1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "NativeProcessLinux.h"
10 
11 #include <errno.h>
12 #include <stdint.h>
13 #include <string.h>
14 #include <unistd.h>
15 
16 #include <fstream>
17 #include <mutex>
18 #include <sstream>
19 #include <string>
20 #include <unordered_map>
21 
22 #include "lldb/Core/EmulateInstruction.h"
23 #include "lldb/Core/ModuleSpec.h"
24 #include "lldb/Host/Host.h"
25 #include "lldb/Host/HostProcess.h"
26 #include "lldb/Host/ProcessLaunchInfo.h"
27 #include "lldb/Host/PseudoTerminal.h"
28 #include "lldb/Host/ThreadLauncher.h"
29 #include "lldb/Host/common/NativeRegisterContext.h"
30 #include "lldb/Host/linux/Ptrace.h"
31 #include "lldb/Host/linux/Uio.h"
32 #include "lldb/Host/posix/ProcessLauncherPosixFork.h"
33 #include "lldb/Symbol/ObjectFile.h"
34 #include "lldb/Target/Process.h"
35 #include "lldb/Target/Target.h"
36 #include "lldb/Utility/LLDBAssert.h"
37 #include "lldb/Utility/RegisterValue.h"
38 #include "lldb/Utility/State.h"
39 #include "lldb/Utility/Status.h"
40 #include "lldb/Utility/StringExtractor.h"
41 #include "llvm/Support/Errno.h"
42 #include "llvm/Support/FileSystem.h"
43 #include "llvm/Support/Threading.h"
44 
45 #include "NativeThreadLinux.h"
46 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
47 #include "Plugins/Process/Utility/LinuxProcMaps.h"
48 #include "Procfs.h"
49 
50 #include <linux/unistd.h>
51 #include <sys/socket.h>
52 #include <sys/syscall.h>
53 #include <sys/types.h>
54 #include <sys/user.h>
55 #include <sys/wait.h>
56 
57 // Support hardware breakpoints in case it has not been defined
58 #ifndef TRAP_HWBKPT
59 #define TRAP_HWBKPT 4
60 #endif
61 
62 using namespace lldb;
63 using namespace lldb_private;
64 using namespace lldb_private::process_linux;
65 using namespace llvm;
66 
67 // Private bits we only need internally.
68 
69 static bool ProcessVmReadvSupported() {
70   static bool is_supported;
71   static llvm::once_flag flag;
72 
73   llvm::call_once(flag, [] {
74     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
75 
76     uint32_t source = 0x47424742;
77     uint32_t dest = 0;
78 
79     struct iovec local, remote;
80     remote.iov_base = &source;
81     local.iov_base = &dest;
82     remote.iov_len = local.iov_len = sizeof source;
83 
84     // We shall try if cross-process-memory reads work by attempting to read a
85     // value from our own process.
86     ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
87     is_supported = (res == sizeof(source) && source == dest);
88     if (is_supported)
89       LLDB_LOG(log,
90                "Detected kernel support for process_vm_readv syscall. "
91                "Fast memory reads enabled.");
92     else
93       LLDB_LOG(log,
94                "syscall process_vm_readv failed (error: {0}). Fast memory "
95                "reads disabled.",
96                llvm::sys::StrError());
97   });
98 
99   return is_supported;
100 }
101 
102 namespace {
103 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) {
104   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
105   if (!log)
106     return;
107 
108   if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO))
109     LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec());
110   else
111     LLDB_LOG(log, "leaving STDIN as is");
112 
113   if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO))
114     LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec());
115   else
116     LLDB_LOG(log, "leaving STDOUT as is");
117 
118   if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO))
119     LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec());
120   else
121     LLDB_LOG(log, "leaving STDERR as is");
122 
123   int i = 0;
124   for (const char **args = info.GetArguments().GetConstArgumentVector(); *args;
125        ++args, ++i)
126     LLDB_LOG(log, "arg {0}: '{1}'", i, *args);
127 }
128 
129 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) {
130   uint8_t *ptr = (uint8_t *)bytes;
131   const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
132   for (uint32_t i = 0; i < loop_count; i++) {
133     s.Printf("[%x]", *ptr);
134     ptr++;
135   }
136 }
137 
138 void PtraceDisplayBytes(int &req, void *data, size_t data_size) {
139   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
140   if (!log)
141     return;
142   StreamString buf;
143 
144   switch (req) {
145   case PTRACE_POKETEXT: {
146     DisplayBytes(buf, &data, 8);
147     LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData());
148     break;
149   }
150   case PTRACE_POKEDATA: {
151     DisplayBytes(buf, &data, 8);
152     LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData());
153     break;
154   }
155   case PTRACE_POKEUSER: {
156     DisplayBytes(buf, &data, 8);
157     LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData());
158     break;
159   }
160   case PTRACE_SETREGS: {
161     DisplayBytes(buf, data, data_size);
162     LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData());
163     break;
164   }
165   case PTRACE_SETFPREGS: {
166     DisplayBytes(buf, data, data_size);
167     LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData());
168     break;
169   }
170   case PTRACE_SETSIGINFO: {
171     DisplayBytes(buf, data, sizeof(siginfo_t));
172     LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData());
173     break;
174   }
175   case PTRACE_SETREGSET: {
176     // Extract iov_base from data, which is a pointer to the struct iovec
177     DisplayBytes(buf, *(void **)data, data_size);
178     LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData());
179     break;
180   }
181   default: {}
182   }
183 }
184 
185 static constexpr unsigned k_ptrace_word_size = sizeof(void *);
186 static_assert(sizeof(long) >= k_ptrace_word_size,
187               "Size of long must be larger than ptrace word size");
188 } // end of anonymous namespace
189 
190 // Simple helper function to ensure flags are enabled on the given file
191 // descriptor.
192 static Status EnsureFDFlags(int fd, int flags) {
193   Status error;
194 
195   int status = fcntl(fd, F_GETFL);
196   if (status == -1) {
197     error.SetErrorToErrno();
198     return error;
199   }
200 
201   if (fcntl(fd, F_SETFL, status | flags) == -1) {
202     error.SetErrorToErrno();
203     return error;
204   }
205 
206   return error;
207 }
208 
209 // Public Static Methods
210 
211 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
212 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info,
213                                     NativeDelegate &native_delegate,
214                                     MainLoop &mainloop) const {
215   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
216 
217   MaybeLogLaunchInfo(launch_info);
218 
219   Status status;
220   ::pid_t pid = ProcessLauncherPosixFork()
221                     .LaunchProcess(launch_info, status)
222                     .GetProcessId();
223   LLDB_LOG(log, "pid = {0:x}", pid);
224   if (status.Fail()) {
225     LLDB_LOG(log, "failed to launch process: {0}", status);
226     return status.ToError();
227   }
228 
229   // Wait for the child process to trap on its call to execve.
230   int wstatus;
231   ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0);
232   assert(wpid == pid);
233   (void)wpid;
234   if (!WIFSTOPPED(wstatus)) {
235     LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}",
236              WaitStatus::Decode(wstatus));
237     return llvm::make_error<StringError>("Could not sync with inferior process",
238                                          llvm::inconvertibleErrorCode());
239   }
240   LLDB_LOG(log, "inferior started, now in stopped state");
241 
242   ProcessInstanceInfo Info;
243   if (!Host::GetProcessInfo(pid, Info)) {
244     return llvm::make_error<StringError>("Cannot get process architecture",
245                                          llvm::inconvertibleErrorCode());
246   }
247 
248   // Set the architecture to the exe architecture.
249   LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid,
250            Info.GetArchitecture().GetArchitectureName());
251 
252   status = SetDefaultPtraceOpts(pid);
253   if (status.Fail()) {
254     LLDB_LOG(log, "failed to set default ptrace options: {0}", status);
255     return status.ToError();
256   }
257 
258   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
259       pid, launch_info.GetPTY().ReleaseMasterFileDescriptor(), native_delegate,
260       Info.GetArchitecture(), mainloop, {pid}));
261 }
262 
263 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
264 NativeProcessLinux::Factory::Attach(
265     lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate,
266     MainLoop &mainloop) const {
267   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
268   LLDB_LOG(log, "pid = {0:x}", pid);
269 
270   // Retrieve the architecture for the running process.
