1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "NativeProcessLinux.h" 10 11 #include <errno.h> 12 #include <stdint.h> 13 #include <string.h> 14 #include <unistd.h> 15 16 #include <fstream> 17 #include <mutex> 18 #include <sstream> 19 #include <string> 20 #include <unordered_map> 21 22 #include "lldb/Core/EmulateInstruction.h" 23 #include "lldb/Core/ModuleSpec.h" 24 #include "lldb/Host/Host.h" 25 #include "lldb/Host/HostProcess.h" 26 #include "lldb/Host/ProcessLaunchInfo.h" 27 #include "lldb/Host/PseudoTerminal.h" 28 #include "lldb/Host/ThreadLauncher.h" 29 #include "lldb/Host/common/NativeRegisterContext.h" 30 #include "lldb/Host/linux/Ptrace.h" 31 #include "lldb/Host/linux/Uio.h" 32 #include "lldb/Host/posix/ProcessLauncherPosixFork.h" 33 #include "lldb/Symbol/ObjectFile.h" 34 #include "lldb/Target/Process.h" 35 #include "lldb/Target/Target.h" 36 #include "lldb/Utility/LLDBAssert.h" 37 #include "lldb/Utility/RegisterValue.h" 38 #include "lldb/Utility/State.h" 39 #include "lldb/Utility/Status.h" 40 #include "lldb/Utility/StringExtractor.h" 41 #include "llvm/Support/Errno.h" 42 #include "llvm/Support/FileSystem.h" 43 #include "llvm/Support/Threading.h" 44 45 #include "NativeThreadLinux.h" 46 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 47 #include "Plugins/Process/Utility/LinuxProcMaps.h" 48 #include "Procfs.h" 49 50 #include <linux/unistd.h> 51 #include <sys/socket.h> 52 #include <sys/syscall.h> 53 #include <sys/types.h> 54 #include <sys/user.h> 55 #include <sys/wait.h> 56 57 // Support hardware breakpoints in case it has not been defined 58 #ifndef TRAP_HWBKPT 59 #define TRAP_HWBKPT 4 60 #endif 61 62 using namespace lldb; 63 using namespace lldb_private; 64 using namespace lldb_private::process_linux; 65 using namespace llvm; 66 67 // Private bits we only need internally. 68 69 static bool ProcessVmReadvSupported() { 70 static bool is_supported; 71 static llvm::once_flag flag; 72 73 llvm::call_once(flag, [] { 74 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 75 76 uint32_t source = 0x47424742; 77 uint32_t dest = 0; 78 79 struct iovec local, remote; 80 remote.iov_base = &source; 81 local.iov_base = &dest; 82 remote.iov_len = local.iov_len = sizeof source; 83 84 // We shall try if cross-process-memory reads work by attempting to read a 85 // value from our own process. 86 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); 87 is_supported = (res == sizeof(source) && source == dest); 88 if (is_supported) 89 LLDB_LOG(log, 90 "Detected kernel support for process_vm_readv syscall. " 91 "Fast memory reads enabled."); 92 else 93 LLDB_LOG(log, 94 "syscall process_vm_readv failed (error: {0}). Fast memory " 95 "reads disabled.", 96 llvm::sys::StrError()); 97 }); 98 99 return is_supported; 100 } 101 102 namespace { 103 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) { 104 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 105 if (!log) 106 return; 107 108 if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO)) 109 LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec()); 110 else 111 LLDB_LOG(log, "leaving STDIN as is"); 112 113 if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO)) 114 LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec()); 115 else 116 LLDB_LOG(log, "leaving STDOUT as is"); 117 118 if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO)) 119 LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec()); 120 else 121 LLDB_LOG(log, "leaving STDERR as is"); 122 123 int i = 0; 124 for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; 125 ++args, ++i) 126 LLDB_LOG(log, "arg {0}: '{1}'", i, *args); 127 } 128 129 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) { 130 uint8_t *ptr = (uint8_t *)bytes; 131 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 132 for (uint32_t i = 0; i < loop_count; i++) { 133 s.Printf("[%x]", *ptr); 134 ptr++; 135 } 136 } 137 138 void PtraceDisplayBytes(int &req, void *data, size_t data_size) { 139 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 140 if (!log) 141 return; 142 StreamString buf; 143 144 switch (req) { 145 case PTRACE_POKETEXT: { 146 DisplayBytes(buf, &data, 8); 147 LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData()); 148 break; 149 } 150 case PTRACE_POKEDATA: { 151 DisplayBytes(buf, &data, 8); 152 LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData()); 153 break; 154 } 155 case PTRACE_POKEUSER: { 156 DisplayBytes(buf, &data, 8); 157 LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData()); 158 break; 159 } 160 case PTRACE_SETREGS: { 161 DisplayBytes(buf, data, data_size); 162 LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData()); 163 break; 164 } 165 case PTRACE_SETFPREGS: { 166 DisplayBytes(buf, data, data_size); 167 LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData()); 168 break; 169 } 170 case PTRACE_SETSIGINFO: { 171 DisplayBytes(buf, data, sizeof(siginfo_t)); 172 LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData()); 173 break; 174 } 175 case PTRACE_SETREGSET: { 176 // Extract iov_base from data, which is a pointer to the struct iovec 177 DisplayBytes(buf, *(void **)data, data_size); 178 LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData()); 179 break; 180 } 181 default: {} 182 } 183 } 184 185 static constexpr unsigned k_ptrace_word_size = sizeof(void *); 186 static_assert(sizeof(long) >= k_ptrace_word_size, 187 "Size of long must be larger than ptrace word size"); 188 } // end of anonymous namespace 189 190 // Simple helper function to ensure flags are enabled on the given file 191 // descriptor. 192 static Status EnsureFDFlags(int fd, int flags) { 193 Status error; 194 195 int status = fcntl(fd, F_GETFL); 196 if (status == -1) { 197 error.SetErrorToErrno(); 198 return error; 199 } 200 201 if (fcntl(fd, F_SETFL, status | flags) == -1) { 202 error.SetErrorToErrno(); 203 return error; 204 } 205 206 return error; 207 } 208 209 // Public Static Methods 210 211 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 212 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info, 213 NativeDelegate &native_delegate, 214 MainLoop &mainloop) const { 215 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 216 217 MaybeLogLaunchInfo(launch_info); 218 219 Status status; 220 ::pid_t pid = ProcessLauncherPosixFork() 221 .LaunchProcess(launch_info, status) 222 .GetProcessId(); 223 LLDB_LOG(log, "pid = {0:x}", pid); 224 if (status.Fail()) { 225 LLDB_LOG(log, "failed to launch process: {0}", status); 226 return status.ToError(); 227 } 228 229 // Wait for the child process to trap on its call to execve. 230 int wstatus; 231 ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0); 232 assert(wpid == pid); 233 (void)wpid; 234 if (!WIFSTOPPED(wstatus)) { 235 LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}", 236 WaitStatus::Decode(wstatus)); 237 return llvm::make_error<StringError>("Could not sync with inferior process", 238 llvm::inconvertibleErrorCode()); 239 } 240 LLDB_LOG(log, "inferior started, now in stopped state"); 241 242 ProcessInstanceInfo Info; 243 if (!Host::GetProcessInfo(pid, Info)) { 244 return llvm::make_error<StringError>("Cannot get process architecture", 245 llvm::inconvertibleErrorCode()); 246 } 247 248 // Set the architecture to the exe architecture. 249 LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid, 250 Info.GetArchitecture().GetArchitectureName()); 251 252 status = SetDefaultPtraceOpts(pid); 253 if (status.Fail()) { 254 LLDB_LOG(log, "failed to set default ptrace options: {0}", status); 255 return status.ToError(); 256 } 257 258 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 259 pid, launch_info.GetPTY().ReleaseMasterFileDescriptor(), native_delegate, 260 Info.GetArchitecture(), mainloop, {pid})); 261 } 262 263 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 264 NativeProcessLinux::Factory::Attach( 265 lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate, 266 MainLoop &mainloop) const { 267 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 268 LLDB_LOG(log, "pid = {0:x}", pid); 269 270 // Retrieve the architecture for the running process. 271 ProcessInstanceInfo Info; 272 if (!Host::GetProcessInfo(pid, Info)) { 273 return llvm::make_error<StringError>("Cannot get process architecture", 274 llvm::inconvertibleErrorCode()); 275 } 276 277 auto tids_or = NativeProcessLinux::Attach(pid); 278 if (!tids_or) 279 return tids_or.takeError(); 280 281 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 282 pid, -1, native_delegate, Info.GetArchitecture(), mainloop, *tids_or)); 283 } 284 285 // Public Instance Methods 286 287 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd, 288 NativeDelegate &delegate, 289 const ArchSpec &arch, MainLoop &mainloop, 290 llvm::ArrayRef<::pid_t> tids) 291 : NativeProcessProtocol(pid, terminal_fd, delegate), m_arch(arch) { 292 if (m_terminal_fd != -1) { 293 Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 294 assert(status.Success()); 295 } 296 297 Status status; 298 m_sigchld_handle = mainloop.RegisterSignal( 299 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status); 300 assert(m_sigchld_handle && status.Success()); 301 302 for (const auto &tid : tids) { 303 NativeThreadLinux &thread = AddThread(tid); 304 thread.SetStoppedBySignal(SIGSTOP); 305 ThreadWasCreated(thread); 306 } 307 308 // Let our process instance know the thread has stopped. 