1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "NativeProcessLinux.h"
11 
12 // C Includes
13 #include <errno.h>
14 #include <string.h>
15 #include <stdint.h>
16 #include <unistd.h>
17 
18 // C++ Includes
19 #include <fstream>
20 #include <mutex>
21 #include <sstream>
22 #include <string>
23 #include <unordered_map>
24 
25 // Other libraries and framework includes
26 #include "lldb/Core/EmulateInstruction.h"
27 #include "lldb/Core/Error.h"
28 #include "lldb/Core/Module.h"
29 #include "lldb/Core/ModuleSpec.h"
30 #include "lldb/Core/RegisterValue.h"
31 #include "lldb/Core/State.h"
32 #include "lldb/Host/common/NativeBreakpoint.h"
33 #include "lldb/Host/common/NativeRegisterContext.h"
34 #include "lldb/Host/Host.h"
35 #include "lldb/Host/ThreadLauncher.h"
36 #include "lldb/Target/Platform.h"
37 #include "lldb/Target/Process.h"
38 #include "lldb/Target/ProcessLaunchInfo.h"
39 #include "lldb/Target/Target.h"
40 #include "lldb/Utility/LLDBAssert.h"
41 #include "lldb/Utility/PseudoTerminal.h"
42 #include "lldb/Utility/StringExtractor.h"
43 
44 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
45 #include "NativeThreadLinux.h"
46 #include "ProcFileReader.h"
47 #include "Procfs.h"
48 
49 // System includes - They have to be included after framework includes because they define some
50 // macros which collide with variable names in other modules
51 #include <linux/unistd.h>
52 #include <sys/socket.h>
53 
54 #include <sys/syscall.h>
55 #include <sys/types.h>
56 #include <sys/user.h>
57 #include <sys/wait.h>
58 
59 #include "lldb/Host/linux/Personality.h"
60 #include "lldb/Host/linux/Ptrace.h"
61 #include "lldb/Host/linux/Signalfd.h"
62 #include "lldb/Host/linux/Uio.h"
63 #include "lldb/Host/android/Android.h"
64 
65 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS  0xffffffff
66 
67 // Support hardware breakpoints in case it has not been defined
68 #ifndef TRAP_HWBKPT
69   #define TRAP_HWBKPT 4
70 #endif
71 
72 using namespace lldb;
73 using namespace lldb_private;
74 using namespace lldb_private::process_linux;
75 using namespace llvm;
76 
77 // Private bits we only need internally.
78 
79 static bool ProcessVmReadvSupported()
80 {
81     static bool is_supported;
82     static std::once_flag flag;
83 
84     std::call_once(flag, [] {
85         Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
86 
87         uint32_t source = 0x47424742;
88         uint32_t dest = 0;
89 
90         struct iovec local, remote;
91         remote.iov_base = &source;
92         local.iov_base = &dest;
93         remote.iov_len = local.iov_len = sizeof source;
94 
95         // We shall try if cross-process-memory reads work by attempting to read a value from our own process.
96         ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
97         is_supported = (res == sizeof(source) && source == dest);
98         if (log)
99         {
100             if (is_supported)
101                 log->Printf("%s: Detected kernel support for process_vm_readv syscall. Fast memory reads enabled.",
102                         __FUNCTION__);
103             else
104                 log->Printf("%s: syscall process_vm_readv failed (error: %s). Fast memory reads disabled.",
105                         __FUNCTION__, strerror(errno));
106         }
107     });
108 
109     return is_supported;
110 }
111 
112 namespace
113 {
114     Error
115     ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch)
116     {
117         // Grab process info for the running process.
118         ProcessInstanceInfo process_info;
119         if (!platform.GetProcessInfo (pid, process_info))
120             return Error("failed to get process info");
121 
122         // Resolve the executable module.
123         ModuleSP exe_module_sp;
124         ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
125         FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ());
126         Error error = platform.ResolveExecutable(
127             exe_module_spec,
128             exe_module_sp,
129             executable_search_paths.GetSize () ? &executable_search_paths : NULL);
130 
131         if (!error.Success ())
132             return error;
133 
134         // Check if we've got our architecture from the exe_module.
135         arch = exe_module_sp->GetArchitecture ();
136         if (arch.IsValid ())
137             return Error();
138         else
139             return Error("failed to retrieve a valid architecture from the exe module");
140     }
141 
142     void
143     DisplayBytes (StreamString &s, void *bytes, uint32_t count)
144     {
145         uint8_t *ptr = (uint8_t *)bytes;
146         const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
147         for(uint32_t i=0; i<loop_count; i++)
148         {
149             s.Printf ("[%x]", *ptr);
150             ptr++;
151         }
152     }
153 
154     void
155     PtraceDisplayBytes(int &req, void *data, size_t data_size)
156     {
157         StreamString buf;
158         Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (
159                     POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE));
160 
161         if (verbose_log)
162         {
163             switch(req)
164             {
165             case PTRACE_POKETEXT:
166             {
167                 DisplayBytes(buf, &data, 8);
168                 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData());
169                 break;
170             }
171             case PTRACE_POKEDATA:
172             {
173                 DisplayBytes(buf, &data, 8);
174                 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData());
175                 break;
176             }
177             case PTRACE_POKEUSER:
178             {
179                 DisplayBytes(buf, &data, 8);
180                 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData());
181                 break;
182             }
183             case PTRACE_SETREGS:
184             {
185                 DisplayBytes(buf, data, data_size);
186                 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData());
187                 break;
188             }
189             case PTRACE_SETFPREGS:
190             {
191                 DisplayBytes(buf, data, data_size);
192                 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData());
193                 break;
194             }
195             case PTRACE_SETSIGINFO:
196             {
197                 DisplayBytes(buf, data, sizeof(siginfo_t));
198                 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData());
199                 break;
200             }
201             case PTRACE_SETREGSET:
202             {
203                 // Extract iov_base from data, which is a pointer to the struct IOVEC
204                 DisplayBytes(buf, *(void **)data, data_size);
205                 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData());
206                 break;
207             }
208             default:
209             {
210             }
211             }
212         }
213     }
214 
215     static constexpr unsigned k_ptrace_word_size = sizeof(void*);
216     static_assert(sizeof(long) >= k_ptrace_word_size, "Size of long must be larger than ptrace word size");
217 } // end of anonymous namespace
218 
219 // Simple helper function to ensure flags are enabled on the given file
220 // descriptor.
221 static Error
222 EnsureFDFlags(int fd, int flags)
223 {
224     Error error;
225 
226     int status = fcntl(fd, F_GETFL);
227     if (status == -1)
228     {
229         error.SetErrorToErrno();
230         return error;
231     }
232 
233     if (fcntl(fd, F_SETFL, status | flags) == -1)
234     {
235         error.SetErrorToErrno();
236         return error;
237     }
238 
239     return error;
240 }
241 
242 NativeProcessLinux::LaunchArgs::LaunchArgs(Module *module,
243                                        char const **argv,
244                                        char const **envp,
245                                        const FileSpec &stdin_file_spec,
246                                        const FileSpec &stdout_file_spec,
247                                        const FileSpec &stderr_file_spec,
248                                        const FileSpec &working_dir,
249                                        const ProcessLaunchInfo &launch_info)
250     : m_module(module),
251       m_argv(argv),
252       m_envp(envp),
253       m_stdin_file_spec(stdin_file_spec),
254       m_stdout_file_spec(stdout_file_spec),
255       m_stderr_file_spec(stderr_file_spec),
256       m_working_dir(working_dir),
257       m_launch_info(launch_info)
258 {
259 }
260 
261 NativeProcessLinux::LaunchArgs::~LaunchArgs()
262 { }
263 
264 // -----------------------------------------------------------------------------
265 // Public Static Methods
266 // -----------------------------------------------------------------------------
267 
268 Error
269 NativeProcessProtocol::Launch (
270     ProcessLaunchInfo &launch_info,
271     NativeProcessProtocol::NativeDelegate &native_delegate,
272     MainLoop &mainloop,
273     NativeProcessProtocolSP &native_process_sp)
274 {
275     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
276 
277     lldb::ModuleSP exe_module_sp;
278     PlatformSP platform_sp (Platform::GetHostPlatform ());
279     Error error = platform_sp->ResolveExecutable(
280             ModuleSpec(launch_info.GetExecutableFile(), launch_info.GetArchitecture()),
281             exe_module_sp,
282             nullptr);
283 
284     if (! error.Success())
285         return error;
286 
287     // Verify the working directory is valid if one was specified.
288     FileSpec working_dir{launch_info.GetWorkingDirectory()};
289     if (working_dir &&
290             (!working_dir.ResolvePath() ||
291              working_dir.GetFileType() != FileSpec::eFileTypeDirectory))
292     {
293         error.SetErrorStringWithFormat ("No such file or directory: %s",
294                 working_dir.GetCString());
295         return error;
296     }
297 
298     const FileAction *file_action;
299 
300     // Default of empty will mean to use existing open file descriptors.
301     FileSpec stdin_file_spec{};
302     FileSpec stdout_file_spec{};
303     FileSpec stderr_file_spec{};
304 
305     file_action = launch_info.GetFileActionForFD (STDIN_FILENO);
306     if (file_action)
307         stdin_file_spec = file_action->GetFileSpec();
308 
309     file_action = launch_info.GetFileActionForFD (STDOUT_FILENO);
310     if (file_action)
311         stdout_file_spec = file_action->GetFileSpec();
312 
313     file_action = launch_info.GetFileActionForFD (STDERR_FILENO);
314     if (file_action)
315         stderr_file_spec = file_action->GetFileSpec();
316 
317     if (log)
318     {
319         if (stdin_file_spec)
320             log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'",
321                     __FUNCTION__, stdin_file_spec.GetCString());
322         else
323             log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__);
324 
325         if (stdout_file_spec)
326             log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'",
327                     __FUNCTION__, stdout_file_spec.GetCString());
328         else
329             log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__);
330 
331         if (stderr_file_spec)
332             log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'",
333                     __FUNCTION__, stderr_file_spec.GetCString());
334         else
335             log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__);
336     }
337 
338     // Create the NativeProcessLinux in launch mode.
339     native_process_sp.reset (new NativeProcessLinux ());
340 
341     if (log)
342     {
343         int i = 0;
344         for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i)
345         {
346             log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr");
347             ++i;
348         }
349     }
350 
351     if (!native_process_sp->RegisterNativeDelegate (native_delegate))
352     {
353         native_process_sp.reset ();
354         error.SetErrorStringWithFormat ("failed to register the native delegate");
355         return error;
356     }
357 
358     std::static_pointer_cast<NativeProcessLinux> (native_process_sp)->LaunchInferior (
359             mainloop,
360             exe_module_sp.get(),
361             launch_info.GetArguments ().GetConstArgumentVector (),
362             launch_info.GetEnvironmentEntries ().GetConstArgumentVector (),
363             stdin_file_spec,
364             stdout_file_spec,
365             stderr_file_spec,
366             working_dir,
367             launch_info,
368             error);
369 
370     if (error.Fail ())
371     {
372         native_process_sp.reset ();
373         if (log)
374             log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ());
375         return error;
376     }
377 
378     launch_info.SetProcessID (native_process_sp->GetID ());
379 
380     return error;
381 }
382 
383 Error
384 NativeProcessProtocol::Attach (
385     lldb::pid_t pid,
386     NativeProcessProtocol::NativeDelegate &native_delegate,
387     MainLoop &mainloop,
388     NativeProcessProtocolSP &native_process_sp)
389 {
390     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
391     if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE))
392         log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid);
393 
394     // Grab the current platform architecture.  This should be Linux,
395     // since this code is only intended to run on a Linux host.
396     PlatformSP platform_sp (Platform::GetHostPlatform ());
397     if (!platform_sp)
398         return Error("failed to get a valid default platform");
399 
400     // Retrieve the architecture for the running process.
