1 //===-- NativeProcessLinux.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "NativeProcessLinux.h" 10 11 #include <cerrno> 12 #include <cstdint> 13 #include <cstring> 14 #include <unistd.h> 15 16 #include <fstream> 17 #include <mutex> 18 #include <sstream> 19 #include <string> 20 #include <unordered_map> 21 22 #include "NativeThreadLinux.h" 23 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 24 #include "Plugins/Process/Utility/LinuxProcMaps.h" 25 #include "Procfs.h" 26 #include "lldb/Core/ModuleSpec.h" 27 #include "lldb/Host/Host.h" 28 #include "lldb/Host/HostProcess.h" 29 #include "lldb/Host/ProcessLaunchInfo.h" 30 #include "lldb/Host/PseudoTerminal.h" 31 #include "lldb/Host/ThreadLauncher.h" 32 #include "lldb/Host/common/NativeRegisterContext.h" 33 #include "lldb/Host/linux/Host.h" 34 #include "lldb/Host/linux/Ptrace.h" 35 #include "lldb/Host/linux/Uio.h" 36 #include "lldb/Host/posix/ProcessLauncherPosixFork.h" 37 #include "lldb/Symbol/ObjectFile.h" 38 #include "lldb/Target/Process.h" 39 #include "lldb/Target/Target.h" 40 #include "lldb/Utility/LLDBAssert.h" 41 #include "lldb/Utility/LLDBLog.h" 42 #include "lldb/Utility/State.h" 43 #include "lldb/Utility/Status.h" 44 #include "lldb/Utility/StringExtractor.h" 45 #include "llvm/ADT/ScopeExit.h" 46 #include "llvm/Support/Errno.h" 47 #include "llvm/Support/FileSystem.h" 48 #include "llvm/Support/Threading.h" 49 50 #include <linux/unistd.h> 51 #include <sys/socket.h> 52 #include <sys/syscall.h> 53 #include <sys/types.h> 54 #include <sys/user.h> 55 #include <sys/wait.h> 56 57 #ifdef __aarch64__ 58 #include <asm/hwcap.h> 59 #include <sys/auxv.h> 60 #endif 61 62 // Support hardware breakpoints in case it has not been defined 63 #ifndef TRAP_HWBKPT 64 #define TRAP_HWBKPT 4 65 #endif 66 67 #ifndef HWCAP2_MTE 68 #define HWCAP2_MTE (1 << 18) 69 #endif 70 71 using namespace lldb; 72 using namespace lldb_private; 73 using namespace lldb_private::process_linux; 74 using namespace llvm; 75 76 // Private bits we only need internally. 77 78 static bool ProcessVmReadvSupported() { 79 static bool is_supported; 80 static llvm::once_flag flag; 81 82 llvm::call_once(flag, [] { 83 Log *log = GetLog(POSIXLog::Process); 84 85 uint32_t source = 0x47424742; 86 uint32_t dest = 0; 87 88 struct iovec local, remote; 89 remote.iov_base = &source; 90 local.iov_base = &dest; 91 remote.iov_len = local.iov_len = sizeof source; 92 93 // We shall try if cross-process-memory reads work by attempting to read a 94 // value from our own process. 95 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); 96 is_supported = (res == sizeof(source) && source == dest); 97 if (is_supported) 98 LLDB_LOG(log, 99 "Detected kernel support for process_vm_readv syscall. " 100 "Fast memory reads enabled."); 101 else 102 LLDB_LOG(log, 103 "syscall process_vm_readv failed (error: {0}). Fast memory " 104 "reads disabled.", 105 llvm::sys::StrError()); 106 }); 107 108 return is_supported; 109 } 110 111 static void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) { 112 Log *log = GetLog(POSIXLog::Process); 113 if (!log) 114 return; 115 116 if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO)) 117 LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec()); 118 else 119 LLDB_LOG(log, "leaving STDIN as is"); 120 121 if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO)) 122 LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec()); 123 else 124 LLDB_LOG(log, "leaving STDOUT as is"); 125 126 if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO)) 127 LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec()); 128 else 129 LLDB_LOG(log, "leaving STDERR as is"); 130 131 int i = 0; 132 for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; 133 ++args, ++i) 134 LLDB_LOG(log, "arg {0}: '{1}'", i, *args); 135 } 136 137 static void DisplayBytes(StreamString &s, void *bytes, uint32_t count) { 138 uint8_t *ptr = (uint8_t *)bytes; 139 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 140 for (uint32_t i = 0; i < loop_count; i++) { 141 s.Printf("[%x]", *ptr); 142 ptr++; 143 } 144 } 145 146 static void PtraceDisplayBytes(int &req, void *data, size_t data_size) { 147 Log *log = GetLog(POSIXLog::Ptrace); 148 if (!log) 149 return; 150 StreamString buf; 151 152 switch (req) { 153 case PTRACE_POKETEXT: { 154 DisplayBytes(buf, &data, 8); 155 LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData()); 156 break; 157 } 158 case PTRACE_POKEDATA: { 159 DisplayBytes(buf, &data, 8); 160 LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData()); 161 break; 162 } 163 case PTRACE_POKEUSER: { 164 DisplayBytes(buf, &data, 8); 165 LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData()); 166 break; 167 } 168 case PTRACE_SETREGS: { 169 DisplayBytes(buf, data, data_size); 170 LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData()); 171 break; 172 } 173 case PTRACE_SETFPREGS: { 174 DisplayBytes(buf, data, data_size); 175 LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData()); 176 break; 177 } 178 case PTRACE_SETSIGINFO: { 179 DisplayBytes(buf, data, sizeof(siginfo_t)); 180 LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData()); 181 break; 182 } 183 case PTRACE_SETREGSET: { 184 // Extract iov_base from data, which is a pointer to the struct iovec 185 DisplayBytes(buf, *(void **)data, data_size); 186 LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData()); 187 break; 188 } 189 default: {} 190 } 191 } 192 193 static constexpr unsigned k_ptrace_word_size = sizeof(void *); 194 static_assert(sizeof(long) >= k_ptrace_word_size, 195 "Size of long must be larger than ptrace word size"); 196 197 // Simple helper function to ensure flags are enabled on the given file 198 // descriptor. 199 static Status EnsureFDFlags(int fd, int flags) { 200 Status error; 201 202 int status = fcntl(fd, F_GETFL); 203 if (status == -1) { 204 error.SetErrorToErrno(); 205 return error; 206 } 207 208 if (fcntl(fd, F_SETFL, status | flags) == -1) { 209 error.SetErrorToErrno(); 210 return error; 211 } 212 213 return error; 214 } 215 216 // Public Static Methods 217 218 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 219 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info, 220 NativeDelegate &native_delegate, 221 MainLoop &mainloop) const { 222 Log *log = GetLog(POSIXLog::Process); 223 224 MaybeLogLaunchInfo(launch_info); 225 226 Status status; 227 ::pid_t pid = ProcessLauncherPosixFork() 228 .LaunchProcess(launch_info, status) 229 .GetProcessId(); 230 LLDB_LOG(log, "pid = {0:x}", pid); 231 if (status.Fail()) { 232 LLDB_LOG(log, "failed to launch process: {0}", status); 233 return status.ToError(); 234 } 235 236 // Wait for the child process to trap on its call to execve. 237 int wstatus; 238 ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0); 239 assert(wpid == pid); 240 (void)wpid; 241 if (!WIFSTOPPED(wstatus)) { 242 LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}", 243 WaitStatus::Decode(wstatus)); 244 return llvm::make_error<StringError>("Could not sync with inferior process", 245 llvm::inconvertibleErrorCode()); 246 } 247 LLDB_LOG(log, "inferior started, now in stopped state"); 248 249 ProcessInstanceInfo Info; 250 if (!Host::GetProcessInfo(pid, Info)) { 251 return llvm::make_error<StringError>("Cannot get process architecture", 252 llvm::inconvertibleErrorCode()); 253 } 254 255 // Set the architecture to the exe architecture. 256 LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid, 257 Info.GetArchitecture().GetArchitectureName()); 258 259 status = SetDefaultPtraceOpts(pid); 260 if (status.Fail()) { 261 LLDB_LOG(log, "failed to set default ptrace options: {0}", status); 262 return status.ToError(); 263 } 264 265 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 266 pid, launch_info.GetPTY().ReleasePrimaryFileDescriptor(), native_delegate, 267 Info.GetArchitecture(), mainloop, {pid})); 268 } 269 270 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 271 NativeProcessLinux::Factory::Attach( 272 lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate, 273 MainLoop &mainloop) const { 274 Log *log = GetLog(POSIXLog::Process); 275 LLDB_LOG(log, "pid = {0:x}", pid); 276 277 // Retrieve the architecture for the running process. 