1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "NativeProcessLinux.h" 11 12 // C Includes 13 #include <errno.h> 14 #include <stdint.h> 15 #include <string.h> 16 #include <unistd.h> 17 18 // C++ Includes 19 #include <fstream> 20 #include <mutex> 21 #include <sstream> 22 #include <string> 23 #include <unordered_map> 24 25 // Other libraries and framework includes 26 #include "lldb/Core/EmulateInstruction.h" 27 #include "lldb/Core/ModuleSpec.h" 28 #include "lldb/Core/RegisterValue.h" 29 #include "lldb/Core/State.h" 30 #include "lldb/Host/Host.h" 31 #include "lldb/Host/HostProcess.h" 32 #include "lldb/Host/PseudoTerminal.h" 33 #include "lldb/Host/ThreadLauncher.h" 34 #include "lldb/Host/common/NativeBreakpoint.h" 35 #include "lldb/Host/common/NativeRegisterContext.h" 36 #include "lldb/Host/linux/Ptrace.h" 37 #include "lldb/Host/linux/Uio.h" 38 #include "lldb/Host/posix/ProcessLauncherPosixFork.h" 39 #include "lldb/Symbol/ObjectFile.h" 40 #include "lldb/Target/Process.h" 41 #include "lldb/Target/ProcessLaunchInfo.h" 42 #include "lldb/Target/Target.h" 43 #include "lldb/Utility/LLDBAssert.h" 44 #include "lldb/Utility/Status.h" 45 #include "lldb/Utility/StringExtractor.h" 46 #include "llvm/Support/Errno.h" 47 #include "llvm/Support/FileSystem.h" 48 #include "llvm/Support/Threading.h" 49 50 #include "NativeThreadLinux.h" 51 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 52 #include "Procfs.h" 53 54 #include <linux/unistd.h> 55 #include <sys/socket.h> 56 #include <sys/syscall.h> 57 #include <sys/types.h> 58 #include <sys/user.h> 59 #include <sys/wait.h> 60 61 // Support hardware breakpoints in case it has not been defined 62 #ifndef TRAP_HWBKPT 63 #define TRAP_HWBKPT 4 64 #endif 65 66 using namespace lldb; 67 using namespace lldb_private; 68 using namespace lldb_private::process_linux; 69 using namespace llvm; 70 71 // Private bits we only need internally. 72 73 static bool ProcessVmReadvSupported() { 74 static bool is_supported; 75 static llvm::once_flag flag; 76 77 llvm::call_once(flag, [] { 78 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 79 80 uint32_t source = 0x47424742; 81 uint32_t dest = 0; 82 83 struct iovec local, remote; 84 remote.iov_base = &source; 85 local.iov_base = &dest; 86 remote.iov_len = local.iov_len = sizeof source; 87 88 // We shall try if cross-process-memory reads work by attempting to read a 89 // value from our own process. 90 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); 91 is_supported = (res == sizeof(source) && source == dest); 92 if (is_supported) 93 LLDB_LOG(log, 94 "Detected kernel support for process_vm_readv syscall. " 95 "Fast memory reads enabled."); 96 else 97 LLDB_LOG(log, 98 "syscall process_vm_readv failed (error: {0}). Fast memory " 99 "reads disabled.", 100 llvm::sys::StrError()); 101 }); 102 103 return is_supported; 104 } 105 106 namespace { 107 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) { 108 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 109 if (!log) 110 return; 111 112 if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO)) 113 LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec()); 114 else 115 LLDB_LOG(log, "leaving STDIN as is"); 116 117 if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO)) 118 LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec()); 119 else 120 LLDB_LOG(log, "leaving STDOUT as is"); 121 122 if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO)) 123 LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec()); 124 else 125 LLDB_LOG(log, "leaving STDERR as is"); 126 127 int i = 0; 128 for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; 129 ++args, ++i) 130 LLDB_LOG(log, "arg {0}: '{1}'", i, *args); 131 } 132 133 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) { 134 uint8_t *ptr = (uint8_t *)bytes; 135 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 136 for (uint32_t i = 0; i < loop_count; i++) { 137 s.Printf("[%x]", *ptr); 138 ptr++; 139 } 140 } 141 142 void PtraceDisplayBytes(int &req, void *data, size_t data_size) { 143 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 144 if (!log) 145 return; 146 StreamString buf; 147 148 switch (req) { 149 case PTRACE_POKETEXT: { 150 DisplayBytes(buf, &data, 8); 151 LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData()); 152 break; 153 } 154 case PTRACE_POKEDATA: { 155 DisplayBytes(buf, &data, 8); 156 LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData()); 157 break; 158 } 159 case PTRACE_POKEUSER: { 160 DisplayBytes(buf, &data, 8); 161 LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData()); 162 break; 163 } 164 case PTRACE_SETREGS: { 165 DisplayBytes(buf, data, data_size); 166 LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData()); 167 break; 168 } 169 case PTRACE_SETFPREGS: { 170 DisplayBytes(buf, data, data_size); 171 LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData()); 172 break; 173 } 174 case PTRACE_SETSIGINFO: { 175 DisplayBytes(buf, data, sizeof(siginfo_t)); 176 LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData()); 177 break; 178 } 179 case PTRACE_SETREGSET: { 180 // Extract iov_base from data, which is a pointer to the struct IOVEC 181 DisplayBytes(buf, *(void **)data, data_size); 182 LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData()); 183 break; 184 } 185 default: {} 186 } 187 } 188 189 static constexpr unsigned k_ptrace_word_size = sizeof(void *); 190 static_assert(sizeof(long) >= k_ptrace_word_size, 191 "Size of long must be larger than ptrace word size"); 192 } // end of anonymous namespace 193 194 // Simple helper function to ensure flags are enabled on the given file 195 // descriptor. 196 static Status EnsureFDFlags(int fd, int flags) { 197 Status error; 198 199 int status = fcntl(fd, F_GETFL); 200 if (status == -1) { 201 error.SetErrorToErrno(); 202 return error; 203 } 204 205 if (fcntl(fd, F_SETFL, status | flags) == -1) { 206 error.SetErrorToErrno(); 207 return error; 208 } 209 210 return error; 211 } 212 213 // ----------------------------------------------------------------------------- 214 // Public Static Methods 215 // ----------------------------------------------------------------------------- 216 217 Status NativeProcessProtocol::Launch( 218 ProcessLaunchInfo &launch_info, 219 NativeProcessProtocol::NativeDelegate &native_delegate, MainLoop &mainloop, 220 NativeProcessProtocolSP &native_process_sp) { 221 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 222 223 Status error; 224 225 // Verify the working directory is valid if one was specified. 226 FileSpec working_dir{launch_info.GetWorkingDirectory()}; 227 if (working_dir && (!working_dir.ResolvePath() || 228 !llvm::sys::fs::is_directory(working_dir.GetPath()))) { 229 error.SetErrorStringWithFormat("No such file or directory: %s", 230 working_dir.GetCString()); 231 return error; 232 } 233 234 // Create the NativeProcessLinux in launch mode. 235 native_process_sp.reset(new NativeProcessLinux()); 236 237 if (!native_process_sp->RegisterNativeDelegate(native_delegate)) { 238 native_process_sp.reset(); 239 error.SetErrorStringWithFormat("failed to register the native delegate"); 240 return error; 241 } 242 243 error = std::static_pointer_cast<NativeProcessLinux>(native_process_sp) 244 ->LaunchInferior(mainloop, launch_info); 245 246 if (error.Fail()) { 247 native_process_sp.reset(); 248 LLDB_LOG(log, "failed to launch process: {0}", error); 249 return error; 250 } 251 252 launch_info.SetProcessID(native_process_sp->GetID()); 253 254 return error; 255 } 256 257 Status NativeProcessProtocol::Attach( 258 lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate, 259 MainLoop &mainloop, NativeProcessProtocolSP &native_process_sp) { 260 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 261 LLDB_LOG(log, "pid = {0:x}", pid); 262 263 // Retrieve the architecture for the running process. 264 ArchSpec process_arch; 265 Status error = ResolveProcessArchitecture(pid, process_arch); 266 if (!error.Success()) 267 return error; 268 269 std::shared_ptr<NativeProcessLinux> native_process_linux_sp( 270 new NativeProcessLinux()); 271 272 if (!native_process_linux_sp->RegisterNativeDelegate(native_delegate)) { 273 error.SetErrorStringWithFormat("failed to register the native delegate"); 274 return error; 275 } 276 277 native_process_linux_sp->AttachToInferior(mainloop, pid, error); 278 if (!error.Success()) 279 return error; 280 281 native_process_sp = native_process_linux_sp; 282 return error; 283 } 284 285 // ----------------------------------------------------------------------------- 286 // Public Instance Methods 287 // ----------------------------------------------------------------------------- 288 289 NativeProcessLinux::NativeProcessLinux() 290 : NativeProcessProtocol(LLDB_INVALID_PROCESS_ID), m_arch(), 291 m_supports_mem_region(eLazyBoolCalculate), m_mem_region_cache(), 292 m_pending_notification_tid(LLDB_INVALID_THREAD_ID), 293 m_pt_proces_trace_id(LLDB_INVALID_UID) {} 294 295 void NativeProcessLinux::AttachToInferior(MainLoop &mainloop, lldb::pid_t pid, 296 Status &error) { 297 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 298 LLDB_LOG(log, "pid = {0:x}", pid); 299 300 m_sigchld_handle = mainloop.RegisterSignal( 301 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, error); 302 if (!m_sigchld_handle) 303 return; 304 305 error = ResolveProcessArchitecture(pid, m_arch); 306 if (!error.Success()) 307 return; 308 309 // Set the architecture to the exe architecture. 310 LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid, 311 m_arch.GetArchitectureName()); 312 m_pid = pid; 313 SetState(eStateAttaching); 314 315 Attach(pid, error); 316 } 317 318 Status NativeProcessLinux::LaunchInferior(MainLoop &mainloop, 319 ProcessLaunchInfo &launch_info) { 320 Status error; 321 m_sigchld_handle = mainloop.RegisterSignal( 322 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, error); 323 if (!m_sigchld_handle) 324 return error; 325 326 SetState(eStateLaunching); 327 328 MaybeLogLaunchInfo(launch_info); 329 330 ::pid_t pid = 331 ProcessLauncherPosixFork().LaunchProcess(launch_info, error).GetProcessId(); 332 if (error.Fail()) 333 return error; 334 335 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 336 337 // Wait for the child process to trap on its call to execve. 338 ::pid_t wpid; 339 int status; 340 if ((wpid = waitpid(pid, &status, 0)) < 0) { 341 error.SetErrorToErrno(); 342 LLDB_LOG(log, "waitpid for inferior failed with %s", error); 343 344 // Mark the inferior as invalid. 345 // FIXME this could really use a new state - eStateLaunchFailure. For now, 346 // using eStateInvalid. 347 SetState(StateType::eStateInvalid); 348 349 return error; 350 } 351 assert(WIFSTOPPED(status) && (wpid == static_cast<::pid_t>(pid)) && 352 "Could not sync with inferior process."); 353 354 LLDB_LOG(log, "inferior started, now in stopped state"); 355 error = SetDefaultPtraceOpts(pid); 356 if (error.Fail()) { 357 LLDB_LOG(log, "failed to set default ptrace options: {0}", error); 358 359 // Mark the inferior as invalid. 360 // FIXME this could really use a new state - eStateLaunchFailure. For now, 361 // using eStateInvalid. 