1 //===-- NativeProcessLinux.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "NativeProcessLinux.h" 10 11 #include <cerrno> 12 #include <cstdint> 13 #include <cstring> 14 #include <unistd.h> 15 16 #include <fstream> 17 #include <mutex> 18 #include <sstream> 19 #include <string> 20 #include <unordered_map> 21 22 #include "NativeThreadLinux.h" 23 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 24 #include "Plugins/Process/Utility/LinuxProcMaps.h" 25 #include "Procfs.h" 26 #include "lldb/Core/ModuleSpec.h" 27 #include "lldb/Host/Host.h" 28 #include "lldb/Host/HostProcess.h" 29 #include "lldb/Host/ProcessLaunchInfo.h" 30 #include "lldb/Host/PseudoTerminal.h" 31 #include "lldb/Host/ThreadLauncher.h" 32 #include "lldb/Host/common/NativeRegisterContext.h" 33 #include "lldb/Host/linux/Host.h" 34 #include "lldb/Host/linux/Ptrace.h" 35 #include "lldb/Host/linux/Uio.h" 36 #include "lldb/Host/posix/ProcessLauncherPosixFork.h" 37 #include "lldb/Symbol/ObjectFile.h" 38 #include "lldb/Target/Process.h" 39 #include "lldb/Target/Target.h" 40 #include "lldb/Utility/LLDBAssert.h" 41 #include "lldb/Utility/LLDBLog.h" 42 #include "lldb/Utility/State.h" 43 #include "lldb/Utility/Status.h" 44 #include "lldb/Utility/StringExtractor.h" 45 #include "llvm/ADT/ScopeExit.h" 46 #include "llvm/Support/Errno.h" 47 #include "llvm/Support/FileSystem.h" 48 #include "llvm/Support/Threading.h" 49 50 #include <linux/unistd.h> 51 #include <sys/socket.h> 52 #include <sys/syscall.h> 53 #include <sys/types.h> 54 #include <sys/user.h> 55 #include <sys/wait.h> 56 57 #ifdef __aarch64__ 58 #include <asm/hwcap.h> 59 #include <sys/auxv.h> 60 #endif 61 62 // Support hardware breakpoints in case it has not been defined 63 #ifndef TRAP_HWBKPT 64 #define TRAP_HWBKPT 4 65 #endif 66 67 #ifndef HWCAP2_MTE 68 #define HWCAP2_MTE (1 << 18) 69 #endif 70 71 using namespace lldb; 72 using namespace lldb_private; 73 using namespace lldb_private::process_linux; 74 using namespace llvm; 75 76 // Private bits we only need internally. 77 78 static bool ProcessVmReadvSupported() { 79 static bool is_supported; 80 static llvm::once_flag flag; 81 82 llvm::call_once(flag, [] { 83 Log *log = GetLog(POSIXLog::Process); 84 85 uint32_t source = 0x47424742; 86 uint32_t dest = 0; 87 88 struct iovec local, remote; 89 remote.iov_base = &source; 90 local.iov_base = &dest; 91 remote.iov_len = local.iov_len = sizeof source; 92 93 // We shall try if cross-process-memory reads work by attempting to read a 94 // value from our own process. 95 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); 96 is_supported = (res == sizeof(source) && source == dest); 97 if (is_supported) 98 LLDB_LOG(log, 99 "Detected kernel support for process_vm_readv syscall. " 100 "Fast memory reads enabled."); 101 else 102 LLDB_LOG(log, 103 "syscall process_vm_readv failed (error: {0}). Fast memory " 104 "reads disabled.", 105 llvm::sys::StrError()); 106 }); 107 108 return is_supported; 109 } 110 111 static void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) { 112 Log *log = GetLog(POSIXLog::Process); 113 if (!log) 114 return; 115 116 if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO)) 117 LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec()); 118 else 119 LLDB_LOG(log, "leaving STDIN as is"); 120 121 if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO)) 122 LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec()); 123 else 124 LLDB_LOG(log, "leaving STDOUT as is"); 125 126 if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO)) 127 LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec()); 128 else 129 LLDB_LOG(log, "leaving STDERR as is"); 130 131 int i = 0; 132 for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; 133 ++args, ++i) 134 LLDB_LOG(log, "arg {0}: '{1}'", i, *args); 135 } 136 137 static void DisplayBytes(StreamString &s, void *bytes, uint32_t count) { 138 uint8_t *ptr = (uint8_t *)bytes; 139 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 140 for (uint32_t i = 0; i < loop_count; i++) { 141 s.Printf("[%x]", *ptr); 142 ptr++; 143 } 144 } 145 146 static void PtraceDisplayBytes(int &req, void *data, size_t data_size) { 147 Log *log = GetLog(POSIXLog::Ptrace); 148 if (!log) 149 return; 150 StreamString buf; 151 152 switch (req) { 153 case PTRACE_POKETEXT: { 154 DisplayBytes(buf, &data, 8); 155 LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData()); 156 break; 157 } 158 case PTRACE_POKEDATA: { 159 DisplayBytes(buf, &data, 8); 160 LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData()); 161 break; 162 } 163 case PTRACE_POKEUSER: { 164 DisplayBytes(buf, &data, 8); 165 LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData()); 166 break; 167 } 168 case PTRACE_SETREGS: { 169 DisplayBytes(buf, data, data_size); 170 LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData()); 171 break; 172 } 173 case PTRACE_SETFPREGS: { 174 DisplayBytes(buf, data, data_size); 175 LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData()); 176 break; 177 } 178 case PTRACE_SETSIGINFO: { 179 DisplayBytes(buf, data, sizeof(siginfo_t)); 180 LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData()); 181 break; 182 } 183 case PTRACE_SETREGSET: { 184 // Extract iov_base from data, which is a pointer to the struct iovec 185 DisplayBytes(buf, *(void **)data, data_size); 186 LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData()); 187 break; 188 } 189 default: {} 190 } 191 } 192 193 static constexpr unsigned k_ptrace_word_size = sizeof(void *); 194 static_assert(sizeof(long) >= k_ptrace_word_size, 195 "Size of long must be larger than ptrace word size"); 196 197 // Simple helper function to ensure flags are enabled on the given file 198 // descriptor. 199 static Status EnsureFDFlags(int fd, int flags) { 200 Status error; 201 202 int status = fcntl(fd, F_GETFL); 203 if (status == -1) { 204 error.SetErrorToErrno(); 205 return error; 206 } 207 208 if (fcntl(fd, F_SETFL, status | flags) == -1) { 209 error.SetErrorToErrno(); 210 return error; 211 } 212 213 return error; 214 } 215 216 // Public Static Methods 217 218 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 219 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info, 220 NativeDelegate &native_delegate, 221 MainLoop &mainloop) const { 222 Log *log = GetLog(POSIXLog::Process); 223 224 MaybeLogLaunchInfo(launch_info); 225 226 Status status; 227 ::pid_t pid = ProcessLauncherPosixFork() 228 .LaunchProcess(launch_info, status) 229 .GetProcessId(); 230 LLDB_LOG(log, "pid = {0:x}", pid); 231 if (status.Fail()) { 232 LLDB_LOG(log, "failed to launch process: {0}", status); 233 return status.ToError(); 234 } 235 236 // Wait for the child process to trap on its call to execve. 237 int wstatus; 238 ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0); 239 assert(wpid == pid); 240 (void)wpid; 241 if (!WIFSTOPPED(wstatus)) { 242 LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}", 243 WaitStatus::Decode(wstatus)); 244 return llvm::make_error<StringError>("Could not sync with inferior process", 245 llvm::inconvertibleErrorCode()); 246 } 247 LLDB_LOG(log, "inferior started, now in stopped state"); 248 249 ProcessInstanceInfo Info; 250 if (!Host::GetProcessInfo(pid, Info)) { 251 return llvm::make_error<StringError>("Cannot get process architecture", 252 llvm::inconvertibleErrorCode()); 253 } 254 255 // Set the architecture to the exe architecture. 256 LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid, 257 Info.GetArchitecture().GetArchitectureName()); 258 259 status = SetDefaultPtraceOpts(pid); 260 if (status.Fail()) { 261 LLDB_LOG(log, "failed to set default ptrace options: {0}", status); 262 return status.ToError(); 263 } 264 265 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 266 pid, launch_info.GetPTY().ReleasePrimaryFileDescriptor(), native_delegate, 267 Info.GetArchitecture(), mainloop, {pid})); 268 } 269 270 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 271 NativeProcessLinux::Factory::Attach( 272 lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate, 273 MainLoop &mainloop) const { 274 Log *log = GetLog(POSIXLog::Process); 275 LLDB_LOG(log, "pid = {0:x}", pid); 276 277 // Retrieve the architecture for the running process. 