1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/lldb-python.h" 11 12 #include "NativeProcessLinux.h" 13 14 // C Includes 15 #include <errno.h> 16 #include <poll.h> 17 #include <string.h> 18 #include <stdint.h> 19 #include <unistd.h> 20 21 // C++ Includes 22 #include <fstream> 23 #include <string> 24 25 // Other libraries and framework includes 26 #include "lldb/Core/Debugger.h" 27 #include "lldb/Core/EmulateInstruction.h" 28 #include "lldb/Core/Error.h" 29 #include "lldb/Core/Module.h" 30 #include "lldb/Core/ModuleSpec.h" 31 #include "lldb/Core/RegisterValue.h" 32 #include "lldb/Core/Scalar.h" 33 #include "lldb/Core/State.h" 34 #include "lldb/Host/common/NativeBreakpoint.h" 35 #include "lldb/Host/common/NativeRegisterContext.h" 36 #include "lldb/Host/Host.h" 37 #include "lldb/Host/HostInfo.h" 38 #include "lldb/Host/HostNativeThread.h" 39 #include "lldb/Host/ThreadLauncher.h" 40 #include "lldb/Symbol/ObjectFile.h" 41 #include "lldb/Target/Process.h" 42 #include "lldb/Target/ProcessLaunchInfo.h" 43 #include "lldb/Utility/LLDBAssert.h" 44 #include "lldb/Utility/PseudoTerminal.h" 45 46 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 47 #include "Plugins/Process/Utility/LinuxSignals.h" 48 #include "Utility/StringExtractor.h" 49 #include "NativeThreadLinux.h" 50 #include "ProcFileReader.h" 51 #include "Procfs.h" 52 #include "ThreadStateCoordinator.h" 53 54 // System includes - They have to be included after framework includes because they define some 55 // macros which collide with variable names in other modules 56 #include <linux/unistd.h> 57 #include <sys/personality.h> 58 #include <sys/ptrace.h> 59 #include <sys/socket.h> 60 #include <sys/signalfd.h> 61 #include <sys/syscall.h> 62 #include <sys/types.h> 63 #include <sys/uio.h> 64 #include <sys/user.h> 65 #include <sys/wait.h> 66 67 #if defined (__arm64__) || defined (__aarch64__) 68 // NT_PRSTATUS and NT_FPREGSET definition 69 #include <elf.h> 70 #endif 71 72 #ifdef __ANDROID__ 73 #define __ptrace_request int 74 #define PT_DETACH PTRACE_DETACH 75 #endif 76 77 #define DEBUG_PTRACE_MAXBYTES 20 78 79 // Support ptrace extensions even when compiled without required kernel support 80 #ifndef PT_GETREGS 81 #ifndef PTRACE_GETREGS 82 #define PTRACE_GETREGS 12 83 #endif 84 #endif 85 #ifndef PT_SETREGS 86 #ifndef PTRACE_SETREGS 87 #define PTRACE_SETREGS 13 88 #endif 89 #endif 90 #ifndef PT_GETFPREGS 91 #ifndef PTRACE_GETFPREGS 92 #define PTRACE_GETFPREGS 14 93 #endif 94 #endif 95 #ifndef PT_SETFPREGS 96 #ifndef PTRACE_SETFPREGS 97 #define PTRACE_SETFPREGS 15 98 #endif 99 #endif 100 #ifndef PTRACE_GETREGSET 101 #define PTRACE_GETREGSET 0x4204 102 #endif 103 #ifndef PTRACE_SETREGSET 104 #define PTRACE_SETREGSET 0x4205 105 #endif 106 #ifndef PTRACE_GET_THREAD_AREA 107 #define PTRACE_GET_THREAD_AREA 25 108 #endif 109 #ifndef PTRACE_ARCH_PRCTL 110 #define PTRACE_ARCH_PRCTL 30 111 #endif 112 #ifndef ARCH_GET_FS 113 #define ARCH_SET_GS 0x1001 114 #define ARCH_SET_FS 0x1002 115 #define ARCH_GET_FS 0x1003 116 #define ARCH_GET_GS 0x1004 117 #endif 118 119 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS 0xffffffff 120 121 // Support hardware breakpoints in case it has not been defined 122 #ifndef TRAP_HWBKPT 123 #define TRAP_HWBKPT 4 124 #endif 125 126 // Try to define a macro to encapsulate the tgkill syscall 127 // fall back on kill() if tgkill isn't available 128 #define tgkill(pid, tid, sig) \ 129 syscall(SYS_tgkill, static_cast<::pid_t>(pid), static_cast<::pid_t>(tid), sig) 130 131 // We disable the tracing of ptrace calls for integration builds to 132 // avoid the additional indirection and checks. 133 #ifndef LLDB_CONFIGURATION_BUILDANDINTEGRATION 134 #define PTRACE(req, pid, addr, data, data_size, error) \ 135 PtraceWrapper((req), (pid), (addr), (data), (data_size), (error), #req, __FILE__, __LINE__) 136 #else 137 #define PTRACE(req, pid, addr, data, data_size, error) \ 138 PtraceWrapper((req), (pid), (addr), (data), (data_size), (error)) 139 #endif 140 141 using namespace lldb; 142 using namespace lldb_private; 143 using namespace lldb_private::process_linux; 144 using namespace llvm; 145 146 // Private bits we only need internally. 147 namespace 148 { 149 const UnixSignals& 150 GetUnixSignals () 151 { 152 static process_linux::LinuxSignals signals; 153 return signals; 154 } 155 156 ThreadStateCoordinator::LogFunction 157 GetThreadLoggerFunction () 158 { 159 return [](const char *format, va_list args) 160 { 161 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 162 if (log) 163 log->VAPrintf (format, args); 164 }; 165 } 166 167 void 168 CoordinatorErrorHandler (const std::string &error_message) 169 { 170 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 171 if (log) 172 log->Printf ("NativeProcessLinux::%s %s", __FUNCTION__, error_message.c_str ()); 173 assert (false && "ThreadStateCoordinator error reported"); 174 } 175 176 Error 177 ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch) 178 { 179 // Grab process info for the running process. 180 ProcessInstanceInfo process_info; 181 if (!platform.GetProcessInfo (pid, process_info)) 182 return Error("failed to get process info"); 183 184 // Resolve the executable module. 185 ModuleSP exe_module_sp; 186 ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture()); 187 FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ()); 188 Error error = platform.ResolveExecutable( 189 exe_module_spec, 190 exe_module_sp, 191 executable_search_paths.GetSize () ? &executable_search_paths : NULL); 192 193 if (!error.Success ()) 194 return error; 195 196 // Check if we've got our architecture from the exe_module. 197 arch = exe_module_sp->GetArchitecture (); 198 if (arch.IsValid ()) 199 return Error(); 200 else 201 return Error("failed to retrieve a valid architecture from the exe module"); 202 } 203 204 void 205 DisplayBytes (StreamString &s, void *bytes, uint32_t count) 206 { 207 uint8_t *ptr = (uint8_t *)bytes; 208 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 209 for(uint32_t i=0; i<loop_count; i++) 210 { 211 s.Printf ("[%x]", *ptr); 212 ptr++; 213 } 214 } 215 216 void 217 PtraceDisplayBytes(int &req, void *data, size_t data_size) 218 { 219 StreamString buf; 220 Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet ( 221 POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE)); 222 223 if (verbose_log) 224 { 225 switch(req) 226 { 227 case PTRACE_POKETEXT: 228 { 229 DisplayBytes(buf, &data, 8); 230 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData()); 231 break; 232 } 233 case PTRACE_POKEDATA: 234 { 235 DisplayBytes(buf, &data, 8); 236 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData()); 237 break; 238 } 239 case PTRACE_POKEUSER: 240 { 241 DisplayBytes(buf, &data, 8); 242 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData()); 243 break; 244 } 245 case PTRACE_SETREGS: 246 { 247 DisplayBytes(buf, data, data_size); 248 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData()); 249 break; 250 } 251 case PTRACE_SETFPREGS: 252 { 253 DisplayBytes(buf, data, data_size); 254 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData()); 255 break; 256 } 257 case PTRACE_SETSIGINFO: 258 { 259 DisplayBytes(buf, data, sizeof(siginfo_t)); 260 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData()); 261 break; 262 } 263 case PTRACE_SETREGSET: 264 { 265 // Extract iov_base from data, which is a pointer to the struct IOVEC 266 DisplayBytes(buf, *(void **)data, data_size); 267 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData()); 268 break; 269 } 270 default: 271 { 272 } 273 } 274 } 275 } 276 277 // Wrapper for ptrace to catch errors and log calls. 278 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) 279 long 280 PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error, 281 const char* reqName, const char* file, int line) 282 { 283 long int result; 284 285 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE)); 286 287 PtraceDisplayBytes(req, data, data_size); 288 289 error.Clear(); 290 errno = 0; 291 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 292 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data); 293 else 294 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data); 295 296 if (result == -1) 297 error.SetErrorToErrno(); 298 299 if (log) 300 log->Printf("ptrace(%s, %" PRIu64 ", %p, %p, %zu)=%lX called from file %s line %d", 301 reqName, pid, addr, data, data_size, result, file, line); 302 303 PtraceDisplayBytes(req, data, data_size); 304 305 if (log && error.GetError() != 0) 306 { 307 const char* str; 308 switch (error.GetError()) 309 { 310 case ESRCH: str = "ESRCH"; break; 311 case EINVAL: str = "EINVAL"; break; 312 case EBUSY: str = "EBUSY"; break; 313 case EPERM: str = "EPERM"; break; 314 default: str = error.AsCString(); 315 } 316 log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str); 317 } 318 319 return result; 320 } 321 322 #ifdef LLDB_CONFIGURATION_BUILDANDINTEGRATION 323 // Wrapper for ptrace when logging is not required. 324 // Sets errno to 0 prior to calling ptrace. 325 long 326 PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error) 327 { 328 long result = 0; 329 330 error.Clear(); 331 errno = 0; 332 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 333 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data); 334 else 335 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data); 336 337 if (result == -1) 338 error.SetErrorToErrno(); 339 return result; 340 } 341 #endif 342 343 //------------------------------------------------------------------------------ 344 // Static implementations of NativeProcessLinux::ReadMemory and 345 // NativeProcessLinux::WriteMemory. This enables mutual recursion between these 346 // functions without needed to go thru the thread funnel. 347 348 lldb::addr_t 349 DoReadMemory ( 350 lldb::pid_t pid, 351 lldb::addr_t vm_addr, 352 void *buf, 353 lldb::addr_t size, 354 Error &error) 355 { 356 // ptrace word size is determined by the host, not the child 357 static const unsigned word_size = sizeof(void*); 358 unsigned char *dst = static_cast<unsigned char*>(buf); 359 lldb::addr_t bytes_read; 360 lldb::addr_t remainder; 361 long data; 362 363 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); 364 if (log) 365 ProcessPOSIXLog::IncNestLevel(); 366 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) 367 log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__, 368 pid, word_size, (void*)vm_addr, buf, size); 369 370 assert(sizeof(data) >= word_size); 371 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) 372 { 373 data = PTRACE(PTRACE_PEEKDATA, pid, (void*)vm_addr, nullptr, 0, error); 374 if (error.Fail()) 375 { 376 if (log) 377 ProcessPOSIXLog::DecNestLevel(); 378 return bytes_read; 379 } 380 381 remainder = size - bytes_read; 382 remainder = remainder > word_size ? word_size : remainder; 383 384 // Copy the data into our buffer 385 for (unsigned i = 0; i < remainder; ++i) 386 dst[i] = ((data >> i*8) & 0xFF); 387 388 if (log && ProcessPOSIXLog::AtTopNestLevel() && 389 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 390 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 391 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 392 { 393 uintptr_t print_dst = 0; 394 // Format bytes from data by moving into print_dst for log output 395 for (unsigned i = 0; i < remainder; ++i) 396 print_dst |= (((data >> i*8) & 0xFF) << i*8); 397 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 398 (void*)vm_addr, print_dst, (unsigned long)data); 399 } 400 401 vm_addr += word_size; 402 dst += word_size; 403 } 404 405 if (log) 406 ProcessPOSIXLog::DecNestLevel(); 407 return bytes_read; 408 } 409 410 lldb::addr_t 411 DoWriteMemory( 412 lldb::pid_t pid, 413 lldb::addr_t vm_addr, 414 const void *buf, 415 lldb::addr_t size, 416 Error &error) 417 { 418 // ptrace word size is determined by the host, not the child 419 static const unsigned word_size = sizeof(void*); 420 const unsigned char *src = static_cast<const unsigned char*>(buf); 421 lldb::addr_t bytes_written = 0; 422 lldb::addr_t remainder; 423 424 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); 425 if (log) 426 ProcessPOSIXLog::IncNestLevel(); 427 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) 428 log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__, 429 pid, word_size, (void*)vm_addr, buf, size); 430 431 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) 432 { 433 remainder = size - bytes_written; 434 remainder = remainder > word_size ? word_size : remainder; 435 436 if (remainder == word_size) 437 { 438 unsigned long data = 0; 439 assert(sizeof(data) >= word_size); 440 for (unsigned i = 0; i < word_size; ++i) 441 data |= (unsigned long)src[i] << i*8; 442 443 if (log && ProcessPOSIXLog::AtTopNestLevel() && 444 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 445 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 446 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 447 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 448 (void*)vm_addr, *(const unsigned long*)src, data); 449 450 if (PTRACE(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data, 0, error)) 451 { 452 if (log) 453 ProcessPOSIXLog::DecNestLevel(); 454 return bytes_written; 455 } 456 } 457 else 458 { 459 unsigned char buff[8]; 460 if (DoReadMemory(pid, vm_addr, 461 buff, word_size, error) != word_size) 462 { 463 if (log) 464 ProcessPOSIXLog::DecNestLevel(); 465 return bytes_written; 466 } 467 468 memcpy(buff, src, remainder); 469 470 if (DoWriteMemory(pid, vm_addr, 471 buff, word_size, error) != word_size) 472 { 473 if (log) 474 ProcessPOSIXLog::DecNestLevel(); 475 return bytes_written; 476 } 477 478 if (log && ProcessPOSIXLog::AtTopNestLevel() && 479 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 480 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 481 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 482 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 483 (void*)vm_addr, *(const unsigned long*)src, *(unsigned long*)buff); 484 } 485 486 vm_addr += word_size; 487 src += word_size; 488 } 489 if (log) 490 ProcessPOSIXLog::DecNestLevel(); 491 return bytes_written; 492 } 493 494 //------------------------------------------------------------------------------ 495 /// @class Operation 496 /// @brief Represents a NativeProcessLinux operation. 497 /// 498 /// Under Linux, it is not possible to ptrace() from any other thread but the 499 /// one that spawned or attached to the process from the start. Therefore, when 500 /// a NativeProcessLinux is asked to deliver or change the state of an inferior 501 /// process the operation must be "funneled" to a specific thread to perform the 502 /// task. The Operation class provides an abstract base for all services the 503 /// NativeProcessLinux must perform via the single virtual function Execute, thus 504 /// encapsulating the code that needs to run in the privileged context. 505 class Operation 506 { 507 public: 508 Operation () : m_error() { } 509 510 virtual 511 ~Operation() {} 512 513 virtual void 514 Execute (NativeProcessLinux *process) = 0; 515 516 const Error & 517 GetError () const { return m_error; } 518 519 protected: 520 Error m_error; 521 }; 522 523 //------------------------------------------------------------------------------ 524 /// @class ReadOperation 525 /// @brief Implements NativeProcessLinux::ReadMemory. 526 class ReadOperation : public Operation 527 { 528 public: 529 ReadOperation ( 530 lldb::addr_t addr, 531 void *buff, 532 lldb::addr_t size, 533 lldb::addr_t &result) : 534 Operation (), 535 m_addr (addr), 536 m_buff (buff), 537 m_size (size), 538 m_result (result) 539 { 540 } 541 542 void Execute (NativeProcessLinux *process) override; 543 544 private: 545 lldb::addr_t m_addr; 546 void *m_buff; 547 lldb::addr_t m_size; 548 lldb::addr_t &m_result; 549 }; 550 551 void 552 ReadOperation::Execute (NativeProcessLinux *process) 553 { 554 m_result = DoReadMemory (process->GetID (), m_addr, m_buff, m_size, m_error); 555 } 556 557 //------------------------------------------------------------------------------ 558 /// @class WriteOperation 559 /// @brief Implements NativeProcessLinux::WriteMemory. 