRACE_POKEUSER: 187 { 188 DisplayBytes(buf, &data, 8); 189 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData()); 190 break; 191 } 192 case PTRACE_SETREGS: 193 { 194 DisplayBytes(buf, data, data_size); 195 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData()); 196 break; 197 } 198 case PTRACE_SETFPREGS: 199 { 200 DisplayBytes(buf, data, data_size); 201 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData()); 202 break; 203 } 204 case PTRACE_SETSIGINFO: 205 { 206 DisplayBytes(buf, data, sizeof(siginfo_t)); 207 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData()); 208 break; 209 } 210 case PTRACE_SETREGSET: 211 { 212 // Extract iov_base from data, which is a pointer to the struct IOVEC 213 DisplayBytes(buf, *(void **)data, data_size); 214 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData()); 215 break; 216 } 217 default: 218 { 219 } 220 } 221 } 222 } 223 224 //------------------------------------------------------------------------------ 225 // Static implementations of NativeProcessLinux::ReadMemory and 226 // NativeProcessLinux::WriteMemory. This enables mutual recursion between these 227 // functions without needed to go thru the thread funnel. 228 229 Error 230 DoReadMemory( 231 lldb::pid_t pid, 232 lldb::addr_t vm_addr, 233 void *buf, 234 size_t size, 235 size_t &bytes_read) 236 { 237 // ptrace word size is determined by the host, not the child 238 static const unsigned word_size = sizeof(void*); 239 unsigned char *dst = static_cast<unsigned char*>(buf); 240 size_t remainder; 241 long data; 242 243 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); 244 if (log) 245 ProcessPOSIXLog::IncNestLevel(); 246 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) 247 log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__, 248 pid, word_size, (void*)vm_addr, buf, size); 249 250 assert(sizeof(data) >= word_size); 251 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) 252 { 253 Error error; 254 data = NativeProcessLinux::PtraceWrapper(PTRACE_PEEKDATA, pid, (void*)vm_addr, nullptr, 0, error); 255 if (error.Fail()) 256 { 257 if (log) 258 ProcessPOSIXLog::DecNestLevel(); 259 return error; 260 } 261 262 remainder = size - bytes_read; 263 remainder = remainder > word_size ? word_size : remainder; 264 265 // Copy the data into our buffer 266 for (unsigned i = 0; i < remainder; ++i) 267 dst[i] = ((data >> i*8) & 0xFF); 268 269 if (log && ProcessPOSIXLog::AtTopNestLevel() && 270 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 271 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 272 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 273 { 274 uintptr_t print_dst = 0; 275 // Format bytes from data by moving into print_dst for log output 276 for (unsigned i = 0; i < remainder; ++i) 277 print_dst |= (((data >> i*8) & 0xFF) << i*8); 278 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 279 (void*)vm_addr, print_dst, (unsigned long)data); 280 } 281 vm_addr += word_size; 282 dst += word_size; 283 } 284 285 if (log) 286 ProcessPOSIXLog::DecNestLevel(); 287 return Error(); 288 } 289 290 Error 291 DoWriteMemory( 292 lldb::pid_t pid, 293 lldb::addr_t vm_addr, 294 const void *buf, 295 size_t size, 296 size_t &bytes_written) 297 { 298 // ptrace word size is determined by the host, not the child 299 static const unsigned word_size = sizeof(void*); 300 const unsigned char *src = static_cast<const unsigned char*>(buf); 301 size_t remainder; 302 Error error; 303 304 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); 305 if (log) 306 ProcessPOSIXLog::IncNestLevel(); 307 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) 308 log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__, 309 pid, word_size, (void*)vm_addr, buf, size); 310 311 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) 312 { 313 remainder = size - bytes_written; 314 remainder = remainder > word_size ? word_size : remainder; 315 316 if (remainder == word_size) 317 { 318 unsigned long data = 0; 319 assert(sizeof(data) >= word_size); 320 for (unsigned i = 0; i < word_size; ++i) 321 data |= (unsigned long)src[i] << i*8; 322 323 if (log && ProcessPOSIXLog::AtTopNestLevel() && 324 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 325 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 326 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 327 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 328 (void*)vm_addr, *(const unsigned long*)src, data); 329 330 if (NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data, 0, error)) 331 { 332 if (log) 333 ProcessPOSIXLog::DecNestLevel(); 334 return error; 335 } 336 } 337 else 338 { 339 unsigned char buff[8]; 340 size_t bytes_read; 341 error = DoReadMemory(pid, vm_addr, buff, word_size, bytes_read); 342 if (error.Fail()) 343 { 344 if (log) 345 ProcessPOSIXLog::DecNestLevel(); 346 return error; 347 } 348 349 memcpy(buff, src, remainder); 350 351 size_t bytes_written_rec; 352 error = DoWriteMemory(pid, vm_addr, buff, word_size, bytes_written_rec); 353 if (error.Fail()) 354 { 355 if (log) 356 ProcessPOSIXLog::DecNestLevel(); 357 return error; 358 } 359 360 if (log && ProcessPOSIXLog::AtTopNestLevel() && 361 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 362 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 363 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 364 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 365 (void*)vm_addr, *(const unsigned long*)src, *(unsigned long*)buff); 366 } 367 368 vm_addr += word_size; 369 src += word_size; 370 } 371 if (log) 372 ProcessPOSIXLog::DecNestLevel(); 373 return error; 374 } 375 } // end of anonymous namespace 376 377 // Simple helper function to ensure flags are enabled on the given file 378 // descriptor. 379 static Error 380 EnsureFDFlags(int fd, int flags) 381 { 382 Error error; 383 384 int status = fcntl(fd, F_GETFL); 385 if (status == -1) 386 { 387 error.SetErrorToErrno(); 388 return error; 389 } 390 391 if (fcntl(fd, F_SETFL, status | flags) == -1) 392 { 393 error.SetErrorToErrno(); 394 return error; 395 } 396 397 return error; 398 } 399 400 // This class encapsulates the privileged thread which performs all ptrace and wait operations on 401 // the inferior. The thread consists of a main loop which waits for events and processes them 402 // - SIGCHLD (delivered over a signalfd file descriptor): These signals notify us of events in 403 // the inferior process. Upon receiving this signal we do a waitpid to get more information 404 // and dispatch to NativeProcessLinux::MonitorCallback. 405 // - requests for ptrace operations: These initiated via the DoOperation method, which funnels 406 // them to the Monitor thread via m_operation member. The Monitor thread is signaled over a 407 // pipe, and the completion of the operation is signalled over the semaphore. 408 // - thread exit event: this is signaled from the Monitor destructor by closing the write end 409 // of the command pipe. 410 class NativeProcessLinux::Monitor 411 { 412 private: 413 // The initial monitor operation (launch or attach). It returns a inferior process id. 414 std::unique_ptr<InitialOperation> m_initial_operation_up; 415 416 ::pid_t m_child_pid = -1; 417 NativeProcessLinux * m_native_process; 418 419 enum { READ, WRITE }; 420 int m_pipefd[2] = {-1, -1}; 421 int m_signal_fd = -1; 422 HostThread m_thread; 423 424 // current operation which must be executed on the priviliged thread 425 Mutex m_operation_mutex; 426 const Operation *m_operation = nullptr; 427 sem_t m_operation_sem; 428 Error m_operation_error; 429 430 unsigned m_operation_nesting_level = 0; 431 432 static constexpr char operation_command = 'o'; 433 static constexpr char begin_block_command = '{'; 434 static constexpr char end_block_command = '}'; 435 436 void 437 HandleSignals(); 438 439 void 440 HandleWait(); 441 442 // Returns true if the thread should exit. 443 bool 444 HandleCommands(); 445 446 void 447 MainLoop(); 448 449 static void * 450 RunMonitor(void *arg); 451 452 Error 453 WaitForAck(); 454 455 void 456 BeginOperationBlock() 457 { 458 write(m_pipefd[WRITE], &begin_block_command, sizeof operation_command); 459 WaitForAck(); 460 } 461 462 void 463 EndOperationBlock() 464 { 465 write(m_pipefd[WRITE], &end_block_command, sizeof operation_command); 466 WaitForAck(); 467 } 468 469 public: 470 Monitor(const InitialOperation &initial_operation, 471 NativeProcessLinux *native_process) 472 : m_initial_operation_up(new InitialOperation(initial_operation)), 473 m_native_process(native_process) 474 { 475 sem_init(&m_operation_sem, 0, 0); 476 } 477 478 ~Monitor(); 479 480 Error 481 Initialize(); 482 483 void 484 Terminate(); 485 486 Error 487 DoOperation(const Operation &op); 488 489 class ScopedOperationLock { 490 Monitor &m_monitor; 491 492 public: 493 ScopedOperationLock(Monitor &monitor) 494 : m_monitor(monitor) 495 { m_monitor.BeginOperationBlock(); } 496 497 ~ScopedOperationLock() 498 { m_monitor.EndOperationBlock(); } 499 }; 500 }; 501 constexpr char NativeProcessLinux::Monitor::operation_command; 502 constexpr char NativeProcessLinux::Monitor::begin_block_command; 503 constexpr char NativeProcessLinux::Monitor::end_block_command; 504 505 Error 506 NativeProcessLinux::Monitor::Initialize() 507 { 508 Error error; 509 510 // We get a SIGCHLD every time something interesting happens with the inferior. We shall be 511 // listening for these signals over a signalfd file descriptors. This allows us to wait for 512 // multiple kinds of events with select. 513 sigset_t signals; 514 sigemptyset(&signals); 515 sigaddset(&signals, SIGCHLD); 516 m_signal_fd = signalfd(-1, &signals, SFD_NONBLOCK | SFD_CLOEXEC); 517 if (m_signal_fd < 0) 518 { 519 return Error("NativeProcessLinux::Monitor::%s failed due to signalfd failure. Monitoring the inferior will be impossible: %s", 520 __FUNCTION__, strerror(errno)); 521 522 } 523 524 if (pipe2(m_pipefd, O_CLOEXEC) == -1) 525 { 526 error.SetErrorToErrno(); 527 return error; 528 } 529 530 if ((error = EnsureFDFlags(m_pipefd[READ], O_NONBLOCK)).Fail()) { 531 return error; 532 } 533 534 static const char g_thread_name[] = "lldb.process.nativelinux.monitor"; 535 m_thread = ThreadLauncher::LaunchThread(g_thread_name, Monitor::RunMonitor, this, nullptr); 536 if (!m_thread.IsJoinable()) 537 return Error("Failed to create monitor thread for NativeProcessLinux."); 538 539 // Wait for initial operation to complete. 540 return WaitForAck(); 541 } 542 543 Error 544 NativeProcessLinux::Monitor::DoOperation(const Operation &op) 545 { 546 if (m_thread.EqualsThread(pthread_self())) { 547 // If we're on the Monitor thread, we can simply execute the operation. 548 return op(); 549 } 550 551 // Otherwise we need to pass the operation to the Monitor thread so it can handle it. 552 Mutex::Locker lock(m_operation_mutex); 553 554 m_operation = &op; 555 556 // notify the thread that an operation is ready to be processed 557 write(m_pipefd[WRITE], &operation_command, sizeof operation_command); 558 559 return WaitForAck(); 560 } 561 562 void 563 NativeProcessLinux::Monitor::Terminate() 564 { 565 if (m_pipefd[WRITE] >= 0) 566 { 567 close(m_pipefd[WRITE]); 568 m_pipefd[WRITE] = -1; 569 } 570 if (m_thread.IsJoinable()) 571 m_thread.Join(nullptr); 572 } 573 574 NativeProcessLinux::Monitor::~Monitor() 575 { 576 Terminate(); 577 if (m_pipefd[READ] >= 0) 578 close(m_pipefd[READ]); 579 if (m_signal_fd >= 0) 580 close(m_signal_fd); 581 sem_destroy(&m_operation_sem); 582 } 583 584 void 585 NativeProcessLinux::Monitor::HandleSignals() 586 { 587 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 588 589 // We don't really care about the content of the SIGCHLD siginfo structure, as we will get 590 // all the information from waitpid(). We just need to read all the signals so that we can 591 // sleep next time we reach select(). 592 while (true) 593 { 594 signalfd_siginfo info; 595 ssize_t size = read(m_signal_fd, &info, sizeof info); 596 if (size == -1) 597 { 598 if (errno == EAGAIN || errno == EWOULDBLOCK) 599 break; // We are done. 600 if (errno == EINTR) 601 continue; 602 if (log) 603 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor failed: %s", 604 __FUNCTION__, strerror(errno)); 605 break; 606 } 607 if (size != sizeof info) 608 { 609 // We got incomplete information structure. This should not happen, let's just log 610 // that. 611 if (log) 612 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor returned incomplete data: " 613 "structure size is %zd, read returned %zd bytes", 614 __FUNCTION__, sizeof info, size); 615 break; 616 } 617 if (log) 618 log->Printf("NativeProcessLinux::Monitor::%s received signal %s(%d).", __FUNCTION__, 619 Host::GetSignalAsCString(info.ssi_signo), info.ssi_signo); 620 } 621 } 622 623 void 624 NativeProcessLinux::Monitor::HandleWait() 625 { 626 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 627 // Process all pending waitpid notifications. 628 while (true) 629 { 630 int status = -1; 631 ::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG); 632 633 if (wait_pid == 0) 634 break; // We are done. 635 636 if (wait_pid == -1) 637 { 638 if (errno == EINTR) 639 continue; 640 641 if (log) 642 log->Printf("NativeProcessLinux::Monitor::%s waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG) failed: %s", 643 __FUNCTION__, strerror(errno)); 644 break; 645 } 646 647 bool exited = false; 648 int signal = 0; 649 int exit_status = 0; 650 const char *status_cstr = NULL; 651 if (WIFSTOPPED(status)) 652 { 653 signal = WSTOPSIG(status); 654 status_cstr = "STOPPED"; 655 } 656 else if (WIFEXITED(status)) 657 { 658 exit_status = WEXITSTATUS(status); 659 status_cstr = "EXITED"; 660 exited = true; 661 } 662 else if (WIFSIGNALED(status)) 663 { 664 signal = WTERMSIG(status); 665 status_cstr = "SIGNALED"; 666 if (wait_pid == m_child_pid) { 667 exited = true; 668 exit_status = -1; 669 } 670 } 671 else 672 status_cstr = "(\?\?