1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "NativeProcessLinux.h"
11 
12 // C Includes
13 #include <errno.h>
14 #include <stdint.h>
15 #include <string.h>
16 #include <unistd.h>
17 
18 // C++ Includes
19 #include <fstream>
20 #include <mutex>
21 #include <sstream>
22 #include <string>
23 #include <unordered_map>
24 
25 // Other libraries and framework includes
26 #include "lldb/Core/EmulateInstruction.h"
27 #include "lldb/Core/ModuleSpec.h"
28 #include "lldb/Core/RegisterValue.h"
29 #include "lldb/Core/State.h"
30 #include "lldb/Host/Host.h"
31 #include "lldb/Host/HostProcess.h"
32 #include "lldb/Host/PseudoTerminal.h"
33 #include "lldb/Host/ThreadLauncher.h"
34 #include "lldb/Host/common/NativeBreakpoint.h"
35 #include "lldb/Host/common/NativeRegisterContext.h"
36 #include "lldb/Host/linux/Ptrace.h"
37 #include "lldb/Host/linux/Uio.h"
38 #include "lldb/Host/posix/ProcessLauncherPosixFork.h"
39 #include "lldb/Symbol/ObjectFile.h"
40 #include "lldb/Target/Process.h"
41 #include "lldb/Target/ProcessLaunchInfo.h"
42 #include "lldb/Target/Target.h"
43 #include "lldb/Utility/LLDBAssert.h"
44 #include "lldb/Utility/Status.h"
45 #include "lldb/Utility/StringExtractor.h"
46 #include "llvm/Support/Errno.h"
47 #include "llvm/Support/FileSystem.h"
48 #include "llvm/Support/Threading.h"
49 
50 #include "NativeThreadLinux.h"
51 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
52 #include "Procfs.h"
53 
54 #include <linux/unistd.h>
55 #include <sys/socket.h>
56 #include <sys/syscall.h>
57 #include <sys/types.h>
58 #include <sys/user.h>
59 #include <sys/wait.h>
60 
61 // Support hardware breakpoints in case it has not been defined
62 #ifndef TRAP_HWBKPT
63 #define TRAP_HWBKPT 4
64 #endif
65 
66 using namespace lldb;
67 using namespace lldb_private;
68 using namespace lldb_private::process_linux;
69 using namespace llvm;
70 
71 // Private bits we only need internally.
72 
73 static bool ProcessVmReadvSupported() {
74   static bool is_supported;
75   static llvm::once_flag flag;
76 
77   llvm::call_once(flag, [] {
78     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
79 
80     uint32_t source = 0x47424742;
81     uint32_t dest = 0;
82 
83     struct iovec local, remote;
84     remote.iov_base = &source;
85     local.iov_base = &dest;
86     remote.iov_len = local.iov_len = sizeof source;
87 
88     // We shall try if cross-process-memory reads work by attempting to read a
89     // value from our own process.
90     ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
91     is_supported = (res == sizeof(source) && source == dest);
92     if (is_supported)
93       LLDB_LOG(log,
94                "Detected kernel support for process_vm_readv syscall. "
95                "Fast memory reads enabled.");
96     else
97       LLDB_LOG(log,
98                "syscall process_vm_readv failed (error: {0}). Fast memory "
99                "reads disabled.",
100                llvm::sys::StrError());
101   });
102 
103   return is_supported;
104 }
105 
106 namespace {
107 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) {
108   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
109   if (!log)
110     return;
111 
112   if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO))
113     LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec());
114   else
115     LLDB_LOG(log, "leaving STDIN as is");
116 
117   if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO))
118     LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec());
119   else
120     LLDB_LOG(log, "leaving STDOUT as is");
121 
122   if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO))
123     LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec());
124   else
125     LLDB_LOG(log, "leaving STDERR as is");
126 
127   int i = 0;
128   for (const char **args = info.GetArguments().GetConstArgumentVector(); *args;
129        ++args, ++i)
130     LLDB_LOG(log, "arg {0}: '{1}'", i, *args);
131 }
132 
133 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) {
134   uint8_t *ptr = (uint8_t *)bytes;
135   const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
136   for (uint32_t i = 0; i < loop_count; i++) {
137     s.Printf("[%x]", *ptr);
138     ptr++;
139   }
140 }
141 
142 void PtraceDisplayBytes(int &req, void *data, size_t data_size) {
143   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
144   if (!log)
145     return;
146   StreamString buf;
147 
148   switch (req) {
149   case PTRACE_POKETEXT: {
150     DisplayBytes(buf, &data, 8);
151     LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData());
152     break;
153   }
154   case PTRACE_POKEDATA: {
155     DisplayBytes(buf, &data, 8);
156     LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData());
157     break;
158   }
159   case PTRACE_POKEUSER: {
160     DisplayBytes(buf, &data, 8);
161     LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData());
162     break;
163   }
164   case PTRACE_SETREGS: {
165     DisplayBytes(buf, data, data_size);
166     LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData());
167     break;
168   }
169   case PTRACE_SETFPREGS: {
170     DisplayBytes(buf, data, data_size);
171     LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData());
172     break;
173   }
174   case PTRACE_SETSIGINFO: {
175     DisplayBytes(buf, data, sizeof(siginfo_t));
176     LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData());
177     break;
178   }
179   case PTRACE_SETREGSET: {
180     // Extract iov_base from data, which is a pointer to the struct IOVEC
181     DisplayBytes(buf, *(void **)data, data_size);
182     LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData());
183     break;
184   }
185   default: {}
186   }
187 }
188 
189 static constexpr unsigned k_ptrace_word_size = sizeof(void *);
190 static_assert(sizeof(long) >= k_ptrace_word_size,
191               "Size of long must be larger than ptrace word size");
192 } // end of anonymous namespace
193 
194 // Simple helper function to ensure flags are enabled on the given file
195 // descriptor.
196 static Status EnsureFDFlags(int fd, int flags) {
197   Status error;
198 
199   int status = fcntl(fd, F_GETFL);
200   if (status == -1) {
201     error.SetErrorToErrno();
202     return error;
203   }
204 
205   if (fcntl(fd, F_SETFL, status | flags) == -1) {
206     error.SetErrorToErrno();
207     return error;
208   }
209 
210   return error;
211 }
212 
213 // -----------------------------------------------------------------------------
214 // Public Static Methods
215 // -----------------------------------------------------------------------------
216 
217 Status NativeProcessProtocol::Launch(
218     ProcessLaunchInfo &launch_info,
219     NativeProcessProtocol::NativeDelegate &native_delegate, MainLoop &mainloop,
220     NativeProcessProtocolSP &native_process_sp) {
221   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
222 
223   Status error;
224 
225   // Verify the working directory is valid if one was specified.
226   FileSpec working_dir{launch_info.GetWorkingDirectory()};
227   if (working_dir && (!working_dir.ResolvePath() ||
228                       !llvm::sys::fs::is_directory(working_dir.GetPath()))) {
229     error.SetErrorStringWithFormat("No such file or directory: %s",
230                                    working_dir.GetCString());
231     return error;
232   }
233 
234   // Create the NativeProcessLinux in launch mode.
235   native_process_sp.reset(new NativeProcessLinux());
236 
237   if (!native_process_sp->RegisterNativeDelegate(native_delegate)) {
238     native_process_sp.reset();
239     error.SetErrorStringWithFormat("failed to register the native delegate");
240     return error;
241   }
242 
243   error = std::static_pointer_cast<NativeProcessLinux>(native_process_sp)
244               ->LaunchInferior(mainloop, launch_info);
245 
246   if (error.Fail()) {
247     native_process_sp.reset();
248     LLDB_LOG(log, "failed to launch process: {0}", error);
249     return error;
250   }
251 
252   launch_info.SetProcessID(native_process_sp->GetID());
253 
254   return error;
255 }
256 
257 Status NativeProcessProtocol::Attach(
258     lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate,
259     MainLoop &mainloop, NativeProcessProtocolSP &native_process_sp) {
260   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
261   LLDB_LOG(log, "pid = {0:x}", pid);
262 
263   // Retrieve the architecture for the running process.
264   ArchSpec process_arch;
265   Status error = ResolveProcessArchitecture(pid, process_arch);
266   if (!error.Success())
267     return error;
268 
269   std::shared_ptr<NativeProcessLinux> native_process_linux_sp(
270       new NativeProcessLinux());
271 
272   if (!native_process_linux_sp->RegisterNativeDelegate(native_delegate)) {
273     error.SetErrorStringWithFormat("failed to register the native delegate");
274     return error;
275   }
276 
277   native_process_linux_sp->AttachToInferior(mainloop, pid, error);
278   if (!error.Success())
279     return error;
280 
281   native_process_sp = native_process_linux_sp;
282   return error;
283 }
284 
285 // -----------------------------------------------------------------------------
286 // Public Instance Methods
287 // -----------------------------------------------------------------------------
288 
289 NativeProcessLinux::NativeProcessLinux()
290     : NativeProcessProtocol(LLDB_INVALID_PROCESS_ID), m_arch(),
291       m_supports_mem_region(eLazyBoolCalculate), m_mem_region_cache(),
292       m_pending_notification_tid(LLDB_INVALID_THREAD_ID),
293       m_pt_proces_trace_id(LLDB_INVALID_UID) {}
294 
295 void NativeProcessLinux::AttachToInferior(MainLoop &mainloop, lldb::pid_t pid,
296                                           Status &error) {
297   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
298   LLDB_LOG(log, "pid = {0:x}", pid);
299 
300   m_sigchld_handle = mainloop.RegisterSignal(
301       SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, error);
302   if (!m_sigchld_handle)
303     return;
304 
305   error = ResolveProcessArchitecture(pid, m_arch);
306   if (!error.Success())
307     return;
308 
309   // Set the architecture to the exe architecture.
310   LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid,
311            m_arch.GetArchitectureName());
312   m_pid = pid;
313   SetState(eStateAttaching);
314 
315   Attach(pid, error);
316 }
317 
318 Status NativeProcessLinux::LaunchInferior(MainLoop &mainloop,
319                                           ProcessLaunchInfo &launch_info) {
320   Status error;
321   m_sigchld_handle = mainloop.RegisterSignal(
322       SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, error);
323   if (!m_sigchld_handle)
324     return error;
325 
326   SetState(eStateLaunching);
327 
328   MaybeLogLaunchInfo(launch_info);
329 
330   ::pid_t pid =
331       ProcessLauncherPosixFork().LaunchProcess(launch_info, error).GetProcessId();
332   if (error.Fail())
333     return error;
334 
335   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
336 
337   // Wait for the child process to trap on its call to execve.
338   ::pid_t wpid;
339   int status;
340   if ((wpid = waitpid(pid, &status, 0)) < 0) {
341     error.SetErrorToErrno();
342     LLDB_LOG(log, "waitpid for inferior failed with %s", error);
343 
344     // Mark the inferior as invalid.
345     // FIXME this could really use a new state - eStateLaunchFailure.  For now,
346     // using eStateInvalid.
347     SetState(StateType::eStateInvalid);
348 
349     return error;
350   }
351   assert(WIFSTOPPED(status) && (wpid == static_cast<::pid_t>(pid)) &&
352          "Could not sync with inferior process.");
353 
354   LLDB_LOG(log, "inferior started, now in stopped state");
355   error = SetDefaultPtraceOpts(pid);
356   if (error.Fail()) {
357     LLDB_LOG(log, "failed to set default ptrace options: {0}", error);
358 
359     // Mark the inferior as invalid.
360     // FIXME this could really use a new state - eStateLaunchFailure.  For now,
361     // using eStateInvalid.