560 class WriteOperation : public Operation 561 { 562 public: 563 WriteOperation ( 564 lldb::addr_t addr, 565 const void *buff, 566 lldb::addr_t size, 567 lldb::addr_t &result) : 568 Operation (), 569 m_addr (addr), 570 m_buff (buff), 571 m_size (size), 572 m_result (result) 573 { 574 } 575 576 void Execute (NativeProcessLinux *process) override; 577 578 private: 579 lldb::addr_t m_addr; 580 const void *m_buff; 581 lldb::addr_t m_size; 582 lldb::addr_t &m_result; 583 }; 584 585 void 586 WriteOperation::Execute(NativeProcessLinux *process) 587 { 588 m_result = DoWriteMemory (process->GetID (), m_addr, m_buff, m_size, m_error); 589 } 590 591 //------------------------------------------------------------------------------ 592 /// @class ReadRegOperation 593 /// @brief Implements NativeProcessLinux::ReadRegisterValue. 594 class ReadRegOperation : public Operation 595 { 596 public: 597 ReadRegOperation(lldb::tid_t tid, uint32_t offset, const char *reg_name, 598 RegisterValue &value) 599 : m_tid(tid), 600 m_offset(static_cast<uintptr_t> (offset)), 601 m_reg_name(reg_name), 602 m_value(value) 603 { } 604 605 void Execute(NativeProcessLinux *monitor) override; 606 607 private: 608 lldb::tid_t m_tid; 609 uintptr_t m_offset; 610 const char *m_reg_name; 611 RegisterValue &m_value; 612 }; 613 614 void 615 ReadRegOperation::Execute(NativeProcessLinux *monitor) 616 { 617 #if defined (__arm64__) || defined (__aarch64__) 618 if (m_offset > sizeof(struct user_pt_regs)) 619 { 620 uintptr_t offset = m_offset - sizeof(struct user_pt_regs); 621 if (offset > sizeof(struct user_fpsimd_state)) 622 { 623 m_error.SetErrorString("invalid offset value"); 624 return; 625 } 626 elf_fpregset_t regs; 627 int regset = NT_FPREGSET; 628 struct iovec ioVec; 629 630 ioVec.iov_base = ®s; 631 ioVec.iov_len = sizeof regs; 632 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 633 if (m_error.Success()) 634 { 635 ArchSpec arch; 636 if (monitor->GetArchitecture(arch)) 637 m_value.SetBytes((void *)(((unsigned char *)(®s)) + offset), 16, arch.GetByteOrder()); 638 else 639 m_error.SetErrorString("failed to get architecture"); 640 } 641 } 642 else 643 { 644 elf_gregset_t regs; 645 int regset = NT_PRSTATUS; 646 struct iovec ioVec; 647 648 ioVec.iov_base = ®s; 649 ioVec.iov_len = sizeof regs; 650 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 651 if (m_error.Success()) 652 { 653 ArchSpec arch; 654 if (monitor->GetArchitecture(arch)) 655 m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, arch.GetByteOrder()); 656 else 657 m_error.SetErrorString("failed to get architecture"); 658 } 659 } 660 #elif defined (__mips__) 661 elf_gregset_t regs; 662 PTRACE(PTRACE_GETREGS, m_tid, NULL, ®s, sizeof regs, m_error); 663 if (m_error.Success()) 664 { 665 lldb_private::ArchSpec arch; 666 if (monitor->GetArchitecture(arch)) 667 m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, arch.GetByteOrder()); 668 else 669 m_error.SetErrorString("failed to get architecture"); 670 } 671 #else 672 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS)); 673 674 lldb::addr_t data = static_cast<unsigned long>(PTRACE(PTRACE_PEEKUSER, m_tid, (void*)m_offset, nullptr, 0, m_error)); 675 if (m_error.Success()) 676 m_value = data; 677 678 if (log) 679 log->Printf ("NativeProcessLinux::%s() reg %s: 0x%" PRIx64, __FUNCTION__, 680 m_reg_name, data); 681 #endif 682 } 683 684 //------------------------------------------------------------------------------ 685 /// @class WriteRegOperation 686 /// @brief Implements NativeProcessLinux::WriteRegisterValue. 687 class WriteRegOperation : public Operation 688 { 689 public: 690 WriteRegOperation(lldb::tid_t tid, unsigned offset, const char *reg_name, 691 const RegisterValue &value) 692 : m_tid(tid), 693 m_offset(offset), 694 m_reg_name(reg_name), 695 m_value(value) 696 { } 697 698 void Execute(NativeProcessLinux *monitor) override; 699 700 private: 701 lldb::tid_t m_tid; 702 uintptr_t m_offset; 703 const char *m_reg_name; 704 const RegisterValue &m_value; 705 }; 706 707 void 708 WriteRegOperation::Execute(NativeProcessLinux *monitor) 709 { 710 #if defined (__arm64__) || defined (__aarch64__) 711 if (m_offset > sizeof(struct user_pt_regs)) 712 { 713 uintptr_t offset = m_offset - sizeof(struct user_pt_regs); 714 if (offset > sizeof(struct user_fpsimd_state)) 715 { 716 m_error.SetErrorString("invalid offset value"); 717 return; 718 } 719 elf_fpregset_t regs; 720 int regset = NT_FPREGSET; 721 struct iovec ioVec; 722 723 ioVec.iov_base = ®s; 724 ioVec.iov_len = sizeof regs; 725 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 726 if (m_error.Success()) 727 { 728 ::memcpy((void *)(((unsigned char *)(®s)) + offset), m_value.GetBytes(), 16); 729 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 730 } 731 } 732 else 733 { 734 elf_gregset_t regs; 735 int regset = NT_PRSTATUS; 736 struct iovec ioVec; 737 738 ioVec.iov_base = ®s; 739 ioVec.iov_len = sizeof regs; 740 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 741 if (m_error.Success()) 742 { 743 ::memcpy((void *)(((unsigned char *)(®s)) + m_offset), m_value.GetBytes(), 8); 744 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 745 } 746 } 747 #elif defined (__mips__) 748 elf_gregset_t regs; 749 PTRACE(PTRACE_GETREGS, m_tid, NULL, ®s, sizeof regs, m_error); 750 if (m_error.Success()) 751 { 752 ::memcpy((void *)(((unsigned char *)(®s)) + m_offset), m_value.GetBytes(), 8); 753 PTRACE(PTRACE_SETREGS, m_tid, NULL, ®s, sizeof regs, m_error); 754 } 755 #else 756 void* buf; 757 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS)); 758 759 buf = (void*) m_value.GetAsUInt64(); 760 761 if (log) 762 log->Printf ("NativeProcessLinux::%s() reg %s: %p", __FUNCTION__, m_reg_name, buf); 763 PTRACE(PTRACE_POKEUSER, m_tid, (void*)m_offset, buf, 0, m_error); 764 #endif 765 } 766 767 //------------------------------------------------------------------------------ 768 /// @class ReadGPROperation 769 /// @brief Implements NativeProcessLinux::ReadGPR. 770 class ReadGPROperation : public Operation 771 { 772 public: 773 ReadGPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 774 : m_tid(tid), m_buf(buf), m_buf_size(buf_size) 775 { } 776 777 void Execute(NativeProcessLinux *monitor) override; 778 779 private: 780 lldb::tid_t m_tid; 781 void *m_buf; 782 size_t m_buf_size; 783 }; 784 785 void 786 ReadGPROperation::Execute(NativeProcessLinux *monitor) 787 { 788 #if defined (__arm64__) || defined (__aarch64__) 789 int regset = NT_PRSTATUS; 790 struct iovec ioVec; 791 792 ioVec.iov_base = m_buf; 793 ioVec.iov_len = m_buf_size; 794 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); 795 #else 796 PTRACE(PTRACE_GETREGS, m_tid, nullptr, m_buf, m_buf_size, m_error); 797 #endif 798 } 799 800 //------------------------------------------------------------------------------ 801 /// @class ReadFPROperation 802 /// @brief Implements NativeProcessLinux::ReadFPR. 803 class ReadFPROperation : public Operation 804 { 805 public: 806 ReadFPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 807 : m_tid(tid), 808 m_buf(buf), 809 m_buf_size(buf_size) 810 { } 811 812 void Execute(NativeProcessLinux *monitor) override; 813 814 private: 815 lldb::tid_t m_tid; 816 void *m_buf; 817 size_t m_buf_size; 818 }; 819 820 void 821 ReadFPROperation::Execute(NativeProcessLinux *monitor) 822 { 823 #if defined (__arm64__) || defined (__aarch64__) 824 int regset = NT_FPREGSET; 825 struct iovec ioVec; 826 827 ioVec.iov_base = m_buf; 828 ioVec.iov_len = m_buf_size; 829 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); 830 #else 831 PTRACE(PTRACE_GETFPREGS, m_tid, nullptr, m_buf, m_buf_size, m_error); 832 #endif 833 } 834 835 //------------------------------------------------------------------------------ 836 /// @class ReadRegisterSetOperation 837 /// @brief Implements NativeProcessLinux::ReadRegisterSet. 838 class ReadRegisterSetOperation : public Operation 839 { 840 public: 841 ReadRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 842 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset) 843 { } 844 845 void Execute(NativeProcessLinux *monitor) override; 846 847 private: 848 lldb::tid_t m_tid; 849 void *m_buf; 850 size_t m_buf_size; 851 const unsigned int m_regset; 852 }; 853 854 void 855 ReadRegisterSetOperation::Execute(NativeProcessLinux *monitor) 856 { 857 PTRACE(PTRACE_GETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error); 858 } 859 860 //------------------------------------------------------------------------------ 861 /// @class WriteGPROperation 862 /// @brief Implements NativeProcessLinux::WriteGPR. 863 class WriteGPROperation : public Operation 864 { 865 public: 866 WriteGPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 867 : m_tid(tid), m_buf(buf), m_buf_size(buf_size) 868 { } 869 870 void Execute(NativeProcessLinux *monitor) override; 871 872 private: 873 lldb::tid_t m_tid; 874 void *m_buf; 875 size_t m_buf_size; 876 }; 877 878 void 879 WriteGPROperation::Execute(NativeProcessLinux *monitor) 880 { 881 #if defined (__arm64__) || defined (__aarch64__) 882 int regset = NT_PRSTATUS; 883 struct iovec ioVec; 884 885 ioVec.iov_base = m_buf; 886 ioVec.iov_len = m_buf_size; 887 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); 888 #else 889 PTRACE(PTRACE_SETREGS, m_tid, NULL, m_buf, m_buf_size, m_error); 890 #endif 891 } 892 893 //------------------------------------------------------------------------------ 894 /// @class WriteFPROperation 895 /// @brief Implements NativeProcessLinux::WriteFPR. 896 class WriteFPROperation : public Operation 897 { 898 public: 899 WriteFPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 900 : m_tid(tid), m_buf(buf), m_buf_size(buf_size) 901 { } 902 903 void Execute(NativeProcessLinux *monitor) override; 904 905 private: 906 lldb::tid_t m_tid; 907 void *m_buf; 908 size_t m_buf_size; 909 }; 910 911 void 912 WriteFPROperation::Execute(NativeProcessLinux *monitor) 913 { 914 #if defined (__arm64__) || defined (__aarch64__) 915 int regset = NT_FPREGSET; 916 struct iovec ioVec; 917 918 ioVec.iov_base = m_buf; 919 ioVec.iov_len = m_buf_size; 920 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); 921 #else 922 PTRACE(PTRACE_SETFPREGS, m_tid, NULL, m_buf, m_buf_size, m_error); 923 #endif 924 } 925 926 //------------------------------------------------------------------------------ 927 /// @class WriteRegisterSetOperation 928 /// @brief Implements NativeProcessLinux::WriteRegisterSet. 929 class WriteRegisterSetOperation : public Operation 930 { 931 public: 932 WriteRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 933 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset) 934 { } 935 936 void Execute(NativeProcessLinux *monitor) override; 937 938 private: 939 lldb::tid_t m_tid; 940 void *m_buf; 941 size_t m_buf_size; 942 const unsigned int m_regset; 943 }; 944 945 void 946 WriteRegisterSetOperation::Execute(NativeProcessLinux *monitor) 947 { 948 PTRACE(PTRACE_SETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error); 949 } 950 951 //------------------------------------------------------------------------------ 952 /// @class ResumeOperation 953 /// @brief Implements NativeProcessLinux::Resume. 954 class ResumeOperation : public Operation 955 { 956 public: 957 ResumeOperation(lldb::tid_t tid, uint32_t signo) : 958 m_tid(tid), m_signo(signo) { } 959 960 void Execute(NativeProcessLinux *monitor) override; 961 962 private: 963 lldb::tid_t m_tid; 964 uint32_t m_signo; 965 }; 966 967 void 968 ResumeOperation::Execute(NativeProcessLinux *monitor) 969 { 970 intptr_t data = 0; 971 972 if (m_signo != LLDB_INVALID_SIGNAL_NUMBER) 973 data = m_signo; 974 975 PTRACE(PTRACE_CONT, m_tid, nullptr, (void*)data, 0, m_error); 976 if (m_error.Fail()) 977 { 978 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 979 980 if (log) 981 log->Printf ("ResumeOperation (%" PRIu64 ") failed: %s", m_tid, m_error.AsCString()); 982 } 983 } 984 985 //------------------------------------------------------------------------------ 986 /// @class SingleStepOperation 987 /// @brief Implements NativeProcessLinux::SingleStep. 988 class SingleStepOperation : public Operation 989 { 990 public: 991 SingleStepOperation(lldb::tid_t tid, uint32_t signo) 992 : m_tid(tid), m_signo(signo) { } 993 994 void Execute(NativeProcessLinux *monitor) override; 995 996 private: 997 lldb::tid_t m_tid; 998 uint32_t m_signo; 999 }; 1000 1001 void 1002 SingleStepOperation::Execute(NativeProcessLinux *monitor) 1003 { 1004 intptr_t data = 0; 1005 1006 if (m_signo != LLDB_INVALID_SIGNAL_NUMBER) 1007 data = m_signo; 1008 1009 PTRACE(PTRACE_SINGLESTEP, m_tid, nullptr, (void*)data, 0, m_error); 1010 } 1011 1012 //------------------------------------------------------------------------------ 1013 /// @class SiginfoOperation 1014 /// @brief Implements NativeProcessLinux::GetSignalInfo. 1015 class SiginfoOperation : public Operation 1016 { 1017 public: 1018 SiginfoOperation(lldb::tid_t tid, void *info) 1019 : m_tid(tid), m_info(info) { } 1020 1021 void Execute(NativeProcessLinux *monitor) override; 1022 1023 private: 1024 lldb::tid_t m_tid; 1025 void *m_info; 1026 }; 1027 1028 void 1029 SiginfoOperation::Execute(NativeProcessLinux *monitor) 1030 { 1031 PTRACE(PTRACE_GETSIGINFO, m_tid, nullptr, m_info, 0, m_error); 1032 } 1033 1034 //------------------------------------------------------------------------------ 1035 /// @class EventMessageOperation 1036 /// @brief Implements NativeProcessLinux::GetEventMessage. 1037 class EventMessageOperation : public Operation 1038 { 1039 public: 1040 EventMessageOperation(lldb::tid_t tid, unsigned long *message) 1041 : m_tid(tid), m_message(message) { } 1042 1043 void Execute(NativeProcessLinux *monitor) override; 1044 1045 private: 1046 lldb::tid_t m_tid; 1047 unsigned long *m_message; 1048 }; 1049 1050 void 1051 EventMessageOperation::Execute(NativeProcessLinux *monitor) 1052 { 1053 PTRACE(PTRACE_GETEVENTMSG, m_tid, nullptr, m_message, 0, m_error); 1054 } 1055 1056 class DetachOperation : public Operation 1057 { 1058 public: 1059 DetachOperation(lldb::tid_t tid) : m_tid(tid) { } 1060 1061 void Execute(NativeProcessLinux *monitor) override; 1062 1063 private: 1064 lldb::tid_t m_tid; 1065 }; 1066 1067 void 1068 DetachOperation::Execute(NativeProcessLinux *monitor) 1069 { 1070 PTRACE(PTRACE_DETACH, m_tid, nullptr, 0, 0, m_error); 1071 } 1072 1073 } // end of anonymous namespace 1074 1075 // Simple helper function to ensure flags are enabled on the given file 1076 // descriptor. 1077 static Error 1078 EnsureFDFlags(int fd, int flags) 1079 { 1080 Error error; 1081 1082 int status = fcntl(fd, F_GETFL); 1083 if (status == -1) 1084 { 1085 error.SetErrorToErrno(); 1086 return error; 1087 } 1088 1089 if (fcntl(fd, F_SETFL, status | flags) == -1) 1090 { 1091 error.SetErrorToErrno(); 1092 return error; 1093 } 1094 1095 return error; 1096 } 1097 1098 // This class encapsulates the privileged thread which performs all ptrace and wait operations on 1099 // the inferior. The thread consists of a main loop which waits for events and processes them 1100 // - SIGCHLD (delivered over a signalfd file descriptor): These signals notify us of events in 1101 // the inferior process. Upon receiving this signal we do a waitpid to get more information 1102 // and dispatch to NativeProcessLinux::MonitorCallback. 1103 // - requests for ptrace operations: These initiated via the DoOperation method, which funnels 1104 // them to the Monitor thread via m_operation member. The Monitor thread is signaled over a 1105 // pipe, and the completion of the operation is signalled over the semaphore. 1106 // - thread exit event: this is signaled from the Monitor destructor by closing the write end 1107 // of the command pipe. 1108 class NativeProcessLinux::Monitor { 1109 private: 1110 // The initial monitor operation (launch or attach). It returns a inferior process id. 1111 std::unique_ptr<InitialOperation> m_initial_operation_up; 1112 1113 ::pid_t m_child_pid = -1; 1114 NativeProcessLinux * m_native_process; 1115 1116 enum { READ, WRITE }; 1117 int m_pipefd[2] = {-1, -1}; 1118 int m_signal_fd = -1; 1119 HostThread m_thread; 1120 1121 // current operation which must be executed on the priviliged thread 1122 Mutex m_operation_mutex; 1123 Operation *m_operation = nullptr; 1124 sem_t m_operation_sem; 1125 Error m_operation_error; 1126 1127 static constexpr char operation_command = 'o'; 1128 1129 void 1130 HandleSignals(); 1131 1132 void 1133 HandleWait(); 1134 1135 // Returns true if the thread should exit. 1136 bool 1137 HandleCommands(); 1138 1139 void 1140 MainLoop(); 1141 1142 static void * 1143 RunMonitor(void *arg); 1144 1145 Error 1146 WaitForOperation(); 1147 public: 1148 Monitor(const InitialOperation &initial_operation, 1149 NativeProcessLinux *native_process) 1150 : m_initial_operation_up(new InitialOperation(initial_operation)), 1151 m_native_process(native_process) 1152 { 1153 sem_init(&m_operation_sem, 0, 0); 1154 } 1155 1156 ~Monitor(); 1157 1158 Error 1159 Initialize(); 1160 1161 void 1162 DoOperation(Operation *op); 1163 }; 1164 constexpr char NativeProcessLinux::Monitor::operation_command; 1165 1166 Error 1167 NativeProcessLinux::Monitor::Initialize() 1168 { 1169 Error error; 1170 1171 // We get a SIGCHLD every time something interesting happens with the inferior. We shall be 1172 // listening for these signals over a signalfd file descriptors. This allows us to wait for 1173 // multiple kinds of events with select. 