401     ArchSpec process_arch;
402     Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch);
403     if (!error.Success ())
404         return error;
405 
406     std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ());
407 
408     if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate))
409     {
410         error.SetErrorStringWithFormat ("failed to register the native delegate");
411         return error;
412     }
413 
414     native_process_linux_sp->AttachToInferior (mainloop, pid, error);
415     if (!error.Success ())
416         return error;
417 
418     native_process_sp = native_process_linux_sp;
419     return error;
420 }
421 
422 // -----------------------------------------------------------------------------
423 // Public Instance Methods
424 // -----------------------------------------------------------------------------
425 
426 NativeProcessLinux::NativeProcessLinux () :
427     NativeProcessProtocol (LLDB_INVALID_PROCESS_ID),
428     m_arch (),
429     m_supports_mem_region (eLazyBoolCalculate),
430     m_mem_region_cache (),
431     m_mem_region_cache_mutex(),
432     m_pending_notification_tid(LLDB_INVALID_THREAD_ID)
433 {
434 }
435 
436 void
437 NativeProcessLinux::LaunchInferior (
438     MainLoop &mainloop,
439     Module *module,
440     const char *argv[],
441     const char *envp[],
442     const FileSpec &stdin_file_spec,
443     const FileSpec &stdout_file_spec,
444     const FileSpec &stderr_file_spec,
445     const FileSpec &working_dir,
446     const ProcessLaunchInfo &launch_info,
447     Error &error)
448 {
449     m_sigchld_handle = mainloop.RegisterSignal(SIGCHLD,
450             [this] (MainLoopBase &) { SigchldHandler(); }, error);
451     if (! m_sigchld_handle)
452         return;
453 
454     if (module)
455         m_arch = module->GetArchitecture ();
456 
457     SetState (eStateLaunching);
458 
459     std::unique_ptr<LaunchArgs> args(
460         new LaunchArgs(module, argv, envp,
461                        stdin_file_spec,
462                        stdout_file_spec,
463                        stderr_file_spec,
464                        working_dir,
465                        launch_info));
466 
467     Launch(args.get(), error);
468 }
469 
470 void
471 NativeProcessLinux::AttachToInferior (MainLoop &mainloop, lldb::pid_t pid, Error &error)
472 {
473     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
474     if (log)
475         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid);
476 
477     m_sigchld_handle = mainloop.RegisterSignal(SIGCHLD,
478             [this] (MainLoopBase &) { SigchldHandler(); }, error);
479     if (! m_sigchld_handle)
480         return;
481 
482     // We can use the Host for everything except the ResolveExecutable portion.
483     PlatformSP platform_sp = Platform::GetHostPlatform ();
484     if (!platform_sp)
485     {
486         if (log)
487             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid);
488         error.SetErrorString ("no default platform available");
489         return;
490     }
491 
492     // Gather info about the process.
493     ProcessInstanceInfo process_info;
494     if (!platform_sp->GetProcessInfo (pid, process_info))
495     {
496         if (log)
497             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid);
498         error.SetErrorString ("failed to get process info");
499         return;
500     }
501 
502     // Resolve the executable module
503     ModuleSP exe_module_sp;
504     FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths());
505     ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
506     error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp,
507                                            executable_search_paths.GetSize() ? &executable_search_paths : NULL);
508     if (!error.Success())
509         return;
510 
511     // Set the architecture to the exe architecture.
512     m_arch = exe_module_sp->GetArchitecture();
513     if (log)
514         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ());
515 
516     m_pid = pid;
517     SetState(eStateAttaching);
518 
519     Attach(pid, error);
520 }
521 
522 ::pid_t
523 NativeProcessLinux::Launch(LaunchArgs *args, Error &error)
524 {
525     assert (args && "null args");
526 
527     const char **argv = args->m_argv;
528     const char **envp = args->m_envp;
529     const FileSpec working_dir = args->m_working_dir;
530 
531     lldb_utility::PseudoTerminal terminal;
532     const size_t err_len = 1024;
533     char err_str[err_len];
534     lldb::pid_t pid;
535 
536     // Propagate the environment if one is not supplied.
537     if (envp == NULL || envp[0] == NULL)
538         envp = const_cast<const char **>(environ);
539 
540     if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1))
541     {
542         error.SetErrorToGenericError();
543         error.SetErrorStringWithFormat("Process fork failed: %s", err_str);
544         return -1;
545     }
546 
547     // Recognized child exit status codes.
548     enum {
549         ePtraceFailed = 1,
550         eDupStdinFailed,
551         eDupStdoutFailed,
552         eDupStderrFailed,
553         eChdirFailed,
554         eExecFailed,
555         eSetGidFailed,
556         eSetSigMaskFailed
557     };
558 
559     // Child process.
560     if (pid == 0)
561     {
562         // First, make sure we disable all logging. If we are logging to stdout, our logs can be
563         // mistaken for inferior output.
564         Log::DisableAllLogChannels(nullptr);
565         // FIXME consider opening a pipe between parent/child and have this forked child
566         // send log info to parent re: launch status.
567 
568         // Start tracing this child that is about to exec.
569         error = PtraceWrapper(PTRACE_TRACEME, 0);
570         if (error.Fail())
571             exit(ePtraceFailed);
572 
573         // terminal has already dupped the tty descriptors to stdin/out/err.
574         // This closes original fd from which they were copied (and avoids
575         // leaking descriptors to the debugged process.
576         terminal.CloseSlaveFileDescriptor();
577 
578         // Do not inherit setgid powers.
579         if (setgid(getgid()) != 0)
580             exit(eSetGidFailed);
581 
582         // Attempt to have our own process group.
583         if (setpgid(0, 0) != 0)
584         {
585             // FIXME log that this failed. This is common.
586             // Don't allow this to prevent an inferior exec.
587         }
588 
589         // Dup file descriptors if needed.
590         if (args->m_stdin_file_spec)
591             if (!DupDescriptor(args->m_stdin_file_spec, STDIN_FILENO, O_RDONLY))
592                 exit(eDupStdinFailed);
593 
594         if (args->m_stdout_file_spec)
595             if (!DupDescriptor(args->m_stdout_file_spec, STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
596                 exit(eDupStdoutFailed);
597 
598         if (args->m_stderr_file_spec)
599             if (!DupDescriptor(args->m_stderr_file_spec, STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
600                 exit(eDupStderrFailed);
601 
602         // Close everything besides stdin, stdout, and stderr that has no file
603         // action to avoid leaking
604         for (int fd = 3; fd < sysconf(_SC_OPEN_MAX); ++fd)
605             if (!args->m_launch_info.GetFileActionForFD(fd))
606                 close(fd);
607 
608         // Change working directory
609         if (working_dir && 0 != ::chdir(working_dir.GetCString()))
610               exit(eChdirFailed);
611 
612         // Disable ASLR if requested.
613         if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR))
614         {
615             const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS);
616             if (old_personality == -1)
617             {
618                 // Can't retrieve Linux personality.  Cannot disable ASLR.
619             }
620             else
621             {
622                 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality);
623                 if (new_personality == -1)
624                 {
625                     // Disabling ASLR failed.
626                 }
627                 else
628                 {
629                     // Disabling ASLR succeeded.
630                 }
631             }
632         }
633 
634         // Clear the signal mask to prevent the child from being affected by
635         // any masking done by the parent.
636         sigset_t set;
637         if (sigemptyset(&set) != 0 || pthread_sigmask(SIG_SETMASK, &set, nullptr) != 0)
638             exit(eSetSigMaskFailed);
639 
640         // Execute.  We should never return...
641         execve(argv[0],
642                const_cast<char *const *>(argv),
643                const_cast<char *const *>(envp));
644 
645         // ...unless exec fails.  In which case we definitely need to end the child here.
646         exit(eExecFailed);
647     }
648 
649     //
650     // This is the parent code here.
651     //
652     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
653 
654     // Wait for the child process to trap on its call to execve.
655     ::pid_t wpid;
656     int status;
657     if ((wpid = waitpid(pid, &status, 0)) < 0)
658     {
659         error.SetErrorToErrno();
660         if (log)
661             log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s",
662                     __FUNCTION__, error.AsCString ());
663 
664         // Mark the inferior as invalid.
665         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
666         SetState (StateType::eStateInvalid);
667 
668         return -1;
669     }
670     else if (WIFEXITED(status))
671     {
672         // open, dup or execve likely failed for some reason.
673         error.SetErrorToGenericError();
674         switch (WEXITSTATUS(status))
675         {
676             case ePtraceFailed:
677                 error.SetErrorString("Child ptrace failed.");
678                 break;
679             case eDupStdinFailed:
680                 error.SetErrorString("Child open stdin failed.");
681                 break;
682             case eDupStdoutFailed:
683                 error.SetErrorString("Child open stdout failed.");
684                 break;
685             case eDupStderrFailed:
686                 error.SetErrorString("Child open stderr failed.");
687                 break;
688             case eChdirFailed:
689                 error.SetErrorString("Child failed to set working directory.");
690                 break;
691             case eExecFailed:
692                 error.SetErrorString("Child exec failed.");
693                 break;
694             case eSetGidFailed:
695                 error.SetErrorString("Child setgid failed.");
696                 break;
697             case eSetSigMaskFailed:
698                 error.SetErrorString("Child failed to set signal mask.");
699                 break;
700             default:
701                 error.SetErrorString("Child returned unknown exit status.");
702                 break;
703         }
704 
705         if (log)
706         {
707             log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP",
708                     __FUNCTION__,
709                     WEXITSTATUS(status));
710         }
711 
712         // Mark the inferior as invalid.
713         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
714         SetState (StateType::eStateInvalid);
715 
716         return -1;
717     }
718     assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) &&
719            "Could not sync with inferior process.");
720 
721     if (log)
722         log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__);
723 
724     error = SetDefaultPtraceOpts(pid);
725     if (error.Fail())
726     {
727         if (log)
728             log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s",
729                     __FUNCTION__, error.AsCString ());
730 
731         // Mark the inferior as invalid.
732         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
733         SetState (StateType::eStateInvalid);
734 
735         return -1;
736     }
737 
738     // Release the master terminal descriptor and pass it off to the
739     // NativeProcessLinux instance.  Similarly stash the inferior pid.
740     m_terminal_fd = terminal.ReleaseMasterFileDescriptor();
741     m_pid = pid;
742 
743     // Set the terminal fd to be in non blocking mode (it simplifies the
744     // implementation of ProcessLinux::GetSTDOUT to have a non-blocking
745     // descriptor to read from).
746     error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
747     if (error.Fail())
748     {
749         if (log)
750             log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s",
751                     __FUNCTION__, error.AsCString ());
752 
753         // Mark the inferior as invalid.
754         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
755         SetState (StateType::eStateInvalid);
756 
757         return -1;
758     }
759 
760     if (log)
761         log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid);
762 
763     NativeThreadLinuxSP thread_sp = AddThread(pid);
764     assert (thread_sp && "AddThread() returned a nullptr thread");
765     thread_sp->SetStoppedBySignal(SIGSTOP);
766     ThreadWasCreated(*thread_sp);
767 
768     // Let our process instance know the thread has stopped.
769     SetCurrentThreadID (thread_sp->GetID ());
770     SetState (StateType::eStateStopped);
771 
772     if (log)
773     {
774         if (error.Success ())
775         {
776             log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__);
777         }
778         else
779         {
780             log->Printf ("NativeProcessLinux::%s inferior launching failed: %s",
781                 __FUNCTION__, error.AsCString ());
782             return -1;
783         }
784     }
785     return pid;
786 }
787 
788 ::pid_t
789 NativeProcessLinux::Attach(lldb::pid_t pid, Error &error)
790 {
791     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
792 
793     // Use a map to keep track of the threads which we have attached/need to attach.
794     Host::TidMap tids_to_attach;
795     if (pid <= 1)
796     {
797         error.SetErrorToGenericError();
798         error.SetErrorString("Attaching to process 1 is not allowed.");
799         return -1;
800     }
801 
802     while (Host::FindProcessThreads(pid, tids_to_attach))
803     {
804         for (Host::TidMap::iterator it = tids_to_attach.begin();
805              it != tids_to_attach.end();)
806         {
807             if (it->second == false)
808             {
809                 lldb::tid_t tid = it->first;
810 
811                 // Attach to the requested process.
812                 // An attach will cause the thread to stop with a SIGSTOP.
813                 error = PtraceWrapper(PTRACE_ATTACH, tid);
814                 if (error.Fail())
815                 {
816                     // No such thread. The thread may have exited.