278 ProcessInstanceInfo Info; 279 if (!Host::GetProcessInfo(pid, Info)) { 280 return llvm::make_error<StringError>("Cannot get process architecture", 281 llvm::inconvertibleErrorCode()); 282 } 283 284 auto tids_or = NativeProcessLinux::Attach(pid); 285 if (!tids_or) 286 return tids_or.takeError(); 287 288 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 289 pid, -1, native_delegate, Info.GetArchitecture(), mainloop, *tids_or)); 290 } 291 292 NativeProcessLinux::Extension 293 NativeProcessLinux::Factory::GetSupportedExtensions() const { 294 NativeProcessLinux::Extension supported = 295 Extension::multiprocess | Extension::fork | Extension::vfork | 296 Extension::pass_signals | Extension::auxv | Extension::libraries_svr4 | 297 Extension::siginfo_read; 298 299 #ifdef __aarch64__ 300 // At this point we do not have a process so read auxv directly. 301 if ((getauxval(AT_HWCAP2) & HWCAP2_MTE)) 302 supported |= Extension::memory_tagging; 303 #endif 304 305 return supported; 306 } 307 308 // Public Instance Methods 309 310 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd, 311 NativeDelegate &delegate, 312 const ArchSpec &arch, MainLoop &mainloop, 313 llvm::ArrayRef<::pid_t> tids) 314 : NativeProcessELF(pid, terminal_fd, delegate), m_arch(arch), 315 m_main_loop(mainloop), m_intel_pt_collector(*this) { 316 if (m_terminal_fd != -1) { 317 Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 318 assert(status.Success()); 319 } 320 321 Status status; 322 m_sigchld_handle = mainloop.RegisterSignal( 323 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status); 324 assert(m_sigchld_handle && status.Success()); 325 326 for (const auto &tid : tids) { 327 NativeThreadLinux &thread = AddThread(tid, /*resume*/ false); 328 ThreadWasCreated(thread); 329 } 330 331 // Let our process instance know the thread has stopped. 332 SetCurrentThreadID(tids[0]); 333 SetState(StateType::eStateStopped, false); 334 335 // Proccess any signals we received before installing our handler 336 SigchldHandler(); 337 } 338 339 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) { 340 Log *log = GetLog(POSIXLog::Process); 341 342 Status status; 343 // Use a map to keep track of the threads which we have attached/need to 344 // attach. 345 Host::TidMap tids_to_attach; 346 while (Host::FindProcessThreads(pid, tids_to_attach)) { 347 for (Host::TidMap::iterator it = tids_to_attach.begin(); 348 it != tids_to_attach.end();) { 349 if (it->second == false) { 350 lldb::tid_t tid = it->first; 351 352 // Attach to the requested process. 353 // An attach will cause the thread to stop with a SIGSTOP. 354 if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) { 355 // No such thread. The thread may have exited. More error handling 356 // may be needed. 357 if (status.GetError() == ESRCH) { 358 it = tids_to_attach.erase(it); 359 continue; 360 } 361 return status.ToError(); 362 } 363 364 int wpid = 365 llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL); 366 // Need to use __WALL otherwise we receive an error with errno=ECHLD At 367 // this point we should have a thread stopped if waitpid succeeds. 368 if (wpid < 0) { 369 // No such thread. The thread may have exited. More error handling 370 // may be needed. 371 if (errno == ESRCH) { 372 it = tids_to_attach.erase(it); 373 continue; 374 } 375 return llvm::errorCodeToError( 376 std::error_code(errno, std::generic_category())); 377 } 378 379 if ((status = SetDefaultPtraceOpts(tid)).Fail()) 380 return status.ToError(); 381 382 LLDB_LOG(log, "adding tid = {0}", tid); 383 it->second = true; 384 } 385 386 // move the loop forward 387 ++it; 388 } 389 } 390 391 size_t tid_count = tids_to_attach.size(); 392 if (tid_count == 0) 393 return llvm::make_error<StringError>("No such process", 394 llvm::inconvertibleErrorCode()); 395 396 std::vector<::pid_t> tids; 397 tids.reserve(tid_count); 398 for (const auto &p : tids_to_attach) 399 tids.push_back(p.first); 400 return std::move(tids); 401 } 402 403 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) { 404 long ptrace_opts = 0; 405 406 // Have the child raise an event on exit. This is used to keep the child in 407 // limbo until it is destroyed. 408 ptrace_opts |= PTRACE_O_TRACEEXIT; 409 410 // Have the tracer trace threads which spawn in the inferior process. 411 ptrace_opts |= PTRACE_O_TRACECLONE; 412 413 // Have the tracer notify us before execve returns (needed to disable legacy 414 // SIGTRAP generation) 415 ptrace_opts |= PTRACE_O_TRACEEXEC; 416 417 // Have the tracer trace forked children. 418 ptrace_opts |= PTRACE_O_TRACEFORK; 419 420 // Have the tracer trace vforks. 421 ptrace_opts |= PTRACE_O_TRACEVFORK; 422 423 // Have the tracer trace vfork-done in order to restore breakpoints after 424 // the child finishes sharing memory. 425 ptrace_opts |= PTRACE_O_TRACEVFORKDONE; 426 427 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts); 428 } 429 430 // Handles all waitpid events from the inferior process. 431 void NativeProcessLinux::MonitorCallback(NativeThreadLinux &thread, 432 WaitStatus status) { 433 Log *log = GetLog(LLDBLog::Process); 434 435 // Certain activities differ based on whether the pid is the tid of the main 436 // thread. 437 const bool is_main_thread = (thread.GetID() == GetID()); 438 439 // Handle when the thread exits. 440 if (status.type == WaitStatus::Exit || status.type == WaitStatus::Signal) { 441 LLDB_LOG(log, 442 "got exit status({0}) , tid = {1} ({2} main thread), process " 443 "state = {3}", 444 status, thread.GetID(), is_main_thread ? "is" : "is not", 445 GetState()); 446 447 // This is a thread that exited. Ensure we're not tracking it anymore. 448 StopTrackingThread(thread); 449 450 assert(!is_main_thread && "Main thread exits handled elsewhere"); 451 return; 452 } 453 454 siginfo_t info; 455 const auto info_err = GetSignalInfo(thread.GetID(), &info); 456 457 // Get details on the signal raised. 458 if (info_err.Success()) { 459 // We have retrieved the signal info. Dispatch appropriately. 460 if (info.si_signo == SIGTRAP) 461 MonitorSIGTRAP(info, thread); 462 else 463 MonitorSignal(info, thread); 464 } else { 465 if (info_err.GetError() == EINVAL) { 466 // This is a group stop reception for this tid. We can reach here if we 467 // reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the tracee, 468 // triggering the group-stop mechanism. Normally receiving these would 469 // stop the process, pending a SIGCONT. Simulating this state in a 470 // debugger is hard and is generally not needed (one use case is 471 // debugging background task being managed by a shell). For general use, 472 // it is sufficient to stop the process in a signal-delivery stop which 473 // happens before the group stop. This done by MonitorSignal and works 474 // correctly for all signals. 475 LLDB_LOG(log, 476 "received a group stop for pid {0} tid {1}. Transparent " 477 "handling of group stops not supported, resuming the " 478 "thread.", 479 GetID(), thread.GetID()); 480 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 481 } else { 482 // ptrace(GETSIGINFO) failed (but not due to group-stop). 483 484 // A return value of ESRCH means the thread/process has died in the mean 485 // time. This can (e.g.) happen when another thread does an exit_group(2) 486 // or the entire process get SIGKILLed. 487 // We can't do anything with this thread anymore, but we keep it around 488 // until we get the WIFEXITED event. 489 490 LLDB_LOG(log, 491 "GetSignalInfo({0}) failed: {1}, status = {2}, main_thread = " 492 "{3}. Expecting WIFEXITED soon.", 493 thread.GetID(), info_err, status, is_main_thread); 494 } 495 } 496 } 497 498 void NativeProcessLinux::WaitForCloneNotification(::pid_t pid) { 499 Log *log = GetLog(POSIXLog::Process); 500 501 // The PID is not tracked yet, let's wait for it to appear. 502 int status = -1; 503 LLDB_LOG(log, 504 "received clone event for pid {0}. pid not tracked yet, " 505 "waiting for it to appear...", 506 pid); 507 ::pid_t wait_pid = 508 llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &status, __WALL); 509 510 // It's theoretically possible to get other events if the entire process was 511 // SIGKILLed before we got a chance to check this. In that case, we'll just 512 // clean everything up when we get the process exit event. 513 514 LLDB_LOG(log, 515 "waitpid({0}, &status, __WALL) => {1} (errno: {2}, status = {3})", 516 pid, wait_pid, errno, WaitStatus::Decode(status)); 517 } 518 519 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, 520 NativeThreadLinux &thread) { 521 Log *log = GetLog(POSIXLog::Process); 522 const bool is_main_thread = (thread.GetID() == GetID()); 523 524 assert(info.si_signo == SIGTRAP && "Unexpected child signal!"); 525 526 switch (info.si_code) { 527 case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 528 case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 529 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { 530 // This can either mean a new thread or a new process spawned via 531 // clone(2) without SIGCHLD or CLONE_VFORK flag. Note that clone(2) 532 // can also cause PTRACE_EVENT_FORK and PTRACE_EVENT_VFORK if one 533 // of these flags are passed. 