362     SetState(StateType::eStateInvalid);
363 
364     return error;
365   }
366 
367   // Release the master terminal descriptor and pass it off to the
368   // NativeProcessLinux instance.  Similarly stash the inferior pid.
369   m_terminal_fd = launch_info.GetPTY().ReleaseMasterFileDescriptor();
370   m_pid = pid;
371   launch_info.SetProcessID(pid);
372 
373   if (m_terminal_fd != -1) {
374     error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
375     if (error.Fail()) {
376       LLDB_LOG(log,
377                "inferior EnsureFDFlags failed for ensuring terminal "
378                "O_NONBLOCK setting: {0}",
379                error);
380 
381       // Mark the inferior as invalid.
382       // FIXME this could really use a new state - eStateLaunchFailure.  For
383       // now, using eStateInvalid.
384       SetState(StateType::eStateInvalid);
385 
386       return error;
387     }
388   }
389 
390   LLDB_LOG(log, "adding pid = {0}", pid);
391   ResolveProcessArchitecture(m_pid, m_arch);
392   NativeThreadLinuxSP thread_sp = AddThread(pid);
393   assert(thread_sp && "AddThread() returned a nullptr thread");
394   thread_sp->SetStoppedBySignal(SIGSTOP);
395   ThreadWasCreated(*thread_sp);
396 
397   // Let our process instance know the thread has stopped.
398   SetCurrentThreadID(thread_sp->GetID());
399   SetState(StateType::eStateStopped);
400 
401   if (error.Fail())
402     LLDB_LOG(log, "inferior launching failed {0}", error);
403   return error;
404 }
405 
406 ::pid_t NativeProcessLinux::Attach(lldb::pid_t pid, Status &error) {
407   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
408 
409   // Use a map to keep track of the threads which we have attached/need to
410   // attach.
411   Host::TidMap tids_to_attach;
412   if (pid <= 1) {
413     error.SetErrorToGenericError();
414     error.SetErrorString("Attaching to process 1 is not allowed.");
415     return -1;
416   }
417 
418   while (Host::FindProcessThreads(pid, tids_to_attach)) {
419     for (Host::TidMap::iterator it = tids_to_attach.begin();
420          it != tids_to_attach.end();) {
421       if (it->second == false) {
422         lldb::tid_t tid = it->first;
423 
424         // Attach to the requested process.
425         // An attach will cause the thread to stop with a SIGSTOP.
426         error = PtraceWrapper(PTRACE_ATTACH, tid);
427         if (error.Fail()) {
428           // No such thread. The thread may have exited.
429           // More error handling may be needed.
430           if (error.GetError() == ESRCH) {
431             it = tids_to_attach.erase(it);
432             continue;
433           } else
434             return -1;
435         }
436 
437         int status;
438         // Need to use __WALL otherwise we receive an error with errno=ECHLD
439         // At this point we should have a thread stopped if waitpid succeeds.
440         if ((status = waitpid(tid, NULL, __WALL)) < 0) {
441           // No such thread. The thread may have exited.
442           // More error handling may be needed.
443           if (errno == ESRCH) {
444             it = tids_to_attach.erase(it);
445             continue;
446           } else {
447             error.SetErrorToErrno();
448             return -1;
449           }
450         }
451 
452         error = SetDefaultPtraceOpts(tid);
453         if (error.Fail())
454           return -1;
455 
456         LLDB_LOG(log, "adding tid = {0}", tid);
457         it->second = true;
458 
459         // Create the thread, mark it as stopped.
460         NativeThreadLinuxSP thread_sp(AddThread(static_cast<lldb::tid_t>(tid)));
461         assert(thread_sp && "AddThread() returned a nullptr");
462 
463         // This will notify this is a new thread and tell the system it is
464         // stopped.
465         thread_sp->SetStoppedBySignal(SIGSTOP);
466         ThreadWasCreated(*thread_sp);
467         SetCurrentThreadID(thread_sp->GetID());
468       }
469 
470       // move the loop forward
471       ++it;
472     }
473   }
474 
475   if (tids_to_attach.size() > 0) {
476     m_pid = pid;
477     // Let our process instance know the thread has stopped.
478     SetState(StateType::eStateStopped);
479   } else {
480     error.SetErrorToGenericError();
481     error.SetErrorString("No such process.");
482     return -1;
483   }
484 
485   return pid;
486 }
487 
488 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) {
489   long ptrace_opts = 0;
490 
491   // Have the child raise an event on exit.  This is used to keep the child in
492   // limbo until it is destroyed.
493   ptrace_opts |= PTRACE_O_TRACEEXIT;
494 
495   // Have the tracer trace threads which spawn in the inferior process.
496   // TODO: if we want to support tracing the inferiors' child, add the
497   // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
498   ptrace_opts |= PTRACE_O_TRACECLONE;
499 
500   // Have the tracer notify us before execve returns
501   // (needed to disable legacy SIGTRAP generation)
502   ptrace_opts |= PTRACE_O_TRACEEXEC;
503 
504   return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts);
505 }
506 
507 // Handles all waitpid events from the inferior process.
508 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited,
509                                          WaitStatus status) {
510   Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
511 
512   // Certain activities differ based on whether the pid is the tid of the main
513   // thread.
514   const bool is_main_thread = (pid == GetID());
515 
516   // Handle when the thread exits.
517   if (exited) {
518     LLDB_LOG(log, "got exit signal({0}) , tid = {1} ({2} main thread)", signal,
519              pid, is_main_thread ? "is" : "is not");
520 
521     // This is a thread that exited.  Ensure we're not tracking it anymore.
522     const bool thread_found = StopTrackingThread(pid);
523 
524     if (is_main_thread) {
525       // We only set the exit status and notify the delegate if we haven't
526       // already set the process
527       // state to an exited state.  We normally should have received a SIGTRAP |
528       // (PTRACE_EVENT_EXIT << 8)
529       // for the main thread.
530       const bool already_notified = (GetState() == StateType::eStateExited) ||
531                                     (GetState() == StateType::eStateCrashed);
532       if (!already_notified) {
533         LLDB_LOG(
534             log,
535             "tid = {0} handling main thread exit ({1}), expected exit state "
536             "already set but state was {2} instead, setting exit state now",
537             pid,
538             thread_found ? "stopped tracking thread metadata"
539                          : "thread metadata not found",
540             GetState());
541         // The main thread exited.  We're done monitoring.  Report to delegate.
542         SetExitStatus(status, true);
543 
544         // Notify delegate that our process has exited.
545         SetState(StateType::eStateExited, true);
546       } else
547         LLDB_LOG(log, "tid = {0} main thread now exited (%s)", pid,
548                  thread_found ? "stopped tracking thread metadata"
549                               : "thread metadata not found");
550     } else {
551       // Do we want to report to the delegate in this case?  I think not.  If
552       // this was an orderly thread exit, we would already have received the
553       // SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, and we would have done an
554       // all-stop then.
555       LLDB_LOG(log, "tid = {0} handling non-main thread exit (%s)", pid,
556                thread_found ? "stopped tracking thread metadata"
557                             : "thread metadata not found");
558     }
559     return;
560   }
561 
562   siginfo_t info;
563   const auto info_err = GetSignalInfo(pid, &info);
564   auto thread_sp = GetThreadByID(pid);
565 
566   if (!thread_sp) {
567     // Normally, the only situation when we cannot find the thread is if we have
568     // just received a new thread notification. This is indicated by
569     // GetSignalInfo() returning si_code == SI_USER and si_pid == 0
570     LLDB_LOG(log, "received notification about an unknown tid {0}.", pid);
571 
572     if (info_err.Fail()) {
573       LLDB_LOG(log,
574                "(tid {0}) GetSignalInfo failed ({1}). "
575                "Ingoring this notification.",
576                pid, info_err);
577       return;
578     }
579 
580     LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code,
581              info.si_pid);
582 
583     auto thread_sp = AddThread(pid);
584 
585     // Resume the newly created thread.
586     ResumeThread(*thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
587     ThreadWasCreated(*thread_sp);
588     return;
589   }
590 
591   // Get details on the signal raised.
592   if (info_err.Success()) {
593     // We have retrieved the signal info.  Dispatch appropriately.
594     if (info.si_signo == SIGTRAP)
595       MonitorSIGTRAP(info, *thread_sp);
596     else
597       MonitorSignal(info, *thread_sp, exited);
598   } else {
599     if (info_err.GetError() == EINVAL) {
600       // This is a group stop reception for this tid.
601       // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU
602       // into the tracee, triggering the group-stop mechanism. Normally
603       // receiving these would stop the process, pending a SIGCONT. Simulating
604       // this state in a debugger is hard and is generally not needed (one use
605       // case is debugging background task being managed by a shell). For
606       // general use, it is sufficient to stop the process in a signal-delivery
607       // stop which happens before the group stop. This done by MonitorSignal
608       // and works correctly for all signals.
609       LLDB_LOG(log,
610                "received a group stop for pid {0} tid {1}. Transparent "
611                "handling of group stops not supported, resuming the "
612                "thread.",
613                GetID(), pid);
614       ResumeThread(*thread_sp, thread_sp->GetState(),
615                    LLDB_INVALID_SIGNAL_NUMBER);
616     } else {
617       // ptrace(GETSIGINFO) failed (but not due to group-stop).
618 
619       // A return value of ESRCH means the thread/process is no longer on the
620       // system, so it was killed somehow outside of our control.  Either way,
621       // we can't do anything with it anymore.
622 
623       // Stop tracking the metadata for the thread since it's entirely off the
624       // system now.
625       const bool thread_found = StopTrackingThread(pid);
626 
627       LLDB_LOG(log,
628                "GetSignalInfo failed: {0}, tid = {1}, signal = {2}, "
629                "status = {3}, main_thread = {4}, thread_found: {5}",
630                info_err, pid, signal, status, is_main_thread, thread_found);
631 
632       if (is_main_thread) {
633         // Notify the delegate - our process is not available but appears to
634         // have been killed outside
635         // our control.  Is eStateExited the right exit state in this case?
636         SetExitStatus(status, true);
637         SetState(StateType::eStateExited, true);
638       } else {
639         // This thread was pulled out from underneath us.  Anything to do here?
640         // Do we want to do an all stop?
641         LLDB_LOG(log,
642                  "pid {0} tid {1} non-main thread exit occurred, didn't "
643                  "tell delegate anything since thread disappeared out "
644                  "from underneath us",
645                  GetID(), pid);
646       }
647     }
648   }
649 }
650 
651 void NativeProcessLinux::WaitForNewThread(::pid_t tid) {
652   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
653 
654   NativeThreadLinuxSP new_thread_sp = GetThreadByID(tid);
655 
656   if (new_thread_sp) {
657     // We are already tracking the thread - we got the event on the new thread
658     // (see
659     // MonitorSignal) before this one. We are done.
660     return;
661   }
662 
663   // The thread is not tracked yet, let's wait for it to appear.
664   int status = -1;
665   LLDB_LOG(log,
666            "received thread creation event for tid {0}. tid not tracked "
667            "yet, waiting for thread to appear...",
668            tid);
669   ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, &status, __WALL);
670   // Since we are waiting on a specific tid, this must be the creation event.
671   // But let's do some checks just in case.
672   if (wait_pid != tid) {
673     LLDB_LOG(log,
674              "waiting for tid {0} failed. Assuming the thread has "
675              "disappeared in the meantime",
676              tid);
677     // The only way I know of this could happen is if the whole process was
678     // SIGKILLed in the mean time. In any case, we can't do anything about that
679     // now.
680     return;
681   }
682   if (WIFEXITED(status)) {
683     LLDB_LOG(log,
684              "waiting for tid {0} returned an 'exited' event. Not "
685              "tracking the thread.",
686              tid);
687     // Also a very improbable event.