817                     // More error handling may be needed.
818                     if (error.GetError() == ESRCH)
819                     {
820                         it = tids_to_attach.erase(it);
821                         continue;
822                     }
823                     else
824                         return -1;
825                 }
826 
827                 int status;
828                 // Need to use __WALL otherwise we receive an error with errno=ECHLD
829                 // At this point we should have a thread stopped if waitpid succeeds.
830                 if ((status = waitpid(tid, NULL, __WALL)) < 0)
831                 {
832                     // No such thread. The thread may have exited.
833                     // More error handling may be needed.
834                     if (errno == ESRCH)
835                     {
836                         it = tids_to_attach.erase(it);
837                         continue;
838                     }
839                     else
840                     {
841                         error.SetErrorToErrno();
842                         return -1;
843                     }
844                 }
845 
846                 error = SetDefaultPtraceOpts(tid);
847                 if (error.Fail())
848                     return -1;
849 
850                 if (log)
851                     log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid);
852 
853                 it->second = true;
854 
855                 // Create the thread, mark it as stopped.
856                 NativeThreadLinuxSP thread_sp (AddThread(static_cast<lldb::tid_t>(tid)));
857                 assert (thread_sp && "AddThread() returned a nullptr");
858 
859                 // This will notify this is a new thread and tell the system it is stopped.
860                 thread_sp->SetStoppedBySignal(SIGSTOP);
861                 ThreadWasCreated(*thread_sp);
862                 SetCurrentThreadID (thread_sp->GetID ());
863             }
864 
865             // move the loop forward
866             ++it;
867         }
868     }
869 
870     if (tids_to_attach.size() > 0)
871     {
872         m_pid = pid;
873         // Let our process instance know the thread has stopped.
874         SetState (StateType::eStateStopped);
875     }
876     else
877     {
878         error.SetErrorToGenericError();
879         error.SetErrorString("No such process.");
880         return -1;
881     }
882 
883     return pid;
884 }
885 
886 Error
887 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid)
888 {
889     long ptrace_opts = 0;
890 
891     // Have the child raise an event on exit.  This is used to keep the child in
892     // limbo until it is destroyed.
893     ptrace_opts |= PTRACE_O_TRACEEXIT;
894 
895     // Have the tracer trace threads which spawn in the inferior process.
896     // TODO: if we want to support tracing the inferiors' child, add the
897     // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
898     ptrace_opts |= PTRACE_O_TRACECLONE;
899 
900     // Have the tracer notify us before execve returns
901     // (needed to disable legacy SIGTRAP generation)
902     ptrace_opts |= PTRACE_O_TRACEEXEC;
903 
904     return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts);
905 }
906 
907 static ExitType convert_pid_status_to_exit_type (int status)
908 {
909     if (WIFEXITED (status))
910         return ExitType::eExitTypeExit;
911     else if (WIFSIGNALED (status))
912         return ExitType::eExitTypeSignal;
913     else if (WIFSTOPPED (status))
914         return ExitType::eExitTypeStop;
915     else
916     {
917         // We don't know what this is.
918         return ExitType::eExitTypeInvalid;
919     }
920 }
921 
922 static int convert_pid_status_to_return_code (int status)
923 {
924     if (WIFEXITED (status))
925         return WEXITSTATUS (status);
926     else if (WIFSIGNALED (status))
927         return WTERMSIG (status);
928     else if (WIFSTOPPED (status))
929         return WSTOPSIG (status);
930     else
931     {
932         // We don't know what this is.
933         return ExitType::eExitTypeInvalid;
934     }
935 }
936 
937 // Handles all waitpid events from the inferior process.
938 void
939 NativeProcessLinux::MonitorCallback(lldb::pid_t pid,
940                                     bool exited,
941                                     int signal,
942                                     int status)
943 {
944     Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS));
945 
946     // Certain activities differ based on whether the pid is the tid of the main thread.
947     const bool is_main_thread = (pid == GetID ());
948 
949     // Handle when the thread exits.
950     if (exited)
951     {
952         if (log)
953             log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %"  PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not");
954 
955         // This is a thread that exited.  Ensure we're not tracking it anymore.
956         const bool thread_found = StopTrackingThread (pid);
957 
958         if (is_main_thread)
959         {
960             // We only set the exit status and notify the delegate if we haven't already set the process
961             // state to an exited state.  We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8)
962             // for the main thread.
963             const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed);
964             if (!already_notified)
965             {
966                 if (log)
967                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ()));
968                 // The main thread exited.  We're done monitoring.  Report to delegate.
969                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
970 
971                 // Notify delegate that our process has exited.
972                 SetState (StateType::eStateExited, true);
973             }
974             else
975             {
976                 if (log)
977                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
978             }
979         }
980         else
981         {
982             // Do we want to report to the delegate in this case?  I think not.  If this was an orderly
983             // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal,
984             // and we would have done an all-stop then.
985             if (log)
986                 log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
987         }
988         return;
989     }
990 
991     siginfo_t info;
992     const auto info_err = GetSignalInfo(pid, &info);
993     auto thread_sp = GetThreadByID(pid);
994 
995     if (! thread_sp)
996     {
997         // Normally, the only situation when we cannot find the thread is if we have just
998         // received a new thread notification. This is indicated by GetSignalInfo() returning
999         // si_code == SI_USER and si_pid == 0
1000         if (log)
1001             log->Printf("NativeProcessLinux::%s received notification about an unknown tid %" PRIu64 ".", __FUNCTION__, pid);
1002 
1003         if (info_err.Fail())
1004         {
1005             if (log)
1006                 log->Printf("NativeProcessLinux::%s (tid %" PRIu64 ") GetSignalInfo failed (%s). Ingoring this notification.", __FUNCTION__, pid, info_err.AsCString());
1007             return;
1008         }
1009 
1010         if (log && (info.si_code != SI_USER || info.si_pid != 0))
1011             log->Printf("NativeProcessLinux::%s (tid %" PRIu64 ") unexpected signal info (si_code: %d, si_pid: %d). Treating as a new thread notification anyway.", __FUNCTION__, pid, info.si_code, info.si_pid);
1012 
1013         auto thread_sp = AddThread(pid);
1014         // Resume the newly created thread.
1015         ResumeThread(*thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
1016         ThreadWasCreated(*thread_sp);
1017         return;
1018     }
1019 
1020     // Get details on the signal raised.
1021     if (info_err.Success())
1022     {
1023         // We have retrieved the signal info.  Dispatch appropriately.
1024         if (info.si_signo == SIGTRAP)
1025             MonitorSIGTRAP(info, *thread_sp);
1026         else
1027             MonitorSignal(info, *thread_sp, exited);
1028     }
1029     else
1030     {
1031         if (info_err.GetError() == EINVAL)
1032         {
1033             // This is a group stop reception for this tid.
1034             // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the
1035             // tracee, triggering the group-stop mechanism. Normally receiving these would stop
1036             // the process, pending a SIGCONT. Simulating this state in a debugger is hard and is
1037             // generally not needed (one use case is debugging background task being managed by a
1038             // shell). For general use, it is sufficient to stop the process in a signal-delivery
1039             // stop which happens before the group stop. This done by MonitorSignal and works
1040             // correctly for all signals.
1041             if (log)
1042                 log->Printf("NativeProcessLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64 ". Transparent handling of group stops not supported, resuming the thread.", __FUNCTION__, GetID (), pid);
1043             ResumeThread(*thread_sp, thread_sp->GetState(), LLDB_INVALID_SIGNAL_NUMBER);
1044         }
1045         else
1046         {
1047             // ptrace(GETSIGINFO) failed (but not due to group-stop).
1048 
1049             // A return value of ESRCH means the thread/process is no longer on the system,
1050             // so it was killed somehow outside of our control.  Either way, we can't do anything
1051             // with it anymore.
1052 
1053             // Stop tracking the metadata for the thread since it's entirely off the system now.
1054             const bool thread_found = StopTrackingThread (pid);
1055 
1056             if (log)
1057                 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)",
1058                              __FUNCTION__, info_err.AsCString(), pid, signal, status, info_err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found");
1059 
1060             if (is_main_thread)
1061             {
1062                 // Notify the delegate - our process is not available but appears to have been killed outside
1063                 // our control.  Is eStateExited the right exit state in this case?
1064                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
1065                 SetState (StateType::eStateExited, true);
1066             }
1067             else
1068             {
1069                 // This thread was pulled out from underneath us.  Anything to do here? Do we want to do an all stop?
1070                 if (log)
1071                     log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid);
1072             }
1073         }
1074     }
1075 }
1076 
1077 void
1078 NativeProcessLinux::WaitForNewThread(::pid_t tid)
1079 {
1080     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1081 
1082     NativeThreadLinuxSP new_thread_sp = GetThreadByID(tid);
1083 
1084     if (new_thread_sp)
1085     {
1086         // We are already tracking the thread - we got the event on the new thread (see
1087         // MonitorSignal) before this one. We are done.
1088         return;
1089     }
1090 
1091     // The thread is not tracked yet, let's wait for it to appear.
1092     int status = -1;
1093     ::pid_t wait_pid;
1094     do
1095     {
1096         if (log)
1097             log->Printf ("NativeProcessLinux::%s() received thread creation event for tid %" PRIu32 ". tid not tracked yet, waiting for thread to appear...", __FUNCTION__, tid);
1098         wait_pid = waitpid(tid, &status, __WALL);
1099     }
1100     while (wait_pid == -1 && errno == EINTR);
1101     // Since we are waiting on a specific tid, this must be the creation event. But let's do
1102     // some checks just in case.
1103     if (wait_pid != tid) {
1104         if (log)
1105             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime", __FUNCTION__, tid);
1106         // The only way I know of this could happen is if the whole process was
1107         // SIGKILLed in the mean time. In any case, we can't do anything about that now.
1108         return;
1109     }
1110     if (WIFEXITED(status))
1111     {
1112         if (log)
1113             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " returned an 'exited' event. Not tracking the thread.", __FUNCTION__, tid);
1114         // Also a very improbable event.
1115         return;
1116     }
1117 
1118     siginfo_t info;
1119     Error error = GetSignalInfo(tid, &info);
1120     if (error.Fail())
1121     {
1122         if (log)
1123             log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime.", __FUNCTION__, tid);
1124         return;
1125     }
1126 
1127     if (((info.si_pid != 0) || (info.si_code != SI_USER)) && log)
1128     {
1129         // We should be getting a thread creation signal here, but we received something
1130         // else. There isn't much we can do about it now, so we will just log that. Since the
1131         // thread is alive and we are receiving events from it, we shall pretend that it was
1132         // created properly.
1133         log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " received unexpected signal with code %d from pid %d.", __FUNCTION__, tid, info.si_code, info.si_pid);
1134     }
1135 
1136     if (log)
1137         log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": tracking new thread tid %" PRIu32,
1138                  __FUNCTION__, GetID (), tid);
1139 
1140     new_thread_sp = AddThread(tid);
1141     ResumeThread(*new_thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
1142     ThreadWasCreated(*new_thread_sp);
1143 }
1144 
1145 void
1146 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, NativeThreadLinux &thread)
1147 {
1148     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1149     const bool is_main_thread = (thread.GetID() == GetID ());
1150 
1151     assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
1152 
1153     Mutex::Locker locker (m_threads_mutex);
1154 
1155     switch (info.si_code)
1156     {
1157     // TODO: these two cases are required if we want to support tracing of the inferiors' children.  We'd need this to debug a monitor.
1158     // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
1159     // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
1160 
1161     case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)):
1162     {
1163         // This is the notification on the parent thread which informs us of new thread
1164         // creation.
1165         // We don't want to do anything with the parent thread so we just resume it. In case we
1166         // want to implement "break on thread creation" functionality, we would need to stop
1167         // here.
1168 
1169         unsigned long event_message = 0;
1170         if (GetEventMessage(thread.GetID(), &event_message).Fail())
1171         {
1172             if (log)
1173                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, thread.GetID());
1174         } else
1175             WaitForNewThread(event_message);
1176 
1177         ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
1178         break;
1179     }
1180 
1181     case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)):
1182     {
1183         NativeThreadLinuxSP main_thread_sp;
1184         if (log)
1185             log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info.si_code ^ SIGTRAP);
1186 
1187         // Exec clears any pending notifications.