278 ProcessInstanceInfo Info; 279 if (!Host::GetProcessInfo(pid, Info)) { 280 return llvm::make_error<StringError>("Cannot get process architecture", 281 llvm::inconvertibleErrorCode()); 282 } 283 284 auto tids_or = NativeProcessLinux::Attach(pid); 285 if (!tids_or) 286 return tids_or.takeError(); 287 288 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 289 pid, -1, native_delegate, Info.GetArchitecture(), mainloop, *tids_or)); 290 } 291 292 NativeProcessLinux::Extension 293 NativeProcessLinux::Factory::GetSupportedExtensions() const { 294 NativeProcessLinux::Extension supported = 295 Extension::multiprocess | Extension::fork | Extension::vfork | 296 Extension::pass_signals | Extension::auxv | Extension::libraries_svr4 | 297 Extension::siginfo_read; 298 299 #ifdef __aarch64__ 300 // At this point we do not have a process so read auxv directly. 301 if ((getauxval(AT_HWCAP2) & HWCAP2_MTE)) 302 supported |= Extension::memory_tagging; 303 #endif 304 305 return supported; 306 } 307 308 // Public Instance Methods 309 310 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd, 311 NativeDelegate &delegate, 312 const ArchSpec &arch, MainLoop &mainloop, 313 llvm::ArrayRef<::pid_t> tids) 314 : NativeProcessELF(pid, terminal_fd, delegate), m_arch(arch), 315 m_main_loop(mainloop), m_intel_pt_collector(pid) { 316 if (m_terminal_fd != -1) { 317 Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 318 assert(status.Success()); 319 } 320 321 Status status; 322 m_sigchld_handle = mainloop.RegisterSignal( 323 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status); 324 assert(m_sigchld_handle && status.Success()); 325 326 for (const auto &tid : tids) { 327 NativeThreadLinux &thread = AddThread(tid, /*resume*/ false); 328 ThreadWasCreated(thread); 329 } 330 331 // Let our process instance know the thread has stopped. 332 SetCurrentThreadID(tids[0]); 333 SetState(StateType::eStateStopped, false); 334 335 // Proccess any signals we received before installing our handler 336 SigchldHandler(); 337 } 338 339 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) { 340 Log *log = GetLog(POSIXLog::Process); 341 342 Status status; 343 // Use a map to keep track of the threads which we have attached/need to 344 // attach. 345 Host::TidMap tids_to_attach; 346 while (Host::FindProcessThreads(pid, tids_to_attach)) { 347 for (Host::TidMap::iterator it = tids_to_attach.begin(); 348 it != tids_to_attach.end();) { 349 if (it->second == false) { 350 lldb::tid_t tid = it->first; 351 352 // Attach to the requested process. 353 // An attach will cause the thread to stop with a SIGSTOP. 354 if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) { 355 // No such thread. The thread may have exited. More error handling 356 // may be needed. 357 if (status.GetError() == ESRCH) { 358 it = tids_to_attach.erase(it); 359 continue; 360 } 361 return status.ToError(); 362 } 363 364 int wpid = 365 llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL); 366 // Need to use __WALL otherwise we receive an error with errno=ECHLD At 367 // this point we should have a thread stopped if waitpid succeeds. 368 if (wpid < 0) { 369 // No such thread. The thread may have exited. More error handling 370 // may be needed. 371 if (errno == ESRCH) { 372 it = tids_to_attach.erase(it); 373 continue; 374 } 375 return llvm::errorCodeToError( 376 std::error_code(errno, std::generic_category())); 377 } 378 379 if ((status = SetDefaultPtraceOpts(tid)).Fail()) 380 return status.ToError(); 381 382 LLDB_LOG(log, "adding tid = {0}", tid); 383 it->second = true; 384 } 385 386 // move the loop forward 387 ++it; 388 } 389 } 390 391 size_t tid_count = tids_to_attach.size(); 392 if (tid_count == 0) 393 return llvm::make_error<StringError>("No such process", 394 llvm::inconvertibleErrorCode()); 395 396 std::vector<::pid_t> tids; 397 tids.reserve(tid_count); 398 for (const auto &p : tids_to_attach) 399 tids.push_back(p.first); 400 return std::move(tids); 401 } 402 403 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) { 404 long ptrace_opts = 0; 405 406 // Have the child raise an event on exit. This is used to keep the child in 407 // limbo until it is destroyed. 408 ptrace_opts |= PTRACE_O_TRACEEXIT; 409 410 // Have the tracer trace threads which spawn in the inferior process. 411 ptrace_opts |= PTRACE_O_TRACECLONE; 412 413 // Have the tracer notify us before execve returns (needed to disable legacy 414 // SIGTRAP generation) 415 ptrace_opts |= PTRACE_O_TRACEEXEC; 416 417 // Have the tracer trace forked children. 418 ptrace_opts |= PTRACE_O_TRACEFORK; 419 420 // Have the tracer trace vforks. 421 ptrace_opts |= PTRACE_O_TRACEVFORK; 422 423 // Have the tracer trace vfork-done in order to restore breakpoints after 424 // the child finishes sharing memory. 425 ptrace_opts |= PTRACE_O_TRACEVFORKDONE; 426 427 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts); 428 } 429 430 // Handles all waitpid events from the inferior process. 431 void NativeProcessLinux::MonitorCallback(NativeThreadLinux &thread, 432 WaitStatus status) { 433 Log *log = GetLog(LLDBLog::Process); 434 435 // Certain activities differ based on whether the pid is the tid of the main 436 // thread. 437 const bool is_main_thread = (thread.GetID() == GetID()); 438 439 // Handle when the thread exits. 440 if (status.type == WaitStatus::Exit || status.type == WaitStatus::Signal) { 441 LLDB_LOG(log, 442 "got exit status({0}) , tid = {1} ({2} main thread), process " 443 "state = {3}", 444 status, thread.GetID(), is_main_thread ? "is" : "is not", 445 GetState()); 446 447 // This is a thread that exited. Ensure we're not tracking it anymore. 448 StopTrackingThread(thread); 449 450 if (is_main_thread) { 451 // The main thread exited. We're done monitoring. Report to delegate. 452 SetExitStatus(status, true); 453 454 // Notify delegate that our process has exited. 455 SetState(StateType::eStateExited, true); 456 } 457 return; 458 } 459 460 siginfo_t info; 461 const auto info_err = GetSignalInfo(thread.GetID(), &info); 462 463 // Get details on the signal raised. 464 if (info_err.Success()) { 465 // We have retrieved the signal info. Dispatch appropriately. 466 if (info.si_signo == SIGTRAP) 467 MonitorSIGTRAP(info, thread); 468 else 469 MonitorSignal(info, thread); 470 } else { 471 if (info_err.GetError() == EINVAL) { 472 // This is a group stop reception for this tid. We can reach here if we 473 // reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the tracee, 474 // triggering the group-stop mechanism. Normally receiving these would 475 // stop the process, pending a SIGCONT. Simulating this state in a 476 // debugger is hard and is generally not needed (one use case is 477 // debugging background task being managed by a shell). For general use, 478 // it is sufficient to stop the process in a signal-delivery stop which 479 // happens before the group stop. This done by MonitorSignal and works 480 // correctly for all signals. 481 LLDB_LOG(log, 482 "received a group stop for pid {0} tid {1}. Transparent " 483 "handling of group stops not supported, resuming the " 484 "thread.", 485 GetID(), thread.GetID()); 486 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 487 } else { 488 // ptrace(GETSIGINFO) failed (but not due to group-stop). 489 490 // A return value of ESRCH means the thread/process has died in the mean 491 // time. This can (e.g.) happen when another thread does an exit_group(2) 492 // or the entire process get SIGKILLed. 493 // We can't do anything with this thread anymore, but we keep it around 494 // until we get the WIFEXITED event. 495 496 LLDB_LOG(log, 497 "GetSignalInfo({0}) failed: {1}, status = {2}, main_thread = " 498 "{3}. Expecting WIFEXITED soon.", 499 thread.GetID(), info_err, status, is_main_thread); 500 } 501 } 502 } 503 504 void NativeProcessLinux::WaitForCloneNotification(::pid_t pid) { 505 Log *log = GetLog(POSIXLog::Process); 506 507 // The PID is not tracked yet, let's wait for it to appear. 508 int status = -1; 509 LLDB_LOG(log, 510 "received clone event for pid {0}. pid not tracked yet, " 511 "waiting for it to appear...", 512 pid); 513 ::pid_t wait_pid = 514 llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &status, __WALL); 515 516 // It's theoretically possible to get other events if the entire process was 517 // SIGKILLed before we got a chance to check this. In that case, we'll just 518 // clean everything up when we get the process exit event. 