\?)"; 673 674 if (log) 675 log->Printf("NativeProcessLinux::Monitor::%s: waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG)" 676 "=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i", 677 __FUNCTION__, wait_pid, status, status_cstr, signal, exit_status); 678 679 m_native_process->MonitorCallback (wait_pid, exited, signal, exit_status); 680 } 681 } 682 683 bool 684 NativeProcessLinux::Monitor::HandleCommands() 685 { 686 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 687 688 while (true) 689 { 690 char command = 0; 691 ssize_t size = read(m_pipefd[READ], &command, sizeof command); 692 if (size == -1) 693 { 694 if (errno == EAGAIN || errno == EWOULDBLOCK) 695 return false; 696 if (errno == EINTR) 697 continue; 698 if (log) 699 log->Printf("NativeProcessLinux::Monitor::%s exiting because read from command file descriptor failed: %s", __FUNCTION__, strerror(errno)); 700 return true; 701 } 702 if (size == 0) // end of file - write end closed 703 { 704 if (log) 705 log->Printf("NativeProcessLinux::Monitor::%s exit command received, exiting...", __FUNCTION__); 706 assert(m_operation_nesting_level == 0 && "Unbalanced begin/end block commands detected"); 707 return true; // We are done. 708 } 709 710 switch (command) 711 { 712 case operation_command: 713 m_operation_error = (*m_operation)(); 714 break; 715 case begin_block_command: 716 ++m_operation_nesting_level; 717 break; 718 case end_block_command: 719 assert(m_operation_nesting_level > 0); 720 --m_operation_nesting_level; 721 break; 722 default: 723 if (log) 724 log->Printf("NativeProcessLinux::Monitor::%s received unknown command '%c'", 725 __FUNCTION__, command); 726 } 727 728 // notify calling thread that the command has been processed 729 sem_post(&m_operation_sem); 730 } 731 } 732 733 void 734 NativeProcessLinux::Monitor::MainLoop() 735 { 736 ::pid_t child_pid = (*m_initial_operation_up)(m_operation_error); 737 m_initial_operation_up.reset(); 738 m_child_pid = child_pid; 739 sem_post(&m_operation_sem); 740 741 while (true) 742 { 743 fd_set fds; 744 FD_ZERO(&fds); 745 // Only process waitpid events if we are outside of an operation block. Any pending 746 // events will be processed after we leave the block. 747 if (m_operation_nesting_level == 0) 748 FD_SET(m_signal_fd, &fds); 749 FD_SET(m_pipefd[READ], &fds); 750 751 int max_fd = std::max(m_signal_fd, m_pipefd[READ]) + 1; 752 int r = select(max_fd, &fds, nullptr, nullptr, nullptr); 753 if (r < 0) 754 { 755 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 756 if (log) 757 log->Printf("NativeProcessLinux::Monitor::%s exiting because select failed: %s", 758 __FUNCTION__, strerror(errno)); 759 return; 760 } 761 762 if (FD_ISSET(m_pipefd[READ], &fds)) 763 { 764 if (HandleCommands()) 765 return; 766 } 767 768 if (FD_ISSET(m_signal_fd, &fds)) 769 { 770 HandleSignals(); 771 HandleWait(); 772 } 773 } 774 } 775 776 Error 777 NativeProcessLinux::Monitor::WaitForAck() 778 { 779 Error error; 780 while (sem_wait(&m_operation_sem) != 0) 781 { 782 if (errno == EINTR) 783 continue; 784 785 error.SetErrorToErrno(); 786 return error; 787 } 788 789 return m_operation_error; 790 } 791 792 void * 793 NativeProcessLinux::Monitor::RunMonitor(void *arg) 794 { 795 static_cast<Monitor *>(arg)->MainLoop(); 796 return nullptr; 797 } 798 799 800 NativeProcessLinux::LaunchArgs::LaunchArgs(Module *module, 801 char const **argv, 802 char const **envp, 803 const FileSpec &stdin_file_spec, 804 const FileSpec &stdout_file_spec, 805 const FileSpec &stderr_file_spec, 806 const FileSpec &working_dir, 807 const ProcessLaunchInfo &launch_info) 808 : m_module(module), 809 m_argv(argv), 810 m_envp(envp), 811 m_stdin_file_spec(stdin_file_spec), 812 m_stdout_file_spec(stdout_file_spec), 813 m_stderr_file_spec(stderr_file_spec), 814 m_working_dir(working_dir), 815 m_launch_info(launch_info) 816 { 817 } 818 819 NativeProcessLinux::LaunchArgs::~LaunchArgs() 820 { } 821 822 // ----------------------------------------------------------------------------- 823 // Public Static Methods 824 // ----------------------------------------------------------------------------- 825 826 Error 827 NativeProcessLinux::LaunchProcess ( 828 Module *exe_module, 829 ProcessLaunchInfo &launch_info, 830 NativeProcessProtocol::NativeDelegate &native_delegate, 831 NativeProcessProtocolSP &native_process_sp) 832 { 833 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 834 835 Error error; 836 837 // Verify the working directory is valid if one was specified. 838 FileSpec working_dir{launch_info.GetWorkingDirectory()}; 839 if (working_dir && 840 (!working_dir.ResolvePath() || 841 working_dir.GetFileType() != FileSpec::eFileTypeDirectory)) 842 { 843 error.SetErrorStringWithFormat ("No such file or directory: %s", 844 working_dir.GetCString()); 845 return error; 846 } 847 848 const FileAction *file_action; 849 850 // Default of empty will mean to use existing open file descriptors. 851 FileSpec stdin_file_spec{}; 852 FileSpec stdout_file_spec{}; 853 FileSpec stderr_file_spec{}; 854 855 file_action = launch_info.GetFileActionForFD (STDIN_FILENO); 856 if (file_action) 857 stdin_file_spec = file_action->GetFileSpec(); 858 859 file_action = launch_info.GetFileActionForFD (STDOUT_FILENO); 860 if (file_action) 861 stdout_file_spec = file_action->GetFileSpec(); 862 863 file_action = launch_info.GetFileActionForFD (STDERR_FILENO); 864 if (file_action) 865 stderr_file_spec = file_action->GetFileSpec(); 866 867 if (log) 868 { 869 if (stdin_file_spec) 870 log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'", 871 __FUNCTION__, stdin_file_spec.GetCString()); 872 else 873 log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__); 874 875 if (stdout_file_spec) 876 log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'", 877 __FUNCTION__, stdout_file_spec.GetCString()); 878 else 879 log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__); 880 881 if (stderr_file_spec) 882 log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'", 883 __FUNCTION__, stderr_file_spec.GetCString()); 884 else 885 log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__); 886 } 887 888 // Create the NativeProcessLinux in launch mode. 889 native_process_sp.reset (new NativeProcessLinux ()); 890 891 if (log) 892 { 893 int i = 0; 894 for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i) 895 { 896 log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr"); 897 ++i; 898 } 899 } 900 901 if (!native_process_sp->RegisterNativeDelegate (native_delegate)) 902 { 903 native_process_sp.reset (); 904 error.SetErrorStringWithFormat ("failed to register the native delegate"); 905 return error; 906 } 907 908 std::static_pointer_cast<NativeProcessLinux> (native_process_sp)->LaunchInferior ( 909 exe_module, 910 launch_info.GetArguments ().GetConstArgumentVector (), 911 launch_info.GetEnvironmentEntries ().GetConstArgumentVector (), 912 stdin_file_spec, 913 stdout_file_spec, 914 stderr_file_spec, 915 working_dir, 916 launch_info, 917 error); 918 919 if (error.Fail ()) 920 { 921 native_process_sp.reset (); 922 if (log) 923 log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ()); 924 return error; 925 } 926 927 launch_info.SetProcessID (native_process_sp->GetID ()); 928 929 return error; 930 } 931 932 Error 933 NativeProcessLinux::AttachToProcess ( 934 lldb::pid_t pid, 935 NativeProcessProtocol::NativeDelegate &native_delegate, 936 NativeProcessProtocolSP &native_process_sp) 937 { 938 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 939 if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE)) 940 log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid); 941 942 // Grab the current platform architecture. This should be Linux, 943 // since this code is only intended to run on a Linux host. 944 PlatformSP platform_sp (Platform::GetHostPlatform ()); 945 if (!platform_sp) 946 return Error("failed to get a valid default platform"); 947 948 // Retrieve the architecture for the running process. 949 ArchSpec process_arch; 950 Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch); 951 if (!error.Success ()) 952 return error; 953 954 std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ()); 955 956 if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate)) 957 { 958 error.SetErrorStringWithFormat ("failed to register the native delegate"); 959 return error; 960 } 961 962 native_process_linux_sp->AttachToInferior (pid, error); 963 if (!error.Success ()) 964 return error; 965 966 native_process_sp = native_process_linux_sp; 967 return error; 968 } 969 970 // ----------------------------------------------------------------------------- 971 // Public Instance Methods 972 // ----------------------------------------------------------------------------- 973 974 NativeProcessLinux::NativeProcessLinux () : 975 NativeProcessProtocol (LLDB_INVALID_PROCESS_ID), 976 m_arch (), 977 m_supports_mem_region (eLazyBoolCalculate), 978 m_mem_region_cache (), 979 m_mem_region_cache_mutex () 980 { 981 } 982 983 //------------------------------------------------------------------------------ 984 // NativeProcessLinux spawns a new thread which performs all operations on the inferior process. 985 // Refer to Monitor and Operation classes to see why this is necessary. 986 //------------------------------------------------------------------------------ 987 void 988 NativeProcessLinux::LaunchInferior ( 989 Module *module, 990 const char *argv[], 991 const char *envp[], 992 const FileSpec &stdin_file_spec, 993 const FileSpec &stdout_file_spec, 994 const FileSpec &stderr_file_spec, 995 const FileSpec &working_dir, 996 const ProcessLaunchInfo &launch_info, 997 Error &error) 998 { 999 if (module) 1000 m_arch = module->GetArchitecture (); 1001 1002 SetState (eStateLaunching); 1003 1004 std::unique_ptr<LaunchArgs> args( 1005 new LaunchArgs(module, argv, envp, 1006 stdin_file_spec, 1007 stdout_file_spec, 1008 stderr_file_spec, 1009 working_dir, 1010 launch_info)); 1011 1012 StartMonitorThread ([&] (Error &e) { return Launch(args.get(), e); }, error); 1013 if (!error.Success ()) 1014 return; 1015 } 1016 1017 void 1018 NativeProcessLinux::AttachToInferior (lldb::pid_t pid, Error &error) 1019 { 1020 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1021 if (log) 1022 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid); 1023 1024 // We can use the Host for everything except the ResolveExecutable portion. 1025 PlatformSP platform_sp = Platform::GetHostPlatform (); 1026 if (!platform_sp) 1027 { 1028 if (log) 1029 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid); 1030 error.SetErrorString ("no default platform available"); 1031 return; 1032 } 1033 1034 // Gather info about the process. 1035 ProcessInstanceInfo process_info; 1036 if (!platform_sp->GetProcessInfo (pid, process_info)) 1037 { 1038 if (log) 1039 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid); 1040 error.SetErrorString ("failed to get process info"); 1041 return; 1042 } 1043 1044 // Resolve the executable module 1045 ModuleSP exe_module_sp; 1046 FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths()); 1047 ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture()); 1048 error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp, 1049 executable_search_paths.GetSize() ? &executable_search_paths : NULL); 1050 if (!error.Success()) 1051 return; 1052 1053 // Set the architecture to the exe architecture. 1054 m_arch = exe_module_sp->GetArchitecture(); 1055 if (log) 1056 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ()); 1057 1058 m_pid = pid; 1059 SetState(eStateAttaching); 1060 1061 StartMonitorThread ([=] (Error &e) { return Attach(pid, e); }, error); 1062 if (!error.Success ()) 1063 return; 1064 } 1065 1066 void 1067 NativeProcessLinux::Terminate () 1068 { 1069 m_monitor_up->Terminate(); 1070 } 1071 1072 ::pid_t 1073 NativeProcessLinux::Launch(LaunchArgs *args, Error &error) 1074 { 1075 assert (args && "null args"); 1076 1077 const char **argv = args->m_argv; 1078 const char **envp = args->m_envp; 1079 const FileSpec working_dir = args->m_working_dir; 1080 1081 lldb_utility::PseudoTerminal terminal; 1082 const size_t err_len = 1024; 1083 char err_str[err_len]; 1084 lldb::pid_t pid; 1085 NativeThreadProtocolSP thread_sp; 1086 1087 lldb::ThreadSP inferior; 1088 1089 // Propagate the environment if one is not supplied. 1090 if (envp == NULL || envp[0] == NULL) 1091 envp = const_cast<const char **>(environ); 1092 1093 if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1)) 1094 { 1095 error.SetErrorToGenericError(); 1096 error.SetErrorStringWithFormat("Process fork failed: %s", err_str); 1097 return -1; 1098 } 1099 1100 // Recognized child exit status codes. 1101 enum { 1102 ePtraceFailed = 1, 1103 eDupStdinFailed, 1104 eDupStdoutFailed, 1105 eDupStderrFailed, 1106 eChdirFailed, 1107 eExecFailed, 1108 eSetGidFailed 1109 }; 1110 1111 // Child process. 1112 if (pid == 0) 1113 { 1114 // FIXME consider opening a pipe between parent/child and have this forked child 1115 // send log info to parent re: launch status, in place of the log lines removed here. 1116 1117 // Start tracing this child that is about to exec. 1118 NativeProcessLinux::PtraceWrapper(PTRACE_TRACEME, 0, nullptr, nullptr, 0, error); 1119 if (error.Fail()) 1120 exit(ePtraceFailed); 1121 1122 // terminal has already dupped the tty descriptors to stdin/out/err. 1123 // This closes original fd from which they were copied (and avoids 1124 // leaking descriptors to the debugged process. 1125 terminal.CloseSlaveFileDescriptor(); 1126 1127 // Do not inherit setgid powers. 1128 if (setgid(getgid()) != 0) 1129 exit(eSetGidFailed); 1130 1131 // Attempt to have our own process group. 1132 if (setpgid(0, 0) != 0) 1133 { 1134 // FIXME log that this failed. This is common. 1135 // Don't allow this to prevent an inferior exec. 1136 } 1137 1138 // Dup file descriptors if needed. 