1174 sigset_t signals; 1175 sigemptyset(&signals); 1176 sigaddset(&signals, SIGCHLD); 1177 m_signal_fd = signalfd(-1, &signals, SFD_NONBLOCK | SFD_CLOEXEC); 1178 if (m_signal_fd < 0) 1179 { 1180 return Error("NativeProcessLinux::Monitor::%s failed due to signalfd failure. Monitoring the inferior will be impossible: %s", 1181 __FUNCTION__, strerror(errno)); 1182 1183 } 1184 1185 if (pipe2(m_pipefd, O_CLOEXEC) == -1) 1186 { 1187 error.SetErrorToErrno(); 1188 return error; 1189 } 1190 1191 if ((error = EnsureFDFlags(m_pipefd[READ], O_NONBLOCK)).Fail()) { 1192 return error; 1193 } 1194 1195 static const char g_thread_name[] = "lldb.process.nativelinux.monitor"; 1196 m_thread = ThreadLauncher::LaunchThread(g_thread_name, Monitor::RunMonitor, this, nullptr); 1197 if (!m_thread.IsJoinable()) 1198 return Error("Failed to create monitor thread for NativeProcessLinux."); 1199 1200 // Wait for initial operation to complete. 1201 return WaitForOperation(); 1202 } 1203 1204 void 1205 NativeProcessLinux::Monitor::DoOperation(Operation *op) 1206 { 1207 if (m_thread.EqualsThread(pthread_self())) { 1208 // If we're on the Monitor thread, we can simply execute the operation. 1209 op->Execute(m_native_process); 1210 return; 1211 } 1212 1213 // Otherwise we need to pass the operation to the Monitor thread so it can handle it. 1214 Mutex::Locker lock(m_operation_mutex); 1215 1216 m_operation = op; 1217 1218 // notify the thread that an operation is ready to be processed 1219 write(m_pipefd[WRITE], &operation_command, sizeof operation_command); 1220 1221 WaitForOperation(); 1222 } 1223 1224 NativeProcessLinux::Monitor::~Monitor() 1225 { 1226 if (m_pipefd[WRITE] >= 0) 1227 close(m_pipefd[WRITE]); 1228 if (m_thread.IsJoinable()) 1229 m_thread.Join(nullptr); 1230 if (m_pipefd[READ] >= 0) 1231 close(m_pipefd[READ]); 1232 if (m_signal_fd >= 0) 1233 close(m_signal_fd); 1234 sem_destroy(&m_operation_sem); 1235 } 1236 1237 void 1238 NativeProcessLinux::Monitor::HandleSignals() 1239 { 1240 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1241 1242 // We don't really care about the content of the SIGCHLD siginfo structure, as we will get 1243 // all the information from waitpid(). We just need to read all the signals so that we can 1244 // sleep next time we reach select(). 1245 while (true) 1246 { 1247 signalfd_siginfo info; 1248 ssize_t size = read(m_signal_fd, &info, sizeof info); 1249 if (size == -1) 1250 { 1251 if (errno == EAGAIN || errno == EWOULDBLOCK) 1252 break; // We are done. 1253 if (errno == EINTR) 1254 continue; 1255 if (log) 1256 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor failed: %s", 1257 __FUNCTION__, strerror(errno)); 1258 break; 1259 } 1260 if (size != sizeof info) 1261 { 1262 // We got incomplete information structure. This should not happen, let's just log 1263 // that. 1264 if (log) 1265 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor returned incomplete data: " 1266 "structure size is %zd, read returned %zd bytes", 1267 __FUNCTION__, sizeof info, size); 1268 break; 1269 } 1270 if (log) 1271 log->Printf("NativeProcessLinux::Monitor::%s received signal %s(%d).", __FUNCTION__, 1272 Host::GetSignalAsCString(info.ssi_signo), info.ssi_signo); 1273 } 1274 } 1275 1276 void 1277 NativeProcessLinux::Monitor::HandleWait() 1278 { 1279 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1280 // Process all pending waitpid notifications. 1281 while (true) 1282 { 1283 int status = -1; 1284 ::pid_t wait_pid = waitpid(m_child_pid, &status, __WALL | WNOHANG); 1285 1286 if (wait_pid == 0) 1287 break; // We are done. 1288 1289 if (wait_pid == -1) 1290 { 1291 if (errno == EINTR) 1292 continue; 1293 1294 if (log) 1295 log->Printf("NativeProcessLinux::Monitor::%s waitpid (pid = %" PRIi32 ", &status, __WALL | WNOHANG) failed: %s", 1296 __FUNCTION__, m_child_pid, strerror(errno)); 1297 break; 1298 } 1299 1300 bool exited = false; 1301 int signal = 0; 1302 int exit_status = 0; 1303 const char *status_cstr = NULL; 1304 if (WIFSTOPPED(status)) 1305 { 1306 signal = WSTOPSIG(status); 1307 status_cstr = "STOPPED"; 1308 } 1309 else if (WIFEXITED(status)) 1310 { 1311 exit_status = WEXITSTATUS(status); 1312 status_cstr = "EXITED"; 1313 exited = true; 1314 } 1315 else if (WIFSIGNALED(status)) 1316 { 1317 signal = WTERMSIG(status); 1318 status_cstr = "SIGNALED"; 1319 if (wait_pid == abs(m_child_pid)) { 1320 exited = true; 1321 exit_status = -1; 1322 } 1323 } 1324 else 1325 status_cstr = "(\?\?\?)"; 1326 1327 if (log) 1328 log->Printf("NativeProcessLinux::Monitor::%s: waitpid (pid = %" PRIi32 ", &status, __WALL | WNOHANG)" 1329 "=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i", 1330 __FUNCTION__, m_child_pid, wait_pid, status, status_cstr, signal, exit_status); 1331 1332 m_native_process->MonitorCallback (wait_pid, exited, signal, exit_status); 1333 } 1334 } 1335 1336 bool 1337 NativeProcessLinux::Monitor::HandleCommands() 1338 { 1339 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1340 1341 while (true) 1342 { 1343 char command = 0; 1344 ssize_t size = read(m_pipefd[READ], &command, sizeof command); 1345 if (size == -1) 1346 { 1347 if (errno == EAGAIN || errno == EWOULDBLOCK) 1348 return false; 1349 if (errno == EINTR) 1350 continue; 1351 if (log) 1352 log->Printf("NativeProcessLinux::Monitor::%s exiting because read from command file descriptor failed: %s", __FUNCTION__, strerror(errno)); 1353 return true; 1354 } 1355 if (size == 0) // end of file - write end closed 1356 { 1357 if (log) 1358 log->Printf("NativeProcessLinux::Monitor::%s exit command received, exiting...", __FUNCTION__); 1359 return true; // We are done. 1360 } 1361 1362 switch (command) 1363 { 1364 case operation_command: 1365 m_operation->Execute(m_native_process); 1366 1367 // notify calling thread that operation is complete 1368 sem_post(&m_operation_sem); 1369 break; 1370 default: 1371 if (log) 1372 log->Printf("NativeProcessLinux::Monitor::%s received unknown command '%c'", 1373 __FUNCTION__, command); 1374 } 1375 } 1376 } 1377 1378 void 1379 NativeProcessLinux::Monitor::MainLoop() 1380 { 1381 ::pid_t child_pid = (*m_initial_operation_up)(m_operation_error); 1382 m_initial_operation_up.reset(); 1383 m_child_pid = -getpgid(child_pid), 1384 sem_post(&m_operation_sem); 1385 1386 while (true) 1387 { 1388 fd_set fds; 1389 FD_ZERO(&fds); 1390 FD_SET(m_signal_fd, &fds); 1391 FD_SET(m_pipefd[READ], &fds); 1392 1393 int max_fd = std::max(m_signal_fd, m_pipefd[READ]) + 1; 1394 int r = select(max_fd, &fds, nullptr, nullptr, nullptr); 1395 if (r < 0) 1396 { 1397 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1398 if (log) 1399 log->Printf("NativeProcessLinux::Monitor::%s exiting because select failed: %s", 1400 __FUNCTION__, strerror(errno)); 1401 return; 1402 } 1403 1404 if (FD_ISSET(m_pipefd[READ], &fds)) 1405 { 1406 if (HandleCommands()) 1407 return; 1408 } 1409 1410 if (FD_ISSET(m_signal_fd, &fds)) 1411 { 1412 HandleSignals(); 1413 HandleWait(); 1414 } 1415 } 1416 } 1417 1418 Error 1419 NativeProcessLinux::Monitor::WaitForOperation() 1420 { 1421 Error error; 1422 while (sem_wait(&m_operation_sem) != 0) 1423 { 1424 if (errno == EINTR) 1425 continue; 1426 1427 error.SetErrorToErrno(); 1428 return error; 1429 } 1430 1431 return m_operation_error; 1432 } 1433 1434 void * 1435 NativeProcessLinux::Monitor::RunMonitor(void *arg) 1436 { 1437 static_cast<Monitor *>(arg)->MainLoop(); 1438 return nullptr; 1439 } 1440 1441 1442 NativeProcessLinux::LaunchArgs::LaunchArgs(Module *module, 1443 char const **argv, 1444 char const **envp, 1445 const std::string &stdin_path, 1446 const std::string &stdout_path, 1447 const std::string &stderr_path, 1448 const char *working_dir, 1449 const ProcessLaunchInfo &launch_info) 1450 : m_module(module), 1451 m_argv(argv), 1452 m_envp(envp), 1453 m_stdin_path(stdin_path), 1454 m_stdout_path(stdout_path), 1455 m_stderr_path(stderr_path), 1456 m_working_dir(working_dir), 1457 m_launch_info(launch_info) 1458 { 1459 } 1460 1461 NativeProcessLinux::LaunchArgs::~LaunchArgs() 1462 { } 1463 1464 // ----------------------------------------------------------------------------- 1465 // Public Static Methods 1466 // ----------------------------------------------------------------------------- 1467 1468 Error 1469 NativeProcessLinux::LaunchProcess ( 1470 Module *exe_module, 1471 ProcessLaunchInfo &launch_info, 1472 NativeProcessProtocol::NativeDelegate &native_delegate, 1473 NativeProcessProtocolSP &native_process_sp) 1474 { 1475 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1476 1477 Error error; 1478 1479 // Verify the working directory is valid if one was specified. 1480 const char* working_dir = launch_info.GetWorkingDirectory (); 1481 if (working_dir) 1482 { 1483 FileSpec working_dir_fs (working_dir, true); 1484 if (!working_dir_fs || working_dir_fs.GetFileType () != FileSpec::eFileTypeDirectory) 1485 { 1486 error.SetErrorStringWithFormat ("No such file or directory: %s", working_dir); 1487 return error; 1488 } 1489 } 1490 1491 const FileAction *file_action; 1492 1493 // Default of NULL will mean to use existing open file descriptors. 1494 std::string stdin_path; 1495 std::string stdout_path; 1496 std::string stderr_path; 1497 1498 file_action = launch_info.GetFileActionForFD (STDIN_FILENO); 1499 if (file_action) 1500 stdin_path = file_action->GetPath (); 1501 1502 file_action = launch_info.GetFileActionForFD (STDOUT_FILENO); 1503 if (file_action) 1504 stdout_path = file_action->GetPath (); 1505 1506 file_action = launch_info.GetFileActionForFD (STDERR_FILENO); 1507 if (file_action) 1508 stderr_path = file_action->GetPath (); 1509 1510 if (log) 1511 { 1512 if (!stdin_path.empty ()) 1513 log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'", __FUNCTION__, stdin_path.c_str ()); 1514 else 1515 log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__); 1516 1517 if (!stdout_path.empty ()) 1518 log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'", __FUNCTION__, stdout_path.c_str ()); 1519 else 1520 log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__); 1521 1522 if (!stderr_path.empty ()) 1523 log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'", __FUNCTION__, stderr_path.c_str ()); 1524 else 1525 log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__); 1526 } 1527 1528 // Create the NativeProcessLinux in launch mode. 1529 native_process_sp.reset (new NativeProcessLinux ()); 1530 1531 if (log) 1532 { 1533 int i = 0; 1534 for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i) 1535 { 1536 log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr"); 1537 ++i; 1538 } 1539 } 1540 1541 if (!native_process_sp->RegisterNativeDelegate (native_delegate)) 1542 { 1543 native_process_sp.reset (); 1544 error.SetErrorStringWithFormat ("failed to register the native delegate"); 1545 return error; 1546 } 1547 1548 std::static_pointer_cast<NativeProcessLinux> (native_process_sp)->LaunchInferior ( 1549 exe_module, 1550 launch_info.GetArguments ().GetConstArgumentVector (), 1551 launch_info.GetEnvironmentEntries ().GetConstArgumentVector (), 1552 stdin_path, 1553 stdout_path, 1554 stderr_path, 1555 working_dir, 1556 launch_info, 1557 error); 1558 1559 if (error.Fail ()) 1560 { 1561 native_process_sp.reset (); 1562 if (log) 1563 log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ()); 1564 return error; 1565 } 1566 1567 launch_info.SetProcessID (native_process_sp->GetID ()); 1568 1569 return error; 1570 } 1571 1572 Error 1573 NativeProcessLinux::AttachToProcess ( 1574 lldb::pid_t pid, 1575 NativeProcessProtocol::NativeDelegate &native_delegate, 1576 NativeProcessProtocolSP &native_process_sp) 1577 { 1578 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1579 if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE)) 1580 log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid); 1581 1582 // Grab the current platform architecture. This should be Linux, 1583 // since this code is only intended to run on a Linux host. 1584 PlatformSP platform_sp (Platform::GetHostPlatform ()); 1585 if (!platform_sp) 1586 return Error("failed to get a valid default platform"); 1587 1588 // Retrieve the architecture for the running process. 1589 ArchSpec process_arch; 1590 Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch); 1591 if (!error.Success ()) 1592 return error; 1593 1594 std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ()); 1595 1596 if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate)) 1597 { 1598 error.SetErrorStringWithFormat ("failed to register the native delegate"); 1599 return error; 1600 } 1601 1602 native_process_linux_sp->AttachToInferior (pid, error); 1603 if (!error.Success ()) 1604 return error; 1605 1606 native_process_sp = native_process_linux_sp; 1607 return error; 1608 } 1609 1610 // ----------------------------------------------------------------------------- 1611 // Public Instance Methods 1612 // ----------------------------------------------------------------------------- 1613 1614 NativeProcessLinux::NativeProcessLinux () : 1615 NativeProcessProtocol (LLDB_INVALID_PROCESS_ID), 1616 m_arch (), 1617 m_supports_mem_region (eLazyBoolCalculate), 1618 m_mem_region_cache (), 1619 m_mem_region_cache_mutex (), 1620 m_coordinator_up (new ThreadStateCoordinator (GetThreadLoggerFunction ())), 1621 m_coordinator_thread () 1622 { 1623 } 1624 1625 //------------------------------------------------------------------------------ 1626 // NativeProcessLinux spawns a new thread which performs all operations on the inferior process. 1627 // Refer to Monitor and Operation classes to see why this is necessary. 1628 //------------------------------------------------------------------------------ 1629 void 1630 NativeProcessLinux::LaunchInferior ( 1631 Module *module, 1632 const char *argv[], 1633 const char *envp[], 1634 const std::string &stdin_path, 1635 const std::string &stdout_path, 1636 const std::string &stderr_path, 1637 const char *working_dir, 1638 const ProcessLaunchInfo &launch_info, 1639 Error &error) 1640 { 1641 if (module) 1642 m_arch = module->GetArchitecture (); 1643 1644 SetState (eStateLaunching); 1645 1646 std::unique_ptr<LaunchArgs> args( 1647 new LaunchArgs( 1648 module, argv, envp, 1649 stdin_path, stdout_path, stderr_path, 1650 working_dir, launch_info)); 1651 1652 StartMonitorThread ([&] (Error &e) { return Launch(args.get(), e); }, error); 1653 if (!error.Success ()) 1654 return; 1655 1656 error = StartCoordinatorThread (); 1657 if (!error.Success ()) 1658 return; 1659 } 1660 1661 void 1662 NativeProcessLinux::AttachToInferior (lldb::pid_t pid, Error &error) 1663 { 1664 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1665 if (log) 1666 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid); 1667 1668 // We can use the Host for everything except the ResolveExecutable portion. 1669 PlatformSP platform_sp = Platform::GetHostPlatform (); 1670 if (!platform_sp) 1671 { 1672 if (log) 1673 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid); 1674 error.SetErrorString ("no default platform available"); 1675 return; 1676 } 1677 1678 // Gather info about the process. 1679 ProcessInstanceInfo process_info; 1680 if (!platform_sp->GetProcessInfo (pid, process_info)) 1681 { 1682 if (log) 1683 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid); 1684 error.SetErrorString ("failed to get process info"); 1685 return; 1686 } 1687 1688 // Resolve the executable module 1689 ModuleSP exe_module_sp; 1690 FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths()); 1691 ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture()); 1692 error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp, 1693 executable_search_paths.GetSize() ? &executable_search_paths : NULL); 1694 if (!error.Success()) 1695 return; 1696 1697 // Set the architecture to the exe architecture. 