534 535 unsigned long event_message = 0; 536 if (GetEventMessage(thread.GetID(), &event_message).Fail()) { 537 LLDB_LOG(log, 538 "pid {0} received clone() event but GetEventMessage failed " 539 "so we don't know the new pid/tid", 540 thread.GetID()); 541 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 542 } else { 543 MonitorClone(thread, event_message, info.si_code >> 8); 544 } 545 546 break; 547 } 548 549 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): { 550 LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP); 551 552 // Exec clears any pending notifications. 553 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 554 555 // Remove all but the main thread here. Linux fork creates a new process 556 // which only copies the main thread. 557 LLDB_LOG(log, "exec received, stop tracking all but main thread"); 558 559 llvm::erase_if(m_threads, [&](std::unique_ptr<NativeThreadProtocol> &t) { 560 return t->GetID() != GetID(); 561 }); 562 assert(m_threads.size() == 1); 563 auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get()); 564 565 SetCurrentThreadID(main_thread->GetID()); 566 main_thread->SetStoppedByExec(); 567 568 // Tell coordinator about about the "new" (since exec) stopped main thread. 569 ThreadWasCreated(*main_thread); 570 571 // Let our delegate know we have just exec'd. 572 NotifyDidExec(); 573 574 // Let the process know we're stopped. 575 StopRunningThreads(main_thread->GetID()); 576 577 break; 578 } 579 580 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { 581 // The inferior process or one of its threads is about to exit. We don't 582 // want to do anything with the thread so we just resume it. In case we 583 // want to implement "break on thread exit" functionality, we would need to 584 // stop here. 585 586 unsigned long data = 0; 587 if (GetEventMessage(thread.GetID(), &data).Fail()) 588 data = -1; 589 590 LLDB_LOG(log, 591 "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, " 592 "WIFSIGNALED={2}, pid = {3}, main_thread = {4}", 593 data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(), 594 is_main_thread); 595 596 597 StateType state = thread.GetState(); 598 if (!StateIsRunningState(state)) { 599 // Due to a kernel bug, we may sometimes get this stop after the inferior 600 // gets a SIGKILL. This confuses our state tracking logic in 601 // ResumeThread(), since normally, we should not be receiving any ptrace 602 // events while the inferior is stopped. This makes sure that the 603 // inferior is resumed and exits normally. 604 state = eStateRunning; 605 } 606 ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); 607 608 if (is_main_thread) { 609 // Main thread report the read (WIFEXITED) event only after all threads in 610 // the process exit, so we need to stop tracking it here instead of in 611 // MonitorCallback 612 StopTrackingThread(thread); 613 } 614 615 break; 616 } 617 618 case (SIGTRAP | (PTRACE_EVENT_VFORK_DONE << 8)): { 619 if (bool(m_enabled_extensions & Extension::vfork)) { 620 thread.SetStoppedByVForkDone(); 621 StopRunningThreads(thread.GetID()); 622 } 623 else 624 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 625 break; 626 } 627 628 case 0: 629 case TRAP_TRACE: // We receive this on single stepping. 630 case TRAP_HWBKPT: // We receive this on watchpoint hit 631 { 632 // If a watchpoint was hit, report it 633 uint32_t wp_index; 634 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 635 wp_index, (uintptr_t)info.si_addr); 636 if (error.Fail()) 637 LLDB_LOG(log, 638 "received error while checking for watchpoint hits, pid = " 639 "{0}, error = {1}", 640 thread.GetID(), error); 641 if (wp_index != LLDB_INVALID_INDEX32) { 642 MonitorWatchpoint(thread, wp_index); 643 break; 644 } 645 646 // If a breakpoint was hit, report it 647 uint32_t bp_index; 648 error = thread.GetRegisterContext().GetHardwareBreakHitIndex( 649 bp_index, (uintptr_t)info.si_addr); 650 if (error.Fail()) 651 LLDB_LOG(log, "received error while checking for hardware " 652 "breakpoint hits, pid = {0}, error = {1}", 653 thread.GetID(), error); 654 if (bp_index != LLDB_INVALID_INDEX32) { 655 MonitorBreakpoint(thread); 656 break; 657 } 658 659 // Otherwise, report step over 660 MonitorTrace(thread); 661 break; 662 } 663 664 case SI_KERNEL: 665 #if defined __mips__ 666 // For mips there is no special signal for watchpoint So we check for 667 // watchpoint in kernel trap 668 { 669 // If a watchpoint was hit, report it 670 uint32_t wp_index; 671 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 672 wp_index, LLDB_INVALID_ADDRESS); 673 if (error.Fail()) 674 LLDB_LOG(log, 675 "received error while checking for watchpoint hits, pid = " 676 "{0}, error = {1}", 677 thread.GetID(), error); 678 if (wp_index != LLDB_INVALID_INDEX32) { 679 MonitorWatchpoint(thread, wp_index); 680 break; 681 } 682 } 683 // NO BREAK 684 #endif 685 case TRAP_BRKPT: 686 MonitorBreakpoint(thread); 687 break; 688 689 case SIGTRAP: 690 case (SIGTRAP | 0x80): 691 LLDB_LOG( 692 log, 693 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 694 info.si_code, GetID(), thread.GetID()); 695 696 // Ignore these signals until we know more about them. 697 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 698 break; 699 700 default: 701 LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}", 702 info.si_code, GetID(), thread.GetID()); 703 MonitorSignal(info, thread); 704 break; 705 } 706 } 707 708 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) { 709 Log *log = GetLog(POSIXLog::Process); 710 LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID()); 711 712 // This thread is currently stopped. 713 thread.SetStoppedByTrace(); 714 715 StopRunningThreads(thread.GetID()); 716 } 717 718 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) { 719 Log *log = GetLog(LLDBLog::Process | LLDBLog::Breakpoints); 720 LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID()); 721 722 // Mark the thread as stopped at breakpoint. 723 thread.SetStoppedByBreakpoint(); 724 FixupBreakpointPCAsNeeded(thread); 725 726 if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != 727 m_threads_stepping_with_breakpoint.end()) 728 thread.SetStoppedByTrace(); 729 730 StopRunningThreads(thread.GetID()); 731 } 732 733 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, 734 uint32_t wp_index) { 735 Log *log = GetLog(LLDBLog::Process | LLDBLog::Watchpoints); 736 LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}", 737 thread.GetID(), wp_index); 738 739 // Mark the thread as stopped at watchpoint. The address is at 740 // (lldb::addr_t)info->si_addr if we need it. 741 thread.SetStoppedByWatchpoint(wp_index); 742 743 // We need to tell all other running threads before we notify the delegate 744 // about this stop. 745 StopRunningThreads(thread.GetID()); 746 } 747 748 void NativeProcessLinux::MonitorSignal(const siginfo_t &info, 749 NativeThreadLinux &thread) { 750 const int signo = info.si_signo; 751 const bool is_from_llgs = info.si_pid == getpid(); 752 753 Log *log = GetLog(POSIXLog::Process); 754 755 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 756 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2) 757 // or raise(3). Similarly for tgkill(2) on Linux. 758 // 759 // IOW, user generated signals never generate what we consider to be a 760 // "crash". 761 // 762 // Similarly, ACK signals generated by this monitor. 763 764 // Handle the signal. 765 LLDB_LOG(log, 766 "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, " 767 "waitpid pid = {4})", 768 Host::GetSignalAsCString(signo), signo, info.si_code, 769 thread.GetID()); 770 771 // Check for thread stop notification. 772 if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) { 773 // This is a tgkill()-based stop. 774 LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID()); 775 776 // Check that we're not already marked with a stop reason. Note this thread 777 // really shouldn't already be marked as stopped - if we were, that would 778 // imply that the kernel signaled us with the thread stopping which we 779 // handled and marked as stopped, and that, without an intervening resume, 780 // we received another stop. It is more likely that we are missing the 781 // marking of a run state somewhere if we find that the thread was marked 782 // as stopped. 