271   ProcessInstanceInfo Info;
272   if (!Host::GetProcessInfo(pid, Info)) {
273     return llvm::make_error<StringError>("Cannot get process architecture",
274                                          llvm::inconvertibleErrorCode());
275   }
276 
277   auto tids_or = NativeProcessLinux::Attach(pid);
278   if (!tids_or)
279     return tids_or.takeError();
280 
281   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
282       pid, -1, native_delegate, Info.GetArchitecture(), mainloop, *tids_or));
283 }
284 
285 // Public Instance Methods
286 
287 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd,
288                                        NativeDelegate &delegate,
289                                        const ArchSpec &arch, MainLoop &mainloop,
290                                        llvm::ArrayRef<::pid_t> tids)
291     : NativeProcessProtocol(pid, terminal_fd, delegate), m_arch(arch) {
292   if (m_terminal_fd != -1) {
293     Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
294     assert(status.Success());
295   }
296 
297   Status status;
298   m_sigchld_handle = mainloop.RegisterSignal(
299       SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status);
300   assert(m_sigchld_handle && status.Success());
301 
302   for (const auto &tid : tids) {
303     NativeThreadLinux &thread = AddThread(tid);
304     thread.SetStoppedBySignal(SIGSTOP);
305     ThreadWasCreated(thread);
306   }
307 
308   // Let our process instance know the thread has stopped.
309   SetCurrentThreadID(tids[0]);
310   SetState(StateType::eStateStopped, false);
311 
312   // Proccess any signals we received before installing our handler
313   SigchldHandler();
314 }
315 
316 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) {
317   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
318 
319   Status status;
320   // Use a map to keep track of the threads which we have attached/need to
321   // attach.
322   Host::TidMap tids_to_attach;
323   while (Host::FindProcessThreads(pid, tids_to_attach)) {
324     for (Host::TidMap::iterator it = tids_to_attach.begin();
325          it != tids_to_attach.end();) {
326       if (it->second == false) {
327         lldb::tid_t tid = it->first;
328 
329         // Attach to the requested process.
330         // An attach will cause the thread to stop with a SIGSTOP.
331         if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) {
332           // No such thread. The thread may have exited. More error handling
333           // may be needed.
334           if (status.GetError() == ESRCH) {
335             it = tids_to_attach.erase(it);
336             continue;
337           }
338           return status.ToError();
339         }
340 
341         int wpid =
342             llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL);
343         // Need to use __WALL otherwise we receive an error with errno=ECHLD At
344         // this point we should have a thread stopped if waitpid succeeds.
345         if (wpid < 0) {
346           // No such thread. The thread may have exited. More error handling
347           // may be needed.
348           if (errno == ESRCH) {
349             it = tids_to_attach.erase(it);
350             continue;
351           }
352           return llvm::errorCodeToError(
353               std::error_code(errno, std::generic_category()));
354         }
355 
356         if ((status = SetDefaultPtraceOpts(tid)).Fail())
357           return status.ToError();
358 
359         LLDB_LOG(log, "adding tid = {0}", tid);
360         it->second = true;
361       }
362 
363       // move the loop forward
364       ++it;
365     }
366   }
367 
368   size_t tid_count = tids_to_attach.size();
369   if (tid_count == 0)
370     return llvm::make_error<StringError>("No such process",
371                                          llvm::inconvertibleErrorCode());
372 
373   std::vector<::pid_t> tids;
374   tids.reserve(tid_count);
375   for (const auto &p : tids_to_attach)
376     tids.push_back(p.first);
377   return std::move(tids);
378 }
379 
380 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) {
381   long ptrace_opts = 0;
382 
383   // Have the child raise an event on exit.  This is used to keep the child in
384   // limbo until it is destroyed.
385   ptrace_opts |= PTRACE_O_TRACEEXIT;
386 
387   // Have the tracer trace threads which spawn in the inferior process.
388   // TODO: if we want to support tracing the inferiors' child, add the
389   // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
390   ptrace_opts |= PTRACE_O_TRACECLONE;
391 
392   // Have the tracer notify us before execve returns (needed to disable legacy
393   // SIGTRAP generation)
394   ptrace_opts |= PTRACE_O_TRACEEXEC;
395 
396   return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts);
397 }
398 
399 // Handles all waitpid events from the inferior process.
400 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited,
401                                          WaitStatus status) {
402   Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
403 
404   // Certain activities differ based on whether the pid is the tid of the main
405   // thread.
406   const bool is_main_thread = (pid == GetID());
407 
408   // Handle when the thread exits.
409   if (exited) {
410     LLDB_LOG(log,
411              "got exit status({0}) , tid = {1} ({2} main thread), process "
412              "state = {3}",
413              status, pid, is_main_thread ? "is" : "is not", GetState());
414 
415     // This is a thread that exited.  Ensure we're not tracking it anymore.
416     StopTrackingThread(pid);
417 
418     if (is_main_thread) {
419       // The main thread exited.  We're done monitoring.  Report to delegate.
420       SetExitStatus(status, true);
421 
422       // Notify delegate that our process has exited.
423       SetState(StateType::eStateExited, true);
424     }
425     return;
426   }
427 
428   siginfo_t info;
429   const auto info_err = GetSignalInfo(pid, &info);
430   auto thread_sp = GetThreadByID(pid);
431 
432   if (!thread_sp) {
433     // Normally, the only situation when we cannot find the thread is if we
434     // have just received a new thread notification. This is indicated by
435     // GetSignalInfo() returning si_code == SI_USER and si_pid == 0
436     LLDB_LOG(log, "received notification about an unknown tid {0}.", pid);
437 
438     if (info_err.Fail()) {
439       LLDB_LOG(log,
440                "(tid {0}) GetSignalInfo failed ({1}). "
441                "Ingoring this notification.",
442                pid, info_err);
443       return;
444     }
445 
446     LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code,
447              info.si_pid);
448 
449     NativeThreadLinux &thread = AddThread(pid);
450 
451     // Resume the newly created thread.
452     ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
453     ThreadWasCreated(thread);
454     return;
455   }
456 
457   // Get details on the signal raised.
458   if (info_err.Success()) {
459     // We have retrieved the signal info.  Dispatch appropriately.
460     if (info.si_signo == SIGTRAP)
461       MonitorSIGTRAP(info, *thread_sp);
462     else
463       MonitorSignal(info, *thread_sp, exited);
464   } else {
465     if (info_err.GetError() == EINVAL) {
466       // This is a group stop reception for this tid. We can reach here if we
467       // reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the tracee,
468       // triggering the group-stop mechanism. Normally receiving these would
469       // stop the process, pending a SIGCONT. Simulating this state in a
470       // debugger is hard and is generally not needed (one use case is
471       // debugging background task being managed by a shell). For general use,
472       // it is sufficient to stop the process in a signal-delivery stop which
473       // happens before the group stop. This done by MonitorSignal and works
474       // correctly for all signals.
475       LLDB_LOG(log,
476                "received a group stop for pid {0} tid {1}. Transparent "
477                "handling of group stops not supported, resuming the "
478                "thread.",
479                GetID(), pid);
480       ResumeThread(*thread_sp, thread_sp->GetState(),
481                    LLDB_INVALID_SIGNAL_NUMBER);
482     } else {
483       // ptrace(GETSIGINFO) failed (but not due to group-stop).
484 
485       // A return value of ESRCH means the thread/process is no longer on the
486       // system, so it was killed somehow outside of our control.  Either way,
487       // we can't do anything with it anymore.
488 
489       // Stop tracking the metadata for the thread since it's entirely off the
490       // system now.
491       const bool thread_found = StopTrackingThread(pid);
492 
493       LLDB_LOG(log,
494                "GetSignalInfo failed: {0}, tid = {1}, status = {2}, "
495                "status = {3}, main_thread = {4}, thread_found: {5}",
496                info_err, pid, status, status, is_main_thread, thread_found);
497 
498       if (is_main_thread) {
499         // Notify the delegate - our process is not available but appears to
500         // have been killed outside our control.  Is eStateExited the right
501         // exit state in this case?
502         SetExitStatus(status, true);
503         SetState(StateType::eStateExited, true);
504       } else {
505         // This thread was pulled out from underneath us.  Anything to do here?
506         // Do we want to do an all stop?
507         LLDB_LOG(log,
508                  "pid {0} tid {1} non-main thread exit occurred, didn't "
509                  "tell delegate anything since thread disappeared out "
510                  "from underneath us",
511                  GetID(), pid);
512       }
513     }
514   }
515 }
516 
517 void NativeProcessLinux::WaitForNewThread(::pid_t tid) {
518   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
519 
520   if (GetThreadByID(tid)) {
521     // We are already tracking the thread - we got the event on the new thread
522     // (see MonitorSignal) before this one. We are done.
523     return;
524   }
525 
526   // The thread is not tracked yet, let's wait for it to appear.
527   int status = -1;
528   LLDB_LOG(log,
529            "received thread creation event for tid {0}. tid not tracked "
530            "yet, waiting for thread to appear...",
531            tid);
532   ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, &status, __WALL);
533   // Since we are waiting on a specific tid, this must be the creation event.
534   // But let's do some checks just in case.
535   if (wait_pid != tid) {
536     LLDB_LOG(log,
537              "waiting for tid {0} failed. Assuming the thread has "
538              "disappeared in the meantime",
539              tid);
540     // The only way I know of this could happen is if the whole process was
541     // SIGKILLed in the mean time. In any case, we can't do anything about that
542     // now.