309 SetCurrentThreadID(tids[0]); 310 SetState(StateType::eStateStopped, false); 311 312 // Proccess any signals we received before installing our handler 313 SigchldHandler(); 314 } 315 316 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) { 317 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 318 319 Status status; 320 // Use a map to keep track of the threads which we have attached/need to 321 // attach. 322 Host::TidMap tids_to_attach; 323 while (Host::FindProcessThreads(pid, tids_to_attach)) { 324 for (Host::TidMap::iterator it = tids_to_attach.begin(); 325 it != tids_to_attach.end();) { 326 if (it->second == false) { 327 lldb::tid_t tid = it->first; 328 329 // Attach to the requested process. 330 // An attach will cause the thread to stop with a SIGSTOP. 331 if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) { 332 // No such thread. The thread may have exited. More error handling 333 // may be needed. 334 if (status.GetError() == ESRCH) { 335 it = tids_to_attach.erase(it); 336 continue; 337 } 338 return status.ToError(); 339 } 340 341 int wpid = 342 llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL); 343 // Need to use __WALL otherwise we receive an error with errno=ECHLD At 344 // this point we should have a thread stopped if waitpid succeeds. 345 if (wpid < 0) { 346 // No such thread. The thread may have exited. More error handling 347 // may be needed. 348 if (errno == ESRCH) { 349 it = tids_to_attach.erase(it); 350 continue; 351 } 352 return llvm::errorCodeToError( 353 std::error_code(errno, std::generic_category())); 354 } 355 356 if ((status = SetDefaultPtraceOpts(tid)).Fail()) 357 return status.ToError(); 358 359 LLDB_LOG(log, "adding tid = {0}", tid); 360 it->second = true; 361 } 362 363 // move the loop forward 364 ++it; 365 } 366 } 367 368 size_t tid_count = tids_to_attach.size(); 369 if (tid_count == 0) 370 return llvm::make_error<StringError>("No such process", 371 llvm::inconvertibleErrorCode()); 372 373 std::vector<::pid_t> tids; 374 tids.reserve(tid_count); 375 for (const auto &p : tids_to_attach) 376 tids.push_back(p.first); 377 return std::move(tids); 378 } 379 380 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) { 381 long ptrace_opts = 0; 382 383 // Have the child raise an event on exit. This is used to keep the child in 384 // limbo until it is destroyed. 385 ptrace_opts |= PTRACE_O_TRACEEXIT; 386 387 // Have the tracer trace threads which spawn in the inferior process. 388 // TODO: if we want to support tracing the inferiors' child, add the 389 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) 390 ptrace_opts |= PTRACE_O_TRACECLONE; 391 392 // Have the tracer notify us before execve returns (needed to disable legacy 393 // SIGTRAP generation) 394 ptrace_opts |= PTRACE_O_TRACEEXEC; 395 396 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts); 397 } 398 399 // Handles all waitpid events from the inferior process. 400 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited, 401 WaitStatus status) { 402 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 403 404 // Certain activities differ based on whether the pid is the tid of the main 405 // thread. 406 const bool is_main_thread = (pid == GetID()); 407 408 // Handle when the thread exits. 409 if (exited) { 410 LLDB_LOG(log, 411 "got exit status({0}) , tid = {1} ({2} main thread), process " 412 "state = {3}", 413 status, pid, is_main_thread ? "is" : "is not", GetState()); 414 415 // This is a thread that exited. Ensure we're not tracking it anymore. 416 StopTrackingThread(pid); 417 418 if (is_main_thread) { 419 // The main thread exited. We're done monitoring. Report to delegate. 420 SetExitStatus(status, true); 421 422 // Notify delegate that our process has exited. 423 SetState(StateType::eStateExited, true); 424 } 425 return; 426 } 427 428 siginfo_t info; 429 const auto info_err = GetSignalInfo(pid, &info); 430 auto thread_sp = GetThreadByID(pid); 431 432 if (!thread_sp) { 433 // Normally, the only situation when we cannot find the thread is if we 434 // have just received a new thread notification. This is indicated by 435 // GetSignalInfo() returning si_code == SI_USER and si_pid == 0 436 LLDB_LOG(log, "received notification about an unknown tid {0}.", pid); 437 438 if (info_err.Fail()) { 439 LLDB_LOG(log, 440 "(tid {0}) GetSignalInfo failed ({1}). " 441 "Ingoring this notification.", 442 pid, info_err); 443 return; 444 } 445 446 LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code, 447 info.si_pid); 448 449 NativeThreadLinux &thread = AddThread(pid); 450 451 // Resume the newly created thread. 452 ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 453 ThreadWasCreated(thread); 454 return; 455 } 456 457 // Get details on the signal raised. 458 if (info_err.Success()) { 459 // We have retrieved the signal info. Dispatch appropriately. 460 if (info.si_signo == SIGTRAP) 461 MonitorSIGTRAP(info, *thread_sp); 462 else 463 MonitorSignal(info, *thread_sp, exited); 464 } else { 465 if (info_err.GetError() == EINVAL) { 466 // This is a group stop reception for this tid. We can reach here if we 467 // reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the tracee, 468 // triggering the group-stop mechanism. Normally receiving these would 469 // stop the process, pending a SIGCONT. Simulating this state in a 470 // debugger is hard and is generally not needed (one use case is 471 // debugging background task being managed by a shell). For general use, 472 // it is sufficient to stop the process in a signal-delivery stop which 473 // happens before the group stop. This done by MonitorSignal and works 474 // correctly for all signals. 475 LLDB_LOG(log, 476 "received a group stop for pid {0} tid {1}. Transparent " 477 "handling of group stops not supported, resuming the " 478 "thread.", 479 GetID(), pid); 480 ResumeThread(*thread_sp, thread_sp->GetState(), 481 LLDB_INVALID_SIGNAL_NUMBER); 482 } else { 483 // ptrace(GETSIGINFO) failed (but not due to group-stop). 484 485 // A return value of ESRCH means the thread/process is no longer on the 486 // system, so it was killed somehow outside of our control. Either way, 487 // we can't do anything with it anymore. 488 489 // Stop tracking the metadata for the thread since it's entirely off the 490 // system now. 491 const bool thread_found = StopTrackingThread(pid); 492 493 LLDB_LOG(log, 494 "GetSignalInfo failed: {0}, tid = {1}, status = {2}, " 495 "status = {3}, main_thread = {4}, thread_found: {5}", 496 info_err, pid, status, status, is_main_thread, thread_found); 497 498 if (is_main_thread) { 499 // Notify the delegate - our process is not available but appears to 500 // have been killed outside our control. Is eStateExited the right 501 // exit state in this case? 502 SetExitStatus(status, true); 503 SetState(StateType::eStateExited, true); 504 } else { 505 // This thread was pulled out from underneath us. Anything to do here? 506 // Do we want to do an all stop? 507 LLDB_LOG(log, 508 "pid {0} tid {1} non-main thread exit occurred, didn't " 509 "tell delegate anything since thread disappeared out " 510 "from underneath us", 511 GetID(), pid); 512 } 513 } 514 } 515 } 516 517 void NativeProcessLinux::WaitForNewThread(::pid_t tid) { 518 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 519 520 if (GetThreadByID(tid)) { 521 // We are already tracking the thread - we got the event on the new thread 522 // (see MonitorSignal) before this one. We are done. 523 return; 524 } 525 526 // The thread is not tracked yet, let's wait for it to appear. 527 int status = -1; 528 LLDB_LOG(log, 529 "received thread creation event for tid {0}. tid not tracked " 530 "yet, waiting for thread to appear...", 531 tid); 532 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, &status, __WALL); 533 // Since we are waiting on a specific tid, this must be the creation event. 534 // But let's do some checks just in case. 535 if (wait_pid != tid) { 536 LLDB_LOG(log, 537 "waiting for tid {0} failed. Assuming the thread has " 538 "disappeared in the meantime", 539 tid); 540 // The only way I know of this could happen is if the whole process was 541 // SIGKILLed in the mean time. In any case, we can't do anything about that 542 // now. 543 return; 544 } 545 if (WIFEXITED(status)) { 546 LLDB_LOG(log, 547 "waiting for tid {0} returned an 'exited' event. Not " 548 "tracking the thread.", 549 tid); 550 // Also a very improbable event. 