783 const StateType thread_state = thread.GetState(); 784 if (!StateIsStoppedState(thread_state, false)) { 785 // An inferior thread has stopped because of a SIGSTOP we have sent it. 786 // Generally, these are not important stops and we don't want to report 787 // them as they are just used to stop other threads when one thread (the 788 // one with the *real* stop reason) hits a breakpoint (watchpoint, 789 // etc...). However, in the case of an asynchronous Interrupt(), this 790 // *is* the real stop reason, so we leave the signal intact if this is 791 // the thread that was chosen as the triggering thread. 792 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 793 if (m_pending_notification_tid == thread.GetID()) 794 thread.SetStoppedBySignal(SIGSTOP, &info); 795 else 796 thread.SetStoppedWithNoReason(); 797 798 SetCurrentThreadID(thread.GetID()); 799 SignalIfAllThreadsStopped(); 800 } else { 801 // We can end up here if stop was initiated by LLGS but by this time a 802 // thread stop has occurred - maybe initiated by another event. 803 Status error = ResumeThread(thread, thread.GetState(), 0); 804 if (error.Fail()) 805 LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(), 806 error); 807 } 808 } else { 809 LLDB_LOG(log, 810 "pid {0} tid {1}, thread was already marked as a stopped " 811 "state (state={2}), leaving stop signal as is", 812 GetID(), thread.GetID(), thread_state); 813 SignalIfAllThreadsStopped(); 814 } 815 816 // Done handling. 817 return; 818 } 819 820 // Check if debugger should stop at this signal or just ignore it and resume 821 // the inferior. 822 if (m_signals_to_ignore.contains(signo)) { 823 ResumeThread(thread, thread.GetState(), signo); 824 return; 825 } 826 827 // This thread is stopped. 828 LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo)); 829 thread.SetStoppedBySignal(signo, &info); 830 831 // Send a stop to the debugger after we get all other threads to stop. 832 StopRunningThreads(thread.GetID()); 833 } 834 835 bool NativeProcessLinux::MonitorClone(NativeThreadLinux &parent, 836 lldb::pid_t child_pid, int event) { 837 Log *log = GetLog(POSIXLog::Process); 838 LLDB_LOG(log, "parent_tid={0}, child_pid={1}, event={2}", parent.GetID(), 839 child_pid, event); 840 841 WaitForCloneNotification(child_pid); 842 843 switch (event) { 844 case PTRACE_EVENT_CLONE: { 845 // PTRACE_EVENT_CLONE can either mean a new thread or a new process. 846 // Try to grab the new process' PGID to figure out which one it is. 847 // If PGID is the same as the PID, then it's a new process. Otherwise, 848 // it's a thread. 849 auto tgid_ret = getPIDForTID(child_pid); 850 if (tgid_ret != child_pid) { 851 // A new thread should have PGID matching our process' PID. 852 assert(!tgid_ret || *tgid_ret == GetID()); 853 854 NativeThreadLinux &child_thread = AddThread(child_pid, /*resume*/ true); 855 ThreadWasCreated(child_thread); 856 857 // Resume the parent. 858 ResumeThread(parent, parent.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 859 break; 860 } 861 } 862 LLVM_FALLTHROUGH; 863 case PTRACE_EVENT_FORK: 864 case PTRACE_EVENT_VFORK: { 865 bool is_vfork = event == PTRACE_EVENT_VFORK; 866 std::unique_ptr<NativeProcessLinux> child_process{new NativeProcessLinux( 867 static_cast<::pid_t>(child_pid), m_terminal_fd, m_delegate, m_arch, 868 m_main_loop, {static_cast<::pid_t>(child_pid)})}; 869 if (!is_vfork) 870 child_process->m_software_breakpoints = m_software_breakpoints; 871 872 Extension expected_ext = is_vfork ? Extension::vfork : Extension::fork; 873 if (bool(m_enabled_extensions & expected_ext)) { 874 m_delegate.NewSubprocess(this, std::move(child_process)); 875 // NB: non-vfork clone() is reported as fork 876 parent.SetStoppedByFork(is_vfork, child_pid); 877 StopRunningThreads(parent.GetID()); 878 } else { 879 child_process->Detach(); 880 ResumeThread(parent, parent.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 881 } 882 break; 883 } 884 default: 885 llvm_unreachable("unknown clone_info.event"); 886 } 887 888 return true; 889 } 890 891 bool NativeProcessLinux::SupportHardwareSingleStepping() const { 892 if (m_arch.GetMachine() == llvm::Triple::arm || m_arch.IsMIPS()) 893 return false; 894 return true; 895 } 896 897 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) { 898 Log *log = GetLog(POSIXLog::Process); 899 LLDB_LOG(log, "pid {0}", GetID()); 900 901 NotifyTracersProcessWillResume(); 902 903 bool software_single_step = !SupportHardwareSingleStepping(); 904 905 if (software_single_step) { 906 for (const auto &thread : m_threads) { 907 assert(thread && "thread list should not contain NULL threads"); 908 909 const ResumeAction *const action = 910 resume_actions.GetActionForThread(thread->GetID(), true); 911 if (action == nullptr) 912 continue; 913 914 if (action->state == eStateStepping) { 915 Status error = SetupSoftwareSingleStepping( 916 static_cast<NativeThreadLinux &>(*thread)); 917 if (error.Fail()) 918 return error; 919 } 920 } 921 } 922 923 for (const auto &thread : m_threads) { 924 assert(thread && "thread list should not contain NULL threads"); 925 926 const ResumeAction *const action = 927 resume_actions.GetActionForThread(thread->GetID(), true); 928 929 if (action == nullptr) { 930 LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(), 931 thread->GetID()); 932 continue; 933 } 934 935 LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}", 936 action->state, GetID(), thread->GetID()); 937 938 switch (action->state) { 939 case eStateRunning: 940 case eStateStepping: { 941 // Run the thread, possibly feeding it the signal. 942 const int signo = action->signal; 943 ResumeThread(static_cast<NativeThreadLinux &>(*thread), action->state, 944 signo); 945 break; 946 } 947 948 case eStateSuspended: 949 case eStateStopped: 950 break; 951 952 default: 953 return Status("NativeProcessLinux::%s (): unexpected state %s specified " 954 "for pid %" PRIu64 ", tid %" PRIu64, 955 __FUNCTION__, StateAsCString(action->state), GetID(), 956 thread->GetID()); 957 } 958 } 959 960 return Status(); 961 } 962 963 Status NativeProcessLinux::Halt() { 964 Status error; 965 966 if (kill(GetID(), SIGSTOP) != 0) 967 error.SetErrorToErrno(); 968 969 return error; 970 } 971 972 Status NativeProcessLinux::Detach() { 973 Status error; 974 975 // Stop monitoring the inferior. 976 m_sigchld_handle.reset(); 977 978 // Tell ptrace to detach from the process. 979 if (GetID() == LLDB_INVALID_PROCESS_ID) 980 return error; 981 982 for (const auto &thread : m_threads) { 983 Status e = Detach(thread->GetID()); 984 if (e.Fail()) 985 error = 986 e; // Save the error, but still attempt to detach from other threads. 987 } 988 989 m_intel_pt_collector.Clear(); 990 991 return error; 992 } 993 994 Status NativeProcessLinux::Signal(int signo) { 995 Status error; 996 997 Log *log = GetLog(POSIXLog::Process); 998 LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo, 999 Host::GetSignalAsCString(signo), GetID()); 1000 1001 if (kill(GetID(), signo)) 1002 error.SetErrorToErrno(); 1003 1004 return error; 1005 } 1006 1007 Status NativeProcessLinux::Interrupt() { 1008 // Pick a running thread (or if none, a not-dead stopped thread) as the 1009 // chosen thread that will be the stop-reason thread. 1010 Log *log = GetLog(POSIXLog::Process); 1011 1012 NativeThreadProtocol *running_thread = nullptr; 1013 NativeThreadProtocol *stopped_thread = nullptr; 1014 1015 LLDB_LOG(log, "selecting running thread for interrupt target"); 1016 for (const auto &thread : m_threads) { 1017 // If we have a running or stepping thread, we'll call that the target of 1018 // the interrupt. 1019 const auto thread_state = thread->GetState(); 1020 if (thread_state == eStateRunning || thread_state == eStateStepping) { 1021 running_thread = thread.get(); 1022 break; 1023 } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) { 1024 // Remember the first non-dead stopped thread. We'll use that as a 1025 // backup if there are no running threads. 