519 520 LLDB_LOG(log, 521 "waitpid({0}, &status, __WALL) => {1} (errno: {2}, status = {3})", 522 pid, wait_pid, errno, WaitStatus::Decode(status)); 523 } 524 525 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, 526 NativeThreadLinux &thread) { 527 Log *log = GetLog(POSIXLog::Process); 528 const bool is_main_thread = (thread.GetID() == GetID()); 529 530 assert(info.si_signo == SIGTRAP && "Unexpected child signal!"); 531 532 switch (info.si_code) { 533 case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 534 case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 535 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { 536 // This can either mean a new thread or a new process spawned via 537 // clone(2) without SIGCHLD or CLONE_VFORK flag. Note that clone(2) 538 // can also cause PTRACE_EVENT_FORK and PTRACE_EVENT_VFORK if one 539 // of these flags are passed. 540 541 unsigned long event_message = 0; 542 if (GetEventMessage(thread.GetID(), &event_message).Fail()) { 543 LLDB_LOG(log, 544 "pid {0} received clone() event but GetEventMessage failed " 545 "so we don't know the new pid/tid", 546 thread.GetID()); 547 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 548 } else { 549 MonitorClone(thread, event_message, info.si_code >> 8); 550 } 551 552 break; 553 } 554 555 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): { 556 LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP); 557 558 // Exec clears any pending notifications. 559 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 560 561 // Remove all but the main thread here. Linux fork creates a new process 562 // which only copies the main thread. 563 LLDB_LOG(log, "exec received, stop tracking all but main thread"); 564 565 llvm::erase_if(m_threads, [&](std::unique_ptr<NativeThreadProtocol> &t) { 566 return t->GetID() != GetID(); 567 }); 568 assert(m_threads.size() == 1); 569 auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get()); 570 571 SetCurrentThreadID(main_thread->GetID()); 572 main_thread->SetStoppedByExec(); 573 574 // Tell coordinator about about the "new" (since exec) stopped main thread. 575 ThreadWasCreated(*main_thread); 576 577 // Let our delegate know we have just exec'd. 578 NotifyDidExec(); 579 580 // Let the process know we're stopped. 581 StopRunningThreads(main_thread->GetID()); 582 583 break; 584 } 585 586 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { 587 // The inferior process or one of its threads is about to exit. We don't 588 // want to do anything with the thread so we just resume it. In case we 589 // want to implement "break on thread exit" functionality, we would need to 590 // stop here. 591 592 unsigned long data = 0; 593 if (GetEventMessage(thread.GetID(), &data).Fail()) 594 data = -1; 595 596 LLDB_LOG(log, 597 "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, " 598 "WIFSIGNALED={2}, pid = {3}, main_thread = {4}", 599 data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(), 600 is_main_thread); 601 602 603 StateType state = thread.GetState(); 604 if (!StateIsRunningState(state)) { 605 // Due to a kernel bug, we may sometimes get this stop after the inferior 606 // gets a SIGKILL. This confuses our state tracking logic in 607 // ResumeThread(), since normally, we should not be receiving any ptrace 608 // events while the inferior is stopped. This makes sure that the 609 // inferior is resumed and exits normally. 610 state = eStateRunning; 611 } 612 ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); 613 614 break; 615 } 616 617 case (SIGTRAP | (PTRACE_EVENT_VFORK_DONE << 8)): { 618 if (bool(m_enabled_extensions & Extension::vfork)) { 619 thread.SetStoppedByVForkDone(); 620 StopRunningThreads(thread.GetID()); 621 } 622 else 623 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 624 break; 625 } 626 627 case 0: 628 case TRAP_TRACE: // We receive this on single stepping. 629 case TRAP_HWBKPT: // We receive this on watchpoint hit 630 { 631 // If a watchpoint was hit, report it 632 uint32_t wp_index; 633 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 634 wp_index, (uintptr_t)info.si_addr); 635 if (error.Fail()) 636 LLDB_LOG(log, 637 "received error while checking for watchpoint hits, pid = " 638 "{0}, error = {1}", 639 thread.GetID(), error); 640 if (wp_index != LLDB_INVALID_INDEX32) { 641 MonitorWatchpoint(thread, wp_index); 642 break; 643 } 644 645 // If a breakpoint was hit, report it 646 uint32_t bp_index; 647 error = thread.GetRegisterContext().GetHardwareBreakHitIndex( 648 bp_index, (uintptr_t)info.si_addr); 649 if (error.Fail()) 650 LLDB_LOG(log, "received error while checking for hardware " 651 "breakpoint hits, pid = {0}, error = {1}", 652 thread.GetID(), error); 653 if (bp_index != LLDB_INVALID_INDEX32) { 654 MonitorBreakpoint(thread); 655 break; 656 } 657 658 // Otherwise, report step over 659 MonitorTrace(thread); 660 break; 661 } 662 663 case SI_KERNEL: 664 #if defined __mips__ 665 // For mips there is no special signal for watchpoint So we check for 666 // watchpoint in kernel trap 667 { 668 // If a watchpoint was hit, report it 669 uint32_t wp_index; 670 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 671 wp_index, LLDB_INVALID_ADDRESS); 672 if (error.Fail()) 673 LLDB_LOG(log, 674 "received error while checking for watchpoint hits, pid = " 675 "{0}, error = {1}", 676 thread.GetID(), error); 677 if (wp_index != LLDB_INVALID_INDEX32) { 678 MonitorWatchpoint(thread, wp_index); 679 break; 680 } 681 } 682 // NO BREAK 683 #endif 684 case TRAP_BRKPT: 685 MonitorBreakpoint(thread); 686 break; 687 688 case SIGTRAP: 689 case (SIGTRAP | 0x80): 690 LLDB_LOG( 691 log, 692 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 693 info.si_code, GetID(), thread.GetID()); 694 695 // Ignore these signals until we know more about them. 696 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 697 break; 698 699 default: 700 LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}", 701 info.si_code, GetID(), thread.GetID()); 702 MonitorSignal(info, thread); 703 break; 704 } 705 } 706 707 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) { 708 Log *log = GetLog(POSIXLog::Process); 709 LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID()); 710 711 // This thread is currently stopped. 712 thread.SetStoppedByTrace(); 713 714 StopRunningThreads(thread.GetID()); 715 } 716 717 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) { 718 Log *log = GetLog(LLDBLog::Process | LLDBLog::Breakpoints); 719 LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID()); 720 721 // Mark the thread as stopped at breakpoint. 722 thread.SetStoppedByBreakpoint(); 723 FixupBreakpointPCAsNeeded(thread); 724 725 if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != 726 m_threads_stepping_with_breakpoint.end()) 727 thread.SetStoppedByTrace(); 728 729 StopRunningThreads(thread.GetID()); 730 } 731 732 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, 733 uint32_t wp_index) { 734 Log *log = GetLog(LLDBLog::Process | LLDBLog::Watchpoints); 735 LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}", 736 thread.GetID(), wp_index); 737 738 // Mark the thread as stopped at watchpoint. The address is at 739 // (lldb::addr_t)info->si_addr if we need it. 740 thread.SetStoppedByWatchpoint(wp_index); 741 742 // We need to tell all other running threads before we notify the delegate 743 // about this stop. 744 StopRunningThreads(thread.GetID()); 745 } 746 747 void NativeProcessLinux::MonitorSignal(const siginfo_t &info, 748 NativeThreadLinux &thread) { 749 const int signo = info.si_signo; 750 const bool is_from_llgs = info.si_pid == getpid(); 751 752 Log *log = GetLog(POSIXLog::Process); 753 754 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 755 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2) 756 // or raise(3). Similarly for tgkill(2) on Linux. 757 // 758 // IOW, user generated signals never generate what we consider to be a 759 // "crash". 760 // 761 // Similarly, ACK signals generated by this monitor. 762 763 // Handle the signal. 764 LLDB_LOG(log, 765 "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, " 766 "waitpid pid = {4})", 767 Host::GetSignalAsCString(signo), signo, info.si_code, 768 thread.GetID()); 769 770 // Check for thread stop notification. 