362 SetState(StateType::eStateInvalid); 363 364 return error; 365 } 366 367 // Release the master terminal descriptor and pass it off to the 368 // NativeProcessLinux instance. Similarly stash the inferior pid. 369 m_terminal_fd = launch_info.GetPTY().ReleaseMasterFileDescriptor(); 370 m_pid = pid; 371 launch_info.SetProcessID(pid); 372 373 if (m_terminal_fd != -1) { 374 error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 375 if (error.Fail()) { 376 LLDB_LOG(log, 377 "inferior EnsureFDFlags failed for ensuring terminal " 378 "O_NONBLOCK setting: {0}", 379 error); 380 381 // Mark the inferior as invalid. 382 // FIXME this could really use a new state - eStateLaunchFailure. For 383 // now, using eStateInvalid. 384 SetState(StateType::eStateInvalid); 385 386 return error; 387 } 388 } 389 390 LLDB_LOG(log, "adding pid = {0}", pid); 391 ResolveProcessArchitecture(m_pid, m_arch); 392 NativeThreadLinuxSP thread_sp = AddThread(pid); 393 assert(thread_sp && "AddThread() returned a nullptr thread"); 394 thread_sp->SetStoppedBySignal(SIGSTOP); 395 ThreadWasCreated(*thread_sp); 396 397 // Let our process instance know the thread has stopped. 398 SetCurrentThreadID(thread_sp->GetID()); 399 SetState(StateType::eStateStopped); 400 401 if (error.Fail()) 402 LLDB_LOG(log, "inferior launching failed {0}", error); 403 return error; 404 } 405 406 ::pid_t NativeProcessLinux::Attach(lldb::pid_t pid, Status &error) { 407 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 408 409 // Use a map to keep track of the threads which we have attached/need to 410 // attach. 411 Host::TidMap tids_to_attach; 412 if (pid <= 1) { 413 error.SetErrorToGenericError(); 414 error.SetErrorString("Attaching to process 1 is not allowed."); 415 return -1; 416 } 417 418 while (Host::FindProcessThreads(pid, tids_to_attach)) { 419 for (Host::TidMap::iterator it = tids_to_attach.begin(); 420 it != tids_to_attach.end();) { 421 if (it->second == false) { 422 lldb::tid_t tid = it->first; 423 424 // Attach to the requested process. 425 // An attach will cause the thread to stop with a SIGSTOP. 426 error = PtraceWrapper(PTRACE_ATTACH, tid); 427 if (error.Fail()) { 428 // No such thread. The thread may have exited. 429 // More error handling may be needed. 430 if (error.GetError() == ESRCH) { 431 it = tids_to_attach.erase(it); 432 continue; 433 } else 434 return -1; 435 } 436 437 int status; 438 // Need to use __WALL otherwise we receive an error with errno=ECHLD 439 // At this point we should have a thread stopped if waitpid succeeds. 440 if ((status = waitpid(tid, NULL, __WALL)) < 0) { 441 // No such thread. The thread may have exited. 442 // More error handling may be needed. 443 if (errno == ESRCH) { 444 it = tids_to_attach.erase(it); 445 continue; 446 } else { 447 error.SetErrorToErrno(); 448 return -1; 449 } 450 } 451 452 error = SetDefaultPtraceOpts(tid); 453 if (error.Fail()) 454 return -1; 455 456 LLDB_LOG(log, "adding tid = {0}", tid); 457 it->second = true; 458 459 // Create the thread, mark it as stopped. 460 NativeThreadLinuxSP thread_sp(AddThread(static_cast<lldb::tid_t>(tid))); 461 assert(thread_sp && "AddThread() returned a nullptr"); 462 463 // This will notify this is a new thread and tell the system it is 464 // stopped. 465 thread_sp->SetStoppedBySignal(SIGSTOP); 466 ThreadWasCreated(*thread_sp); 467 SetCurrentThreadID(thread_sp->GetID()); 468 } 469 470 // move the loop forward 471 ++it; 472 } 473 } 474 475 if (tids_to_attach.size() > 0) { 476 m_pid = pid; 477 // Let our process instance know the thread has stopped. 478 SetState(StateType::eStateStopped); 479 } else { 480 error.SetErrorToGenericError(); 481 error.SetErrorString("No such process."); 482 return -1; 483 } 484 485 return pid; 486 } 487 488 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) { 489 long ptrace_opts = 0; 490 491 // Have the child raise an event on exit. This is used to keep the child in 492 // limbo until it is destroyed. 493 ptrace_opts |= PTRACE_O_TRACEEXIT; 494 495 // Have the tracer trace threads which spawn in the inferior process. 496 // TODO: if we want to support tracing the inferiors' child, add the 497 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) 498 ptrace_opts |= PTRACE_O_TRACECLONE; 499 500 // Have the tracer notify us before execve returns 501 // (needed to disable legacy SIGTRAP generation) 502 ptrace_opts |= PTRACE_O_TRACEEXEC; 503 504 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts); 505 } 506 507 // Handles all waitpid events from the inferior process. 508 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited, 509 WaitStatus status) { 510 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 511 512 // Certain activities differ based on whether the pid is the tid of the main 513 // thread. 514 const bool is_main_thread = (pid == GetID()); 515 516 // Handle when the thread exits. 517 if (exited) { 518 LLDB_LOG(log, "got exit signal({0}) , tid = {1} ({2} main thread)", signal, 519 pid, is_main_thread ? "is" : "is not"); 520 521 // This is a thread that exited. Ensure we're not tracking it anymore. 522 const bool thread_found = StopTrackingThread(pid); 523 524 if (is_main_thread) { 525 // We only set the exit status and notify the delegate if we haven't 526 // already set the process 527 // state to an exited state. We normally should have received a SIGTRAP | 528 // (PTRACE_EVENT_EXIT << 8) 529 // for the main thread. 530 const bool already_notified = (GetState() == StateType::eStateExited) || 531 (GetState() == StateType::eStateCrashed); 532 if (!already_notified) { 533 LLDB_LOG( 534 log, 535 "tid = {0} handling main thread exit ({1}), expected exit state " 536 "already set but state was {2} instead, setting exit state now", 537 pid, 538 thread_found ? "stopped tracking thread metadata" 539 : "thread metadata not found", 540 GetState()); 541 // The main thread exited. We're done monitoring. Report to delegate. 542 SetExitStatus(status, true); 543 544 // Notify delegate that our process has exited. 545 SetState(StateType::eStateExited, true); 546 } else 547 LLDB_LOG(log, "tid = {0} main thread now exited (%s)", pid, 548 thread_found ? "stopped tracking thread metadata" 549 : "thread metadata not found"); 550 } else { 551 // Do we want to report to the delegate in this case? I think not. If 552 // this was an orderly thread exit, we would already have received the 553 // SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, and we would have done an 554 // all-stop then. 555 LLDB_LOG(log, "tid = {0} handling non-main thread exit (%s)", pid, 556 thread_found ? "stopped tracking thread metadata" 557 : "thread metadata not found"); 558 } 559 return; 560 } 561 562 siginfo_t info; 563 const auto info_err = GetSignalInfo(pid, &info); 564 auto thread_sp = GetThreadByID(pid); 565 566 if (!thread_sp) { 567 // Normally, the only situation when we cannot find the thread is if we have 568 // just received a new thread notification. This is indicated by 569 // GetSignalInfo() returning si_code == SI_USER and si_pid == 0 570 LLDB_LOG(log, "received notification about an unknown tid {0}.", pid); 571 572 if (info_err.Fail()) { 573 LLDB_LOG(log, 574 "(tid {0}) GetSignalInfo failed ({1}). " 575 "Ingoring this notification.", 576 pid, info_err); 577 return; 578 } 579 580 LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code, 581 info.si_pid); 582 583 auto thread_sp = AddThread(pid); 584 585 // Resume the newly created thread. 586 ResumeThread(*thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 587 ThreadWasCreated(*thread_sp); 588 return; 589 } 590 591 // Get details on the signal raised. 592 if (info_err.Success()) { 593 // We have retrieved the signal info. Dispatch appropriately. 594 if (info.si_signo == SIGTRAP) 595 MonitorSIGTRAP(info, *thread_sp); 596 else 597 MonitorSignal(info, *thread_sp, exited); 598 } else { 599 if (info_err.GetError() == EINVAL) { 600 // This is a group stop reception for this tid. 601 // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU 602 // into the tracee, triggering the group-stop mechanism. Normally 603 // receiving these would stop the process, pending a SIGCONT. Simulating 604 // this state in a debugger is hard and is generally not needed (one use 605 // case is debugging background task being managed by a shell). For 606 // general use, it is sufficient to stop the process in a signal-delivery 607 // stop which happens before the group stop. This done by MonitorSignal 608 // and works correctly for all signals. 609 LLDB_LOG(log, 610 "received a group stop for pid {0} tid {1}. Transparent " 611 "handling of group stops not supported, resuming the " 612 "thread.", 613 GetID(), pid); 614 ResumeThread(*thread_sp, thread_sp->GetState(), 615 LLDB_INVALID_SIGNAL_NUMBER); 616 } else { 617 // ptrace(GETSIGINFO) failed (but not due to group-stop). 618 619 // A return value of ESRCH means the thread/process is no longer on the 620 // system, so it was killed somehow outside of our control. Either way, 621 // we can't do anything with it anymore. 622 623 // Stop tracking the metadata for the thread since it's entirely off the 624 // system now. 625 const bool thread_found = StopTrackingThread(pid); 626 627 LLDB_LOG(log, 628 "GetSignalInfo failed: {0}, tid = {1}, signal = {2}, " 629 "status = {3}, main_thread = {4}, thread_found: {5}", 630 info_err, pid, signal, status, is_main_thread, thread_found); 631 632 if (is_main_thread) { 633 // Notify the delegate - our process is not available but appears to 634 // have been killed outside 635 // our control. Is eStateExited the right exit state in this case? 636 SetExitStatus(status, true); 637 SetState(StateType::eStateExited, true); 638 } else { 639 // This thread was pulled out from underneath us. Anything to do here? 640 // Do we want to do an all stop? 641 LLDB_LOG(log, 642 "pid {0} tid {1} non-main thread exit occurred, didn't " 643 "tell delegate anything since thread disappeared out " 644 "from underneath us", 645 GetID(), pid); 646 } 647 } 648 } 649 } 650 651 void NativeProcessLinux::WaitForNewThread(::pid_t tid) { 652 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 653 654 NativeThreadLinuxSP new_thread_sp = GetThreadByID(tid); 655 656 if (new_thread_sp) { 657 // We are already tracking the thread - we got the event on the new thread 658 // (see 659 // MonitorSignal) before this one. We are done. 660 return; 661 } 662 663 // The thread is not tracked yet, let's wait for it to appear. 664 int status = -1; 665 LLDB_LOG(log, 666 "received thread creation event for tid {0}. tid not tracked " 667 "yet, waiting for thread to appear...", 668 tid); 669 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, &status, __WALL); 670 // Since we are waiting on a specific tid, this must be the creation event. 671 // But let's do some checks just in case. 672 if (wait_pid != tid) { 673 LLDB_LOG(log, 674 "waiting for tid {0} failed. Assuming the thread has " 675 "disappeared in the meantime", 676 tid); 677 // The only way I know of this could happen is if the whole process was 678 // SIGKILLed in the mean time. In any case, we can't do anything about that 679 // now. 680 return; 681 } 682 if (WIFEXITED(status)) { 683 LLDB_LOG(log, 684 "waiting for tid {0} returned an 'exited' event. Not " 685 "tracking the thread.", 686 tid); 687 // Also a very improbable event. 