688     return;
689   }
690 
691   LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid);
692   new_thread_sp = AddThread(tid);
693 
694   ResumeThread(*new_thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
695   ThreadWasCreated(*new_thread_sp);
696 }
697 
698 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info,
699                                         NativeThreadLinux &thread) {
700   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
701   const bool is_main_thread = (thread.GetID() == GetID());
702 
703   assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
704 
705   switch (info.si_code) {
706   // TODO: these two cases are required if we want to support tracing of the
707   // inferiors' children.  We'd need this to debug a monitor.
708   // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
709   // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
710 
711   case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): {
712     // This is the notification on the parent thread which informs us of new
713     // thread
714     // creation.
715     // We don't want to do anything with the parent thread so we just resume it.
716     // In case we
717     // want to implement "break on thread creation" functionality, we would need
718     // to stop
719     // here.
720 
721     unsigned long event_message = 0;
722     if (GetEventMessage(thread.GetID(), &event_message).Fail()) {
723       LLDB_LOG(log,
724                "pid {0} received thread creation event but "
725                "GetEventMessage failed so we don't know the new tid",
726                thread.GetID());
727     } else
728       WaitForNewThread(event_message);
729 
730     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
731     break;
732   }
733 
734   case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): {
735     NativeThreadLinuxSP main_thread_sp;
736     LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP);
737 
738     // Exec clears any pending notifications.
739     m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
740 
741     // Remove all but the main thread here.  Linux fork creates a new process
742     // which only copies the main thread.
743     LLDB_LOG(log, "exec received, stop tracking all but main thread");
744 
745     for (auto thread_sp : m_threads) {
746       const bool is_main_thread = thread_sp && thread_sp->GetID() == GetID();
747       if (is_main_thread) {
748         main_thread_sp = std::static_pointer_cast<NativeThreadLinux>(thread_sp);
749         LLDB_LOG(log, "found main thread with tid {0}, keeping",
750                  main_thread_sp->GetID());
751       } else {
752         LLDB_LOG(log, "discarding non-main-thread tid {0} due to exec",
753                  thread_sp->GetID());
754       }
755     }
756 
757     m_threads.clear();
758 
759     if (main_thread_sp) {
760       m_threads.push_back(main_thread_sp);
761       SetCurrentThreadID(main_thread_sp->GetID());
762       main_thread_sp->SetStoppedByExec();
763     } else {
764       SetCurrentThreadID(LLDB_INVALID_THREAD_ID);
765       LLDB_LOG(log,
766                "pid {0} no main thread found, discarded all threads, "
767                "we're in a no-thread state!",
768                GetID());
769     }
770 
771     // Tell coordinator about about the "new" (since exec) stopped main thread.
772     ThreadWasCreated(*main_thread_sp);
773 
774     // Let our delegate know we have just exec'd.
775     NotifyDidExec();
776 
777     // If we have a main thread, indicate we are stopped.
778     assert(main_thread_sp && "exec called during ptraced process but no main "
779                              "thread metadata tracked");
780 
781     // Let the process know we're stopped.
782     StopRunningThreads(main_thread_sp->GetID());
783 
784     break;
785   }
786 
787   case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): {
788     // The inferior process or one of its threads is about to exit.
789     // We don't want to do anything with the thread so we just resume it. In
790     // case we
791     // want to implement "break on thread exit" functionality, we would need to
792     // stop
793     // here.
794 
795     unsigned long data = 0;
796     if (GetEventMessage(thread.GetID(), &data).Fail())
797       data = -1;
798 
799     LLDB_LOG(log,
800              "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, "
801              "WIFSIGNALED={2}, pid = {3}, main_thread = {4}",
802              data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(),
803              is_main_thread);
804 
805     if (is_main_thread)
806       SetExitStatus(WaitStatus::Decode(data), true);
807 
808     StateType state = thread.GetState();
809     if (!StateIsRunningState(state)) {
810       // Due to a kernel bug, we may sometimes get this stop after the inferior
811       // gets a
812       // SIGKILL. This confuses our state tracking logic in ResumeThread(),
813       // since normally,
814       // we should not be receiving any ptrace events while the inferior is
815       // stopped. This
816       // makes sure that the inferior is resumed and exits normally.
817       state = eStateRunning;
818     }
819     ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
820 
821     break;
822   }
823 
824   case 0:
825   case TRAP_TRACE:  // We receive this on single stepping.
826   case TRAP_HWBKPT: // We receive this on watchpoint hit
827   {
828     // If a watchpoint was hit, report it
829     uint32_t wp_index;
830     Status error = thread.GetRegisterContext()->GetWatchpointHitIndex(
831         wp_index, (uintptr_t)info.si_addr);
832     if (error.Fail())
833       LLDB_LOG(log,
834                "received error while checking for watchpoint hits, pid = "
835                "{0}, error = {1}",
836                thread.GetID(), error);
837     if (wp_index != LLDB_INVALID_INDEX32) {
838       MonitorWatchpoint(thread, wp_index);
839       break;
840     }
841 
842     // If a breakpoint was hit, report it
843     uint32_t bp_index;
844     error = thread.GetRegisterContext()->GetHardwareBreakHitIndex(
845         bp_index, (uintptr_t)info.si_addr);
846     if (error.Fail())
847       LLDB_LOG(log, "received error while checking for hardware "
848                     "breakpoint hits, pid = {0}, error = {1}",
849                thread.GetID(), error);
850     if (bp_index != LLDB_INVALID_INDEX32) {
851       MonitorBreakpoint(thread);
852       break;
853     }
854 
855     // Otherwise, report step over
856     MonitorTrace(thread);
857     break;
858   }
859 
860   case SI_KERNEL:
861 #if defined __mips__
862     // For mips there is no special signal for watchpoint
863     // So we check for watchpoint in kernel trap
864     {
865       // If a watchpoint was hit, report it
866       uint32_t wp_index;
867       Status error = thread.GetRegisterContext()->GetWatchpointHitIndex(
868           wp_index, LLDB_INVALID_ADDRESS);
869       if (error.Fail())
870         LLDB_LOG(log,
871                  "received error while checking for watchpoint hits, pid = "
872                  "{0}, error = {1}",
873                  thread.GetID(), error);
874       if (wp_index != LLDB_INVALID_INDEX32) {
875         MonitorWatchpoint(thread, wp_index);
876         break;
877       }
878     }
879 // NO BREAK
880 #endif
881   case TRAP_BRKPT:
882     MonitorBreakpoint(thread);
883     break;
884 
885   case SIGTRAP:
886   case (SIGTRAP | 0x80):
887     LLDB_LOG(
888         log,
889         "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming",
890         info.si_code, GetID(), thread.GetID());
891 
892     // Ignore these signals until we know more about them.
893     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
894     break;
895 
896   default:
897     LLDB_LOG(
898         log,
899         "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming",
900         info.si_code, GetID(), thread.GetID());
901     llvm_unreachable("Unexpected SIGTRAP code!");
902     break;
903   }
904 }
905 
906 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) {
907   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
908   LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID());
909 
910   // This thread is currently stopped.
911   thread.SetStoppedByTrace();
912 
913   StopRunningThreads(thread.GetID());
914 }
915 
916 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) {
917   Log *log(
918       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
919   LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID());
920 
921   // Mark the thread as stopped at breakpoint.
922   thread.SetStoppedByBreakpoint();
923   Status error = FixupBreakpointPCAsNeeded(thread);
924   if (error.Fail())
925     LLDB_LOG(log, "pid = {0} fixup: {1}", thread.GetID(), error);
926 
927   if (m_threads_stepping_with_breakpoint.find(thread.GetID()) !=
928       m_threads_stepping_with_breakpoint.end())
929     thread.SetStoppedByTrace();
930 
931   StopRunningThreads(thread.GetID());
932 }
933 
934 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread,
935                                            uint32_t wp_index) {
936   Log *log(
937       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
938   LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}",
939            thread.GetID(), wp_index);
940 
941   // Mark the thread as stopped at watchpoint.
942   // The address is at (lldb::addr_t)info->si_addr if we need it.
943   thread.SetStoppedByWatchpoint(wp_index);
944 
945   // We need to tell all other running threads before we notify the delegate
946   // about this stop.
947   StopRunningThreads(thread.GetID());
948 }
949 
950 void NativeProcessLinux::MonitorSignal(const siginfo_t &info,
951                                        NativeThreadLinux &thread, bool exited) {
952   const int signo = info.si_signo;
953   const bool is_from_llgs = info.si_pid == getpid();
954 
955   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
956 
957   // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
958   // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
959   // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
960   //
961   // IOW, user generated signals never generate what we consider to be a
962   // "crash".
963   //
964   // Similarly, ACK signals generated by this monitor.
965 
966   // Handle the signal.
967   LLDB_LOG(log,
968            "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, "
969            "waitpid pid = {4})",
970            Host::GetSignalAsCString(signo), signo, info.si_code,
971            thread.GetID());
972 
973   // Check for thread stop notification.
974   if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) {
975     // This is a tgkill()-based stop.
976     LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID());
977 
978     // Check that we're not already marked with a stop reason.
979     // Note this thread really shouldn't already be marked as stopped - if we
980     // were, that would imply that the kernel signaled us with the thread
981     // stopping which we handled and marked as stopped, and that, without an
982     // intervening resume, we received another stop.  It is more likely that we
983     // are missing the marking of a run state somewhere if we find that the
984     // thread was marked as stopped.
985     const StateType thread_state = thread.GetState();
986     if (!StateIsStoppedState(thread_state, false)) {
987       // An inferior thread has stopped because of a SIGSTOP we have sent it.
988       // Generally, these are not important stops and we don't want to report
989       // them as they are just used to stop other threads when one thread (the
990       // one with the *real* stop reason) hits a breakpoint (watchpoint,
991       // etc...). However, in the case of an asynchronous Interrupt(), this *is*
992       // the real stop reason, so we leave the signal intact if this is the
993       // thread that was chosen as the triggering thread.
994       if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
995         if (m_pending_notification_tid == thread.GetID())
996           thread.SetStoppedBySignal(SIGSTOP, &info);
997         else
998           thread.SetStoppedWithNoReason();
999 
1000         SetCurrentThreadID(thread.GetID());
1001         SignalIfAllThreadsStopped();
1002       } else {
1003         // We can end up here if stop was initiated by LLGS but by this time a
1004         // thread stop has occurred - maybe initiated by another event.
1005         Status error = ResumeThread(thread, thread.GetState(), 0);
1006         if (error.Fail())
1007           LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(),
1008                    error);
1009       }
1010     } else {
1011       LLDB_LOG(log,
1012                "pid {0} tid {1}, thread was already marked as a stopped "
1013                "state (state={2}), leaving stop signal as is",
1014                GetID(), thread.GetID(), thread_state);
1015       SignalIfAllThreadsStopped();
1016     }
1017 
1018     // Done handling.
1019     return;
1020   }
1021 
1022   // Check if debugger should stop at this signal or just ignore it
1023   // and resume the inferior.
1024   if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) {
1025      ResumeThread(thread, thread.GetState(), signo);
1026      return;
1027   }
1028 
1029   // This thread is stopped.
1030   LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo));
1031   thread.SetStoppedBySignal(signo, &info);
1032 
1033   // Send a stop to the debugger after we get all other threads to stop.