543     return;
544   }
545   if (WIFEXITED(status)) {
546     LLDB_LOG(log,
547              "waiting for tid {0} returned an 'exited' event. Not "
548              "tracking the thread.",
549              tid);
550     // Also a very improbable event.
551     return;
552   }
553 
554   LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid);
555   NativeThreadLinux &new_thread = AddThread(tid);
556 
557   ResumeThread(new_thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
558   ThreadWasCreated(new_thread);
559 }
560 
561 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info,
562                                         NativeThreadLinux &thread) {
563   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
564   const bool is_main_thread = (thread.GetID() == GetID());
565 
566   assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
567 
568   switch (info.si_code) {
569   // TODO: these two cases are required if we want to support tracing of the
570   // inferiors' children.  We'd need this to debug a monitor. case (SIGTRAP |
571   // (PTRACE_EVENT_FORK << 8)): case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
572 
573   case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): {
574     // This is the notification on the parent thread which informs us of new
575     // thread creation. We don't want to do anything with the parent thread so
576     // we just resume it. In case we want to implement "break on thread
577     // creation" functionality, we would need to stop here.
578 
579     unsigned long event_message = 0;
580     if (GetEventMessage(thread.GetID(), &event_message).Fail()) {
581       LLDB_LOG(log,
582                "pid {0} received thread creation event but "
583                "GetEventMessage failed so we don't know the new tid",
584                thread.GetID());
585     } else
586       WaitForNewThread(event_message);
587 
588     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
589     break;
590   }
591 
592   case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): {
593     LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP);
594 
595     // Exec clears any pending notifications.
596     m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
597 
598     // Remove all but the main thread here.  Linux fork creates a new process
599     // which only copies the main thread.
600     LLDB_LOG(log, "exec received, stop tracking all but main thread");
601 
602     for (auto i = m_threads.begin(); i != m_threads.end();) {
603       if ((*i)->GetID() == GetID())
604         i = m_threads.erase(i);
605       else
606         ++i;
607     }
608     assert(m_threads.size() == 1);
609     auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get());
610 
611     SetCurrentThreadID(main_thread->GetID());
612     main_thread->SetStoppedByExec();
613 
614     // Tell coordinator about about the "new" (since exec) stopped main thread.
615     ThreadWasCreated(*main_thread);
616 
617     // Let our delegate know we have just exec'd.
618     NotifyDidExec();
619 
620     // Let the process know we're stopped.
621     StopRunningThreads(main_thread->GetID());
622 
623     break;
624   }
625 
626   case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): {
627     // The inferior process or one of its threads is about to exit. We don't
628     // want to do anything with the thread so we just resume it. In case we
629     // want to implement "break on thread exit" functionality, we would need to
630     // stop here.
631 
632     unsigned long data = 0;
633     if (GetEventMessage(thread.GetID(), &data).Fail())
634       data = -1;
635 
636     LLDB_LOG(log,
637              "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, "
638              "WIFSIGNALED={2}, pid = {3}, main_thread = {4}",
639              data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(),
640              is_main_thread);
641 
642 
643     StateType state = thread.GetState();
644     if (!StateIsRunningState(state)) {
645       // Due to a kernel bug, we may sometimes get this stop after the inferior
646       // gets a SIGKILL. This confuses our state tracking logic in
647       // ResumeThread(), since normally, we should not be receiving any ptrace
648       // events while the inferior is stopped. This makes sure that the
649       // inferior is resumed and exits normally.
650       state = eStateRunning;
651     }
652     ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
653 
654     break;
655   }
656 
657   case 0:
658   case TRAP_TRACE:  // We receive this on single stepping.
659   case TRAP_HWBKPT: // We receive this on watchpoint hit
660   {
661     // If a watchpoint was hit, report it
662     uint32_t wp_index;
663     Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
664         wp_index, (uintptr_t)info.si_addr);
665     if (error.Fail())
666       LLDB_LOG(log,
667                "received error while checking for watchpoint hits, pid = "
668                "{0}, error = {1}",
669                thread.GetID(), error);
670     if (wp_index != LLDB_INVALID_INDEX32) {
671       MonitorWatchpoint(thread, wp_index);
672       break;
673     }
674 
675     // If a breakpoint was hit, report it
676     uint32_t bp_index;
677     error = thread.GetRegisterContext().GetHardwareBreakHitIndex(
678         bp_index, (uintptr_t)info.si_addr);
679     if (error.Fail())
680       LLDB_LOG(log, "received error while checking for hardware "
681                     "breakpoint hits, pid = {0}, error = {1}",
682                thread.GetID(), error);
683     if (bp_index != LLDB_INVALID_INDEX32) {
684       MonitorBreakpoint(thread);
685       break;
686     }
687 
688     // Otherwise, report step over
689     MonitorTrace(thread);
690     break;
691   }
692 
693   case SI_KERNEL:
694 #if defined __mips__
695     // For mips there is no special signal for watchpoint So we check for
696     // watchpoint in kernel trap
697     {
698       // If a watchpoint was hit, report it
699       uint32_t wp_index;
700       Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
701           wp_index, LLDB_INVALID_ADDRESS);
702       if (error.Fail())
703         LLDB_LOG(log,
704                  "received error while checking for watchpoint hits, pid = "
705                  "{0}, error = {1}",
706                  thread.GetID(), error);
707       if (wp_index != LLDB_INVALID_INDEX32) {
708         MonitorWatchpoint(thread, wp_index);
709         break;
710       }
711     }
712 // NO BREAK
713 #endif
714   case TRAP_BRKPT:
715     MonitorBreakpoint(thread);
716     break;
717 
718   case SIGTRAP:
719   case (SIGTRAP | 0x80):
720     LLDB_LOG(
721         log,
722         "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming",
723         info.si_code, GetID(), thread.GetID());
724 
725     // Ignore these signals until we know more about them.
726     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
727     break;
728 
729   default:
730     LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}",
731              info.si_code, GetID(), thread.GetID());
732     MonitorSignal(info, thread, false);
733     break;
734   }
735 }
736 
737 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) {
738   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
739   LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID());
740 
741   // This thread is currently stopped.
742   thread.SetStoppedByTrace();
743 
744   StopRunningThreads(thread.GetID());
745 }
746 
747 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) {
748   Log *log(
749       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
750   LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID());
751 
752   // Mark the thread as stopped at breakpoint.
753   thread.SetStoppedByBreakpoint();
754   FixupBreakpointPCAsNeeded(thread);
755 
756   if (m_threads_stepping_with_breakpoint.find(thread.GetID()) !=
757       m_threads_stepping_with_breakpoint.end())
758     thread.SetStoppedByTrace();
759 
760   StopRunningThreads(thread.GetID());
761 }
762 
763 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread,
764                                            uint32_t wp_index) {
765   Log *log(
766       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
767   LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}",
768            thread.GetID(), wp_index);
769 
770   // Mark the thread as stopped at watchpoint. The address is at
771   // (lldb::addr_t)info->si_addr if we need it.
772   thread.SetStoppedByWatchpoint(wp_index);
773 
774   // We need to tell all other running threads before we notify the delegate
775   // about this stop.
776   StopRunningThreads(thread.GetID());
777 }
778 
779 void NativeProcessLinux::MonitorSignal(const siginfo_t &info,
780                                        NativeThreadLinux &thread, bool exited) {
781   const int signo = info.si_signo;
782   const bool is_from_llgs = info.si_pid == getpid();
783 
784   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
785 
786   // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
787   // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2)
788   // or raise(3).  Similarly for tgkill(2) on Linux.
789   //
790   // IOW, user generated signals never generate what we consider to be a
791   // "crash".
792   //
793   // Similarly, ACK signals generated by this monitor.
794 
795   // Handle the signal.
796   LLDB_LOG(log,
797            "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, "
798            "waitpid pid = {4})",
799            Host::GetSignalAsCString(signo), signo, info.si_code,
800            thread.GetID());
801 
802   // Check for thread stop notification.
803   if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) {
804     // This is a tgkill()-based stop.
805     LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID());
806 
807     // Check that we're not already marked with a stop reason. Note this thread
808     // really shouldn't already be marked as stopped - if we were, that would
809     // imply that the kernel signaled us with the thread stopping which we
810     // handled and marked as stopped, and that, without an intervening resume,
811     // we received another stop.  It is more likely that we are missing the
812     // marking of a run state somewhere if we find that the thread was marked
813     // as stopped.
814     const StateType thread_state = thread.GetState();
815     if (!StateIsStoppedState(thread_state, false)) {
816       // An inferior thread has stopped because of a SIGSTOP we have sent it.