1188         m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
1189 
1190         // Remove all but the main thread here.  Linux fork creates a new process which only copies the main thread.  Mutexes are in undefined state.
1191         if (log)
1192             log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__);
1193 
1194         for (auto thread_sp : m_threads)
1195         {
1196             const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID ();
1197             if (is_main_thread)
1198             {
1199                 main_thread_sp = std::static_pointer_cast<NativeThreadLinux>(thread_sp);
1200                 if (log)
1201                     log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ());
1202             }
1203             else
1204             {
1205                 if (log)
1206                     log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ());
1207             }
1208         }
1209 
1210         m_threads.clear ();
1211 
1212         if (main_thread_sp)
1213         {
1214             m_threads.push_back (main_thread_sp);
1215             SetCurrentThreadID (main_thread_sp->GetID ());
1216             main_thread_sp->SetStoppedByExec();
1217         }
1218         else
1219         {
1220             SetCurrentThreadID (LLDB_INVALID_THREAD_ID);
1221             if (log)
1222                 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ());
1223         }
1224 
1225         // Tell coordinator about about the "new" (since exec) stopped main thread.
1226         ThreadWasCreated(*main_thread_sp);
1227 
1228         // Let our delegate know we have just exec'd.
1229         NotifyDidExec ();
1230 
1231         // If we have a main thread, indicate we are stopped.
1232         assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked");
1233 
1234         // Let the process know we're stopped.
1235         StopRunningThreads(main_thread_sp->GetID());
1236 
1237         break;
1238     }
1239 
1240     case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)):
1241     {
1242         // The inferior process or one of its threads is about to exit.
1243         // We don't want to do anything with the thread so we just resume it. In case we
1244         // want to implement "break on thread exit" functionality, we would need to stop
1245         // here.
1246 
1247         unsigned long data = 0;
1248         if (GetEventMessage(thread.GetID(), &data).Fail())
1249             data = -1;
1250 
1251         if (log)
1252         {
1253             log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)",
1254                          __FUNCTION__,
1255                          data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false",
1256                          thread.GetID(),
1257                     is_main_thread ? "is main thread" : "not main thread");
1258         }
1259 
1260         if (is_main_thread)
1261         {
1262             SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true);
1263         }
1264 
1265         ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
1266 
1267         break;
1268     }
1269 
1270     case 0:
1271     case TRAP_TRACE:  // We receive this on single stepping.
1272     case TRAP_HWBKPT: // We receive this on watchpoint hit
1273     {
1274         // If a watchpoint was hit, report it
1275         uint32_t wp_index;
1276         Error error = thread.GetRegisterContext()->GetWatchpointHitIndex(wp_index, (lldb::addr_t)info.si_addr);
1277         if (error.Fail() && log)
1278             log->Printf("NativeProcessLinux::%s() "
1279                         "received error while checking for watchpoint hits, "
1280                         "pid = %" PRIu64 " error = %s",
1281                         __FUNCTION__, thread.GetID(), error.AsCString());
1282         if (wp_index != LLDB_INVALID_INDEX32)
1283         {
1284             MonitorWatchpoint(thread, wp_index);
1285             break;
1286         }
1287 
1288         // Otherwise, report step over
1289         MonitorTrace(thread);
1290         break;
1291     }
1292 
1293     case SI_KERNEL:
1294 #if defined __mips__
1295         // For mips there is no special signal for watchpoint
1296         // So we check for watchpoint in kernel trap
1297     {
1298         // If a watchpoint was hit, report it
1299         uint32_t wp_index;
1300         Error error = thread.GetRegisterContext()->GetWatchpointHitIndex(wp_index, LLDB_INVALID_ADDRESS);
1301         if (error.Fail() && log)
1302             log->Printf("NativeProcessLinux::%s() "
1303                         "received error while checking for watchpoint hits, "
1304                         "pid = %" PRIu64 " error = %s",
1305                         __FUNCTION__, pid, error.AsCString());
1306         if (wp_index != LLDB_INVALID_INDEX32)
1307         {
1308             MonitorWatchpoint(thread, wp_index);
1309             break;
1310         }
1311     }
1312         // NO BREAK
1313 #endif
1314     case TRAP_BRKPT:
1315         MonitorBreakpoint(thread);
1316         break;
1317 
1318     case SIGTRAP:
1319     case (SIGTRAP | 0x80):
1320         if (log)
1321             log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), thread.GetID());
1322 
1323         // Ignore these signals until we know more about them.
1324         ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
1325         break;
1326 
1327     default:
1328         assert(false && "Unexpected SIGTRAP code!");
1329         if (log)
1330             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%d",
1331                     __FUNCTION__, GetID(), thread.GetID(), info.si_code);
1332         break;
1333 
1334     }
1335 }
1336 
1337 void
1338 NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread)
1339 {
1340     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1341     if (log)
1342         log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)",
1343                 __FUNCTION__, thread.GetID());
1344 
1345     // This thread is currently stopped.
1346     thread.SetStoppedByTrace();
1347 
1348     StopRunningThreads(thread.GetID());
1349 }
1350 
1351 void
1352 NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread)
1353 {
1354     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
1355     if (log)
1356         log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64,
1357                 __FUNCTION__, thread.GetID());
1358 
1359     // Mark the thread as stopped at breakpoint.
1360     thread.SetStoppedByBreakpoint();
1361     Error error = FixupBreakpointPCAsNeeded(thread);
1362     if (error.Fail())
1363         if (log)
1364             log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s",
1365                     __FUNCTION__, thread.GetID(), error.AsCString());
1366 
1367     if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != m_threads_stepping_with_breakpoint.end())
1368         thread.SetStoppedByTrace();
1369 
1370     StopRunningThreads(thread.GetID());
1371 }
1372 
1373 void
1374 NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, uint32_t wp_index)
1375 {
1376     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
1377     if (log)
1378         log->Printf("NativeProcessLinux::%s() received watchpoint event, "
1379                     "pid = %" PRIu64 ", wp_index = %" PRIu32,
1380                     __FUNCTION__, thread.GetID(), wp_index);
1381 
1382     // Mark the thread as stopped at watchpoint.
1383     // The address is at (lldb::addr_t)info->si_addr if we need it.
1384     thread.SetStoppedByWatchpoint(wp_index);
1385 
1386     // We need to tell all other running threads before we notify the delegate about this stop.
1387     StopRunningThreads(thread.GetID());
1388 }
1389 
1390 void
1391 NativeProcessLinux::MonitorSignal(const siginfo_t &info, NativeThreadLinux &thread, bool exited)
1392 {
1393     const int signo = info.si_signo;
1394     const bool is_from_llgs = info.si_pid == getpid ();
1395 
1396     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1397 
1398     // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
1399     // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
1400     // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
1401     //
1402     // IOW, user generated signals never generate what we consider to be a
1403     // "crash".
1404     //
1405     // Similarly, ACK signals generated by this monitor.
1406 
1407     Mutex::Locker locker (m_threads_mutex);
1408 
1409     // Handle the signal.
1410     if (info.si_code == SI_TKILL || info.si_code == SI_USER)
1411     {
1412         if (log)
1413             log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")",
1414                             __FUNCTION__,
1415                             Host::GetSignalAsCString(signo),
1416                             signo,
1417                             (info.si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"),
1418                             info.si_pid,
1419                             is_from_llgs ? "from llgs" : "not from llgs",
1420                             thread.GetID());
1421     }
1422 
1423     // Check for thread stop notification.
1424     if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP))
1425     {
1426         // This is a tgkill()-based stop.
1427         if (log)
1428             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped",
1429                          __FUNCTION__,
1430                          GetID (),
1431                          thread.GetID());
1432 
1433         // Check that we're not already marked with a stop reason.
1434         // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that
1435         // the kernel signaled us with the thread stopping which we handled and marked as stopped,
1436         // and that, without an intervening resume, we received another stop.  It is more likely
1437         // that we are missing the marking of a run state somewhere if we find that the thread was
1438         // marked as stopped.
1439         const StateType thread_state = thread.GetState();
1440         if (!StateIsStoppedState (thread_state, false))
1441         {
1442             // An inferior thread has stopped because of a SIGSTOP we have sent it.
1443             // Generally, these are not important stops and we don't want to report them as
1444             // they are just used to stop other threads when one thread (the one with the
1445             // *real* stop reason) hits a breakpoint (watchpoint, etc...). However, in the
1446             // case of an asynchronous Interrupt(), this *is* the real stop reason, so we
1447             // leave the signal intact if this is the thread that was chosen as the
1448             // triggering thread.
1449             if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID)
1450             {
1451                 if (m_pending_notification_tid == thread.GetID())
1452                     thread.SetStoppedBySignal(SIGSTOP, &info);
1453                 else
1454                     thread.SetStoppedWithNoReason();
1455 
1456                 SetCurrentThreadID (thread.GetID ());
1457                 SignalIfAllThreadsStopped();
1458             }
1459             else
1460             {
1461                 // We can end up here if stop was initiated by LLGS but by this time a
1462                 // thread stop has occurred - maybe initiated by another event.
1463                 Error error = ResumeThread(thread, thread.GetState(), 0);
1464                 if (error.Fail() && log)
1465                 {
1466                     log->Printf("NativeProcessLinux::%s failed to resume thread tid  %" PRIu64 ": %s",
1467                             __FUNCTION__, thread.GetID(), error.AsCString());
1468                 }
1469             }
1470         }
1471         else
1472         {
1473             if (log)
1474             {
1475                 // Retrieve the signal name if the thread was stopped by a signal.
1476                 int stop_signo = 0;
1477                 const bool stopped_by_signal = thread.IsStopped(&stop_signo);
1478                 const char *signal_name = stopped_by_signal ? Host::GetSignalAsCString(stop_signo) : "<not stopped by signal>";
1479                 if (!signal_name)
1480                     signal_name = "<no-signal-name>";
1481 
1482                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is",
1483                              __FUNCTION__,
1484                              GetID (),
1485                              thread.GetID(),
1486                              StateAsCString (thread_state),
1487                              stop_signo,
1488                              signal_name);
1489             }
1490             SignalIfAllThreadsStopped();
1491         }
1492 
1493         // Done handling.
1494         return;
1495     }
1496 
1497     if (log)
1498         log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, Host::GetSignalAsCString(signo));
1499 
1500     // This thread is stopped.
1501     thread.SetStoppedBySignal(signo, &info);
1502 
1503     // Send a stop to the debugger after we get all other threads to stop.
1504     StopRunningThreads(thread.GetID());
1505 }
1506 
1507 namespace {
1508 
1509 struct EmulatorBaton
1510 {
1511     NativeProcessLinux* m_process;
1512     NativeRegisterContext* m_reg_context;
1513 
1514     // eRegisterKindDWARF -> RegsiterValue
1515     std::unordered_map<uint32_t, RegisterValue> m_register_values;
1516 
1517     EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) :
1518             m_process(process), m_reg_context(reg_context) {}
1519 };
1520 
1521 } // anonymous namespace
1522 
1523 static size_t
1524 ReadMemoryCallback (EmulateInstruction *instruction,
1525                     void *baton,
1526                     const EmulateInstruction::Context &context,
1527                     lldb::addr_t addr,
1528                     void *dst,
1529                     size_t length)
1530 {
1531     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
1532 
1533     size_t bytes_read;
1534     emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read);
1535     return bytes_read;
1536 }
1537 
1538 static bool
1539 ReadRegisterCallback (EmulateInstruction *instruction,
1540                       void *baton,
1541                       const RegisterInfo *reg_info,
1542                       RegisterValue &reg_value)
1543 {
1544     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
1545 
1546     auto it = emulator_baton->m_register_values.find(reg_info->kinds[eRegisterKindDWARF]);
1547     if (it != emulator_baton->m_register_values.end())
1548     {
1549         reg_value = it->second;
1550         return true;
1551     }
1552 
1553     // The emulator only fill in the dwarf regsiter numbers (and in some case
1554     // the generic register numbers). Get the full register info from the
1555     // register context based on the dwarf register numbers.