771 if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) { 772 // This is a tgkill()-based stop. 773 LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID()); 774 775 // Check that we're not already marked with a stop reason. Note this thread 776 // really shouldn't already be marked as stopped - if we were, that would 777 // imply that the kernel signaled us with the thread stopping which we 778 // handled and marked as stopped, and that, without an intervening resume, 779 // we received another stop. It is more likely that we are missing the 780 // marking of a run state somewhere if we find that the thread was marked 781 // as stopped. 782 const StateType thread_state = thread.GetState(); 783 if (!StateIsStoppedState(thread_state, false)) { 784 // An inferior thread has stopped because of a SIGSTOP we have sent it. 785 // Generally, these are not important stops and we don't want to report 786 // them as they are just used to stop other threads when one thread (the 787 // one with the *real* stop reason) hits a breakpoint (watchpoint, 788 // etc...). However, in the case of an asynchronous Interrupt(), this 789 // *is* the real stop reason, so we leave the signal intact if this is 790 // the thread that was chosen as the triggering thread. 791 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 792 if (m_pending_notification_tid == thread.GetID()) 793 thread.SetStoppedBySignal(SIGSTOP, &info); 794 else 795 thread.SetStoppedWithNoReason(); 796 797 SetCurrentThreadID(thread.GetID()); 798 SignalIfAllThreadsStopped(); 799 } else { 800 // We can end up here if stop was initiated by LLGS but by this time a 801 // thread stop has occurred - maybe initiated by another event. 802 Status error = ResumeThread(thread, thread.GetState(), 0); 803 if (error.Fail()) 804 LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(), 805 error); 806 } 807 } else { 808 LLDB_LOG(log, 809 "pid {0} tid {1}, thread was already marked as a stopped " 810 "state (state={2}), leaving stop signal as is", 811 GetID(), thread.GetID(), thread_state); 812 SignalIfAllThreadsStopped(); 813 } 814 815 // Done handling. 816 return; 817 } 818 819 // Check if debugger should stop at this signal or just ignore it and resume 820 // the inferior. 821 if (m_signals_to_ignore.contains(signo)) { 822 ResumeThread(thread, thread.GetState(), signo); 823 return; 824 } 825 826 // This thread is stopped. 827 LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo)); 828 thread.SetStoppedBySignal(signo, &info); 829 830 // Send a stop to the debugger after we get all other threads to stop. 831 StopRunningThreads(thread.GetID()); 832 } 833 834 bool NativeProcessLinux::MonitorClone(NativeThreadLinux &parent, 835 lldb::pid_t child_pid, int event) { 836 Log *log = GetLog(POSIXLog::Process); 837 LLDB_LOG(log, "parent_tid={0}, child_pid={1}, event={2}", parent.GetID(), 838 child_pid, event); 839 840 WaitForCloneNotification(child_pid); 841 842 switch (event) { 843 case PTRACE_EVENT_CLONE: { 844 // PTRACE_EVENT_CLONE can either mean a new thread or a new process. 845 // Try to grab the new process' PGID to figure out which one it is. 846 // If PGID is the same as the PID, then it's a new process. Otherwise, 847 // it's a thread. 848 auto tgid_ret = getPIDForTID(child_pid); 849 if (tgid_ret != child_pid) { 850 // A new thread should have PGID matching our process' PID. 851 assert(!tgid_ret || tgid_ret.getValue() == GetID()); 852 853 NativeThreadLinux &child_thread = AddThread(child_pid, /*resume*/ true); 854 ThreadWasCreated(child_thread); 855 856 // Resume the parent. 857 ResumeThread(parent, parent.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 858 break; 859 } 860 } 861 LLVM_FALLTHROUGH; 862 case PTRACE_EVENT_FORK: 863 case PTRACE_EVENT_VFORK: { 864 bool is_vfork = event == PTRACE_EVENT_VFORK; 865 std::unique_ptr<NativeProcessLinux> child_process{new NativeProcessLinux( 866 static_cast<::pid_t>(child_pid), m_terminal_fd, m_delegate, m_arch, 867 m_main_loop, {static_cast<::pid_t>(child_pid)})}; 868 if (!is_vfork) 869 child_process->m_software_breakpoints = m_software_breakpoints; 870 871 Extension expected_ext = is_vfork ? Extension::vfork : Extension::fork; 872 if (bool(m_enabled_extensions & expected_ext)) { 873 m_delegate.NewSubprocess(this, std::move(child_process)); 874 // NB: non-vfork clone() is reported as fork 875 parent.SetStoppedByFork(is_vfork, child_pid); 876 StopRunningThreads(parent.GetID()); 877 } else { 878 child_process->Detach(); 879 ResumeThread(parent, parent.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 880 } 881 break; 882 } 883 default: 884 llvm_unreachable("unknown clone_info.event"); 885 } 886 887 return true; 888 } 889 890 bool NativeProcessLinux::SupportHardwareSingleStepping() const { 891 if (m_arch.GetMachine() == llvm::Triple::arm || m_arch.IsMIPS()) 892 return false; 893 return true; 894 } 895 896 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) { 897 Log *log = GetLog(POSIXLog::Process); 898 LLDB_LOG(log, "pid {0}", GetID()); 899 900 bool software_single_step = !SupportHardwareSingleStepping(); 901 902 if (software_single_step) { 903 for (const auto &thread : m_threads) { 904 assert(thread && "thread list should not contain NULL threads"); 905 906 const ResumeAction *const action = 907 resume_actions.GetActionForThread(thread->GetID(), true); 908 if (action == nullptr) 909 continue; 910 911 if (action->state == eStateStepping) { 912 Status error = SetupSoftwareSingleStepping( 913 static_cast<NativeThreadLinux &>(*thread)); 914 if (error.Fail()) 915 return error; 916 } 917 } 918 } 919 920 for (const auto &thread : m_threads) { 921 assert(thread && "thread list should not contain NULL threads"); 922 923 const ResumeAction *const action = 924 resume_actions.GetActionForThread(thread->GetID(), true); 925 926 if (action == nullptr) { 927 LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(), 928 thread->GetID()); 929 continue; 930 } 931 932 LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}", 933 action->state, GetID(), thread->GetID()); 934 935 switch (action->state) { 936 case eStateRunning: 937 case eStateStepping: { 938 // Run the thread, possibly feeding it the signal. 939 const int signo = action->signal; 940 ResumeThread(static_cast<NativeThreadLinux &>(*thread), action->state, 941 signo); 942 break; 943 } 944 945 case eStateSuspended: 946 case eStateStopped: 947 llvm_unreachable("Unexpected state"); 948 949 default: 950 return Status("NativeProcessLinux::%s (): unexpected state %s specified " 951 "for pid %" PRIu64 ", tid %" PRIu64, 952 __FUNCTION__, StateAsCString(action->state), GetID(), 953 thread->GetID()); 954 } 955 } 956 957 return Status(); 958 } 959 960 Status NativeProcessLinux::Halt() { 961 Status error; 962 963 if (kill(GetID(), SIGSTOP) != 0) 964 error.SetErrorToErrno(); 965 966 return error; 967 } 968 969 Status NativeProcessLinux::Detach() { 970 Status error; 971 972 // Stop monitoring the inferior. 973 m_sigchld_handle.reset(); 974 975 // Tell ptrace to detach from the process. 976 if (GetID() == LLDB_INVALID_PROCESS_ID) 977 return error; 978 979 for (const auto &thread : m_threads) { 980 Status e = Detach(thread->GetID()); 981 if (e.Fail()) 982 error = 983 e; // Save the error, but still attempt to detach from other threads. 984 } 985 986 m_intel_pt_collector.Clear(); 987 988 return error; 989 } 990 991 Status NativeProcessLinux::Signal(int signo) { 992 Status error; 993 994 Log *log = GetLog(POSIXLog::Process); 995 LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo, 996 Host::GetSignalAsCString(signo), GetID()); 997 998 if (kill(GetID(), signo)) 999 error.SetErrorToErrno(); 1000 1001 return error; 1002 } 1003 1004 Status NativeProcessLinux::Interrupt() { 1005 // Pick a running thread (or if none, a not-dead stopped thread) as the 1006 // chosen thread that will be the stop-reason thread. 1007 Log *log = GetLog(POSIXLog::Process); 1008 1009 NativeThreadProtocol *running_thread = nullptr; 1010 NativeThreadProtocol *stopped_thread = nullptr; 1011 1012 LLDB_LOG(log, "selecting running thread for interrupt target"); 1013 for (const auto &thread : m_threads) { 1014 // If we have a running or stepping thread, we'll call that the target of 1015 // the interrupt. 1016 const auto thread_state = thread->GetState(); 1017 if (thread_state == eStateRunning || thread_state == eStateStepping) { 1018 running_thread = thread.get(); 1019 break; 1020 } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) { 1021 // Remember the first non-dead stopped thread. We'll use that as a 1022 // backup if there are no running threads. 