817       // Generally, these are not important stops and we don't want to report
818       // them as they are just used to stop other threads when one thread (the
819       // one with the *real* stop reason) hits a breakpoint (watchpoint,
820       // etc...). However, in the case of an asynchronous Interrupt(), this
821       // *is* the real stop reason, so we leave the signal intact if this is
822       // the thread that was chosen as the triggering thread.
823       if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
824         if (m_pending_notification_tid == thread.GetID())
825           thread.SetStoppedBySignal(SIGSTOP, &info);
826         else
827           thread.SetStoppedWithNoReason();
828 
829         SetCurrentThreadID(thread.GetID());
830         SignalIfAllThreadsStopped();
831       } else {
832         // We can end up here if stop was initiated by LLGS but by this time a
833         // thread stop has occurred - maybe initiated by another event.
834         Status error = ResumeThread(thread, thread.GetState(), 0);
835         if (error.Fail())
836           LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(),
837                    error);
838       }
839     } else {
840       LLDB_LOG(log,
841                "pid {0} tid {1}, thread was already marked as a stopped "
842                "state (state={2}), leaving stop signal as is",
843                GetID(), thread.GetID(), thread_state);
844       SignalIfAllThreadsStopped();
845     }
846 
847     // Done handling.
848     return;
849   }
850 
851   // Check if debugger should stop at this signal or just ignore it and resume
852   // the inferior.
853   if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) {
854      ResumeThread(thread, thread.GetState(), signo);
855      return;
856   }
857 
858   // This thread is stopped.
859   LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo));
860   thread.SetStoppedBySignal(signo, &info);
861 
862   // Send a stop to the debugger after we get all other threads to stop.
863   StopRunningThreads(thread.GetID());
864 }
865 
866 namespace {
867 
868 struct EmulatorBaton {
869   NativeProcessLinux &m_process;
870   NativeRegisterContext &m_reg_context;
871 
872   // eRegisterKindDWARF -> RegsiterValue
873   std::unordered_map<uint32_t, RegisterValue> m_register_values;
874 
875   EmulatorBaton(NativeProcessLinux &process, NativeRegisterContext &reg_context)
876       : m_process(process), m_reg_context(reg_context) {}
877 };
878 
879 } // anonymous namespace
880 
881 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton,
882                                  const EmulateInstruction::Context &context,
883                                  lldb::addr_t addr, void *dst, size_t length) {
884   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
885 
886   size_t bytes_read;
887   emulator_baton->m_process.ReadMemory(addr, dst, length, bytes_read);
888   return bytes_read;
889 }
890 
891 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton,
892                                  const RegisterInfo *reg_info,
893                                  RegisterValue &reg_value) {
894   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
895 
896   auto it = emulator_baton->m_register_values.find(
897       reg_info->kinds[eRegisterKindDWARF]);
898   if (it != emulator_baton->m_register_values.end()) {
899     reg_value = it->second;
900     return true;
901   }
902 
903   // The emulator only fill in the dwarf regsiter numbers (and in some case the
904   // generic register numbers). Get the full register info from the register
905   // context based on the dwarf register numbers.
906   const RegisterInfo *full_reg_info =
907       emulator_baton->m_reg_context.GetRegisterInfo(
908           eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
909 
910   Status error =
911       emulator_baton->m_reg_context.ReadRegister(full_reg_info, reg_value);
912   if (error.Success())
913     return true;
914 
915   return false;
916 }
917 
918 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton,
919                                   const EmulateInstruction::Context &context,
920                                   const RegisterInfo *reg_info,
921                                   const RegisterValue &reg_value) {
922   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
923   emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] =
924       reg_value;
925   return true;
926 }
927 
928 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton,
929                                   const EmulateInstruction::Context &context,
930                                   lldb::addr_t addr, const void *dst,
931                                   size_t length) {
932   return length;
933 }
934 
935 static lldb::addr_t ReadFlags(NativeRegisterContext &regsiter_context) {
936   const RegisterInfo *flags_info = regsiter_context.GetRegisterInfo(
937       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
938   return regsiter_context.ReadRegisterAsUnsigned(flags_info,
939                                                  LLDB_INVALID_ADDRESS);
940 }
941 
942 Status
943 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) {
944   Status error;
945   NativeRegisterContext& register_context = thread.GetRegisterContext();
946 
947   std::unique_ptr<EmulateInstruction> emulator_up(
948       EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying,
949                                      nullptr));
950 
951   if (emulator_up == nullptr)
952     return Status("Instruction emulator not found!");
953 
954   EmulatorBaton baton(*this, register_context);
955   emulator_up->SetBaton(&baton);
956   emulator_up->SetReadMemCallback(&ReadMemoryCallback);
957   emulator_up->SetReadRegCallback(&ReadRegisterCallback);
958   emulator_up->SetWriteMemCallback(&WriteMemoryCallback);
959   emulator_up->SetWriteRegCallback(&WriteRegisterCallback);
960 
961   if (!emulator_up->ReadInstruction())
962     return Status("Read instruction failed!");
963 
964   bool emulation_result =
965       emulator_up->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
966 
967   const RegisterInfo *reg_info_pc = register_context.GetRegisterInfo(
968       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
969   const RegisterInfo *reg_info_flags = register_context.GetRegisterInfo(
970       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
971 
972   auto pc_it =
973       baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
974   auto flags_it =
975       baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
976 
977   lldb::addr_t next_pc;
978   lldb::addr_t next_flags;
979   if (emulation_result) {
980     assert(pc_it != baton.m_register_values.end() &&
981            "Emulation was successfull but PC wasn't updated");
982     next_pc = pc_it->second.GetAsUInt64();
983 
984     if (flags_it != baton.m_register_values.end())
985       next_flags = flags_it->second.GetAsUInt64();
986     else
987       next_flags = ReadFlags(register_context);
988   } else if (pc_it == baton.m_register_values.end()) {
989     // Emulate instruction failed and it haven't changed PC. Advance PC with
990     // the size of the current opcode because the emulation of all
991     // PC modifying instruction should be successful. The failure most
992     // likely caused by a not supported instruction which don't modify PC.
993     next_pc = register_context.GetPC() + emulator_up->GetOpcode().GetByteSize();
994     next_flags = ReadFlags(register_context);
995   } else {
996     // The instruction emulation failed after it modified the PC. It is an
997     // unknown error where we can't continue because the next instruction is
998     // modifying the PC but we don't  know how.
999     return Status("Instruction emulation failed unexpectedly.");
1000   }
1001 
1002   if (m_arch.GetMachine() == llvm::Triple::arm) {
1003     if (next_flags & 0x20) {
1004       // Thumb mode
1005       error = SetSoftwareBreakpoint(next_pc, 2);
1006     } else {
1007       // Arm mode
1008       error = SetSoftwareBreakpoint(next_pc, 4);
1009     }
1010   } else if (m_arch.IsMIPS() || m_arch.GetTriple().isPPC64())
1011     error = SetSoftwareBreakpoint(next_pc, 4);
1012   else {
1013     // No size hint is given for the next breakpoint
1014     error = SetSoftwareBreakpoint(next_pc, 0);
1015   }
1016 
1017   // If setting the breakpoint fails because next_pc is out of the address
1018   // space, ignore it and let the debugee segfault.
1019   if (error.GetError() == EIO || error.GetError() == EFAULT) {
1020     return Status();
1021   } else if (error.Fail())
1022     return error;
1023 
1024   m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc});
1025 
1026   return Status();
1027 }
1028 
1029 bool NativeProcessLinux::SupportHardwareSingleStepping() const {
1030   if (m_arch.GetMachine() == llvm::Triple::arm || m_arch.IsMIPS())
1031     return false;
1032   return true;
1033 }
1034 
1035 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) {
1036   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1037   LLDB_LOG(log, "pid {0}", GetID());
1038 
1039   bool software_single_step = !SupportHardwareSingleStepping();
1040 
1041   if (software_single_step) {
1042     for (const auto &thread : m_threads) {
1043       assert(thread && "thread list should not contain NULL threads");
1044 
1045       const ResumeAction *const action =
1046           resume_actions.GetActionForThread(thread->GetID(), true);
1047       if (action == nullptr)
1048         continue;
1049 
1050       if (action->state == eStateStepping) {
1051         Status error = SetupSoftwareSingleStepping(
1052             static_cast<NativeThreadLinux &>(*thread));
1053         if (error.Fail())
1054           return error;
1055       }
1056     }
1057   }
1058 
1059   for (const auto &thread : m_threads) {
1060     assert(thread && "thread list should not contain NULL threads");
1061 
1062     const ResumeAction *const action =
1063         resume_actions.GetActionForThread(thread->GetID(), true);
1064 
1065     if (action == nullptr) {
1066       LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(),
1067                thread->GetID());
1068       continue;
1069     }
1070 
1071     LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}",
1072              action->state, GetID(), thread->GetID());
1073 
1074     switch (action->state) {
1075     case eStateRunning:
1076     case eStateStepping: {
1077       // Run the thread, possibly feeding it the signal.