1698 m_arch = exe_module_sp->GetArchitecture(); 1699 if (log) 1700 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ()); 1701 1702 m_pid = pid; 1703 SetState(eStateAttaching); 1704 1705 StartMonitorThread ([=] (Error &e) { return Attach(pid, e); }, error); 1706 if (!error.Success ()) 1707 return; 1708 1709 error = StartCoordinatorThread (); 1710 if (!error.Success ()) 1711 return; 1712 } 1713 1714 void 1715 NativeProcessLinux::Terminate () 1716 { 1717 StopMonitor(); 1718 } 1719 1720 ::pid_t 1721 NativeProcessLinux::Launch(LaunchArgs *args, Error &error) 1722 { 1723 assert (args && "null args"); 1724 1725 const char **argv = args->m_argv; 1726 const char **envp = args->m_envp; 1727 const char *working_dir = args->m_working_dir; 1728 1729 lldb_utility::PseudoTerminal terminal; 1730 const size_t err_len = 1024; 1731 char err_str[err_len]; 1732 lldb::pid_t pid; 1733 NativeThreadProtocolSP thread_sp; 1734 1735 lldb::ThreadSP inferior; 1736 1737 // Propagate the environment if one is not supplied. 1738 if (envp == NULL || envp[0] == NULL) 1739 envp = const_cast<const char **>(environ); 1740 1741 if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1)) 1742 { 1743 error.SetErrorToGenericError(); 1744 error.SetErrorStringWithFormat("Process fork failed: %s", err_str); 1745 return -1; 1746 } 1747 1748 // Recognized child exit status codes. 1749 enum { 1750 ePtraceFailed = 1, 1751 eDupStdinFailed, 1752 eDupStdoutFailed, 1753 eDupStderrFailed, 1754 eChdirFailed, 1755 eExecFailed, 1756 eSetGidFailed 1757 }; 1758 1759 // Child process. 1760 if (pid == 0) 1761 { 1762 // FIXME consider opening a pipe between parent/child and have this forked child 1763 // send log info to parent re: launch status, in place of the log lines removed here. 1764 1765 // Start tracing this child that is about to exec. 1766 PTRACE(PTRACE_TRACEME, 0, nullptr, nullptr, 0, error); 1767 if (error.Fail()) 1768 exit(ePtraceFailed); 1769 1770 // terminal has already dupped the tty descriptors to stdin/out/err. 1771 // This closes original fd from which they were copied (and avoids 1772 // leaking descriptors to the debugged process. 1773 terminal.CloseSlaveFileDescriptor(); 1774 1775 // Do not inherit setgid powers. 1776 if (setgid(getgid()) != 0) 1777 exit(eSetGidFailed); 1778 1779 // Attempt to have our own process group. 1780 if (setpgid(0, 0) != 0) 1781 { 1782 // FIXME log that this failed. This is common. 1783 // Don't allow this to prevent an inferior exec. 1784 } 1785 1786 // Dup file descriptors if needed. 1787 if (!args->m_stdin_path.empty ()) 1788 if (!DupDescriptor(args->m_stdin_path.c_str (), STDIN_FILENO, O_RDONLY)) 1789 exit(eDupStdinFailed); 1790 1791 if (!args->m_stdout_path.empty ()) 1792 if (!DupDescriptor(args->m_stdout_path.c_str (), STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC)) 1793 exit(eDupStdoutFailed); 1794 1795 if (!args->m_stderr_path.empty ()) 1796 if (!DupDescriptor(args->m_stderr_path.c_str (), STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC)) 1797 exit(eDupStderrFailed); 1798 1799 // Change working directory 1800 if (working_dir != NULL && working_dir[0]) 1801 if (0 != ::chdir(working_dir)) 1802 exit(eChdirFailed); 1803 1804 // Disable ASLR if requested. 1805 if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR)) 1806 { 1807 const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS); 1808 if (old_personality == -1) 1809 { 1810 // Can't retrieve Linux personality. Cannot disable ASLR. 1811 } 1812 else 1813 { 1814 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality); 1815 if (new_personality == -1) 1816 { 1817 // Disabling ASLR failed. 1818 } 1819 else 1820 { 1821 // Disabling ASLR succeeded. 1822 } 1823 } 1824 } 1825 1826 // Execute. We should never return... 1827 execve(argv[0], 1828 const_cast<char *const *>(argv), 1829 const_cast<char *const *>(envp)); 1830 1831 // ...unless exec fails. In which case we definitely need to end the child here. 1832 exit(eExecFailed); 1833 } 1834 1835 // 1836 // This is the parent code here. 1837 // 1838 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1839 1840 // Wait for the child process to trap on its call to execve. 1841 ::pid_t wpid; 1842 int status; 1843 if ((wpid = waitpid(pid, &status, 0)) < 0) 1844 { 1845 error.SetErrorToErrno(); 1846 if (log) 1847 log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s", 1848 __FUNCTION__, error.AsCString ()); 1849 1850 // Mark the inferior as invalid. 1851 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1852 SetState (StateType::eStateInvalid); 1853 1854 return -1; 1855 } 1856 else if (WIFEXITED(status)) 1857 { 1858 // open, dup or execve likely failed for some reason. 1859 error.SetErrorToGenericError(); 1860 switch (WEXITSTATUS(status)) 1861 { 1862 case ePtraceFailed: 1863 error.SetErrorString("Child ptrace failed."); 1864 break; 1865 case eDupStdinFailed: 1866 error.SetErrorString("Child open stdin failed."); 1867 break; 1868 case eDupStdoutFailed: 1869 error.SetErrorString("Child open stdout failed."); 1870 break; 1871 case eDupStderrFailed: 1872 error.SetErrorString("Child open stderr failed."); 1873 break; 1874 case eChdirFailed: 1875 error.SetErrorString("Child failed to set working directory."); 1876 break; 1877 case eExecFailed: 1878 error.SetErrorString("Child exec failed."); 1879 break; 1880 case eSetGidFailed: 1881 error.SetErrorString("Child setgid failed."); 1882 break; 1883 default: 1884 error.SetErrorString("Child returned unknown exit status."); 1885 break; 1886 } 1887 1888 if (log) 1889 { 1890 log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP", 1891 __FUNCTION__, 1892 WEXITSTATUS(status)); 1893 } 1894 1895 // Mark the inferior as invalid. 1896 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1897 SetState (StateType::eStateInvalid); 1898 1899 return -1; 1900 } 1901 assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) && 1902 "Could not sync with inferior process."); 1903 1904 if (log) 1905 log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__); 1906 1907 error = SetDefaultPtraceOpts(pid); 1908 if (error.Fail()) 1909 { 1910 if (log) 1911 log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s", 1912 __FUNCTION__, error.AsCString ()); 1913 1914 // Mark the inferior as invalid. 1915 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1916 SetState (StateType::eStateInvalid); 1917 1918 return -1; 1919 } 1920 1921 // Release the master terminal descriptor and pass it off to the 1922 // NativeProcessLinux instance. Similarly stash the inferior pid. 1923 m_terminal_fd = terminal.ReleaseMasterFileDescriptor(); 1924 m_pid = pid; 1925 1926 // Set the terminal fd to be in non blocking mode (it simplifies the 1927 // implementation of ProcessLinux::GetSTDOUT to have a non-blocking 1928 // descriptor to read from). 1929 error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 1930 if (error.Fail()) 1931 { 1932 if (log) 1933 log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s", 1934 __FUNCTION__, error.AsCString ()); 1935 1936 // Mark the inferior as invalid. 1937 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1938 SetState (StateType::eStateInvalid); 1939 1940 return -1; 1941 } 1942 1943 if (log) 1944 log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid); 1945 1946 thread_sp = AddThread (pid); 1947 assert (thread_sp && "AddThread() returned a nullptr thread"); 1948 NotifyThreadCreateStopped (pid); 1949 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP); 1950 1951 // Let our process instance know the thread has stopped. 1952 SetCurrentThreadID (thread_sp->GetID ()); 1953 SetState (StateType::eStateStopped); 1954 1955 if (log) 1956 { 1957 if (error.Success ()) 1958 { 1959 log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__); 1960 } 1961 else 1962 { 1963 log->Printf ("NativeProcessLinux::%s inferior launching failed: %s", 1964 __FUNCTION__, error.AsCString ()); 1965 return -1; 1966 } 1967 } 1968 return pid; 1969 } 1970 1971 ::pid_t 1972 NativeProcessLinux::Attach(lldb::pid_t pid, Error &error) 1973 { 1974 lldb::ThreadSP inferior; 1975 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1976 1977 // Use a map to keep track of the threads which we have attached/need to attach. 1978 Host::TidMap tids_to_attach; 1979 if (pid <= 1) 1980 { 1981 error.SetErrorToGenericError(); 1982 error.SetErrorString("Attaching to process 1 is not allowed."); 1983 return -1; 1984 } 1985 1986 while (Host::FindProcessThreads(pid, tids_to_attach)) 1987 { 1988 for (Host::TidMap::iterator it = tids_to_attach.begin(); 1989 it != tids_to_attach.end();) 1990 { 1991 if (it->second == false) 1992 { 1993 lldb::tid_t tid = it->first; 1994 1995 // Attach to the requested process. 1996 // An attach will cause the thread to stop with a SIGSTOP. 1997 PTRACE(PTRACE_ATTACH, tid, nullptr, nullptr, 0, error); 1998 if (error.Fail()) 1999 { 2000 // No such thread. The thread may have exited. 2001 // More error handling may be needed. 2002 if (error.GetError() == ESRCH) 2003 { 2004 it = tids_to_attach.erase(it); 2005 continue; 2006 } 2007 else 2008 return -1; 2009 } 2010 2011 int status; 2012 // Need to use __WALL otherwise we receive an error with errno=ECHLD 2013 // At this point we should have a thread stopped if waitpid succeeds. 2014 if ((status = waitpid(tid, NULL, __WALL)) < 0) 2015 { 2016 // No such thread. The thread may have exited. 2017 // More error handling may be needed. 2018 if (errno == ESRCH) 2019 { 2020 it = tids_to_attach.erase(it); 2021 continue; 2022 } 2023 else 2024 { 2025 error.SetErrorToErrno(); 2026 return -1; 2027 } 2028 } 2029 2030 error = SetDefaultPtraceOpts(tid); 2031 if (error.Fail()) 2032 return -1; 2033 2034 if (log) 2035 log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid); 2036 2037 it->second = true; 2038 2039 // Create the thread, mark it as stopped. 2040 NativeThreadProtocolSP thread_sp (AddThread (static_cast<lldb::tid_t> (tid))); 2041 assert (thread_sp && "AddThread() returned a nullptr"); 2042 2043 // This will notify this is a new thread and tell the system it is stopped. 2044 NotifyThreadCreateStopped (tid); 2045 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP); 2046 SetCurrentThreadID (thread_sp->GetID ()); 2047 } 2048 2049 // move the loop forward 2050 ++it; 2051 } 2052 } 2053 2054 if (tids_to_attach.size() > 0) 2055 { 2056 m_pid = pid; 2057 // Let our process instance know the thread has stopped. 2058 SetState (StateType::eStateStopped); 2059 } 2060 else 2061 { 2062 error.SetErrorToGenericError(); 2063 error.SetErrorString("No such process."); 2064 return -1; 2065 } 2066 2067 return pid; 2068 } 2069 2070 Error 2071 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) 2072 { 2073 long ptrace_opts = 0; 2074 2075 // Have the child raise an event on exit. This is used to keep the child in 2076 // limbo until it is destroyed. 2077 ptrace_opts |= PTRACE_O_TRACEEXIT; 2078 2079 // Have the tracer trace threads which spawn in the inferior process. 2080 // TODO: if we want to support tracing the inferiors' child, add the 2081 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) 2082 ptrace_opts |= PTRACE_O_TRACECLONE; 2083 2084 // Have the tracer notify us before execve returns 2085 // (needed to disable legacy SIGTRAP generation) 2086 ptrace_opts |= PTRACE_O_TRACEEXEC; 2087 2088 Error error; 2089 PTRACE(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts, 0, error); 2090 return error; 2091 } 2092 2093 static ExitType convert_pid_status_to_exit_type (int status) 2094 { 2095 if (WIFEXITED (status)) 2096 return ExitType::eExitTypeExit; 2097 else if (WIFSIGNALED (status)) 2098 return ExitType::eExitTypeSignal; 2099 else if (WIFSTOPPED (status)) 2100 return ExitType::eExitTypeStop; 2101 else 2102 { 2103 // We don't know what this is. 2104 return ExitType::eExitTypeInvalid; 2105 } 2106 } 2107 2108 static int convert_pid_status_to_return_code (int status) 2109 { 2110 if (WIFEXITED (status)) 2111 return WEXITSTATUS (status); 2112 else if (WIFSIGNALED (status)) 2113 return WTERMSIG (status); 2114 else if (WIFSTOPPED (status)) 2115 return WSTOPSIG (status); 2116 else 2117 { 2118 // We don't know what this is. 2119 return ExitType::eExitTypeInvalid; 2120 } 2121 } 2122 2123 // Handles all waitpid events from the inferior process. 2124 void 2125 NativeProcessLinux::MonitorCallback(lldb::pid_t pid, 2126 bool exited, 2127 int signal, 2128 int status) 2129 { 2130 Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS)); 2131 2132 // Certain activities differ based on whether the pid is the tid of the main thread. 2133 const bool is_main_thread = (pid == GetID ()); 2134 2135 // Handle when the thread exits. 2136 if (exited) 2137 { 2138 if (log) 2139 log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %" PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not"); 2140 2141 // This is a thread that exited. Ensure we're not tracking it anymore. 2142 const bool thread_found = StopTrackingThread (pid); 2143 2144 // Make sure the thread state coordinator knows about this. 2145 NotifyThreadDeath (pid); 2146 2147 if (is_main_thread) 2148 { 2149 // We only set the exit status and notify the delegate if we haven't already set the process 2150 // state to an exited state. We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8) 2151 // for the main thread. 2152 const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed); 2153 if (!already_notified) 2154 { 2155 if (log) 2156 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ())); 2157 // The main thread exited. We're done monitoring. Report to delegate. 2158 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); 2159 2160 // Notify delegate that our process has exited. 2161 SetState (StateType::eStateExited, true); 2162 } 2163 else 2164 { 2165 if (log) 2166 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); 2167 } 2168 } 2169 else 2170 { 2171 // Do we want to report to the delegate in this case? I think not. If this was an orderly 2172 // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, 2173 // and we would have done an all-stop then. 2174 if (log) 2175 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); 2176 } 2177 return; 2178 } 2179 2180 // Get details on the signal raised. 2181 siginfo_t info; 2182 const auto err = GetSignalInfo(pid, &info); 2183 if (err.Success()) 2184 { 2185 // We have retrieved the signal info. Dispatch appropriately. 2186 if (info.si_signo == SIGTRAP) 2187 MonitorSIGTRAP(&info, pid); 2188 else 2189 MonitorSignal(&info, pid, exited); 2190 } 2191 else 2192 { 2193 if (err.GetError() == EINVAL) 2194 { 2195 // This is a group stop reception for this tid. 2196 if (log) 2197 log->Printf ("NativeThreadLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64, __FUNCTION__, GetID (), pid); 2198 NotifyThreadStop (pid); 2199 } 2200 else 2201 { 2202 // ptrace(GETSIGINFO) failed (but not due to group-stop). 2203 2204 // A return value of ESRCH means the thread/process is no longer on the system, 2205 // so it was killed somehow outside of our control. Either way, we can't do anything 2206 // with it anymore. 2207 2208 // Stop tracking the metadata for the thread since it's entirely off the system now. 2209 const bool thread_found = StopTrackingThread (pid); 2210 2211 // Make sure the thread state coordinator knows about this. 2212 NotifyThreadDeath (pid); 2213 2214 if (log) 2215 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)", 2216 __FUNCTION__, err.AsCString(), pid, signal, status, err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found"); 2217 2218 if (is_main_thread) 2219 { 2220 // Notify the delegate - our process is not available but appears to have been killed outside 2221 // our control. Is eStateExited the right exit state in this case? 2222 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); 2223 SetState (StateType::eStateExited, true); 2224 } 2225 else 2226 { 2227 // This thread was pulled out from underneath us. Anything to do here? Do we want to do an all stop? 2228 if (log) 2229 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid); 2230 } 2231 } 2232 } 2233 } 2234 2235 void 2236 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid) 2237 { 2238 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2239 const bool is_main_thread = (pid == GetID ()); 2240 2241 assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!"); 2242 if (!info) 2243 return; 2244 2245 Mutex::Locker locker (m_threads_mutex); 2246 2247 // See if we can find a thread for this signal. 