1023 stopped_thread = thread.get(); 1024 } 1025 } 1026 1027 if (!running_thread && !stopped_thread) { 1028 Status error("found no running/stepping or live stopped threads as target " 1029 "for interrupt"); 1030 LLDB_LOG(log, "skipping due to error: {0}", error); 1031 1032 return error; 1033 } 1034 1035 NativeThreadProtocol *deferred_signal_thread = 1036 running_thread ? running_thread : stopped_thread; 1037 1038 LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(), 1039 running_thread ? "running" : "stopped", 1040 deferred_signal_thread->GetID()); 1041 1042 StopRunningThreads(deferred_signal_thread->GetID()); 1043 1044 return Status(); 1045 } 1046 1047 Status NativeProcessLinux::Kill() { 1048 Log *log = GetLog(POSIXLog::Process); 1049 LLDB_LOG(log, "pid {0}", GetID()); 1050 1051 Status error; 1052 1053 switch (m_state) { 1054 case StateType::eStateInvalid: 1055 case StateType::eStateExited: 1056 case StateType::eStateCrashed: 1057 case StateType::eStateDetached: 1058 case StateType::eStateUnloaded: 1059 // Nothing to do - the process is already dead. 1060 LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(), 1061 m_state); 1062 return error; 1063 1064 case StateType::eStateConnected: 1065 case StateType::eStateAttaching: 1066 case StateType::eStateLaunching: 1067 case StateType::eStateStopped: 1068 case StateType::eStateRunning: 1069 case StateType::eStateStepping: 1070 case StateType::eStateSuspended: 1071 // We can try to kill a process in these states. 1072 break; 1073 } 1074 1075 if (kill(GetID(), SIGKILL) != 0) { 1076 error.SetErrorToErrno(); 1077 return error; 1078 } 1079 1080 return error; 1081 } 1082 1083 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr, 1084 MemoryRegionInfo &range_info) { 1085 // FIXME review that the final memory region returned extends to the end of 1086 // the virtual address space, 1087 // with no perms if it is not mapped. 1088 1089 // Use an approach that reads memory regions from /proc/{pid}/maps. Assume 1090 // proc maps entries are in ascending order. 1091 // FIXME assert if we find differently. 1092 1093 if (m_supports_mem_region == LazyBool::eLazyBoolNo) { 1094 // We're done. 1095 return Status("unsupported"); 1096 } 1097 1098 Status error = PopulateMemoryRegionCache(); 1099 if (error.Fail()) { 1100 return error; 1101 } 1102 1103 lldb::addr_t prev_base_address = 0; 1104 1105 // FIXME start by finding the last region that is <= target address using 1106 // binary search. Data is sorted. 1107 // There can be a ton of regions on pthreads apps with lots of threads. 1108 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end(); 1109 ++it) { 1110 MemoryRegionInfo &proc_entry_info = it->first; 1111 1112 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 1113 assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) && 1114 "descending /proc/pid/maps entries detected, unexpected"); 1115 prev_base_address = proc_entry_info.GetRange().GetRangeBase(); 1116 UNUSED_IF_ASSERT_DISABLED(prev_base_address); 1117 1118 // If the target address comes before this entry, indicate distance to next 1119 // region. 1120 if (load_addr < proc_entry_info.GetRange().GetRangeBase()) { 1121 range_info.GetRange().SetRangeBase(load_addr); 1122 range_info.GetRange().SetByteSize( 1123 proc_entry_info.GetRange().GetRangeBase() - load_addr); 1124 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1125 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1126 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1127 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1128 1129 return error; 1130 } else if (proc_entry_info.GetRange().Contains(load_addr)) { 1131 // The target address is within the memory region we're processing here. 1132 range_info = proc_entry_info; 1133 return error; 1134 } 1135 1136 // The target memory address comes somewhere after the region we just 1137 // parsed. 1138 } 1139 1140 // If we made it here, we didn't find an entry that contained the given 1141 // address. Return the load_addr as start and the amount of bytes betwwen 1142 // load address and the end of the memory as size. 1143 range_info.GetRange().SetRangeBase(load_addr); 1144 range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS); 1145 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1146 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1147 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1148 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1149 return error; 1150 } 1151 1152 Status NativeProcessLinux::PopulateMemoryRegionCache() { 1153 Log *log = GetLog(POSIXLog::Process); 1154 1155 // If our cache is empty, pull the latest. There should always be at least 1156 // one memory region if memory region handling is supported. 1157 if (!m_mem_region_cache.empty()) { 1158 LLDB_LOG(log, "reusing {0} cached memory region entries", 1159 m_mem_region_cache.size()); 1160 return Status(); 1161 } 1162 1163 Status Result; 1164 LinuxMapCallback callback = [&](llvm::Expected<MemoryRegionInfo> Info) { 1165 if (Info) { 1166 FileSpec file_spec(Info->GetName().GetCString()); 1167 FileSystem::Instance().Resolve(file_spec); 1168 m_mem_region_cache.emplace_back(*Info, file_spec); 1169 return true; 1170 } 1171 1172 Result = Info.takeError(); 1173 m_supports_mem_region = LazyBool::eLazyBoolNo; 1174 LLDB_LOG(log, "failed to parse proc maps: {0}", Result); 1175 return false; 1176 }; 1177 1178 // Linux kernel since 2.6.14 has /proc/{pid}/smaps 1179 // if CONFIG_PROC_PAGE_MONITOR is enabled 1180 auto BufferOrError = getProcFile(GetID(), "smaps"); 1181 if (BufferOrError) 1182 ParseLinuxSMapRegions(BufferOrError.get()->getBuffer(), callback); 1183 else { 1184 BufferOrError = getProcFile(GetID(), "maps"); 1185 if (!BufferOrError) { 1186 m_supports_mem_region = LazyBool::eLazyBoolNo; 1187 return BufferOrError.getError(); 1188 } 1189 1190 ParseLinuxMapRegions(BufferOrError.get()->getBuffer(), callback); 1191 } 1192 1193 if (Result.Fail()) 1194 return Result; 1195 1196 if (m_mem_region_cache.empty()) { 1197 // No entries after attempting to read them. This shouldn't happen if 1198 // /proc/{pid}/maps is supported. Assume we don't support map entries via 1199 // procfs. 1200 m_supports_mem_region = LazyBool::eLazyBoolNo; 1201 LLDB_LOG(log, 1202 "failed to find any procfs maps entries, assuming no support " 1203 "for memory region metadata retrieval"); 1204 return Status("not supported"); 1205 } 1206 1207 LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps", 1208 m_mem_region_cache.size(), GetID()); 1209 1210 // We support memory retrieval, remember that. 1211 m_supports_mem_region = LazyBool::eLazyBoolYes; 1212 return Status(); 1213 } 1214 1215 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) { 1216 Log *log = GetLog(POSIXLog::Process); 1217 LLDB_LOG(log, "newBumpId={0}", newBumpId); 1218 LLDB_LOG(log, "clearing {0} entries from memory region cache", 1219 m_mem_region_cache.size()); 1220 m_mem_region_cache.clear(); 1221 } 1222 1223 llvm::Expected<uint64_t> 1224 NativeProcessLinux::Syscall(llvm::ArrayRef<uint64_t> args) { 1225 PopulateMemoryRegionCache(); 1226 auto region_it = llvm::find_if(m_mem_region_cache, [](const auto &pair) { 1227 return pair.first.GetExecutable() == MemoryRegionInfo::eYes; 1228 }); 1229 if (region_it == m_mem_region_cache.end()) 1230 return llvm::createStringError(llvm::inconvertibleErrorCode(), 1231 "No executable memory region found!"); 1232 1233 addr_t exe_addr = region_it->first.GetRange().GetRangeBase(); 1234 1235 NativeThreadLinux &thread = *GetThreadByID(GetID()); 1236 assert(thread.GetState() == eStateStopped); 1237 NativeRegisterContextLinux ®_ctx = thread.GetRegisterContext(); 1238 1239 NativeRegisterContextLinux::SyscallData syscall_data = 1240 *reg_ctx.GetSyscallData(); 1241 1242 DataBufferSP registers_sp; 1243 if (llvm::Error Err = reg_ctx.ReadAllRegisterValues(registers_sp).ToError()) 1244 return std::move(Err); 1245 auto restore_regs = llvm::make_scope_exit( 1246 [&] { reg_ctx.WriteAllRegisterValues(registers_sp); }); 1247 1248 llvm::SmallVector<uint8_t, 8> memory(syscall_data.Insn.size()); 1249 size_t bytes_read; 1250 if (llvm::Error Err = 1251 ReadMemory(exe_addr, memory.data(), memory.size(), bytes_read) 1252 .ToError()) { 1253 return std::move(Err); 1254 } 1255 1256 auto restore_mem = llvm::make_scope_exit( 1257 [&] { WriteMemory(exe_addr, memory.data(), memory.size(), bytes_read); }); 1258 1259 if (llvm::Error Err = reg_ctx.SetPC(exe_addr).ToError()) 1260 return std::move(Err); 1261 1262 for (const auto &zip : llvm::zip_first(args, syscall_data.Args)) { 1263 if (llvm::Error Err = 1264 reg_ctx 1265 .WriteRegisterFromUnsigned(std::get<1>(zip), std::get<0>(zip)) 1266 .ToError()) { 1267 return std::move(Err); 1268 } 1269 } 1270 if (llvm::Error Err = WriteMemory(exe_addr, syscall_data.Insn.data(), 1271 syscall_data.Insn.size(), bytes_read) 1272 .ToError()) 1273 return std::move(Err); 1274 1275 m_mem_region_cache.clear(); 1276 1277 // With software single stepping the syscall insn buffer must also include a 1278 // trap instruction to stop the process. 