1078       const int signo = action->signal;
1079       ResumeThread(static_cast<NativeThreadLinux &>(*thread), action->state,
1080                    signo);
1081       break;
1082     }
1083 
1084     case eStateSuspended:
1085     case eStateStopped:
1086       llvm_unreachable("Unexpected state");
1087 
1088     default:
1089       return Status("NativeProcessLinux::%s (): unexpected state %s specified "
1090                     "for pid %" PRIu64 ", tid %" PRIu64,
1091                     __FUNCTION__, StateAsCString(action->state), GetID(),
1092                     thread->GetID());
1093     }
1094   }
1095 
1096   return Status();
1097 }
1098 
1099 Status NativeProcessLinux::Halt() {
1100   Status error;
1101 
1102   if (kill(GetID(), SIGSTOP) != 0)
1103     error.SetErrorToErrno();
1104 
1105   return error;
1106 }
1107 
1108 Status NativeProcessLinux::Detach() {
1109   Status error;
1110 
1111   // Stop monitoring the inferior.
1112   m_sigchld_handle.reset();
1113 
1114   // Tell ptrace to detach from the process.
1115   if (GetID() == LLDB_INVALID_PROCESS_ID)
1116     return error;
1117 
1118   for (const auto &thread : m_threads) {
1119     Status e = Detach(thread->GetID());
1120     if (e.Fail())
1121       error =
1122           e; // Save the error, but still attempt to detach from other threads.
1123   }
1124 
1125   m_processor_trace_monitor.clear();
1126   m_pt_proces_trace_id = LLDB_INVALID_UID;
1127 
1128   return error;
1129 }
1130 
1131 Status NativeProcessLinux::Signal(int signo) {
1132   Status error;
1133 
1134   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1135   LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo,
1136            Host::GetSignalAsCString(signo), GetID());
1137 
1138   if (kill(GetID(), signo))
1139     error.SetErrorToErrno();
1140 
1141   return error;
1142 }
1143 
1144 Status NativeProcessLinux::Interrupt() {
1145   // Pick a running thread (or if none, a not-dead stopped thread) as the
1146   // chosen thread that will be the stop-reason thread.
1147   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1148 
1149   NativeThreadProtocol *running_thread = nullptr;
1150   NativeThreadProtocol *stopped_thread = nullptr;
1151 
1152   LLDB_LOG(log, "selecting running thread for interrupt target");
1153   for (const auto &thread : m_threads) {
1154     // If we have a running or stepping thread, we'll call that the target of
1155     // the interrupt.
1156     const auto thread_state = thread->GetState();
1157     if (thread_state == eStateRunning || thread_state == eStateStepping) {
1158       running_thread = thread.get();
1159       break;
1160     } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) {
1161       // Remember the first non-dead stopped thread.  We'll use that as a
1162       // backup if there are no running threads.
1163       stopped_thread = thread.get();
1164     }
1165   }
1166 
1167   if (!running_thread && !stopped_thread) {
1168     Status error("found no running/stepping or live stopped threads as target "
1169                  "for interrupt");
1170     LLDB_LOG(log, "skipping due to error: {0}", error);
1171 
1172     return error;
1173   }
1174 
1175   NativeThreadProtocol *deferred_signal_thread =
1176       running_thread ? running_thread : stopped_thread;
1177 
1178   LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(),
1179            running_thread ? "running" : "stopped",
1180            deferred_signal_thread->GetID());
1181 
1182   StopRunningThreads(deferred_signal_thread->GetID());
1183 
1184   return Status();
1185 }
1186 
1187 Status NativeProcessLinux::Kill() {
1188   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1189   LLDB_LOG(log, "pid {0}", GetID());
1190 
1191   Status error;
1192 
1193   switch (m_state) {
1194   case StateType::eStateInvalid:
1195   case StateType::eStateExited:
1196   case StateType::eStateCrashed:
1197   case StateType::eStateDetached:
1198   case StateType::eStateUnloaded:
1199     // Nothing to do - the process is already dead.
1200     LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(),
1201              m_state);
1202     return error;
1203 
1204   case StateType::eStateConnected:
1205   case StateType::eStateAttaching:
1206   case StateType::eStateLaunching:
1207   case StateType::eStateStopped:
1208   case StateType::eStateRunning:
1209   case StateType::eStateStepping:
1210   case StateType::eStateSuspended:
1211     // We can try to kill a process in these states.
1212     break;
1213   }
1214 
1215   if (kill(GetID(), SIGKILL) != 0) {
1216     error.SetErrorToErrno();
1217     return error;
1218   }
1219 
1220   return error;
1221 }
1222 
1223 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr,
1224                                                MemoryRegionInfo &range_info) {
1225   // FIXME review that the final memory region returned extends to the end of
1226   // the virtual address space,
1227   // with no perms if it is not mapped.
1228 
1229   // Use an approach that reads memory regions from /proc/{pid}/maps. Assume
1230   // proc maps entries are in ascending order.
1231   // FIXME assert if we find differently.
1232 
1233   if (m_supports_mem_region == LazyBool::eLazyBoolNo) {
1234     // We're done.
1235     return Status("unsupported");
1236   }
1237 
1238   Status error = PopulateMemoryRegionCache();
1239   if (error.Fail()) {
1240     return error;
1241   }
1242 
1243   lldb::addr_t prev_base_address = 0;
1244 
1245   // FIXME start by finding the last region that is <= target address using
1246   // binary search.  Data is sorted.
1247   // There can be a ton of regions on pthreads apps with lots of threads.
1248   for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end();
1249        ++it) {
1250     MemoryRegionInfo &proc_entry_info = it->first;
1251 
1252     // Sanity check assumption that /proc/{pid}/maps entries are ascending.
1253     assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) &&
1254            "descending /proc/pid/maps entries detected, unexpected");
1255     prev_base_address = proc_entry_info.GetRange().GetRangeBase();
1256     UNUSED_IF_ASSERT_DISABLED(prev_base_address);
1257 
1258     // If the target address comes before this entry, indicate distance to next
1259     // region.
1260     if (load_addr < proc_entry_info.GetRange().GetRangeBase()) {
1261       range_info.GetRange().SetRangeBase(load_addr);
1262       range_info.GetRange().SetByteSize(
1263           proc_entry_info.GetRange().GetRangeBase() - load_addr);
1264       range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1265       range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1266       range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1267       range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1268 
1269       return error;
1270     } else if (proc_entry_info.GetRange().Contains(load_addr)) {
1271       // The target address is within the memory region we're processing here.
1272       range_info = proc_entry_info;
1273       return error;
1274     }
1275 
1276     // The target memory address comes somewhere after the region we just
1277     // parsed.
1278   }
1279 
1280   // If we made it here, we didn't find an entry that contained the given
1281   // address. Return the load_addr as start and the amount of bytes betwwen
1282   // load address and the end of the memory as size.
1283   range_info.GetRange().SetRangeBase(load_addr);
1284   range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS);
1285   range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1286   range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1287   range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1288   range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1289   return error;
1290 }
1291 
1292 Status NativeProcessLinux::PopulateMemoryRegionCache() {
1293   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1294 
1295   // If our cache is empty, pull the latest.  There should always be at least
1296   // one memory region if memory region handling is supported.
1297   if (!m_mem_region_cache.empty()) {
1298     LLDB_LOG(log, "reusing {0} cached memory region entries",
1299              m_mem_region_cache.size());
1300     return Status();
1301   }
1302 
1303   auto BufferOrError = getProcFile(GetID(), "maps");
1304   if (!BufferOrError) {
1305     m_supports_mem_region = LazyBool::eLazyBoolNo;
1306     return BufferOrError.getError();
1307   }
1308   Status Result;
1309   ParseLinuxMapRegions(BufferOrError.get()->getBuffer(),
1310                        [&](const MemoryRegionInfo &Info, const Status &ST) {
1311                          if (ST.Success()) {
1312                            FileSpec file_spec(Info.GetName().GetCString());
1313                            FileSystem::Instance().Resolve(file_spec);
1314                            m_mem_region_cache.emplace_back(Info, file_spec);
1315                            return true;
1316                          } else {
1317                            m_supports_mem_region = LazyBool::eLazyBoolNo;
1318                            LLDB_LOG(log, "failed to parse proc maps: {0}", ST);
1319                            Result = ST;
1320                            return false;
1321                          }
1322                        });
1323   if (Result.Fail())
1324     return Result;
1325 
1326   if (m_mem_region_cache.empty()) {
1327     // No entries after attempting to read them.  This shouldn't happen if
1328     // /proc/{pid}/maps is supported. Assume we don't support map entries via
1329     // procfs.