1034   StopRunningThreads(thread.GetID());
1035 }
1036 
1037 namespace {
1038 
1039 struct EmulatorBaton {
1040   NativeProcessLinux *m_process;
1041   NativeRegisterContext *m_reg_context;
1042 
1043   // eRegisterKindDWARF -> RegsiterValue
1044   std::unordered_map<uint32_t, RegisterValue> m_register_values;
1045 
1046   EmulatorBaton(NativeProcessLinux *process, NativeRegisterContext *reg_context)
1047       : m_process(process), m_reg_context(reg_context) {}
1048 };
1049 
1050 } // anonymous namespace
1051 
1052 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton,
1053                                  const EmulateInstruction::Context &context,
1054                                  lldb::addr_t addr, void *dst, size_t length) {
1055   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
1056 
1057   size_t bytes_read;
1058   emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read);
1059   return bytes_read;
1060 }
1061 
1062 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton,
1063                                  const RegisterInfo *reg_info,
1064                                  RegisterValue &reg_value) {
1065   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
1066 
1067   auto it = emulator_baton->m_register_values.find(
1068       reg_info->kinds[eRegisterKindDWARF]);
1069   if (it != emulator_baton->m_register_values.end()) {
1070     reg_value = it->second;
1071     return true;
1072   }
1073 
1074   // The emulator only fill in the dwarf regsiter numbers (and in some case
1075   // the generic register numbers). Get the full register info from the
1076   // register context based on the dwarf register numbers.
1077   const RegisterInfo *full_reg_info =
1078       emulator_baton->m_reg_context->GetRegisterInfo(
1079           eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
1080 
1081   Status error =
1082       emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value);
1083   if (error.Success())
1084     return true;
1085 
1086   return false;
1087 }
1088 
1089 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton,
1090                                   const EmulateInstruction::Context &context,
1091                                   const RegisterInfo *reg_info,
1092                                   const RegisterValue &reg_value) {
1093   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
1094   emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] =
1095       reg_value;
1096   return true;
1097 }
1098 
1099 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton,
1100                                   const EmulateInstruction::Context &context,
1101                                   lldb::addr_t addr, const void *dst,
1102                                   size_t length) {
1103   return length;
1104 }
1105 
1106 static lldb::addr_t ReadFlags(NativeRegisterContext *regsiter_context) {
1107   const RegisterInfo *flags_info = regsiter_context->GetRegisterInfo(
1108       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1109   return regsiter_context->ReadRegisterAsUnsigned(flags_info,
1110                                                   LLDB_INVALID_ADDRESS);
1111 }
1112 
1113 Status
1114 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) {
1115   Status error;
1116   NativeRegisterContextSP register_context_sp = thread.GetRegisterContext();
1117 
1118   std::unique_ptr<EmulateInstruction> emulator_ap(
1119       EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying,
1120                                      nullptr));
1121 
1122   if (emulator_ap == nullptr)
1123     return Status("Instruction emulator not found!");
1124 
1125   EmulatorBaton baton(this, register_context_sp.get());
1126   emulator_ap->SetBaton(&baton);
1127   emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
1128   emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
1129   emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
1130   emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
1131 
1132   if (!emulator_ap->ReadInstruction())
1133     return Status("Read instruction failed!");
1134 
1135   bool emulation_result =
1136       emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
1137 
1138   const RegisterInfo *reg_info_pc = register_context_sp->GetRegisterInfo(
1139       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
1140   const RegisterInfo *reg_info_flags = register_context_sp->GetRegisterInfo(
1141       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1142 
1143   auto pc_it =
1144       baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
1145   auto flags_it =
1146       baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
1147 
1148   lldb::addr_t next_pc;
1149   lldb::addr_t next_flags;
1150   if (emulation_result) {
1151     assert(pc_it != baton.m_register_values.end() &&
1152            "Emulation was successfull but PC wasn't updated");
1153     next_pc = pc_it->second.GetAsUInt64();
1154 
1155     if (flags_it != baton.m_register_values.end())
1156       next_flags = flags_it->second.GetAsUInt64();
1157     else
1158       next_flags = ReadFlags(register_context_sp.get());
1159   } else if (pc_it == baton.m_register_values.end()) {
1160     // Emulate instruction failed and it haven't changed PC. Advance PC
1161     // with the size of the current opcode because the emulation of all
1162     // PC modifying instruction should be successful. The failure most
1163     // likely caused by a not supported instruction which don't modify PC.
1164     next_pc =
1165         register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize();
1166     next_flags = ReadFlags(register_context_sp.get());
1167   } else {
1168     // The instruction emulation failed after it modified the PC. It is an
1169     // unknown error where we can't continue because the next instruction is
1170     // modifying the PC but we don't  know how.
1171     return Status("Instruction emulation failed unexpectedly.");
1172   }
1173 
1174   if (m_arch.GetMachine() == llvm::Triple::arm) {
1175     if (next_flags & 0x20) {
1176       // Thumb mode
1177       error = SetSoftwareBreakpoint(next_pc, 2);
1178     } else {
1179       // Arm mode
1180       error = SetSoftwareBreakpoint(next_pc, 4);
1181     }
1182   } else if (m_arch.GetMachine() == llvm::Triple::mips64 ||
1183              m_arch.GetMachine() == llvm::Triple::mips64el ||
1184              m_arch.GetMachine() == llvm::Triple::mips ||
1185              m_arch.GetMachine() == llvm::Triple::mipsel)
1186     error = SetSoftwareBreakpoint(next_pc, 4);
1187   else {
1188     // No size hint is given for the next breakpoint
1189     error = SetSoftwareBreakpoint(next_pc, 0);
1190   }
1191 
1192   // If setting the breakpoint fails because next_pc is out of
1193   // the address space, ignore it and let the debugee segfault.
1194   if (error.GetError() == EIO || error.GetError() == EFAULT) {
1195     return Status();
1196   } else if (error.Fail())
1197     return error;
1198 
1199   m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc});
1200 
1201   return Status();
1202 }
1203 
1204 bool NativeProcessLinux::SupportHardwareSingleStepping() const {
1205   if (m_arch.GetMachine() == llvm::Triple::arm ||
1206       m_arch.GetMachine() == llvm::Triple::mips64 ||
1207       m_arch.GetMachine() == llvm::Triple::mips64el ||
1208       m_arch.GetMachine() == llvm::Triple::mips ||
1209       m_arch.GetMachine() == llvm::Triple::mipsel)
1210     return false;
1211   return true;
1212 }
1213 
1214 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) {
1215   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1216   LLDB_LOG(log, "pid {0}", GetID());
1217 
1218   bool software_single_step = !SupportHardwareSingleStepping();
1219 
1220   if (software_single_step) {
1221     for (auto thread_sp : m_threads) {
1222       assert(thread_sp && "thread list should not contain NULL threads");
1223 
1224       const ResumeAction *const action =
1225           resume_actions.GetActionForThread(thread_sp->GetID(), true);
1226       if (action == nullptr)
1227         continue;
1228 
1229       if (action->state == eStateStepping) {
1230         Status error = SetupSoftwareSingleStepping(
1231             static_cast<NativeThreadLinux &>(*thread_sp));
1232         if (error.Fail())
1233           return error;
1234       }
1235     }
1236   }
1237 
1238   for (auto thread_sp : m_threads) {
1239     assert(thread_sp && "thread list should not contain NULL threads");
1240 
1241     const ResumeAction *const action =
1242         resume_actions.GetActionForThread(thread_sp->GetID(), true);
1243 
1244     if (action == nullptr) {
1245       LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(),
1246                thread_sp->GetID());
1247       continue;
1248     }
1249 
1250     LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}",
1251              action->state, GetID(), thread_sp->GetID());
1252 
1253     switch (action->state) {
1254     case eStateRunning:
1255     case eStateStepping: {
1256       // Run the thread, possibly feeding it the signal.
1257       const int signo = action->signal;
1258       ResumeThread(static_cast<NativeThreadLinux &>(*thread_sp), action->state,
1259                    signo);
1260       break;
1261     }
1262 
1263     case eStateSuspended:
1264     case eStateStopped:
1265       llvm_unreachable("Unexpected state");
1266 
1267     default:
1268       return Status("NativeProcessLinux::%s (): unexpected state %s specified "
1269                     "for pid %" PRIu64 ", tid %" PRIu64,
1270                     __FUNCTION__, StateAsCString(action->state), GetID(),
1271                     thread_sp->GetID());
1272     }
1273   }
1274 
1275   return Status();
1276 }
1277 
1278 Status NativeProcessLinux::Halt() {
1279   Status error;
1280 
1281   if (kill(GetID(), SIGSTOP) != 0)
1282     error.SetErrorToErrno();
1283 
1284   return error;
1285 }
1286 
1287 Status NativeProcessLinux::Detach() {
1288   Status error;
1289 
1290   // Stop monitoring the inferior.
1291   m_sigchld_handle.reset();
1292 
1293   // Tell ptrace to detach from the process.
1294   if (GetID() == LLDB_INVALID_PROCESS_ID)
1295     return error;
1296 
1297   for (auto thread_sp : m_threads) {
1298     Status e = Detach(thread_sp->GetID());
1299     if (e.Fail())
1300       error =
1301           e; // Save the error, but still attempt to detach from other threads.
1302   }
1303 
1304   m_processor_trace_monitor.clear();
1305   m_pt_proces_trace_id = LLDB_INVALID_UID;
1306 
1307   return error;
1308 }
1309 
1310 Status NativeProcessLinux::Signal(int signo) {
1311   Status error;
1312 
1313   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1314   LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo,
1315            Host::GetSignalAsCString(signo), GetID());
1316 
1317   if (kill(GetID(), signo))
1318     error.SetErrorToErrno();
1319 
1320   return error;
1321 }
1322 
1323 Status NativeProcessLinux::Interrupt() {
1324   // Pick a running thread (or if none, a not-dead stopped thread) as
1325   // the chosen thread that will be the stop-reason thread.
1326   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1327 
1328   NativeThreadProtocolSP running_thread_sp;
1329   NativeThreadProtocolSP stopped_thread_sp;
1330 
1331   LLDB_LOG(log, "selecting running thread for interrupt target");
1332   for (auto thread_sp : m_threads) {
1333     // The thread shouldn't be null but lets just cover that here.
1334     if (!thread_sp)
1335       continue;
1336 
1337     // If we have a running or stepping thread, we'll call that the
1338     // target of the interrupt.
1339     const auto thread_state = thread_sp->GetState();
1340     if (thread_state == eStateRunning || thread_state == eStateStepping) {
1341       running_thread_sp = thread_sp;
1342       break;
1343     } else if (!stopped_thread_sp && StateIsStoppedState(thread_state, true)) {
1344       // Remember the first non-dead stopped thread.  We'll use that as a backup
1345       // if there are no running threads.
1346       stopped_thread_sp = thread_sp;
1347     }
1348   }
1349 
1350   if (!running_thread_sp && !stopped_thread_sp) {
1351     Status error("found no running/stepping or live stopped threads as target "
1352                  "for interrupt");
1353     LLDB_LOG(log, "skipping due to error: {0}", error);
1354 
1355     return error;
1356   }
1357 
1358   NativeThreadProtocolSP deferred_signal_thread_sp =
1359       running_thread_sp ? running_thread_sp : stopped_thread_sp;
1360 
1361   LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(),
1362            running_thread_sp ? "running" : "stopped",
1363            deferred_signal_thread_sp->GetID());
1364 
1365   StopRunningThreads(deferred_signal_thread_sp->GetID());
1366 
1367   return Status();
1368 }
1369 
1370 Status NativeProcessLinux::Kill() {
1371   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1372   LLDB_LOG(log, "pid {0}", GetID());
1373 
1374   Status error;
1375 
1376   switch (m_state) {
1377   case StateType::eStateInvalid:
1378   case StateType::eStateExited:
1379   case StateType::eStateCrashed:
1380   case StateType::eStateDetached:
1381   case StateType::eStateUnloaded:
1382     // Nothing to do - the process is already dead.