1139 if (args->m_stdin_file_spec) 1140 if (!DupDescriptor(args->m_stdin_file_spec, STDIN_FILENO, O_RDONLY)) 1141 exit(eDupStdinFailed); 1142 1143 if (args->m_stdout_file_spec) 1144 if (!DupDescriptor(args->m_stdout_file_spec, STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC)) 1145 exit(eDupStdoutFailed); 1146 1147 if (args->m_stderr_file_spec) 1148 if (!DupDescriptor(args->m_stderr_file_spec, STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC)) 1149 exit(eDupStderrFailed); 1150 1151 // Close everything besides stdin, stdout, and stderr that has no file 1152 // action to avoid leaking 1153 for (int fd = 3; fd < sysconf(_SC_OPEN_MAX); ++fd) 1154 if (!args->m_launch_info.GetFileActionForFD(fd)) 1155 close(fd); 1156 1157 // Change working directory 1158 if (working_dir && 0 != ::chdir(working_dir.GetCString())) 1159 exit(eChdirFailed); 1160 1161 // Disable ASLR if requested. 1162 if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR)) 1163 { 1164 const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS); 1165 if (old_personality == -1) 1166 { 1167 // Can't retrieve Linux personality. Cannot disable ASLR. 1168 } 1169 else 1170 { 1171 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality); 1172 if (new_personality == -1) 1173 { 1174 // Disabling ASLR failed. 1175 } 1176 else 1177 { 1178 // Disabling ASLR succeeded. 1179 } 1180 } 1181 } 1182 1183 // Execute. We should never return... 1184 execve(argv[0], 1185 const_cast<char *const *>(argv), 1186 const_cast<char *const *>(envp)); 1187 1188 // ...unless exec fails. In which case we definitely need to end the child here. 1189 exit(eExecFailed); 1190 } 1191 1192 // 1193 // This is the parent code here. 1194 // 1195 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1196 1197 // Wait for the child process to trap on its call to execve. 1198 ::pid_t wpid; 1199 int status; 1200 if ((wpid = waitpid(pid, &status, 0)) < 0) 1201 { 1202 error.SetErrorToErrno(); 1203 if (log) 1204 log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s", 1205 __FUNCTION__, error.AsCString ()); 1206 1207 // Mark the inferior as invalid. 1208 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1209 SetState (StateType::eStateInvalid); 1210 1211 return -1; 1212 } 1213 else if (WIFEXITED(status)) 1214 { 1215 // open, dup or execve likely failed for some reason. 1216 error.SetErrorToGenericError(); 1217 switch (WEXITSTATUS(status)) 1218 { 1219 case ePtraceFailed: 1220 error.SetErrorString("Child ptrace failed."); 1221 break; 1222 case eDupStdinFailed: 1223 error.SetErrorString("Child open stdin failed."); 1224 break; 1225 case eDupStdoutFailed: 1226 error.SetErrorString("Child open stdout failed."); 1227 break; 1228 case eDupStderrFailed: 1229 error.SetErrorString("Child open stderr failed."); 1230 break; 1231 case eChdirFailed: 1232 error.SetErrorString("Child failed to set working directory."); 1233 break; 1234 case eExecFailed: 1235 error.SetErrorString("Child exec failed."); 1236 break; 1237 case eSetGidFailed: 1238 error.SetErrorString("Child setgid failed."); 1239 break; 1240 default: 1241 error.SetErrorString("Child returned unknown exit status."); 1242 break; 1243 } 1244 1245 if (log) 1246 { 1247 log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP", 1248 __FUNCTION__, 1249 WEXITSTATUS(status)); 1250 } 1251 1252 // Mark the inferior as invalid. 1253 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1254 SetState (StateType::eStateInvalid); 1255 1256 return -1; 1257 } 1258 assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) && 1259 "Could not sync with inferior process."); 1260 1261 if (log) 1262 log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__); 1263 1264 error = SetDefaultPtraceOpts(pid); 1265 if (error.Fail()) 1266 { 1267 if (log) 1268 log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s", 1269 __FUNCTION__, error.AsCString ()); 1270 1271 // Mark the inferior as invalid. 1272 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1273 SetState (StateType::eStateInvalid); 1274 1275 return -1; 1276 } 1277 1278 // Release the master terminal descriptor and pass it off to the 1279 // NativeProcessLinux instance. Similarly stash the inferior pid. 1280 m_terminal_fd = terminal.ReleaseMasterFileDescriptor(); 1281 m_pid = pid; 1282 1283 // Set the terminal fd to be in non blocking mode (it simplifies the 1284 // implementation of ProcessLinux::GetSTDOUT to have a non-blocking 1285 // descriptor to read from). 1286 error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 1287 if (error.Fail()) 1288 { 1289 if (log) 1290 log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s", 1291 __FUNCTION__, error.AsCString ()); 1292 1293 // Mark the inferior as invalid. 1294 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1295 SetState (StateType::eStateInvalid); 1296 1297 return -1; 1298 } 1299 1300 if (log) 1301 log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid); 1302 1303 thread_sp = AddThread (pid); 1304 assert (thread_sp && "AddThread() returned a nullptr thread"); 1305 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP); 1306 ThreadWasCreated(pid); 1307 1308 // Let our process instance know the thread has stopped. 1309 SetCurrentThreadID (thread_sp->GetID ()); 1310 SetState (StateType::eStateStopped); 1311 1312 if (log) 1313 { 1314 if (error.Success ()) 1315 { 1316 log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__); 1317 } 1318 else 1319 { 1320 log->Printf ("NativeProcessLinux::%s inferior launching failed: %s", 1321 __FUNCTION__, error.AsCString ()); 1322 return -1; 1323 } 1324 } 1325 return pid; 1326 } 1327 1328 ::pid_t 1329 NativeProcessLinux::Attach(lldb::pid_t pid, Error &error) 1330 { 1331 lldb::ThreadSP inferior; 1332 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1333 1334 // Use a map to keep track of the threads which we have attached/need to attach. 1335 Host::TidMap tids_to_attach; 1336 if (pid <= 1) 1337 { 1338 error.SetErrorToGenericError(); 1339 error.SetErrorString("Attaching to process 1 is not allowed."); 1340 return -1; 1341 } 1342 1343 while (Host::FindProcessThreads(pid, tids_to_attach)) 1344 { 1345 for (Host::TidMap::iterator it = tids_to_attach.begin(); 1346 it != tids_to_attach.end();) 1347 { 1348 if (it->second == false) 1349 { 1350 lldb::tid_t tid = it->first; 1351 1352 // Attach to the requested process. 1353 // An attach will cause the thread to stop with a SIGSTOP. 1354 NativeProcessLinux::PtraceWrapper(PTRACE_ATTACH, tid, nullptr, nullptr, 0, error); 1355 if (error.Fail()) 1356 { 1357 // No such thread. The thread may have exited. 1358 // More error handling may be needed. 1359 if (error.GetError() == ESRCH) 1360 { 1361 it = tids_to_attach.erase(it); 1362 continue; 1363 } 1364 else 1365 return -1; 1366 } 1367 1368 int status; 1369 // Need to use __WALL otherwise we receive an error with errno=ECHLD 1370 // At this point we should have a thread stopped if waitpid succeeds. 1371 if ((status = waitpid(tid, NULL, __WALL)) < 0) 1372 { 1373 // No such thread. The thread may have exited. 1374 // More error handling may be needed. 1375 if (errno == ESRCH) 1376 { 1377 it = tids_to_attach.erase(it); 1378 continue; 1379 } 1380 else 1381 { 1382 error.SetErrorToErrno(); 1383 return -1; 1384 } 1385 } 1386 1387 error = SetDefaultPtraceOpts(tid); 1388 if (error.Fail()) 1389 return -1; 1390 1391 if (log) 1392 log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid); 1393 1394 it->second = true; 1395 1396 // Create the thread, mark it as stopped. 1397 NativeThreadProtocolSP thread_sp (AddThread (static_cast<lldb::tid_t> (tid))); 1398 assert (thread_sp && "AddThread() returned a nullptr"); 1399 1400 // This will notify this is a new thread and tell the system it is stopped. 1401 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP); 1402 ThreadWasCreated(tid); 1403 SetCurrentThreadID (thread_sp->GetID ()); 1404 } 1405 1406 // move the loop forward 1407 ++it; 1408 } 1409 } 1410 1411 if (tids_to_attach.size() > 0) 1412 { 1413 m_pid = pid; 1414 // Let our process instance know the thread has stopped. 1415 SetState (StateType::eStateStopped); 1416 } 1417 else 1418 { 1419 error.SetErrorToGenericError(); 1420 error.SetErrorString("No such process."); 1421 return -1; 1422 } 1423 1424 return pid; 1425 } 1426 1427 Error 1428 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) 1429 { 1430 long ptrace_opts = 0; 1431 1432 // Have the child raise an event on exit. This is used to keep the child in 1433 // limbo until it is destroyed. 1434 ptrace_opts |= PTRACE_O_TRACEEXIT; 1435 1436 // Have the tracer trace threads which spawn in the inferior process. 1437 // TODO: if we want to support tracing the inferiors' child, add the 1438 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) 1439 ptrace_opts |= PTRACE_O_TRACECLONE; 1440 1441 // Have the tracer notify us before execve returns 1442 // (needed to disable legacy SIGTRAP generation) 1443 ptrace_opts |= PTRACE_O_TRACEEXEC; 1444 1445 Error error; 1446 NativeProcessLinux::PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts, 0, error); 1447 return error; 1448 } 1449 1450 static ExitType convert_pid_status_to_exit_type (int status) 1451 { 1452 if (WIFEXITED (status)) 1453 return ExitType::eExitTypeExit; 1454 else if (WIFSIGNALED (status)) 1455 return ExitType::eExitTypeSignal; 1456 else if (WIFSTOPPED (status)) 1457 return ExitType::eExitTypeStop; 1458 else 1459 { 1460 // We don't know what this is. 1461 return ExitType::eExitTypeInvalid; 1462 } 1463 } 1464 1465 static int convert_pid_status_to_return_code (int status) 1466 { 1467 if (WIFEXITED (status)) 1468 return WEXITSTATUS (status); 1469 else if (WIFSIGNALED (status)) 1470 return WTERMSIG (status); 1471 else if (WIFSTOPPED (status)) 1472 return WSTOPSIG (status); 1473 else 1474 { 1475 // We don't know what this is. 1476 return ExitType::eExitTypeInvalid; 1477 } 1478 } 1479 1480 // Handles all waitpid events from the inferior process. 1481 void 1482 NativeProcessLinux::MonitorCallback(lldb::pid_t pid, 1483 bool exited, 1484 int signal, 1485 int status) 1486 { 1487 Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS)); 1488 1489 // Certain activities differ based on whether the pid is the tid of the main thread. 1490 const bool is_main_thread = (pid == GetID ()); 1491 1492 // Handle when the thread exits. 1493 if (exited) 1494 { 1495 if (log) 1496 log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %" PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not"); 1497 1498 // This is a thread that exited. Ensure we're not tracking it anymore. 1499 const bool thread_found = StopTrackingThread (pid); 1500 1501 if (is_main_thread) 1502 { 1503 // We only set the exit status and notify the delegate if we haven't already set the process 1504 // state to an exited state. We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8) 1505 // for the main thread. 1506 const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed); 1507 if (!already_notified) 1508 { 1509 if (log) 1510 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ())); 1511 // The main thread exited. We're done monitoring. Report to delegate. 1512 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); 1513 1514 // Notify delegate that our process has exited. 1515 SetState (StateType::eStateExited, true); 1516 } 1517 else 1518 { 1519 if (log) 1520 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); 1521 } 1522 } 1523 else 1524 { 1525 // Do we want to report to the delegate in this case? I think not. If this was an orderly 1526 // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, 1527 // and we would have done an all-stop then. 1528 if (log) 1529 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); 1530 } 1531 return; 1532 } 1533 1534 // Get details on the signal raised. 1535 siginfo_t info; 1536 const auto err = GetSignalInfo(pid, &info); 1537 if (err.Success()) 1538 { 1539 // We have retrieved the signal info. Dispatch appropriately. 1540 if (info.si_signo == SIGTRAP) 1541 MonitorSIGTRAP(&info, pid); 1542 else 1543 MonitorSignal(&info, pid, exited); 1544 } 1545 else 1546 { 1547 if (err.GetError() == EINVAL) 1548 { 1549 // This is a group stop reception for this tid. 1550 // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the 1551 // tracee, triggering the group-stop mechanism. Normally receiving these would stop 1552 // the process, pending a SIGCONT. Simulating this state in a debugger is hard and is 1553 // generally not needed (one use case is debugging background task being managed by a 1554 // shell). For general use, it is sufficient to stop the process in a signal-delivery 1555 // stop which happens before the group stop. This done by MonitorSignal and works 1556 // correctly for all signals. 1557 if (log) 1558 log->Printf("NativeProcessLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64 ". Transparent handling of group stops not supported, resuming the thread.", __FUNCTION__, GetID (), pid); 1559 Resume(pid, signal); 1560 } 1561 else 1562 { 1563 // ptrace(GETSIGINFO) failed (but not due to group-stop). 1564 1565 // A return value of ESRCH means the thread/process is no longer on the system, 1566 // so it was killed somehow outside of our control. Either way, we can't do anything 1567 // with it anymore. 1568 1569 // Stop tracking the metadata for the thread since it's entirely off the system now. 1570 const bool thread_found = StopTrackingThread (pid); 1571 1572 if (log) 1573 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)", 1574 __FUNCTION__, err.AsCString(), pid, signal, status, err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found"); 1575 1576 if (is_main_thread) 1577 { 1578 // Notify the delegate - our process is not available but appears to have been killed outside 1579 // our control. Is eStateExited the right exit state in this case? 1580 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); 1581 SetState (StateType::eStateExited, true); 1582 } 1583 else 1584 { 1585 // This thread was pulled out from underneath us. Anything to do here? Do we want to do an all stop? 1586 if (log) 1587 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid); 1588 } 1589 } 1590 } 1591 } 1592 1593 void 1594 NativeProcessLinux::WaitForNewThread(::pid_t tid) 1595 { 1596 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1597 1598 NativeThreadProtocolSP new_thread_sp = GetThreadByID(tid); 1599 1600 if (new_thread_sp) 1601 { 1602 // We are already tracking the thread - we got the event on the new thread (see 1603 // MonitorSignal) before this one. We are done. 1604 return; 1605 } 1606 1607 // The thread is not tracked yet, let's wait for it to appear. 