551 return; 552 } 553 554 LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid); 555 NativeThreadLinux &new_thread = AddThread(tid); 556 557 ResumeThread(new_thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 558 ThreadWasCreated(new_thread); 559 } 560 561 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, 562 NativeThreadLinux &thread) { 563 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 564 const bool is_main_thread = (thread.GetID() == GetID()); 565 566 assert(info.si_signo == SIGTRAP && "Unexpected child signal!"); 567 568 switch (info.si_code) { 569 // TODO: these two cases are required if we want to support tracing of the 570 // inferiors' children. We'd need this to debug a monitor. case (SIGTRAP | 571 // (PTRACE_EVENT_FORK << 8)): case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 572 573 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { 574 // This is the notification on the parent thread which informs us of new 575 // thread creation. We don't want to do anything with the parent thread so 576 // we just resume it. In case we want to implement "break on thread 577 // creation" functionality, we would need to stop here. 578 579 unsigned long event_message = 0; 580 if (GetEventMessage(thread.GetID(), &event_message).Fail()) { 581 LLDB_LOG(log, 582 "pid {0} received thread creation event but " 583 "GetEventMessage failed so we don't know the new tid", 584 thread.GetID()); 585 } else 586 WaitForNewThread(event_message); 587 588 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 589 break; 590 } 591 592 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): { 593 LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP); 594 595 // Exec clears any pending notifications. 596 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 597 598 // Remove all but the main thread here. Linux fork creates a new process 599 // which only copies the main thread. 600 LLDB_LOG(log, "exec received, stop tracking all but main thread"); 601 602 for (auto i = m_threads.begin(); i != m_threads.end();) { 603 if ((*i)->GetID() == GetID()) 604 i = m_threads.erase(i); 605 else 606 ++i; 607 } 608 assert(m_threads.size() == 1); 609 auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get()); 610 611 SetCurrentThreadID(main_thread->GetID()); 612 main_thread->SetStoppedByExec(); 613 614 // Tell coordinator about about the "new" (since exec) stopped main thread. 615 ThreadWasCreated(*main_thread); 616 617 // Let our delegate know we have just exec'd. 618 NotifyDidExec(); 619 620 // Let the process know we're stopped. 621 StopRunningThreads(main_thread->GetID()); 622 623 break; 624 } 625 626 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { 627 // The inferior process or one of its threads is about to exit. We don't 628 // want to do anything with the thread so we just resume it. In case we 629 // want to implement "break on thread exit" functionality, we would need to 630 // stop here. 631 632 unsigned long data = 0; 633 if (GetEventMessage(thread.GetID(), &data).Fail()) 634 data = -1; 635 636 LLDB_LOG(log, 637 "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, " 638 "WIFSIGNALED={2}, pid = {3}, main_thread = {4}", 639 data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(), 640 is_main_thread); 641 642 643 StateType state = thread.GetState(); 644 if (!StateIsRunningState(state)) { 645 // Due to a kernel bug, we may sometimes get this stop after the inferior 646 // gets a SIGKILL. This confuses our state tracking logic in 647 // ResumeThread(), since normally, we should not be receiving any ptrace 648 // events while the inferior is stopped. This makes sure that the 649 // inferior is resumed and exits normally. 650 state = eStateRunning; 651 } 652 ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); 653 654 break; 655 } 656 657 case 0: 658 case TRAP_TRACE: // We receive this on single stepping. 659 case TRAP_HWBKPT: // We receive this on watchpoint hit 660 { 661 // If a watchpoint was hit, report it 662 uint32_t wp_index; 663 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 664 wp_index, (uintptr_t)info.si_addr); 665 if (error.Fail()) 666 LLDB_LOG(log, 667 "received error while checking for watchpoint hits, pid = " 668 "{0}, error = {1}", 669 thread.GetID(), error); 670 if (wp_index != LLDB_INVALID_INDEX32) { 671 MonitorWatchpoint(thread, wp_index); 672 break; 673 } 674 675 // If a breakpoint was hit, report it 676 uint32_t bp_index; 677 error = thread.GetRegisterContext().GetHardwareBreakHitIndex( 678 bp_index, (uintptr_t)info.si_addr); 679 if (error.Fail()) 680 LLDB_LOG(log, "received error while checking for hardware " 681 "breakpoint hits, pid = {0}, error = {1}", 682 thread.GetID(), error); 683 if (bp_index != LLDB_INVALID_INDEX32) { 684 MonitorBreakpoint(thread); 685 break; 686 } 687 688 // Otherwise, report step over 689 MonitorTrace(thread); 690 break; 691 } 692 693 case SI_KERNEL: 694 #if defined __mips__ 695 // For mips there is no special signal for watchpoint So we check for 696 // watchpoint in kernel trap 697 { 698 // If a watchpoint was hit, report it 699 uint32_t wp_index; 700 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 701 wp_index, LLDB_INVALID_ADDRESS); 702 if (error.Fail()) 703 LLDB_LOG(log, 704 "received error while checking for watchpoint hits, pid = " 705 "{0}, error = {1}", 706 thread.GetID(), error); 707 if (wp_index != LLDB_INVALID_INDEX32) { 708 MonitorWatchpoint(thread, wp_index); 709 break; 710 } 711 } 712 // NO BREAK 713 #endif 714 case TRAP_BRKPT: 715 MonitorBreakpoint(thread); 716 break; 717 718 case SIGTRAP: 719 case (SIGTRAP | 0x80): 720 LLDB_LOG( 721 log, 722 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 723 info.si_code, GetID(), thread.GetID()); 724 725 // Ignore these signals until we know more about them. 726 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 727 break; 728 729 default: 730 LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}", 731 info.si_code, GetID(), thread.GetID()); 732 MonitorSignal(info, thread, false); 733 break; 734 } 735 } 736 737 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) { 738 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 739 LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID()); 740 741 // This thread is currently stopped. 742 thread.SetStoppedByTrace(); 743 744 StopRunningThreads(thread.GetID()); 745 } 746 747 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) { 748 Log *log( 749 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 750 LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID()); 751 752 // Mark the thread as stopped at breakpoint. 753 thread.SetStoppedByBreakpoint(); 754 FixupBreakpointPCAsNeeded(thread); 755 756 if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != 757 m_threads_stepping_with_breakpoint.end()) 758 thread.SetStoppedByTrace(); 759 760 StopRunningThreads(thread.GetID()); 761 } 762 763 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, 764 uint32_t wp_index) { 765 Log *log( 766 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); 767 LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}", 768 thread.GetID(), wp_index); 769 770 // Mark the thread as stopped at watchpoint. The address is at 771 // (lldb::addr_t)info->si_addr if we need it. 772 thread.SetStoppedByWatchpoint(wp_index); 773 774 // We need to tell all other running threads before we notify the delegate 775 // about this stop. 776 StopRunningThreads(thread.GetID()); 777 } 778 779 void NativeProcessLinux::MonitorSignal(const siginfo_t &info, 780 NativeThreadLinux &thread, bool exited) { 781 const int signo = info.si_signo; 782 const bool is_from_llgs = info.si_pid == getpid(); 783 784 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 785 786 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 787 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2) 788 // or raise(3). Similarly for tgkill(2) on Linux. 789 // 790 // IOW, user generated signals never generate what we consider to be a 791 // "crash". 792 // 793 // Similarly, ACK signals generated by this monitor. 794 795 // Handle the signal. 796 LLDB_LOG(log, 797 "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, " 798 "waitpid pid = {4})", 799 Host::GetSignalAsCString(signo), signo, info.si_code, 800 thread.GetID()); 801 802 // Check for thread stop notification. 803 if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) { 804 // This is a tgkill()-based stop. 805 LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID()); 806 807 // Check that we're not already marked with a stop reason. Note this thread 808 // really shouldn't already be marked as stopped - if we were, that would 809 // imply that the kernel signaled us with the thread stopping which we 810 // handled and marked as stopped, and that, without an intervening resume, 811 // we received another stop. It is more likely that we are missing the 812 // marking of a run state somewhere if we find that the thread was marked 813 // as stopped. 