1383     LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(),
1384              m_state);
1385     return error;
1386 
1387   case StateType::eStateConnected:
1388   case StateType::eStateAttaching:
1389   case StateType::eStateLaunching:
1390   case StateType::eStateStopped:
1391   case StateType::eStateRunning:
1392   case StateType::eStateStepping:
1393   case StateType::eStateSuspended:
1394     // We can try to kill a process in these states.
1395     break;
1396   }
1397 
1398   if (kill(GetID(), SIGKILL) != 0) {
1399     error.SetErrorToErrno();
1400     return error;
1401   }
1402 
1403   return error;
1404 }
1405 
1406 static Status
1407 ParseMemoryRegionInfoFromProcMapsLine(llvm::StringRef &maps_line,
1408                                       MemoryRegionInfo &memory_region_info) {
1409   memory_region_info.Clear();
1410 
1411   StringExtractor line_extractor(maps_line);
1412 
1413   // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode
1414   // pathname
1415   // perms: rwxp   (letter is present if set, '-' if not, final character is
1416   // p=private, s=shared).
1417 
1418   // Parse out the starting address
1419   lldb::addr_t start_address = line_extractor.GetHexMaxU64(false, 0);
1420 
1421   // Parse out hyphen separating start and end address from range.
1422   if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != '-'))
1423     return Status(
1424         "malformed /proc/{pid}/maps entry, missing dash between address range");
1425 
1426   // Parse out the ending address
1427   lldb::addr_t end_address = line_extractor.GetHexMaxU64(false, start_address);
1428 
1429   // Parse out the space after the address.
1430   if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != ' '))
1431     return Status(
1432         "malformed /proc/{pid}/maps entry, missing space after range");
1433 
1434   // Save the range.
1435   memory_region_info.GetRange().SetRangeBase(start_address);
1436   memory_region_info.GetRange().SetRangeEnd(end_address);
1437 
1438   // Any memory region in /proc/{pid}/maps is by definition mapped into the
1439   // process.
1440   memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes);
1441 
1442   // Parse out each permission entry.
1443   if (line_extractor.GetBytesLeft() < 4)
1444     return Status("malformed /proc/{pid}/maps entry, missing some portion of "
1445                   "permissions");
1446 
1447   // Handle read permission.
1448   const char read_perm_char = line_extractor.GetChar();
1449   if (read_perm_char == 'r')
1450     memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eYes);
1451   else if (read_perm_char == '-')
1452     memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1453   else
1454     return Status("unexpected /proc/{pid}/maps read permission char");
1455 
1456   // Handle write permission.
1457   const char write_perm_char = line_extractor.GetChar();
1458   if (write_perm_char == 'w')
1459     memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eYes);
1460   else if (write_perm_char == '-')
1461     memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1462   else
1463     return Status("unexpected /proc/{pid}/maps write permission char");
1464 
1465   // Handle execute permission.
1466   const char exec_perm_char = line_extractor.GetChar();
1467   if (exec_perm_char == 'x')
1468     memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eYes);
1469   else if (exec_perm_char == '-')
1470     memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1471   else
1472     return Status("unexpected /proc/{pid}/maps exec permission char");
1473 
1474   line_extractor.GetChar();              // Read the private bit
1475   line_extractor.SkipSpaces();           // Skip the separator
1476   line_extractor.GetHexMaxU64(false, 0); // Read the offset
1477   line_extractor.GetHexMaxU64(false, 0); // Read the major device number
1478   line_extractor.GetChar();              // Read the device id separator
1479   line_extractor.GetHexMaxU64(false, 0); // Read the major device number
1480   line_extractor.SkipSpaces();           // Skip the separator
1481   line_extractor.GetU64(0, 10);          // Read the inode number
1482 
1483   line_extractor.SkipSpaces();
1484   const char *name = line_extractor.Peek();
1485   if (name)
1486     memory_region_info.SetName(name);
1487 
1488   return Status();
1489 }
1490 
1491 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr,
1492                                                MemoryRegionInfo &range_info) {
1493   // FIXME review that the final memory region returned extends to the end of
1494   // the virtual address space,
1495   // with no perms if it is not mapped.
1496 
1497   // Use an approach that reads memory regions from /proc/{pid}/maps.
1498   // Assume proc maps entries are in ascending order.
1499   // FIXME assert if we find differently.
1500 
1501   if (m_supports_mem_region == LazyBool::eLazyBoolNo) {
1502     // We're done.
1503     return Status("unsupported");
1504   }
1505 
1506   Status error = PopulateMemoryRegionCache();
1507   if (error.Fail()) {
1508     return error;
1509   }
1510 
1511   lldb::addr_t prev_base_address = 0;
1512 
1513   // FIXME start by finding the last region that is <= target address using
1514   // binary search.  Data is sorted.
1515   // There can be a ton of regions on pthreads apps with lots of threads.
1516   for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end();
1517        ++it) {
1518     MemoryRegionInfo &proc_entry_info = it->first;
1519 
1520     // Sanity check assumption that /proc/{pid}/maps entries are ascending.
1521     assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) &&
1522            "descending /proc/pid/maps entries detected, unexpected");
1523     prev_base_address = proc_entry_info.GetRange().GetRangeBase();
1524     UNUSED_IF_ASSERT_DISABLED(prev_base_address);
1525 
1526     // If the target address comes before this entry, indicate distance to next
1527     // region.
1528     if (load_addr < proc_entry_info.GetRange().GetRangeBase()) {
1529       range_info.GetRange().SetRangeBase(load_addr);
1530       range_info.GetRange().SetByteSize(
1531           proc_entry_info.GetRange().GetRangeBase() - load_addr);
1532       range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1533       range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1534       range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1535       range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1536 
1537       return error;
1538     } else if (proc_entry_info.GetRange().Contains(load_addr)) {
1539       // The target address is within the memory region we're processing here.
1540       range_info = proc_entry_info;
1541       return error;
1542     }
1543 
1544     // The target memory address comes somewhere after the region we just
1545     // parsed.
1546   }
1547 
1548   // If we made it here, we didn't find an entry that contained the given
1549   // address. Return the
1550   // load_addr as start and the amount of bytes betwwen load address and the end
1551   // of the memory as
1552   // size.
1553   range_info.GetRange().SetRangeBase(load_addr);
1554   range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS);
1555   range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1556   range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1557   range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1558   range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1559   return error;
1560 }
1561 
1562 Status NativeProcessLinux::PopulateMemoryRegionCache() {
1563   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1564 
1565   // If our cache is empty, pull the latest.  There should always be at least
1566   // one memory region if memory region handling is supported.
1567   if (!m_mem_region_cache.empty()) {
1568     LLDB_LOG(log, "reusing {0} cached memory region entries",
1569              m_mem_region_cache.size());
1570     return Status();
1571   }
1572 
1573   auto BufferOrError = getProcFile(GetID(), "maps");
1574   if (!BufferOrError) {
1575     m_supports_mem_region = LazyBool::eLazyBoolNo;
1576     return BufferOrError.getError();
1577   }
1578   StringRef Rest = BufferOrError.get()->getBuffer();
1579   while (! Rest.empty()) {
1580     StringRef Line;
1581     std::tie(Line, Rest) = Rest.split('\n');
1582     MemoryRegionInfo info;
1583     const Status parse_error =
1584         ParseMemoryRegionInfoFromProcMapsLine(Line, info);
1585     if (parse_error.Fail()) {
1586       LLDB_LOG(log, "failed to parse proc maps line '{0}': {1}", Line,
1587                parse_error);
1588       m_supports_mem_region = LazyBool::eLazyBoolNo;
1589       return parse_error;
1590     }
1591     m_mem_region_cache.emplace_back(
1592         info, FileSpec(info.GetName().GetCString(), true));
1593   }
1594 
1595   if (m_mem_region_cache.empty()) {
1596     // No entries after attempting to read them.  This shouldn't happen if
1597     // /proc/{pid}/maps is supported. Assume we don't support map entries
1598     // via procfs.
1599     m_supports_mem_region = LazyBool::eLazyBoolNo;
1600     LLDB_LOG(log,
1601              "failed to find any procfs maps entries, assuming no support "
1602              "for memory region metadata retrieval");
1603     return Status("not supported");
1604   }
1605 
1606   LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps",
1607            m_mem_region_cache.size(), GetID());
1608 
1609   // We support memory retrieval, remember that.
1610   m_supports_mem_region = LazyBool::eLazyBoolYes;
1611   return Status();
1612 }
1613 
1614 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) {
1615   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1616   LLDB_LOG(log, "newBumpId={0}", newBumpId);
1617   LLDB_LOG(log, "clearing {0} entries from memory region cache",
1618            m_mem_region_cache.size());
1619   m_mem_region_cache.clear();
1620 }
1621 
1622 Status NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions,
1623                                           lldb::addr_t &addr) {
1624 // FIXME implementing this requires the equivalent of
1625 // InferiorCallPOSIX::InferiorCallMmap, which depends on
1626 // functional ThreadPlans working with Native*Protocol.
1627 #if 1
1628   return Status("not implemented yet");
1629 #else
1630   addr = LLDB_INVALID_ADDRESS;
1631 
1632   unsigned prot = 0;
1633   if (permissions & lldb::ePermissionsReadable)
1634     prot |= eMmapProtRead;
1635   if (permissions & lldb::ePermissionsWritable)
1636     prot |= eMmapProtWrite;
1637   if (permissions & lldb::ePermissionsExecutable)
1638     prot |= eMmapProtExec;
1639 
1640   // TODO implement this directly in NativeProcessLinux
1641   // (and lift to NativeProcessPOSIX if/when that class is
1642   // refactored out).
1643   if (InferiorCallMmap(this, addr, 0, size, prot,
1644                        eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
1645     m_addr_to_mmap_size[addr] = size;
1646     return Status();
1647   } else {
1648     addr = LLDB_INVALID_ADDRESS;
1649     return Status("unable to allocate %" PRIu64
1650                   " bytes of memory with permissions %s",
1651                   size, GetPermissionsAsCString(permissions));
1652   }
1653 #endif
1654 }
1655 
1656 Status NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) {
1657   // FIXME see comments in AllocateMemory - required lower-level
1658   // bits not in place yet (ThreadPlans)
1659   return Status("not implemented");
1660 }
1661 
1662 lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress() {
1663   // punt on this for now
1664   return LLDB_INVALID_ADDRESS;
1665 }
1666 
1667 size_t NativeProcessLinux::UpdateThreads() {
1668   // The NativeProcessLinux monitoring threads are always up to date
1669   // with respect to thread state and they keep the thread list
1670   // populated properly. All this method needs to do is return the
1671   // thread count.
1672   return m_threads.size();
1673 }
1674 
1675 bool NativeProcessLinux::GetArchitecture(ArchSpec &arch) const {
1676   arch = m_arch;
1677   return true;
1678 }
1679 
1680 Status NativeProcessLinux::GetSoftwareBreakpointPCOffset(
1681     uint32_t &actual_opcode_size) {
1682   // FIXME put this behind a breakpoint protocol class that can be
1683   // set per architecture.  Need ARM, MIPS support here.