1330     m_supports_mem_region = LazyBool::eLazyBoolNo;
1331     LLDB_LOG(log,
1332              "failed to find any procfs maps entries, assuming no support "
1333              "for memory region metadata retrieval");
1334     return Status("not supported");
1335   }
1336 
1337   LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps",
1338            m_mem_region_cache.size(), GetID());
1339 
1340   // We support memory retrieval, remember that.
1341   m_supports_mem_region = LazyBool::eLazyBoolYes;
1342   return Status();
1343 }
1344 
1345 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) {
1346   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1347   LLDB_LOG(log, "newBumpId={0}", newBumpId);
1348   LLDB_LOG(log, "clearing {0} entries from memory region cache",
1349            m_mem_region_cache.size());
1350   m_mem_region_cache.clear();
1351 }
1352 
1353 Status NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions,
1354                                           lldb::addr_t &addr) {
1355 // FIXME implementing this requires the equivalent of
1356 // InferiorCallPOSIX::InferiorCallMmap, which depends on functional ThreadPlans
1357 // working with Native*Protocol.
1358 #if 1
1359   return Status("not implemented yet");
1360 #else
1361   addr = LLDB_INVALID_ADDRESS;
1362 
1363   unsigned prot = 0;
1364   if (permissions & lldb::ePermissionsReadable)
1365     prot |= eMmapProtRead;
1366   if (permissions & lldb::ePermissionsWritable)
1367     prot |= eMmapProtWrite;
1368   if (permissions & lldb::ePermissionsExecutable)
1369     prot |= eMmapProtExec;
1370 
1371   // TODO implement this directly in NativeProcessLinux
1372   // (and lift to NativeProcessPOSIX if/when that class is refactored out).
1373   if (InferiorCallMmap(this, addr, 0, size, prot,
1374                        eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
1375     m_addr_to_mmap_size[addr] = size;
1376     return Status();
1377   } else {
1378     addr = LLDB_INVALID_ADDRESS;
1379     return Status("unable to allocate %" PRIu64
1380                   " bytes of memory with permissions %s",
1381                   size, GetPermissionsAsCString(permissions));
1382   }
1383 #endif
1384 }
1385 
1386 Status NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) {
1387   // FIXME see comments in AllocateMemory - required lower-level
1388   // bits not in place yet (ThreadPlans)
1389   return Status("not implemented");
1390 }
1391 
1392 lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress() {
1393   // punt on this for now
1394   return LLDB_INVALID_ADDRESS;
1395 }
1396 
1397 size_t NativeProcessLinux::UpdateThreads() {
1398   // The NativeProcessLinux monitoring threads are always up to date with
1399   // respect to thread state and they keep the thread list populated properly.
1400   // All this method needs to do is return the thread count.
1401   return m_threads.size();
1402 }
1403 
1404 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size,
1405                                          bool hardware) {
1406   if (hardware)
1407     return SetHardwareBreakpoint(addr, size);
1408   else
1409     return SetSoftwareBreakpoint(addr, size);
1410 }
1411 
1412 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) {
1413   if (hardware)
1414     return RemoveHardwareBreakpoint(addr);
1415   else
1416     return NativeProcessProtocol::RemoveBreakpoint(addr);
1417 }
1418 
1419 llvm::Expected<llvm::ArrayRef<uint8_t>>
1420 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(size_t size_hint) {
1421   // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
1422   // linux kernel does otherwise.
1423   static const uint8_t g_arm_opcode[] = {0xf0, 0x01, 0xf0, 0xe7};
1424   static const uint8_t g_thumb_opcode[] = {0x01, 0xde};
1425 
1426   switch (GetArchitecture().GetMachine()) {
1427   case llvm::Triple::arm:
1428     switch (size_hint) {
1429     case 2:
1430       return llvm::makeArrayRef(g_thumb_opcode);
1431     case 4:
1432       return llvm::makeArrayRef(g_arm_opcode);
1433     default:
1434       return llvm::createStringError(llvm::inconvertibleErrorCode(),
1435                                      "Unrecognised trap opcode size hint!");
1436     }
1437   default:
1438     return NativeProcessProtocol::GetSoftwareBreakpointTrapOpcode(size_hint);
1439   }
1440 }
1441 
1442 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size,
1443                                       size_t &bytes_read) {
1444   if (ProcessVmReadvSupported()) {
1445     // The process_vm_readv path is about 50 times faster than ptrace api. We
1446     // want to use this syscall if it is supported.
1447 
1448     const ::pid_t pid = GetID();
1449 
1450     struct iovec local_iov, remote_iov;
1451     local_iov.iov_base = buf;
1452     local_iov.iov_len = size;
1453     remote_iov.iov_base = reinterpret_cast<void *>(addr);
1454     remote_iov.iov_len = size;
1455 
1456     bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
1457     const bool success = bytes_read == size;
1458 
1459     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1460     LLDB_LOG(log,
1461              "using process_vm_readv to read {0} bytes from inferior "
1462              "address {1:x}: {2}",
1463              size, addr, success ? "Success" : llvm::sys::StrError(errno));
1464 
1465     if (success)
1466       return Status();
1467     // else the call failed for some reason, let's retry the read using ptrace
1468     // api.
1469   }
1470 
1471   unsigned char *dst = static_cast<unsigned char *>(buf);
1472   size_t remainder;
1473   long data;
1474 
1475   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1476   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1477 
1478   for (bytes_read = 0; bytes_read < size; bytes_read += remainder) {
1479     Status error = NativeProcessLinux::PtraceWrapper(
1480         PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data);
1481     if (error.Fail())
1482       return error;
1483 
1484     remainder = size - bytes_read;
1485     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1486 
1487     // Copy the data into our buffer
1488     memcpy(dst, &data, remainder);
1489 
1490     LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1491     addr += k_ptrace_word_size;
1492     dst += k_ptrace_word_size;
1493   }
1494   return Status();
1495 }
1496 
1497 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf,
1498                                        size_t size, size_t &bytes_written) {
1499   const unsigned char *src = static_cast<const unsigned char *>(buf);
1500   size_t remainder;
1501   Status error;
1502 
1503   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1504   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1505 
1506   for (bytes_written = 0; bytes_written < size; bytes_written += remainder) {
1507     remainder = size - bytes_written;
1508     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1509 
1510     if (remainder == k_ptrace_word_size) {
1511       unsigned long data = 0;
1512       memcpy(&data, src, k_ptrace_word_size);
1513 
1514       LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1515       error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(),
1516                                                 (void *)addr, (void *)data);
1517       if (error.Fail())
1518         return error;
1519     } else {
1520       unsigned char buff[8];
1521       size_t bytes_read;
1522       error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
1523       if (error.Fail())
1524         return error;
1525 
1526       memcpy(buff, src, remainder);
1527 
1528       size_t bytes_written_rec;
1529       error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
1530       if (error.Fail())
1531         return error;
1532 
1533       LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src,
1534                *(unsigned long *)buff);
1535     }
1536 
1537     addr += k_ptrace_word_size;
1538     src += k_ptrace_word_size;
1539   }
1540   return error;
1541 }
1542 
1543 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) {
1544   return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
1545 }
1546 
1547 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid,
1548                                            unsigned long *message) {
1549   return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
1550 }
1551 
1552 Status NativeProcessLinux::Detach(lldb::tid_t tid) {
1553   if (tid == LLDB_INVALID_THREAD_ID)
1554     return Status();
1555 
1556   return PtraceWrapper(PTRACE_DETACH, tid);
1557 }
1558 
1559 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) {
1560   for (const auto &thread : m_threads) {
1561     assert(thread && "thread list should not contain NULL threads");
1562     if (thread->GetID() == thread_id) {
1563       // We have this thread.
1564       return true;
1565     }
1566   }
1567 
1568   // We don't have this thread.