814 const StateType thread_state = thread.GetState(); 815 if (!StateIsStoppedState(thread_state, false)) { 816 // An inferior thread has stopped because of a SIGSTOP we have sent it. 817 // Generally, these are not important stops and we don't want to report 818 // them as they are just used to stop other threads when one thread (the 819 // one with the *real* stop reason) hits a breakpoint (watchpoint, 820 // etc...). However, in the case of an asynchronous Interrupt(), this 821 // *is* the real stop reason, so we leave the signal intact if this is 822 // the thread that was chosen as the triggering thread. 823 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 824 if (m_pending_notification_tid == thread.GetID()) 825 thread.SetStoppedBySignal(SIGSTOP, &info); 826 else 827 thread.SetStoppedWithNoReason(); 828 829 SetCurrentThreadID(thread.GetID()); 830 SignalIfAllThreadsStopped(); 831 } else { 832 // We can end up here if stop was initiated by LLGS but by this time a 833 // thread stop has occurred - maybe initiated by another event. 834 Status error = ResumeThread(thread, thread.GetState(), 0); 835 if (error.Fail()) 836 LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(), 837 error); 838 } 839 } else { 840 LLDB_LOG(log, 841 "pid {0} tid {1}, thread was already marked as a stopped " 842 "state (state={2}), leaving stop signal as is", 843 GetID(), thread.GetID(), thread_state); 844 SignalIfAllThreadsStopped(); 845 } 846 847 // Done handling. 848 return; 849 } 850 851 // Check if debugger should stop at this signal or just ignore it and resume 852 // the inferior. 853 if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) { 854 ResumeThread(thread, thread.GetState(), signo); 855 return; 856 } 857 858 // This thread is stopped. 859 LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo)); 860 thread.SetStoppedBySignal(signo, &info); 861 862 // Send a stop to the debugger after we get all other threads to stop. 863 StopRunningThreads(thread.GetID()); 864 } 865 866 namespace { 867 868 struct EmulatorBaton { 869 NativeProcessLinux &m_process; 870 NativeRegisterContext &m_reg_context; 871 872 // eRegisterKindDWARF -> RegsiterValue 873 std::unordered_map<uint32_t, RegisterValue> m_register_values; 874 875 EmulatorBaton(NativeProcessLinux &process, NativeRegisterContext ®_context) 876 : m_process(process), m_reg_context(reg_context) {} 877 }; 878 879 } // anonymous namespace 880 881 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton, 882 const EmulateInstruction::Context &context, 883 lldb::addr_t addr, void *dst, size_t length) { 884 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 885 886 size_t bytes_read; 887 emulator_baton->m_process.ReadMemory(addr, dst, length, bytes_read); 888 return bytes_read; 889 } 890 891 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton, 892 const RegisterInfo *reg_info, 893 RegisterValue ®_value) { 894 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 895 896 auto it = emulator_baton->m_register_values.find( 897 reg_info->kinds[eRegisterKindDWARF]); 898 if (it != emulator_baton->m_register_values.end()) { 899 reg_value = it->second; 900 return true; 901 } 902 903 // The emulator only fill in the dwarf regsiter numbers (and in some case the 904 // generic register numbers). Get the full register info from the register 905 // context based on the dwarf register numbers. 906 const RegisterInfo *full_reg_info = 907 emulator_baton->m_reg_context.GetRegisterInfo( 908 eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]); 909 910 Status error = 911 emulator_baton->m_reg_context.ReadRegister(full_reg_info, reg_value); 912 if (error.Success()) 913 return true; 914 915 return false; 916 } 917 918 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton, 919 const EmulateInstruction::Context &context, 920 const RegisterInfo *reg_info, 921 const RegisterValue ®_value) { 922 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 923 emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = 924 reg_value; 925 return true; 926 } 927 928 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton, 929 const EmulateInstruction::Context &context, 930 lldb::addr_t addr, const void *dst, 931 size_t length) { 932 return length; 933 } 934 935 static lldb::addr_t ReadFlags(NativeRegisterContext ®siter_context) { 936 const RegisterInfo *flags_info = regsiter_context.GetRegisterInfo( 937 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 938 return regsiter_context.ReadRegisterAsUnsigned(flags_info, 939 LLDB_INVALID_ADDRESS); 940 } 941 942 Status 943 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) { 944 Status error; 945 NativeRegisterContext& register_context = thread.GetRegisterContext(); 946 947 std::unique_ptr<EmulateInstruction> emulator_up( 948 EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, 949 nullptr)); 950 951 if (emulator_up == nullptr) 952 return Status("Instruction emulator not found!"); 953 954 EmulatorBaton baton(*this, register_context); 955 emulator_up->SetBaton(&baton); 956 emulator_up->SetReadMemCallback(&ReadMemoryCallback); 957 emulator_up->SetReadRegCallback(&ReadRegisterCallback); 958 emulator_up->SetWriteMemCallback(&WriteMemoryCallback); 959 emulator_up->SetWriteRegCallback(&WriteRegisterCallback); 960 961 if (!emulator_up->ReadInstruction()) 962 return Status("Read instruction failed!"); 963 964 bool emulation_result = 965 emulator_up->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC); 966 967 const RegisterInfo *reg_info_pc = register_context.GetRegisterInfo( 968 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); 969 const RegisterInfo *reg_info_flags = register_context.GetRegisterInfo( 970 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 971 972 auto pc_it = 973 baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]); 974 auto flags_it = 975 baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]); 976 977 lldb::addr_t next_pc; 978 lldb::addr_t next_flags; 979 if (emulation_result) { 980 assert(pc_it != baton.m_register_values.end() && 981 "Emulation was successfull but PC wasn't updated"); 982 next_pc = pc_it->second.GetAsUInt64(); 983 984 if (flags_it != baton.m_register_values.end()) 985 next_flags = flags_it->second.GetAsUInt64(); 986 else 987 next_flags = ReadFlags(register_context); 988 } else if (pc_it == baton.m_register_values.end()) { 989 // Emulate instruction failed and it haven't changed PC. Advance PC with 990 // the size of the current opcode because the emulation of all 991 // PC modifying instruction should be successful. The failure most 992 // likely caused by a not supported instruction which don't modify PC. 993 next_pc = register_context.GetPC() + emulator_up->GetOpcode().GetByteSize(); 994 next_flags = ReadFlags(register_context); 995 } else { 996 // The instruction emulation failed after it modified the PC. It is an 997 // unknown error where we can't continue because the next instruction is 998 // modifying the PC but we don't know how. 999 return Status("Instruction emulation failed unexpectedly."); 1000 } 1001 1002 if (m_arch.GetMachine() == llvm::Triple::arm) { 1003 if (next_flags & 0x20) { 1004 // Thumb mode 1005 error = SetSoftwareBreakpoint(next_pc, 2); 1006 } else { 1007 // Arm mode 1008 error = SetSoftwareBreakpoint(next_pc, 4); 1009 } 1010 } else if (m_arch.GetMachine() == llvm::Triple::mips64 || 1011 m_arch.GetMachine() == llvm::Triple::mips64el || 1012 m_arch.GetMachine() == llvm::Triple::mips || 1013 m_arch.GetMachine() == llvm::Triple::mipsel || 1014 m_arch.GetMachine() == llvm::Triple::ppc64le) 1015 error = SetSoftwareBreakpoint(next_pc, 4); 1016 else { 1017 // No size hint is given for the next breakpoint 1018 error = SetSoftwareBreakpoint(next_pc, 0); 1019 } 1020 1021 // If setting the breakpoint fails because next_pc is out of the address 1022 // space, ignore it and let the debugee segfault. 