1684   static const uint8_t g_i386_opcode[] = {0xCC};
1685   static const uint8_t g_s390x_opcode[] = {0x00, 0x01};
1686 
1687   switch (m_arch.GetMachine()) {
1688   case llvm::Triple::x86:
1689   case llvm::Triple::x86_64:
1690     actual_opcode_size = static_cast<uint32_t>(sizeof(g_i386_opcode));
1691     return Status();
1692 
1693   case llvm::Triple::systemz:
1694     actual_opcode_size = static_cast<uint32_t>(sizeof(g_s390x_opcode));
1695     return Status();
1696 
1697   case llvm::Triple::arm:
1698   case llvm::Triple::aarch64:
1699   case llvm::Triple::mips64:
1700   case llvm::Triple::mips64el:
1701   case llvm::Triple::mips:
1702   case llvm::Triple::mipsel:
1703     // On these architectures the PC don't get updated for breakpoint hits
1704     actual_opcode_size = 0;
1705     return Status();
1706 
1707   default:
1708     assert(false && "CPU type not supported!");
1709     return Status("CPU type not supported");
1710   }
1711 }
1712 
1713 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size,
1714                                          bool hardware) {
1715   if (hardware)
1716     return SetHardwareBreakpoint(addr, size);
1717   else
1718     return SetSoftwareBreakpoint(addr, size);
1719 }
1720 
1721 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) {
1722   if (hardware)
1723     return RemoveHardwareBreakpoint(addr);
1724   else
1725     return NativeProcessProtocol::RemoveBreakpoint(addr);
1726 }
1727 
1728 Status NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(
1729     size_t trap_opcode_size_hint, size_t &actual_opcode_size,
1730     const uint8_t *&trap_opcode_bytes) {
1731   // FIXME put this behind a breakpoint protocol class that can be set per
1732   // architecture.  Need MIPS support here.
1733   static const uint8_t g_aarch64_opcode[] = {0x00, 0x00, 0x20, 0xd4};
1734   // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
1735   // linux kernel does otherwise.
1736   static const uint8_t g_arm_breakpoint_opcode[] = {0xf0, 0x01, 0xf0, 0xe7};
1737   static const uint8_t g_i386_opcode[] = {0xCC};
1738   static const uint8_t g_mips64_opcode[] = {0x00, 0x00, 0x00, 0x0d};
1739   static const uint8_t g_mips64el_opcode[] = {0x0d, 0x00, 0x00, 0x00};
1740   static const uint8_t g_s390x_opcode[] = {0x00, 0x01};
1741   static const uint8_t g_thumb_breakpoint_opcode[] = {0x01, 0xde};
1742 
1743   switch (m_arch.GetMachine()) {
1744   case llvm::Triple::aarch64:
1745     trap_opcode_bytes = g_aarch64_opcode;
1746     actual_opcode_size = sizeof(g_aarch64_opcode);
1747     return Status();
1748 
1749   case llvm::Triple::arm:
1750     switch (trap_opcode_size_hint) {
1751     case 2:
1752       trap_opcode_bytes = g_thumb_breakpoint_opcode;
1753       actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
1754       return Status();
1755     case 4:
1756       trap_opcode_bytes = g_arm_breakpoint_opcode;
1757       actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
1758       return Status();
1759     default:
1760       assert(false && "Unrecognised trap opcode size hint!");
1761       return Status("Unrecognised trap opcode size hint!");
1762     }
1763 
1764   case llvm::Triple::x86:
1765   case llvm::Triple::x86_64:
1766     trap_opcode_bytes = g_i386_opcode;
1767     actual_opcode_size = sizeof(g_i386_opcode);
1768     return Status();
1769 
1770   case llvm::Triple::mips:
1771   case llvm::Triple::mips64:
1772     trap_opcode_bytes = g_mips64_opcode;
1773     actual_opcode_size = sizeof(g_mips64_opcode);
1774     return Status();
1775 
1776   case llvm::Triple::mipsel:
1777   case llvm::Triple::mips64el:
1778     trap_opcode_bytes = g_mips64el_opcode;
1779     actual_opcode_size = sizeof(g_mips64el_opcode);
1780     return Status();
1781 
1782   case llvm::Triple::systemz:
1783     trap_opcode_bytes = g_s390x_opcode;
1784     actual_opcode_size = sizeof(g_s390x_opcode);
1785     return Status();
1786 
1787   default:
1788     assert(false && "CPU type not supported!");
1789     return Status("CPU type not supported");
1790   }
1791 }
1792 
1793 #if 0
1794 ProcessMessage::CrashReason
1795 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
1796 {
1797     ProcessMessage::CrashReason reason;
1798     assert(info->si_signo == SIGSEGV);
1799 
1800     reason = ProcessMessage::eInvalidCrashReason;
1801 
1802     switch (info->si_code)
1803     {
1804     default:
1805         assert(false && "unexpected si_code for SIGSEGV");
1806         break;
1807     case SI_KERNEL:
1808         // Linux will occasionally send spurious SI_KERNEL codes.
1809         // (this is poorly documented in sigaction)
1810         // One way to get this is via unaligned SIMD loads.
1811         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
1812         break;
1813     case SEGV_MAPERR:
1814         reason = ProcessMessage::eInvalidAddress;
1815         break;
1816     case SEGV_ACCERR:
1817         reason = ProcessMessage::ePrivilegedAddress;
1818         break;
1819     }
1820 
1821     return reason;
1822 }
1823 #endif
1824 
1825 #if 0
1826 ProcessMessage::CrashReason
1827 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
1828 {
1829     ProcessMessage::CrashReason reason;
1830     assert(info->si_signo == SIGILL);
1831 
1832     reason = ProcessMessage::eInvalidCrashReason;
1833 
1834     switch (info->si_code)
1835     {
1836     default:
1837         assert(false && "unexpected si_code for SIGILL");
1838         break;
1839     case ILL_ILLOPC:
1840         reason = ProcessMessage::eIllegalOpcode;
1841         break;
1842     case ILL_ILLOPN:
1843         reason = ProcessMessage::eIllegalOperand;
1844         break;
1845     case ILL_ILLADR:
1846         reason = ProcessMessage::eIllegalAddressingMode;
1847         break;
1848     case ILL_ILLTRP:
1849         reason = ProcessMessage::eIllegalTrap;
1850         break;
1851     case ILL_PRVOPC:
1852         reason = ProcessMessage::ePrivilegedOpcode;
1853         break;
1854     case ILL_PRVREG:
1855         reason = ProcessMessage::ePrivilegedRegister;
1856         break;
1857     case ILL_COPROC:
1858         reason = ProcessMessage::eCoprocessorError;
1859         break;
1860     case ILL_BADSTK:
1861         reason = ProcessMessage::eInternalStackError;
1862         break;
1863     }
1864 
1865     return reason;
1866 }
1867 #endif
1868 
1869 #if 0
1870 ProcessMessage::CrashReason
1871 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
1872 {
1873     ProcessMessage::CrashReason reason;
1874     assert(info->si_signo == SIGFPE);
1875 
1876     reason = ProcessMessage::eInvalidCrashReason;
1877 
1878     switch (info->si_code)
1879     {
1880     default:
1881         assert(false && "unexpected si_code for SIGFPE");
1882         break;
1883     case FPE_INTDIV:
1884         reason = ProcessMessage::eIntegerDivideByZero;
1885         break;
1886     case FPE_INTOVF:
1887         reason = ProcessMessage::eIntegerOverflow;
1888         break;
1889     case FPE_FLTDIV:
1890         reason = ProcessMessage::eFloatDivideByZero;
1891         break;
1892     case FPE_FLTOVF:
1893         reason = ProcessMessage::eFloatOverflow;
1894         break;
1895     case FPE_FLTUND:
1896         reason = ProcessMessage::eFloatUnderflow;
1897         break;
1898     case FPE_FLTRES:
1899         reason = ProcessMessage::eFloatInexactResult;
1900         break;
1901     case FPE_FLTINV:
1902         reason = ProcessMessage::eFloatInvalidOperation;
1903         break;
1904     case FPE_FLTSUB:
1905         reason = ProcessMessage::eFloatSubscriptRange;
1906         break;
1907     }
1908 
1909     return reason;
1910 }
1911 #endif
1912 
1913 #if 0
1914 ProcessMessage::CrashReason
1915 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
1916 {
1917     ProcessMessage::CrashReason reason;
1918     assert(info->si_signo == SIGBUS);
1919 
1920     reason = ProcessMessage::eInvalidCrashReason;
1921 
1922     switch (info->si_code)
1923     {
1924     default:
1925         assert(false && "unexpected si_code for SIGBUS");
1926         break;
1927     case BUS_ADRALN:
1928         reason = ProcessMessage::eIllegalAlignment;
1929         break;
1930     case BUS_ADRERR:
1931         reason = ProcessMessage::eIllegalAddress;
1932         break;
1933     case BUS_OBJERR:
1934         reason = ProcessMessage::eHardwareError;
1935         break;
1936     }
1937 
1938     return reason;
1939 }
1940 #endif
1941 
1942 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size,
1943                                       size_t &bytes_read) {
1944   if (ProcessVmReadvSupported()) {
1945     // The process_vm_readv path is about 50 times faster than ptrace api. We
1946     // want to use
1947     // this syscall if it is supported.
1948 
1949     const ::pid_t pid = GetID();
1950 
1951     struct iovec local_iov, remote_iov;
1952     local_iov.iov_base = buf;
1953     local_iov.iov_len = size;
1954     remote_iov.iov_base = reinterpret_cast<void *>(addr);
1955     remote_iov.iov_len = size;
1956 
1957     bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
1958     const bool success = bytes_read == size;
1959 
1960     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1961     LLDB_LOG(log,
1962              "using process_vm_readv to read {0} bytes from inferior "
1963              "address {1:x}: {2}",
1964              size, addr, success ? "Success" : llvm::sys::StrError(errno));
1965 
1966     if (success)
1967       return Status();
1968     // else the call failed for some reason, let's retry the read using ptrace
1969     // api.
1970   }
1971 
1972   unsigned char *dst = static_cast<unsigned char *>(buf);
1973   size_t remainder;
1974   long data;
1975 
1976   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1977   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1978 
1979   for (bytes_read = 0; bytes_read < size; bytes_read += remainder) {
1980     Status error = NativeProcessLinux::PtraceWrapper(
1981         PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data);
1982     if (error.Fail())
1983       return error;
1984 
1985     remainder = size - bytes_read;
1986     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1987 
1988     // Copy the data into our buffer
1989     memcpy(dst, &data, remainder);
1990 
1991     LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1992     addr += k_ptrace_word_size;
1993     dst += k_ptrace_word_size;
1994   }
1995   return Status();
1996 }
1997 
1998 Status NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf,
1999                                                  size_t size,
2000                                                  size_t &bytes_read) {
2001   Status error = ReadMemory(addr, buf, size, bytes_read);
2002   if (error.Fail())
2003     return error;
2004   return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size);
2005 }
2006 
2007 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf,
2008                                        size_t size, size_t &bytes_written) {
2009   const unsigned char *src = static_cast<const unsigned char *>(buf);
2010   size_t remainder;
2011   Status error;
2012 
2013   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
2014   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
2015 
2016   for (bytes_written = 0; bytes_written < size; bytes_written += remainder) {
2017     remainder = size - bytes_written;
2018     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
2019 
2020     if (remainder == k_ptrace_word_size) {
2021       unsigned long data = 0;
2022       memcpy(&data, src, k_ptrace_word_size);
2023 
2024       LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
2025       error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(),
2026                                                 (void *)addr, (void *)data);
2027       if (error.Fail())
2028         return error;
2029     } else {
2030       unsigned char buff[8];
2031       size_t bytes_read;
2032       error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
2033       if (error.Fail())
2034         return error;
2035 
2036       memcpy(buff, src, remainder);
2037 
2038       size_t bytes_written_rec;
2039       error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
2040       if (error.Fail())
2041         return error;
2042 
2043       LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src,
2044                *(unsigned long *)buff);
2045     }
2046 
2047     addr += k_ptrace_word_size;
2048     src += k_ptrace_word_size;
2049   }
2050   return error;
2051 }
2052 
2053 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) {
2054   return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
2055 }
2056 
2057 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid,
2058                                            unsigned long *message) {
2059   return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
2060 }
2061 
2062 Status NativeProcessLinux::Detach(lldb::tid_t tid) {
2063   if (tid == LLDB_INVALID_THREAD_ID)
2064     return Status();
2065 
2066   return PtraceWrapper(PTRACE_DETACH, tid);
2067 }
2068 
2069 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) {
2070   for (auto thread_sp : m_threads) {
2071     assert(thread_sp && "thread list should not contain NULL threads");
2072     if (thread_sp->GetID() == thread_id) {
2073       // We have this thread.