1026 stopped_thread = thread.get(); 1027 } 1028 } 1029 1030 if (!running_thread && !stopped_thread) { 1031 Status error("found no running/stepping or live stopped threads as target " 1032 "for interrupt"); 1033 LLDB_LOG(log, "skipping due to error: {0}", error); 1034 1035 return error; 1036 } 1037 1038 NativeThreadProtocol *deferred_signal_thread = 1039 running_thread ? running_thread : stopped_thread; 1040 1041 LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(), 1042 running_thread ? "running" : "stopped", 1043 deferred_signal_thread->GetID()); 1044 1045 StopRunningThreads(deferred_signal_thread->GetID()); 1046 1047 return Status(); 1048 } 1049 1050 Status NativeProcessLinux::Kill() { 1051 Log *log = GetLog(POSIXLog::Process); 1052 LLDB_LOG(log, "pid {0}", GetID()); 1053 1054 Status error; 1055 1056 switch (m_state) { 1057 case StateType::eStateInvalid: 1058 case StateType::eStateExited: 1059 case StateType::eStateCrashed: 1060 case StateType::eStateDetached: 1061 case StateType::eStateUnloaded: 1062 // Nothing to do - the process is already dead. 1063 LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(), 1064 m_state); 1065 return error; 1066 1067 case StateType::eStateConnected: 1068 case StateType::eStateAttaching: 1069 case StateType::eStateLaunching: 1070 case StateType::eStateStopped: 1071 case StateType::eStateRunning: 1072 case StateType::eStateStepping: 1073 case StateType::eStateSuspended: 1074 // We can try to kill a process in these states. 1075 break; 1076 } 1077 1078 if (kill(GetID(), SIGKILL) != 0) { 1079 error.SetErrorToErrno(); 1080 return error; 1081 } 1082 1083 return error; 1084 } 1085 1086 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr, 1087 MemoryRegionInfo &range_info) { 1088 // FIXME review that the final memory region returned extends to the end of 1089 // the virtual address space, 1090 // with no perms if it is not mapped. 1091 1092 // Use an approach that reads memory regions from /proc/{pid}/maps. Assume 1093 // proc maps entries are in ascending order. 1094 // FIXME assert if we find differently. 1095 1096 if (m_supports_mem_region == LazyBool::eLazyBoolNo) { 1097 // We're done. 1098 return Status("unsupported"); 1099 } 1100 1101 Status error = PopulateMemoryRegionCache(); 1102 if (error.Fail()) { 1103 return error; 1104 } 1105 1106 lldb::addr_t prev_base_address = 0; 1107 1108 // FIXME start by finding the last region that is <= target address using 1109 // binary search. Data is sorted. 1110 // There can be a ton of regions on pthreads apps with lots of threads. 1111 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end(); 1112 ++it) { 1113 MemoryRegionInfo &proc_entry_info = it->first; 1114 1115 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 1116 assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) && 1117 "descending /proc/pid/maps entries detected, unexpected"); 1118 prev_base_address = proc_entry_info.GetRange().GetRangeBase(); 1119 UNUSED_IF_ASSERT_DISABLED(prev_base_address); 1120 1121 // If the target address comes before this entry, indicate distance to next 1122 // region. 1123 if (load_addr < proc_entry_info.GetRange().GetRangeBase()) { 1124 range_info.GetRange().SetRangeBase(load_addr); 1125 range_info.GetRange().SetByteSize( 1126 proc_entry_info.GetRange().GetRangeBase() - load_addr); 1127 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1128 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1129 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1130 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1131 1132 return error; 1133 } else if (proc_entry_info.GetRange().Contains(load_addr)) { 1134 // The target address is within the memory region we're processing here. 1135 range_info = proc_entry_info; 1136 return error; 1137 } 1138 1139 // The target memory address comes somewhere after the region we just 1140 // parsed. 1141 } 1142 1143 // If we made it here, we didn't find an entry that contained the given 1144 // address. Return the load_addr as start and the amount of bytes betwwen 1145 // load address and the end of the memory as size. 1146 range_info.GetRange().SetRangeBase(load_addr); 1147 range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS); 1148 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1149 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1150 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1151 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1152 return error; 1153 } 1154 1155 Status NativeProcessLinux::PopulateMemoryRegionCache() { 1156 Log *log = GetLog(POSIXLog::Process); 1157 1158 // If our cache is empty, pull the latest. There should always be at least 1159 // one memory region if memory region handling is supported. 1160 if (!m_mem_region_cache.empty()) { 1161 LLDB_LOG(log, "reusing {0} cached memory region entries", 1162 m_mem_region_cache.size()); 1163 return Status(); 1164 } 1165 1166 Status Result; 1167 LinuxMapCallback callback = [&](llvm::Expected<MemoryRegionInfo> Info) { 1168 if (Info) { 1169 FileSpec file_spec(Info->GetName().GetCString()); 1170 FileSystem::Instance().Resolve(file_spec); 1171 m_mem_region_cache.emplace_back(*Info, file_spec); 1172 return true; 1173 } 1174 1175 Result = Info.takeError(); 1176 m_supports_mem_region = LazyBool::eLazyBoolNo; 1177 LLDB_LOG(log, "failed to parse proc maps: {0}", Result); 1178 return false; 1179 }; 1180 1181 // Linux kernel since 2.6.14 has /proc/{pid}/smaps 1182 // if CONFIG_PROC_PAGE_MONITOR is enabled 1183 auto BufferOrError = getProcFile(GetID(), GetCurrentThreadID(), "smaps"); 1184 if (BufferOrError) 1185 ParseLinuxSMapRegions(BufferOrError.get()->getBuffer(), callback); 1186 else { 1187 BufferOrError = getProcFile(GetID(), GetCurrentThreadID(), "maps"); 1188 if (!BufferOrError) { 1189 m_supports_mem_region = LazyBool::eLazyBoolNo; 1190 return BufferOrError.getError(); 1191 } 1192 1193 ParseLinuxMapRegions(BufferOrError.get()->getBuffer(), callback); 1194 } 1195 1196 if (Result.Fail()) 1197 return Result; 1198 1199 if (m_mem_region_cache.empty()) { 1200 // No entries after attempting to read them. This shouldn't happen if 1201 // /proc/{pid}/maps is supported. Assume we don't support map entries via 1202 // procfs. 1203 m_supports_mem_region = LazyBool::eLazyBoolNo; 1204 LLDB_LOG(log, 1205 "failed to find any procfs maps entries, assuming no support " 1206 "for memory region metadata retrieval"); 1207 return Status("not supported"); 1208 } 1209 1210 LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps", 1211 m_mem_region_cache.size(), GetID()); 1212 1213 // We support memory retrieval, remember that. 1214 m_supports_mem_region = LazyBool::eLazyBoolYes; 1215 return Status(); 1216 } 1217 1218 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) { 1219 Log *log = GetLog(POSIXLog::Process); 1220 LLDB_LOG(log, "newBumpId={0}", newBumpId); 1221 LLDB_LOG(log, "clearing {0} entries from memory region cache", 1222 m_mem_region_cache.size()); 1223 m_mem_region_cache.clear(); 1224 } 1225 1226 llvm::Expected<uint64_t> 1227 NativeProcessLinux::Syscall(llvm::ArrayRef<uint64_t> args) { 1228 PopulateMemoryRegionCache(); 1229 auto region_it = llvm::find_if(m_mem_region_cache, [](const auto &pair) { 1230 return pair.first.GetExecutable() == MemoryRegionInfo::eYes; 1231 }); 1232 if (region_it == m_mem_region_cache.end()) 1233 return llvm::createStringError(llvm::inconvertibleErrorCode(), 1234 "No executable memory region found!"); 1235 1236 addr_t exe_addr = region_it->first.GetRange().GetRangeBase(); 1237 1238 NativeThreadLinux &thread = *GetCurrentThread(); 1239 assert(thread.GetState() == eStateStopped); 1240 NativeRegisterContextLinux ®_ctx = thread.GetRegisterContext(); 1241 1242 NativeRegisterContextLinux::SyscallData syscall_data = 1243 *reg_ctx.GetSyscallData(); 1244 1245 WritableDataBufferSP registers_sp; 1246 if (llvm::Error Err = reg_ctx.ReadAllRegisterValues(registers_sp).ToError()) 1247 return std::move(Err); 1248 auto restore_regs = llvm::make_scope_exit( 1249 [&] { reg_ctx.WriteAllRegisterValues(registers_sp); }); 1250 1251 llvm::SmallVector<uint8_t, 8> memory(syscall_data.Insn.size()); 1252 size_t bytes_read; 1253 if (llvm::Error Err = 1254 ReadMemory(exe_addr, memory.data(), memory.size(), bytes_read) 1255 .ToError()) { 1256 return std::move(Err); 1257 } 1258 1259 auto restore_mem = llvm::make_scope_exit( 1260 [&] { WriteMemory(exe_addr, memory.data(), memory.size(), bytes_read); }); 1261 1262 if (llvm::Error Err = reg_ctx.SetPC(exe_addr).ToError()) 1263 return std::move(Err); 1264 1265 for (const auto &zip : llvm::zip_first(args, syscall_data.Args)) { 1266 if (llvm::Error Err = 1267 reg_ctx 1268 .WriteRegisterFromUnsigned(std::get<1>(zip), std::get<0>(zip)) 1269 .ToError()) { 1270 return std::move(Err); 1271 } 1272 } 1273 if (llvm::Error Err = WriteMemory(exe_addr, syscall_data.Insn.data(), 1274 syscall_data.Insn.size(), bytes_read) 1275 .ToError()) 1276 return std::move(Err); 1277 1278 m_mem_region_cache.clear(); 1279 1280 // With software single stepping the syscall insn buffer must also include a 1281 // trap instruction to stop the process. 