1556     const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo(
1557             eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
1558 
1559     Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value);
1560     if (error.Success())
1561         return true;
1562 
1563     return false;
1564 }
1565 
1566 static bool
1567 WriteRegisterCallback (EmulateInstruction *instruction,
1568                        void *baton,
1569                        const EmulateInstruction::Context &context,
1570                        const RegisterInfo *reg_info,
1571                        const RegisterValue &reg_value)
1572 {
1573     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
1574     emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value;
1575     return true;
1576 }
1577 
1578 static size_t
1579 WriteMemoryCallback (EmulateInstruction *instruction,
1580                      void *baton,
1581                      const EmulateInstruction::Context &context,
1582                      lldb::addr_t addr,
1583                      const void *dst,
1584                      size_t length)
1585 {
1586     return length;
1587 }
1588 
1589 static lldb::addr_t
1590 ReadFlags (NativeRegisterContext* regsiter_context)
1591 {
1592     const RegisterInfo* flags_info = regsiter_context->GetRegisterInfo(
1593             eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1594     return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS);
1595 }
1596 
1597 Error
1598 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread)
1599 {
1600     Error error;
1601     NativeRegisterContextSP register_context_sp = thread.GetRegisterContext();
1602 
1603     std::unique_ptr<EmulateInstruction> emulator_ap(
1604         EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr));
1605 
1606     if (emulator_ap == nullptr)
1607         return Error("Instruction emulator not found!");
1608 
1609     EmulatorBaton baton(this, register_context_sp.get());
1610     emulator_ap->SetBaton(&baton);
1611     emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
1612     emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
1613     emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
1614     emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
1615 
1616     if (!emulator_ap->ReadInstruction())
1617         return Error("Read instruction failed!");
1618 
1619     bool emulation_result = emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
1620 
1621     const RegisterInfo* reg_info_pc = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
1622     const RegisterInfo* reg_info_flags = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1623 
1624     auto pc_it = baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
1625     auto flags_it = baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
1626 
1627     lldb::addr_t next_pc;
1628     lldb::addr_t next_flags;
1629     if (emulation_result)
1630     {
1631         assert(pc_it != baton.m_register_values.end() && "Emulation was successfull but PC wasn't updated");
1632         next_pc = pc_it->second.GetAsUInt64();
1633 
1634         if (flags_it != baton.m_register_values.end())
1635             next_flags = flags_it->second.GetAsUInt64();
1636         else
1637             next_flags = ReadFlags (register_context_sp.get());
1638     }
1639     else if (pc_it == baton.m_register_values.end())
1640     {
1641         // Emulate instruction failed and it haven't changed PC. Advance PC
1642         // with the size of the current opcode because the emulation of all
1643         // PC modifying instruction should be successful. The failure most
1644         // likely caused by a not supported instruction which don't modify PC.
1645         next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize();
1646         next_flags = ReadFlags (register_context_sp.get());
1647     }
1648     else
1649     {
1650         // The instruction emulation failed after it modified the PC. It is an
1651         // unknown error where we can't continue because the next instruction is
1652         // modifying the PC but we don't  know how.
1653         return Error ("Instruction emulation failed unexpectedly.");
1654     }
1655 
1656     if (m_arch.GetMachine() == llvm::Triple::arm)
1657     {
1658         if (next_flags & 0x20)
1659         {
1660             // Thumb mode
1661             error = SetSoftwareBreakpoint(next_pc, 2);
1662         }
1663         else
1664         {
1665             // Arm mode
1666             error = SetSoftwareBreakpoint(next_pc, 4);
1667         }
1668     }
1669     else if (m_arch.GetMachine() == llvm::Triple::mips64
1670             || m_arch.GetMachine() == llvm::Triple::mips64el
1671             || m_arch.GetMachine() == llvm::Triple::mips
1672             || m_arch.GetMachine() == llvm::Triple::mipsel)
1673         error = SetSoftwareBreakpoint(next_pc, 4);
1674     else
1675     {
1676         // No size hint is given for the next breakpoint
1677         error = SetSoftwareBreakpoint(next_pc, 0);
1678     }
1679 
1680     if (error.Fail())
1681         return error;
1682 
1683     m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc});
1684 
1685     return Error();
1686 }
1687 
1688 bool
1689 NativeProcessLinux::SupportHardwareSingleStepping() const
1690 {
1691     if (m_arch.GetMachine() == llvm::Triple::arm
1692         || m_arch.GetMachine() == llvm::Triple::mips64 || m_arch.GetMachine() == llvm::Triple::mips64el
1693         || m_arch.GetMachine() == llvm::Triple::mips || m_arch.GetMachine() == llvm::Triple::mipsel)
1694         return false;
1695     return true;
1696 }
1697 
1698 Error
1699 NativeProcessLinux::Resume (const ResumeActionList &resume_actions)
1700 {
1701     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD));
1702     if (log)
1703         log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ());
1704 
1705     bool software_single_step = !SupportHardwareSingleStepping();
1706 
1707     Mutex::Locker locker (m_threads_mutex);
1708 
1709     if (software_single_step)
1710     {
1711         for (auto thread_sp : m_threads)
1712         {
1713             assert (thread_sp && "thread list should not contain NULL threads");
1714 
1715             const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
1716             if (action == nullptr)
1717                 continue;
1718 
1719             if (action->state == eStateStepping)
1720             {
1721                 Error error = SetupSoftwareSingleStepping(static_cast<NativeThreadLinux &>(*thread_sp));
1722                 if (error.Fail())
1723                     return error;
1724             }
1725         }
1726     }
1727 
1728     for (auto thread_sp : m_threads)
1729     {
1730         assert (thread_sp && "thread list should not contain NULL threads");
1731 
1732         const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
1733 
1734         if (action == nullptr)
1735         {
1736             if (log)
1737                 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64,
1738                     __FUNCTION__, GetID (), thread_sp->GetID ());
1739             continue;
1740         }
1741 
1742         if (log)
1743         {
1744             log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64,
1745                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
1746         }
1747 
1748         switch (action->state)
1749         {
1750         case eStateRunning:
1751         case eStateStepping:
1752         {
1753             // Run the thread, possibly feeding it the signal.
1754             const int signo = action->signal;
1755             ResumeThread(static_cast<NativeThreadLinux &>(*thread_sp), action->state, signo);
1756             break;
1757         }
1758 
1759         case eStateSuspended:
1760         case eStateStopped:
1761             lldbassert(0 && "Unexpected state");
1762 
1763         default:
1764             return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64,
1765                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
1766         }
1767     }
1768 
1769     return Error();
1770 }
1771 
1772 Error
1773 NativeProcessLinux::Halt ()
1774 {
1775     Error error;
1776 
1777     if (kill (GetID (), SIGSTOP) != 0)
1778         error.SetErrorToErrno ();
1779 
1780     return error;
1781 }
1782 
1783 Error
1784 NativeProcessLinux::Detach ()
1785 {
1786     Error error;
1787 
1788     // Tell ptrace to detach from the process.
1789     if (GetID () != LLDB_INVALID_PROCESS_ID)
1790         error = Detach (GetID ());
1791 
1792     // Stop monitoring the inferior.
1793     m_sigchld_handle.reset();
1794 
1795     // No error.
1796     return error;
1797 }
1798 
1799 Error
1800 NativeProcessLinux::Signal (int signo)
1801 {
1802     Error error;
1803 
1804     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1805     if (log)
1806         log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64,
1807                 __FUNCTION__, signo, Host::GetSignalAsCString(signo), GetID());
1808 
1809     if (kill(GetID(), signo))
1810         error.SetErrorToErrno();
1811 
1812     return error;
1813 }
1814 
1815 Error
1816 NativeProcessLinux::Interrupt ()
1817 {
1818     // Pick a running thread (or if none, a not-dead stopped thread) as
1819     // the chosen thread that will be the stop-reason thread.
1820     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1821 
1822     NativeThreadProtocolSP running_thread_sp;
1823     NativeThreadProtocolSP stopped_thread_sp;
1824 
1825     if (log)
1826         log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__);
1827 
1828     Mutex::Locker locker (m_threads_mutex);
1829 
1830     for (auto thread_sp : m_threads)
1831     {
1832         // The thread shouldn't be null but lets just cover that here.
1833         if (!thread_sp)
1834             continue;
1835 
1836         // If we have a running or stepping thread, we'll call that the
1837         // target of the interrupt.
1838         const auto thread_state = thread_sp->GetState ();
1839         if (thread_state == eStateRunning ||
1840             thread_state == eStateStepping)
1841         {
1842             running_thread_sp = thread_sp;
1843             break;
1844         }
1845         else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true))
1846         {
1847             // Remember the first non-dead stopped thread.  We'll use that as a backup if there are no running threads.
1848             stopped_thread_sp = thread_sp;
1849         }
1850     }
1851 
1852     if (!running_thread_sp && !stopped_thread_sp)
1853     {
1854         Error error("found no running/stepping or live stopped threads as target for interrupt");
1855         if (log)
1856             log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ());
1857 
1858         return error;
1859     }
1860 
1861     NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp;
1862 
1863     if (log)
1864         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target",
1865                      __FUNCTION__,
1866                      GetID (),
1867                      running_thread_sp ? "running" : "stopped",
1868                      deferred_signal_thread_sp->GetID ());
1869 
1870     StopRunningThreads(deferred_signal_thread_sp->GetID());
1871 
1872     return Error();
1873 }
1874 
1875 Error
1876 NativeProcessLinux::Kill ()
1877 {
1878     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1879     if (log)
1880         log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ());
1881 
1882     Error error;
1883 
1884     switch (m_state)
1885     {
1886         case StateType::eStateInvalid:
1887         case StateType::eStateExited:
1888         case StateType::eStateCrashed:
1889         case StateType::eStateDetached:
1890         case StateType::eStateUnloaded:
1891             // Nothing to do - the process is already dead.
1892             if (log)
1893                 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state));
1894             return error;
1895 
1896         case StateType::eStateConnected:
1897         case StateType::eStateAttaching:
1898         case StateType::eStateLaunching:
1899         case StateType::eStateStopped:
1900         case StateType::eStateRunning:
1901         case StateType::eStateStepping:
1902         case StateType::eStateSuspended:
1903             // We can try to kill a process in these states.
1904             break;
1905     }
1906 
1907     if (kill (GetID (), SIGKILL) != 0)
1908     {
1909         error.SetErrorToErrno ();
1910         return error;
1911     }
1912 
1913     return error;
1914 }
1915 
1916 static Error
1917 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info)
1918 {
1919     memory_region_info.Clear();
1920 
1921     StringExtractor line_extractor (maps_line.c_str ());
1922 
1923     // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode   pathname
1924     // perms: rwxp   (letter is present if set, '-' if not, final character is p=private, s=shared).
1925 
1926     // Parse out the starting address
1927     lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0);
1928 
1929     // Parse out hyphen separating start and end address from range.
1930     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-'))
1931         return Error ("malformed /proc/{pid}/maps entry, missing dash between address range");
1932 
1933     // Parse out the ending address
1934     lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address);
1935 
1936     // Parse out the space after the address.
1937     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' '))
1938         return Error ("malformed /proc/{pid}/maps entry, missing space after range");
1939 
1940     // Save the range.
1941     memory_region_info.GetRange ().SetRangeBase (start_address);
1942     memory_region_info.GetRange ().SetRangeEnd (end_address);
1943 
1944     // Parse out each permission entry.
1945     if (line_extractor.GetBytesLeft () < 4)
1946         return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions");
1947 
1948     // Handle read permission.
1949     const char read_perm_char = line_extractor.GetChar ();
1950     if (read_perm_char == 'r')
1951         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes);
1952     else
1953     {
1954         assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" );
1955         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
1956     }
1957 
1958     // Handle write permission.
1959     const char write_perm_char = line_extractor.GetChar ();
1960     if (write_perm_char == 'w')
1961         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes);
1962     else
1963     {
1964         assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" );
1965         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
1966     }
1967 
1968     // Handle execute permission.