1608 int status = -1; 1609 ::pid_t wait_pid; 1610 do 1611 { 1612 if (log) 1613 log->Printf ("NativeProcessLinux::%s() received thread creation event for tid %" PRIu32 ". tid not tracked yet, waiting for thread to appear...", __FUNCTION__, tid); 1614 wait_pid = waitpid(tid, &status, __WALL); 1615 } 1616 while (wait_pid == -1 && errno == EINTR); 1617 // Since we are waiting on a specific tid, this must be the creation event. But let's do 1618 // some checks just in case. 1619 if (wait_pid != tid) { 1620 if (log) 1621 log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime", __FUNCTION__, tid); 1622 // The only way I know of this could happen is if the whole process was 1623 // SIGKILLed in the mean time. In any case, we can't do anything about that now. 1624 return; 1625 } 1626 if (WIFEXITED(status)) 1627 { 1628 if (log) 1629 log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " returned an 'exited' event. Not tracking the thread.", __FUNCTION__, tid); 1630 // Also a very improbable event. 1631 return; 1632 } 1633 1634 siginfo_t info; 1635 Error error = GetSignalInfo(tid, &info); 1636 if (error.Fail()) 1637 { 1638 if (log) 1639 log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime.", __FUNCTION__, tid); 1640 return; 1641 } 1642 1643 if (((info.si_pid != 0) || (info.si_code != SI_USER)) && log) 1644 { 1645 // We should be getting a thread creation signal here, but we received something 1646 // else. There isn't much we can do about it now, so we will just log that. Since the 1647 // thread is alive and we are receiving events from it, we shall pretend that it was 1648 // created properly. 1649 log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " received unexpected signal with code %d from pid %d.", __FUNCTION__, tid, info.si_code, info.si_pid); 1650 } 1651 1652 if (log) 1653 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": tracking new thread tid %" PRIu32, 1654 __FUNCTION__, GetID (), tid); 1655 1656 new_thread_sp = AddThread(tid); 1657 std::static_pointer_cast<NativeThreadLinux> (new_thread_sp)->SetRunning (); 1658 Resume (tid, LLDB_INVALID_SIGNAL_NUMBER); 1659 ThreadWasCreated(tid); 1660 } 1661 1662 void 1663 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid) 1664 { 1665 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1666 const bool is_main_thread = (pid == GetID ()); 1667 1668 assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!"); 1669 if (!info) 1670 return; 1671 1672 Mutex::Locker locker (m_threads_mutex); 1673 1674 // See if we can find a thread for this signal. 1675 NativeThreadProtocolSP thread_sp = GetThreadByID (pid); 1676 if (!thread_sp) 1677 { 1678 if (log) 1679 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid); 1680 } 1681 1682 switch (info->si_code) 1683 { 1684 // TODO: these two cases are required if we want to support tracing of the inferiors' children. We'd need this to debug a monitor. 1685 // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 1686 // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 1687 1688 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): 1689 { 1690 // This is the notification on the parent thread which informs us of new thread 1691 // creation. 1692 // We don't want to do anything with the parent thread so we just resume it. In case we 1693 // want to implement "break on thread creation" functionality, we would need to stop 1694 // here. 1695 1696 unsigned long event_message = 0; 1697 if (GetEventMessage (pid, &event_message).Fail()) 1698 { 1699 if (log) 1700 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, pid); 1701 } else 1702 WaitForNewThread(event_message); 1703 1704 Resume (pid, LLDB_INVALID_SIGNAL_NUMBER); 1705 break; 1706 } 1707 1708 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): 1709 { 1710 NativeThreadProtocolSP main_thread_sp; 1711 if (log) 1712 log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP); 1713 1714 // Exec clears any pending notifications. 1715 m_pending_notification_up.reset (); 1716 1717 // Remove all but the main thread here. Linux fork creates a new process which only copies the main thread. Mutexes are in undefined state. 1718 if (log) 1719 log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__); 1720 1721 for (auto thread_sp : m_threads) 1722 { 1723 const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID (); 1724 if (is_main_thread) 1725 { 1726 main_thread_sp = thread_sp; 1727 if (log) 1728 log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ()); 1729 } 1730 else 1731 { 1732 // Tell thread coordinator this thread is dead. 1733 if (log) 1734 log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ()); 1735 } 1736 } 1737 1738 m_threads.clear (); 1739 1740 if (main_thread_sp) 1741 { 1742 m_threads.push_back (main_thread_sp); 1743 SetCurrentThreadID (main_thread_sp->GetID ()); 1744 std::static_pointer_cast<NativeThreadLinux> (main_thread_sp)->SetStoppedByExec (); 1745 } 1746 else 1747 { 1748 SetCurrentThreadID (LLDB_INVALID_THREAD_ID); 1749 if (log) 1750 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ()); 1751 } 1752 1753 // Tell coordinator about about the "new" (since exec) stopped main thread. 1754 const lldb::tid_t main_thread_tid = GetID (); 1755 ThreadWasCreated(main_thread_tid); 1756 1757 // NOTE: ideally these next statements would execute at the same time as the coordinator thread create was executed. 1758 // Consider a handler that can execute when that happens. 1759 // Let our delegate know we have just exec'd. 1760 NotifyDidExec (); 1761 1762 // If we have a main thread, indicate we are stopped. 1763 assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked"); 1764 1765 // Let the process know we're stopped. 1766 StopRunningThreads (pid); 1767 1768 break; 1769 } 1770 1771 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): 1772 { 1773 // The inferior process or one of its threads is about to exit. 1774 // We don't want to do anything with the thread so we just resume it. In case we 1775 // want to implement "break on thread exit" functionality, we would need to stop 1776 // here. 1777 1778 unsigned long data = 0; 1779 if (GetEventMessage(pid, &data).Fail()) 1780 data = -1; 1781 1782 if (log) 1783 { 1784 log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)", 1785 __FUNCTION__, 1786 data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false", 1787 pid, 1788 is_main_thread ? "is main thread" : "not main thread"); 1789 } 1790 1791 if (is_main_thread) 1792 { 1793 SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true); 1794 } 1795 1796 Resume(pid, LLDB_INVALID_SIGNAL_NUMBER); 1797 1798 break; 1799 } 1800 1801 case 0: 1802 case TRAP_TRACE: // We receive this on single stepping. 1803 case TRAP_HWBKPT: // We receive this on watchpoint hit 1804 if (thread_sp) 1805 { 1806 // If a watchpoint was hit, report it 1807 uint32_t wp_index; 1808 Error error = thread_sp->GetRegisterContext()->GetWatchpointHitIndex(wp_index, (lldb::addr_t)info->si_addr); 1809 if (error.Fail() && log) 1810 log->Printf("NativeProcessLinux::%s() " 1811 "received error while checking for watchpoint hits, " 1812 "pid = %" PRIu64 " error = %s", 1813 __FUNCTION__, pid, error.AsCString()); 1814 if (wp_index != LLDB_INVALID_INDEX32) 1815 { 1816 MonitorWatchpoint(pid, thread_sp, wp_index); 1817 break; 1818 } 1819 } 1820 // Otherwise, report step over 1821 MonitorTrace(pid, thread_sp); 1822 break; 1823 1824 case SI_KERNEL: 1825 #if defined __mips__ 1826 // For mips there is no special signal for watchpoint 1827 // So we check for watchpoint in kernel trap 1828 if (thread_sp) 1829 { 1830 // If a watchpoint was hit, report it 1831 uint32_t wp_index; 1832 Error error = thread_sp->GetRegisterContext()->GetWatchpointHitIndex(wp_index, LLDB_INVALID_ADDRESS); 1833 if (error.Fail() && log) 1834 log->Printf("NativeProcessLinux::%s() " 1835 "received error while checking for watchpoint hits, " 1836 "pid = %" PRIu64 " error = %s", 1837 __FUNCTION__, pid, error.AsCString()); 1838 if (wp_index != LLDB_INVALID_INDEX32) 1839 { 1840 MonitorWatchpoint(pid, thread_sp, wp_index); 1841 break; 1842 } 1843 } 1844 // NO BREAK 1845 #endif 1846 case TRAP_BRKPT: 1847 MonitorBreakpoint(pid, thread_sp); 1848 break; 1849 1850 case SIGTRAP: 1851 case (SIGTRAP | 0x80): 1852 if (log) 1853 log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), pid); 1854 1855 // Ignore these signals until we know more about them. 1856 Resume(pid, LLDB_INVALID_SIGNAL_NUMBER); 1857 break; 1858 1859 default: 1860 assert(false && "Unexpected SIGTRAP code!"); 1861 if (log) 1862 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%d", 1863 __FUNCTION__, GetID (), pid, info->si_code); 1864 break; 1865 1866 } 1867 } 1868 1869 void 1870 NativeProcessLinux::MonitorTrace(lldb::pid_t pid, NativeThreadProtocolSP thread_sp) 1871 { 1872 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1873 if (log) 1874 log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)", 1875 __FUNCTION__, pid); 1876 1877 if (thread_sp) 1878 std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace(); 1879 1880 // This thread is currently stopped. 1881 ThreadDidStop(pid, false); 1882 1883 // Here we don't have to request the rest of the threads to stop or request a deferred stop. 1884 // This would have already happened at the time the Resume() with step operation was signaled. 1885 // At this point, we just need to say we stopped, and the deferred notifcation will fire off 1886 // once all running threads have checked in as stopped. 1887 SetCurrentThreadID(pid); 1888 // Tell the process we have a stop (from software breakpoint). 1889 StopRunningThreads(pid); 1890 } 1891 1892 void 1893 NativeProcessLinux::MonitorBreakpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp) 1894 { 1895 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 1896 if (log) 1897 log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64, 1898 __FUNCTION__, pid); 1899 1900 // This thread is currently stopped. 1901 ThreadDidStop(pid, false); 1902 1903 // Mark the thread as stopped at breakpoint. 1904 if (thread_sp) 1905 { 1906 std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByBreakpoint(); 1907 Error error = FixupBreakpointPCAsNeeded(thread_sp); 1908 if (error.Fail()) 1909 if (log) 1910 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s", 1911 __FUNCTION__, pid, error.AsCString()); 1912 1913 if (m_threads_stepping_with_breakpoint.find(pid) != m_threads_stepping_with_breakpoint.end()) 1914 std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace(); 1915 } 1916 else 1917 if (log) 1918 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 ": " 1919 "warning, cannot process software breakpoint since no thread metadata", 1920 __FUNCTION__, pid); 1921 1922 1923 // We need to tell all other running threads before we notify the delegate about this stop. 1924 StopRunningThreads(pid); 1925 } 1926 1927 void 1928 NativeProcessLinux::MonitorWatchpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp, uint32_t wp_index) 1929 { 1930 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); 1931 if (log) 1932 log->Printf("NativeProcessLinux::%s() received watchpoint event, " 1933 "pid = %" PRIu64 ", wp_index = %" PRIu32, 1934 __FUNCTION__, pid, wp_index); 1935 1936 // This thread is currently stopped. 1937 ThreadDidStop(pid, false); 1938 1939 // Mark the thread as stopped at watchpoint. 1940 // The address is at (lldb::addr_t)info->si_addr if we need it. 1941 lldbassert(thread_sp && "thread_sp cannot be NULL"); 1942 std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByWatchpoint(wp_index); 1943 1944 // We need to tell all other running threads before we notify the delegate about this stop. 1945 StopRunningThreads(pid); 1946 } 1947 1948 void 1949 NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited) 1950 { 1951 assert (info && "null info"); 1952 if (!info) 1953 return; 1954 1955 const int signo = info->si_signo; 1956 const bool is_from_llgs = info->si_pid == getpid (); 1957 1958 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1959 1960 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 1961 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a 1962 // kill(2) or raise(3). Similarly for tgkill(2) on Linux. 1963 // 1964 // IOW, user generated signals never generate what we consider to be a 1965 // "crash". 1966 // 1967 // Similarly, ACK signals generated by this monitor. 1968 1969 Mutex::Locker locker (m_threads_mutex); 1970 1971 // See if we can find a thread for this signal. 1972 NativeThreadProtocolSP thread_sp = GetThreadByID (pid); 1973 if (!thread_sp) 1974 { 1975 if (log) 1976 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid); 1977 } 1978 1979 // Handle the signal. 1980 if (info->si_code == SI_TKILL || info->si_code == SI_USER) 1981 { 1982 if (log) 1983 log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")", 1984 __FUNCTION__, 1985 GetUnixSignals ().GetSignalAsCString (signo), 1986 signo, 1987 (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"), 1988 info->si_pid, 1989 is_from_llgs ? "from llgs" : "not from llgs", 1990 pid); 1991 } 1992 1993 // Check for new thread notification. 1994 if ((info->si_pid == 0) && (info->si_code == SI_USER)) 1995 { 1996 // A new thread creation is being signaled. This is one of two parts that come in 1997 // a non-deterministic order. This code handles the case where the new thread event comes 1998 // before the event on the parent thread. For the opposite case see code in 1999 // MonitorSIGTRAP. 