688 return; 689 } 690 691 LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid); 692 new_thread_sp = AddThread(tid); 693 694 ResumeThread(*new_thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 695 ThreadWasCreated(*new_thread_sp); 696 } 697 698 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, 699 NativeThreadLinux &thread) { 700 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 701 const bool is_main_thread = (thread.GetID() == GetID()); 702 703 assert(info.si_signo == SIGTRAP && "Unexpected child signal!"); 704 705 switch (info.si_code) { 706 // TODO: these two cases are required if we want to support tracing of the 707 // inferiors' children. We'd need this to debug a monitor. 708 // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 709 // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 710 711 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { 712 // This is the notification on the parent thread which informs us of new 713 // thread 714 // creation. 715 // We don't want to do anything with the parent thread so we just resume it. 716 // In case we 717 // want to implement "break on thread creation" functionality, we would need 718 // to stop 719 // here. 720 721 unsigned long event_message = 0; 722 if (GetEventMessage(thread.GetID(), &event_message).Fail()) { 723 LLDB_LOG(log, 724 "pid {0} received thread creation event but " 725 "GetEventMessage failed so we don't know the new tid", 726 thread.GetID()); 727 } else 728 WaitForNewThread(event_message); 729 730 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 731 break; 732 } 733 734 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): { 735 NativeThreadLinuxSP main_thread_sp; 736 LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP); 737 738 // Exec clears any pending notifications. 739 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 740 741 // Remove all but the main thread here. Linux fork creates a new process 742 // which only copies the main thread. 743 LLDB_LOG(log, "exec received, stop tracking all but main thread"); 744 745 for (auto thread_sp : m_threads) { 746 const bool is_main_thread = thread_sp && thread_sp->GetID() == GetID(); 747 if (is_main_thread) { 748 main_thread_sp = std::static_pointer_cast<NativeThreadLinux>(thread_sp); 749 LLDB_LOG(log, "found main thread with tid {0}, keeping", 750 main_thread_sp->GetID()); 751 } else { 752 LLDB_LOG(log, "discarding non-main-thread tid {0} due to exec", 753 thread_sp->GetID()); 754 } 755 } 756 757 m_threads.clear(); 758 759 if (main_thread_sp) { 760 m_threads.push_back(main_thread_sp); 761 SetCurrentThreadID(main_thread_sp->GetID()); 762 main_thread_sp->SetStoppedByExec(); 763 } else { 764 SetCurrentThreadID(LLDB_INVALID_THREAD_ID); 765 LLDB_LOG(log, 766 "pid {0} no main thread found, discarded all threads, " 767 "we're in a no-thread state!", 768 GetID()); 769 } 770 771 // Tell coordinator about about the "new" (since exec) stopped main thread. 772 ThreadWasCreated(*main_thread_sp); 773 774 // Let our delegate know we have just exec'd. 775 NotifyDidExec(); 776 777 // If we have a main thread, indicate we are stopped. 778 assert(main_thread_sp && "exec called during ptraced process but no main " 779 "thread metadata tracked"); 780 781 // Let the process know we're stopped. 782 StopRunningThreads(main_thread_sp->GetID()); 783 784 break; 785 } 786 787 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { 788 // The inferior process or one of its threads is about to exit. 789 // We don't want to do anything with the thread so we just resume it. In 790 // case we 791 // want to implement "break on thread exit" functionality, we would need to 792 // stop 793 // here. 794 795 unsigned long data = 0; 796 if (GetEventMessage(thread.GetID(), &data).Fail()) 797 data = -1; 798 799 LLDB_LOG(log, 800 "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, " 801 "WIFSIGNALED={2}, pid = {3}, main_thread = {4}", 802 data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(), 803 is_main_thread); 804 805 if (is_main_thread) 806 SetExitStatus(WaitStatus::Decode(data), true); 807 808 StateType state = thread.GetState(); 809 if (!StateIsRunningState(state)) { 810 // Due to a kernel bug, we may sometimes get this stop after the inferior 811 // gets a 812 // SIGKILL. This confuses our state tracking logic in ResumeThread(), 813 // since normally, 814 // we should not be receiving any ptrace events while the inferior is 815 // stopped. This 816 // makes sure that the inferior is resumed and exits normally. 817 state = eStateRunning; 818 } 819 ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); 820 821 break; 822 } 823 824 case 0: 825 case TRAP_TRACE: // We receive this on single stepping. 826 case TRAP_HWBKPT: // We receive this on watchpoint hit 827 { 828 // If a watchpoint was hit, report it 829 uint32_t wp_index; 830 Status error = thread.GetRegisterContext()->GetWatchpointHitIndex( 831 wp_index, (uintptr_t)info.si_addr); 832 if (error.Fail()) 833 LLDB_LOG(log, 834 "received error while checking for watchpoint hits, pid = " 835 "{0}, error = {1}", 836 thread.GetID(), error); 837 if (wp_index != LLDB_INVALID_INDEX32) { 838 MonitorWatchpoint(thread, wp_index); 839 break; 840 } 841 842 // If a breakpoint was hit, report it 843 uint32_t bp_index; 844 error = thread.GetRegisterContext()->GetHardwareBreakHitIndex( 845 bp_index, (uintptr_t)info.si_addr); 846 if (error.Fail()) 847 LLDB_LOG(log, "received error while checking for hardware " 848 "breakpoint hits, pid = {0}, error = {1}", 849 thread.GetID(), error); 850 if (bp_index != LLDB_INVALID_INDEX32) { 851 MonitorBreakpoint(thread); 852 break; 853 } 854 855 // Otherwise, report step over 856 MonitorTrace(thread); 857 break; 858 } 859 860 case SI_KERNEL: 861 #if defined __mips__ 862 // For mips there is no special signal for watchpoint 863 // So we check for watchpoint in kernel trap 864 { 865 // If a watchpoint was hit, report it 866 uint32_t wp_index; 867 Status error = thread.GetRegisterContext()->GetWatchpointHitIndex( 868 wp_index, LLDB_INVALID_ADDRESS); 869 if (error.Fail()) 870 LLDB_LOG(log, 871 "received error while checking for watchpoint hits, pid = " 872 "{0}, error = {1}", 873 thread.GetID(), error); 874 if (wp_index != LLDB_INVALID_INDEX32) { 875 MonitorWatchpoint(thread, wp_index); 876 break; 877 } 878 } 879 // NO BREAK 880 #endif 881 case TRAP_BRKPT: 882 MonitorBreakpoint(thread); 883 break; 884 885 case SIGTRAP: 886 case (SIGTRAP | 0x80): 887 LLDB_LOG( 888 log, 889 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 890 info.si_code, GetID(), thread.GetID()); 891 892 // Ignore these signals until we know more about them. 893 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 894 break; 895 896 default: 897 LLDB_LOG( 898 log, 899 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 900 info.si_code, GetID(), thread.GetID()); 901 llvm_unreachable("Unexpected SIGTRAP code!"); 902 break; 903 } 904 } 905 906 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) { 907 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 908 LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID()); 909 910 // This thread is currently stopped. 911 thread.SetStoppedByTrace(); 912 913 StopRunningThreads(thread.GetID()); 914 } 915 916 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) { 917 Log *log( 918 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 919 LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID()); 920 921 // Mark the thread as stopped at breakpoint. 922 thread.SetStoppedByBreakpoint(); 923 Status error = FixupBreakpointPCAsNeeded(thread); 924 if (error.Fail()) 925 LLDB_LOG(log, "pid = {0} fixup: {1}", thread.GetID(), error); 926 927 if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != 928 m_threads_stepping_with_breakpoint.end()) 929 thread.SetStoppedByTrace(); 930 931 StopRunningThreads(thread.GetID()); 932 } 933 934 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, 935 uint32_t wp_index) { 936 Log *log( 937 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); 938 LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}", 939 thread.GetID(), wp_index); 940 941 // Mark the thread as stopped at watchpoint. 942 // The address is at (lldb::addr_t)info->si_addr if we need it. 943 thread.SetStoppedByWatchpoint(wp_index); 944 945 // We need to tell all other running threads before we notify the delegate 946 // about this stop. 947 StopRunningThreads(thread.GetID()); 948 } 949 950 void NativeProcessLinux::MonitorSignal(const siginfo_t &info, 951 NativeThreadLinux &thread, bool exited) { 952 const int signo = info.si_signo; 953 const bool is_from_llgs = info.si_pid == getpid(); 954 955 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 956 957 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 958 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a 959 // kill(2) or raise(3). Similarly for tgkill(2) on Linux. 960 // 961 // IOW, user generated signals never generate what we consider to be a 962 // "crash". 963 // 964 // Similarly, ACK signals generated by this monitor. 965 966 // Handle the signal. 967 LLDB_LOG(log, 968 "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, " 969 "waitpid pid = {4})", 970 Host::GetSignalAsCString(signo), signo, info.si_code, 971 thread.GetID()); 972 973 // Check for thread stop notification. 974 if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) { 975 // This is a tgkill()-based stop. 976 LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID()); 977 978 // Check that we're not already marked with a stop reason. 979 // Note this thread really shouldn't already be marked as stopped - if we 980 // were, that would imply that the kernel signaled us with the thread 981 // stopping which we handled and marked as stopped, and that, without an 982 // intervening resume, we received another stop. It is more likely that we 983 // are missing the marking of a run state somewhere if we find that the 984 // thread was marked as stopped. 985 const StateType thread_state = thread.GetState(); 986 if (!StateIsStoppedState(thread_state, false)) { 987 // An inferior thread has stopped because of a SIGSTOP we have sent it. 988 // Generally, these are not important stops and we don't want to report 989 // them as they are just used to stop other threads when one thread (the 990 // one with the *real* stop reason) hits a breakpoint (watchpoint, 991 // etc...). However, in the case of an asynchronous Interrupt(), this *is* 992 // the real stop reason, so we leave the signal intact if this is the 993 // thread that was chosen as the triggering thread. 994 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 995 if (m_pending_notification_tid == thread.GetID()) 996 thread.SetStoppedBySignal(SIGSTOP, &info); 997 else 998 thread.SetStoppedWithNoReason(); 999 1000 SetCurrentThreadID(thread.GetID()); 1001 SignalIfAllThreadsStopped(); 1002 } else { 1003 // We can end up here if stop was initiated by LLGS but by this time a 1004 // thread stop has occurred - maybe initiated by another event. 