2074       return true;
2075     }
2076   }
2077 
2078   // We don't have this thread.
2079   return false;
2080 }
2081 
2082 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) {
2083   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2084   LLDB_LOG(log, "tid: {0})", thread_id);
2085 
2086   bool found = false;
2087   for (auto it = m_threads.begin(); it != m_threads.end(); ++it) {
2088     if (*it && ((*it)->GetID() == thread_id)) {
2089       m_threads.erase(it);
2090       found = true;
2091       break;
2092     }
2093   }
2094 
2095   if (found)
2096     StopTracingForThread(thread_id);
2097   SignalIfAllThreadsStopped();
2098   return found;
2099 }
2100 
2101 NativeThreadLinuxSP NativeProcessLinux::AddThread(lldb::tid_t thread_id) {
2102   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD));
2103   LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id);
2104 
2105   assert(!HasThreadNoLock(thread_id) &&
2106          "attempted to add a thread by id that already exists");
2107 
2108   // If this is the first thread, save it as the current thread
2109   if (m_threads.empty())
2110     SetCurrentThreadID(thread_id);
2111 
2112   auto thread_sp = std::make_shared<NativeThreadLinux>(this, thread_id);
2113   m_threads.push_back(thread_sp);
2114 
2115   if (m_pt_proces_trace_id != LLDB_INVALID_UID) {
2116     auto traceMonitor = ProcessorTraceMonitor::Create(
2117         GetID(), thread_id, m_pt_process_trace_config, true);
2118     if (traceMonitor) {
2119       m_pt_traced_thread_group.insert(thread_id);
2120       m_processor_trace_monitor.insert(
2121           std::make_pair(thread_id, std::move(*traceMonitor)));
2122     } else {
2123       LLDB_LOG(log, "failed to start trace on thread {0}", thread_id);
2124       Status error(traceMonitor.takeError());
2125       LLDB_LOG(log, "error {0}", error);
2126     }
2127   }
2128 
2129   return thread_sp;
2130 }
2131 
2132 Status
2133 NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread) {
2134   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
2135 
2136   Status error;
2137 
2138   // Find out the size of a breakpoint (might depend on where we are in the
2139   // code).
2140   NativeRegisterContextSP context_sp = thread.GetRegisterContext();
2141   if (!context_sp) {
2142     error.SetErrorString("cannot get a NativeRegisterContext for the thread");
2143     LLDB_LOG(log, "failed: {0}", error);
2144     return error;
2145   }
2146 
2147   uint32_t breakpoint_size = 0;
2148   error = GetSoftwareBreakpointPCOffset(breakpoint_size);
2149   if (error.Fail()) {
2150     LLDB_LOG(log, "GetBreakpointSize() failed: {0}", error);
2151     return error;
2152   } else
2153     LLDB_LOG(log, "breakpoint size: {0}", breakpoint_size);
2154 
2155   // First try probing for a breakpoint at a software breakpoint location: PC -
2156   // breakpoint size.
2157   const lldb::addr_t initial_pc_addr =
2158       context_sp->GetPCfromBreakpointLocation();
2159   lldb::addr_t breakpoint_addr = initial_pc_addr;
2160   if (breakpoint_size > 0) {
2161     // Do not allow breakpoint probe to wrap around.
2162     if (breakpoint_addr >= breakpoint_size)
2163       breakpoint_addr -= breakpoint_size;
2164   }
2165 
2166   // Check if we stopped because of a breakpoint.
2167   NativeBreakpointSP breakpoint_sp;
2168   error = m_breakpoint_list.GetBreakpoint(breakpoint_addr, breakpoint_sp);
2169   if (!error.Success() || !breakpoint_sp) {
2170     // We didn't find one at a software probe location.  Nothing to do.
2171     LLDB_LOG(log,
2172              "pid {0} no lldb breakpoint found at current pc with "
2173              "adjustment: {1}",
2174              GetID(), breakpoint_addr);
2175     return Status();
2176   }
2177 
2178   // If the breakpoint is not a software breakpoint, nothing to do.
2179   if (!breakpoint_sp->IsSoftwareBreakpoint()) {
2180     LLDB_LOG(
2181         log,
2182         "pid {0} breakpoint found at {1:x}, not software, nothing to adjust",
2183         GetID(), breakpoint_addr);
2184     return Status();
2185   }
2186 
2187   //
2188   // We have a software breakpoint and need to adjust the PC.
2189   //
2190 
2191   // Sanity check.
2192   if (breakpoint_size == 0) {
2193     // Nothing to do!  How did we get here?
2194     LLDB_LOG(log,
2195              "pid {0} breakpoint found at {1:x}, it is software, but the "
2196              "size is zero, nothing to do (unexpected)",
2197              GetID(), breakpoint_addr);
2198     return Status();
2199   }
2200 
2201   // Change the program counter.
2202   LLDB_LOG(log, "pid {0} tid {1}: changing PC from {2:x} to {3:x}", GetID(),
2203            thread.GetID(), initial_pc_addr, breakpoint_addr);
2204 
2205   error = context_sp->SetPC(breakpoint_addr);
2206   if (error.Fail()) {
2207     LLDB_LOG(log, "pid {0} tid {1}: failed to set PC: {2}", GetID(),
2208              thread.GetID(), error);
2209     return error;
2210   }
2211 
2212   return error;
2213 }
2214 
2215 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path,
2216                                                    FileSpec &file_spec) {
2217   Status error = PopulateMemoryRegionCache();
2218   if (error.Fail())
2219     return error;
2220 
2221   FileSpec module_file_spec(module_path, true);
2222 
2223   file_spec.Clear();
2224   for (const auto &it : m_mem_region_cache) {
2225     if (it.second.GetFilename() == module_file_spec.GetFilename()) {
2226       file_spec = it.second;
2227       return Status();
2228     }
2229   }
2230   return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
2231                 module_file_spec.GetFilename().AsCString(), GetID());
2232 }
2233 
2234 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name,
2235                                               lldb::addr_t &load_addr) {
2236   load_addr = LLDB_INVALID_ADDRESS;
2237   Status error = PopulateMemoryRegionCache();
2238   if (error.Fail())
2239     return error;
2240 
2241   FileSpec file(file_name, false);
2242   for (const auto &it : m_mem_region_cache) {
2243     if (it.second == file) {
2244       load_addr = it.first.GetRange().GetRangeBase();
2245       return Status();
2246     }
2247   }
2248   return Status("No load address found for specified file.");
2249 }
2250 
2251 NativeThreadLinuxSP NativeProcessLinux::GetThreadByID(lldb::tid_t tid) {
2252   return std::static_pointer_cast<NativeThreadLinux>(
2253       NativeProcessProtocol::GetThreadByID(tid));
2254 }
2255 
2256 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread,
2257                                         lldb::StateType state, int signo) {
2258   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2259   LLDB_LOG(log, "tid: {0}", thread.GetID());
2260 
2261   // Before we do the resume below, first check if we have a pending
2262   // stop notification that is currently waiting for
2263   // all threads to stop.  This is potentially a buggy situation since
2264   // we're ostensibly waiting for threads to stop before we send out the
2265   // pending notification, and here we are resuming one before we send
2266   // out the pending stop notification.
2267   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
2268     LLDB_LOG(log,
2269              "about to resume tid {0} per explicit request but we have a "
2270              "pending stop notification (tid {1}) that is actively "
2271              "waiting for this thread to stop. Valid sequence of events?",
2272              thread.GetID(), m_pending_notification_tid);
2273   }
2274 
2275   // Request a resume.  We expect this to be synchronous and the system
2276   // to reflect it is running after this completes.
2277   switch (state) {
2278   case eStateRunning: {
2279     const auto resume_result = thread.Resume(signo);
2280     if (resume_result.Success())
2281       SetState(eStateRunning, true);
2282     return resume_result;
2283   }
2284   case eStateStepping: {
2285     const auto step_result = thread.SingleStep(signo);
2286     if (step_result.Success())
2287       SetState(eStateRunning, true);
2288     return step_result;
2289   }
2290   default:
2291     LLDB_LOG(log, "Unhandled state {0}.", state);
2292     llvm_unreachable("Unhandled state for resume");
2293   }
2294 }
2295 
2296 //===----------------------------------------------------------------------===//
2297 
2298 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) {
2299   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2300   LLDB_LOG(log, "about to process event: (triggering_tid: {0})",
2301            triggering_tid);
2302 
2303   m_pending_notification_tid = triggering_tid;
2304 
2305   // Request a stop for all the thread stops that need to be stopped
2306   // and are not already known to be stopped.
2307   for (const auto &thread_sp : m_threads) {
2308     if (StateIsRunningState(thread_sp->GetState()))
2309       static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop();
2310   }
2311 
2312   SignalIfAllThreadsStopped();
2313   LLDB_LOG(log, "event processing done");
2314 }
2315 
2316 void NativeProcessLinux::SignalIfAllThreadsStopped() {
2317   if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
2318     return; // No pending notification. Nothing to do.
2319 
2320   for (const auto &thread_sp : m_threads) {
2321     if (StateIsRunningState(thread_sp->GetState()))
2322       return; // Some threads are still running. Don't signal yet.
2323   }
2324 
2325   // We have a pending notification and all threads have stopped.
2326   Log *log(
2327       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
2328 
2329   // Clear any temporary breakpoints we used to implement software single
2330   // stepping.
2331   for (const auto &thread_info : m_threads_stepping_with_breakpoint) {
2332     Status error = RemoveBreakpoint(thread_info.second);
2333     if (error.Fail())
2334       LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}",
2335                thread_info.first, error);
2336   }
2337   m_threads_stepping_with_breakpoint.clear();
2338 
2339   // Notify the delegate about the stop
2340   SetCurrentThreadID(m_pending_notification_tid);
2341   SetState(StateType::eStateStopped, true);
2342   m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
2343 }
2344 
2345 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) {
2346   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2347   LLDB_LOG(log, "tid: {0}", thread.GetID());
2348 
2349   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID &&
2350       StateIsRunningState(thread.GetState())) {
2351     // We will need to wait for this new thread to stop as well before firing
2352     // the
2353     // notification.
2354     thread.RequestStop();
2355   }
2356 }
2357 
2358 void NativeProcessLinux::SigchldHandler() {
2359   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
2360   // Process all pending waitpid notifications.
2361   while (true) {
2362     int status = -1;
2363     ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, -1, &status,
2364                                           __WALL | __WNOTHREAD | WNOHANG);
2365 
2366     if (wait_pid == 0)
2367       break; // We are done.