2000 if (log) 2001 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification", 2002 __FUNCTION__, GetID (), pid); 2003 2004 thread_sp = AddThread(pid); 2005 assert (thread_sp.get() && "failed to create the tracking data for newly created inferior thread"); 2006 // We can now resume the newly created thread. 2007 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning (); 2008 Resume (pid, LLDB_INVALID_SIGNAL_NUMBER); 2009 ThreadWasCreated(pid); 2010 // Done handling. 2011 return; 2012 } 2013 2014 // Check for thread stop notification. 2015 if (is_from_llgs && (info->si_code == SI_TKILL) && (signo == SIGSTOP)) 2016 { 2017 // This is a tgkill()-based stop. 2018 if (thread_sp) 2019 { 2020 if (log) 2021 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped", 2022 __FUNCTION__, 2023 GetID (), 2024 pid); 2025 2026 // Check that we're not already marked with a stop reason. 2027 // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that 2028 // the kernel signaled us with the thread stopping which we handled and marked as stopped, 2029 // and that, without an intervening resume, we received another stop. It is more likely 2030 // that we are missing the marking of a run state somewhere if we find that the thread was 2031 // marked as stopped. 2032 std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp); 2033 assert (linux_thread_sp && "linux_thread_sp is null!"); 2034 2035 const StateType thread_state = linux_thread_sp->GetState (); 2036 if (!StateIsStoppedState (thread_state, false)) 2037 { 2038 // An inferior thread has stopped because of a SIGSTOP we have sent it. 2039 // Generally, these are not important stops and we don't want to report them as 2040 // they are just used to stop other threads when one thread (the one with the 2041 // *real* stop reason) hits a breakpoint (watchpoint, etc...). However, in the 2042 // case of an asynchronous Interrupt(), this *is* the real stop reason, so we 2043 // leave the signal intact if this is the thread that was chosen as the 2044 // triggering thread. 2045 if (m_pending_notification_up && m_pending_notification_up->triggering_tid == pid) 2046 linux_thread_sp->SetStoppedBySignal(SIGSTOP, info); 2047 else 2048 linux_thread_sp->SetStoppedBySignal(0); 2049 2050 SetCurrentThreadID (thread_sp->GetID ()); 2051 ThreadDidStop (thread_sp->GetID (), true); 2052 } 2053 else 2054 { 2055 if (log) 2056 { 2057 // Retrieve the signal name if the thread was stopped by a signal. 2058 int stop_signo = 0; 2059 const bool stopped_by_signal = linux_thread_sp->IsStopped (&stop_signo); 2060 const char *signal_name = stopped_by_signal ? GetUnixSignals ().GetSignalAsCString (stop_signo) : "<not stopped by signal>"; 2061 if (!signal_name) 2062 signal_name = "<no-signal-name>"; 2063 2064 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is", 2065 __FUNCTION__, 2066 GetID (), 2067 linux_thread_sp->GetID (), 2068 StateAsCString (thread_state), 2069 stop_signo, 2070 signal_name); 2071 } 2072 ThreadDidStop (thread_sp->GetID (), false); 2073 } 2074 } 2075 2076 // Done handling. 2077 return; 2078 } 2079 2080 if (log) 2081 log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo)); 2082 2083 // This thread is stopped. 2084 ThreadDidStop (pid, false); 2085 2086 if (thread_sp) 2087 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal(signo, info); 2088 2089 // Send a stop to the debugger after we get all other threads to stop. 2090 StopRunningThreads (pid); 2091 } 2092 2093 namespace { 2094 2095 struct EmulatorBaton 2096 { 2097 NativeProcessLinux* m_process; 2098 NativeRegisterContext* m_reg_context; 2099 2100 // eRegisterKindDWARF -> RegsiterValue 2101 std::unordered_map<uint32_t, RegisterValue> m_register_values; 2102 2103 EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) : 2104 m_process(process), m_reg_context(reg_context) {} 2105 }; 2106 2107 } // anonymous namespace 2108 2109 static size_t 2110 ReadMemoryCallback (EmulateInstruction *instruction, 2111 void *baton, 2112 const EmulateInstruction::Context &context, 2113 lldb::addr_t addr, 2114 void *dst, 2115 size_t length) 2116 { 2117 EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton); 2118 2119 size_t bytes_read; 2120 emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read); 2121 return bytes_read; 2122 } 2123 2124 static bool 2125 ReadRegisterCallback (EmulateInstruction *instruction, 2126 void *baton, 2127 const RegisterInfo *reg_info, 2128 RegisterValue ®_value) 2129 { 2130 EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton); 2131 2132 auto it = emulator_baton->m_register_values.find(reg_info->kinds[eRegisterKindDWARF]); 2133 if (it != emulator_baton->m_register_values.end()) 2134 { 2135 reg_value = it->second; 2136 return true; 2137 } 2138 2139 // The emulator only fill in the dwarf regsiter numbers (and in some case 2140 // the generic register numbers). Get the full register info from the 2141 // register context based on the dwarf register numbers. 2142 const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo( 2143 eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]); 2144 2145 Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value); 2146 if (error.Success()) 2147 return true; 2148 2149 return false; 2150 } 2151 2152 static bool 2153 WriteRegisterCallback (EmulateInstruction *instruction, 2154 void *baton, 2155 const EmulateInstruction::Context &context, 2156 const RegisterInfo *reg_info, 2157 const RegisterValue ®_value) 2158 { 2159 EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton); 2160 emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value; 2161 return true; 2162 } 2163 2164 static size_t 2165 WriteMemoryCallback (EmulateInstruction *instruction, 2166 void *baton, 2167 const EmulateInstruction::Context &context, 2168 lldb::addr_t addr, 2169 const void *dst, 2170 size_t length) 2171 { 2172 return length; 2173 } 2174 2175 static lldb::addr_t 2176 ReadFlags (NativeRegisterContext* regsiter_context) 2177 { 2178 const RegisterInfo* flags_info = regsiter_context->GetRegisterInfo( 2179 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 2180 return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS); 2181 } 2182 2183 Error 2184 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadProtocolSP thread_sp) 2185 { 2186 Error error; 2187 NativeRegisterContextSP register_context_sp = thread_sp->GetRegisterContext(); 2188 2189 std::unique_ptr<EmulateInstruction> emulator_ap( 2190 EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr)); 2191 2192 if (emulator_ap == nullptr) 2193 return Error("Instruction emulator not found!"); 2194 2195 EmulatorBaton baton(this, register_context_sp.get()); 2196 emulator_ap->SetBaton(&baton); 2197 emulator_ap->SetReadMemCallback(&ReadMemoryCallback); 2198 emulator_ap->SetReadRegCallback(&ReadRegisterCallback); 2199 emulator_ap->SetWriteMemCallback(&WriteMemoryCallback); 2200 emulator_ap->SetWriteRegCallback(&WriteRegisterCallback); 2201 2202 if (!emulator_ap->ReadInstruction()) 2203 return Error("Read instruction failed!"); 2204 2205 bool emulation_result = emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC); 2206 2207 const RegisterInfo* reg_info_pc = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); 2208 const RegisterInfo* reg_info_flags = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 2209 2210 auto pc_it = baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]); 2211 auto flags_it = baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]); 2212 2213 lldb::addr_t next_pc; 2214 lldb::addr_t next_flags; 2215 if (emulation_result) 2216 { 2217 assert(pc_it != baton.m_register_values.end() && "Emulation was successfull but PC wasn't updated"); 2218 next_pc = pc_it->second.GetAsUInt64(); 2219 2220 if (flags_it != baton.m_register_values.end()) 2221 next_flags = flags_it->second.GetAsUInt64(); 2222 else 2223 next_flags = ReadFlags (register_context_sp.get()); 2224 } 2225 else if (pc_it == baton.m_register_values.end()) 2226 { 2227 // Emulate instruction failed and it haven't changed PC. Advance PC 2228 // with the size of the current opcode because the emulation of all 2229 // PC modifying instruction should be successful. The failure most 2230 // likely caused by a not supported instruction which don't modify PC. 2231 next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize(); 2232 next_flags = ReadFlags (register_context_sp.get()); 2233 } 2234 else 2235 { 2236 // The instruction emulation failed after it modified the PC. It is an 2237 // unknown error where we can't continue because the next instruction is 2238 // modifying the PC but we don't know how. 2239 return Error ("Instruction emulation failed unexpectedly."); 2240 } 2241 2242 if (m_arch.GetMachine() == llvm::Triple::arm) 2243 { 2244 if (next_flags & 0x20) 2245 { 2246 // Thumb mode 2247 error = SetSoftwareBreakpoint(next_pc, 2); 2248 } 2249 else 2250 { 2251 // Arm mode 2252 error = SetSoftwareBreakpoint(next_pc, 4); 2253 } 2254 } 2255 else if (m_arch.GetMachine() == llvm::Triple::mips64 2256 || m_arch.GetMachine() == llvm::Triple::mips64el 2257 || m_arch.GetMachine() == llvm::Triple::mips 2258 || m_arch.GetMachine() == llvm::Triple::mipsel) 2259 error = SetSoftwareBreakpoint(next_pc, 4); 2260 else 2261 { 2262 // No size hint is given for the next breakpoint 2263 error = SetSoftwareBreakpoint(next_pc, 0); 2264 } 2265 2266 if (error.Fail()) 2267 return error; 2268 2269 m_threads_stepping_with_breakpoint.insert({thread_sp->GetID(), next_pc}); 2270 2271 return Error(); 2272 } 2273 2274 bool 2275 NativeProcessLinux::SupportHardwareSingleStepping() const 2276 { 2277 if (m_arch.GetMachine() == llvm::Triple::arm 2278 || m_arch.GetMachine() == llvm::Triple::mips64 || m_arch.GetMachine() == llvm::Triple::mips64el 2279 || m_arch.GetMachine() == llvm::Triple::mips || m_arch.GetMachine() == llvm::Triple::mipsel) 2280 return false; 2281 return true; 2282 } 2283 2284 Error 2285 NativeProcessLinux::Resume (const ResumeActionList &resume_actions) 2286 { 2287 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD)); 2288 if (log) 2289 log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ()); 2290 2291 bool software_single_step = !SupportHardwareSingleStepping(); 2292 2293 Monitor::ScopedOperationLock monitor_lock(*m_monitor_up); 2294 Mutex::Locker locker (m_threads_mutex); 2295 2296 if (software_single_step) 2297 { 2298 for (auto thread_sp : m_threads) 2299 { 2300 assert (thread_sp && "thread list should not contain NULL threads"); 2301 2302 const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true); 2303 if (action == nullptr) 2304 continue; 2305 2306 if (action->state == eStateStepping) 2307 { 2308 Error error = SetupSoftwareSingleStepping(thread_sp); 2309 if (error.Fail()) 2310 return error; 2311 } 2312 } 2313 } 2314 2315 for (auto thread_sp : m_threads) 2316 { 2317 assert (thread_sp && "thread list should not contain NULL threads"); 2318 2319 const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true); 2320 2321 if (action == nullptr) 2322 { 2323 if (log) 2324 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64, 2325 __FUNCTION__, GetID (), thread_sp->GetID ()); 2326 continue; 2327 } 2328 2329 if (log) 2330 { 2331 log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64, 2332 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); 2333 } 2334 2335 switch (action->state) 2336 { 2337 case eStateRunning: 2338 { 2339 // Run the thread, possibly feeding it the signal. 2340 const int signo = action->signal; 2341 ResumeThread(thread_sp->GetID (), 2342 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2343 { 2344 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning (); 2345 // Pass this signal number on to the inferior to handle. 2346 const auto resume_result = Resume (tid_to_resume, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER); 2347 if (resume_result.Success()) 2348 SetState(eStateRunning, true); 2349 return resume_result; 2350 }, 2351 false); 2352 break; 2353 } 2354 2355 case eStateStepping: 2356 { 2357 // Request the step. 2358 const int signo = action->signal; 2359 ResumeThread(thread_sp->GetID (), 2360 [=](lldb::tid_t tid_to_step, bool supress_signal) 2361 { 2362 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStepping (); 2363 2364 Error step_result; 2365 if (software_single_step) 2366 step_result = Resume (tid_to_step, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER); 2367 else 2368 step_result = SingleStep (tid_to_step,(signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER); 2369 2370 assert (step_result.Success() && "SingleStep() failed"); 2371 if (step_result.Success()) 2372 SetState(eStateStepping, true); 2373 return step_result; 2374 }, 2375 false); 2376 break; 2377 } 2378 2379 case eStateSuspended: 2380 case eStateStopped: 2381 lldbassert(0 && "Unexpected state"); 2382 2383 default: 2384 return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64, 2385 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); 2386 } 2387 } 2388 2389 return Error(); 2390 } 2391 2392 Error 2393 NativeProcessLinux::Halt () 2394 { 2395 Error error; 2396 2397 if (kill (GetID (), SIGSTOP) != 0) 2398 error.SetErrorToErrno (); 2399 2400 return error; 2401 } 2402 2403 Error 2404 NativeProcessLinux::Detach () 2405 { 2406 Error error; 2407 2408 // Tell ptrace to detach from the process. 2409 if (GetID () != LLDB_INVALID_PROCESS_ID) 2410 error = Detach (GetID ()); 2411 2412 // Stop monitoring the inferior. 2413 m_monitor_up->Terminate(); 2414 2415 // No error. 2416 return error; 2417 } 2418 2419 Error 2420 NativeProcessLinux::Signal (int signo) 2421 { 2422 Error error; 2423 2424 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2425 if (log) 2426 log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64, 2427 __FUNCTION__, signo, GetUnixSignals ().GetSignalAsCString (signo), GetID ()); 2428 2429 if (kill(GetID(), signo)) 2430 error.SetErrorToErrno(); 2431 2432 return error; 2433 } 2434 2435 Error 2436 NativeProcessLinux::Interrupt () 2437 { 2438 // Pick a running thread (or if none, a not-dead stopped thread) as 2439 // the chosen thread that will be the stop-reason thread. 