1023 if (error.GetError() == EIO || error.GetError() == EFAULT) { 1024 return Status(); 1025 } else if (error.Fail()) 1026 return error; 1027 1028 m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc}); 1029 1030 return Status(); 1031 } 1032 1033 bool NativeProcessLinux::SupportHardwareSingleStepping() const { 1034 if (m_arch.GetMachine() == llvm::Triple::arm || 1035 m_arch.GetMachine() == llvm::Triple::mips64 || 1036 m_arch.GetMachine() == llvm::Triple::mips64el || 1037 m_arch.GetMachine() == llvm::Triple::mips || 1038 m_arch.GetMachine() == llvm::Triple::mipsel) 1039 return false; 1040 return true; 1041 } 1042 1043 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) { 1044 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1045 LLDB_LOG(log, "pid {0}", GetID()); 1046 1047 bool software_single_step = !SupportHardwareSingleStepping(); 1048 1049 if (software_single_step) { 1050 for (const auto &thread : m_threads) { 1051 assert(thread && "thread list should not contain NULL threads"); 1052 1053 const ResumeAction *const action = 1054 resume_actions.GetActionForThread(thread->GetID(), true); 1055 if (action == nullptr) 1056 continue; 1057 1058 if (action->state == eStateStepping) { 1059 Status error = SetupSoftwareSingleStepping( 1060 static_cast<NativeThreadLinux &>(*thread)); 1061 if (error.Fail()) 1062 return error; 1063 } 1064 } 1065 } 1066 1067 for (const auto &thread : m_threads) { 1068 assert(thread && "thread list should not contain NULL threads"); 1069 1070 const ResumeAction *const action = 1071 resume_actions.GetActionForThread(thread->GetID(), true); 1072 1073 if (action == nullptr) { 1074 LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(), 1075 thread->GetID()); 1076 continue; 1077 } 1078 1079 LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}", 1080 action->state, GetID(), thread->GetID()); 1081 1082 switch (action->state) { 1083 case eStateRunning: 1084 case eStateStepping: { 1085 // Run the thread, possibly feeding it the signal. 1086 const int signo = action->signal; 1087 ResumeThread(static_cast<NativeThreadLinux &>(*thread), action->state, 1088 signo); 1089 break; 1090 } 1091 1092 case eStateSuspended: 1093 case eStateStopped: 1094 llvm_unreachable("Unexpected state"); 1095 1096 default: 1097 return Status("NativeProcessLinux::%s (): unexpected state %s specified " 1098 "for pid %" PRIu64 ", tid %" PRIu64, 1099 __FUNCTION__, StateAsCString(action->state), GetID(), 1100 thread->GetID()); 1101 } 1102 } 1103 1104 return Status(); 1105 } 1106 1107 Status NativeProcessLinux::Halt() { 1108 Status error; 1109 1110 if (kill(GetID(), SIGSTOP) != 0) 1111 error.SetErrorToErrno(); 1112 1113 return error; 1114 } 1115 1116 Status NativeProcessLinux::Detach() { 1117 Status error; 1118 1119 // Stop monitoring the inferior. 1120 m_sigchld_handle.reset(); 1121 1122 // Tell ptrace to detach from the process. 1123 if (GetID() == LLDB_INVALID_PROCESS_ID) 1124 return error; 1125 1126 for (const auto &thread : m_threads) { 1127 Status e = Detach(thread->GetID()); 1128 if (e.Fail()) 1129 error = 1130 e; // Save the error, but still attempt to detach from other threads. 1131 } 1132 1133 m_processor_trace_monitor.clear(); 1134 m_pt_proces_trace_id = LLDB_INVALID_UID; 1135 1136 return error; 1137 } 1138 1139 Status NativeProcessLinux::Signal(int signo) { 1140 Status error; 1141 1142 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1143 LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo, 1144 Host::GetSignalAsCString(signo), GetID()); 1145 1146 if (kill(GetID(), signo)) 1147 error.SetErrorToErrno(); 1148 1149 return error; 1150 } 1151 1152 Status NativeProcessLinux::Interrupt() { 1153 // Pick a running thread (or if none, a not-dead stopped thread) as the 1154 // chosen thread that will be the stop-reason thread. 1155 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1156 1157 NativeThreadProtocol *running_thread = nullptr; 1158 NativeThreadProtocol *stopped_thread = nullptr; 1159 1160 LLDB_LOG(log, "selecting running thread for interrupt target"); 1161 for (const auto &thread : m_threads) { 1162 // If we have a running or stepping thread, we'll call that the target of 1163 // the interrupt. 1164 const auto thread_state = thread->GetState(); 1165 if (thread_state == eStateRunning || thread_state == eStateStepping) { 1166 running_thread = thread.get(); 1167 break; 1168 } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) { 1169 // Remember the first non-dead stopped thread. We'll use that as a 1170 // backup if there are no running threads. 1171 stopped_thread = thread.get(); 1172 } 1173 } 1174 1175 if (!running_thread && !stopped_thread) { 1176 Status error("found no running/stepping or live stopped threads as target " 1177 "for interrupt"); 1178 LLDB_LOG(log, "skipping due to error: {0}", error); 1179 1180 return error; 1181 } 1182 1183 NativeThreadProtocol *deferred_signal_thread = 1184 running_thread ? running_thread : stopped_thread; 1185 1186 LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(), 1187 running_thread ? "running" : "stopped", 1188 deferred_signal_thread->GetID()); 1189 1190 StopRunningThreads(deferred_signal_thread->GetID()); 1191 1192 return Status(); 1193 } 1194 1195 Status NativeProcessLinux::Kill() { 1196 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1197 LLDB_LOG(log, "pid {0}", GetID()); 1198 1199 Status error; 1200 1201 switch (m_state) { 1202 case StateType::eStateInvalid: 1203 case StateType::eStateExited: 1204 case StateType::eStateCrashed: 1205 case StateType::eStateDetached: 1206 case StateType::eStateUnloaded: 1207 // Nothing to do - the process is already dead. 1208 LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(), 1209 m_state); 1210 return error; 1211 1212 case StateType::eStateConnected: 1213 case StateType::eStateAttaching: 1214 case StateType::eStateLaunching: 1215 case StateType::eStateStopped: 1216 case StateType::eStateRunning: 1217 case StateType::eStateStepping: 1218 case StateType::eStateSuspended: 1219 // We can try to kill a process in these states. 1220 break; 1221 } 1222 1223 if (kill(GetID(), SIGKILL) != 0) { 1224 error.SetErrorToErrno(); 1225 return error; 1226 } 1227 1228 return error; 1229 } 1230 1231 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr, 1232 MemoryRegionInfo &range_info) { 1233 // FIXME review that the final memory region returned extends to the end of 1234 // the virtual address space, 1235 // with no perms if it is not mapped. 1236 1237 // Use an approach that reads memory regions from /proc/{pid}/maps. Assume 1238 // proc maps entries are in ascending order. 1239 // FIXME assert if we find differently. 1240 1241 if (m_supports_mem_region == LazyBool::eLazyBoolNo) { 1242 // We're done. 1243 return Status("unsupported"); 1244 } 1245 1246 Status error = PopulateMemoryRegionCache(); 1247 if (error.Fail()) { 1248 return error; 1249 } 1250 1251 lldb::addr_t prev_base_address = 0; 1252 1253 // FIXME start by finding the last region that is <= target address using 1254 // binary search. Data is sorted. 1255 // There can be a ton of regions on pthreads apps with lots of threads. 1256 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end(); 1257 ++it) { 1258 MemoryRegionInfo &proc_entry_info = it->first; 1259 1260 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 1261 assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) && 1262 "descending /proc/pid/maps entries detected, unexpected"); 1263 prev_base_address = proc_entry_info.GetRange().GetRangeBase(); 1264 UNUSED_IF_ASSERT_DISABLED(prev_base_address); 1265 1266 // If the target address comes before this entry, indicate distance to next 1267 // region. 1268 if (load_addr < proc_entry_info.GetRange().GetRangeBase()) { 1269 range_info.GetRange().SetRangeBase(load_addr); 1270 range_info.GetRange().SetByteSize( 1271 proc_entry_info.GetRange().GetRangeBase() - load_addr); 1272 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1273 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1274 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1275 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1276 1277 return error; 1278 } else if (proc_entry_info.GetRange().Contains(load_addr)) { 1279 // The target address is within the memory region we're processing here. 1280 range_info = proc_entry_info; 1281 return error; 1282 } 1283 1284 // The target memory address comes somewhere after the region we just 1285 // parsed. 1286 } 1287 1288 // If we made it here, we didn't find an entry that contained the given 1289 // address. Return the load_addr as start and the amount of bytes betwwen 1290 // load address and the end of the memory as size. 1291 range_info.GetRange().SetRangeBase(load_addr); 1292 range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS); 1293 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1294 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1295 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1296 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1297 return error; 1298 } 1299 1300 Status NativeProcessLinux::PopulateMemoryRegionCache() { 1301 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1302 1303 // If our cache is empty, pull the latest. There should always be at least 1304 // one memory region if memory region handling is supported. 