1569   return false;
1570 }
1571 
1572 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) {
1573   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1574   LLDB_LOG(log, "tid: {0})", thread_id);
1575 
1576   bool found = false;
1577   for (auto it = m_threads.begin(); it != m_threads.end(); ++it) {
1578     if (*it && ((*it)->GetID() == thread_id)) {
1579       m_threads.erase(it);
1580       found = true;
1581       break;
1582     }
1583   }
1584 
1585   if (found)
1586     StopTracingForThread(thread_id);
1587   SignalIfAllThreadsStopped();
1588   return found;
1589 }
1590 
1591 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id) {
1592   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD));
1593   LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id);
1594 
1595   assert(!HasThreadNoLock(thread_id) &&
1596          "attempted to add a thread by id that already exists");
1597 
1598   // If this is the first thread, save it as the current thread
1599   if (m_threads.empty())
1600     SetCurrentThreadID(thread_id);
1601 
1602   m_threads.push_back(llvm::make_unique<NativeThreadLinux>(*this, thread_id));
1603 
1604   if (m_pt_proces_trace_id != LLDB_INVALID_UID) {
1605     auto traceMonitor = ProcessorTraceMonitor::Create(
1606         GetID(), thread_id, m_pt_process_trace_config, true);
1607     if (traceMonitor) {
1608       m_pt_traced_thread_group.insert(thread_id);
1609       m_processor_trace_monitor.insert(
1610           std::make_pair(thread_id, std::move(*traceMonitor)));
1611     } else {
1612       LLDB_LOG(log, "failed to start trace on thread {0}", thread_id);
1613       Status error(traceMonitor.takeError());
1614       LLDB_LOG(log, "error {0}", error);
1615     }
1616   }
1617 
1618   return static_cast<NativeThreadLinux &>(*m_threads.back());
1619 }
1620 
1621 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path,
1622                                                    FileSpec &file_spec) {
1623   Status error = PopulateMemoryRegionCache();
1624   if (error.Fail())
1625     return error;
1626 
1627   FileSpec module_file_spec(module_path);
1628   FileSystem::Instance().Resolve(module_file_spec);
1629 
1630   file_spec.Clear();
1631   for (const auto &it : m_mem_region_cache) {
1632     if (it.second.GetFilename() == module_file_spec.GetFilename()) {
1633       file_spec = it.second;
1634       return Status();
1635     }
1636   }
1637   return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
1638                 module_file_spec.GetFilename().AsCString(), GetID());
1639 }
1640 
1641 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name,
1642                                               lldb::addr_t &load_addr) {
1643   load_addr = LLDB_INVALID_ADDRESS;
1644   Status error = PopulateMemoryRegionCache();
1645   if (error.Fail())
1646     return error;
1647 
1648   FileSpec file(file_name);
1649   for (const auto &it : m_mem_region_cache) {
1650     if (it.second == file) {
1651       load_addr = it.first.GetRange().GetRangeBase();
1652       return Status();
1653     }
1654   }
1655   return Status("No load address found for specified file.");
1656 }
1657 
1658 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) {
1659   return static_cast<NativeThreadLinux *>(
1660       NativeProcessProtocol::GetThreadByID(tid));
1661 }
1662 
1663 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread,
1664                                         lldb::StateType state, int signo) {
1665   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1666   LLDB_LOG(log, "tid: {0}", thread.GetID());
1667 
1668   // Before we do the resume below, first check if we have a pending stop
1669   // notification that is currently waiting for all threads to stop.  This is
1670   // potentially a buggy situation since we're ostensibly waiting for threads
1671   // to stop before we send out the pending notification, and here we are
1672   // resuming one before we send out the pending stop notification.
1673   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
1674     LLDB_LOG(log,
1675              "about to resume tid {0} per explicit request but we have a "
1676              "pending stop notification (tid {1}) that is actively "
1677              "waiting for this thread to stop. Valid sequence of events?",
1678              thread.GetID(), m_pending_notification_tid);
1679   }
1680 
1681   // Request a resume.  We expect this to be synchronous and the system to
1682   // reflect it is running after this completes.
1683   switch (state) {
1684   case eStateRunning: {
1685     const auto resume_result = thread.Resume(signo);
1686     if (resume_result.Success())
1687       SetState(eStateRunning, true);
1688     return resume_result;
1689   }
1690   case eStateStepping: {
1691     const auto step_result = thread.SingleStep(signo);
1692     if (step_result.Success())
1693       SetState(eStateRunning, true);
1694     return step_result;
1695   }
1696   default:
1697     LLDB_LOG(log, "Unhandled state {0}.", state);
1698     llvm_unreachable("Unhandled state for resume");
1699   }
1700 }
1701 
1702 //===----------------------------------------------------------------------===//
1703 
1704 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) {
1705   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1706   LLDB_LOG(log, "about to process event: (triggering_tid: {0})",
1707            triggering_tid);
1708 
1709   m_pending_notification_tid = triggering_tid;
1710 
1711   // Request a stop for all the thread stops that need to be stopped and are
1712   // not already known to be stopped.
1713   for (const auto &thread : m_threads) {
1714     if (StateIsRunningState(thread->GetState()))
1715       static_cast<NativeThreadLinux *>(thread.get())->RequestStop();
1716   }
1717 
1718   SignalIfAllThreadsStopped();
1719   LLDB_LOG(log, "event processing done");
1720 }
1721 
1722 void NativeProcessLinux::SignalIfAllThreadsStopped() {
1723   if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
1724     return; // No pending notification. Nothing to do.
1725 
1726   for (const auto &thread_sp : m_threads) {
1727     if (StateIsRunningState(thread_sp->GetState()))
1728       return; // Some threads are still running. Don't signal yet.
1729   }
1730 
1731   // We have a pending notification and all threads have stopped.
1732   Log *log(
1733       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
1734 
1735   // Clear any temporary breakpoints we used to implement software single
1736   // stepping.
1737   for (const auto &thread_info : m_threads_stepping_with_breakpoint) {
1738     Status error = RemoveBreakpoint(thread_info.second);
1739     if (error.Fail())
1740       LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}",
1741                thread_info.first, error);
1742   }
1743   m_threads_stepping_with_breakpoint.clear();
1744 
1745   // Notify the delegate about the stop
1746   SetCurrentThreadID(m_pending_notification_tid);
1747   SetState(StateType::eStateStopped, true);
1748   m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
1749 }
1750 
1751 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) {
1752   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1753   LLDB_LOG(log, "tid: {0}", thread.GetID());
1754 
1755   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID &&
1756       StateIsRunningState(thread.GetState())) {
1757     // We will need to wait for this new thread to stop as well before firing
1758     // the notification.
1759     thread.RequestStop();
1760   }
1761 }
1762 
1763 void NativeProcessLinux::SigchldHandler() {
1764   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1765   // Process all pending waitpid notifications.
1766   while (true) {
1767     int status = -1;
1768     ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, -1, &status,
1769                                           __WALL | __WNOTHREAD | WNOHANG);
1770 
1771     if (wait_pid == 0)
1772       break; // We are done.
1773 
1774     if (wait_pid == -1) {
1775       Status error(errno, eErrorTypePOSIX);
1776       LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error);
1777       break;
1778     }
1779 
1780     WaitStatus wait_status = WaitStatus::Decode(status);
1781     bool exited = wait_status.type == WaitStatus::Exit ||
1782                   (wait_status.type == WaitStatus::Signal &&
1783                    wait_pid == static_cast<::pid_t>(GetID()));
1784 
1785     LLDB_LOG(
1786         log,
1787         "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}",
1788         wait_pid, wait_status, exited);
1789 
1790     MonitorCallback(wait_pid, exited, wait_status);
1791   }
1792 }
1793 
1794 // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets
1795 // errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
1796 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr,
1797                                          void *data, size_t data_size,
1798                                          long *result) {
1799   Status error;
1800   long int ret;
1801 
1802   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1803 
1804   PtraceDisplayBytes(req, data, data_size);
1805 
1806   errno = 0;
1807   if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
1808     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
1809                  *(unsigned int *)addr, data);
1810   else
1811     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
1812                  addr, data);
1813 
1814   if (ret == -1)
1815     error.SetErrorToErrno();
1816 
1817   if (result)
1818     *result = ret;
1819 
1820   LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data,
1821            data_size, ret);
1822 
1823   PtraceDisplayBytes(req, data, data_size);
1824 
1825   if (error.Fail())
1826     LLDB_LOG(log, "ptrace() failed: {0}", error);