2440 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2441 2442 NativeThreadProtocolSP running_thread_sp; 2443 NativeThreadProtocolSP stopped_thread_sp; 2444 2445 if (log) 2446 log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__); 2447 2448 Monitor::ScopedOperationLock monitor_lock(*m_monitor_up); 2449 Mutex::Locker locker (m_threads_mutex); 2450 2451 for (auto thread_sp : m_threads) 2452 { 2453 // The thread shouldn't be null but lets just cover that here. 2454 if (!thread_sp) 2455 continue; 2456 2457 // If we have a running or stepping thread, we'll call that the 2458 // target of the interrupt. 2459 const auto thread_state = thread_sp->GetState (); 2460 if (thread_state == eStateRunning || 2461 thread_state == eStateStepping) 2462 { 2463 running_thread_sp = thread_sp; 2464 break; 2465 } 2466 else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true)) 2467 { 2468 // Remember the first non-dead stopped thread. We'll use that as a backup if there are no running threads. 2469 stopped_thread_sp = thread_sp; 2470 } 2471 } 2472 2473 if (!running_thread_sp && !stopped_thread_sp) 2474 { 2475 Error error("found no running/stepping or live stopped threads as target for interrupt"); 2476 if (log) 2477 log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ()); 2478 2479 return error; 2480 } 2481 2482 NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp; 2483 2484 if (log) 2485 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target", 2486 __FUNCTION__, 2487 GetID (), 2488 running_thread_sp ? "running" : "stopped", 2489 deferred_signal_thread_sp->GetID ()); 2490 2491 StopRunningThreads(deferred_signal_thread_sp->GetID()); 2492 2493 return Error(); 2494 } 2495 2496 Error 2497 NativeProcessLinux::Kill () 2498 { 2499 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2500 if (log) 2501 log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ()); 2502 2503 Error error; 2504 2505 switch (m_state) 2506 { 2507 case StateType::eStateInvalid: 2508 case StateType::eStateExited: 2509 case StateType::eStateCrashed: 2510 case StateType::eStateDetached: 2511 case StateType::eStateUnloaded: 2512 // Nothing to do - the process is already dead. 2513 if (log) 2514 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state)); 2515 return error; 2516 2517 case StateType::eStateConnected: 2518 case StateType::eStateAttaching: 2519 case StateType::eStateLaunching: 2520 case StateType::eStateStopped: 2521 case StateType::eStateRunning: 2522 case StateType::eStateStepping: 2523 case StateType::eStateSuspended: 2524 // We can try to kill a process in these states. 2525 break; 2526 } 2527 2528 if (kill (GetID (), SIGKILL) != 0) 2529 { 2530 error.SetErrorToErrno (); 2531 return error; 2532 } 2533 2534 return error; 2535 } 2536 2537 static Error 2538 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info) 2539 { 2540 memory_region_info.Clear(); 2541 2542 StringExtractor line_extractor (maps_line.c_str ()); 2543 2544 // Format: {address_start_hex}-{address_end_hex} perms offset dev inode pathname 2545 // perms: rwxp (letter is present if set, '-' if not, final character is p=private, s=shared). 2546 2547 // Parse out the starting address 2548 lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0); 2549 2550 // Parse out hyphen separating start and end address from range. 2551 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-')) 2552 return Error ("malformed /proc/{pid}/maps entry, missing dash between address range"); 2553 2554 // Parse out the ending address 2555 lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address); 2556 2557 // Parse out the space after the address. 2558 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' ')) 2559 return Error ("malformed /proc/{pid}/maps entry, missing space after range"); 2560 2561 // Save the range. 2562 memory_region_info.GetRange ().SetRangeBase (start_address); 2563 memory_region_info.GetRange ().SetRangeEnd (end_address); 2564 2565 // Parse out each permission entry. 2566 if (line_extractor.GetBytesLeft () < 4) 2567 return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions"); 2568 2569 // Handle read permission. 2570 const char read_perm_char = line_extractor.GetChar (); 2571 if (read_perm_char == 'r') 2572 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes); 2573 else 2574 { 2575 assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" ); 2576 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 2577 } 2578 2579 // Handle write permission. 2580 const char write_perm_char = line_extractor.GetChar (); 2581 if (write_perm_char == 'w') 2582 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes); 2583 else 2584 { 2585 assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" ); 2586 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 2587 } 2588 2589 // Handle execute permission. 2590 const char exec_perm_char = line_extractor.GetChar (); 2591 if (exec_perm_char == 'x') 2592 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes); 2593 else 2594 { 2595 assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" ); 2596 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 2597 } 2598 2599 return Error (); 2600 } 2601 2602 Error 2603 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info) 2604 { 2605 // FIXME review that the final memory region returned extends to the end of the virtual address space, 2606 // with no perms if it is not mapped. 2607 2608 // Use an approach that reads memory regions from /proc/{pid}/maps. 2609 // Assume proc maps entries are in ascending order. 2610 // FIXME assert if we find differently. 2611 Mutex::Locker locker (m_mem_region_cache_mutex); 2612 2613 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2614 Error error; 2615 2616 if (m_supports_mem_region == LazyBool::eLazyBoolNo) 2617 { 2618 // We're done. 2619 error.SetErrorString ("unsupported"); 2620 return error; 2621 } 2622 2623 // If our cache is empty, pull the latest. There should always be at least one memory region 2624 // if memory region handling is supported. 2625 if (m_mem_region_cache.empty ()) 2626 { 2627 error = ProcFileReader::ProcessLineByLine (GetID (), "maps", 2628 [&] (const std::string &line) -> bool 2629 { 2630 MemoryRegionInfo info; 2631 const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info); 2632 if (parse_error.Success ()) 2633 { 2634 m_mem_region_cache.push_back (info); 2635 return true; 2636 } 2637 else 2638 { 2639 if (log) 2640 log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ()); 2641 return false; 2642 } 2643 }); 2644 2645 // If we had an error, we'll mark unsupported. 2646 if (error.Fail ()) 2647 { 2648 m_supports_mem_region = LazyBool::eLazyBoolNo; 2649 return error; 2650 } 2651 else if (m_mem_region_cache.empty ()) 2652 { 2653 // No entries after attempting to read them. This shouldn't happen if /proc/{pid}/maps 2654 // is supported. Assume we don't support map entries via procfs. 2655 if (log) 2656 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__); 2657 m_supports_mem_region = LazyBool::eLazyBoolNo; 2658 error.SetErrorString ("not supported"); 2659 return error; 2660 } 2661 2662 if (log) 2663 log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ()); 2664 2665 // We support memory retrieval, remember that. 2666 m_supports_mem_region = LazyBool::eLazyBoolYes; 2667 } 2668 else 2669 { 2670 if (log) 2671 log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ())); 2672 } 2673 2674 lldb::addr_t prev_base_address = 0; 2675 2676 // FIXME start by finding the last region that is <= target address using binary search. Data is sorted. 2677 // There can be a ton of regions on pthreads apps with lots of threads. 2678 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it) 2679 { 2680 MemoryRegionInfo &proc_entry_info = *it; 2681 2682 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 2683 assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected"); 2684 prev_base_address = proc_entry_info.GetRange ().GetRangeBase (); 2685 2686 // If the target address comes before this entry, indicate distance to next region. 2687 if (load_addr < proc_entry_info.GetRange ().GetRangeBase ()) 2688 { 2689 range_info.GetRange ().SetRangeBase (load_addr); 2690 range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr); 2691 range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 2692 range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 2693 range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 2694 2695 return error; 2696 } 2697 else if (proc_entry_info.GetRange ().Contains (load_addr)) 2698 { 2699 // The target address is within the memory region we're processing here. 2700 range_info = proc_entry_info; 2701 return error; 2702 } 2703 2704 // The target memory address comes somewhere after the region we just parsed. 2705 } 2706 2707 // If we made it here, we didn't find an entry that contained the given address. 2708 error.SetErrorString ("address comes after final region"); 2709 2710 if (log) 2711 log->Printf ("NativeProcessLinux::%s failed to find map entry for address 0x%" PRIx64 ": %s", __FUNCTION__, load_addr, error.AsCString ()); 2712 2713 return error; 2714 } 2715 2716 void 2717 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId) 2718 { 2719 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2720 if (log) 2721 log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId); 2722 2723 { 2724 Mutex::Locker locker (m_mem_region_cache_mutex); 2725 if (log) 2726 log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ())); 2727 m_mem_region_cache.clear (); 2728 } 2729 } 2730 2731 Error 2732 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, lldb::addr_t &addr) 2733 { 2734 // FIXME implementing this requires the equivalent of 2735 // InferiorCallPOSIX::InferiorCallMmap, which depends on 2736 // functional ThreadPlans working with Native*Protocol. 2737 #if 1 2738 return Error ("not implemented yet"); 2739 #else 2740 addr = LLDB_INVALID_ADDRESS; 2741 2742 unsigned prot = 0; 2743 if (permissions & lldb::ePermissionsReadable) 2744 prot |= eMmapProtRead; 2745 if (permissions & lldb::ePermissionsWritable) 2746 prot |= eMmapProtWrite; 2747 if (permissions & lldb::ePermissionsExecutable) 2748 prot |= eMmapProtExec; 2749 2750 // TODO implement this directly in NativeProcessLinux 2751 // (and lift to NativeProcessPOSIX if/when that class is 2752 // refactored out). 2753 if (InferiorCallMmap(this, addr, 0, size, prot, 2754 eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { 2755 m_addr_to_mmap_size[addr] = size; 2756 return Error (); 2757 } else { 2758 addr = LLDB_INVALID_ADDRESS; 2759 return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions)); 2760 } 2761 #endif 2762 } 2763 2764 Error 2765 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr) 2766 { 2767 // FIXME see comments in AllocateMemory - required lower-level 2768 // bits not in place yet (ThreadPlans) 2769 return Error ("not implemented"); 2770 } 2771 2772 lldb::addr_t 2773 NativeProcessLinux::GetSharedLibraryInfoAddress () 2774 { 2775 #if 1 2776 // punt on this for now 2777 return LLDB_INVALID_ADDRESS; 2778 #else 2779 // Return the image info address for the exe module 2780 #if 1 2781 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2782 2783 ModuleSP module_sp; 2784 Error error = GetExeModuleSP (module_sp); 2785 if (error.Fail ()) 2786 { 2787 if (log) 2788 log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ()); 2789 return LLDB_INVALID_ADDRESS; 2790 } 2791 2792 if (module_sp == nullptr) 2793 { 2794 if (log) 2795 log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__); 2796 return LLDB_INVALID_ADDRESS; 2797 } 2798 2799 ObjectFileSP object_file_sp = module_sp->GetObjectFile (); 2800 if (object_file_sp == nullptr) 2801 { 2802 if (log) 2803 log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__); 2804 return LLDB_INVALID_ADDRESS; 2805 } 2806 2807 return obj_file_sp->GetImageInfoAddress(); 2808 #else 2809 Target *target = &GetTarget(); 2810 ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile(); 2811 Address addr = obj_file->GetImageInfoAddress(target); 2812 2813 if (addr.IsValid()) 2814 return addr.GetLoadAddress(target); 2815 return LLDB_INVALID_ADDRESS; 2816 #endif 2817 #endif // punt on this for now 2818 } 2819 2820 size_t 2821 NativeProcessLinux::UpdateThreads () 2822 { 2823 // The NativeProcessLinux monitoring threads are always up to date 2824 // with respect to thread state and they keep the thread list 2825 // populated properly. All this method needs to do is return the 2826 // thread count. 2827 Mutex::Locker locker (m_threads_mutex); 2828 return m_threads.size (); 2829 } 2830 2831 bool 2832 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const 2833 { 2834 arch = m_arch; 2835 return true; 2836 } 2837 2838 Error 2839 NativeProcessLinux::GetSoftwareBreakpointPCOffset (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size) 2840 { 2841 // FIXME put this behind a breakpoint protocol class that can be 2842 // set per architecture. Need ARM, MIPS support here. 2843 static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 }; 2844 static const uint8_t g_i386_opcode [] = { 0xCC }; 2845 2846 switch (m_arch.GetMachine ()) 2847 { 2848 case llvm::Triple::aarch64: 2849 actual_opcode_size = static_cast<uint32_t> (sizeof(g_aarch64_opcode)); 2850 return Error (); 2851 2852 case llvm::Triple::arm: 2853 actual_opcode_size = 0; // On arm the PC don't get updated for breakpoint hits 2854 return Error (); 2855 2856 case llvm::Triple::x86: 2857 case llvm::Triple::x86_64: 2858 actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode)); 2859 return Error (); 2860 2861 case llvm::Triple::mips64: 2862 case llvm::Triple::mips64el: 2863 case llvm::Triple::mips: 2864 case llvm::Triple::mipsel: 2865 actual_opcode_size = 0; 2866 return Error (); 2867 2868 default: 2869 assert(false && "CPU type not supported!"); 2870 return Error ("CPU type not supported"); 2871 } 2872 } 2873 2874 Error 2875 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware) 2876 { 2877 if (hardware) 2878 return Error ("NativeProcessLinux does not support hardware breakpoints"); 2879 else 2880 return SetSoftwareBreakpoint (addr, size); 2881 } 2882 2883 Error 2884 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint, 2885 size_t &actual_opcode_size, 2886 const uint8_t *&trap_opcode_bytes) 2887 { 2888 // FIXME put this behind a breakpoint protocol class that can be set per 2889 // architecture. Need MIPS support here. 2890 static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 }; 2891 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 2892 // linux kernel does otherwise. 