2368 
2369     if (wait_pid == -1) {
2370       Status error(errno, eErrorTypePOSIX);
2371       LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error);
2372       break;
2373     }
2374 
2375     WaitStatus wait_status = WaitStatus::Decode(status);
2376     bool exited = wait_status.type == WaitStatus::Exit ||
2377                   (wait_status.type == WaitStatus::Signal &&
2378                    wait_pid == static_cast<::pid_t>(GetID()));
2379 
2380     LLDB_LOG(
2381         log,
2382         "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}",
2383         wait_pid, wait_status, exited);
2384 
2385     MonitorCallback(wait_pid, exited, wait_status);
2386   }
2387 }
2388 
2389 // Wrapper for ptrace to catch errors and log calls.
2390 // Note that ptrace sets errno on error because -1 can be a valid result (i.e.
2391 // for PTRACE_PEEK*)
2392 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr,
2393                                          void *data, size_t data_size,
2394                                          long *result) {
2395   Status error;
2396   long int ret;
2397 
2398   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2399 
2400   PtraceDisplayBytes(req, data, data_size);
2401 
2402   errno = 0;
2403   if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
2404     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
2405                  *(unsigned int *)addr, data);
2406   else
2407     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
2408                  addr, data);
2409 
2410   if (ret == -1)
2411     error.SetErrorToErrno();
2412 
2413   if (result)
2414     *result = ret;
2415 
2416   LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data,
2417            data_size, ret);
2418 
2419   PtraceDisplayBytes(req, data, data_size);
2420 
2421   if (error.Fail())
2422     LLDB_LOG(log, "ptrace() failed: {0}", error);
2423 
2424   return error;
2425 }
2426 
2427 llvm::Expected<ProcessorTraceMonitor &>
2428 NativeProcessLinux::LookupProcessorTraceInstance(lldb::user_id_t traceid,
2429                                                  lldb::tid_t thread) {
2430   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2431   if (thread == LLDB_INVALID_THREAD_ID && traceid == m_pt_proces_trace_id) {
2432     LLDB_LOG(log, "thread not specified: {0}", traceid);
2433     return Status("tracing not active thread not specified").ToError();
2434   }
2435 
2436   for (auto& iter : m_processor_trace_monitor) {
2437     if (traceid == iter.second->GetTraceID() &&
2438         (thread == iter.first || thread == LLDB_INVALID_THREAD_ID))
2439       return *(iter.second);
2440   }
2441 
2442   LLDB_LOG(log, "traceid not being traced: {0}", traceid);
2443   return Status("tracing not active for this thread").ToError();
2444 }
2445 
2446 Status NativeProcessLinux::GetMetaData(lldb::user_id_t traceid,
2447                                        lldb::tid_t thread,
2448                                        llvm::MutableArrayRef<uint8_t> &buffer,
2449                                        size_t offset) {
2450   TraceOptions trace_options;
2451   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2452   Status error;
2453 
2454   LLDB_LOG(log, "traceid {0}", traceid);
2455 
2456   auto perf_monitor = LookupProcessorTraceInstance(traceid, thread);
2457   if (!perf_monitor) {
2458     LLDB_LOG(log, "traceid not being traced: {0}", traceid);
2459     buffer = buffer.slice(buffer.size());
2460     error = perf_monitor.takeError();
2461     return error;
2462   }
2463   return (*perf_monitor).ReadPerfTraceData(buffer, offset);
2464 }
2465 
2466 Status NativeProcessLinux::GetData(lldb::user_id_t traceid, lldb::tid_t thread,
2467                                    llvm::MutableArrayRef<uint8_t> &buffer,
2468                                    size_t offset) {
2469   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2470   Status error;
2471 
2472   LLDB_LOG(log, "traceid {0}", traceid);
2473 
2474   auto perf_monitor = LookupProcessorTraceInstance(traceid, thread);
2475   if (!perf_monitor) {
2476     LLDB_LOG(log, "traceid not being traced: {0}", traceid);
2477     buffer = buffer.slice(buffer.size());
2478     error = perf_monitor.takeError();
2479     return error;
2480   }
2481   return (*perf_monitor).ReadPerfTraceAux(buffer, offset);
2482 }
2483 
2484 Status NativeProcessLinux::GetTraceConfig(lldb::user_id_t traceid,
2485                                           TraceOptions &config) {
2486   Status error;
2487   if (config.getThreadID() == LLDB_INVALID_THREAD_ID &&
2488       m_pt_proces_trace_id == traceid) {
2489     if (m_pt_proces_trace_id == LLDB_INVALID_UID) {
2490       error.SetErrorString("tracing not active for this process");
2491       return error;
2492     }
2493     config = m_pt_process_trace_config;
2494   } else {
2495     auto perf_monitor =
2496         LookupProcessorTraceInstance(traceid, config.getThreadID());
2497     if (!perf_monitor) {
2498       error = perf_monitor.takeError();
2499       return error;
2500     }
2501     error = (*perf_monitor).GetTraceConfig(config);
2502   }
2503   return error;
2504 }
2505 
2506 lldb::user_id_t
2507 NativeProcessLinux::StartTraceGroup(const TraceOptions &config,
2508                                            Status &error) {
2509 
2510   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2511   if (config.getType() != TraceType::eTraceTypeProcessorTrace)
2512     return LLDB_INVALID_UID;
2513 
2514   if (m_pt_proces_trace_id != LLDB_INVALID_UID) {
2515     error.SetErrorString("tracing already active on this process");
2516     return m_pt_proces_trace_id;
2517   }
2518 
2519   for (const auto &thread_sp : m_threads) {
2520     if (auto traceInstance = ProcessorTraceMonitor::Create(
2521             GetID(), thread_sp->GetID(), config, true)) {
2522       m_pt_traced_thread_group.insert(thread_sp->GetID());
2523       m_processor_trace_monitor.insert(
2524           std::make_pair(thread_sp->GetID(), std::move(*traceInstance)));
2525     }
2526   }
2527 
2528   m_pt_process_trace_config = config;
2529   error = ProcessorTraceMonitor::GetCPUType(m_pt_process_trace_config);
2530 
2531   // Trace on Complete process will have traceid of 0
2532   m_pt_proces_trace_id = 0;
2533 
2534   LLDB_LOG(log, "Process Trace ID {0}", m_pt_proces_trace_id);
2535   return m_pt_proces_trace_id;
2536 }
2537 
2538 lldb::user_id_t NativeProcessLinux::StartTrace(const TraceOptions &config,
2539                                                Status &error) {
2540   if (config.getType() != TraceType::eTraceTypeProcessorTrace)
2541     return NativeProcessProtocol::StartTrace(config, error);
2542 
2543   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2544 
2545   lldb::tid_t threadid = config.getThreadID();
2546 
2547   if (threadid == LLDB_INVALID_THREAD_ID)
2548     return StartTraceGroup(config, error);
2549 
2550   auto thread_sp = GetThreadByID(threadid);
2551   if (!thread_sp) {
2552     // Thread not tracked by lldb so don't trace.
2553     error.SetErrorString("invalid thread id");
2554     return LLDB_INVALID_UID;
2555   }
2556 
2557   const auto &iter = m_processor_trace_monitor.find(threadid);
2558   if (iter != m_processor_trace_monitor.end()) {
2559     LLDB_LOG(log, "Thread already being traced");
2560     error.SetErrorString("tracing already active on this thread");
2561     return LLDB_INVALID_UID;
2562   }
2563 
2564   auto traceMonitor =
2565       ProcessorTraceMonitor::Create(GetID(), threadid, config, false);
2566   if (!traceMonitor) {
2567     error = traceMonitor.takeError();
2568     LLDB_LOG(log, "error {0}", error);
2569     return LLDB_INVALID_UID;
2570   }
2571   lldb::user_id_t ret_trace_id = (*traceMonitor)->GetTraceID();
2572   m_processor_trace_monitor.insert(
2573       std::make_pair(threadid, std::move(*traceMonitor)));
2574   return ret_trace_id;
2575 }
2576 
2577 Status NativeProcessLinux::StopTracingForThread(lldb::tid_t thread) {
2578   Status error;
2579   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2580   LLDB_LOG(log, "Thread {0}", thread);
2581 
2582   const auto& iter = m_processor_trace_monitor.find(thread);
2583   if (iter == m_processor_trace_monitor.end()) {
2584     error.SetErrorString("tracing not active for this thread");
2585     return error;
2586   }
2587 
2588   if (iter->second->GetTraceID() == m_pt_proces_trace_id) {
2589     // traceid maps to the whole process so we have to erase it from the
2590     // thread group.
2591     LLDB_LOG(log, "traceid maps to process");
2592     m_pt_traced_thread_group.erase(thread);
2593   }
2594   m_processor_trace_monitor.erase(iter);
2595 
2596   return error;
2597 }
2598 
2599 Status NativeProcessLinux::StopTrace(lldb::user_id_t traceid,
2600                                      lldb::tid_t thread) {
2601   Status error;
2602 
2603   TraceOptions trace_options;
2604   trace_options.setThreadID(thread);
2605   error = NativeProcessLinux::GetTraceConfig(traceid, trace_options);
2606 
2607   if (error.Fail())
2608     return error;
2609 
2610   switch (trace_options.getType()) {
2611   case lldb::TraceType::eTraceTypeProcessorTrace:
2612     if (traceid == m_pt_proces_trace_id &&
2613         thread == LLDB_INVALID_THREAD_ID)
2614       StopProcessorTracingOnProcess();
2615     else
2616       error = StopProcessorTracingOnThread(traceid, thread);
2617     break;
2618   default:
2619     error.SetErrorString("trace not supported");
2620     break;
2621   }
2622 
2623   return error;
2624 }
2625 
2626 void NativeProcessLinux::StopProcessorTracingOnProcess() {
2627   for (auto thread_id_iter : m_pt_traced_thread_group)
2628     m_processor_trace_monitor.erase(thread_id_iter);
2629   m_pt_traced_thread_group.clear();
2630   m_pt_proces_trace_id = LLDB_INVALID_UID;
2631 }
2632 
2633 Status NativeProcessLinux::StopProcessorTracingOnThread(lldb::user_id_t traceid,
2634                                                         lldb::tid_t thread) {
2635   Status error;
2636   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2637 
2638   if (thread == LLDB_INVALID_THREAD_ID) {
2639     for (auto& iter : m_processor_trace_monitor) {
2640       if (iter.second->GetTraceID() == traceid) {
2641         // Stopping a trace instance for an individual thread
2642         // hence there will only be one traceid that can match.
2643         m_processor_trace_monitor.erase(iter.first);
2644         return error;
2645       }
2646       LLDB_LOG(log, "Trace ID {0}", iter.second->GetTraceID());
2647     }
2648 
2649     LLDB_LOG(log, "Invalid TraceID");
2650     error.SetErrorString("invalid trace id");
2651     return error;
2652   }
2653 
2654   // thread is specified so we can use find function on the map.
2655   const auto& iter = m_processor_trace_monitor.find(thread);
2656   if (iter == m_processor_trace_monitor.end()) {
2657     // thread not found in our map.
2658     LLDB_LOG(log, "thread not being traced");
2659     error.SetErrorString("tracing not active for this thread");
2660     return error;
2661   }
2662   if (iter->second->GetTraceID() != traceid) {
2663     // traceid did not match so it has to be invalid.
2664     LLDB_LOG(log, "Invalid TraceID");
2665     error.SetErrorString("invalid trace id");
2666     return error;
2667   }
2668 
2669   LLDB_LOG(log, "UID - {0} , Thread -{1}", traceid, thread);
2670 
2671   if (traceid == m_pt_proces_trace_id) {
2672     // traceid maps to the whole process so we have to erase it from the
2673     // thread group.
2674     LLDB_LOG(log, "traceid maps to process");
2675     m_pt_traced_thread_group.erase(thread);
2676   }
2677   m_processor_trace_monitor.erase(iter);
2678 
2679   return error;
2680 }
2681