1279 int req = SupportHardwareSingleStepping() ? PTRACE_SINGLESTEP : PTRACE_CONT; 1280 if (llvm::Error Err = 1281 PtraceWrapper(req, thread.GetID(), nullptr, nullptr).ToError()) 1282 return std::move(Err); 1283 1284 int status; 1285 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, thread.GetID(), 1286 &status, __WALL); 1287 if (wait_pid == -1) { 1288 return llvm::errorCodeToError( 1289 std::error_code(errno, std::generic_category())); 1290 } 1291 assert((unsigned)wait_pid == thread.GetID()); 1292 1293 uint64_t result = reg_ctx.ReadRegisterAsUnsigned(syscall_data.Result, -ESRCH); 1294 1295 // Values larger than this are actually negative errno numbers. 1296 uint64_t errno_threshold = 1297 (uint64_t(-1) >> (64 - 8 * m_arch.GetAddressByteSize())) - 0x1000; 1298 if (result > errno_threshold) { 1299 return llvm::errorCodeToError( 1300 std::error_code(-result & 0xfff, std::generic_category())); 1301 } 1302 1303 return result; 1304 } 1305 1306 llvm::Expected<addr_t> 1307 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions) { 1308 1309 llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data = 1310 GetCurrentThread()->GetRegisterContext().GetMmapData(); 1311 if (!mmap_data) 1312 return llvm::make_error<UnimplementedError>(); 1313 1314 unsigned prot = PROT_NONE; 1315 assert((permissions & (ePermissionsReadable | ePermissionsWritable | 1316 ePermissionsExecutable)) == permissions && 1317 "Unknown permission!"); 1318 if (permissions & ePermissionsReadable) 1319 prot |= PROT_READ; 1320 if (permissions & ePermissionsWritable) 1321 prot |= PROT_WRITE; 1322 if (permissions & ePermissionsExecutable) 1323 prot |= PROT_EXEC; 1324 1325 llvm::Expected<uint64_t> Result = 1326 Syscall({mmap_data->SysMmap, 0, size, prot, MAP_ANONYMOUS | MAP_PRIVATE, 1327 uint64_t(-1), 0}); 1328 if (Result) 1329 m_allocated_memory.try_emplace(*Result, size); 1330 return Result; 1331 } 1332 1333 llvm::Error NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) { 1334 llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data = 1335 GetCurrentThread()->GetRegisterContext().GetMmapData(); 1336 if (!mmap_data) 1337 return llvm::make_error<UnimplementedError>(); 1338 1339 auto it = m_allocated_memory.find(addr); 1340 if (it == m_allocated_memory.end()) 1341 return llvm::createStringError(llvm::errc::invalid_argument, 1342 "Memory not allocated by the debugger."); 1343 1344 llvm::Expected<uint64_t> Result = 1345 Syscall({mmap_data->SysMunmap, addr, it->second}); 1346 if (!Result) 1347 return Result.takeError(); 1348 1349 m_allocated_memory.erase(it); 1350 return llvm::Error::success(); 1351 } 1352 1353 Status NativeProcessLinux::ReadMemoryTags(int32_t type, lldb::addr_t addr, 1354 size_t len, 1355 std::vector<uint8_t> &tags) { 1356 llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details = 1357 GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type); 1358 if (!details) 1359 return Status(details.takeError()); 1360 1361 // Ignore 0 length read 1362 if (!len) 1363 return Status(); 1364 1365 // lldb will align the range it requests but it is not required to by 1366 // the protocol so we'll do it again just in case. 1367 // Remove tag bits too. Ptrace calls may work regardless but that 1368 // is not a guarantee. 1369 MemoryTagManager::TagRange range(details->manager->RemoveTagBits(addr), len); 1370 range = details->manager->ExpandToGranule(range); 1371 1372 // Allocate enough space for all tags to be read 1373 size_t num_tags = range.GetByteSize() / details->manager->GetGranuleSize(); 1374 tags.resize(num_tags * details->manager->GetTagSizeInBytes()); 1375 1376 struct iovec tags_iovec; 1377 uint8_t *dest = tags.data(); 1378 lldb::addr_t read_addr = range.GetRangeBase(); 1379 1380 // This call can return partial data so loop until we error or 1381 // get all tags back. 1382 while (num_tags) { 1383 tags_iovec.iov_base = dest; 1384 tags_iovec.iov_len = num_tags; 1385 1386 Status error = NativeProcessLinux::PtraceWrapper( 1387 details->ptrace_read_req, GetID(), reinterpret_cast<void *>(read_addr), 1388 static_cast<void *>(&tags_iovec), 0, nullptr); 1389 1390 if (error.Fail()) { 1391 // Discard partial reads 1392 tags.resize(0); 1393 return error; 1394 } 1395 1396 size_t tags_read = tags_iovec.iov_len; 1397 assert(tags_read && (tags_read <= num_tags)); 1398 1399 dest += tags_read * details->manager->GetTagSizeInBytes(); 1400 read_addr += details->manager->GetGranuleSize() * tags_read; 1401 num_tags -= tags_read; 1402 } 1403 1404 return Status(); 1405 } 1406 1407 Status NativeProcessLinux::WriteMemoryTags(int32_t type, lldb::addr_t addr, 1408 size_t len, 1409 const std::vector<uint8_t> &tags) { 1410 llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details = 1411 GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type); 1412 if (!details) 1413 return Status(details.takeError()); 1414 1415 // Ignore 0 length write 1416 if (!len) 1417 return Status(); 1418 1419 // lldb will align the range it requests but it is not required to by 1420 // the protocol so we'll do it again just in case. 1421 // Remove tag bits too. Ptrace calls may work regardless but that 1422 // is not a guarantee. 1423 MemoryTagManager::TagRange range(details->manager->RemoveTagBits(addr), len); 1424 range = details->manager->ExpandToGranule(range); 1425 1426 // Not checking number of tags here, we may repeat them below 1427 llvm::Expected<std::vector<lldb::addr_t>> unpacked_tags_or_err = 1428 details->manager->UnpackTagsData(tags); 1429 if (!unpacked_tags_or_err) 1430 return Status(unpacked_tags_or_err.takeError()); 1431 1432 llvm::Expected<std::vector<lldb::addr_t>> repeated_tags_or_err = 1433 details->manager->RepeatTagsForRange(*unpacked_tags_or_err, range); 1434 if (!repeated_tags_or_err) 1435 return Status(repeated_tags_or_err.takeError()); 1436 1437 // Repack them for ptrace to use 1438 llvm::Expected<std::vector<uint8_t>> final_tag_data = 1439 details->manager->PackTags(*repeated_tags_or_err); 1440 if (!final_tag_data) 1441 return Status(final_tag_data.takeError()); 1442 1443 struct iovec tags_vec; 1444 uint8_t *src = final_tag_data->data(); 1445 lldb::addr_t write_addr = range.GetRangeBase(); 1446 // unpacked tags size because the number of bytes per tag might not be 1 1447 size_t num_tags = repeated_tags_or_err->size(); 1448 1449 // This call can partially write tags, so we loop until we 1450 // error or all tags have been written. 1451 while (num_tags > 0) { 1452 tags_vec.iov_base = src; 1453 tags_vec.iov_len = num_tags; 1454 1455 Status error = NativeProcessLinux::PtraceWrapper( 1456 details->ptrace_write_req, GetID(), 1457 reinterpret_cast<void *>(write_addr), static_cast<void *>(&tags_vec), 0, 1458 nullptr); 1459 1460 if (error.Fail()) { 1461 // Don't attempt to restore the original values in the case of a partial 1462 // write 1463 return error; 1464 } 1465 1466 size_t tags_written = tags_vec.iov_len; 1467 assert(tags_written && (tags_written <= num_tags)); 1468 1469 src += tags_written * details->manager->GetTagSizeInBytes(); 1470 write_addr += details->manager->GetGranuleSize() * tags_written; 1471 num_tags -= tags_written; 1472 } 1473 1474 return Status(); 1475 } 1476 1477 size_t NativeProcessLinux::UpdateThreads() { 1478 // The NativeProcessLinux monitoring threads are always up to date with 1479 // respect to thread state and they keep the thread list populated properly. 1480 // All this method needs to do is return the thread count. 