1005 Status error = ResumeThread(thread, thread.GetState(), 0); 1006 if (error.Fail()) 1007 LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(), 1008 error); 1009 } 1010 } else { 1011 LLDB_LOG(log, 1012 "pid {0} tid {1}, thread was already marked as a stopped " 1013 "state (state={2}), leaving stop signal as is", 1014 GetID(), thread.GetID(), thread_state); 1015 SignalIfAllThreadsStopped(); 1016 } 1017 1018 // Done handling. 1019 return; 1020 } 1021 1022 // Check if debugger should stop at this signal or just ignore it 1023 // and resume the inferior. 1024 if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) { 1025 ResumeThread(thread, thread.GetState(), signo); 1026 return; 1027 } 1028 1029 // This thread is stopped. 1030 LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo)); 1031 thread.SetStoppedBySignal(signo, &info); 1032 1033 // Send a stop to the debugger after we get all other threads to stop. 1034 StopRunningThreads(thread.GetID()); 1035 } 1036 1037 namespace { 1038 1039 struct EmulatorBaton { 1040 NativeProcessLinux *m_process; 1041 NativeRegisterContext *m_reg_context; 1042 1043 // eRegisterKindDWARF -> RegsiterValue 1044 std::unordered_map<uint32_t, RegisterValue> m_register_values; 1045 1046 EmulatorBaton(NativeProcessLinux *process, NativeRegisterContext *reg_context) 1047 : m_process(process), m_reg_context(reg_context) {} 1048 }; 1049 1050 } // anonymous namespace 1051 1052 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton, 1053 const EmulateInstruction::Context &context, 1054 lldb::addr_t addr, void *dst, size_t length) { 1055 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 1056 1057 size_t bytes_read; 1058 emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read); 1059 return bytes_read; 1060 } 1061 1062 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton, 1063 const RegisterInfo *reg_info, 1064 RegisterValue ®_value) { 1065 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 1066 1067 auto it = emulator_baton->m_register_values.find( 1068 reg_info->kinds[eRegisterKindDWARF]); 1069 if (it != emulator_baton->m_register_values.end()) { 1070 reg_value = it->second; 1071 return true; 1072 } 1073 1074 // The emulator only fill in the dwarf regsiter numbers (and in some case 1075 // the generic register numbers). Get the full register info from the 1076 // register context based on the dwarf register numbers. 1077 const RegisterInfo *full_reg_info = 1078 emulator_baton->m_reg_context->GetRegisterInfo( 1079 eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]); 1080 1081 Status error = 1082 emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value); 1083 if (error.Success()) 1084 return true; 1085 1086 return false; 1087 } 1088 1089 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton, 1090 const EmulateInstruction::Context &context, 1091 const RegisterInfo *reg_info, 1092 const RegisterValue ®_value) { 1093 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 1094 emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = 1095 reg_value; 1096 return true; 1097 } 1098 1099 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton, 1100 const EmulateInstruction::Context &context, 1101 lldb::addr_t addr, const void *dst, 1102 size_t length) { 1103 return length; 1104 } 1105 1106 static lldb::addr_t ReadFlags(NativeRegisterContext *regsiter_context) { 1107 const RegisterInfo *flags_info = regsiter_context->GetRegisterInfo( 1108 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 1109 return regsiter_context->ReadRegisterAsUnsigned(flags_info, 1110 LLDB_INVALID_ADDRESS); 1111 } 1112 1113 Status 1114 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) { 1115 Status error; 1116 NativeRegisterContextSP register_context_sp = thread.GetRegisterContext(); 1117 1118 std::unique_ptr<EmulateInstruction> emulator_ap( 1119 EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, 1120 nullptr)); 1121 1122 if (emulator_ap == nullptr) 1123 return Status("Instruction emulator not found!"); 1124 1125 EmulatorBaton baton(this, register_context_sp.get()); 1126 emulator_ap->SetBaton(&baton); 1127 emulator_ap->SetReadMemCallback(&ReadMemoryCallback); 1128 emulator_ap->SetReadRegCallback(&ReadRegisterCallback); 1129 emulator_ap->SetWriteMemCallback(&WriteMemoryCallback); 1130 emulator_ap->SetWriteRegCallback(&WriteRegisterCallback); 1131 1132 if (!emulator_ap->ReadInstruction()) 1133 return Status("Read instruction failed!"); 1134 1135 bool emulation_result = 1136 emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC); 1137 1138 const RegisterInfo *reg_info_pc = register_context_sp->GetRegisterInfo( 1139 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); 1140 const RegisterInfo *reg_info_flags = register_context_sp->GetRegisterInfo( 1141 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 1142 1143 auto pc_it = 1144 baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]); 1145 auto flags_it = 1146 baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]); 1147 1148 lldb::addr_t next_pc; 1149 lldb::addr_t next_flags; 1150 if (emulation_result) { 1151 assert(pc_it != baton.m_register_values.end() && 1152 "Emulation was successfull but PC wasn't updated"); 1153 next_pc = pc_it->second.GetAsUInt64(); 1154 1155 if (flags_it != baton.m_register_values.end()) 1156 next_flags = flags_it->second.GetAsUInt64(); 1157 else 1158 next_flags = ReadFlags(register_context_sp.get()); 1159 } else if (pc_it == baton.m_register_values.end()) { 1160 // Emulate instruction failed and it haven't changed PC. Advance PC 1161 // with the size of the current opcode because the emulation of all 1162 // PC modifying instruction should be successful. The failure most 1163 // likely caused by a not supported instruction which don't modify PC. 1164 next_pc = 1165 register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize(); 1166 next_flags = ReadFlags(register_context_sp.get()); 1167 } else { 1168 // The instruction emulation failed after it modified the PC. It is an 1169 // unknown error where we can't continue because the next instruction is 1170 // modifying the PC but we don't know how. 1171 return Status("Instruction emulation failed unexpectedly."); 1172 } 1173 1174 if (m_arch.GetMachine() == llvm::Triple::arm) { 1175 if (next_flags & 0x20) { 1176 // Thumb mode 1177 error = SetSoftwareBreakpoint(next_pc, 2); 1178 } else { 1179 // Arm mode 1180 error = SetSoftwareBreakpoint(next_pc, 4); 1181 } 1182 } else if (m_arch.GetMachine() == llvm::Triple::mips64 || 1183 m_arch.GetMachine() == llvm::Triple::mips64el || 1184 m_arch.GetMachine() == llvm::Triple::mips || 1185 m_arch.GetMachine() == llvm::Triple::mipsel) 1186 error = SetSoftwareBreakpoint(next_pc, 4); 1187 else { 1188 // No size hint is given for the next breakpoint 1189 error = SetSoftwareBreakpoint(next_pc, 0); 1190 } 1191 1192 // If setting the breakpoint fails because next_pc is out of 1193 // the address space, ignore it and let the debugee segfault. 1194 if (error.GetError() == EIO || error.GetError() == EFAULT) { 1195 return Status(); 1196 } else if (error.Fail()) 1197 return error; 1198 1199 m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc}); 1200 1201 return Status(); 1202 } 1203 1204 bool NativeProcessLinux::SupportHardwareSingleStepping() const { 1205 if (m_arch.GetMachine() == llvm::Triple::arm || 1206 m_arch.GetMachine() == llvm::Triple::mips64 || 1207 m_arch.GetMachine() == llvm::Triple::mips64el || 1208 m_arch.GetMachine() == llvm::Triple::mips || 1209 m_arch.GetMachine() == llvm::Triple::mipsel) 1210 return false; 1211 return true; 1212 } 1213 1214 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) { 1215 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1216 LLDB_LOG(log, "pid {0}", GetID()); 1217 1218 bool software_single_step = !SupportHardwareSingleStepping(); 1219 1220 if (software_single_step) { 1221 for (auto thread_sp : m_threads) { 1222 assert(thread_sp && "thread list should not contain NULL threads"); 1223 1224 const ResumeAction *const action = 1225 resume_actions.GetActionForThread(thread_sp->GetID(), true); 1226 if (action == nullptr) 1227 continue; 1228 1229 if (action->state == eStateStepping) { 1230 Status error = SetupSoftwareSingleStepping( 1231 static_cast<NativeThreadLinux &>(*thread_sp)); 1232 if (error.Fail()) 1233 return error; 1234 } 1235 } 1236 } 1237 1238 for (auto thread_sp : m_threads) { 1239 assert(thread_sp && "thread list should not contain NULL threads"); 1240 1241 const ResumeAction *const action = 1242 resume_actions.GetActionForThread(thread_sp->GetID(), true); 1243 1244 if (action == nullptr) { 1245 LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(), 1246 thread_sp->GetID()); 1247 continue; 1248 } 1249 1250 LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}", 1251 action->state, GetID(), thread_sp->GetID()); 1252 1253 switch (action->state) { 1254 case eStateRunning: 1255 case eStateStepping: { 1256 // Run the thread, possibly feeding it the signal. 1257 const int signo = action->signal; 1258 ResumeThread(static_cast<NativeThreadLinux &>(*thread_sp), action->state, 1259 signo); 1260 break; 1261 } 1262 1263 case eStateSuspended: 1264 case eStateStopped: 1265 llvm_unreachable("Unexpected state"); 1266 1267 default: 1268 return Status("NativeProcessLinux::%s (): unexpected state %s specified " 1269 "for pid %" PRIu64 ", tid %" PRIu64, 1270 __FUNCTION__, StateAsCString(action->state), GetID(), 1271 thread_sp->GetID()); 1272 } 1273 } 1274 1275 return Status(); 1276 } 1277 1278 Status NativeProcessLinux::Halt() { 1279 Status error; 1280 1281 if (kill(GetID(), SIGSTOP) != 0) 1282 error.SetErrorToErrno(); 1283 1284 return error; 1285 } 1286 1287 Status NativeProcessLinux::Detach() { 1288 Status error; 1289 1290 // Stop monitoring the inferior. 1291 m_sigchld_handle.reset(); 1292 1293 // Tell ptrace to detach from the process. 1294 if (GetID() == LLDB_INVALID_PROCESS_ID) 1295 return error; 1296 1297 for (auto thread_sp : m_threads) { 1298 Status e = Detach(thread_sp->GetID()); 1299 if (e.Fail()) 1300 error = 1301 e; // Save the error, but still attempt to detach from other threads. 1302 } 1303 1304 m_processor_trace_monitor.clear(); 1305 m_pt_proces_trace_id = LLDB_INVALID_UID; 1306 1307 return error; 1308 } 1309 1310 Status NativeProcessLinux::Signal(int signo) { 1311 Status error; 1312 1313 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1314 LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo, 1315 Host::GetSignalAsCString(signo), GetID()); 1316 1317 if (kill(GetID(), signo)) 1318 error.SetErrorToErrno(); 1319 1320 return error; 1321 } 1322 1323 Status NativeProcessLinux::Interrupt() { 1324 // Pick a running thread (or if none, a not-dead stopped thread) as 1325 // the chosen thread that will be the stop-reason thread. 1326 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1327 1328 NativeThreadProtocolSP running_thread_sp; 1329 NativeThreadProtocolSP stopped_thread_sp; 1330 1331 LLDB_LOG(log, "selecting running thread for interrupt target"); 1332 for (auto thread_sp : m_threads) { 1333 // The thread shouldn't be null but lets just cover that here. 1334 if (!thread_sp) 1335 continue; 1336 1337 // If we have a running or stepping thread, we'll call that the 1338 // target of the interrupt. 