2893 static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 }; 2894 static const uint8_t g_i386_opcode [] = { 0xCC }; 2895 static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d }; 2896 static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 }; 2897 static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde }; 2898 2899 switch (m_arch.GetMachine ()) 2900 { 2901 case llvm::Triple::aarch64: 2902 trap_opcode_bytes = g_aarch64_opcode; 2903 actual_opcode_size = sizeof(g_aarch64_opcode); 2904 return Error (); 2905 2906 case llvm::Triple::arm: 2907 switch (trap_opcode_size_hint) 2908 { 2909 case 2: 2910 trap_opcode_bytes = g_thumb_breakpoint_opcode; 2911 actual_opcode_size = sizeof(g_thumb_breakpoint_opcode); 2912 return Error (); 2913 case 4: 2914 trap_opcode_bytes = g_arm_breakpoint_opcode; 2915 actual_opcode_size = sizeof(g_arm_breakpoint_opcode); 2916 return Error (); 2917 default: 2918 assert(false && "Unrecognised trap opcode size hint!"); 2919 return Error ("Unrecognised trap opcode size hint!"); 2920 } 2921 2922 case llvm::Triple::x86: 2923 case llvm::Triple::x86_64: 2924 trap_opcode_bytes = g_i386_opcode; 2925 actual_opcode_size = sizeof(g_i386_opcode); 2926 return Error (); 2927 2928 case llvm::Triple::mips: 2929 case llvm::Triple::mips64: 2930 trap_opcode_bytes = g_mips64_opcode; 2931 actual_opcode_size = sizeof(g_mips64_opcode); 2932 return Error (); 2933 2934 case llvm::Triple::mipsel: 2935 case llvm::Triple::mips64el: 2936 trap_opcode_bytes = g_mips64el_opcode; 2937 actual_opcode_size = sizeof(g_mips64el_opcode); 2938 return Error (); 2939 2940 default: 2941 assert(false && "CPU type not supported!"); 2942 return Error ("CPU type not supported"); 2943 } 2944 } 2945 2946 #if 0 2947 ProcessMessage::CrashReason 2948 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info) 2949 { 2950 ProcessMessage::CrashReason reason; 2951 assert(info->si_signo == SIGSEGV); 2952 2953 reason = ProcessMessage::eInvalidCrashReason; 2954 2955 switch (info->si_code) 2956 { 2957 default: 2958 assert(false && "unexpected si_code for SIGSEGV"); 2959 break; 2960 case SI_KERNEL: 2961 // Linux will occasionally send spurious SI_KERNEL codes. 2962 // (this is poorly documented in sigaction) 2963 // One way to get this is via unaligned SIMD loads. 2964 reason = ProcessMessage::eInvalidAddress; // for lack of anything better 2965 break; 2966 case SEGV_MAPERR: 2967 reason = ProcessMessage::eInvalidAddress; 2968 break; 2969 case SEGV_ACCERR: 2970 reason = ProcessMessage::ePrivilegedAddress; 2971 break; 2972 } 2973 2974 return reason; 2975 } 2976 #endif 2977 2978 2979 #if 0 2980 ProcessMessage::CrashReason 2981 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info) 2982 { 2983 ProcessMessage::CrashReason reason; 2984 assert(info->si_signo == SIGILL); 2985 2986 reason = ProcessMessage::eInvalidCrashReason; 2987 2988 switch (info->si_code) 2989 { 2990 default: 2991 assert(false && "unexpected si_code for SIGILL"); 2992 break; 2993 case ILL_ILLOPC: 2994 reason = ProcessMessage::eIllegalOpcode; 2995 break; 2996 case ILL_ILLOPN: 2997 reason = ProcessMessage::eIllegalOperand; 2998 break; 2999 case ILL_ILLADR: 3000 reason = ProcessMessage::eIllegalAddressingMode; 3001 break; 3002 case ILL_ILLTRP: 3003 reason = ProcessMessage::eIllegalTrap; 3004 break; 3005 case ILL_PRVOPC: 3006 reason = ProcessMessage::ePrivilegedOpcode; 3007 break; 3008 case ILL_PRVREG: 3009 reason = ProcessMessage::ePrivilegedRegister; 3010 break; 3011 case ILL_COPROC: 3012 reason = ProcessMessage::eCoprocessorError; 3013 break; 3014 case ILL_BADSTK: 3015 reason = ProcessMessage::eInternalStackError; 3016 break; 3017 } 3018 3019 return reason; 3020 } 3021 #endif 3022 3023 #if 0 3024 ProcessMessage::CrashReason 3025 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info) 3026 { 3027 ProcessMessage::CrashReason reason; 3028 assert(info->si_signo == SIGFPE); 3029 3030 reason = ProcessMessage::eInvalidCrashReason; 3031 3032 switch (info->si_code) 3033 { 3034 default: 3035 assert(false && "unexpected si_code for SIGFPE"); 3036 break; 3037 case FPE_INTDIV: 3038 reason = ProcessMessage::eIntegerDivideByZero; 3039 break; 3040 case FPE_INTOVF: 3041 reason = ProcessMessage::eIntegerOverflow; 3042 break; 3043 case FPE_FLTDIV: 3044 reason = ProcessMessage::eFloatDivideByZero; 3045 break; 3046 case FPE_FLTOVF: 3047 reason = ProcessMessage::eFloatOverflow; 3048 break; 3049 case FPE_FLTUND: 3050 reason = ProcessMessage::eFloatUnderflow; 3051 break; 3052 case FPE_FLTRES: 3053 reason = ProcessMessage::eFloatInexactResult; 3054 break; 3055 case FPE_FLTINV: 3056 reason = ProcessMessage::eFloatInvalidOperation; 3057 break; 3058 case FPE_FLTSUB: 3059 reason = ProcessMessage::eFloatSubscriptRange; 3060 break; 3061 } 3062 3063 return reason; 3064 } 3065 #endif 3066 3067 #if 0 3068 ProcessMessage::CrashReason 3069 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info) 3070 { 3071 ProcessMessage::CrashReason reason; 3072 assert(info->si_signo == SIGBUS); 3073 3074 reason = ProcessMessage::eInvalidCrashReason; 3075 3076 switch (info->si_code) 3077 { 3078 default: 3079 assert(false && "unexpected si_code for SIGBUS"); 3080 break; 3081 case BUS_ADRALN: 3082 reason = ProcessMessage::eIllegalAlignment; 3083 break; 3084 case BUS_ADRERR: 3085 reason = ProcessMessage::eIllegalAddress; 3086 break; 3087 case BUS_OBJERR: 3088 reason = ProcessMessage::eHardwareError; 3089 break; 3090 } 3091 3092 return reason; 3093 } 3094 #endif 3095 3096 Error 3097 NativeProcessLinux::SetWatchpoint (lldb::addr_t addr, size_t size, uint32_t watch_flags, bool hardware) 3098 { 3099 // The base SetWatchpoint will end up executing monitor operations. Let's lock the monitor 3100 // for it. 3101 Monitor::ScopedOperationLock monitor_lock(*m_monitor_up); 3102 return NativeProcessProtocol::SetWatchpoint(addr, size, watch_flags, hardware); 3103 } 3104 3105 Error 3106 NativeProcessLinux::RemoveWatchpoint (lldb::addr_t addr) 3107 { 3108 // The base RemoveWatchpoint will end up executing monitor operations. Let's lock the monitor 3109 // for it. 3110 Monitor::ScopedOperationLock monitor_lock(*m_monitor_up); 3111 return NativeProcessProtocol::RemoveWatchpoint(addr); 3112 } 3113 3114 Error 3115 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read) 3116 { 3117 if (ProcessVmReadvSupported()) { 3118 // The process_vm_readv path is about 50 times faster than ptrace api. We want to use 3119 // this syscall if it is supported. 3120 3121 const ::pid_t pid = GetID(); 3122 3123 struct iovec local_iov, remote_iov; 3124 local_iov.iov_base = buf; 3125 local_iov.iov_len = size; 3126 remote_iov.iov_base = reinterpret_cast<void *>(addr); 3127 remote_iov.iov_len = size; 3128 3129 bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0); 3130 const bool success = bytes_read == size; 3131 3132 Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3133 if (log) 3134 log->Printf ("NativeProcessLinux::%s using process_vm_readv to read %zd bytes from inferior address 0x%" PRIx64": %s", 3135 __FUNCTION__, size, addr, success ? "Success" : strerror(errno)); 3136 3137 if (success) 3138 return Error(); 3139 // else 3140 // the call failed for some reason, let's retry the read using ptrace api. 3141 } 3142 3143 return DoOperation([&] { return DoReadMemory(GetID(), addr, buf, size, bytes_read); }); 3144 } 3145 3146 Error 3147 NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read) 3148 { 3149 Error error = ReadMemory(addr, buf, size, bytes_read); 3150 if (error.Fail()) return error; 3151 return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size); 3152 } 3153 3154 Error 3155 NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, size_t size, size_t &bytes_written) 3156 { 3157 return DoOperation([&] { return DoWriteMemory(GetID(), addr, buf, size, bytes_written); }); 3158 } 3159 3160 Error 3161 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo) 3162 { 3163 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3164 3165 if (log) 3166 log->Printf ("NativeProcessLinux::%s() resuming thread = %" PRIu64 " with signal %s", __FUNCTION__, tid, 3167 GetUnixSignals().GetSignalAsCString (signo)); 3168 3169 3170 3171 intptr_t data = 0; 3172 3173 if (signo != LLDB_INVALID_SIGNAL_NUMBER) 3174 data = signo; 3175 3176 Error error = DoOperation([&] { 3177 Error error; 3178 NativeProcessLinux::PtraceWrapper(PTRACE_CONT, tid, nullptr, (void*)data, 0, error); 3179 return error; 3180 }); 3181 3182 if (log) 3183 log->Printf ("NativeProcessLinux::%s() resuming thread = %" PRIu64 " result = %s", __FUNCTION__, tid, error.Success() ? "true" : "false"); 3184 return error; 3185 } 3186 3187 Error 3188 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo) 3189 { 3190 intptr_t data = 0; 3191 3192 if (signo != LLDB_INVALID_SIGNAL_NUMBER) 3193 data = signo; 3194 3195 return DoOperation([&] { 3196 Error error; 3197 NativeProcessLinux::PtraceWrapper(PTRACE_SINGLESTEP, tid, nullptr, (void*)data, 0, error); 3198 return error; 3199 }); 3200 } 3201 3202 Error 3203 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) 3204 { 3205 return DoOperation([&] { 3206 Error error; 3207 NativeProcessLinux::PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo, 0, error); 3208 return error; 3209 }); 3210 } 3211 3212 Error 3213 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message) 3214 { 3215 return DoOperation([&] { 3216 Error error; 3217 NativeProcessLinux::PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message, 0, error); 3218 return error; 3219 }); 3220 } 3221 3222 Error 3223 NativeProcessLinux::Detach(lldb::tid_t tid) 3224 { 3225 if (tid == LLDB_INVALID_THREAD_ID) 3226 return Error(); 3227 3228 return DoOperation([&] { 3229 Error error; 3230 NativeProcessLinux::PtraceWrapper(PTRACE_DETACH, tid, nullptr, 0, 0, error); 3231 return error; 3232 }); 3233 } 3234 3235 bool 3236 NativeProcessLinux::DupDescriptor(const FileSpec &file_spec, int fd, int flags) 3237 { 3238 int target_fd = open(file_spec.GetCString(), flags, 0666); 3239 3240 if (target_fd == -1) 3241 return false; 3242 3243 if (dup2(target_fd, fd) == -1) 3244 return false; 3245 3246 return (close(target_fd) == -1) ? false : true; 3247 } 3248 3249 void 3250 NativeProcessLinux::StartMonitorThread(const InitialOperation &initial_operation, Error &error) 3251 { 3252 m_monitor_up.reset(new Monitor(initial_operation, this)); 3253 error = m_monitor_up->Initialize(); 3254 if (error.Fail()) { 3255 m_monitor_up.reset(); 3256 } 3257 } 3258 3259 bool 3260 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id) 3261 { 3262 for (auto thread_sp : m_threads) 3263 { 3264 assert (thread_sp && "thread list should not contain NULL threads"); 3265 if (thread_sp->GetID () == thread_id) 3266 { 3267 // We have this thread. 3268 return true; 3269 } 3270 } 3271 3272 // We don't have this thread. 3273 return false; 3274 } 3275 3276 NativeThreadProtocolSP 3277 NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id) 3278 { 3279 // CONSIDER organize threads by map - we can do better than linear. 3280 for (auto thread_sp : m_threads) 3281 { 3282 if (thread_sp->GetID () == thread_id) 3283 return thread_sp; 3284 } 3285 3286 // We don't have this thread. 3287 return NativeThreadProtocolSP (); 3288 } 3289 3290 bool 3291 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id) 3292 { 3293 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 3294 3295 if (log) 3296 log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread_id); 3297 3298 bool found = false; 3299 3300 Mutex::Locker locker (m_threads_mutex); 3301 for (auto it = m_threads.begin (); it != m_threads.end (); ++it) 3302 { 3303 if (*it && ((*it)->GetID () == thread_id)) 3304 { 3305 m_threads.erase (it); 3306 found = true; 3307 break; 3308 } 3309 } 3310 3311 // If we have a pending notification, remove this from the set. 3312 if (m_pending_notification_up) 3313 { 3314 m_pending_notification_up->wait_for_stop_tids.erase(thread_id); 3315 SignalIfAllThreadsStopped(); 3316 } 3317 3318 return found; 3319 } 3320 3321 NativeThreadProtocolSP 3322 NativeProcessLinux::AddThread (lldb::tid_t thread_id) 3323 { 3324 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3325 3326 Mutex::Locker locker (m_threads_mutex); 3327 3328 if (log) 3329 { 3330 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64, 3331 __FUNCTION__, 3332 GetID (), 3333 thread_id); 3334 } 3335 3336 assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists"); 3337 3338 // If this is the first thread, save it as the current thread 3339 if (m_threads.empty ()) 3340 SetCurrentThreadID (thread_id); 3341 3342 NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id)); 3343 m_threads.push_back (thread_sp); 3344 3345 return thread_sp; 3346 } 3347 3348 Error 3349 NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp) 3350 { 3351 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS)); 3352 3353 Error error; 3354 3355 // Get a linux thread pointer. 3356 if (!thread_sp) 3357 { 3358 error.SetErrorString ("null thread_sp"); 3359 if (log) 3360 log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); 3361 return error; 3362 } 3363 std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp); 3364 3365 // Find out the size of a breakpoint (might depend on where we are in the code). 