1969     const char exec_perm_char = line_extractor.GetChar ();
1970     if (exec_perm_char == 'x')
1971         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes);
1972     else
1973     {
1974         assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" );
1975         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
1976     }
1977 
1978     return Error ();
1979 }
1980 
1981 Error
1982 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info)
1983 {
1984     // FIXME review that the final memory region returned extends to the end of the virtual address space,
1985     // with no perms if it is not mapped.
1986 
1987     // Use an approach that reads memory regions from /proc/{pid}/maps.
1988     // Assume proc maps entries are in ascending order.
1989     // FIXME assert if we find differently.
1990     Mutex::Locker locker (m_mem_region_cache_mutex);
1991 
1992     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1993     Error error;
1994 
1995     if (m_supports_mem_region == LazyBool::eLazyBoolNo)
1996     {
1997         // We're done.
1998         error.SetErrorString ("unsupported");
1999         return error;
2000     }
2001 
2002     // If our cache is empty, pull the latest.  There should always be at least one memory region
2003     // if memory region handling is supported.
2004     if (m_mem_region_cache.empty ())
2005     {
2006         error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
2007              [&] (const std::string &line) -> bool
2008              {
2009                  MemoryRegionInfo info;
2010                  const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info);
2011                  if (parse_error.Success ())
2012                  {
2013                      m_mem_region_cache.push_back (info);
2014                      return true;
2015                  }
2016                  else
2017                  {
2018                      if (log)
2019                          log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ());
2020                      return false;
2021                  }
2022              });
2023 
2024         // If we had an error, we'll mark unsupported.
2025         if (error.Fail ())
2026         {
2027             m_supports_mem_region = LazyBool::eLazyBoolNo;
2028             return error;
2029         }
2030         else if (m_mem_region_cache.empty ())
2031         {
2032             // No entries after attempting to read them.  This shouldn't happen if /proc/{pid}/maps
2033             // is supported.  Assume we don't support map entries via procfs.
2034             if (log)
2035                 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__);
2036             m_supports_mem_region = LazyBool::eLazyBoolNo;
2037             error.SetErrorString ("not supported");
2038             return error;
2039         }
2040 
2041         if (log)
2042             log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ());
2043 
2044         // We support memory retrieval, remember that.
2045         m_supports_mem_region = LazyBool::eLazyBoolYes;
2046     }
2047     else
2048     {
2049         if (log)
2050             log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
2051     }
2052 
2053     lldb::addr_t prev_base_address = 0;
2054 
2055     // FIXME start by finding the last region that is <= target address using binary search.  Data is sorted.
2056     // There can be a ton of regions on pthreads apps with lots of threads.
2057     for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it)
2058     {
2059         MemoryRegionInfo &proc_entry_info = *it;
2060 
2061         // Sanity check assumption that /proc/{pid}/maps entries are ascending.
2062         assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected");
2063         prev_base_address = proc_entry_info.GetRange ().GetRangeBase ();
2064 
2065         // If the target address comes before this entry, indicate distance to next region.
2066         if (load_addr < proc_entry_info.GetRange ().GetRangeBase ())
2067         {
2068             range_info.GetRange ().SetRangeBase (load_addr);
2069             range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr);
2070             range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2071             range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2072             range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2073 
2074             return error;
2075         }
2076         else if (proc_entry_info.GetRange ().Contains (load_addr))
2077         {
2078             // The target address is within the memory region we're processing here.
2079             range_info = proc_entry_info;
2080             return error;
2081         }
2082 
2083         // The target memory address comes somewhere after the region we just parsed.
2084     }
2085 
2086     // If we made it here, we didn't find an entry that contained the given address. Return the
2087     // load_addr as start and the amount of bytes betwwen load address and the end of the memory as
2088     // size.
2089     range_info.GetRange ().SetRangeBase (load_addr);
2090     switch (m_arch.GetAddressByteSize())
2091     {
2092         case 4:
2093             range_info.GetRange ().SetByteSize (0x100000000ull - load_addr);
2094             break;
2095         case 8:
2096             range_info.GetRange ().SetByteSize (0ull - load_addr);
2097             break;
2098         default:
2099             assert(false && "Unrecognized data byte size");
2100             break;
2101     }
2102     range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2103     range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2104     range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2105     return error;
2106 }
2107 
2108 void
2109 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId)
2110 {
2111     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2112     if (log)
2113         log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId);
2114 
2115     {
2116         Mutex::Locker locker (m_mem_region_cache_mutex);
2117         if (log)
2118             log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
2119         m_mem_region_cache.clear ();
2120     }
2121 }
2122 
2123 Error
2124 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, lldb::addr_t &addr)
2125 {
2126     // FIXME implementing this requires the equivalent of
2127     // InferiorCallPOSIX::InferiorCallMmap, which depends on
2128     // functional ThreadPlans working with Native*Protocol.
2129 #if 1
2130     return Error ("not implemented yet");
2131 #else
2132     addr = LLDB_INVALID_ADDRESS;
2133 
2134     unsigned prot = 0;
2135     if (permissions & lldb::ePermissionsReadable)
2136         prot |= eMmapProtRead;
2137     if (permissions & lldb::ePermissionsWritable)
2138         prot |= eMmapProtWrite;
2139     if (permissions & lldb::ePermissionsExecutable)
2140         prot |= eMmapProtExec;
2141 
2142     // TODO implement this directly in NativeProcessLinux
2143     // (and lift to NativeProcessPOSIX if/when that class is
2144     // refactored out).
2145     if (InferiorCallMmap(this, addr, 0, size, prot,
2146                          eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
2147         m_addr_to_mmap_size[addr] = size;
2148         return Error ();
2149     } else {
2150         addr = LLDB_INVALID_ADDRESS;
2151         return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions));
2152     }
2153 #endif
2154 }
2155 
2156 Error
2157 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr)
2158 {
2159     // FIXME see comments in AllocateMemory - required lower-level
2160     // bits not in place yet (ThreadPlans)
2161     return Error ("not implemented");
2162 }
2163 
2164 lldb::addr_t
2165 NativeProcessLinux::GetSharedLibraryInfoAddress ()
2166 {
2167 #if 1
2168     // punt on this for now
2169     return LLDB_INVALID_ADDRESS;
2170 #else
2171     // Return the image info address for the exe module
2172 #if 1
2173     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2174 
2175     ModuleSP module_sp;
2176     Error error = GetExeModuleSP (module_sp);
2177     if (error.Fail ())
2178     {
2179          if (log)
2180             log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ());
2181         return LLDB_INVALID_ADDRESS;
2182     }
2183 
2184     if (module_sp == nullptr)
2185     {
2186          if (log)
2187             log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__);
2188          return LLDB_INVALID_ADDRESS;
2189     }
2190 
2191     ObjectFileSP object_file_sp = module_sp->GetObjectFile ();
2192     if (object_file_sp == nullptr)
2193     {
2194          if (log)
2195             log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__);
2196          return LLDB_INVALID_ADDRESS;
2197     }
2198 
2199     return obj_file_sp->GetImageInfoAddress();
2200 #else
2201     Target *target = &GetTarget();
2202     ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile();
2203     Address addr = obj_file->GetImageInfoAddress(target);
2204 
2205     if (addr.IsValid())
2206         return addr.GetLoadAddress(target);
2207     return LLDB_INVALID_ADDRESS;
2208 #endif
2209 #endif // punt on this for now
2210 }
2211 
2212 size_t
2213 NativeProcessLinux::UpdateThreads ()
2214 {
2215     // The NativeProcessLinux monitoring threads are always up to date
2216     // with respect to thread state and they keep the thread list
2217     // populated properly. All this method needs to do is return the
2218     // thread count.
2219     Mutex::Locker locker (m_threads_mutex);
2220     return m_threads.size ();
2221 }
2222 
2223 bool
2224 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const
2225 {
2226     arch = m_arch;
2227     return true;
2228 }
2229 
2230 Error
2231 NativeProcessLinux::GetSoftwareBreakpointPCOffset(uint32_t &actual_opcode_size)
2232 {
2233     // FIXME put this behind a breakpoint protocol class that can be
2234     // set per architecture.  Need ARM, MIPS support here.
2235     static const uint8_t g_i386_opcode [] = { 0xCC };
2236 
2237     switch (m_arch.GetMachine ())
2238     {
2239         case llvm::Triple::x86:
2240         case llvm::Triple::x86_64:
2241             actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode));
2242             return Error ();
2243 
2244         case llvm::Triple::arm:
2245         case llvm::Triple::aarch64:
2246         case llvm::Triple::mips64:
2247         case llvm::Triple::mips64el:
2248         case llvm::Triple::mips:
2249         case llvm::Triple::mipsel:
2250             // On these architectures the PC don't get updated for breakpoint hits
2251             actual_opcode_size = 0;
2252             return Error ();
2253 
2254         default:
2255             assert(false && "CPU type not supported!");
2256             return Error ("CPU type not supported");
2257     }
2258 }
2259 
2260 Error
2261 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware)
2262 {
2263     if (hardware)
2264         return Error ("NativeProcessLinux does not support hardware breakpoints");
2265     else
2266         return SetSoftwareBreakpoint (addr, size);
2267 }
2268 
2269 Error
2270 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint,
2271                                                      size_t &actual_opcode_size,
2272                                                      const uint8_t *&trap_opcode_bytes)
2273 {
2274     // FIXME put this behind a breakpoint protocol class that can be set per
2275     // architecture.  Need MIPS support here.
2276     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
2277     // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
2278     // linux kernel does otherwise.
2279     static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 };
2280     static const uint8_t g_i386_opcode [] = { 0xCC };
2281     static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d };
2282     static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 };
2283     static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde };
2284 
2285     switch (m_arch.GetMachine ())
2286     {
2287     case llvm::Triple::aarch64:
2288         trap_opcode_bytes = g_aarch64_opcode;
2289         actual_opcode_size = sizeof(g_aarch64_opcode);
2290         return Error ();
2291 
2292     case llvm::Triple::arm:
2293         switch (trap_opcode_size_hint)
2294         {
2295         case 2:
2296             trap_opcode_bytes = g_thumb_breakpoint_opcode;
2297             actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
2298             return Error ();
2299         case 4:
2300             trap_opcode_bytes = g_arm_breakpoint_opcode;
2301             actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
2302             return Error ();
2303         default:
2304             assert(false && "Unrecognised trap opcode size hint!");
2305             return Error ("Unrecognised trap opcode size hint!");
2306         }
2307 
2308     case llvm::Triple::x86:
2309     case llvm::Triple::x86_64:
2310         trap_opcode_bytes = g_i386_opcode;
2311         actual_opcode_size = sizeof(g_i386_opcode);
2312         return Error ();
2313 
2314     case llvm::Triple::mips:
2315     case llvm::Triple::mips64:
2316         trap_opcode_bytes = g_mips64_opcode;
2317         actual_opcode_size = sizeof(g_mips64_opcode);
2318         return Error ();
2319 
2320     case llvm::Triple::mipsel:
2321     case llvm::Triple::mips64el:
2322         trap_opcode_bytes = g_mips64el_opcode;
2323         actual_opcode_size = sizeof(g_mips64el_opcode);
2324         return Error ();
2325 
2326     default:
2327         assert(false && "CPU type not supported!");
2328         return Error ("CPU type not supported");
2329     }
2330 }
2331 
2332 #if 0
2333 ProcessMessage::CrashReason
2334 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
2335 {
2336     ProcessMessage::CrashReason reason;
2337     assert(info->si_signo == SIGSEGV);
2338 
2339     reason = ProcessMessage::eInvalidCrashReason;
2340 
2341     switch (info->si_code)
2342     {
2343     default:
2344         assert(false && "unexpected si_code for SIGSEGV");
2345         break;
2346     case SI_KERNEL:
2347         // Linux will occasionally send spurious SI_KERNEL codes.
2348         // (this is poorly documented in sigaction)
2349         // One way to get this is via unaligned SIMD loads.