1339 const auto thread_state = thread_sp->GetState(); 1340 if (thread_state == eStateRunning || thread_state == eStateStepping) { 1341 running_thread_sp = thread_sp; 1342 break; 1343 } else if (!stopped_thread_sp && StateIsStoppedState(thread_state, true)) { 1344 // Remember the first non-dead stopped thread. We'll use that as a backup 1345 // if there are no running threads. 1346 stopped_thread_sp = thread_sp; 1347 } 1348 } 1349 1350 if (!running_thread_sp && !stopped_thread_sp) { 1351 Status error("found no running/stepping or live stopped threads as target " 1352 "for interrupt"); 1353 LLDB_LOG(log, "skipping due to error: {0}", error); 1354 1355 return error; 1356 } 1357 1358 NativeThreadProtocolSP deferred_signal_thread_sp = 1359 running_thread_sp ? running_thread_sp : stopped_thread_sp; 1360 1361 LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(), 1362 running_thread_sp ? "running" : "stopped", 1363 deferred_signal_thread_sp->GetID()); 1364 1365 StopRunningThreads(deferred_signal_thread_sp->GetID()); 1366 1367 return Status(); 1368 } 1369 1370 Status NativeProcessLinux::Kill() { 1371 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1372 LLDB_LOG(log, "pid {0}", GetID()); 1373 1374 Status error; 1375 1376 switch (m_state) { 1377 case StateType::eStateInvalid: 1378 case StateType::eStateExited: 1379 case StateType::eStateCrashed: 1380 case StateType::eStateDetached: 1381 case StateType::eStateUnloaded: 1382 // Nothing to do - the process is already dead. 1383 LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(), 1384 m_state); 1385 return error; 1386 1387 case StateType::eStateConnected: 1388 case StateType::eStateAttaching: 1389 case StateType::eStateLaunching: 1390 case StateType::eStateStopped: 1391 case StateType::eStateRunning: 1392 case StateType::eStateStepping: 1393 case StateType::eStateSuspended: 1394 // We can try to kill a process in these states. 1395 break; 1396 } 1397 1398 if (kill(GetID(), SIGKILL) != 0) { 1399 error.SetErrorToErrno(); 1400 return error; 1401 } 1402 1403 return error; 1404 } 1405 1406 static Status 1407 ParseMemoryRegionInfoFromProcMapsLine(llvm::StringRef &maps_line, 1408 MemoryRegionInfo &memory_region_info) { 1409 memory_region_info.Clear(); 1410 1411 StringExtractor line_extractor(maps_line); 1412 1413 // Format: {address_start_hex}-{address_end_hex} perms offset dev inode 1414 // pathname 1415 // perms: rwxp (letter is present if set, '-' if not, final character is 1416 // p=private, s=shared). 1417 1418 // Parse out the starting address 1419 lldb::addr_t start_address = line_extractor.GetHexMaxU64(false, 0); 1420 1421 // Parse out hyphen separating start and end address from range. 1422 if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != '-')) 1423 return Status( 1424 "malformed /proc/{pid}/maps entry, missing dash between address range"); 1425 1426 // Parse out the ending address 1427 lldb::addr_t end_address = line_extractor.GetHexMaxU64(false, start_address); 1428 1429 // Parse out the space after the address. 1430 if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != ' ')) 1431 return Status( 1432 "malformed /proc/{pid}/maps entry, missing space after range"); 1433 1434 // Save the range. 1435 memory_region_info.GetRange().SetRangeBase(start_address); 1436 memory_region_info.GetRange().SetRangeEnd(end_address); 1437 1438 // Any memory region in /proc/{pid}/maps is by definition mapped into the 1439 // process. 1440 memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes); 1441 1442 // Parse out each permission entry. 1443 if (line_extractor.GetBytesLeft() < 4) 1444 return Status("malformed /proc/{pid}/maps entry, missing some portion of " 1445 "permissions"); 1446 1447 // Handle read permission. 1448 const char read_perm_char = line_extractor.GetChar(); 1449 if (read_perm_char == 'r') 1450 memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eYes); 1451 else if (read_perm_char == '-') 1452 memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1453 else 1454 return Status("unexpected /proc/{pid}/maps read permission char"); 1455 1456 // Handle write permission. 1457 const char write_perm_char = line_extractor.GetChar(); 1458 if (write_perm_char == 'w') 1459 memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eYes); 1460 else if (write_perm_char == '-') 1461 memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1462 else 1463 return Status("unexpected /proc/{pid}/maps write permission char"); 1464 1465 // Handle execute permission. 1466 const char exec_perm_char = line_extractor.GetChar(); 1467 if (exec_perm_char == 'x') 1468 memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eYes); 1469 else if (exec_perm_char == '-') 1470 memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1471 else 1472 return Status("unexpected /proc/{pid}/maps exec permission char"); 1473 1474 line_extractor.GetChar(); // Read the private bit 1475 line_extractor.SkipSpaces(); // Skip the separator 1476 line_extractor.GetHexMaxU64(false, 0); // Read the offset 1477 line_extractor.GetHexMaxU64(false, 0); // Read the major device number 1478 line_extractor.GetChar(); // Read the device id separator 1479 line_extractor.GetHexMaxU64(false, 0); // Read the major device number 1480 line_extractor.SkipSpaces(); // Skip the separator 1481 line_extractor.GetU64(0, 10); // Read the inode number 1482 1483 line_extractor.SkipSpaces(); 1484 const char *name = line_extractor.Peek(); 1485 if (name) 1486 memory_region_info.SetName(name); 1487 1488 return Status(); 1489 } 1490 1491 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr, 1492 MemoryRegionInfo &range_info) { 1493 // FIXME review that the final memory region returned extends to the end of 1494 // the virtual address space, 1495 // with no perms if it is not mapped. 1496 1497 // Use an approach that reads memory regions from /proc/{pid}/maps. 1498 // Assume proc maps entries are in ascending order. 1499 // FIXME assert if we find differently. 1500 1501 if (m_supports_mem_region == LazyBool::eLazyBoolNo) { 1502 // We're done. 1503 return Status("unsupported"); 1504 } 1505 1506 Status error = PopulateMemoryRegionCache(); 1507 if (error.Fail()) { 1508 return error; 1509 } 1510 1511 lldb::addr_t prev_base_address = 0; 1512 1513 // FIXME start by finding the last region that is <= target address using 1514 // binary search. Data is sorted. 1515 // There can be a ton of regions on pthreads apps with lots of threads. 1516 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end(); 1517 ++it) { 1518 MemoryRegionInfo &proc_entry_info = it->first; 1519 1520 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 1521 assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) && 1522 "descending /proc/pid/maps entries detected, unexpected"); 1523 prev_base_address = proc_entry_info.GetRange().GetRangeBase(); 1524 UNUSED_IF_ASSERT_DISABLED(prev_base_address); 1525 1526 // If the target address comes before this entry, indicate distance to next 1527 // region. 1528 if (load_addr < proc_entry_info.GetRange().GetRangeBase()) { 1529 range_info.GetRange().SetRangeBase(load_addr); 1530 range_info.GetRange().SetByteSize( 1531 proc_entry_info.GetRange().GetRangeBase() - load_addr); 1532 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1533 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1534 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1535 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1536 1537 return error; 1538 } else if (proc_entry_info.GetRange().Contains(load_addr)) { 1539 // The target address is within the memory region we're processing here. 1540 range_info = proc_entry_info; 1541 return error; 1542 } 1543 1544 // The target memory address comes somewhere after the region we just 1545 // parsed. 1546 } 1547 1548 // If we made it here, we didn't find an entry that contained the given 1549 // address. Return the 1550 // load_addr as start and the amount of bytes betwwen load address and the end 1551 // of the memory as 1552 // size. 1553 range_info.GetRange().SetRangeBase(load_addr); 1554 range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS); 1555 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1556 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1557 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1558 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1559 return error; 1560 } 1561 1562 Status NativeProcessLinux::PopulateMemoryRegionCache() { 1563 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1564 1565 // If our cache is empty, pull the latest. There should always be at least 1566 // one memory region if memory region handling is supported. 1567 if (!m_mem_region_cache.empty()) { 1568 LLDB_LOG(log, "reusing {0} cached memory region entries", 1569 m_mem_region_cache.size()); 1570 return Status(); 1571 } 1572 1573 auto BufferOrError = getProcFile(GetID(), "maps"); 1574 if (!BufferOrError) { 1575 m_supports_mem_region = LazyBool::eLazyBoolNo; 1576 return BufferOrError.getError(); 1577 } 1578 StringRef Rest = BufferOrError.get()->getBuffer(); 1579 while (! Rest.empty()) { 1580 StringRef Line; 1581 std::tie(Line, Rest) = Rest.split('\n'); 1582 MemoryRegionInfo info; 1583 const Status parse_error = 1584 ParseMemoryRegionInfoFromProcMapsLine(Line, info); 1585 if (parse_error.Fail()) { 1586 LLDB_LOG(log, "failed to parse proc maps line '{0}': {1}", Line, 1587 parse_error); 1588 m_supports_mem_region = LazyBool::eLazyBoolNo; 1589 return parse_error; 1590 } 1591 m_mem_region_cache.emplace_back( 1592 info, FileSpec(info.GetName().GetCString(), true)); 1593 } 1594 1595 if (m_mem_region_cache.empty()) { 1596 // No entries after attempting to read them. This shouldn't happen if 1597 // /proc/{pid}/maps is supported. Assume we don't support map entries 1598 // via procfs. 1599 m_supports_mem_region = LazyBool::eLazyBoolNo; 1600 LLDB_LOG(log, 1601 "failed to find any procfs maps entries, assuming no support " 1602 "for memory region metadata retrieval"); 1603 return Status("not supported"); 1604 } 1605 1606 LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps", 1607 m_mem_region_cache.size(), GetID()); 1608 1609 // We support memory retrieval, remember that. 1610 m_supports_mem_region = LazyBool::eLazyBoolYes; 1611 return Status(); 1612 } 1613 1614 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) { 1615 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1616 LLDB_LOG(log, "newBumpId={0}", newBumpId); 1617 LLDB_LOG(log, "clearing {0} entries from memory region cache", 1618 m_mem_region_cache.size()); 1619 m_mem_region_cache.clear(); 1620 } 1621 1622 Status NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, 1623 lldb::addr_t &addr) { 1624 // FIXME implementing this requires the equivalent of 1625 // InferiorCallPOSIX::InferiorCallMmap, which depends on 1626 // functional ThreadPlans working with Native*Protocol. 1627 #if 1 1628 return Status("not implemented yet"); 1629 #else 1630 addr = LLDB_INVALID_ADDRESS; 1631 1632 unsigned prot = 0; 1633 if (permissions & lldb::ePermissionsReadable) 1634 prot |= eMmapProtRead; 1635 if (permissions & lldb::ePermissionsWritable) 1636 prot |= eMmapProtWrite; 1637 if (permissions & lldb::ePermissionsExecutable) 1638 prot |= eMmapProtExec; 1639 1640 // TODO implement this directly in NativeProcessLinux 1641 // (and lift to NativeProcessPOSIX if/when that class is 1642 // refactored out). 