1305 if (!m_mem_region_cache.empty()) { 1306 LLDB_LOG(log, "reusing {0} cached memory region entries", 1307 m_mem_region_cache.size()); 1308 return Status(); 1309 } 1310 1311 auto BufferOrError = getProcFile(GetID(), "maps"); 1312 if (!BufferOrError) { 1313 m_supports_mem_region = LazyBool::eLazyBoolNo; 1314 return BufferOrError.getError(); 1315 } 1316 Status Result; 1317 ParseLinuxMapRegions(BufferOrError.get()->getBuffer(), 1318 [&](const MemoryRegionInfo &Info, const Status &ST) { 1319 if (ST.Success()) { 1320 FileSpec file_spec(Info.GetName().GetCString()); 1321 FileSystem::Instance().Resolve(file_spec); 1322 m_mem_region_cache.emplace_back(Info, file_spec); 1323 return true; 1324 } else { 1325 m_supports_mem_region = LazyBool::eLazyBoolNo; 1326 LLDB_LOG(log, "failed to parse proc maps: {0}", ST); 1327 Result = ST; 1328 return false; 1329 } 1330 }); 1331 if (Result.Fail()) 1332 return Result; 1333 1334 if (m_mem_region_cache.empty()) { 1335 // No entries after attempting to read them. This shouldn't happen if 1336 // /proc/{pid}/maps is supported. Assume we don't support map entries via 1337 // procfs. 1338 m_supports_mem_region = LazyBool::eLazyBoolNo; 1339 LLDB_LOG(log, 1340 "failed to find any procfs maps entries, assuming no support " 1341 "for memory region metadata retrieval"); 1342 return Status("not supported"); 1343 } 1344 1345 LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps", 1346 m_mem_region_cache.size(), GetID()); 1347 1348 // We support memory retrieval, remember that. 1349 m_supports_mem_region = LazyBool::eLazyBoolYes; 1350 return Status(); 1351 } 1352 1353 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) { 1354 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1355 LLDB_LOG(log, "newBumpId={0}", newBumpId); 1356 LLDB_LOG(log, "clearing {0} entries from memory region cache", 1357 m_mem_region_cache.size()); 1358 m_mem_region_cache.clear(); 1359 } 1360 1361 Status NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, 1362 lldb::addr_t &addr) { 1363 // FIXME implementing this requires the equivalent of 1364 // InferiorCallPOSIX::InferiorCallMmap, which depends on functional ThreadPlans 1365 // working with Native*Protocol. 1366 #if 1 1367 return Status("not implemented yet"); 1368 #else 1369 addr = LLDB_INVALID_ADDRESS; 1370 1371 unsigned prot = 0; 1372 if (permissions & lldb::ePermissionsReadable) 1373 prot |= eMmapProtRead; 1374 if (permissions & lldb::ePermissionsWritable) 1375 prot |= eMmapProtWrite; 1376 if (permissions & lldb::ePermissionsExecutable) 1377 prot |= eMmapProtExec; 1378 1379 // TODO implement this directly in NativeProcessLinux 1380 // (and lift to NativeProcessPOSIX if/when that class is refactored out). 1381 if (InferiorCallMmap(this, addr, 0, size, prot, 1382 eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { 1383 m_addr_to_mmap_size[addr] = size; 1384 return Status(); 1385 } else { 1386 addr = LLDB_INVALID_ADDRESS; 1387 return Status("unable to allocate %" PRIu64 1388 " bytes of memory with permissions %s", 1389 size, GetPermissionsAsCString(permissions)); 1390 } 1391 #endif 1392 } 1393 1394 Status NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) { 1395 // FIXME see comments in AllocateMemory - required lower-level 1396 // bits not in place yet (ThreadPlans) 1397 return Status("not implemented"); 1398 } 1399 1400 lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress() { 1401 // punt on this for now 1402 return LLDB_INVALID_ADDRESS; 1403 } 1404 1405 size_t NativeProcessLinux::UpdateThreads() { 1406 // The NativeProcessLinux monitoring threads are always up to date with 1407 // respect to thread state and they keep the thread list populated properly. 1408 // All this method needs to do is return the thread count. 1409 return m_threads.size(); 1410 } 1411 1412 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size, 1413 bool hardware) { 1414 if (hardware) 1415 return SetHardwareBreakpoint(addr, size); 1416 else 1417 return SetSoftwareBreakpoint(addr, size); 1418 } 1419 1420 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) { 1421 if (hardware) 1422 return RemoveHardwareBreakpoint(addr); 1423 else 1424 return NativeProcessProtocol::RemoveBreakpoint(addr); 1425 } 1426 1427 llvm::Expected<llvm::ArrayRef<uint8_t>> 1428 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(size_t size_hint) { 1429 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 1430 // linux kernel does otherwise. 1431 static const uint8_t g_arm_opcode[] = {0xf0, 0x01, 0xf0, 0xe7}; 1432 static const uint8_t g_thumb_opcode[] = {0x01, 0xde}; 1433 1434 switch (GetArchitecture().GetMachine()) { 1435 case llvm::Triple::arm: 1436 switch (size_hint) { 1437 case 2: 1438 return llvm::makeArrayRef(g_thumb_opcode); 1439 case 4: 1440 return llvm::makeArrayRef(g_arm_opcode); 1441 default: 1442 return llvm::createStringError(llvm::inconvertibleErrorCode(), 1443 "Unrecognised trap opcode size hint!"); 1444 } 1445 default: 1446 return NativeProcessProtocol::GetSoftwareBreakpointTrapOpcode(size_hint); 1447 } 1448 } 1449 1450 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size, 1451 size_t &bytes_read) { 1452 if (ProcessVmReadvSupported()) { 1453 // The process_vm_readv path is about 50 times faster than ptrace api. We 1454 // want to use this syscall if it is supported. 1455 1456 const ::pid_t pid = GetID(); 1457 1458 struct iovec local_iov, remote_iov; 1459 local_iov.iov_base = buf; 1460 local_iov.iov_len = size; 1461 remote_iov.iov_base = reinterpret_cast<void *>(addr); 1462 remote_iov.iov_len = size; 1463 1464 bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0); 1465 const bool success = bytes_read == size; 1466 1467 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1468 LLDB_LOG(log, 1469 "using process_vm_readv to read {0} bytes from inferior " 1470 "address {1:x}: {2}", 1471 size, addr, success ? "Success" : llvm::sys::StrError(errno)); 1472 1473 if (success) 1474 return Status(); 1475 // else the call failed for some reason, let's retry the read using ptrace 1476 // api. 1477 } 1478 1479 unsigned char *dst = static_cast<unsigned char *>(buf); 1480 size_t remainder; 1481 long data; 1482 1483 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1484 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1485 1486 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { 1487 Status error = NativeProcessLinux::PtraceWrapper( 1488 PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data); 1489 if (error.Fail()) 1490 return error; 1491 1492 remainder = size - bytes_read; 1493 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1494 1495 // Copy the data into our buffer 1496 memcpy(dst, &data, remainder); 1497 1498 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1499 addr += k_ptrace_word_size; 1500 dst += k_ptrace_word_size; 1501 } 1502 return Status(); 1503 } 1504 1505 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, 1506 size_t size, size_t &bytes_written) { 1507 const unsigned char *src = static_cast<const unsigned char *>(buf); 1508 size_t remainder; 1509 Status error; 1510 1511 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1512 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1513 1514 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { 1515 remainder = size - bytes_written; 1516 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1517 1518 if (remainder == k_ptrace_word_size) { 1519 unsigned long data = 0; 1520 memcpy(&data, src, k_ptrace_word_size); 1521 1522 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1523 error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), 1524 (void *)addr, (void *)data); 1525 if (error.Fail()) 1526 return error; 1527 } else { 1528 unsigned char buff[8]; 1529 size_t bytes_read; 1530 error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read); 1531 if (error.Fail()) 1532 return error; 1533 1534 memcpy(buff, src, remainder); 1535 1536 size_t bytes_written_rec; 1537 error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec); 1538 if (error.Fail()) 1539 return error; 1540 1541 LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src, 1542 *(unsigned long *)buff); 1543 } 1544 1545 addr += k_ptrace_word_size; 1546 src += k_ptrace_word_size; 1547 } 1548 return error; 1549 } 1550 1551 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) { 1552 return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); 1553 } 1554 1555 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid, 1556 unsigned long *message) { 1557 return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); 1558 } 1559 1560 Status NativeProcessLinux::Detach(lldb::tid_t tid) { 1561 if (tid == LLDB_INVALID_THREAD_ID) 1562 return Status(); 1563 1564 return PtraceWrapper(PTRACE_DETACH, tid); 1565 } 1566 1567 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) { 1568 for (const auto &thread : m_threads) { 1569 assert(thread && "thread list should not contain NULL threads"); 1570 if (thread->GetID() == thread_id) { 1571 // We have this thread. 