1282 int req = SupportHardwareSingleStepping() ? PTRACE_SINGLESTEP : PTRACE_CONT; 1283 if (llvm::Error Err = 1284 PtraceWrapper(req, thread.GetID(), nullptr, nullptr).ToError()) 1285 return std::move(Err); 1286 1287 int status; 1288 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, thread.GetID(), 1289 &status, __WALL); 1290 if (wait_pid == -1) { 1291 return llvm::errorCodeToError( 1292 std::error_code(errno, std::generic_category())); 1293 } 1294 assert((unsigned)wait_pid == thread.GetID()); 1295 1296 uint64_t result = reg_ctx.ReadRegisterAsUnsigned(syscall_data.Result, -ESRCH); 1297 1298 // Values larger than this are actually negative errno numbers. 1299 uint64_t errno_threshold = 1300 (uint64_t(-1) >> (64 - 8 * m_arch.GetAddressByteSize())) - 0x1000; 1301 if (result > errno_threshold) { 1302 return llvm::errorCodeToError( 1303 std::error_code(-result & 0xfff, std::generic_category())); 1304 } 1305 1306 return result; 1307 } 1308 1309 llvm::Expected<addr_t> 1310 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions) { 1311 1312 llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data = 1313 GetCurrentThread()->GetRegisterContext().GetMmapData(); 1314 if (!mmap_data) 1315 return llvm::make_error<UnimplementedError>(); 1316 1317 unsigned prot = PROT_NONE; 1318 assert((permissions & (ePermissionsReadable | ePermissionsWritable | 1319 ePermissionsExecutable)) == permissions && 1320 "Unknown permission!"); 1321 if (permissions & ePermissionsReadable) 1322 prot |= PROT_READ; 1323 if (permissions & ePermissionsWritable) 1324 prot |= PROT_WRITE; 1325 if (permissions & ePermissionsExecutable) 1326 prot |= PROT_EXEC; 1327 1328 llvm::Expected<uint64_t> Result = 1329 Syscall({mmap_data->SysMmap, 0, size, prot, MAP_ANONYMOUS | MAP_PRIVATE, 1330 uint64_t(-1), 0}); 1331 if (Result) 1332 m_allocated_memory.try_emplace(*Result, size); 1333 return Result; 1334 } 1335 1336 llvm::Error NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) { 1337 llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data = 1338 GetCurrentThread()->GetRegisterContext().GetMmapData(); 1339 if (!mmap_data) 1340 return llvm::make_error<UnimplementedError>(); 1341 1342 auto it = m_allocated_memory.find(addr); 1343 if (it == m_allocated_memory.end()) 1344 return llvm::createStringError(llvm::errc::invalid_argument, 1345 "Memory not allocated by the debugger."); 1346 1347 llvm::Expected<uint64_t> Result = 1348 Syscall({mmap_data->SysMunmap, addr, it->second}); 1349 if (!Result) 1350 return Result.takeError(); 1351 1352 m_allocated_memory.erase(it); 1353 return llvm::Error::success(); 1354 } 1355 1356 Status NativeProcessLinux::ReadMemoryTags(int32_t type, lldb::addr_t addr, 1357 size_t len, 1358 std::vector<uint8_t> &tags) { 1359 llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details = 1360 GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type); 1361 if (!details) 1362 return Status(details.takeError()); 1363 1364 // Ignore 0 length read 1365 if (!len) 1366 return Status(); 1367 1368 // lldb will align the range it requests but it is not required to by 1369 // the protocol so we'll do it again just in case. 1370 // Remove tag bits too. Ptrace calls may work regardless but that 1371 // is not a guarantee. 1372 MemoryTagManager::TagRange range(details->manager->RemoveTagBits(addr), len); 1373 range = details->manager->ExpandToGranule(range); 1374 1375 // Allocate enough space for all tags to be read 1376 size_t num_tags = range.GetByteSize() / details->manager->GetGranuleSize(); 1377 tags.resize(num_tags * details->manager->GetTagSizeInBytes()); 1378 1379 struct iovec tags_iovec; 1380 uint8_t *dest = tags.data(); 1381 lldb::addr_t read_addr = range.GetRangeBase(); 1382 1383 // This call can return partial data so loop until we error or 1384 // get all tags back. 1385 while (num_tags) { 1386 tags_iovec.iov_base = dest; 1387 tags_iovec.iov_len = num_tags; 1388 1389 Status error = NativeProcessLinux::PtraceWrapper( 1390 details->ptrace_read_req, GetCurrentThreadID(), 1391 reinterpret_cast<void *>(read_addr), static_cast<void *>(&tags_iovec), 1392 0, nullptr); 1393 1394 if (error.Fail()) { 1395 // Discard partial reads 1396 tags.resize(0); 1397 return error; 1398 } 1399 1400 size_t tags_read = tags_iovec.iov_len; 1401 assert(tags_read && (tags_read <= num_tags)); 1402 1403 dest += tags_read * details->manager->GetTagSizeInBytes(); 1404 read_addr += details->manager->GetGranuleSize() * tags_read; 1405 num_tags -= tags_read; 1406 } 1407 1408 return Status(); 1409 } 1410 1411 Status NativeProcessLinux::WriteMemoryTags(int32_t type, lldb::addr_t addr, 1412 size_t len, 1413 const std::vector<uint8_t> &tags) { 1414 llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details = 1415 GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type); 1416 if (!details) 1417 return Status(details.takeError()); 1418 1419 // Ignore 0 length write 1420 if (!len) 1421 return Status(); 1422 1423 // lldb will align the range it requests but it is not required to by 1424 // the protocol so we'll do it again just in case. 1425 // Remove tag bits too. Ptrace calls may work regardless but that 1426 // is not a guarantee. 1427 MemoryTagManager::TagRange range(details->manager->RemoveTagBits(addr), len); 1428 range = details->manager->ExpandToGranule(range); 1429 1430 // Not checking number of tags here, we may repeat them below 1431 llvm::Expected<std::vector<lldb::addr_t>> unpacked_tags_or_err = 1432 details->manager->UnpackTagsData(tags); 1433 if (!unpacked_tags_or_err) 1434 return Status(unpacked_tags_or_err.takeError()); 1435 1436 llvm::Expected<std::vector<lldb::addr_t>> repeated_tags_or_err = 1437 details->manager->RepeatTagsForRange(*unpacked_tags_or_err, range); 1438 if (!repeated_tags_or_err) 1439 return Status(repeated_tags_or_err.takeError()); 1440 1441 // Repack them for ptrace to use 1442 llvm::Expected<std::vector<uint8_t>> final_tag_data = 1443 details->manager->PackTags(*repeated_tags_or_err); 1444 if (!final_tag_data) 1445 return Status(final_tag_data.takeError()); 1446 1447 struct iovec tags_vec; 1448 uint8_t *src = final_tag_data->data(); 1449 lldb::addr_t write_addr = range.GetRangeBase(); 1450 // unpacked tags size because the number of bytes per tag might not be 1 1451 size_t num_tags = repeated_tags_or_err->size(); 1452 1453 // This call can partially write tags, so we loop until we 1454 // error or all tags have been written. 1455 while (num_tags > 0) { 1456 tags_vec.iov_base = src; 1457 tags_vec.iov_len = num_tags; 1458 1459 Status error = NativeProcessLinux::PtraceWrapper( 1460 details->ptrace_write_req, GetCurrentThreadID(), 1461 reinterpret_cast<void *>(write_addr), static_cast<void *>(&tags_vec), 0, 1462 nullptr); 1463 1464 if (error.Fail()) { 1465 // Don't attempt to restore the original values in the case of a partial 1466 // write 1467 return error; 1468 } 1469 1470 size_t tags_written = tags_vec.iov_len; 1471 assert(tags_written && (tags_written <= num_tags)); 1472 1473 src += tags_written * details->manager->GetTagSizeInBytes(); 1474 write_addr += details->manager->GetGranuleSize() * tags_written; 1475 num_tags -= tags_written; 1476 } 1477 1478 return Status(); 1479 } 1480 1481 size_t NativeProcessLinux::UpdateThreads() { 1482 // The NativeProcessLinux monitoring threads are always up to date with 1483 // respect to thread state and they keep the thread list populated properly. 1484 // All this method needs to do is return the thread count. 1485 return m_threads.size(); 1486 } 1487 1488 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size, 1489 bool hardware) { 1490 if (hardware) 1491 return SetHardwareBreakpoint(addr, size); 1492 else 1493 return SetSoftwareBreakpoint(addr, size); 1494 } 1495 1496 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) { 1497 if (hardware) 1498 return RemoveHardwareBreakpoint(addr); 1499 else 1500 return NativeProcessProtocol::RemoveBreakpoint(addr); 1501 } 1502 1503 llvm::Expected<llvm::ArrayRef<uint8_t>> 1504 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(size_t size_hint) { 1505 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 1506 // linux kernel does otherwise. 