1643 if (InferiorCallMmap(this, addr, 0, size, prot, 1644 eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { 1645 m_addr_to_mmap_size[addr] = size; 1646 return Status(); 1647 } else { 1648 addr = LLDB_INVALID_ADDRESS; 1649 return Status("unable to allocate %" PRIu64 1650 " bytes of memory with permissions %s", 1651 size, GetPermissionsAsCString(permissions)); 1652 } 1653 #endif 1654 } 1655 1656 Status NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) { 1657 // FIXME see comments in AllocateMemory - required lower-level 1658 // bits not in place yet (ThreadPlans) 1659 return Status("not implemented"); 1660 } 1661 1662 lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress() { 1663 // punt on this for now 1664 return LLDB_INVALID_ADDRESS; 1665 } 1666 1667 size_t NativeProcessLinux::UpdateThreads() { 1668 // The NativeProcessLinux monitoring threads are always up to date 1669 // with respect to thread state and they keep the thread list 1670 // populated properly. All this method needs to do is return the 1671 // thread count. 1672 return m_threads.size(); 1673 } 1674 1675 bool NativeProcessLinux::GetArchitecture(ArchSpec &arch) const { 1676 arch = m_arch; 1677 return true; 1678 } 1679 1680 Status NativeProcessLinux::GetSoftwareBreakpointPCOffset( 1681 uint32_t &actual_opcode_size) { 1682 // FIXME put this behind a breakpoint protocol class that can be 1683 // set per architecture. Need ARM, MIPS support here. 1684 static const uint8_t g_i386_opcode[] = {0xCC}; 1685 static const uint8_t g_s390x_opcode[] = {0x00, 0x01}; 1686 1687 switch (m_arch.GetMachine()) { 1688 case llvm::Triple::x86: 1689 case llvm::Triple::x86_64: 1690 actual_opcode_size = static_cast<uint32_t>(sizeof(g_i386_opcode)); 1691 return Status(); 1692 1693 case llvm::Triple::systemz: 1694 actual_opcode_size = static_cast<uint32_t>(sizeof(g_s390x_opcode)); 1695 return Status(); 1696 1697 case llvm::Triple::arm: 1698 case llvm::Triple::aarch64: 1699 case llvm::Triple::mips64: 1700 case llvm::Triple::mips64el: 1701 case llvm::Triple::mips: 1702 case llvm::Triple::mipsel: 1703 // On these architectures the PC don't get updated for breakpoint hits 1704 actual_opcode_size = 0; 1705 return Status(); 1706 1707 default: 1708 assert(false && "CPU type not supported!"); 1709 return Status("CPU type not supported"); 1710 } 1711 } 1712 1713 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size, 1714 bool hardware) { 1715 if (hardware) 1716 return SetHardwareBreakpoint(addr, size); 1717 else 1718 return SetSoftwareBreakpoint(addr, size); 1719 } 1720 1721 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) { 1722 if (hardware) 1723 return RemoveHardwareBreakpoint(addr); 1724 else 1725 return NativeProcessProtocol::RemoveBreakpoint(addr); 1726 } 1727 1728 Status NativeProcessLinux::GetSoftwareBreakpointTrapOpcode( 1729 size_t trap_opcode_size_hint, size_t &actual_opcode_size, 1730 const uint8_t *&trap_opcode_bytes) { 1731 // FIXME put this behind a breakpoint protocol class that can be set per 1732 // architecture. Need MIPS support here. 1733 static const uint8_t g_aarch64_opcode[] = {0x00, 0x00, 0x20, 0xd4}; 1734 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 1735 // linux kernel does otherwise. 1736 static const uint8_t g_arm_breakpoint_opcode[] = {0xf0, 0x01, 0xf0, 0xe7}; 1737 static const uint8_t g_i386_opcode[] = {0xCC}; 1738 static const uint8_t g_mips64_opcode[] = {0x00, 0x00, 0x00, 0x0d}; 1739 static const uint8_t g_mips64el_opcode[] = {0x0d, 0x00, 0x00, 0x00}; 1740 static const uint8_t g_s390x_opcode[] = {0x00, 0x01}; 1741 static const uint8_t g_thumb_breakpoint_opcode[] = {0x01, 0xde}; 1742 1743 switch (m_arch.GetMachine()) { 1744 case llvm::Triple::aarch64: 1745 trap_opcode_bytes = g_aarch64_opcode; 1746 actual_opcode_size = sizeof(g_aarch64_opcode); 1747 return Status(); 1748 1749 case llvm::Triple::arm: 1750 switch (trap_opcode_size_hint) { 1751 case 2: 1752 trap_opcode_bytes = g_thumb_breakpoint_opcode; 1753 actual_opcode_size = sizeof(g_thumb_breakpoint_opcode); 1754 return Status(); 1755 case 4: 1756 trap_opcode_bytes = g_arm_breakpoint_opcode; 1757 actual_opcode_size = sizeof(g_arm_breakpoint_opcode); 1758 return Status(); 1759 default: 1760 assert(false && "Unrecognised trap opcode size hint!"); 1761 return Status("Unrecognised trap opcode size hint!"); 1762 } 1763 1764 case llvm::Triple::x86: 1765 case llvm::Triple::x86_64: 1766 trap_opcode_bytes = g_i386_opcode; 1767 actual_opcode_size = sizeof(g_i386_opcode); 1768 return Status(); 1769 1770 case llvm::Triple::mips: 1771 case llvm::Triple::mips64: 1772 trap_opcode_bytes = g_mips64_opcode; 1773 actual_opcode_size = sizeof(g_mips64_opcode); 1774 return Status(); 1775 1776 case llvm::Triple::mipsel: 1777 case llvm::Triple::mips64el: 1778 trap_opcode_bytes = g_mips64el_opcode; 1779 actual_opcode_size = sizeof(g_mips64el_opcode); 1780 return Status(); 1781 1782 case llvm::Triple::systemz: 1783 trap_opcode_bytes = g_s390x_opcode; 1784 actual_opcode_size = sizeof(g_s390x_opcode); 1785 return Status(); 1786 1787 default: 1788 assert(false && "CPU type not supported!"); 1789 return Status("CPU type not supported"); 1790 } 1791 } 1792 1793 #if 0 1794 ProcessMessage::CrashReason 1795 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info) 1796 { 1797 ProcessMessage::CrashReason reason; 1798 assert(info->si_signo == SIGSEGV); 1799 1800 reason = ProcessMessage::eInvalidCrashReason; 1801 1802 switch (info->si_code) 1803 { 1804 default: 1805 assert(false && "unexpected si_code for SIGSEGV"); 1806 break; 1807 case SI_KERNEL: 1808 // Linux will occasionally send spurious SI_KERNEL codes. 1809 // (this is poorly documented in sigaction) 1810 // One way to get this is via unaligned SIMD loads. 1811 reason = ProcessMessage::eInvalidAddress; // for lack of anything better 1812 break; 1813 case SEGV_MAPERR: 1814 reason = ProcessMessage::eInvalidAddress; 1815 break; 1816 case SEGV_ACCERR: 1817 reason = ProcessMessage::ePrivilegedAddress; 1818 break; 1819 } 1820 1821 return reason; 1822 } 1823 #endif 1824 1825 #if 0 1826 ProcessMessage::CrashReason 1827 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info) 1828 { 1829 ProcessMessage::CrashReason reason; 1830 assert(info->si_signo == SIGILL); 1831 1832 reason = ProcessMessage::eInvalidCrashReason; 1833 1834 switch (info->si_code) 1835 { 1836 default: 1837 assert(false && "unexpected si_code for SIGILL"); 1838 break; 1839 case ILL_ILLOPC: 1840 reason = ProcessMessage::eIllegalOpcode; 1841 break; 1842 case ILL_ILLOPN: 1843 reason = ProcessMessage::eIllegalOperand; 1844 break; 1845 case ILL_ILLADR: 1846 reason = ProcessMessage::eIllegalAddressingMode; 1847 break; 1848 case ILL_ILLTRP: 1849 reason = ProcessMessage::eIllegalTrap; 1850 break; 1851 case ILL_PRVOPC: 1852 reason = ProcessMessage::ePrivilegedOpcode; 1853 break; 1854 case ILL_PRVREG: 1855 reason = ProcessMessage::ePrivilegedRegister; 1856 break; 1857 case ILL_COPROC: 1858 reason = ProcessMessage::eCoprocessorError; 1859 break; 1860 case ILL_BADSTK: 1861 reason = ProcessMessage::eInternalStackError; 1862 break; 1863 } 1864 1865 return reason; 1866 } 1867 #endif 1868 1869 #if 0 1870 ProcessMessage::CrashReason 1871 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info) 1872 { 1873 ProcessMessage::CrashReason reason; 1874 assert(info->si_signo == SIGFPE); 1875 1876 reason = ProcessMessage::eInvalidCrashReason; 1877 1878 switch (info->si_code) 1879 { 1880 default: 1881 assert(false && "unexpected si_code for SIGFPE"); 1882 break; 1883 case FPE_INTDIV: 1884 reason = ProcessMessage::eIntegerDivideByZero; 1885 break; 1886 case FPE_INTOVF: 1887 reason = ProcessMessage::eIntegerOverflow; 1888 break; 1889 case FPE_FLTDIV: 1890 reason = ProcessMessage::eFloatDivideByZero; 1891 break; 1892 case FPE_FLTOVF: 1893 reason = ProcessMessage::eFloatOverflow; 1894 break; 1895 case FPE_FLTUND: 1896 reason = ProcessMessage::eFloatUnderflow; 1897 break; 1898 case FPE_FLTRES: 1899 reason = ProcessMessage::eFloatInexactResult; 1900 break; 1901 case FPE_FLTINV: 1902 reason = ProcessMessage::eFloatInvalidOperation; 1903 break; 1904 case FPE_FLTSUB: 1905 reason = ProcessMessage::eFloatSubscriptRange; 1906 break; 1907 } 1908 1909 return reason; 1910 } 1911 #endif 1912 1913 #if 0 1914 ProcessMessage::CrashReason 1915 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info) 1916 { 1917 ProcessMessage::CrashReason reason; 1918 assert(info->si_signo == SIGBUS); 1919 1920 reason = ProcessMessage::eInvalidCrashReason; 1921 1922 switch (info->si_code) 1923 { 1924 default: 1925 assert(false && "unexpected si_code for SIGBUS"); 1926 break; 1927 case BUS_ADRALN: 1928 reason = ProcessMessage::eIllegalAlignment; 1929 break; 1930 case BUS_ADRERR: 1931 reason = ProcessMessage::eIllegalAddress; 1932 break; 1933 case BUS_OBJERR: 1934 reason = ProcessMessage::eHardwareError; 1935 break; 1936 } 1937 1938 return reason; 1939 } 1940 #endif 1941 1942 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size, 1943 size_t &bytes_read) { 1944 if (ProcessVmReadvSupported()) { 1945 // The process_vm_readv path is about 50 times faster than ptrace api. We 1946 // want to use 1947 // this syscall if it is supported. 1948 1949 const ::pid_t pid = GetID(); 1950 1951 struct iovec local_iov, remote_iov; 1952 local_iov.iov_base = buf; 1953 local_iov.iov_len = size; 1954 remote_iov.iov_base = reinterpret_cast<void *>(addr); 1955 remote_iov.iov_len = size; 1956 1957 bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0); 1958 const bool success = bytes_read == size; 1959 1960 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1961 LLDB_LOG(log, 1962 "using process_vm_readv to read {0} bytes from inferior " 1963 "address {1:x}: {2}", 1964 size, addr, success ? "Success" : llvm::sys::StrError(errno)); 1965 1966 if (success) 1967 return Status(); 1968 // else the call failed for some reason, let's retry the read using ptrace 1969 // api. 1970 } 1971 1972 unsigned char *dst = static_cast<unsigned char *>(buf); 1973 size_t remainder; 1974 long data; 1975 1976 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1977 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1978 1979 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { 1980 Status error = NativeProcessLinux::PtraceWrapper( 1981 PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data); 1982 if (error.Fail()) 1983 return error; 1984 1985 remainder = size - bytes_read; 1986 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1987 1988 // Copy the data into our buffer 1989 memcpy(dst, &data, remainder); 1990 1991 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1992 addr += k_ptrace_word_size; 1993 dst += k_ptrace_word_size; 1994 } 1995 return Status(); 1996 } 1997 1998 Status NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, 1999 size_t size, 2000 size_t &bytes_read) { 2001 Status error = ReadMemory(addr, buf, size, bytes_read); 2002 if (error.Fail()) 2003 return error; 2004 return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size); 2005 } 2006 2007 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, 2008 size_t size, size_t &bytes_written) { 2009 const unsigned char *src = static_cast<const unsigned char *>(buf); 2010 size_t remainder; 2011 Status error; 2012 2013 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 2014 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 2015 2016 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { 2017 remainder = size - bytes_written; 2018 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 2019 2020 if (remainder == k_ptrace_word_size) { 2021 unsigned long data = 0; 2022 memcpy(&data, src, k_ptrace_word_size); 2023 2024 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 2025 error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), 2026 (void *)addr, (void *)data); 2027 if (error.Fail()) 2028 return error; 2029 } else { 2030 unsigned char buff[8]; 2031 size_t bytes_read; 2032 error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read); 2033 if (error.Fail()) 2034 return error; 2035 2036 memcpy(buff, src, remainder); 2037 2038 size_t bytes_written_rec; 2039 error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec); 2040 if (error.Fail()) 2041 return error; 2042 2043 LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src, 2044 *(unsigned long *)buff); 2045 } 2046 2047 addr += k_ptrace_word_size; 2048 src += k_ptrace_word_size; 2049 } 2050 return error; 2051 } 2052 2053 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) { 2054 return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); 2055 } 2056 2057 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid, 2058 unsigned long *message) { 2059 return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); 2060 } 2061 2062 Status NativeProcessLinux::Detach(lldb::tid_t tid) { 2063 if (tid == LLDB_INVALID_THREAD_ID) 2064 return Status(); 2065 2066 return PtraceWrapper(PTRACE_DETACH, tid); 2067 } 2068 2069 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) { 2070 for (auto thread_sp : m_threads) { 2071 assert(thread_sp && "thread list should not contain NULL threads"); 2072 if (thread_sp->GetID() == thread_id) { 2073 // We have this thread. 2074 return true; 2075 } 2076 } 2077 2078 // We don't have this thread. 2079 return false; 2080 } 2081 2082 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) { 2083 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2084 LLDB_LOG(log, "tid: {0})", thread_id); 2085 2086 bool found = false; 2087 for (auto it = m_threads.begin(); it != m_threads.end(); ++it) { 2088 if (*it && ((*it)->GetID() == thread_id)) { 2089 m_threads.erase(it); 2090 found = true; 2091 break; 2092 } 2093 } 2094 2095 if (found) 2096 StopTracingForThread(thread_id); 2097 SignalIfAllThreadsStopped(); 2098 return found; 2099 } 2100 2101 NativeThreadLinuxSP NativeProcessLinux::AddThread(lldb::tid_t thread_id) { 2102 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD)); 2103 LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id); 2104 2105 assert(!HasThreadNoLock(thread_id) && 2106 "attempted to add a thread by id that already exists"); 2107 2108 // If this is the first thread, save it as the current thread 2109 if (m_threads.empty()) 2110 SetCurrentThreadID(thread_id); 2111 2112 auto thread_sp = std::make_shared<NativeThreadLinux>(this, thread_id); 2113 m_threads.push_back(thread_sp); 2114 2115 if (m_pt_proces_trace_id != LLDB_INVALID_UID) { 2116 auto traceMonitor = ProcessorTraceMonitor::Create( 2117 GetID(), thread_id, m_pt_process_trace_config, true); 2118 if (traceMonitor) { 2119 m_pt_traced_thread_group.insert(thread_id); 2120 m_processor_trace_monitor.insert( 2121 std::make_pair(thread_id, std::move(*traceMonitor))); 2122 } else { 2123 LLDB_LOG(log, "failed to start trace on thread {0}", thread_id); 2124 Status error(traceMonitor.takeError()); 2125 LLDB_LOG(log, "error {0}", error); 2126 } 2127 } 2128 2129 return thread_sp; 2130 } 2131 2132 Status 2133 NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread) { 2134 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 2135 2136 Status error; 2137 2138 // Find out the size of a breakpoint (might depend on where we are in the 2139 // code). 2140 NativeRegisterContextSP context_sp = thread.GetRegisterContext(); 2141 if (!context_sp) { 2142 error.SetErrorString("cannot get a NativeRegisterContext for the thread"); 2143 LLDB_LOG(log, "failed: {0}", error); 2144 return error; 2145 } 2146 2147 uint32_t breakpoint_size = 0; 2148 error = GetSoftwareBreakpointPCOffset(breakpoint_size); 2149 if (error.Fail()) { 2150 LLDB_LOG(log, "GetBreakpointSize() failed: {0}", error); 2151 return error; 2152 } else 2153 LLDB_LOG(log, "breakpoint size: {0}", breakpoint_size); 2154 2155 // First try probing for a breakpoint at a software breakpoint location: PC - 2156 // breakpoint size. 2157 const lldb::addr_t initial_pc_addr = 2158 context_sp->GetPCfromBreakpointLocation(); 2159 lldb::addr_t breakpoint_addr = initial_pc_addr; 2160 if (breakpoint_size > 0) { 2161 // Do not allow breakpoint probe to wrap around. 2162 if (breakpoint_addr >= breakpoint_size) 2163 breakpoint_addr -= breakpoint_size; 2164 } 2165 2166 // Check if we stopped because of a breakpoint. 2167 NativeBreakpointSP breakpoint_sp; 2168 error = m_breakpoint_list.GetBreakpoint(breakpoint_addr, breakpoint_sp); 2169 if (!error.Success() || !breakpoint_sp) { 2170 // We didn't find one at a software probe location. Nothing to do. 2171 LLDB_LOG(log, 2172 "pid {0} no lldb breakpoint found at current pc with " 2173 "adjustment: {1}", 2174 GetID(), breakpoint_addr); 2175 return Status(); 2176 } 2177 2178 // If the breakpoint is not a software breakpoint, nothing to do. 2179 if (!breakpoint_sp->IsSoftwareBreakpoint()) { 2180 LLDB_LOG( 2181 log, 2182 "pid {0} breakpoint found at {1:x}, not software, nothing to adjust", 2183 GetID(), breakpoint_addr); 2184 return Status(); 2185 } 2186 2187 // 2188 // We have a software breakpoint and need to adjust the PC. 2189 // 2190 2191 // Sanity check. 2192 if (breakpoint_size == 0) { 2193 // Nothing to do! How did we get here? 2194 LLDB_LOG(log, 2195 "pid {0} breakpoint found at {1:x}, it is software, but the " 2196 "size is zero, nothing to do (unexpected)", 2197 GetID(), breakpoint_addr); 2198 return Status(); 2199 } 2200 2201 // Change the program counter. 2202 LLDB_LOG(log, "pid {0} tid {1}: changing PC from {2:x} to {3:x}", GetID(), 2203 thread.GetID(), initial_pc_addr, breakpoint_addr); 2204 2205 error = context_sp->SetPC(breakpoint_addr); 2206 if (error.Fail()) { 2207 LLDB_LOG(log, "pid {0} tid {1}: failed to set PC: {2}", GetID(), 2208 thread.GetID(), error); 2209 return error; 2210 } 2211 2212 return error; 2213 } 2214 2215 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path, 2216 FileSpec &file_spec) { 2217 Status error = PopulateMemoryRegionCache(); 2218 if (error.Fail()) 2219 return error; 2220 2221 FileSpec module_file_spec(module_path, true); 2222 2223 file_spec.Clear(); 2224 for (const auto &it : m_mem_region_cache) { 2225 if (it.second.GetFilename() == module_file_spec.GetFilename()) { 2226 file_spec = it.second; 2227 return Status(); 2228 } 2229 } 2230 return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 2231 module_file_spec.GetFilename().AsCString(), GetID()); 2232 } 2233 2234 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name, 2235 lldb::addr_t &load_addr) { 2236 load_addr = LLDB_INVALID_ADDRESS; 2237 Status error = PopulateMemoryRegionCache(); 2238 if (error.Fail()) 2239 return error; 2240 2241 FileSpec file(file_name, false); 2242 for (const auto &it : m_mem_region_cache) { 2243 if (it.second == file) { 2244 load_addr = it.first.GetRange().GetRangeBase(); 2245 return Status(); 2246 } 2247 } 2248 return Status("No load address found for specified file."); 2249 } 2250 2251 NativeThreadLinuxSP NativeProcessLinux::GetThreadByID(lldb::tid_t tid) { 2252 return std::static_pointer_cast<NativeThreadLinux>( 2253 NativeProcessProtocol::GetThreadByID(tid)); 2254 } 2255 2256 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, 2257 lldb::StateType state, int signo) { 2258 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2259 LLDB_LOG(log, "tid: {0}", thread.GetID()); 2260 2261 // Before we do the resume below, first check if we have a pending 2262 // stop notification that is currently waiting for 2263 // all threads to stop. This is potentially a buggy situation since 2264 // we're ostensibly waiting for threads to stop before we send out the 2265 // pending notification, and here we are resuming one before we send 2266 // out the pending stop notification. 2267 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 2268 LLDB_LOG(log, 2269 "about to resume tid {0} per explicit request but we have a " 2270 "pending stop notification (tid {1}) that is actively " 2271 "waiting for this thread to stop. Valid sequence of events?", 2272 thread.GetID(), m_pending_notification_tid); 2273 } 2274 2275 // Request a resume. We expect this to be synchronous and the system 2276 // to reflect it is running after this completes. 2277 switch (state) { 2278 case eStateRunning: { 2279 const auto resume_result = thread.Resume(signo); 2280 if (resume_result.Success()) 2281 SetState(eStateRunning, true); 2282 return resume_result; 2283 } 2284 case eStateStepping: { 2285 const auto step_result = thread.SingleStep(signo); 2286 if (step_result.Success()) 2287 SetState(eStateRunning, true); 2288 return step_result; 2289 } 2290 default: 2291 LLDB_LOG(log, "Unhandled state {0}.", state); 2292 llvm_unreachable("Unhandled state for resume"); 2293 } 2294 } 2295 2296 //===----------------------------------------------------------------------===// 2297 2298 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) { 2299 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2300 LLDB_LOG(log, "about to process event: (triggering_tid: {0})", 2301 triggering_tid); 2302 2303 m_pending_notification_tid = triggering_tid; 2304 2305 // Request a stop for all the thread stops that need to be stopped 2306 // and are not already known to be stopped. 2307 for (const auto &thread_sp : m_threads) { 2308 if (StateIsRunningState(thread_sp->GetState())) 2309 static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop(); 2310 } 2311 2312 SignalIfAllThreadsStopped(); 2313 LLDB_LOG(log, "event processing done"); 2314 } 2315 2316 void NativeProcessLinux::SignalIfAllThreadsStopped() { 2317 if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) 2318 return; // No pending notification. Nothing to do. 2319 2320 for (const auto &thread_sp : m_threads) { 2321 if (StateIsRunningState(thread_sp->GetState())) 2322 return; // Some threads are still running. Don't signal yet. 2323 } 2324 2325 // We have a pending notification and all threads have stopped. 2326 Log *log( 2327 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 2328 2329 // Clear any temporary breakpoints we used to implement software single 2330 // stepping. 