2248 NativeThreadProtocolSP thread_sp = GetThreadByID (pid); 2249 if (!thread_sp) 2250 { 2251 if (log) 2252 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid); 2253 } 2254 2255 switch (info->si_code) 2256 { 2257 // TODO: these two cases are required if we want to support tracing of the inferiors' children. We'd need this to debug a monitor. 2258 // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 2259 // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 2260 2261 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): 2262 { 2263 lldb::tid_t tid = LLDB_INVALID_THREAD_ID; 2264 2265 // The main thread is stopped here. 2266 if (thread_sp) 2267 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGTRAP); 2268 NotifyThreadStop (pid); 2269 2270 unsigned long event_message = 0; 2271 if (GetEventMessage (pid, &event_message).Success()) 2272 { 2273 tid = static_cast<lldb::tid_t> (event_message); 2274 if (log) 2275 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event for tid %" PRIu64, __FUNCTION__, pid, tid); 2276 2277 // If we don't track the thread yet: create it, mark as stopped. 2278 // If we do track it, this is the wait we needed. Now resume the new thread. 2279 // In all cases, resume the current (i.e. main process) thread. 2280 bool created_now = false; 2281 NativeThreadProtocolSP new_thread_sp = GetOrCreateThread (tid, created_now); 2282 assert (new_thread_sp.get() && "failed to get or create the tracking data for newly created inferior thread"); 2283 2284 // If the thread was already tracked, it means the created thread already received its SI_USER notification of creation. 2285 if (!created_now) 2286 { 2287 // We can now resume the newly created thread since it is fully created. 2288 NotifyThreadCreateStopped (tid); 2289 m_coordinator_up->RequestThreadResume (tid, 2290 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2291 { 2292 std::static_pointer_cast<NativeThreadLinux> (new_thread_sp)->SetRunning (); 2293 return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER); 2294 }, 2295 CoordinatorErrorHandler); 2296 } 2297 else 2298 { 2299 // Mark the thread as currently launching. Need to wait for SIGTRAP clone on the main thread before 2300 // this thread is ready to go. 2301 std::static_pointer_cast<NativeThreadLinux> (new_thread_sp)->SetLaunching (); 2302 } 2303 } 2304 else 2305 { 2306 if (log) 2307 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, pid); 2308 } 2309 2310 // In all cases, we can resume the main thread here. 2311 m_coordinator_up->RequestThreadResume (pid, 2312 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2313 { 2314 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning (); 2315 return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER); 2316 }, 2317 CoordinatorErrorHandler); 2318 2319 break; 2320 } 2321 2322 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): 2323 { 2324 NativeThreadProtocolSP main_thread_sp; 2325 if (log) 2326 log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP); 2327 2328 // The thread state coordinator needs to reset due to the exec. 2329 m_coordinator_up->ResetForExec (); 2330 2331 // Remove all but the main thread here. Linux fork creates a new process which only copies the main thread. Mutexes are in undefined state. 2332 if (log) 2333 log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__); 2334 2335 for (auto thread_sp : m_threads) 2336 { 2337 const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID (); 2338 if (is_main_thread) 2339 { 2340 main_thread_sp = thread_sp; 2341 if (log) 2342 log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ()); 2343 } 2344 else 2345 { 2346 // Tell thread coordinator this thread is dead. 2347 if (log) 2348 log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ()); 2349 } 2350 } 2351 2352 m_threads.clear (); 2353 2354 if (main_thread_sp) 2355 { 2356 m_threads.push_back (main_thread_sp); 2357 SetCurrentThreadID (main_thread_sp->GetID ()); 2358 std::static_pointer_cast<NativeThreadLinux> (main_thread_sp)->SetStoppedByExec (); 2359 } 2360 else 2361 { 2362 SetCurrentThreadID (LLDB_INVALID_THREAD_ID); 2363 if (log) 2364 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ()); 2365 } 2366 2367 // Tell coordinator about about the "new" (since exec) stopped main thread. 2368 const lldb::tid_t main_thread_tid = GetID (); 2369 NotifyThreadCreateStopped (main_thread_tid); 2370 2371 // NOTE: ideally these next statements would execute at the same time as the coordinator thread create was executed. 2372 // Consider a handler that can execute when that happens. 2373 // Let our delegate know we have just exec'd. 2374 NotifyDidExec (); 2375 2376 // If we have a main thread, indicate we are stopped. 2377 assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked"); 2378 2379 // Let the process know we're stopped. 2380 CallAfterRunningThreadsStop (pid, 2381 [=] (lldb::tid_t signaling_tid) 2382 { 2383 SetState (StateType::eStateStopped, true); 2384 }); 2385 2386 break; 2387 } 2388 2389 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): 2390 { 2391 // The inferior process or one of its threads is about to exit. 2392 2393 // This thread is currently stopped. It's not actually dead yet, just about to be. 2394 NotifyThreadStop (pid); 2395 2396 unsigned long data = 0; 2397 if (GetEventMessage(pid, &data).Fail()) 2398 data = -1; 2399 2400 if (log) 2401 { 2402 log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)", 2403 __FUNCTION__, 2404 data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false", 2405 pid, 2406 is_main_thread ? "is main thread" : "not main thread"); 2407 } 2408 2409 if (is_main_thread) 2410 { 2411 SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true); 2412 } 2413 2414 const int signo = static_cast<int> (data); 2415 m_coordinator_up->RequestThreadResume (pid, 2416 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2417 { 2418 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning (); 2419 return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo); 2420 }, 2421 CoordinatorErrorHandler); 2422 2423 break; 2424 } 2425 2426 case 0: 2427 case TRAP_TRACE: // We receive this on single stepping. 2428 case TRAP_HWBKPT: // We receive this on watchpoint hit 2429 if (thread_sp) 2430 { 2431 // If a watchpoint was hit, report it 2432 uint32_t wp_index; 2433 Error error = thread_sp->GetRegisterContext()->GetWatchpointHitIndex(wp_index); 2434 if (error.Fail() && log) 2435 log->Printf("NativeProcessLinux::%s() " 2436 "received error while checking for watchpoint hits, " 2437 "pid = %" PRIu64 " error = %s", 2438 __FUNCTION__, pid, error.AsCString()); 2439 if (wp_index != LLDB_INVALID_INDEX32) 2440 { 2441 MonitorWatchpoint(pid, thread_sp, wp_index); 2442 break; 2443 } 2444 } 2445 // Otherwise, report step over 2446 MonitorTrace(pid, thread_sp); 2447 break; 2448 2449 case SI_KERNEL: 2450 case TRAP_BRKPT: 2451 MonitorBreakpoint(pid, thread_sp); 2452 break; 2453 2454 case SIGTRAP: 2455 case (SIGTRAP | 0x80): 2456 if (log) 2457 log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), pid); 2458 2459 // This thread is currently stopped. 2460 NotifyThreadStop (pid); 2461 if (thread_sp) 2462 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGTRAP); 2463 2464 2465 // Ignore these signals until we know more about them. 2466 m_coordinator_up->RequestThreadResume (pid, 2467 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2468 { 2469 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning (); 2470 return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER); 2471 }, 2472 CoordinatorErrorHandler); 2473 break; 2474 2475 default: 2476 assert(false && "Unexpected SIGTRAP code!"); 2477 if (log) 2478 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%" PRIx64, __FUNCTION__, GetID (), pid, static_cast<uint64_t> (SIGTRAP | (PTRACE_EVENT_CLONE << 8))); 2479 break; 2480 2481 } 2482 } 2483 2484 void 2485 NativeProcessLinux::MonitorTrace(lldb::pid_t pid, NativeThreadProtocolSP thread_sp) 2486 { 2487 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2488 if (log) 2489 log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)", 2490 __FUNCTION__, pid); 2491 2492 if (thread_sp) 2493 std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace(); 2494 2495 // This thread is currently stopped. 2496 NotifyThreadStop(pid); 2497 2498 // Here we don't have to request the rest of the threads to stop or request a deferred stop. 2499 // This would have already happened at the time the Resume() with step operation was signaled. 2500 // At this point, we just need to say we stopped, and the deferred notifcation will fire off 2501 // once all running threads have checked in as stopped. 2502 SetCurrentThreadID(pid); 2503 // Tell the process we have a stop (from software breakpoint). 2504 CallAfterRunningThreadsStop(pid, 2505 [=](lldb::tid_t signaling_tid) 2506 { 2507 SetState(StateType::eStateStopped, true); 2508 }); 2509 } 2510 2511 void 2512 NativeProcessLinux::MonitorBreakpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp) 2513 { 2514 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 2515 if (log) 2516 log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64, 2517 __FUNCTION__, pid); 2518 2519 // This thread is currently stopped. 2520 NotifyThreadStop(pid); 2521 2522 // Mark the thread as stopped at breakpoint. 2523 if (thread_sp) 2524 { 2525 std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByBreakpoint(); 2526 Error error = FixupBreakpointPCAsNeeded(thread_sp); 2527 if (error.Fail()) 2528 if (log) 2529 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s", 2530 __FUNCTION__, pid, error.AsCString()); 2531 2532 auto it = m_threads_stepping_with_breakpoint.find(pid); 2533 if (it != m_threads_stepping_with_breakpoint.end()) 2534 { 2535 Error error = RemoveBreakpoint (it->second); 2536 if (error.Fail()) 2537 if (log) 2538 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s", 2539 __FUNCTION__, pid, error.AsCString()); 2540 2541 m_threads_stepping_with_breakpoint.erase(it); 2542 std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace(); 2543 } 2544 } 2545 else 2546 if (log) 2547 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 ": " 2548 "warning, cannot process software breakpoint since no thread metadata", 2549 __FUNCTION__, pid); 2550 2551 2552 // We need to tell all other running threads before we notify the delegate about this stop. 2553 CallAfterRunningThreadsStop(pid, 2554 [=](lldb::tid_t deferred_notification_tid) 2555 { 2556 SetCurrentThreadID(deferred_notification_tid); 2557 // Tell the process we have a stop (from software breakpoint). 2558 SetState(StateType::eStateStopped, true); 2559 }); 2560 } 2561 2562 void 2563 NativeProcessLinux::MonitorWatchpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp, uint32_t wp_index) 2564 { 2565 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); 2566 if (log) 2567 log->Printf("NativeProcessLinux::%s() received watchpoint event, " 2568 "pid = %" PRIu64 ", wp_index = %" PRIu32, 2569 __FUNCTION__, pid, wp_index); 2570 2571 // This thread is currently stopped. 2572 NotifyThreadStop(pid); 2573 2574 // Mark the thread as stopped at watchpoint. 2575 // The address is at (lldb::addr_t)info->si_addr if we need it. 2576 lldbassert(thread_sp && "thread_sp cannot be NULL"); 2577 std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByWatchpoint(wp_index); 2578 2579 // We need to tell all other running threads before we notify the delegate about this stop. 2580 CallAfterRunningThreadsStop(pid, 2581 [=](lldb::tid_t deferred_notification_tid) 2582 { 2583 SetCurrentThreadID(deferred_notification_tid); 2584 // Tell the process we have a stop (from watchpoint). 2585 SetState(StateType::eStateStopped, true); 2586 }); 2587 } 2588 2589 void 2590 NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited) 2591 { 2592 assert (info && "null info"); 2593 if (!info) 2594 return; 2595 2596 const int signo = info->si_signo; 2597 const bool is_from_llgs = info->si_pid == getpid (); 2598 2599 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2600 2601 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 2602 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a 2603 // kill(2) or raise(3). Similarly for tgkill(2) on Linux. 2604 // 2605 // IOW, user generated signals never generate what we consider to be a 2606 // "crash". 2607 // 2608 // Similarly, ACK signals generated by this monitor. 2609 2610 Mutex::Locker locker (m_threads_mutex); 2611 2612 // See if we can find a thread for this signal. 2613 NativeThreadProtocolSP thread_sp = GetThreadByID (pid); 2614 if (!thread_sp) 2615 { 2616 if (log) 2617 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid); 2618 } 2619 2620 // Handle the signal. 2621 if (info->si_code == SI_TKILL || info->si_code == SI_USER) 2622 { 2623 if (log) 2624 log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")", 2625 __FUNCTION__, 2626 GetUnixSignals ().GetSignalAsCString (signo), 2627 signo, 2628 (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"), 2629 info->si_pid, 2630 is_from_llgs ? "from llgs" : "not from llgs", 2631 pid); 2632 } 2633 2634 // Check for new thread notification. 2635 if ((info->si_pid == 0) && (info->si_code == SI_USER)) 2636 { 2637 // A new thread creation is being signaled. This is one of two parts that come in 2638 // a non-deterministic order. pid is the thread id. 2639 if (log) 2640 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification", 2641 __FUNCTION__, GetID (), pid); 2642 2643 // Did we already create the thread? 2644 bool created_now = false; 2645 thread_sp = GetOrCreateThread (pid, created_now); 2646 assert (thread_sp.get() && "failed to get or create the tracking data for newly created inferior thread"); 2647 2648 // If the thread was already tracked, it means the main thread already received its SIGTRAP for the create. 2649 if (!created_now) 2650 { 2651 // We can now resume the newly created thread since it is fully created. 2652 NotifyThreadCreateStopped (pid); 2653 m_coordinator_up->RequestThreadResume (pid, 2654 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2655 { 2656 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning (); 2657 return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER); 2658 }, 2659 CoordinatorErrorHandler); 2660 } 2661 else 2662 { 2663 // Mark the thread as currently launching. Need to wait for SIGTRAP clone on the main thread before 2664 // this thread is ready to go. 2665 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetLaunching (); 2666 } 2667 2668 // Done handling. 2669 return; 2670 } 2671 2672 // Check for thread stop notification. 2673 if (is_from_llgs && (info->si_code == SI_TKILL) && (signo == SIGSTOP)) 2674 { 2675 // This is a tgkill()-based stop. 2676 if (thread_sp) 2677 { 2678 if (log) 2679 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped", 2680 __FUNCTION__, 2681 GetID (), 2682 pid); 2683 2684 // Check that we're not already marked with a stop reason. 2685 // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that 2686 // the kernel signaled us with the thread stopping which we handled and marked as stopped, 2687 // and that, without an intervening resume, we received another stop. It is more likely 2688 // that we are missing the marking of a run state somewhere if we find that the thread was 2689 // marked as stopped. 2690 std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp); 2691 assert (linux_thread_sp && "linux_thread_sp is null!"); 2692 2693 const StateType thread_state = linux_thread_sp->GetState (); 2694 if (!StateIsStoppedState (thread_state, false)) 2695 { 2696 // An inferior thread just stopped, but was not the primary cause of the process stop. 2697 // Instead, something else (like a breakpoint or step) caused the stop. Mark the 2698 // stop signal as 0 to let lldb know this isn't the important stop. 2699 linux_thread_sp->SetStoppedBySignal (0); 2700 SetCurrentThreadID (thread_sp->GetID ()); 2701 m_coordinator_up->NotifyThreadStop (thread_sp->GetID (), true, CoordinatorErrorHandler); 2702 } 2703 else 2704 { 2705 if (log) 2706 { 2707 // Retrieve the signal name if the thread was stopped by a signal. 2708 int stop_signo = 0; 2709 const bool stopped_by_signal = linux_thread_sp->IsStopped (&stop_signo); 2710 const char *signal_name = stopped_by_signal ? GetUnixSignals ().GetSignalAsCString (stop_signo) : "<not stopped by signal>"; 2711 if (!signal_name) 2712 signal_name = "<no-signal-name>"; 2713 2714 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is", 2715 __FUNCTION__, 2716 GetID (), 2717 linux_thread_sp->GetID (), 2718 StateAsCString (thread_state), 2719 stop_signo, 2720 signal_name); 2721 } 2722 // Tell the thread state coordinator about the stop. 2723 NotifyThreadStop (thread_sp->GetID ()); 2724 } 2725 } 2726 2727 // Done handling. 