2350         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
2351         break;
2352     case SEGV_MAPERR:
2353         reason = ProcessMessage::eInvalidAddress;
2354         break;
2355     case SEGV_ACCERR:
2356         reason = ProcessMessage::ePrivilegedAddress;
2357         break;
2358     }
2359 
2360     return reason;
2361 }
2362 #endif
2363 
2364 
2365 #if 0
2366 ProcessMessage::CrashReason
2367 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
2368 {
2369     ProcessMessage::CrashReason reason;
2370     assert(info->si_signo == SIGILL);
2371 
2372     reason = ProcessMessage::eInvalidCrashReason;
2373 
2374     switch (info->si_code)
2375     {
2376     default:
2377         assert(false && "unexpected si_code for SIGILL");
2378         break;
2379     case ILL_ILLOPC:
2380         reason = ProcessMessage::eIllegalOpcode;
2381         break;
2382     case ILL_ILLOPN:
2383         reason = ProcessMessage::eIllegalOperand;
2384         break;
2385     case ILL_ILLADR:
2386         reason = ProcessMessage::eIllegalAddressingMode;
2387         break;
2388     case ILL_ILLTRP:
2389         reason = ProcessMessage::eIllegalTrap;
2390         break;
2391     case ILL_PRVOPC:
2392         reason = ProcessMessage::ePrivilegedOpcode;
2393         break;
2394     case ILL_PRVREG:
2395         reason = ProcessMessage::ePrivilegedRegister;
2396         break;
2397     case ILL_COPROC:
2398         reason = ProcessMessage::eCoprocessorError;
2399         break;
2400     case ILL_BADSTK:
2401         reason = ProcessMessage::eInternalStackError;
2402         break;
2403     }
2404 
2405     return reason;
2406 }
2407 #endif
2408 
2409 #if 0
2410 ProcessMessage::CrashReason
2411 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
2412 {
2413     ProcessMessage::CrashReason reason;
2414     assert(info->si_signo == SIGFPE);
2415 
2416     reason = ProcessMessage::eInvalidCrashReason;
2417 
2418     switch (info->si_code)
2419     {
2420     default:
2421         assert(false && "unexpected si_code for SIGFPE");
2422         break;
2423     case FPE_INTDIV:
2424         reason = ProcessMessage::eIntegerDivideByZero;
2425         break;
2426     case FPE_INTOVF:
2427         reason = ProcessMessage::eIntegerOverflow;
2428         break;
2429     case FPE_FLTDIV:
2430         reason = ProcessMessage::eFloatDivideByZero;
2431         break;
2432     case FPE_FLTOVF:
2433         reason = ProcessMessage::eFloatOverflow;
2434         break;
2435     case FPE_FLTUND:
2436         reason = ProcessMessage::eFloatUnderflow;
2437         break;
2438     case FPE_FLTRES:
2439         reason = ProcessMessage::eFloatInexactResult;
2440         break;
2441     case FPE_FLTINV:
2442         reason = ProcessMessage::eFloatInvalidOperation;
2443         break;
2444     case FPE_FLTSUB:
2445         reason = ProcessMessage::eFloatSubscriptRange;
2446         break;
2447     }
2448 
2449     return reason;
2450 }
2451 #endif
2452 
2453 #if 0
2454 ProcessMessage::CrashReason
2455 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
2456 {
2457     ProcessMessage::CrashReason reason;
2458     assert(info->si_signo == SIGBUS);
2459 
2460     reason = ProcessMessage::eInvalidCrashReason;
2461 
2462     switch (info->si_code)
2463     {
2464     default:
2465         assert(false && "unexpected si_code for SIGBUS");
2466         break;
2467     case BUS_ADRALN:
2468         reason = ProcessMessage::eIllegalAlignment;
2469         break;
2470     case BUS_ADRERR:
2471         reason = ProcessMessage::eIllegalAddress;
2472         break;
2473     case BUS_OBJERR:
2474         reason = ProcessMessage::eHardwareError;
2475         break;
2476     }
2477 
2478     return reason;
2479 }
2480 #endif
2481 
2482 Error
2483 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
2484 {
2485     if (ProcessVmReadvSupported()) {
2486         // The process_vm_readv path is about 50 times faster than ptrace api. We want to use
2487         // this syscall if it is supported.
2488 
2489         const ::pid_t pid = GetID();
2490 
2491         struct iovec local_iov, remote_iov;
2492         local_iov.iov_base = buf;
2493         local_iov.iov_len = size;
2494         remote_iov.iov_base = reinterpret_cast<void *>(addr);
2495         remote_iov.iov_len = size;
2496 
2497         bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
2498         const bool success = bytes_read == size;
2499 
2500         Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2501         if (log)
2502             log->Printf ("NativeProcessLinux::%s using process_vm_readv to read %zd bytes from inferior address 0x%" PRIx64": %s",
2503                     __FUNCTION__, size, addr, success ? "Success" : strerror(errno));
2504 
2505         if (success)
2506             return Error();
2507         // else
2508         //     the call failed for some reason, let's retry the read using ptrace api.
2509     }
2510 
2511     unsigned char *dst = static_cast<unsigned char*>(buf);
2512     size_t remainder;
2513     long data;
2514 
2515     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
2516     if (log)
2517         ProcessPOSIXLog::IncNestLevel();
2518     if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
2519         log->Printf ("NativeProcessLinux::%s(%p, %p, %zd, _)", __FUNCTION__, (void*)addr, buf, size);
2520 
2521     for (bytes_read = 0; bytes_read < size; bytes_read += remainder)
2522     {
2523         Error error = NativeProcessLinux::PtraceWrapper(PTRACE_PEEKDATA, GetID(), (void*)addr, nullptr, 0, &data);
2524         if (error.Fail())
2525         {
2526             if (log)
2527                 ProcessPOSIXLog::DecNestLevel();
2528             return error;
2529         }
2530 
2531         remainder = size - bytes_read;
2532         remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
2533 
2534         // Copy the data into our buffer
2535         for (unsigned i = 0; i < remainder; ++i)
2536             dst[i] = ((data >> i*8) & 0xFF);
2537 
2538         if (log && ProcessPOSIXLog::AtTopNestLevel() &&
2539                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
2540                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
2541                                 size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
2542         {
2543             uintptr_t print_dst = 0;
2544             // Format bytes from data by moving into print_dst for log output
2545             for (unsigned i = 0; i < remainder; ++i)
2546                 print_dst |= (((data >> i*8) & 0xFF) << i*8);
2547             log->Printf ("NativeProcessLinux::%s() [0x%" PRIx64 "]:0x%" PRIx64 " (0x%" PRIx64 ")",
2548                     __FUNCTION__, addr, uint64_t(print_dst), uint64_t(data));
2549         }
2550         addr += k_ptrace_word_size;
2551         dst += k_ptrace_word_size;
2552     }
2553 
2554     if (log)
2555         ProcessPOSIXLog::DecNestLevel();
2556     return Error();
2557 }
2558 
2559 Error
2560 NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
2561 {
2562     Error error = ReadMemory(addr, buf, size, bytes_read);
2563     if (error.Fail()) return error;
2564     return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size);
2565 }
2566 
2567 Error
2568 NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, size_t size, size_t &bytes_written)
2569 {
2570     const unsigned char *src = static_cast<const unsigned char*>(buf);
2571     size_t remainder;
2572     Error error;
2573 
2574     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
2575     if (log)
2576         ProcessPOSIXLog::IncNestLevel();
2577     if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
2578         log->Printf ("NativeProcessLinux::%s(0x%" PRIx64 ", %p, %zu)", __FUNCTION__, addr, buf, size);
2579 
2580     for (bytes_written = 0; bytes_written < size; bytes_written += remainder)
2581     {
2582         remainder = size - bytes_written;
2583         remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
2584 
2585         if (remainder == k_ptrace_word_size)
2586         {
2587             unsigned long data = 0;
2588             for (unsigned i = 0; i < k_ptrace_word_size; ++i)
2589                 data |= (unsigned long)src[i] << i*8;
2590 
2591             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
2592                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
2593                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
2594                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
2595                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
2596                         (void*)addr, *(const unsigned long*)src, data);
2597 
2598             error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), (void*)addr, (void*)data);
2599             if (error.Fail())
2600             {
2601                 if (log)
2602                     ProcessPOSIXLog::DecNestLevel();
2603                 return error;
2604             }
2605         }
2606         else
2607         {
2608             unsigned char buff[8];
2609             size_t bytes_read;
2610             error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
2611             if (error.Fail())
2612             {
2613                 if (log)
2614                     ProcessPOSIXLog::DecNestLevel();
2615                 return error;
2616             }
2617 
2618             memcpy(buff, src, remainder);
2619 
2620             size_t bytes_written_rec;
2621             error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
2622             if (error.Fail())
2623             {
2624                 if (log)
2625                     ProcessPOSIXLog::DecNestLevel();
2626                 return error;
2627             }
2628 
2629             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
2630                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
2631                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
2632                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
2633                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
2634                         (void*)addr, *(const unsigned long*)src, *(unsigned long*)buff);
2635         }
2636 
2637         addr += k_ptrace_word_size;
2638         src += k_ptrace_word_size;
2639     }
2640     if (log)
2641         ProcessPOSIXLog::DecNestLevel();
2642     return error;
2643 }
2644 
2645 Error
2646 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo)
2647 {
2648     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2649 
2650     if (log)
2651         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " with signal %s", __FUNCTION__, tid,
2652                                  Host::GetSignalAsCString(signo));
2653 
2654 
2655 
2656     intptr_t data = 0;
2657 
2658     if (signo != LLDB_INVALID_SIGNAL_NUMBER)
2659         data = signo;
2660 
2661     Error error = PtraceWrapper(PTRACE_CONT, tid, nullptr, (void*)data);
2662 
2663     if (log)
2664         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " result = %s", __FUNCTION__, tid, error.Success() ? "true" : "false");
2665     return error;
2666 }
2667 
2668 Error
2669 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo)
2670 {
2671     intptr_t data = 0;
2672 
2673     if (signo != LLDB_INVALID_SIGNAL_NUMBER)
2674         data = signo;
2675 
2676     // If hardware single-stepping is not supported, we just do a continue. The breakpoint on the
2677     // next instruction has been setup in NativeProcessLinux::Resume.
2678     return PtraceWrapper(SupportHardwareSingleStepping() ? PTRACE_SINGLESTEP : PTRACE_CONT,
2679             tid, nullptr, (void*)data);
2680 }
2681 
2682 Error
2683 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo)
2684 {
2685     return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
2686 }
2687 
2688 Error
2689 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message)
2690 {
2691     return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
2692 }
2693 
2694 Error
2695 NativeProcessLinux::Detach(lldb::tid_t tid)
2696 {
2697     if (tid == LLDB_INVALID_THREAD_ID)
2698         return Error();
2699 
2700     return PtraceWrapper(PTRACE_DETACH, tid);
2701 }
2702 
2703 bool
2704 NativeProcessLinux::DupDescriptor(const FileSpec &file_spec, int fd, int flags)
2705 {
2706     int target_fd = open(file_spec.GetCString(), flags, 0666);
2707 
2708     if (target_fd == -1)
2709         return false;
2710 
2711     if (dup2(target_fd, fd) == -1)
2712         return false;
2713 
2714     return (close(target_fd) == -1) ? false : true;
2715 }
2716 
2717 bool
2718 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id)
2719 {
2720     for (auto thread_sp : m_threads)
2721     {
2722         assert (thread_sp && "thread list should not contain NULL threads");
2723         if (thread_sp->GetID () == thread_id)
2724         {
2725             // We have this thread.
2726             return true;
2727         }
2728     }
2729 
2730     // We don't have this thread.
2731     return false;
2732 }
2733 
2734 bool
2735 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id)
2736 {
2737     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
2738 
2739     if (log)
2740         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread_id);
2741 
2742     bool found = false;
2743 
2744     Mutex::Locker locker (m_threads_mutex);
2745     for (auto it = m_threads.begin (); it != m_threads.end (); ++it)
2746     {
2747         if (*it && ((*it)->GetID () == thread_id))
2748         {
2749             m_threads.erase (it);
2750             found = true;
2751             break;
2752         }
2753     }
2754 
2755     SignalIfAllThreadsStopped();
2756 
2757     return found;
2758 }
2759 
2760 NativeThreadLinuxSP
2761 NativeProcessLinux::AddThread (lldb::tid_t thread_id)
2762 {
2763     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
2764 
2765     Mutex::Locker locker (m_threads_mutex);
2766 
2767     if (log)
2768     {
2769         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64,
2770                 __FUNCTION__,
2771                 GetID (),
2772                 thread_id);
2773     }
2774 
2775     assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists");
2776 
2777     // If this is the first thread, save it as the current thread
2778     if (m_threads.empty ())
2779         SetCurrentThreadID (thread_id);
2780 
2781     auto thread_sp = std::make_shared<NativeThreadLinux>(this, thread_id);
2782     m_threads.push_back (thread_sp);
2783     return thread_sp;
2784 }
2785 
2786 Error
2787 NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread)
2788 {
2789     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS));
2790 
2791     Error error;
2792 
2793     // Find out the size of a breakpoint (might depend on where we are in the code).