1481 return m_threads.size(); 1482 } 1483 1484 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size, 1485 bool hardware) { 1486 if (hardware) 1487 return SetHardwareBreakpoint(addr, size); 1488 else 1489 return SetSoftwareBreakpoint(addr, size); 1490 } 1491 1492 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) { 1493 if (hardware) 1494 return RemoveHardwareBreakpoint(addr); 1495 else 1496 return NativeProcessProtocol::RemoveBreakpoint(addr); 1497 } 1498 1499 llvm::Expected<llvm::ArrayRef<uint8_t>> 1500 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(size_t size_hint) { 1501 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 1502 // linux kernel does otherwise. 1503 static const uint8_t g_arm_opcode[] = {0xf0, 0x01, 0xf0, 0xe7}; 1504 static const uint8_t g_thumb_opcode[] = {0x01, 0xde}; 1505 1506 switch (GetArchitecture().GetMachine()) { 1507 case llvm::Triple::arm: 1508 switch (size_hint) { 1509 case 2: 1510 return llvm::makeArrayRef(g_thumb_opcode); 1511 case 4: 1512 return llvm::makeArrayRef(g_arm_opcode); 1513 default: 1514 return llvm::createStringError(llvm::inconvertibleErrorCode(), 1515 "Unrecognised trap opcode size hint!"); 1516 } 1517 default: 1518 return NativeProcessProtocol::GetSoftwareBreakpointTrapOpcode(size_hint); 1519 } 1520 } 1521 1522 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size, 1523 size_t &bytes_read) { 1524 if (ProcessVmReadvSupported()) { 1525 // The process_vm_readv path is about 50 times faster than ptrace api. We 1526 // want to use this syscall if it is supported. 1527 1528 const ::pid_t pid = GetID(); 1529 1530 struct iovec local_iov, remote_iov; 1531 local_iov.iov_base = buf; 1532 local_iov.iov_len = size; 1533 remote_iov.iov_base = reinterpret_cast<void *>(addr); 1534 remote_iov.iov_len = size; 1535 1536 bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0); 1537 const bool success = bytes_read == size; 1538 1539 Log *log = GetLog(POSIXLog::Process); 1540 LLDB_LOG(log, 1541 "using process_vm_readv to read {0} bytes from inferior " 1542 "address {1:x}: {2}", 1543 size, addr, success ? "Success" : llvm::sys::StrError(errno)); 1544 1545 if (success) 1546 return Status(); 1547 // else the call failed for some reason, let's retry the read using ptrace 1548 // api. 1549 } 1550 1551 unsigned char *dst = static_cast<unsigned char *>(buf); 1552 size_t remainder; 1553 long data; 1554 1555 Log *log = GetLog(POSIXLog::Memory); 1556 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1557 1558 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { 1559 Status error = NativeProcessLinux::PtraceWrapper( 1560 PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data); 1561 if (error.Fail()) 1562 return error; 1563 1564 remainder = size - bytes_read; 1565 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1566 1567 // Copy the data into our buffer 1568 memcpy(dst, &data, remainder); 1569 1570 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1571 addr += k_ptrace_word_size; 1572 dst += k_ptrace_word_size; 1573 } 1574 return Status(); 1575 } 1576 1577 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, 1578 size_t size, size_t &bytes_written) { 1579 const unsigned char *src = static_cast<const unsigned char *>(buf); 1580 size_t remainder; 1581 Status error; 1582 1583 Log *log = GetLog(POSIXLog::Memory); 1584 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1585 1586 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { 1587 remainder = size - bytes_written; 1588 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1589 1590 if (remainder == k_ptrace_word_size) { 1591 unsigned long data = 0; 1592 memcpy(&data, src, k_ptrace_word_size); 1593 1594 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1595 error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), 1596 (void *)addr, (void *)data); 1597 if (error.Fail()) 1598 return error; 1599 } else { 1600 unsigned char buff[8]; 1601 size_t bytes_read; 1602 error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read); 1603 if (error.Fail()) 1604 return error; 1605 1606 memcpy(buff, src, remainder); 1607 1608 size_t bytes_written_rec; 1609 error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec); 1610 if (error.Fail()) 1611 return error; 1612 1613 LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src, 1614 *(unsigned long *)buff); 1615 } 1616 1617 addr += k_ptrace_word_size; 1618 src += k_ptrace_word_size; 1619 } 1620 return error; 1621 } 1622 1623 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) const { 1624 return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); 1625 } 1626 1627 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid, 1628 unsigned long *message) { 1629 return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); 1630 } 1631 1632 Status NativeProcessLinux::Detach(lldb::tid_t tid) { 1633 if (tid == LLDB_INVALID_THREAD_ID) 1634 return Status(); 1635 1636 return PtraceWrapper(PTRACE_DETACH, tid); 1637 } 1638 1639 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) { 1640 for (const auto &thread : m_threads) { 1641 assert(thread && "thread list should not contain NULL threads"); 1642 if (thread->GetID() == thread_id) { 1643 // We have this thread. 1644 return true; 1645 } 1646 } 1647 1648 // We don't have this thread. 1649 return false; 1650 } 1651 1652 void NativeProcessLinux::StopTrackingThread(NativeThreadLinux &thread) { 1653 Log *const log = GetLog(POSIXLog::Thread); 1654 lldb::tid_t thread_id = thread.GetID(); 1655 LLDB_LOG(log, "tid: {0}", thread_id); 1656 1657 auto it = llvm::find_if(m_threads, [&](const auto &thread_up) { 1658 return thread_up.get() == &thread; 1659 }); 1660 assert(it != m_threads.end()); 1661 m_threads.erase(it); 1662 1663 NotifyTracersOfThreadDestroyed(thread_id); 1664 SignalIfAllThreadsStopped(); 1665 } 1666 1667 Status NativeProcessLinux::NotifyTracersOfNewThread(lldb::tid_t tid) { 1668 Log *log = GetLog(POSIXLog::Thread); 1669 Status error(m_intel_pt_collector.OnThreadCreated(tid)); 1670 if (error.Fail()) 1671 LLDB_LOG(log, "Failed to trace a new thread with intel-pt, tid = {0}. {1}", 1672 tid, error.AsCString()); 1673 return error; 1674 } 1675 1676 Status NativeProcessLinux::NotifyTracersOfThreadDestroyed(lldb::tid_t tid) { 1677 Log *log = GetLog(POSIXLog::Thread); 1678 Status error(m_intel_pt_collector.OnThreadDestroyed(tid)); 1679 if (error.Fail()) 1680 LLDB_LOG(log, 1681 "Failed to stop a destroyed thread with intel-pt, tid = {0}. {1}", 1682 tid, error.AsCString()); 1683 return error; 1684 } 1685 1686 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id, 1687 bool resume) { 1688 Log *log = GetLog(POSIXLog::Thread); 1689 LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id); 1690 1691 assert(!HasThreadNoLock(thread_id) && 1692 "attempted to add a thread by id that already exists"); 1693 1694 // If this is the first thread, save it as the current thread 1695 if (m_threads.empty()) 1696 SetCurrentThreadID(thread_id); 1697 1698 m_threads.push_back(std::make_unique<NativeThreadLinux>(*this, thread_id)); 1699 NativeThreadLinux &thread = 1700 static_cast<NativeThreadLinux &>(*m_threads.back()); 1701 1702 Status tracing_error = NotifyTracersOfNewThread(thread.GetID()); 1703 if (tracing_error.Fail()) { 1704 thread.SetStoppedByProcessorTrace(tracing_error.AsCString()); 1705 StopRunningThreads(thread.GetID()); 1706 } else if (resume) 1707 ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 1708 else 1709 thread.SetStoppedBySignal(SIGSTOP); 1710 1711 return thread; 1712 } 1713 1714 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path, 1715 FileSpec &file_spec) { 1716 Status error = PopulateMemoryRegionCache(); 1717 if (error.Fail()) 1718 return error; 1719 1720 FileSpec module_file_spec(module_path); 1721 FileSystem::Instance().Resolve(module_file_spec); 1722 1723 file_spec.Clear(); 1724 for (const auto &it : m_mem_region_cache) { 1725 if (it.second.GetFilename() == module_file_spec.GetFilename()) { 1726 file_spec = it.second; 1727 return Status(); 1728 } 1729 } 1730 return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 1731 module_file_spec.GetFilename().AsCString(), GetID()); 1732 } 1733 1734 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name, 1735 lldb::addr_t &load_addr) { 1736 load_addr = LLDB_INVALID_ADDRESS; 1737 Status error = PopulateMemoryRegionCache(); 1738 if (error.Fail()) 1739 return error; 1740 1741 FileSpec file(file_name); 1742 for (const auto &it : m_mem_region_cache) { 1743 if (it.second == file) { 1744 load_addr = it.first.GetRange().GetRangeBase(); 1745 return Status(); 1746 } 1747 } 1748 return Status("No load address found for specified file."); 1749 } 1750 1751 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) { 1752 return static_cast<NativeThreadLinux *>( 1753 NativeProcessProtocol::GetThreadByID(tid)); 1754 } 1755 1756 NativeThreadLinux *NativeProcessLinux::GetCurrentThread() { 1757 return static_cast<NativeThreadLinux *>( 1758 NativeProcessProtocol::GetCurrentThread()); 1759 } 1760 1761 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, 1762 lldb::StateType state, int signo) { 1763 Log *const log = GetLog(POSIXLog::Thread); 1764 LLDB_LOG(log, "tid: {0}", thread.GetID()); 1765 1766 // Before we do the resume below, first check if we have a pending stop 1767 // notification that is currently waiting for all threads to stop. This is 1768 // potentially a buggy situation since we're ostensibly waiting for threads 1769 // to stop before we send out the pending notification, and here we are 1770 // resuming one before we send out the pending stop notification. 