2331 for (const auto &thread_info : m_threads_stepping_with_breakpoint) { 2332 Status error = RemoveBreakpoint(thread_info.second); 2333 if (error.Fail()) 2334 LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}", 2335 thread_info.first, error); 2336 } 2337 m_threads_stepping_with_breakpoint.clear(); 2338 2339 // Notify the delegate about the stop 2340 SetCurrentThreadID(m_pending_notification_tid); 2341 SetState(StateType::eStateStopped, true); 2342 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 2343 } 2344 2345 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) { 2346 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2347 LLDB_LOG(log, "tid: {0}", thread.GetID()); 2348 2349 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && 2350 StateIsRunningState(thread.GetState())) { 2351 // We will need to wait for this new thread to stop as well before firing 2352 // the 2353 // notification. 2354 thread.RequestStop(); 2355 } 2356 } 2357 2358 void NativeProcessLinux::SigchldHandler() { 2359 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 2360 // Process all pending waitpid notifications. 2361 while (true) { 2362 int status = -1; 2363 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, -1, &status, 2364 __WALL | __WNOTHREAD | WNOHANG); 2365 2366 if (wait_pid == 0) 2367 break; // We are done. 2368 2369 if (wait_pid == -1) { 2370 Status error(errno, eErrorTypePOSIX); 2371 LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error); 2372 break; 2373 } 2374 2375 WaitStatus wait_status = WaitStatus::Decode(status); 2376 bool exited = wait_status.type == WaitStatus::Exit || 2377 (wait_status.type == WaitStatus::Signal && 2378 wait_pid == static_cast<::pid_t>(GetID())); 2379 2380 LLDB_LOG( 2381 log, 2382 "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}", 2383 wait_pid, wait_status, exited); 2384 2385 MonitorCallback(wait_pid, exited, wait_status); 2386 } 2387 } 2388 2389 // Wrapper for ptrace to catch errors and log calls. 2390 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. 2391 // for PTRACE_PEEK*) 2392 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, 2393 void *data, size_t data_size, 2394 long *result) { 2395 Status error; 2396 long int ret; 2397 2398 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2399 2400 PtraceDisplayBytes(req, data, data_size); 2401 2402 errno = 0; 2403 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 2404 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 2405 *(unsigned int *)addr, data); 2406 else 2407 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 2408 addr, data); 2409 2410 if (ret == -1) 2411 error.SetErrorToErrno(); 2412 2413 if (result) 2414 *result = ret; 2415 2416 LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data, 2417 data_size, ret); 2418 2419 PtraceDisplayBytes(req, data, data_size); 2420 2421 if (error.Fail()) 2422 LLDB_LOG(log, "ptrace() failed: {0}", error); 2423 2424 return error; 2425 } 2426 2427 llvm::Expected<ProcessorTraceMonitor &> 2428 NativeProcessLinux::LookupProcessorTraceInstance(lldb::user_id_t traceid, 2429 lldb::tid_t thread) { 2430 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2431 if (thread == LLDB_INVALID_THREAD_ID && traceid == m_pt_proces_trace_id) { 2432 LLDB_LOG(log, "thread not specified: {0}", traceid); 2433 return Status("tracing not active thread not specified").ToError(); 2434 } 2435 2436 for (auto& iter : m_processor_trace_monitor) { 2437 if (traceid == iter.second->GetTraceID() && 2438 (thread == iter.first || thread == LLDB_INVALID_THREAD_ID)) 2439 return *(iter.second); 2440 } 2441 2442 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 2443 return Status("tracing not active for this thread").ToError(); 2444 } 2445 2446 Status NativeProcessLinux::GetMetaData(lldb::user_id_t traceid, 2447 lldb::tid_t thread, 2448 llvm::MutableArrayRef<uint8_t> &buffer, 2449 size_t offset) { 2450 TraceOptions trace_options; 2451 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2452 Status error; 2453 2454 LLDB_LOG(log, "traceid {0}", traceid); 2455 2456 auto perf_monitor = LookupProcessorTraceInstance(traceid, thread); 2457 if (!perf_monitor) { 2458 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 2459 buffer = buffer.slice(buffer.size()); 2460 error = perf_monitor.takeError(); 2461 return error; 2462 } 2463 return (*perf_monitor).ReadPerfTraceData(buffer, offset); 2464 } 2465 2466 Status NativeProcessLinux::GetData(lldb::user_id_t traceid, lldb::tid_t thread, 2467 llvm::MutableArrayRef<uint8_t> &buffer, 2468 size_t offset) { 2469 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2470 Status error; 2471 2472 LLDB_LOG(log, "traceid {0}", traceid); 2473 2474 auto perf_monitor = LookupProcessorTraceInstance(traceid, thread); 2475 if (!perf_monitor) { 2476 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 2477 buffer = buffer.slice(buffer.size()); 2478 error = perf_monitor.takeError(); 2479 return error; 2480 } 2481 return (*perf_monitor).ReadPerfTraceAux(buffer, offset); 2482 } 2483 2484 Status NativeProcessLinux::GetTraceConfig(lldb::user_id_t traceid, 2485 TraceOptions &config) { 2486 Status error; 2487 if (config.getThreadID() == LLDB_INVALID_THREAD_ID && 2488 m_pt_proces_trace_id == traceid) { 2489 if (m_pt_proces_trace_id == LLDB_INVALID_UID) { 2490 error.SetErrorString("tracing not active for this process"); 2491 return error; 2492 } 2493 config = m_pt_process_trace_config; 2494 } else { 2495 auto perf_monitor = 2496 LookupProcessorTraceInstance(traceid, config.getThreadID()); 2497 if (!perf_monitor) { 2498 error = perf_monitor.takeError(); 2499 return error; 2500 } 2501 error = (*perf_monitor).GetTraceConfig(config); 2502 } 2503 return error; 2504 } 2505 2506 lldb::user_id_t 2507 NativeProcessLinux::StartTraceGroup(const TraceOptions &config, 2508 Status &error) { 2509 2510 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2511 if (config.getType() != TraceType::eTraceTypeProcessorTrace) 2512 return LLDB_INVALID_UID; 2513 2514 if (m_pt_proces_trace_id != LLDB_INVALID_UID) { 2515 error.SetErrorString("tracing already active on this process"); 2516 return m_pt_proces_trace_id; 2517 } 2518 2519 for (const auto &thread_sp : m_threads) { 2520 if (auto traceInstance = ProcessorTraceMonitor::Create( 2521 GetID(), thread_sp->GetID(), config, true)) { 2522 m_pt_traced_thread_group.insert(thread_sp->GetID()); 2523 m_processor_trace_monitor.insert( 2524 std::make_pair(thread_sp->GetID(), std::move(*traceInstance))); 2525 } 2526 } 2527 2528 m_pt_process_trace_config = config; 2529 error = ProcessorTraceMonitor::GetCPUType(m_pt_process_trace_config); 2530 2531 // Trace on Complete process will have traceid of 0 2532 m_pt_proces_trace_id = 0; 2533 2534 LLDB_LOG(log, "Process Trace ID {0}", m_pt_proces_trace_id); 2535 return m_pt_proces_trace_id; 2536 } 2537 2538 lldb::user_id_t NativeProcessLinux::StartTrace(const TraceOptions &config, 2539 Status &error) { 2540 if (config.getType() != TraceType::eTraceTypeProcessorTrace) 2541 return NativeProcessProtocol::StartTrace(config, error); 2542 2543 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2544 2545 lldb::tid_t threadid = config.getThreadID(); 2546 2547 if (threadid == LLDB_INVALID_THREAD_ID) 2548 return StartTraceGroup(config, error); 2549 2550 auto thread_sp = GetThreadByID(threadid); 2551 if (!thread_sp) { 2552 // Thread not tracked by lldb so don't trace. 2553 error.SetErrorString("invalid thread id"); 2554 return LLDB_INVALID_UID; 2555 } 2556 2557 const auto &iter = m_processor_trace_monitor.find(threadid); 2558 if (iter != m_processor_trace_monitor.end()) { 2559 LLDB_LOG(log, "Thread already being traced"); 2560 error.SetErrorString("tracing already active on this thread"); 2561 return LLDB_INVALID_UID; 2562 } 2563 2564 auto traceMonitor = 2565 ProcessorTraceMonitor::Create(GetID(), threadid, config, false); 2566 if (!traceMonitor) { 2567 error = traceMonitor.takeError(); 2568 LLDB_LOG(log, "error {0}", error); 2569 return LLDB_INVALID_UID; 2570 } 2571 lldb::user_id_t ret_trace_id = (*traceMonitor)->GetTraceID(); 2572 m_processor_trace_monitor.insert( 2573 std::make_pair(threadid, std::move(*traceMonitor))); 2574 return ret_trace_id; 2575 } 2576 2577 Status NativeProcessLinux::StopTracingForThread(lldb::tid_t thread) { 2578 Status error; 2579 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2580 LLDB_LOG(log, "Thread {0}", thread); 2581 2582 const auto& iter = m_processor_trace_monitor.find(thread); 2583 if (iter == m_processor_trace_monitor.end()) { 2584 error.SetErrorString("tracing not active for this thread"); 2585 return error; 2586 } 2587 2588 if (iter->second->GetTraceID() == m_pt_proces_trace_id) { 2589 // traceid maps to the whole process so we have to erase it from the 2590 // thread group. 2591 LLDB_LOG(log, "traceid maps to process"); 2592 m_pt_traced_thread_group.erase(thread); 2593 } 2594 m_processor_trace_monitor.erase(iter); 2595 2596 return error; 2597 } 2598 2599 Status NativeProcessLinux::StopTrace(lldb::user_id_t traceid, 2600 lldb::tid_t thread) { 2601 Status error; 2602 2603 TraceOptions trace_options; 2604 trace_options.setThreadID(thread); 2605 error = NativeProcessLinux::GetTraceConfig(traceid, trace_options); 2606 2607 if (error.Fail()) 2608 return error; 2609 2610 switch (trace_options.getType()) { 2611 case lldb::TraceType::eTraceTypeProcessorTrace: 2612 if (traceid == m_pt_proces_trace_id && 2613 thread == LLDB_INVALID_THREAD_ID) 2614 StopProcessorTracingOnProcess(); 2615 else 2616 error = StopProcessorTracingOnThread(traceid, thread); 2617 break; 2618 default: 2619 error.SetErrorString("trace not supported"); 2620 break; 2621 } 2622 2623 return error; 2624 } 2625 2626 void NativeProcessLinux::StopProcessorTracingOnProcess() { 2627 for (auto thread_id_iter : m_pt_traced_thread_group) 2628 m_processor_trace_monitor.erase(thread_id_iter); 2629 m_pt_traced_thread_group.clear(); 2630 m_pt_proces_trace_id = LLDB_INVALID_UID; 2631 } 2632 2633 Status NativeProcessLinux::StopProcessorTracingOnThread(lldb::user_id_t traceid, 2634 lldb::tid_t thread) { 2635 Status error; 2636 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2637 2638 if (thread == LLDB_INVALID_THREAD_ID) { 2639 for (auto& iter : m_processor_trace_monitor) { 2640 if (iter.second->GetTraceID() == traceid) { 2641 // Stopping a trace instance for an individual thread 2642 // hence there will only be one traceid that can match. 2643 m_processor_trace_monitor.erase(iter.first); 2644 return error; 2645 } 2646 LLDB_LOG(log, "Trace ID {0}", iter.second->GetTraceID()); 2647 } 2648 2649 LLDB_LOG(log, "Invalid TraceID"); 2650 error.SetErrorString("invalid trace id"); 2651 return error; 2652 } 2653 2654 // thread is specified so we can use find function on the map. 2655 const auto& iter = m_processor_trace_monitor.find(thread); 2656 if (iter == m_processor_trace_monitor.end()) { 2657 // thread not found in our map. 2658 LLDB_LOG(log, "thread not being traced"); 2659 error.SetErrorString("tracing not active for this thread"); 2660 return error; 2661 } 2662 if (iter->second->GetTraceID() != traceid) { 2663 // traceid did not match so it has to be invalid. 2664 LLDB_LOG(log, "Invalid TraceID"); 2665 error.SetErrorString("invalid trace id"); 2666 return error; 2667 } 2668 2669 LLDB_LOG(log, "UID - {0} , Thread -{1}", traceid, thread); 2670 2671 if (traceid == m_pt_proces_trace_id) { 2672 // traceid maps to the whole process so we have to erase it from the 2673 // thread group. 2674 LLDB_LOG(log, "traceid maps to process"); 2675 m_pt_traced_thread_group.erase(thread); 2676 } 2677 m_processor_trace_monitor.erase(iter); 2678 2679 return error; 2680 } 2681