2794     NativeRegisterContextSP context_sp = thread.GetRegisterContext();
2795     if (!context_sp)
2796     {
2797         error.SetErrorString ("cannot get a NativeRegisterContext for the thread");
2798         if (log)
2799             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
2800         return error;
2801     }
2802 
2803     uint32_t breakpoint_size = 0;
2804     error = GetSoftwareBreakpointPCOffset(breakpoint_size);
2805     if (error.Fail ())
2806     {
2807         if (log)
2808             log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ());
2809         return error;
2810     }
2811     else
2812     {
2813         if (log)
2814             log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size);
2815     }
2816 
2817     // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size.
2818     const lldb::addr_t initial_pc_addr = context_sp->GetPCfromBreakpointLocation ();
2819     lldb::addr_t breakpoint_addr = initial_pc_addr;
2820     if (breakpoint_size > 0)
2821     {
2822         // Do not allow breakpoint probe to wrap around.
2823         if (breakpoint_addr >= breakpoint_size)
2824             breakpoint_addr -= breakpoint_size;
2825     }
2826 
2827     // Check if we stopped because of a breakpoint.
2828     NativeBreakpointSP breakpoint_sp;
2829     error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp);
2830     if (!error.Success () || !breakpoint_sp)
2831     {
2832         // We didn't find one at a software probe location.  Nothing to do.
2833         if (log)
2834             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr);
2835         return Error ();
2836     }
2837 
2838     // If the breakpoint is not a software breakpoint, nothing to do.
2839     if (!breakpoint_sp->IsSoftwareBreakpoint ())
2840     {
2841         if (log)
2842             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr);
2843         return Error ();
2844     }
2845 
2846     //
2847     // We have a software breakpoint and need to adjust the PC.
2848     //
2849 
2850     // Sanity check.
2851     if (breakpoint_size == 0)
2852     {
2853         // Nothing to do!  How did we get here?
2854         if (log)
2855             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr);
2856         return Error ();
2857     }
2858 
2859     // Change the program counter.
2860     if (log)
2861         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID(), thread.GetID(), initial_pc_addr, breakpoint_addr);
2862 
2863     error = context_sp->SetPC (breakpoint_addr);
2864     if (error.Fail ())
2865     {
2866         if (log)
2867             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID(), thread.GetID(), error.AsCString ());
2868         return error;
2869     }
2870 
2871     return error;
2872 }
2873 
2874 Error
2875 NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec)
2876 {
2877     FileSpec module_file_spec(module_path, true);
2878 
2879     bool found = false;
2880     file_spec.Clear();
2881     ProcFileReader::ProcessLineByLine(GetID(), "maps",
2882         [&] (const std::string &line)
2883         {
2884             SmallVector<StringRef, 16> columns;
2885             StringRef(line).split(columns, " ", -1, false);
2886             if (columns.size() < 6)
2887                 return true; // continue searching
2888 
2889             FileSpec this_file_spec(columns[5].str().c_str(), false);
2890             if (this_file_spec.GetFilename() != module_file_spec.GetFilename())
2891                 return true; // continue searching
2892 
2893             file_spec = this_file_spec;
2894             found = true;
2895             return false; // we are done
2896         });
2897 
2898     if (! found)
2899         return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
2900                 module_file_spec.GetFilename().AsCString(), GetID());
2901 
2902     return Error();
2903 }
2904 
2905 Error
2906 NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef& file_name, lldb::addr_t& load_addr)
2907 {
2908     load_addr = LLDB_INVALID_ADDRESS;
2909     Error error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
2910         [&] (const std::string &line) -> bool
2911         {
2912             StringRef maps_row(line);
2913 
2914             SmallVector<StringRef, 16> maps_columns;
2915             maps_row.split(maps_columns, StringRef(" "), -1, false);
2916 
2917             if (maps_columns.size() < 6)
2918             {
2919                 // Return true to continue reading the proc file
2920                 return true;
2921             }
2922 
2923             if (maps_columns[5] == file_name)
2924             {
2925                 StringExtractor addr_extractor(maps_columns[0].str().c_str());
2926                 load_addr = addr_extractor.GetHexMaxU64(false, LLDB_INVALID_ADDRESS);
2927 
2928                 // Return false to stop reading the proc file further
2929                 return false;
2930             }
2931 
2932             // Return true to continue reading the proc file
2933             return true;
2934         });
2935     return error;
2936 }
2937 
2938 NativeThreadLinuxSP
2939 NativeProcessLinux::GetThreadByID(lldb::tid_t tid)
2940 {
2941     return std::static_pointer_cast<NativeThreadLinux>(NativeProcessProtocol::GetThreadByID(tid));
2942 }
2943 
2944 Error
2945 NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, lldb::StateType state, int signo)
2946 {
2947     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
2948 
2949     if (log)
2950         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")",
2951                 __FUNCTION__, thread.GetID());
2952 
2953     // Before we do the resume below, first check if we have a pending
2954     // stop notification that is currently waiting for
2955     // all threads to stop.  This is potentially a buggy situation since
2956     // we're ostensibly waiting for threads to stop before we send out the
2957     // pending notification, and here we are resuming one before we send
2958     // out the pending stop notification.
2959     if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && log)
2960     {
2961         log->Printf("NativeProcessLinux::%s about to resume tid %" PRIu64 " per explicit request but we have a pending stop notification (tid %" PRIu64 ") that is actively waiting for this thread to stop. Valid sequence of events?", __FUNCTION__, thread.GetID(), m_pending_notification_tid);
2962     }
2963 
2964     // Request a resume.  We expect this to be synchronous and the system
2965     // to reflect it is running after this completes.
2966     switch (state)
2967     {
2968     case eStateRunning:
2969     {
2970         thread.SetRunning();
2971         const auto resume_result = Resume(thread.GetID(), signo);
2972         if (resume_result.Success())
2973             SetState(eStateRunning, true);
2974         return resume_result;
2975     }
2976     case eStateStepping:
2977     {
2978         thread.SetStepping();
2979         const auto step_result = SingleStep(thread.GetID(), signo);
2980         if (step_result.Success())
2981             SetState(eStateRunning, true);
2982         return step_result;
2983     }
2984     default:
2985         if (log)
2986             log->Printf("NativeProcessLinux::%s Unhandled state %s.",
2987                     __FUNCTION__, StateAsCString(state));
2988         llvm_unreachable("Unhandled state for resume");
2989     }
2990 }
2991 
2992 //===----------------------------------------------------------------------===//
2993 
2994 void
2995 NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid)
2996 {
2997     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
2998 
2999     if (log)
3000     {
3001         log->Printf("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ")",
3002                 __FUNCTION__, triggering_tid);
3003     }
3004 
3005     m_pending_notification_tid = triggering_tid;
3006 
3007     // Request a stop for all the thread stops that need to be stopped
3008     // and are not already known to be stopped.
3009     for (const auto &thread_sp: m_threads)
3010     {
3011         if (StateIsRunningState(thread_sp->GetState()))
3012             static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop();
3013     }
3014 
3015     SignalIfAllThreadsStopped();
3016 
3017     if (log)
3018     {
3019         log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__);
3020     }
3021 }
3022 
3023 void
3024 NativeProcessLinux::SignalIfAllThreadsStopped()
3025 {
3026     if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
3027         return; // No pending notification. Nothing to do.
3028 
3029     for (const auto &thread_sp: m_threads)
3030     {
3031         if (StateIsRunningState(thread_sp->GetState()))
3032             return; // Some threads are still running. Don't signal yet.
3033     }
3034 
3035     // We have a pending notification and all threads have stopped.
3036     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
3037 
3038     // Clear any temporary breakpoints we used to implement software single stepping.
3039     for (const auto &thread_info: m_threads_stepping_with_breakpoint)
3040     {
3041         Error error = RemoveBreakpoint (thread_info.second);
3042         if (error.Fail())
3043             if (log)
3044                 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s",
3045                         __FUNCTION__, thread_info.first, error.AsCString());
3046     }
3047     m_threads_stepping_with_breakpoint.clear();
3048 
3049     // Notify the delegate about the stop
3050     SetCurrentThreadID(m_pending_notification_tid);
3051     SetState(StateType::eStateStopped, true);
3052     m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
3053 }
3054 
3055 void
3056 NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread)
3057 {
3058     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3059 
3060     if (log)
3061         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread.GetID());
3062 
3063     if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && StateIsRunningState(thread.GetState()))
3064     {
3065         // We will need to wait for this new thread to stop as well before firing the
3066         // notification.
3067         thread.RequestStop();
3068     }
3069 }
3070 
3071 void
3072 NativeProcessLinux::SigchldHandler()
3073 {
3074     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3075     // Process all pending waitpid notifications.
3076     while (true)
3077     {
3078         int status = -1;
3079         ::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG);
3080 
3081         if (wait_pid == 0)
3082             break; // We are done.
3083 
3084         if (wait_pid == -1)
3085         {
3086             if (errno == EINTR)
3087                 continue;
3088 
3089             Error error(errno, eErrorTypePOSIX);
3090             if (log)
3091                 log->Printf("NativeProcessLinux::%s waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG) failed: %s",
3092                         __FUNCTION__, error.AsCString());
3093             break;
3094         }
3095 
3096         bool exited = false;
3097         int signal = 0;
3098         int exit_status = 0;
3099         const char *status_cstr = nullptr;
3100         if (WIFSTOPPED(status))
3101         {
3102             signal = WSTOPSIG(status);
3103             status_cstr = "STOPPED";
3104         }
3105         else if (WIFEXITED(status))
3106         {
3107             exit_status = WEXITSTATUS(status);
3108             status_cstr = "EXITED";
3109             exited = true;
3110         }
3111         else if (WIFSIGNALED(status))
3112         {
3113             signal = WTERMSIG(status);
3114             status_cstr = "SIGNALED";
3115             if (wait_pid == static_cast< ::pid_t>(GetID())) {
3116                 exited = true;
3117                 exit_status = -1;
3118             }
3119         }
3120         else
3121             status_cstr = "(\?\?\?)";
3122 
3123         if (log)
3124             log->Printf("NativeProcessLinux::%s: waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG)"
3125                 "=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i",
3126                 __FUNCTION__, wait_pid, status, status_cstr, signal, exit_status);
3127 
3128         MonitorCallback (wait_pid, exited, signal, exit_status);
3129     }
3130 }
3131 
3132 // Wrapper for ptrace to catch errors and log calls.
3133 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
3134 Error
3135 NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, long *result)
3136 {
3137     Error error;
3138     long int ret;
3139 
3140     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE));
3141 
3142     PtraceDisplayBytes(req, data, data_size);
3143 
3144     errno = 0;
3145     if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
3146         ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
3147     else
3148         ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
3149 
3150     if (ret == -1)
3151         error.SetErrorToErrno();
3152 
3153     if (result)
3154         *result = ret;
3155 
3156     if (log)
3157         log->Printf("ptrace(%d, %" PRIu64 ", %p, %p, %zu)=%lX", req, pid, addr, data, data_size, ret);
3158 
3159     PtraceDisplayBytes(req, data, data_size);
3160 
3161     if (log && error.GetError() != 0)
3162     {
3163         const char* str;
3164         switch (error.GetError())
3165         {
3166         case ESRCH:  str = "ESRCH"; break;
3167         case EINVAL: str = "EINVAL"; break;
3168         case EBUSY:  str = "EBUSY"; break;
3169         case EPERM:  str = "EPERM"; break;
3170         default:     str = error.AsCString();
3171         }
3172         log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str);
3173     }
3174 
3175     return error;
3176 }
3177