1507 static const uint8_t g_arm_opcode[] = {0xf0, 0x01, 0xf0, 0xe7}; 1508 static const uint8_t g_thumb_opcode[] = {0x01, 0xde}; 1509 1510 switch (GetArchitecture().GetMachine()) { 1511 case llvm::Triple::arm: 1512 switch (size_hint) { 1513 case 2: 1514 return llvm::makeArrayRef(g_thumb_opcode); 1515 case 4: 1516 return llvm::makeArrayRef(g_arm_opcode); 1517 default: 1518 return llvm::createStringError(llvm::inconvertibleErrorCode(), 1519 "Unrecognised trap opcode size hint!"); 1520 } 1521 default: 1522 return NativeProcessProtocol::GetSoftwareBreakpointTrapOpcode(size_hint); 1523 } 1524 } 1525 1526 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size, 1527 size_t &bytes_read) { 1528 if (ProcessVmReadvSupported()) { 1529 // The process_vm_readv path is about 50 times faster than ptrace api. We 1530 // want to use this syscall if it is supported. 1531 1532 struct iovec local_iov, remote_iov; 1533 local_iov.iov_base = buf; 1534 local_iov.iov_len = size; 1535 remote_iov.iov_base = reinterpret_cast<void *>(addr); 1536 remote_iov.iov_len = size; 1537 1538 bytes_read = process_vm_readv(GetCurrentThreadID(), &local_iov, 1, 1539 &remote_iov, 1, 0); 1540 const bool success = bytes_read == size; 1541 1542 Log *log = GetLog(POSIXLog::Process); 1543 LLDB_LOG(log, 1544 "using process_vm_readv to read {0} bytes from inferior " 1545 "address {1:x}: {2}", 1546 size, addr, success ? "Success" : llvm::sys::StrError(errno)); 1547 1548 if (success) 1549 return Status(); 1550 // else the call failed for some reason, let's retry the read using ptrace 1551 // api. 1552 } 1553 1554 unsigned char *dst = static_cast<unsigned char *>(buf); 1555 size_t remainder; 1556 long data; 1557 1558 Log *log = GetLog(POSIXLog::Memory); 1559 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1560 1561 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { 1562 Status error = NativeProcessLinux::PtraceWrapper( 1563 PTRACE_PEEKDATA, GetCurrentThreadID(), (void *)addr, nullptr, 0, &data); 1564 if (error.Fail()) 1565 return error; 1566 1567 remainder = size - bytes_read; 1568 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1569 1570 // Copy the data into our buffer 1571 memcpy(dst, &data, remainder); 1572 1573 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1574 addr += k_ptrace_word_size; 1575 dst += k_ptrace_word_size; 1576 } 1577 return Status(); 1578 } 1579 1580 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, 1581 size_t size, size_t &bytes_written) { 1582 const unsigned char *src = static_cast<const unsigned char *>(buf); 1583 size_t remainder; 1584 Status error; 1585 1586 Log *log = GetLog(POSIXLog::Memory); 1587 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1588 1589 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { 1590 remainder = size - bytes_written; 1591 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1592 1593 if (remainder == k_ptrace_word_size) { 1594 unsigned long data = 0; 1595 memcpy(&data, src, k_ptrace_word_size); 1596 1597 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1598 error = NativeProcessLinux::PtraceWrapper( 1599 PTRACE_POKEDATA, GetCurrentThreadID(), (void *)addr, (void *)data); 1600 if (error.Fail()) 1601 return error; 1602 } else { 1603 unsigned char buff[8]; 1604 size_t bytes_read; 1605 error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read); 1606 if (error.Fail()) 1607 return error; 1608 1609 memcpy(buff, src, remainder); 1610 1611 size_t bytes_written_rec; 1612 error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec); 1613 if (error.Fail()) 1614 return error; 1615 1616 LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src, 1617 *(unsigned long *)buff); 1618 } 1619 1620 addr += k_ptrace_word_size; 1621 src += k_ptrace_word_size; 1622 } 1623 return error; 1624 } 1625 1626 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) const { 1627 return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); 1628 } 1629 1630 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid, 1631 unsigned long *message) { 1632 return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); 1633 } 1634 1635 Status NativeProcessLinux::Detach(lldb::tid_t tid) { 1636 if (tid == LLDB_INVALID_THREAD_ID) 1637 return Status(); 1638 1639 return PtraceWrapper(PTRACE_DETACH, tid); 1640 } 1641 1642 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) { 1643 for (const auto &thread : m_threads) { 1644 assert(thread && "thread list should not contain NULL threads"); 1645 if (thread->GetID() == thread_id) { 1646 // We have this thread. 1647 return true; 1648 } 1649 } 1650 1651 // We don't have this thread. 1652 return false; 1653 } 1654 1655 void NativeProcessLinux::StopTrackingThread(NativeThreadLinux &thread) { 1656 Log *const log = GetLog(POSIXLog::Thread); 1657 lldb::tid_t thread_id = thread.GetID(); 1658 LLDB_LOG(log, "tid: {0}", thread_id); 1659 1660 auto it = llvm::find_if(m_threads, [&](const auto &thread_up) { 1661 return thread_up.get() == &thread; 1662 }); 1663 assert(it != m_threads.end()); 1664 m_threads.erase(it); 1665 1666 NotifyTracersOfThreadDestroyed(thread_id); 1667 SignalIfAllThreadsStopped(); 1668 } 1669 1670 void NativeProcessLinux::NotifyTracersProcessDidStop() { 1671 m_intel_pt_collector.ProcessDidStop(); 1672 } 1673 1674 void NativeProcessLinux::NotifyTracersProcessWillResume() { 1675 m_intel_pt_collector.ProcessWillResume(); 1676 } 1677 1678 Status NativeProcessLinux::NotifyTracersOfNewThread(lldb::tid_t tid) { 1679 Log *log = GetLog(POSIXLog::Thread); 1680 Status error(m_intel_pt_collector.OnThreadCreated(tid)); 1681 if (error.Fail()) 1682 LLDB_LOG(log, "Failed to trace a new thread with intel-pt, tid = {0}. {1}", 1683 tid, error.AsCString()); 1684 return error; 1685 } 1686 1687 Status NativeProcessLinux::NotifyTracersOfThreadDestroyed(lldb::tid_t tid) { 1688 Log *log = GetLog(POSIXLog::Thread); 1689 Status error(m_intel_pt_collector.OnThreadDestroyed(tid)); 1690 if (error.Fail()) 1691 LLDB_LOG(log, 1692 "Failed to stop a destroyed thread with intel-pt, tid = {0}. {1}", 1693 tid, error.AsCString()); 1694 return error; 1695 } 1696 1697 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id, 1698 bool resume) { 1699 Log *log = GetLog(POSIXLog::Thread); 1700 LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id); 1701 1702 assert(!HasThreadNoLock(thread_id) && 1703 "attempted to add a thread by id that already exists"); 1704 1705 // If this is the first thread, save it as the current thread 1706 if (m_threads.empty()) 1707 SetCurrentThreadID(thread_id); 1708 1709 m_threads.push_back(std::make_unique<NativeThreadLinux>(*this, thread_id)); 1710 NativeThreadLinux &thread = 1711 static_cast<NativeThreadLinux &>(*m_threads.back()); 1712 1713 Status tracing_error = NotifyTracersOfNewThread(thread.GetID()); 1714 if (tracing_error.Fail()) { 1715 thread.SetStoppedByProcessorTrace(tracing_error.AsCString()); 1716 StopRunningThreads(thread.GetID()); 1717 } else if (resume) 1718 ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 1719 else 1720 thread.SetStoppedBySignal(SIGSTOP); 1721 1722 return thread; 1723 } 1724 1725 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path, 1726 FileSpec &file_spec) { 1727 Status error = PopulateMemoryRegionCache(); 1728 if (error.Fail()) 1729 return error; 1730 1731 FileSpec module_file_spec(module_path); 1732 FileSystem::Instance().Resolve(module_file_spec); 1733 1734 file_spec.Clear(); 1735 for (const auto &it : m_mem_region_cache) { 1736 if (it.second.GetFilename() == module_file_spec.GetFilename()) { 1737 file_spec = it.second; 1738 return Status(); 1739 } 1740 } 1741 return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 1742 module_file_spec.GetFilename().AsCString(), GetID()); 1743 } 1744 1745 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name, 1746 lldb::addr_t &load_addr) { 1747 load_addr = LLDB_INVALID_ADDRESS; 1748 Status error = PopulateMemoryRegionCache(); 1749 if (error.Fail()) 1750 return error; 1751 1752 FileSpec file(file_name); 1753 for (const auto &it : m_mem_region_cache) { 1754 if (it.second == file) { 1755 load_addr = it.first.GetRange().GetRangeBase(); 1756 return Status(); 1757 } 1758 } 1759 return Status("No load address found for specified file."); 1760 } 1761 1762 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) { 1763 return static_cast<NativeThreadLinux *>( 1764 NativeProcessProtocol::GetThreadByID(tid)); 1765 } 1766 1767 NativeThreadLinux *NativeProcessLinux::GetCurrentThread() { 1768 return static_cast<NativeThreadLinux *>( 1769 NativeProcessProtocol::GetCurrentThread()); 1770 } 1771 1772 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, 1773 lldb::StateType state, int signo) { 1774 Log *const log = GetLog(POSIXLog::Thread); 1775 LLDB_LOG(log, "tid: {0}", thread.GetID()); 1776 1777 // Before we do the resume below, first check if we have a pending stop 1778 // notification that is currently waiting for all threads to stop. This is 1779 // potentially a buggy situation since we're ostensibly waiting for threads 1780 // to stop before we send out the pending notification, and here we are 1781 // resuming one before we send out the pending stop notification. 