2728 return; 2729 } 2730 2731 if (log) 2732 log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo)); 2733 2734 // This thread is stopped. 2735 NotifyThreadStop (pid); 2736 2737 switch (signo) 2738 { 2739 case SIGSTOP: 2740 { 2741 if (log) 2742 { 2743 if (is_from_llgs) 2744 log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from llgs, most likely an interrupt", __FUNCTION__, GetID (), pid); 2745 else 2746 log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from outside of debugger", __FUNCTION__, GetID (), pid); 2747 } 2748 2749 // Resume this thread to get the group-stop mechanism to fire off the true group stops. 2750 // This thread will get stopped again as part of the group-stop completion. 2751 m_coordinator_up->RequestThreadResume (pid, 2752 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2753 { 2754 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning (); 2755 // Pass this signal number on to the inferior to handle. 2756 return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo); 2757 }, 2758 CoordinatorErrorHandler); 2759 } 2760 break; 2761 case SIGSEGV: 2762 case SIGILL: 2763 case SIGFPE: 2764 case SIGBUS: 2765 if (thread_sp) 2766 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetCrashedWithException (*info); 2767 break; 2768 default: 2769 // This is just a pre-signal-delivery notification of the incoming signal. 2770 if (thread_sp) 2771 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (signo); 2772 2773 break; 2774 } 2775 2776 // Send a stop to the debugger after we get all other threads to stop. 2777 CallAfterRunningThreadsStop (pid, 2778 [=] (lldb::tid_t signaling_tid) 2779 { 2780 SetCurrentThreadID (signaling_tid); 2781 SetState (StateType::eStateStopped, true); 2782 }); 2783 } 2784 2785 Error 2786 NativeProcessLinux::Resume (const ResumeActionList &resume_actions) 2787 { 2788 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD)); 2789 if (log) 2790 log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ()); 2791 2792 lldb::tid_t deferred_signal_tid = LLDB_INVALID_THREAD_ID; 2793 lldb::tid_t deferred_signal_skip_tid = LLDB_INVALID_THREAD_ID; 2794 int deferred_signo = 0; 2795 NativeThreadProtocolSP deferred_signal_thread_sp; 2796 bool stepping = false; 2797 2798 Mutex::Locker locker (m_threads_mutex); 2799 2800 for (auto thread_sp : m_threads) 2801 { 2802 assert (thread_sp && "thread list should not contain NULL threads"); 2803 2804 const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true); 2805 2806 if (action == nullptr) 2807 { 2808 if (log) 2809 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64, 2810 __FUNCTION__, GetID (), thread_sp->GetID ()); 2811 continue; 2812 } 2813 2814 if (log) 2815 { 2816 log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64, 2817 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); 2818 } 2819 2820 switch (action->state) 2821 { 2822 case eStateRunning: 2823 { 2824 // Run the thread, possibly feeding it the signal. 2825 const int signo = action->signal; 2826 m_coordinator_up->RequestThreadResumeAsNeeded (thread_sp->GetID (), 2827 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2828 { 2829 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning (); 2830 // Pass this signal number on to the inferior to handle. 2831 const auto resume_result = Resume (tid_to_resume, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER); 2832 if (resume_result.Success()) 2833 SetState(eStateRunning, true); 2834 return resume_result; 2835 }, 2836 CoordinatorErrorHandler); 2837 break; 2838 } 2839 2840 case eStateStepping: 2841 { 2842 // Request the step. 2843 const int signo = action->signal; 2844 m_coordinator_up->RequestThreadResume (thread_sp->GetID (), 2845 [=](lldb::tid_t tid_to_step, bool supress_signal) 2846 { 2847 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStepping (); 2848 const auto step_result = SingleStep (tid_to_step,(signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER); 2849 assert (step_result.Success() && "SingleStep() failed"); 2850 if (step_result.Success()) 2851 SetState(eStateStepping, true); 2852 return step_result; 2853 }, 2854 CoordinatorErrorHandler); 2855 stepping = true; 2856 break; 2857 } 2858 2859 case eStateSuspended: 2860 case eStateStopped: 2861 // if we haven't chosen a deferred signal tid yet, use this one. 2862 if (deferred_signal_tid == LLDB_INVALID_THREAD_ID) 2863 { 2864 deferred_signal_tid = thread_sp->GetID (); 2865 deferred_signal_thread_sp = thread_sp; 2866 deferred_signo = SIGSTOP; 2867 } 2868 break; 2869 2870 default: 2871 return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64, 2872 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); 2873 } 2874 } 2875 2876 // If we had any thread stopping, then do a deferred notification of the chosen stop thread id and signal 2877 // after all other running threads have stopped. 2878 // If there is a stepping thread involved we'll be eventually stopped by SIGTRAP trace signal. 2879 if (deferred_signal_tid != LLDB_INVALID_THREAD_ID && !stepping) 2880 { 2881 CallAfterRunningThreadsStopWithSkipTID (deferred_signal_tid, 2882 deferred_signal_skip_tid, 2883 [=](lldb::tid_t deferred_notification_tid) 2884 { 2885 // Set the signal thread to the current thread. 2886 SetCurrentThreadID (deferred_notification_tid); 2887 2888 // Set the thread state as stopped by the deferred signo. 2889 std::static_pointer_cast<NativeThreadLinux> (deferred_signal_thread_sp)->SetStoppedBySignal (deferred_signo); 2890 2891 // Tell the process delegate that the process is in a stopped state. 2892 SetState (StateType::eStateStopped, true); 2893 }); 2894 } 2895 2896 return Error(); 2897 } 2898 2899 Error 2900 NativeProcessLinux::Halt () 2901 { 2902 Error error; 2903 2904 if (kill (GetID (), SIGSTOP) != 0) 2905 error.SetErrorToErrno (); 2906 2907 return error; 2908 } 2909 2910 Error 2911 NativeProcessLinux::Detach () 2912 { 2913 Error error; 2914 2915 // Tell ptrace to detach from the process. 2916 if (GetID () != LLDB_INVALID_PROCESS_ID) 2917 error = Detach (GetID ()); 2918 2919 // Stop monitoring the inferior. 2920 StopMonitor (); 2921 2922 // No error. 2923 return error; 2924 } 2925 2926 Error 2927 NativeProcessLinux::Signal (int signo) 2928 { 2929 Error error; 2930 2931 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2932 if (log) 2933 log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64, 2934 __FUNCTION__, signo, GetUnixSignals ().GetSignalAsCString (signo), GetID ()); 2935 2936 if (kill(GetID(), signo)) 2937 error.SetErrorToErrno(); 2938 2939 return error; 2940 } 2941 2942 Error 2943 NativeProcessLinux::Interrupt () 2944 { 2945 // Pick a running thread (or if none, a not-dead stopped thread) as 2946 // the chosen thread that will be the stop-reason thread. 2947 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2948 2949 NativeThreadProtocolSP running_thread_sp; 2950 NativeThreadProtocolSP stopped_thread_sp; 2951 2952 if (log) 2953 log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__); 2954 2955 Mutex::Locker locker (m_threads_mutex); 2956 2957 for (auto thread_sp : m_threads) 2958 { 2959 // The thread shouldn't be null but lets just cover that here. 2960 if (!thread_sp) 2961 continue; 2962 2963 // If we have a running or stepping thread, we'll call that the 2964 // target of the interrupt. 2965 const auto thread_state = thread_sp->GetState (); 2966 if (thread_state == eStateRunning || 2967 thread_state == eStateStepping) 2968 { 2969 running_thread_sp = thread_sp; 2970 break; 2971 } 2972 else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true)) 2973 { 2974 // Remember the first non-dead stopped thread. We'll use that as a backup if there are no running threads. 2975 stopped_thread_sp = thread_sp; 2976 } 2977 } 2978 2979 if (!running_thread_sp && !stopped_thread_sp) 2980 { 2981 Error error("found no running/stepping or live stopped threads as target for interrupt"); 2982 if (log) 2983 log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ()); 2984 2985 return error; 2986 } 2987 2988 NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp; 2989 2990 if (log) 2991 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target", 2992 __FUNCTION__, 2993 GetID (), 2994 running_thread_sp ? "running" : "stopped", 2995 deferred_signal_thread_sp->GetID ()); 2996 2997 CallAfterRunningThreadsStop (deferred_signal_thread_sp->GetID (), 2998 [=](lldb::tid_t deferred_notification_tid) 2999 { 3000 // Set the signal thread to the current thread. 3001 SetCurrentThreadID (deferred_notification_tid); 3002 3003 // Set the thread state as stopped by the deferred signo. 3004 std::static_pointer_cast<NativeThreadLinux> (deferred_signal_thread_sp)->SetStoppedBySignal (SIGSTOP); 3005 3006 // Tell the process delegate that the process is in a stopped state. 3007 SetState (StateType::eStateStopped, true); 3008 }); 3009 return Error(); 3010 } 3011 3012 Error 3013 NativeProcessLinux::Kill () 3014 { 3015 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3016 if (log) 3017 log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ()); 3018 3019 Error error; 3020 3021 switch (m_state) 3022 { 3023 case StateType::eStateInvalid: 3024 case StateType::eStateExited: 3025 case StateType::eStateCrashed: 3026 case StateType::eStateDetached: 3027 case StateType::eStateUnloaded: 3028 // Nothing to do - the process is already dead. 3029 if (log) 3030 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state)); 3031 return error; 3032 3033 case StateType::eStateConnected: 3034 case StateType::eStateAttaching: 3035 case StateType::eStateLaunching: 3036 case StateType::eStateStopped: 3037 case StateType::eStateRunning: 3038 case StateType::eStateStepping: 3039 case StateType::eStateSuspended: 3040 // We can try to kill a process in these states. 3041 break; 3042 } 3043 3044 if (kill (GetID (), SIGKILL) != 0) 3045 { 3046 error.SetErrorToErrno (); 3047 return error; 3048 } 3049 3050 return error; 3051 } 3052 3053 static Error 3054 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info) 3055 { 3056 memory_region_info.Clear(); 3057 3058 StringExtractor line_extractor (maps_line.c_str ()); 3059 3060 // Format: {address_start_hex}-{address_end_hex} perms offset dev inode pathname 3061 // perms: rwxp (letter is present if set, '-' if not, final character is p=private, s=shared). 3062 3063 // Parse out the starting address 3064 lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0); 3065 3066 // Parse out hyphen separating start and end address from range. 3067 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-')) 3068 return Error ("malformed /proc/{pid}/maps entry, missing dash between address range"); 3069 3070 // Parse out the ending address 3071 lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address); 3072 3073 // Parse out the space after the address. 3074 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' ')) 3075 return Error ("malformed /proc/{pid}/maps entry, missing space after range"); 3076 3077 // Save the range. 3078 memory_region_info.GetRange ().SetRangeBase (start_address); 3079 memory_region_info.GetRange ().SetRangeEnd (end_address); 3080 3081 // Parse out each permission entry. 3082 if (line_extractor.GetBytesLeft () < 4) 3083 return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions"); 3084 3085 // Handle read permission. 3086 const char read_perm_char = line_extractor.GetChar (); 3087 if (read_perm_char == 'r') 3088 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes); 3089 else 3090 { 3091 assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" ); 3092 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 3093 } 3094 3095 // Handle write permission. 3096 const char write_perm_char = line_extractor.GetChar (); 3097 if (write_perm_char == 'w') 3098 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes); 3099 else 3100 { 3101 assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" ); 3102 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 3103 } 3104 3105 // Handle execute permission. 3106 const char exec_perm_char = line_extractor.GetChar (); 3107 if (exec_perm_char == 'x') 3108 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes); 3109 else 3110 { 3111 assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" ); 3112 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 3113 } 3114 3115 return Error (); 3116 } 3117 3118 Error 3119 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info) 3120 { 3121 // FIXME review that the final memory region returned extends to the end of the virtual address space, 3122 // with no perms if it is not mapped. 3123 3124 // Use an approach that reads memory regions from /proc/{pid}/maps. 3125 // Assume proc maps entries are in ascending order. 3126 // FIXME assert if we find differently. 3127 Mutex::Locker locker (m_mem_region_cache_mutex); 3128 3129 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3130 Error error; 3131 3132 if (m_supports_mem_region == LazyBool::eLazyBoolNo) 3133 { 3134 // We're done. 3135 error.SetErrorString ("unsupported"); 3136 return error; 3137 } 3138 3139 // If our cache is empty, pull the latest. There should always be at least one memory region 3140 // if memory region handling is supported. 3141 if (m_mem_region_cache.empty ()) 3142 { 3143 error = ProcFileReader::ProcessLineByLine (GetID (), "maps", 3144 [&] (const std::string &line) -> bool 3145 { 3146 MemoryRegionInfo info; 3147 const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info); 3148 if (parse_error.Success ()) 3149 { 3150 m_mem_region_cache.push_back (info); 3151 return true; 3152 } 3153 else 3154 { 3155 if (log) 3156 log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ()); 3157 return false; 3158 } 3159 }); 3160 3161 // If we had an error, we'll mark unsupported. 3162 if (error.Fail ()) 3163 { 3164 m_supports_mem_region = LazyBool::eLazyBoolNo; 3165 return error; 3166 } 3167 else if (m_mem_region_cache.empty ()) 3168 { 3169 // No entries after attempting to read them. This shouldn't happen if /proc/{pid}/maps 3170 // is supported. Assume we don't support map entries via procfs. 3171 if (log) 3172 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__); 3173 m_supports_mem_region = LazyBool::eLazyBoolNo; 3174 error.SetErrorString ("not supported"); 3175 return error; 3176 } 3177 3178 if (log) 3179 log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ()); 3180 3181 // We support memory retrieval, remember that. 3182 m_supports_mem_region = LazyBool::eLazyBoolYes; 3183 } 3184 else 3185 { 3186 if (log) 3187 log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ())); 3188 } 3189 3190 lldb::addr_t prev_base_address = 0; 3191 3192 // FIXME start by finding the last region that is <= target address using binary search. Data is sorted. 3193 // There can be a ton of regions on pthreads apps with lots of threads. 3194 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it) 3195 { 3196 MemoryRegionInfo &proc_entry_info = *it; 3197 3198 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 3199 assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected"); 3200 prev_base_address = proc_entry_info.GetRange ().GetRangeBase (); 3201 3202 // If the target address comes before this entry, indicate distance to next region. 3203 if (load_addr < proc_entry_info.GetRange ().GetRangeBase ()) 3204 { 3205 range_info.GetRange ().SetRangeBase (load_addr); 3206 range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr); 3207 range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 3208 range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 3209 range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 3210 3211 return error; 3212 } 3213 else if (proc_entry_info.GetRange ().Contains (load_addr)) 3214 { 3215 // The target address is within the memory region we're processing here. 3216 range_info = proc_entry_info; 3217 return error; 3218 } 3219 3220 // The target memory address comes somewhere after the region we just parsed. 3221 } 3222 3223 // If we made it here, we didn't find an entry that contained the given address. 