1827 
1828   return error;
1829 }
1830 
1831 llvm::Expected<ProcessorTraceMonitor &>
1832 NativeProcessLinux::LookupProcessorTraceInstance(lldb::user_id_t traceid,
1833                                                  lldb::tid_t thread) {
1834   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1835   if (thread == LLDB_INVALID_THREAD_ID && traceid == m_pt_proces_trace_id) {
1836     LLDB_LOG(log, "thread not specified: {0}", traceid);
1837     return Status("tracing not active thread not specified").ToError();
1838   }
1839 
1840   for (auto& iter : m_processor_trace_monitor) {
1841     if (traceid == iter.second->GetTraceID() &&
1842         (thread == iter.first || thread == LLDB_INVALID_THREAD_ID))
1843       return *(iter.second);
1844   }
1845 
1846   LLDB_LOG(log, "traceid not being traced: {0}", traceid);
1847   return Status("tracing not active for this thread").ToError();
1848 }
1849 
1850 Status NativeProcessLinux::GetMetaData(lldb::user_id_t traceid,
1851                                        lldb::tid_t thread,
1852                                        llvm::MutableArrayRef<uint8_t> &buffer,
1853                                        size_t offset) {
1854   TraceOptions trace_options;
1855   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1856   Status error;
1857 
1858   LLDB_LOG(log, "traceid {0}", traceid);
1859 
1860   auto perf_monitor = LookupProcessorTraceInstance(traceid, thread);
1861   if (!perf_monitor) {
1862     LLDB_LOG(log, "traceid not being traced: {0}", traceid);
1863     buffer = buffer.slice(buffer.size());
1864     error = perf_monitor.takeError();
1865     return error;
1866   }
1867   return (*perf_monitor).ReadPerfTraceData(buffer, offset);
1868 }
1869 
1870 Status NativeProcessLinux::GetData(lldb::user_id_t traceid, lldb::tid_t thread,
1871                                    llvm::MutableArrayRef<uint8_t> &buffer,
1872                                    size_t offset) {
1873   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1874   Status error;
1875 
1876   LLDB_LOG(log, "traceid {0}", traceid);
1877 
1878   auto perf_monitor = LookupProcessorTraceInstance(traceid, thread);
1879   if (!perf_monitor) {
1880     LLDB_LOG(log, "traceid not being traced: {0}", traceid);
1881     buffer = buffer.slice(buffer.size());
1882     error = perf_monitor.takeError();
1883     return error;
1884   }
1885   return (*perf_monitor).ReadPerfTraceAux(buffer, offset);
1886 }
1887 
1888 Status NativeProcessLinux::GetTraceConfig(lldb::user_id_t traceid,
1889                                           TraceOptions &config) {
1890   Status error;
1891   if (config.getThreadID() == LLDB_INVALID_THREAD_ID &&
1892       m_pt_proces_trace_id == traceid) {
1893     if (m_pt_proces_trace_id == LLDB_INVALID_UID) {
1894       error.SetErrorString("tracing not active for this process");
1895       return error;
1896     }
1897     config = m_pt_process_trace_config;
1898   } else {
1899     auto perf_monitor =
1900         LookupProcessorTraceInstance(traceid, config.getThreadID());
1901     if (!perf_monitor) {
1902       error = perf_monitor.takeError();
1903       return error;
1904     }
1905     error = (*perf_monitor).GetTraceConfig(config);
1906   }
1907   return error;
1908 }
1909 
1910 lldb::user_id_t
1911 NativeProcessLinux::StartTraceGroup(const TraceOptions &config,
1912                                            Status &error) {
1913 
1914   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1915   if (config.getType() != TraceType::eTraceTypeProcessorTrace)
1916     return LLDB_INVALID_UID;
1917 
1918   if (m_pt_proces_trace_id != LLDB_INVALID_UID) {
1919     error.SetErrorString("tracing already active on this process");
1920     return m_pt_proces_trace_id;
1921   }
1922 
1923   for (const auto &thread_sp : m_threads) {
1924     if (auto traceInstance = ProcessorTraceMonitor::Create(
1925             GetID(), thread_sp->GetID(), config, true)) {
1926       m_pt_traced_thread_group.insert(thread_sp->GetID());
1927       m_processor_trace_monitor.insert(
1928           std::make_pair(thread_sp->GetID(), std::move(*traceInstance)));
1929     }
1930   }
1931 
1932   m_pt_process_trace_config = config;
1933   error = ProcessorTraceMonitor::GetCPUType(m_pt_process_trace_config);
1934 
1935   // Trace on Complete process will have traceid of 0
1936   m_pt_proces_trace_id = 0;
1937 
1938   LLDB_LOG(log, "Process Trace ID {0}", m_pt_proces_trace_id);
1939   return m_pt_proces_trace_id;
1940 }
1941 
1942 lldb::user_id_t NativeProcessLinux::StartTrace(const TraceOptions &config,
1943                                                Status &error) {
1944   if (config.getType() != TraceType::eTraceTypeProcessorTrace)
1945     return NativeProcessProtocol::StartTrace(config, error);
1946 
1947   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1948 
1949   lldb::tid_t threadid = config.getThreadID();
1950 
1951   if (threadid == LLDB_INVALID_THREAD_ID)
1952     return StartTraceGroup(config, error);
1953 
1954   auto thread_sp = GetThreadByID(threadid);
1955   if (!thread_sp) {
1956     // Thread not tracked by lldb so don't trace.
1957     error.SetErrorString("invalid thread id");
1958     return LLDB_INVALID_UID;
1959   }
1960 
1961   const auto &iter = m_processor_trace_monitor.find(threadid);
1962   if (iter != m_processor_trace_monitor.end()) {
1963     LLDB_LOG(log, "Thread already being traced");
1964     error.SetErrorString("tracing already active on this thread");
1965     return LLDB_INVALID_UID;
1966   }
1967 
1968   auto traceMonitor =
1969       ProcessorTraceMonitor::Create(GetID(), threadid, config, false);
1970   if (!traceMonitor) {
1971     error = traceMonitor.takeError();
1972     LLDB_LOG(log, "error {0}", error);
1973     return LLDB_INVALID_UID;
1974   }
1975   lldb::user_id_t ret_trace_id = (*traceMonitor)->GetTraceID();
1976   m_processor_trace_monitor.insert(
1977       std::make_pair(threadid, std::move(*traceMonitor)));
1978   return ret_trace_id;
1979 }
1980 
1981 Status NativeProcessLinux::StopTracingForThread(lldb::tid_t thread) {
1982   Status error;
1983   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1984   LLDB_LOG(log, "Thread {0}", thread);
1985 
1986   const auto& iter = m_processor_trace_monitor.find(thread);
1987   if (iter == m_processor_trace_monitor.end()) {
1988     error.SetErrorString("tracing not active for this thread");
1989     return error;
1990   }
1991 
1992   if (iter->second->GetTraceID() == m_pt_proces_trace_id) {
1993     // traceid maps to the whole process so we have to erase it from the thread
1994     // group.
1995     LLDB_LOG(log, "traceid maps to process");
1996     m_pt_traced_thread_group.erase(thread);
1997   }
1998   m_processor_trace_monitor.erase(iter);
1999 
2000   return error;
2001 }
2002 
2003 Status NativeProcessLinux::StopTrace(lldb::user_id_t traceid,
2004                                      lldb::tid_t thread) {
2005   Status error;
2006 
2007   TraceOptions trace_options;
2008   trace_options.setThreadID(thread);
2009   error = NativeProcessLinux::GetTraceConfig(traceid, trace_options);
2010 
2011   if (error.Fail())
2012     return error;
2013 
2014   switch (trace_options.getType()) {
2015   case lldb::TraceType::eTraceTypeProcessorTrace:
2016     if (traceid == m_pt_proces_trace_id &&
2017         thread == LLDB_INVALID_THREAD_ID)
2018       StopProcessorTracingOnProcess();
2019     else
2020       error = StopProcessorTracingOnThread(traceid, thread);
2021     break;
2022   default:
2023     error.SetErrorString("trace not supported");
2024     break;
2025   }
2026 
2027   return error;
2028 }
2029 
2030 void NativeProcessLinux::StopProcessorTracingOnProcess() {
2031   for (auto thread_id_iter : m_pt_traced_thread_group)
2032     m_processor_trace_monitor.erase(thread_id_iter);
2033   m_pt_traced_thread_group.clear();
2034   m_pt_proces_trace_id = LLDB_INVALID_UID;
2035 }
2036 
2037 Status NativeProcessLinux::StopProcessorTracingOnThread(lldb::user_id_t traceid,
2038                                                         lldb::tid_t thread) {
2039   Status error;
2040   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2041 
2042   if (thread == LLDB_INVALID_THREAD_ID) {
2043     for (auto& iter : m_processor_trace_monitor) {
2044       if (iter.second->GetTraceID() == traceid) {
2045         // Stopping a trace instance for an individual thread hence there will
2046         // only be one traceid that can match.
2047         m_processor_trace_monitor.erase(iter.first);
2048         return error;
2049       }
2050       LLDB_LOG(log, "Trace ID {0}", iter.second->GetTraceID());
2051     }
2052 
2053     LLDB_LOG(log, "Invalid TraceID");
2054     error.SetErrorString("invalid trace id");
2055     return error;
2056   }
2057 
2058   // thread is specified so we can use find function on the map.
2059   const auto& iter = m_processor_trace_monitor.find(thread);
2060   if (iter == m_processor_trace_monitor.end()) {
2061     // thread not found in our map.
2062     LLDB_LOG(log, "thread not being traced");
2063     error.SetErrorString("tracing not active for this thread");
2064     return error;
2065   }
2066   if (iter->second->GetTraceID() != traceid) {
2067     // traceid did not match so it has to be invalid.
2068     LLDB_LOG(log, "Invalid TraceID");
2069     error.SetErrorString("invalid trace id");
2070     return error;
2071   }
2072 
2073   LLDB_LOG(log, "UID - {0} , Thread -{1}", traceid, thread);
2074 
2075   if (traceid == m_pt_proces_trace_id) {
2076     // traceid maps to the whole process so we have to erase it from the thread
2077     // group.
2078     LLDB_LOG(log, "traceid maps to process");
2079     m_pt_traced_thread_group.erase(thread);
2080   }
2081   m_processor_trace_monitor.erase(iter);
2082 
2083   return error;
2084 }
2085