1771 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 1772 LLDB_LOG(log, 1773 "about to resume tid {0} per explicit request but we have a " 1774 "pending stop notification (tid {1}) that is actively " 1775 "waiting for this thread to stop. Valid sequence of events?", 1776 thread.GetID(), m_pending_notification_tid); 1777 } 1778 1779 // Request a resume. We expect this to be synchronous and the system to 1780 // reflect it is running after this completes. 1781 switch (state) { 1782 case eStateRunning: { 1783 const auto resume_result = thread.Resume(signo); 1784 if (resume_result.Success()) 1785 SetState(eStateRunning, true); 1786 return resume_result; 1787 } 1788 case eStateStepping: { 1789 const auto step_result = thread.SingleStep(signo); 1790 if (step_result.Success()) 1791 SetState(eStateRunning, true); 1792 return step_result; 1793 } 1794 default: 1795 LLDB_LOG(log, "Unhandled state {0}.", state); 1796 llvm_unreachable("Unhandled state for resume"); 1797 } 1798 } 1799 1800 //===----------------------------------------------------------------------===// 1801 1802 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) { 1803 Log *const log = GetLog(POSIXLog::Thread); 1804 LLDB_LOG(log, "about to process event: (triggering_tid: {0})", 1805 triggering_tid); 1806 1807 m_pending_notification_tid = triggering_tid; 1808 1809 // Request a stop for all the thread stops that need to be stopped and are 1810 // not already known to be stopped. 1811 for (const auto &thread : m_threads) { 1812 if (StateIsRunningState(thread->GetState())) 1813 static_cast<NativeThreadLinux *>(thread.get())->RequestStop(); 1814 } 1815 1816 SignalIfAllThreadsStopped(); 1817 LLDB_LOG(log, "event processing done"); 1818 } 1819 1820 void NativeProcessLinux::SignalIfAllThreadsStopped() { 1821 if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) 1822 return; // No pending notification. Nothing to do. 1823 1824 for (const auto &thread_sp : m_threads) { 1825 if (StateIsRunningState(thread_sp->GetState())) 1826 return; // Some threads are still running. Don't signal yet. 1827 } 1828 1829 // We have a pending notification and all threads have stopped. 1830 Log *log = GetLog(LLDBLog::Process | LLDBLog::Breakpoints); 1831 1832 // Clear any temporary breakpoints we used to implement software single 1833 // stepping. 1834 for (const auto &thread_info : m_threads_stepping_with_breakpoint) { 1835 Status error = RemoveBreakpoint(thread_info.second); 1836 if (error.Fail()) 1837 LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}", 1838 thread_info.first, error); 1839 } 1840 m_threads_stepping_with_breakpoint.clear(); 1841 1842 // Notify the delegate about the stop 1843 SetCurrentThreadID(m_pending_notification_tid); 1844 SetState(StateType::eStateStopped, true); 1845 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 1846 } 1847 1848 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) { 1849 Log *const log = GetLog(POSIXLog::Thread); 1850 LLDB_LOG(log, "tid: {0}", thread.GetID()); 1851 1852 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && 1853 StateIsRunningState(thread.GetState())) { 1854 // We will need to wait for this new thread to stop as well before firing 1855 // the notification. 1856 thread.RequestStop(); 1857 } 1858 } 1859 1860 void NativeProcessLinux::SigchldHandler() { 1861 Log *log = GetLog(POSIXLog::Process); 1862 1863 // Threads can appear or disappear as a result of event processing, so gather 1864 // the events upfront. 1865 llvm::DenseMap<lldb::tid_t, WaitStatus> tid_events; 1866 for (const auto &thread_up : m_threads) { 1867 int status = -1; 1868 ::pid_t wait_pid = 1869 llvm::sys::RetryAfterSignal(-1, ::waitpid, thread_up->GetID(), &status, 1870 __WALL | __WNOTHREAD | WNOHANG); 1871 1872 if (wait_pid == 0) 1873 continue; // Nothing to do for this thread. 1874 1875 if (wait_pid == -1) { 1876 Status error(errno, eErrorTypePOSIX); 1877 LLDB_LOG(log, "waitpid({0}, &status, _) failed: {1}", thread_up->GetID(), 1878 error); 1879 continue; 1880 } 1881 1882 assert(wait_pid == static_cast<::pid_t>(thread_up->GetID())); 1883 1884 WaitStatus wait_status = WaitStatus::Decode(status); 1885 1886 LLDB_LOG(log, "waitpid({0}) got status = {1}", thread_up->GetID(), 1887 wait_status); 1888 tid_events.try_emplace(thread_up->GetID(), wait_status); 1889 } 1890 1891 for (auto &KV : tid_events) { 1892 LLDB_LOG(log, "processing {0}({1}) ...", KV.first, KV.second); 1893 NativeThreadLinux *thread = GetThreadByID(KV.first); 1894 if (thread) { 1895 MonitorCallback(*thread, KV.second); 1896 } else { 1897 // This can happen if one of the events is an main thread exit. 1898 LLDB_LOG(log, "... but the thread has disappeared"); 1899 } 1900 } 1901 } 1902 1903 // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets 1904 // errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) 1905 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, 1906 void *data, size_t data_size, 1907 long *result) { 1908 Status error; 1909 long int ret; 1910 1911 Log *log = GetLog(POSIXLog::Ptrace); 1912 1913 PtraceDisplayBytes(req, data, data_size); 1914 1915 errno = 0; 1916 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 1917 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 1918 *(unsigned int *)addr, data); 1919 else 1920 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 1921 addr, data); 1922 1923 if (ret == -1) 1924 error.SetErrorToErrno(); 1925 1926 if (result) 1927 *result = ret; 1928 1929 LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data, 1930 data_size, ret); 1931 1932 PtraceDisplayBytes(req, data, data_size); 1933 1934 if (error.Fail()) 1935 LLDB_LOG(log, "ptrace() failed: {0}", error); 1936 1937 return error; 1938 } 1939 1940 llvm::Expected<TraceSupportedResponse> NativeProcessLinux::TraceSupported() { 1941 if (IntelPTCollector::IsSupported()) 1942 return TraceSupportedResponse{"intel-pt", "Intel Processor Trace"}; 1943 return NativeProcessProtocol::TraceSupported(); 1944 } 1945 1946 Error NativeProcessLinux::TraceStart(StringRef json_request, StringRef type) { 1947 if (type == "intel-pt") { 1948 if (Expected<TraceIntelPTStartRequest> request = 1949 json::parse<TraceIntelPTStartRequest>(json_request, 1950 "TraceIntelPTStartRequest")) { 1951 std::vector<lldb::tid_t> process_threads; 1952 for (auto &thread : m_threads) 1953 process_threads.push_back(thread->GetID()); 1954 return m_intel_pt_collector.TraceStart(*request, process_threads); 1955 } else 1956 return request.takeError(); 1957 } 1958 1959 return NativeProcessProtocol::TraceStart(json_request, type); 1960 } 1961 1962 Error NativeProcessLinux::TraceStop(const TraceStopRequest &request) { 1963 if (request.type == "intel-pt") 1964 return m_intel_pt_collector.TraceStop(request); 1965 return NativeProcessProtocol::TraceStop(request); 1966 } 1967 1968 Expected<json::Value> NativeProcessLinux::TraceGetState(StringRef type) { 1969 if (type == "intel-pt") 1970 return m_intel_pt_collector.GetState(); 1971 return NativeProcessProtocol::TraceGetState(type); 1972 } 1973 1974 Expected<std::vector<uint8_t>> NativeProcessLinux::TraceGetBinaryData( 1975 const TraceGetBinaryDataRequest &request) { 1976 if (request.type == "intel-pt") 1977 return m_intel_pt_collector.GetBinaryData(request); 1978 return NativeProcessProtocol::TraceGetBinaryData(request); 1979 } 1980