3224 error.SetErrorString ("address comes after final region"); 3225 3226 if (log) 3227 log->Printf ("NativeProcessLinux::%s failed to find map entry for address 0x%" PRIx64 ": %s", __FUNCTION__, load_addr, error.AsCString ()); 3228 3229 return error; 3230 } 3231 3232 void 3233 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId) 3234 { 3235 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3236 if (log) 3237 log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId); 3238 3239 { 3240 Mutex::Locker locker (m_mem_region_cache_mutex); 3241 if (log) 3242 log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ())); 3243 m_mem_region_cache.clear (); 3244 } 3245 } 3246 3247 Error 3248 NativeProcessLinux::AllocateMemory ( 3249 lldb::addr_t size, 3250 uint32_t permissions, 3251 lldb::addr_t &addr) 3252 { 3253 // FIXME implementing this requires the equivalent of 3254 // InferiorCallPOSIX::InferiorCallMmap, which depends on 3255 // functional ThreadPlans working with Native*Protocol. 3256 #if 1 3257 return Error ("not implemented yet"); 3258 #else 3259 addr = LLDB_INVALID_ADDRESS; 3260 3261 unsigned prot = 0; 3262 if (permissions & lldb::ePermissionsReadable) 3263 prot |= eMmapProtRead; 3264 if (permissions & lldb::ePermissionsWritable) 3265 prot |= eMmapProtWrite; 3266 if (permissions & lldb::ePermissionsExecutable) 3267 prot |= eMmapProtExec; 3268 3269 // TODO implement this directly in NativeProcessLinux 3270 // (and lift to NativeProcessPOSIX if/when that class is 3271 // refactored out). 3272 if (InferiorCallMmap(this, addr, 0, size, prot, 3273 eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { 3274 m_addr_to_mmap_size[addr] = size; 3275 return Error (); 3276 } else { 3277 addr = LLDB_INVALID_ADDRESS; 3278 return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions)); 3279 } 3280 #endif 3281 } 3282 3283 Error 3284 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr) 3285 { 3286 // FIXME see comments in AllocateMemory - required lower-level 3287 // bits not in place yet (ThreadPlans) 3288 return Error ("not implemented"); 3289 } 3290 3291 lldb::addr_t 3292 NativeProcessLinux::GetSharedLibraryInfoAddress () 3293 { 3294 #if 1 3295 // punt on this for now 3296 return LLDB_INVALID_ADDRESS; 3297 #else 3298 // Return the image info address for the exe module 3299 #if 1 3300 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3301 3302 ModuleSP module_sp; 3303 Error error = GetExeModuleSP (module_sp); 3304 if (error.Fail ()) 3305 { 3306 if (log) 3307 log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ()); 3308 return LLDB_INVALID_ADDRESS; 3309 } 3310 3311 if (module_sp == nullptr) 3312 { 3313 if (log) 3314 log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__); 3315 return LLDB_INVALID_ADDRESS; 3316 } 3317 3318 ObjectFileSP object_file_sp = module_sp->GetObjectFile (); 3319 if (object_file_sp == nullptr) 3320 { 3321 if (log) 3322 log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__); 3323 return LLDB_INVALID_ADDRESS; 3324 } 3325 3326 return obj_file_sp->GetImageInfoAddress(); 3327 #else 3328 Target *target = &GetTarget(); 3329 ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile(); 3330 Address addr = obj_file->GetImageInfoAddress(target); 3331 3332 if (addr.IsValid()) 3333 return addr.GetLoadAddress(target); 3334 return LLDB_INVALID_ADDRESS; 3335 #endif 3336 #endif // punt on this for now 3337 } 3338 3339 size_t 3340 NativeProcessLinux::UpdateThreads () 3341 { 3342 // The NativeProcessLinux monitoring threads are always up to date 3343 // with respect to thread state and they keep the thread list 3344 // populated properly. All this method needs to do is return the 3345 // thread count. 3346 Mutex::Locker locker (m_threads_mutex); 3347 return m_threads.size (); 3348 } 3349 3350 bool 3351 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const 3352 { 3353 arch = m_arch; 3354 return true; 3355 } 3356 3357 Error 3358 NativeProcessLinux::GetSoftwareBreakpointPCOffset (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size) 3359 { 3360 // FIXME put this behind a breakpoint protocol class that can be 3361 // set per architecture. Need ARM, MIPS support here. 3362 static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 }; 3363 static const uint8_t g_i386_opcode [] = { 0xCC }; 3364 3365 switch (m_arch.GetMachine ()) 3366 { 3367 case llvm::Triple::aarch64: 3368 actual_opcode_size = static_cast<uint32_t> (sizeof(g_aarch64_opcode)); 3369 return Error (); 3370 3371 case llvm::Triple::arm: 3372 actual_opcode_size = 0; // On arm the PC don't get updated for breakpoint hits 3373 return Error (); 3374 3375 case llvm::Triple::x86: 3376 case llvm::Triple::x86_64: 3377 actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode)); 3378 return Error (); 3379 3380 default: 3381 assert(false && "CPU type not supported!"); 3382 return Error ("CPU type not supported"); 3383 } 3384 } 3385 3386 Error 3387 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware) 3388 { 3389 if (hardware) 3390 return Error ("NativeProcessLinux does not support hardware breakpoints"); 3391 else 3392 return SetSoftwareBreakpoint (addr, size); 3393 } 3394 3395 Error 3396 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint, 3397 size_t &actual_opcode_size, 3398 const uint8_t *&trap_opcode_bytes) 3399 { 3400 // FIXME put this behind a breakpoint protocol class that can be set per 3401 // architecture. Need MIPS support here. 3402 static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 }; 3403 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 3404 // linux kernel does otherwise. 3405 static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 }; 3406 static const uint8_t g_i386_opcode [] = { 0xCC }; 3407 static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d }; 3408 static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 }; 3409 static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde }; 3410 3411 switch (m_arch.GetMachine ()) 3412 { 3413 case llvm::Triple::aarch64: 3414 trap_opcode_bytes = g_aarch64_opcode; 3415 actual_opcode_size = sizeof(g_aarch64_opcode); 3416 return Error (); 3417 3418 case llvm::Triple::arm: 3419 switch (trap_opcode_size_hint) 3420 { 3421 case 2: 3422 trap_opcode_bytes = g_thumb_breakpoint_opcode; 3423 actual_opcode_size = sizeof(g_thumb_breakpoint_opcode); 3424 return Error (); 3425 case 4: 3426 trap_opcode_bytes = g_arm_breakpoint_opcode; 3427 actual_opcode_size = sizeof(g_arm_breakpoint_opcode); 3428 return Error (); 3429 default: 3430 assert(false && "Unrecognised trap opcode size hint!"); 3431 return Error ("Unrecognised trap opcode size hint!"); 3432 } 3433 3434 case llvm::Triple::x86: 3435 case llvm::Triple::x86_64: 3436 trap_opcode_bytes = g_i386_opcode; 3437 actual_opcode_size = sizeof(g_i386_opcode); 3438 return Error (); 3439 3440 case llvm::Triple::mips64: 3441 trap_opcode_bytes = g_mips64_opcode; 3442 actual_opcode_size = sizeof(g_mips64_opcode); 3443 return Error (); 3444 3445 case llvm::Triple::mips64el: 3446 trap_opcode_bytes = g_mips64el_opcode; 3447 actual_opcode_size = sizeof(g_mips64el_opcode); 3448 return Error (); 3449 3450 default: 3451 assert(false && "CPU type not supported!"); 3452 return Error ("CPU type not supported"); 3453 } 3454 } 3455 3456 #if 0 3457 ProcessMessage::CrashReason 3458 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info) 3459 { 3460 ProcessMessage::CrashReason reason; 3461 assert(info->si_signo == SIGSEGV); 3462 3463 reason = ProcessMessage::eInvalidCrashReason; 3464 3465 switch (info->si_code) 3466 { 3467 default: 3468 assert(false && "unexpected si_code for SIGSEGV"); 3469 break; 3470 case SI_KERNEL: 3471 // Linux will occasionally send spurious SI_KERNEL codes. 3472 // (this is poorly documented in sigaction) 3473 // One way to get this is via unaligned SIMD loads. 3474 reason = ProcessMessage::eInvalidAddress; // for lack of anything better 3475 break; 3476 case SEGV_MAPERR: 3477 reason = ProcessMessage::eInvalidAddress; 3478 break; 3479 case SEGV_ACCERR: 3480 reason = ProcessMessage::ePrivilegedAddress; 3481 break; 3482 } 3483 3484 return reason; 3485 } 3486 #endif 3487 3488 3489 #if 0 3490 ProcessMessage::CrashReason 3491 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info) 3492 { 3493 ProcessMessage::CrashReason reason; 3494 assert(info->si_signo == SIGILL); 3495 3496 reason = ProcessMessage::eInvalidCrashReason; 3497 3498 switch (info->si_code) 3499 { 3500 default: 3501 assert(false && "unexpected si_code for SIGILL"); 3502 break; 3503 case ILL_ILLOPC: 3504 reason = ProcessMessage::eIllegalOpcode; 3505 break; 3506 case ILL_ILLOPN: 3507 reason = ProcessMessage::eIllegalOperand; 3508 break; 3509 case ILL_ILLADR: 3510 reason = ProcessMessage::eIllegalAddressingMode; 3511 break; 3512 case ILL_ILLTRP: 3513 reason = ProcessMessage::eIllegalTrap; 3514 break; 3515 case ILL_PRVOPC: 3516 reason = ProcessMessage::ePrivilegedOpcode; 3517 break; 3518 case ILL_PRVREG: 3519 reason = ProcessMessage::ePrivilegedRegister; 3520 break; 3521 case ILL_COPROC: 3522 reason = ProcessMessage::eCoprocessorError; 3523 break; 3524 case ILL_BADSTK: 3525 reason = ProcessMessage::eInternalStackError; 3526 break; 3527 } 3528 3529 return reason; 3530 } 3531 #endif 3532 3533 #if 0 3534 ProcessMessage::CrashReason 3535 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info) 3536 { 3537 ProcessMessage::CrashReason reason; 3538 assert(info->si_signo == SIGFPE); 3539 3540 reason = ProcessMessage::eInvalidCrashReason; 3541 3542 switch (info->si_code) 3543 { 3544 default: 3545 assert(false && "unexpected si_code for SIGFPE"); 3546 break; 3547 case FPE_INTDIV: 3548 reason = ProcessMessage::eIntegerDivideByZero; 3549 break; 3550 case FPE_INTOVF: 3551 reason = ProcessMessage::eIntegerOverflow; 3552 break; 3553 case FPE_FLTDIV: 3554 reason = ProcessMessage::eFloatDivideByZero; 3555 break; 3556 case FPE_FLTOVF: 3557 reason = ProcessMessage::eFloatOverflow; 3558 break; 3559 case FPE_FLTUND: 3560 reason = ProcessMessage::eFloatUnderflow; 3561 break; 3562 case FPE_FLTRES: 3563 reason = ProcessMessage::eFloatInexactResult; 3564 break; 3565 case FPE_FLTINV: 3566 reason = ProcessMessage::eFloatInvalidOperation; 3567 break; 3568 case FPE_FLTSUB: 3569 reason = ProcessMessage::eFloatSubscriptRange; 3570 break; 3571 } 3572 3573 return reason; 3574 } 3575 #endif 3576 3577 #if 0 3578 ProcessMessage::CrashReason 3579 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info) 3580 { 3581 ProcessMessage::CrashReason reason; 3582 assert(info->si_signo == SIGBUS); 3583 3584 reason = ProcessMessage::eInvalidCrashReason; 3585 3586 switch (info->si_code) 3587 { 3588 default: 3589 assert(false && "unexpected si_code for SIGBUS"); 3590 break; 3591 case BUS_ADRALN: 3592 reason = ProcessMessage::eIllegalAlignment; 3593 break; 3594 case BUS_ADRERR: 3595 reason = ProcessMessage::eIllegalAddress; 3596 break; 3597 case BUS_OBJERR: 3598 reason = ProcessMessage::eHardwareError; 3599 break; 3600 } 3601 3602 return reason; 3603 } 3604 #endif 3605 3606 Error 3607 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, lldb::addr_t size, lldb::addr_t &bytes_read) 3608 { 3609 ReadOperation op(addr, buf, size, bytes_read); 3610 m_monitor_up->DoOperation(&op); 3611 return op.GetError (); 3612 } 3613 3614 Error 3615 NativeProcessLinux::WriteMemory (lldb::addr_t addr, const void *buf, lldb::addr_t size, lldb::addr_t &bytes_written) 3616 { 3617 WriteOperation op(addr, buf, size, bytes_written); 3618 m_monitor_up->DoOperation(&op); 3619 return op.GetError (); 3620 } 3621 3622 Error 3623 NativeProcessLinux::ReadRegisterValue(lldb::tid_t tid, uint32_t offset, const char* reg_name, 3624 uint32_t size, RegisterValue &value) 3625 { 3626 ReadRegOperation op(tid, offset, reg_name, value); 3627 m_monitor_up->DoOperation(&op); 3628 return op.GetError(); 3629 } 3630 3631 Error 3632 NativeProcessLinux::WriteRegisterValue(lldb::tid_t tid, unsigned offset, 3633 const char* reg_name, const RegisterValue &value) 3634 { 3635 WriteRegOperation op(tid, offset, reg_name, value); 3636 m_monitor_up->DoOperation(&op); 3637 return op.GetError(); 3638 } 3639 3640 Error 3641 NativeProcessLinux::ReadGPR(lldb::tid_t tid, void *buf, size_t buf_size) 3642 { 3643 ReadGPROperation op(tid, buf, buf_size); 3644 m_monitor_up->DoOperation(&op); 3645 return op.GetError(); 3646 } 3647 3648 Error 3649 NativeProcessLinux::ReadFPR(lldb::tid_t tid, void *buf, size_t buf_size) 3650 { 3651 ReadFPROperation op(tid, buf, buf_size); 3652 m_monitor_up->DoOperation(&op); 3653 return op.GetError(); 3654 } 3655 3656 Error 3657 NativeProcessLinux::ReadRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 3658 { 3659 ReadRegisterSetOperation op(tid, buf, buf_size, regset); 3660 m_monitor_up->DoOperation(&op); 3661 return op.GetError(); 3662 } 3663 3664 Error 3665 NativeProcessLinux::WriteGPR(lldb::tid_t tid, void *buf, size_t buf_size) 3666 { 3667 WriteGPROperation op(tid, buf, buf_size); 3668 m_monitor_up->DoOperation(&op); 3669 return op.GetError(); 3670 } 3671 3672 Error 3673 NativeProcessLinux::WriteFPR(lldb::tid_t tid, void *buf, size_t buf_size) 3674 { 3675 WriteFPROperation op(tid, buf, buf_size); 3676 m_monitor_up->DoOperation(&op); 3677 return op.GetError(); 3678 } 3679 3680 Error 3681 NativeProcessLinux::WriteRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 3682 { 3683 WriteRegisterSetOperation op(tid, buf, buf_size, regset); 3684 m_monitor_up->DoOperation(&op); 3685 return op.GetError(); 3686 } 3687 3688 Error 3689 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo) 3690 { 3691 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3692 3693 if (log) 3694 log->Printf ("NativeProcessLinux::%s() resuming thread = %" PRIu64 " with signal %s", __FUNCTION__, tid, 3695 GetUnixSignals().GetSignalAsCString (signo)); 3696 ResumeOperation op (tid, signo); 3697 m_monitor_up->DoOperation (&op); 3698 if (log) 3699 log->Printf ("NativeProcessLinux::%s() resuming thread = %" PRIu64 " result = %s", __FUNCTION__, tid, op.GetError().Success() ? "true" : "false"); 3700 return op.GetError(); 3701 } 3702 3703 #if defined(__arm__) 3704 3705 namespace { 3706 3707 struct EmulatorBaton 3708 { 3709 NativeProcessLinux* m_process; 3710 NativeRegisterContext* m_reg_context; 3711 RegisterValue m_pc; 3712 RegisterValue m_cpsr; 3713 3714 EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) : 3715 m_process(process), m_reg_context(reg_context) {} 3716 }; 3717 3718 } // anonymous namespace 3719 3720 static size_t 3721 ReadMemoryCallback (EmulateInstruction *instruction, 3722 void *baton, 3723 const EmulateInstruction::Context &context, 3724 lldb::addr_t addr, 3725 void *dst, 3726 size_t length) 3727 { 3728 EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton); 3729 3730 lldb::addr_t bytes_read; 3731 emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read); 3732 return bytes_read; 3733 } 3734 3735 static bool 3736 ReadRegisterCallback (EmulateInstruction *instruction, 3737 void *baton, 3738 const RegisterInfo *reg_info, 3739 RegisterValue ®_value) 3740 { 3741 EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton); 3742 3743 // The emulator only fill in the dwarf regsiter numbers (and in some case 3744 // the generic register numbers). Get the full register info from the 3745 // register context based on the dwarf register numbers. 