1572 return true; 1573 } 1574 } 1575 1576 // We don't have this thread. 1577 return false; 1578 } 1579 1580 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) { 1581 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1582 LLDB_LOG(log, "tid: {0})", thread_id); 1583 1584 bool found = false; 1585 for (auto it = m_threads.begin(); it != m_threads.end(); ++it) { 1586 if (*it && ((*it)->GetID() == thread_id)) { 1587 m_threads.erase(it); 1588 found = true; 1589 break; 1590 } 1591 } 1592 1593 if (found) 1594 StopTracingForThread(thread_id); 1595 SignalIfAllThreadsStopped(); 1596 return found; 1597 } 1598 1599 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id) { 1600 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD)); 1601 LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id); 1602 1603 assert(!HasThreadNoLock(thread_id) && 1604 "attempted to add a thread by id that already exists"); 1605 1606 // If this is the first thread, save it as the current thread 1607 if (m_threads.empty()) 1608 SetCurrentThreadID(thread_id); 1609 1610 m_threads.push_back(llvm::make_unique<NativeThreadLinux>(*this, thread_id)); 1611 1612 if (m_pt_proces_trace_id != LLDB_INVALID_UID) { 1613 auto traceMonitor = ProcessorTraceMonitor::Create( 1614 GetID(), thread_id, m_pt_process_trace_config, true); 1615 if (traceMonitor) { 1616 m_pt_traced_thread_group.insert(thread_id); 1617 m_processor_trace_monitor.insert( 1618 std::make_pair(thread_id, std::move(*traceMonitor))); 1619 } else { 1620 LLDB_LOG(log, "failed to start trace on thread {0}", thread_id); 1621 Status error(traceMonitor.takeError()); 1622 LLDB_LOG(log, "error {0}", error); 1623 } 1624 } 1625 1626 return static_cast<NativeThreadLinux &>(*m_threads.back()); 1627 } 1628 1629 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path, 1630 FileSpec &file_spec) { 1631 Status error = PopulateMemoryRegionCache(); 1632 if (error.Fail()) 1633 return error; 1634 1635 FileSpec module_file_spec(module_path); 1636 FileSystem::Instance().Resolve(module_file_spec); 1637 1638 file_spec.Clear(); 1639 for (const auto &it : m_mem_region_cache) { 1640 if (it.second.GetFilename() == module_file_spec.GetFilename()) { 1641 file_spec = it.second; 1642 return Status(); 1643 } 1644 } 1645 return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 1646 module_file_spec.GetFilename().AsCString(), GetID()); 1647 } 1648 1649 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name, 1650 lldb::addr_t &load_addr) { 1651 load_addr = LLDB_INVALID_ADDRESS; 1652 Status error = PopulateMemoryRegionCache(); 1653 if (error.Fail()) 1654 return error; 1655 1656 FileSpec file(file_name); 1657 for (const auto &it : m_mem_region_cache) { 1658 if (it.second == file) { 1659 load_addr = it.first.GetRange().GetRangeBase(); 1660 return Status(); 1661 } 1662 } 1663 return Status("No load address found for specified file."); 1664 } 1665 1666 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) { 1667 return static_cast<NativeThreadLinux *>( 1668 NativeProcessProtocol::GetThreadByID(tid)); 1669 } 1670 1671 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, 1672 lldb::StateType state, int signo) { 1673 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1674 LLDB_LOG(log, "tid: {0}", thread.GetID()); 1675 1676 // Before we do the resume below, first check if we have a pending stop 1677 // notification that is currently waiting for all threads to stop. This is 1678 // potentially a buggy situation since we're ostensibly waiting for threads 1679 // to stop before we send out the pending notification, and here we are 1680 // resuming one before we send out the pending stop notification. 1681 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 1682 LLDB_LOG(log, 1683 "about to resume tid {0} per explicit request but we have a " 1684 "pending stop notification (tid {1}) that is actively " 1685 "waiting for this thread to stop. Valid sequence of events?", 1686 thread.GetID(), m_pending_notification_tid); 1687 } 1688 1689 // Request a resume. We expect this to be synchronous and the system to 1690 // reflect it is running after this completes. 1691 switch (state) { 1692 case eStateRunning: { 1693 const auto resume_result = thread.Resume(signo); 1694 if (resume_result.Success()) 1695 SetState(eStateRunning, true); 1696 return resume_result; 1697 } 1698 case eStateStepping: { 1699 const auto step_result = thread.SingleStep(signo); 1700 if (step_result.Success()) 1701 SetState(eStateRunning, true); 1702 return step_result; 1703 } 1704 default: 1705 LLDB_LOG(log, "Unhandled state {0}.", state); 1706 llvm_unreachable("Unhandled state for resume"); 1707 } 1708 } 1709 1710 //===----------------------------------------------------------------------===// 1711 1712 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) { 1713 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1714 LLDB_LOG(log, "about to process event: (triggering_tid: {0})", 1715 triggering_tid); 1716 1717 m_pending_notification_tid = triggering_tid; 1718 1719 // Request a stop for all the thread stops that need to be stopped and are 1720 // not already known to be stopped. 1721 for (const auto &thread : m_threads) { 1722 if (StateIsRunningState(thread->GetState())) 1723 static_cast<NativeThreadLinux *>(thread.get())->RequestStop(); 1724 } 1725 1726 SignalIfAllThreadsStopped(); 1727 LLDB_LOG(log, "event processing done"); 1728 } 1729 1730 void NativeProcessLinux::SignalIfAllThreadsStopped() { 1731 if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) 1732 return; // No pending notification. Nothing to do. 1733 1734 for (const auto &thread_sp : m_threads) { 1735 if (StateIsRunningState(thread_sp->GetState())) 1736 return; // Some threads are still running. Don't signal yet. 1737 } 1738 1739 // We have a pending notification and all threads have stopped. 1740 Log *log( 1741 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 1742 1743 // Clear any temporary breakpoints we used to implement software single 1744 // stepping. 1745 for (const auto &thread_info : m_threads_stepping_with_breakpoint) { 1746 Status error = RemoveBreakpoint(thread_info.second); 1747 if (error.Fail()) 1748 LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}", 1749 thread_info.first, error); 1750 } 1751 m_threads_stepping_with_breakpoint.clear(); 1752 1753 // Notify the delegate about the stop 1754 SetCurrentThreadID(m_pending_notification_tid); 1755 SetState(StateType::eStateStopped, true); 1756 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 1757 } 1758 1759 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) { 1760 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1761 LLDB_LOG(log, "tid: {0}", thread.GetID()); 1762 1763 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && 1764 StateIsRunningState(thread.GetState())) { 1765 // We will need to wait for this new thread to stop as well before firing 1766 // the notification. 1767 thread.RequestStop(); 1768 } 1769 } 1770 1771 void NativeProcessLinux::SigchldHandler() { 1772 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1773 // Process all pending waitpid notifications. 1774 while (true) { 1775 int status = -1; 1776 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, -1, &status, 1777 __WALL | __WNOTHREAD | WNOHANG); 1778 1779 if (wait_pid == 0) 1780 break; // We are done. 1781 1782 if (wait_pid == -1) { 1783 Status error(errno, eErrorTypePOSIX); 1784 LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error); 1785 break; 1786 } 1787 1788 WaitStatus wait_status = WaitStatus::Decode(status); 1789 bool exited = wait_status.type == WaitStatus::Exit || 1790 (wait_status.type == WaitStatus::Signal && 1791 wait_pid == static_cast<::pid_t>(GetID())); 1792 1793 LLDB_LOG( 1794 log, 1795 "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}", 1796 wait_pid, wait_status, exited); 1797 1798 MonitorCallback(wait_pid, exited, wait_status); 1799 } 1800 } 1801 1802 // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets 1803 // errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) 1804 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, 1805 void *data, size_t data_size, 1806 long *result) { 1807 Status error; 1808 long int ret; 1809 1810 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 1811 1812 PtraceDisplayBytes(req, data, data_size); 1813 1814 errno = 0; 1815 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 1816 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 1817 *(unsigned int *)addr, data); 1818 else 1819 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 1820 addr, data); 1821 1822 if (ret == -1) 1823 error.SetErrorToErrno(); 1824 1825 if (result) 1826 *result = ret; 1827 1828 LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data, 1829 data_size, ret); 1830 1831 PtraceDisplayBytes(req, data, data_size); 