3366 NativeRegisterContextSP context_sp = linux_thread_sp->GetRegisterContext (); 3367 if (!context_sp) 3368 { 3369 error.SetErrorString ("cannot get a NativeRegisterContext for the thread"); 3370 if (log) 3371 log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); 3372 return error; 3373 } 3374 3375 uint32_t breakpoint_size = 0; 3376 error = GetSoftwareBreakpointPCOffset (context_sp, breakpoint_size); 3377 if (error.Fail ()) 3378 { 3379 if (log) 3380 log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ()); 3381 return error; 3382 } 3383 else 3384 { 3385 if (log) 3386 log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size); 3387 } 3388 3389 // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size. 3390 const lldb::addr_t initial_pc_addr = context_sp->GetPCfromBreakpointLocation (); 3391 lldb::addr_t breakpoint_addr = initial_pc_addr; 3392 if (breakpoint_size > 0) 3393 { 3394 // Do not allow breakpoint probe to wrap around. 3395 if (breakpoint_addr >= breakpoint_size) 3396 breakpoint_addr -= breakpoint_size; 3397 } 3398 3399 // Check if we stopped because of a breakpoint. 3400 NativeBreakpointSP breakpoint_sp; 3401 error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp); 3402 if (!error.Success () || !breakpoint_sp) 3403 { 3404 // We didn't find one at a software probe location. Nothing to do. 3405 if (log) 3406 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr); 3407 return Error (); 3408 } 3409 3410 // If the breakpoint is not a software breakpoint, nothing to do. 3411 if (!breakpoint_sp->IsSoftwareBreakpoint ()) 3412 { 3413 if (log) 3414 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr); 3415 return Error (); 3416 } 3417 3418 // 3419 // We have a software breakpoint and need to adjust the PC. 3420 // 3421 3422 // Sanity check. 3423 if (breakpoint_size == 0) 3424 { 3425 // Nothing to do! How did we get here? 3426 if (log) 3427 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr); 3428 return Error (); 3429 } 3430 3431 // Change the program counter. 3432 if (log) 3433 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_sp->GetID (), initial_pc_addr, breakpoint_addr); 3434 3435 error = context_sp->SetPC (breakpoint_addr); 3436 if (error.Fail ()) 3437 { 3438 if (log) 3439 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_sp->GetID (), error.AsCString ()); 3440 return error; 3441 } 3442 3443 return error; 3444 } 3445 3446 Error 3447 NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec) 3448 { 3449 char maps_file_name[32]; 3450 snprintf(maps_file_name, sizeof(maps_file_name), "/proc/%" PRIu64 "/maps", GetID()); 3451 3452 FileSpec maps_file_spec(maps_file_name, false); 3453 if (!maps_file_spec.Exists()) { 3454 file_spec.Clear(); 3455 return Error("/proc/%" PRIu64 "/maps file doesn't exists!", GetID()); 3456 } 3457 3458 FileSpec module_file_spec(module_path, true); 3459 3460 std::ifstream maps_file(maps_file_name); 3461 std::string maps_data_str((std::istreambuf_iterator<char>(maps_file)), std::istreambuf_iterator<char>()); 3462 StringRef maps_data(maps_data_str.c_str()); 3463 3464 while (!maps_data.empty()) 3465 { 3466 StringRef maps_row; 3467 std::tie(maps_row, maps_data) = maps_data.split('\n'); 3468 3469 SmallVector<StringRef, 16> maps_columns; 3470 maps_row.split(maps_columns, StringRef(" "), -1, false); 3471 3472 if (maps_columns.size() >= 6) 3473 { 3474 file_spec.SetFile(maps_columns[5].str().c_str(), false); 3475 if (file_spec.GetFilename() == module_file_spec.GetFilename()) 3476 return Error(); 3477 } 3478 } 3479 3480 file_spec.Clear(); 3481 return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 3482 module_file_spec.GetFilename().AsCString(), GetID()); 3483 } 3484 3485 Error 3486 NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef& file_name, lldb::addr_t& load_addr) 3487 { 3488 load_addr = LLDB_INVALID_ADDRESS; 3489 Error error = ProcFileReader::ProcessLineByLine (GetID (), "maps", 3490 [&] (const std::string &line) -> bool 3491 { 3492 StringRef maps_row(line); 3493 3494 SmallVector<StringRef, 16> maps_columns; 3495 maps_row.split(maps_columns, StringRef(" "), -1, false); 3496 3497 if (maps_columns.size() < 6) 3498 { 3499 // Return true to continue reading the proc file 3500 return true; 3501 } 3502 3503 if (maps_columns[5] == file_name) 3504 { 3505 StringExtractor addr_extractor(maps_columns[0].str().c_str()); 3506 load_addr = addr_extractor.GetHexMaxU64(false, LLDB_INVALID_ADDRESS); 3507 3508 // Return false to stop reading the proc file further 3509 return false; 3510 } 3511 3512 // Return true to continue reading the proc file 3513 return true; 3514 }); 3515 return error; 3516 } 3517 3518 Error 3519 NativeProcessLinux::ResumeThread( 3520 lldb::tid_t tid, 3521 NativeThreadLinux::ResumeThreadFunction request_thread_resume_function, 3522 bool error_when_already_running) 3523 { 3524 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 3525 3526 if (log) 3527 log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ", error_when_already_running: %s)", 3528 __FUNCTION__, tid, error_when_already_running?"true":"false"); 3529 3530 auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid)); 3531 lldbassert(thread_sp != nullptr); 3532 3533 auto& context = thread_sp->GetThreadContext(); 3534 // Tell the thread to resume if we don't already think it is running. 3535 const bool is_stopped = StateIsStoppedState(thread_sp->GetState(), true); 3536 3537 lldbassert(!(error_when_already_running && !is_stopped)); 3538 3539 if (!is_stopped) 3540 { 3541 // It's not an error, just a log, if the error_when_already_running flag is not set. 3542 // This covers cases where, for instance, we're just trying to resume all threads 3543 // from the user side. 3544 if (log) 3545 log->Printf("NativeProcessLinux::%s tid %" PRIu64 " optional resume skipped since it is already running", 3546 __FUNCTION__, 3547 tid); 3548 return Error(); 3549 } 3550 3551 // Before we do the resume below, first check if we have a pending 3552 // stop notification that is currently waiting for 3553 // this thread to stop. This is potentially a buggy situation since 3554 // we're ostensibly waiting for threads to stop before we send out the 3555 // pending notification, and here we are resuming one before we send 3556 // out the pending stop notification. 3557 if (m_pending_notification_up && log && m_pending_notification_up->wait_for_stop_tids.count (tid) > 0) 3558 { 3559 log->Printf("NativeProcessLinux::%s about to resume tid %" PRIu64 " per explicit request but we have a pending stop notification (tid %" PRIu64 ") that is actively waiting for this thread to stop. Valid sequence of events?", __FUNCTION__, tid, m_pending_notification_up->triggering_tid); 3560 } 3561 3562 // Request a resume. We expect this to be synchronous and the system 3563 // to reflect it is running after this completes. 3564 const auto error = request_thread_resume_function (tid, false); 3565 if (error.Success()) 3566 context.request_resume_function = request_thread_resume_function; 3567 else if (log) 3568 { 3569 log->Printf("NativeProcessLinux::%s failed to resume thread tid %" PRIu64 ": %s", 3570 __FUNCTION__, tid, error.AsCString ()); 3571 } 3572 3573 return error; 3574 } 3575 3576 //===----------------------------------------------------------------------===// 3577 3578 void 3579 NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) 3580 { 3581 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 3582 3583 if (log) 3584 { 3585 log->Printf("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ")", 3586 __FUNCTION__, triggering_tid); 3587 } 3588 3589 DoStopThreads(PendingNotificationUP(new PendingNotification(triggering_tid))); 3590 3591 if (log) 3592 { 3593 log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__); 3594 } 3595 } 3596 3597 void 3598 NativeProcessLinux::SignalIfAllThreadsStopped() 3599 { 3600 if (m_pending_notification_up && m_pending_notification_up->wait_for_stop_tids.empty ()) 3601 { 3602 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 3603 3604 // Clear any temporary breakpoints we used to implement software single stepping. 3605 for (const auto &thread_info: m_threads_stepping_with_breakpoint) 3606 { 3607 Error error = RemoveBreakpoint (thread_info.second); 3608 if (error.Fail()) 3609 if (log) 3610 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s", 3611 __FUNCTION__, thread_info.first, error.AsCString()); 3612 } 3613 m_threads_stepping_with_breakpoint.clear(); 3614 3615 // Notify the delegate about the stop 3616 SetCurrentThreadID(m_pending_notification_up->triggering_tid); 3617 SetState(StateType::eStateStopped, true); 3618 m_pending_notification_up.reset(); 3619 } 3620 } 3621 3622 void 3623 NativeProcessLinux::RequestStopOnAllRunningThreads() 3624 { 3625 // Request a stop for all the thread stops that need to be stopped 3626 // and are not already known to be stopped. Keep a list of all the 3627 // threads from which we still need to hear a stop reply. 3628 3629 ThreadIDSet sent_tids; 3630 for (const auto &thread_sp: m_threads) 3631 { 3632 // We only care about running threads 3633 if (StateIsStoppedState(thread_sp->GetState(), true)) 3634 continue; 3635 3636 static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop(); 3637 sent_tids.insert (thread_sp->GetID()); 3638 } 3639 3640 // Set the wait list to the set of tids for which we requested stops. 3641 m_pending_notification_up->wait_for_stop_tids.swap (sent_tids); 3642 } 3643 3644 3645 Error 3646 NativeProcessLinux::ThreadDidStop (lldb::tid_t tid, bool initiated_by_llgs) 3647 { 3648 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 3649 3650 if (log) 3651 log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ", %sinitiated by llgs)", 3652 __FUNCTION__, tid, initiated_by_llgs?"":"not "); 3653 3654 // Ensure we know about the thread. 3655 auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid)); 3656 lldbassert(thread_sp != nullptr); 3657 3658 // Update the global list of known thread states. This one is definitely stopped. 3659 auto& context = thread_sp->GetThreadContext(); 3660 const auto stop_was_requested = context.stop_requested; 3661 context.stop_requested = false; 3662 3663 // If we have a pending notification, remove this from the set. 3664 if (m_pending_notification_up) 3665 { 3666 m_pending_notification_up->wait_for_stop_tids.erase(tid); 3667 SignalIfAllThreadsStopped(); 3668 } 3669 3670 Error error; 3671 if (initiated_by_llgs && context.request_resume_function && !stop_was_requested) 3672 { 3673 // We can end up here if stop was initiated by LLGS but by this time a 3674 // thread stop has occurred - maybe initiated by another event. 3675 if (log) 3676 log->Printf("Resuming thread %" PRIu64 " since stop wasn't requested", tid); 3677 error = context.request_resume_function (tid, true); 3678 if (error.Fail() && log) 3679 { 3680 log->Printf("NativeProcessLinux::%s failed to resume thread tid %" PRIu64 ": %s", 3681 __FUNCTION__, tid, error.AsCString ()); 3682 } 3683 } 3684 return error; 3685 } 3686 3687 void 3688 NativeProcessLinux::DoStopThreads(PendingNotificationUP &¬ification_up) 3689 { 3690 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 3691 if (m_pending_notification_up && log) 3692 { 3693 // Yikes - we've already got a pending signal notification in progress. 3694 // Log this info. We lose the pending notification here. 3695 log->Printf("NativeProcessLinux::%s dropping existing pending signal notification for tid %" PRIu64 ", to be replaced with signal for tid %" PRIu64, 3696 __FUNCTION__, 3697 m_pending_notification_up->triggering_tid, 3698 notification_up->triggering_tid); 3699 } 3700 m_pending_notification_up = std::move(notification_up); 3701 3702 RequestStopOnAllRunningThreads(); 3703 3704 SignalIfAllThreadsStopped(); 3705 } 3706 3707 void 3708 NativeProcessLinux::ThreadWasCreated (lldb::tid_t tid) 3709 { 3710 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 3711 3712 if (log) 3713 log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, tid); 3714 3715 auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid)); 3716 lldbassert(thread_sp != nullptr); 3717 3718 if (m_pending_notification_up && StateIsRunningState(thread_sp->GetState())) 3719 { 3720 // We will need to wait for this new thread to stop as well before firing the 3721 // notification. 3722 m_pending_notification_up->wait_for_stop_tids.insert(tid); 3723 thread_sp->RequestStop(); 3724 } 3725 } 3726 3727 Error 3728 NativeProcessLinux::DoOperation(const Operation &op) 3729 { 3730 return m_monitor_up->DoOperation(op); 3731 } 3732 3733 // Wrapper for ptrace to catch errors and log calls. 3734 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) 3735 long 3736 NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error) 3737 { 3738 long int result; 3739 3740 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE)); 3741 3742 PtraceDisplayBytes(req, data, data_size); 3743 3744 error.Clear(); 3745 errno = 0; 3746 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 3747 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data); 3748 else 3749 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data); 3750 3751 if (result == -1) 3752 error.SetErrorToErrno(); 3753 3754 if (log) 3755 log->Printf("ptrace(%d, %" PRIu64 ", %p, %p, %zu)=%lX", req, pid, addr, data, data_size, result); 3756 3757 PtraceDisplayBytes(req, data, data_size); 3758 3759 if (log && error.GetError() != 0) 3760 { 3761 const char* str; 3762 switch (error.GetError()) 3763 { 3764 case ESRCH: str = "ESRCH"; break; 3765 case EINVAL: str = "EINVAL"; break; 3766 case EBUSY: str = "EBUSY"; break; 3767 case EPERM: str = "EPERM"; break; 3768 default: str = error.AsCString(); 3769 } 3770 log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str); 3771 } 3772 3773 return result; 3774 } 3775