3746 const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo( 3747 eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]); 3748 3749 Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value); 3750 return error.Success(); 3751 } 3752 3753 static bool 3754 WriteRegisterCallback (EmulateInstruction *instruction, 3755 void *baton, 3756 const EmulateInstruction::Context &context, 3757 const RegisterInfo *reg_info, 3758 const RegisterValue ®_value) 3759 { 3760 EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton); 3761 3762 switch (reg_info->kinds[eRegisterKindGeneric]) 3763 { 3764 case LLDB_REGNUM_GENERIC_PC: 3765 emulator_baton->m_pc = reg_value; 3766 break; 3767 case LLDB_REGNUM_GENERIC_FLAGS: 3768 emulator_baton->m_cpsr = reg_value; 3769 break; 3770 } 3771 3772 return true; 3773 } 3774 3775 static size_t 3776 WriteMemoryCallback (EmulateInstruction *instruction, 3777 void *baton, 3778 const EmulateInstruction::Context &context, 3779 lldb::addr_t addr, 3780 const void *dst, 3781 size_t length) 3782 { 3783 return length; 3784 } 3785 3786 static lldb::addr_t 3787 ReadCpsr (NativeRegisterContext* regsiter_context) 3788 { 3789 const RegisterInfo* cpsr_info = regsiter_context->GetRegisterInfo( 3790 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 3791 return regsiter_context->ReadRegisterAsUnsigned(cpsr_info, LLDB_INVALID_ADDRESS); 3792 } 3793 3794 Error 3795 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo) 3796 { 3797 Error error; 3798 NativeRegisterContextSP register_context_sp = GetThreadByID(tid)->GetRegisterContext(); 3799 3800 std::unique_ptr<EmulateInstruction> emulator_ap( 3801 EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr)); 3802 3803 if (emulator_ap == nullptr) 3804 return Error("Instruction emulator not found!"); 3805 3806 EmulatorBaton baton(this, register_context_sp.get()); 3807 emulator_ap->SetBaton(&baton); 3808 emulator_ap->SetReadMemCallback(&ReadMemoryCallback); 3809 emulator_ap->SetReadRegCallback(&ReadRegisterCallback); 3810 emulator_ap->SetWriteMemCallback(&WriteMemoryCallback); 3811 emulator_ap->SetWriteRegCallback(&WriteRegisterCallback); 3812 3813 if (!emulator_ap->ReadInstruction()) 3814 return Error("Read instruction failed!"); 3815 3816 lldb::addr_t next_pc; 3817 lldb::addr_t next_cpsr; 3818 if (emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC)) 3819 { 3820 next_pc = baton.m_pc.GetAsUInt32(); 3821 if (baton.m_cpsr.GetType() != RegisterValue::eTypeInvalid) 3822 next_cpsr = baton.m_cpsr.GetAsUInt32(); 3823 else 3824 next_cpsr = ReadCpsr (register_context_sp.get()); 3825 } 3826 else if (baton.m_pc.GetType() == RegisterValue::eTypeInvalid) 3827 { 3828 // Emulate instruction failed and it haven't changed PC. Advance PC 3829 // with the size of the current opcode because the emulation of all 3830 // PC modifying instruction should be successful. The failure most 3831 // likely caused by a not supported instruction which don't modify PC. 3832 next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize(); 3833 next_cpsr = ReadCpsr (register_context_sp.get()); 3834 } 3835 else 3836 { 3837 // The instruction emulation failed after it modified the PC. It is an 3838 // unknown error where we can't continue because the next instruction is 3839 // modifying the PC but we don't know how. 3840 return Error ("Instruction emulation failed unexpectedly."); 3841 } 3842 3843 if (next_cpsr & 0x20) 3844 { 3845 // Thumb mode 3846 error = SetBreakpoint(next_pc, 2, false); 3847 } 3848 else 3849 { 3850 // Arm mode 3851 error = SetBreakpoint(next_pc, 4, false); 3852 } 3853 3854 if (error.Fail()) 3855 return error; 3856 3857 m_threads_stepping_with_breakpoint.insert({tid, next_pc}); 3858 3859 error = Resume(tid, signo); 3860 if (error.Fail()) 3861 return error; 3862 3863 return Error(); 3864 } 3865 3866 #else // defined(__arm__) 3867 3868 Error 3869 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo) 3870 { 3871 SingleStepOperation op(tid, signo); 3872 m_monitor_up->DoOperation(&op); 3873 return op.GetError(); 3874 } 3875 3876 #endif // defined(__arm__) 3877 3878 Error 3879 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) 3880 { 3881 SiginfoOperation op(tid, siginfo); 3882 m_monitor_up->DoOperation(&op); 3883 return op.GetError(); 3884 } 3885 3886 Error 3887 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message) 3888 { 3889 EventMessageOperation op(tid, message); 3890 m_monitor_up->DoOperation(&op); 3891 return op.GetError(); 3892 } 3893 3894 Error 3895 NativeProcessLinux::Detach(lldb::tid_t tid) 3896 { 3897 if (tid == LLDB_INVALID_THREAD_ID) 3898 return Error(); 3899 3900 DetachOperation op(tid); 3901 m_monitor_up->DoOperation(&op); 3902 return op.GetError(); 3903 } 3904 3905 bool 3906 NativeProcessLinux::DupDescriptor(const char *path, int fd, int flags) 3907 { 3908 int target_fd = open(path, flags, 0666); 3909 3910 if (target_fd == -1) 3911 return false; 3912 3913 if (dup2(target_fd, fd) == -1) 3914 return false; 3915 3916 return (close(target_fd) == -1) ? false : true; 3917 } 3918 3919 void 3920 NativeProcessLinux::StartMonitorThread(const InitialOperation &initial_operation, Error &error) 3921 { 3922 m_monitor_up.reset(new Monitor(initial_operation, this)); 3923 error = m_monitor_up->Initialize(); 3924 if (error.Fail()) { 3925 m_monitor_up.reset(); 3926 } 3927 } 3928 3929 void 3930 NativeProcessLinux::StopMonitor() 3931 { 3932 StopCoordinatorThread (); 3933 m_monitor_up.reset(); 3934 } 3935 3936 Error 3937 NativeProcessLinux::StartCoordinatorThread () 3938 { 3939 Error error; 3940 static const char *g_thread_name = "lldb.process.linux.ts_coordinator"; 3941 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3942 3943 // Skip if thread is already running 3944 if (m_coordinator_thread.IsJoinable()) 3945 { 3946 error.SetErrorString ("ThreadStateCoordinator's run loop is already running"); 3947 if (log) 3948 log->Printf ("NativeProcessLinux::%s %s", __FUNCTION__, error.AsCString ()); 3949 return error; 3950 } 3951 3952 // Enable verbose logging if lldb thread logging is enabled. 3953 m_coordinator_up->LogEnableEventProcessing (log != nullptr); 3954 3955 if (log) 3956 log->Printf ("NativeProcessLinux::%s launching ThreadStateCoordinator thread for pid %" PRIu64, __FUNCTION__, GetID ()); 3957 m_coordinator_thread = ThreadLauncher::LaunchThread(g_thread_name, CoordinatorThread, this, &error); 3958 return error; 3959 } 3960 3961 void * 3962 NativeProcessLinux::CoordinatorThread (void *arg) 3963 { 3964 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3965 3966 NativeProcessLinux *const process = static_cast<NativeProcessLinux*> (arg); 3967 assert (process && "null process passed to CoordinatorThread"); 3968 if (!process) 3969 { 3970 if (log) 3971 log->Printf ("NativeProcessLinux::%s null process, exiting ThreadStateCoordinator processing loop", __FUNCTION__); 3972 return nullptr; 3973 } 3974 3975 // Run the thread state coordinator loop until it is done. This call uses 3976 // efficient waiting for an event to be ready. 3977 while (process->m_coordinator_up->ProcessNextEvent () == ThreadStateCoordinator::eventLoopResultContinue) 3978 { 3979 } 3980 3981 if (log) 3982 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " exiting ThreadStateCoordinator processing loop due to coordinator indicating completion", __FUNCTION__, process->GetID ()); 3983 3984 return nullptr; 3985 } 3986 3987 void 3988 NativeProcessLinux::StopCoordinatorThread() 3989 { 3990 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3991 if (log) 3992 log->Printf ("NativeProcessLinux::%s requesting ThreadStateCoordinator stop for pid %" PRIu64, __FUNCTION__, GetID ()); 3993 3994 // Tell the coordinator we're done. This will cause the coordinator 3995 // run loop thread to exit when the processing queue hits this message. 3996 m_coordinator_up->StopCoordinator (); 3997 m_coordinator_thread.Join (nullptr); 3998 } 3999 4000 bool 4001 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id) 4002 { 4003 for (auto thread_sp : m_threads) 4004 { 4005 assert (thread_sp && "thread list should not contain NULL threads"); 4006 if (thread_sp->GetID () == thread_id) 4007 { 4008 // We have this thread. 4009 return true; 4010 } 4011 } 4012 4013 // We don't have this thread. 4014 return false; 4015 } 4016 4017 NativeThreadProtocolSP 4018 NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id) 4019 { 4020 // CONSIDER organize threads by map - we can do better than linear. 4021 for (auto thread_sp : m_threads) 4022 { 4023 if (thread_sp->GetID () == thread_id) 4024 return thread_sp; 4025 } 4026 4027 // We don't have this thread. 4028 return NativeThreadProtocolSP (); 4029 } 4030 4031 bool 4032 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id) 4033 { 4034 Mutex::Locker locker (m_threads_mutex); 4035 for (auto it = m_threads.begin (); it != m_threads.end (); ++it) 4036 { 4037 if (*it && ((*it)->GetID () == thread_id)) 4038 { 4039 m_threads.erase (it); 4040 return true; 4041 } 4042 } 4043 4044 // Didn't find it. 4045 return false; 4046 } 4047 4048 NativeThreadProtocolSP 4049 NativeProcessLinux::AddThread (lldb::tid_t thread_id) 4050 { 4051 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 4052 4053 Mutex::Locker locker (m_threads_mutex); 4054 4055 if (log) 4056 { 4057 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64, 4058 __FUNCTION__, 4059 GetID (), 4060 thread_id); 4061 } 4062 4063 assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists"); 4064 4065 // If this is the first thread, save it as the current thread 4066 if (m_threads.empty ()) 4067 SetCurrentThreadID (thread_id); 4068 4069 NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id)); 4070 m_threads.push_back (thread_sp); 4071 4072 return thread_sp; 4073 } 4074 4075 NativeThreadProtocolSP 4076 NativeProcessLinux::GetOrCreateThread (lldb::tid_t thread_id, bool &created) 4077 { 4078 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 4079 4080 Mutex::Locker locker (m_threads_mutex); 4081 if (log) 4082 { 4083 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " get/create thread with tid %" PRIu64, 4084 __FUNCTION__, 4085 GetID (), 4086 thread_id); 4087 } 4088 4089 // Retrieve the thread if it is already getting tracked. 4090 NativeThreadProtocolSP thread_sp = MaybeGetThreadNoLock (thread_id); 4091 if (thread_sp) 4092 { 4093 if (log) 4094 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": thread already tracked, returning", 4095 __FUNCTION__, 4096 GetID (), 4097 thread_id); 4098 created = false; 4099 return thread_sp; 4100 4101 } 4102 4103 // Create the thread metadata since it isn't being tracked. 4104 if (log) 4105 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": thread didn't exist, tracking now", 4106 __FUNCTION__, 4107 GetID (), 4108 thread_id); 4109 4110 thread_sp.reset (new NativeThreadLinux (this, thread_id)); 4111 m_threads.push_back (thread_sp); 4112 created = true; 4113 4114 return thread_sp; 4115 } 4116 4117 Error 4118 NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp) 4119 { 4120 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS)); 4121 4122 Error error; 4123 4124 // Get a linux thread pointer. 4125 if (!thread_sp) 4126 { 4127 error.SetErrorString ("null thread_sp"); 4128 if (log) 4129 log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); 4130 return error; 4131 } 4132 std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp); 4133 4134 // Find out the size of a breakpoint (might depend on where we are in the code). 4135 NativeRegisterContextSP context_sp = linux_thread_sp->GetRegisterContext (); 4136 if (!context_sp) 4137 { 4138 error.SetErrorString ("cannot get a NativeRegisterContext for the thread"); 4139 if (log) 4140 log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); 4141 return error; 4142 } 4143 4144 uint32_t breakpoint_size = 0; 4145 error = GetSoftwareBreakpointPCOffset (context_sp, breakpoint_size); 4146 if (error.Fail ()) 4147 { 4148 if (log) 4149 log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ()); 4150 return error; 4151 } 4152 else 4153 { 4154 if (log) 4155 log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size); 4156 } 4157 4158 // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size. 4159 const lldb::addr_t initial_pc_addr = context_sp->GetPC (); 4160 lldb::addr_t breakpoint_addr = initial_pc_addr; 4161 if (breakpoint_size > static_cast<lldb::addr_t> (0)) 4162 { 4163 // Do not allow breakpoint probe to wrap around. 4164 if (breakpoint_addr >= static_cast<lldb::addr_t> (breakpoint_size)) 4165 breakpoint_addr -= static_cast<lldb::addr_t> (breakpoint_size); 4166 } 4167 4168 // Check if we stopped because of a breakpoint. 4169 NativeBreakpointSP breakpoint_sp; 4170 error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp); 4171 if (!error.Success () || !breakpoint_sp) 4172 { 4173 // We didn't find one at a software probe location. Nothing to do. 4174 if (log) 4175 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr); 4176 return Error (); 4177 } 4178 4179 // If the breakpoint is not a software breakpoint, nothing to do. 4180 if (!breakpoint_sp->IsSoftwareBreakpoint ()) 4181 { 4182 if (log) 4183 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr); 4184 return Error (); 4185 } 4186 4187 // 4188 // We have a software breakpoint and need to adjust the PC. 4189 // 4190 4191 // Sanity check. 4192 if (breakpoint_size == 0) 4193 { 4194 // Nothing to do! How did we get here? 4195 if (log) 4196 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr); 4197 return Error (); 4198 } 4199 4200 // Change the program counter. 4201 if (log) 4202 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_sp->GetID (), initial_pc_addr, breakpoint_addr); 4203 4204 error = context_sp->SetPC (breakpoint_addr); 4205 if (error.Fail ()) 4206 { 4207 if (log) 4208 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_sp->GetID (), error.AsCString ()); 4209 return error; 4210 } 4211 4212 return error; 4213 } 4214 4215 void 4216 NativeProcessLinux::NotifyThreadCreateStopped (lldb::tid_t tid) 4217 { 4218 const bool is_stopped = true; 4219 m_coordinator_up->NotifyThreadCreate (tid, is_stopped, CoordinatorErrorHandler); 4220 } 4221 4222 void 4223 NativeProcessLinux::NotifyThreadDeath (lldb::tid_t tid) 4224 { 4225 m_coordinator_up->NotifyThreadDeath (tid, CoordinatorErrorHandler); 4226 } 4227 4228 void 4229 NativeProcessLinux::NotifyThreadStop (lldb::tid_t tid) 4230 { 4231 m_coordinator_up->NotifyThreadStop (tid, false, CoordinatorErrorHandler); 4232 } 4233 4234 void 4235 NativeProcessLinux::CallAfterRunningThreadsStop (lldb::tid_t tid, 4236 const std::function<void (lldb::tid_t tid)> &call_after_function) 4237 { 4238 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 4239 if (log) 4240 log->Printf("NativeProcessLinux::%s tid %" PRIu64, __FUNCTION__, tid); 4241 4242 const lldb::pid_t pid = GetID (); 4243 m_coordinator_up->CallAfterRunningThreadsStop (tid, 4244 [=](lldb::tid_t request_stop_tid) 4245 { 4246 return RequestThreadStop(pid, request_stop_tid); 4247 }, 4248 call_after_function, 4249 CoordinatorErrorHandler); 4250 } 4251 4252 void 4253 NativeProcessLinux::CallAfterRunningThreadsStopWithSkipTID (lldb::tid_t deferred_signal_tid, 4254 lldb::tid_t skip_stop_request_tid, 4255 const std::function<void (lldb::tid_t tid)> &call_after_function) 4256 { 4257 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 4258 if (log) 4259 log->Printf("NativeProcessLinux::%s deferred_signal_tid %" PRIu64 ", skip_stop_request_tid %" PRIu64, __FUNCTION__, deferred_signal_tid, skip_stop_request_tid); 4260 4261 const lldb::pid_t pid = GetID (); 4262 m_coordinator_up->CallAfterRunningThreadsStopWithSkipTIDs (deferred_signal_tid, 4263 skip_stop_request_tid != LLDB_INVALID_THREAD_ID ? ThreadStateCoordinator::ThreadIDSet {skip_stop_request_tid} : ThreadStateCoordinator::ThreadIDSet (), 4264 [=](lldb::tid_t request_stop_tid) 4265 { 4266 return RequestThreadStop(pid, request_stop_tid); 4267 }, 4268 call_after_function, 4269 CoordinatorErrorHandler); 4270 } 4271 4272 Error 4273 NativeProcessLinux::RequestThreadStop (const lldb::pid_t pid, const lldb::tid_t tid) 4274 { 4275 Log* log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 4276 if (log) 4277 log->Printf ("NativeProcessLinux::%s requesting thread stop(pid: %" PRIu64 ", tid: %" PRIu64 ")", __FUNCTION__, pid, tid); 4278 4279 Error err; 4280 errno = 0; 4281 if (::tgkill (pid, tid, SIGSTOP) != 0) 4282 { 4283 err.SetErrorToErrno (); 4284 if (log) 4285 log->Printf ("NativeProcessLinux::%s tgkill(%" PRIu64 ", %" PRIu64 ", SIGSTOP) failed: %s", __FUNCTION__, pid, tid, err.AsCString ()); 4286 } 4287 4288 return err; 4289 } 4290 4291 Error 4292 NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec) 4293 { 4294 char maps_file_name[32]; 4295 snprintf(maps_file_name, sizeof(maps_file_name), "/proc/%" PRIu64 "/maps", GetID()); 4296 4297 FileSpec maps_file_spec(maps_file_name, false); 4298 if (!maps_file_spec.Exists()) { 4299 file_spec.Clear(); 4300 return Error("/proc/%" PRIu64 "/maps file doesn't exists!", GetID()); 4301 } 4302 4303 FileSpec module_file_spec(module_path, true); 4304 4305 std::ifstream maps_file(maps_file_name); 4306 std::string maps_data_str((std::istreambuf_iterator<char>(maps_file)), std::istreambuf_iterator<char>()); 4307 StringRef maps_data(maps_data_str.c_str()); 4308 4309 while (!maps_data.empty()) 4310 { 4311 StringRef maps_row; 4312 std::tie(maps_row, maps_data) = maps_data.split('\n'); 4313 4314 SmallVector<StringRef, 16> maps_columns; 4315 maps_row.split(maps_columns, StringRef(" "), -1, false); 4316 4317 if (maps_columns.size() >= 6) 4318 { 4319 file_spec.SetFile(maps_columns[5].str().c_str(), false); 4320 if (file_spec.GetFilename() == module_file_spec.GetFilename()) 4321 return Error(); 4322 } 4323 } 4324 4325 file_spec.Clear(); 4326 return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 4327 module_file_spec.GetFilename().AsCString(), GetID()); 4328 } 4329