1782 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 1783 LLDB_LOG(log, 1784 "about to resume tid {0} per explicit request but we have a " 1785 "pending stop notification (tid {1}) that is actively " 1786 "waiting for this thread to stop. Valid sequence of events?", 1787 thread.GetID(), m_pending_notification_tid); 1788 } 1789 1790 // Request a resume. We expect this to be synchronous and the system to 1791 // reflect it is running after this completes. 1792 switch (state) { 1793 case eStateRunning: { 1794 const auto resume_result = thread.Resume(signo); 1795 if (resume_result.Success()) 1796 SetState(eStateRunning, true); 1797 return resume_result; 1798 } 1799 case eStateStepping: { 1800 const auto step_result = thread.SingleStep(signo); 1801 if (step_result.Success()) 1802 SetState(eStateRunning, true); 1803 return step_result; 1804 } 1805 default: 1806 LLDB_LOG(log, "Unhandled state {0}.", state); 1807 llvm_unreachable("Unhandled state for resume"); 1808 } 1809 } 1810 1811 //===----------------------------------------------------------------------===// 1812 1813 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) { 1814 Log *const log = GetLog(POSIXLog::Thread); 1815 LLDB_LOG(log, "about to process event: (triggering_tid: {0})", 1816 triggering_tid); 1817 1818 m_pending_notification_tid = triggering_tid; 1819 1820 // Request a stop for all the thread stops that need to be stopped and are 1821 // not already known to be stopped. 1822 for (const auto &thread : m_threads) { 1823 if (StateIsRunningState(thread->GetState())) 1824 static_cast<NativeThreadLinux *>(thread.get())->RequestStop(); 1825 } 1826 1827 SignalIfAllThreadsStopped(); 1828 LLDB_LOG(log, "event processing done"); 1829 } 1830 1831 void NativeProcessLinux::SignalIfAllThreadsStopped() { 1832 if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) 1833 return; // No pending notification. Nothing to do. 1834 1835 for (const auto &thread_sp : m_threads) { 1836 if (StateIsRunningState(thread_sp->GetState())) 1837 return; // Some threads are still running. Don't signal yet. 1838 } 1839 1840 // We have a pending notification and all threads have stopped. 1841 Log *log = GetLog(LLDBLog::Process | LLDBLog::Breakpoints); 1842 1843 // Clear any temporary breakpoints we used to implement software single 1844 // stepping. 1845 for (const auto &thread_info : m_threads_stepping_with_breakpoint) { 1846 Status error = RemoveBreakpoint(thread_info.second); 1847 if (error.Fail()) 1848 LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}", 1849 thread_info.first, error); 1850 } 1851 m_threads_stepping_with_breakpoint.clear(); 1852 1853 // Notify the delegate about the stop 1854 SetCurrentThreadID(m_pending_notification_tid); 1855 SetState(StateType::eStateStopped, true); 1856 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 1857 } 1858 1859 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) { 1860 Log *const log = GetLog(POSIXLog::Thread); 1861 LLDB_LOG(log, "tid: {0}", thread.GetID()); 1862 1863 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && 1864 StateIsRunningState(thread.GetState())) { 1865 // We will need to wait for this new thread to stop as well before firing 1866 // the notification. 1867 thread.RequestStop(); 1868 } 1869 } 1870 1871 static llvm::Optional<WaitStatus> HandlePid(::pid_t pid) { 1872 Log *log = GetLog(POSIXLog::Process); 1873 1874 int status; 1875 ::pid_t wait_pid = llvm::sys::RetryAfterSignal( 1876 -1, ::waitpid, pid, &status, __WALL | __WNOTHREAD | WNOHANG); 1877 1878 if (wait_pid == 0) 1879 return llvm::None; 1880 1881 if (wait_pid == -1) { 1882 Status error(errno, eErrorTypePOSIX); 1883 LLDB_LOG(log, "waitpid({0}, &status, _) failed: {1}", pid, 1884 error); 1885 return llvm::None; 1886 } 1887 1888 assert(wait_pid == pid); 1889 1890 WaitStatus wait_status = WaitStatus::Decode(status); 1891 1892 LLDB_LOG(log, "waitpid({0}) got status = {1}", pid, wait_status); 1893 return wait_status; 1894 } 1895 1896 void NativeProcessLinux::SigchldHandler() { 1897 Log *log = GetLog(POSIXLog::Process); 1898 1899 // Threads can appear or disappear as a result of event processing, so gather 1900 // the events upfront. 1901 llvm::DenseMap<lldb::tid_t, WaitStatus> tid_events; 1902 bool checked_main_thread = false; 1903 for (const auto &thread_up : m_threads) { 1904 if (thread_up->GetID() == GetID()) 1905 checked_main_thread = true; 1906 1907 if (llvm::Optional<WaitStatus> status = HandlePid(thread_up->GetID())) 1908 tid_events.try_emplace(thread_up->GetID(), *status); 1909 } 1910 // Check the main thread even when we're not tracking it as process exit 1911 // events are reported that way. 1912 if (!checked_main_thread) { 1913 if (llvm::Optional<WaitStatus> status = HandlePid(GetID())) 1914 tid_events.try_emplace(GetID(), *status); 1915 } 1916 1917 for (auto &KV : tid_events) { 1918 LLDB_LOG(log, "processing {0}({1}) ...", KV.first, KV.second); 1919 if (KV.first == GetID() && (KV.second.type == WaitStatus::Exit || 1920 KV.second.type == WaitStatus::Signal)) { 1921 1922 // The process exited. We're done monitoring. Report to delegate. 1923 SetExitStatus(KV.second, true); 1924 return; 1925 } 1926 NativeThreadLinux *thread = GetThreadByID(KV.first); 1927 assert(thread && "Why did this thread disappear?"); 1928 MonitorCallback(*thread, KV.second); 1929 } 1930 } 1931 1932 // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets 1933 // errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) 1934 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, 1935 void *data, size_t data_size, 1936 long *result) { 1937 Status error; 1938 long int ret; 1939 1940 Log *log = GetLog(POSIXLog::Ptrace); 1941 1942 PtraceDisplayBytes(req, data, data_size); 1943 1944 errno = 0; 1945 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 1946 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 1947 *(unsigned int *)addr, data); 1948 else 1949 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 1950 addr, data); 1951 1952 if (ret == -1) 1953 error.SetErrorToErrno(); 1954 1955 if (result) 1956 *result = ret; 1957 1958 LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data, 1959 data_size, ret); 1960 1961 PtraceDisplayBytes(req, data, data_size); 1962 1963 if (error.Fail()) 1964 LLDB_LOG(log, "ptrace() failed: {0}", error); 1965 1966 return error; 1967 } 1968 1969 llvm::Expected<TraceSupportedResponse> NativeProcessLinux::TraceSupported() { 1970 if (IntelPTCollector::IsSupported()) 1971 return TraceSupportedResponse{"intel-pt", "Intel Processor Trace"}; 1972 return NativeProcessProtocol::TraceSupported(); 1973 } 1974 1975 Error NativeProcessLinux::TraceStart(StringRef json_request, StringRef type) { 1976 if (type == "intel-pt") { 1977 if (Expected<TraceIntelPTStartRequest> request = 1978 json::parse<TraceIntelPTStartRequest>(json_request, 1979 "TraceIntelPTStartRequest")) { 1980 return m_intel_pt_collector.TraceStart(*request); 1981 } else 1982 return request.takeError(); 1983 } 1984 1985 return NativeProcessProtocol::TraceStart(json_request, type); 1986 } 1987 1988 Error NativeProcessLinux::TraceStop(const TraceStopRequest &request) { 1989 if (request.type == "intel-pt") 1990 return m_intel_pt_collector.TraceStop(request); 1991 return NativeProcessProtocol::TraceStop(request); 1992 } 1993 1994 Expected<json::Value> NativeProcessLinux::TraceGetState(StringRef type) { 1995 if (type == "intel-pt") 1996 return m_intel_pt_collector.GetState(); 1997 return NativeProcessProtocol::TraceGetState(type); 1998 } 1999 2000 Expected<std::vector<uint8_t>> NativeProcessLinux::TraceGetBinaryData( 2001 const TraceGetBinaryDataRequest &request) { 2002 if (request.type == "intel-pt") 2003 return m_intel_pt_collector.GetBinaryData(request); 2004 return NativeProcessProtocol::TraceGetBinaryData(request); 2005 } 2006