1832 1833 if (error.Fail()) 1834 LLDB_LOG(log, "ptrace() failed: {0}", error); 1835 1836 return error; 1837 } 1838 1839 llvm::Expected<ProcessorTraceMonitor &> 1840 NativeProcessLinux::LookupProcessorTraceInstance(lldb::user_id_t traceid, 1841 lldb::tid_t thread) { 1842 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 1843 if (thread == LLDB_INVALID_THREAD_ID && traceid == m_pt_proces_trace_id) { 1844 LLDB_LOG(log, "thread not specified: {0}", traceid); 1845 return Status("tracing not active thread not specified").ToError(); 1846 } 1847 1848 for (auto& iter : m_processor_trace_monitor) { 1849 if (traceid == iter.second->GetTraceID() && 1850 (thread == iter.first || thread == LLDB_INVALID_THREAD_ID)) 1851 return *(iter.second); 1852 } 1853 1854 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 1855 return Status("tracing not active for this thread").ToError(); 1856 } 1857 1858 Status NativeProcessLinux::GetMetaData(lldb::user_id_t traceid, 1859 lldb::tid_t thread, 1860 llvm::MutableArrayRef<uint8_t> &buffer, 1861 size_t offset) { 1862 TraceOptions trace_options; 1863 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 1864 Status error; 1865 1866 LLDB_LOG(log, "traceid {0}", traceid); 1867 1868 auto perf_monitor = LookupProcessorTraceInstance(traceid, thread); 1869 if (!perf_monitor) { 1870 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 1871 buffer = buffer.slice(buffer.size()); 1872 error = perf_monitor.takeError(); 1873 return error; 1874 } 1875 return (*perf_monitor).ReadPerfTraceData(buffer, offset); 1876 } 1877 1878 Status NativeProcessLinux::GetData(lldb::user_id_t traceid, lldb::tid_t thread, 1879 llvm::MutableArrayRef<uint8_t> &buffer, 1880 size_t offset) { 1881 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 1882 Status error; 1883 1884 LLDB_LOG(log, "traceid {0}", traceid); 1885 1886 auto perf_monitor = LookupProcessorTraceInstance(traceid, thread); 1887 if (!perf_monitor) { 1888 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 1889 buffer = buffer.slice(buffer.size()); 1890 error = perf_monitor.takeError(); 1891 return error; 1892 } 1893 return (*perf_monitor).ReadPerfTraceAux(buffer, offset); 1894 } 1895 1896 Status NativeProcessLinux::GetTraceConfig(lldb::user_id_t traceid, 1897 TraceOptions &config) { 1898 Status error; 1899 if (config.getThreadID() == LLDB_INVALID_THREAD_ID && 1900 m_pt_proces_trace_id == traceid) { 1901 if (m_pt_proces_trace_id == LLDB_INVALID_UID) { 1902 error.SetErrorString("tracing not active for this process"); 1903 return error; 1904 } 1905 config = m_pt_process_trace_config; 1906 } else { 1907 auto perf_monitor = 1908 LookupProcessorTraceInstance(traceid, config.getThreadID()); 1909 if (!perf_monitor) { 1910 error = perf_monitor.takeError(); 1911 return error; 1912 } 1913 error = (*perf_monitor).GetTraceConfig(config); 1914 } 1915 return error; 1916 } 1917 1918 lldb::user_id_t 1919 NativeProcessLinux::StartTraceGroup(const TraceOptions &config, 1920 Status &error) { 1921 1922 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 1923 if (config.getType() != TraceType::eTraceTypeProcessorTrace) 1924 return LLDB_INVALID_UID; 1925 1926 if (m_pt_proces_trace_id != LLDB_INVALID_UID) { 1927 error.SetErrorString("tracing already active on this process"); 1928 return m_pt_proces_trace_id; 1929 } 1930 1931 for (const auto &thread_sp : m_threads) { 1932 if (auto traceInstance = ProcessorTraceMonitor::Create( 1933 GetID(), thread_sp->GetID(), config, true)) { 1934 m_pt_traced_thread_group.insert(thread_sp->GetID()); 1935 m_processor_trace_monitor.insert( 1936 std::make_pair(thread_sp->GetID(), std::move(*traceInstance))); 1937 } 1938 } 1939 1940 m_pt_process_trace_config = config; 1941 error = ProcessorTraceMonitor::GetCPUType(m_pt_process_trace_config); 1942 1943 // Trace on Complete process will have traceid of 0 1944 m_pt_proces_trace_id = 0; 1945 1946 LLDB_LOG(log, "Process Trace ID {0}", m_pt_proces_trace_id); 1947 return m_pt_proces_trace_id; 1948 } 1949 1950 lldb::user_id_t NativeProcessLinux::StartTrace(const TraceOptions &config, 1951 Status &error) { 1952 if (config.getType() != TraceType::eTraceTypeProcessorTrace) 1953 return NativeProcessProtocol::StartTrace(config, error); 1954 1955 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 1956 1957 lldb::tid_t threadid = config.getThreadID(); 1958 1959 if (threadid == LLDB_INVALID_THREAD_ID) 1960 return StartTraceGroup(config, error); 1961 1962 auto thread_sp = GetThreadByID(threadid); 1963 if (!thread_sp) { 1964 // Thread not tracked by lldb so don't trace. 1965 error.SetErrorString("invalid thread id"); 1966 return LLDB_INVALID_UID; 1967 } 1968 1969 const auto &iter = m_processor_trace_monitor.find(threadid); 1970 if (iter != m_processor_trace_monitor.end()) { 1971 LLDB_LOG(log, "Thread already being traced"); 1972 error.SetErrorString("tracing already active on this thread"); 1973 return LLDB_INVALID_UID; 1974 } 1975 1976 auto traceMonitor = 1977 ProcessorTraceMonitor::Create(GetID(), threadid, config, false); 1978 if (!traceMonitor) { 1979 error = traceMonitor.takeError(); 1980 LLDB_LOG(log, "error {0}", error); 1981 return LLDB_INVALID_UID; 1982 } 1983 lldb::user_id_t ret_trace_id = (*traceMonitor)->GetTraceID(); 1984 m_processor_trace_monitor.insert( 1985 std::make_pair(threadid, std::move(*traceMonitor))); 1986 return ret_trace_id; 1987 } 1988 1989 Status NativeProcessLinux::StopTracingForThread(lldb::tid_t thread) { 1990 Status error; 1991 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 1992 LLDB_LOG(log, "Thread {0}", thread); 1993 1994 const auto& iter = m_processor_trace_monitor.find(thread); 1995 if (iter == m_processor_trace_monitor.end()) { 1996 error.SetErrorString("tracing not active for this thread"); 1997 return error; 1998 } 1999 2000 if (iter->second->GetTraceID() == m_pt_proces_trace_id) { 2001 // traceid maps to the whole process so we have to erase it from the thread 2002 // group. 2003 LLDB_LOG(log, "traceid maps to process"); 2004 m_pt_traced_thread_group.erase(thread); 2005 } 2006 m_processor_trace_monitor.erase(iter); 2007 2008 return error; 2009 } 2010 2011 Status NativeProcessLinux::StopTrace(lldb::user_id_t traceid, 2012 lldb::tid_t thread) { 2013 Status error; 2014 2015 TraceOptions trace_options; 2016 trace_options.setThreadID(thread); 2017 error = NativeProcessLinux::GetTraceConfig(traceid, trace_options); 2018 2019 if (error.Fail()) 2020 return error; 2021 2022 switch (trace_options.getType()) { 2023 case lldb::TraceType::eTraceTypeProcessorTrace: 2024 if (traceid == m_pt_proces_trace_id && 2025 thread == LLDB_INVALID_THREAD_ID) 2026 StopProcessorTracingOnProcess(); 2027 else 2028 error = StopProcessorTracingOnThread(traceid, thread); 2029 break; 2030 default: 2031 error.SetErrorString("trace not supported"); 2032 break; 2033 } 2034 2035 return error; 2036 } 2037 2038 void NativeProcessLinux::StopProcessorTracingOnProcess() { 2039 for (auto thread_id_iter : m_pt_traced_thread_group) 2040 m_processor_trace_monitor.erase(thread_id_iter); 2041 m_pt_traced_thread_group.clear(); 2042 m_pt_proces_trace_id = LLDB_INVALID_UID; 2043 } 2044 2045 Status NativeProcessLinux::StopProcessorTracingOnThread(lldb::user_id_t traceid, 2046 lldb::tid_t thread) { 2047 Status error; 2048 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2049 2050 if (thread == LLDB_INVALID_THREAD_ID) { 2051 for (auto& iter : m_processor_trace_monitor) { 2052 if (iter.second->GetTraceID() == traceid) { 2053 // Stopping a trace instance for an individual thread hence there will 2054 // only be one traceid that can match. 2055 m_processor_trace_monitor.erase(iter.first); 2056 return error; 2057 } 2058 LLDB_LOG(log, "Trace ID {0}", iter.second->GetTraceID()); 2059 } 2060 2061 LLDB_LOG(log, "Invalid TraceID"); 2062 error.SetErrorString("invalid trace id"); 2063 return error; 2064 } 2065 2066 // thread is specified so we can use find function on the map. 2067 const auto& iter = m_processor_trace_monitor.find(thread); 2068 if (iter == m_processor_trace_monitor.end()) { 2069 // thread not found in our map. 2070 LLDB_LOG(log, "thread not being traced"); 2071 error.SetErrorString("tracing not active for this thread"); 2072 return error; 2073 } 2074 if (iter->second->GetTraceID() != traceid) { 2075 // traceid did not match so it has to be invalid. 2076 LLDB_LOG(log, "Invalid TraceID"); 2077 error.SetErrorString("invalid trace id"); 2078 return error; 2079 } 2080 2081 LLDB_LOG(log, "UID - {0} , Thread -{1}", traceid, thread); 2082 2083 if (traceid == m_pt_proces_trace_id) { 2084 // traceid maps to the whole process so we have to erase it from the thread 2085 // group. 2086 LLDB_LOG(log, "traceid maps to process"); 2087 m_pt_traced_thread_group.erase(thread); 2088 } 2089 m_processor_trace_monitor.erase(iter); 2090 2091 return error; 2092 } 2093