1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "NativeProcessLinux.h" 11 12 // C Includes 13 #include <errno.h> 14 #include <string.h> 15 #include <stdint.h> 16 #include <unistd.h> 17 18 // C++ Includes 19 #include <fstream> 20 #include <mutex> 21 #include <sstream> 22 #include <string> 23 #include <unordered_map> 24 25 // Other libraries and framework includes 26 #include "lldb/Core/EmulateInstruction.h" 27 #include "lldb/Core/Error.h" 28 #include "lldb/Core/Module.h" 29 #include "lldb/Core/ModuleSpec.h" 30 #include "lldb/Core/RegisterValue.h" 31 #include "lldb/Core/State.h" 32 #include "lldb/Host/common/NativeBreakpoint.h" 33 #include "lldb/Host/common/NativeRegisterContext.h" 34 #include "lldb/Host/Host.h" 35 #include "lldb/Host/ThreadLauncher.h" 36 #include "lldb/Target/Platform.h" 37 #include "lldb/Target/Process.h" 38 #include "lldb/Target/ProcessLaunchInfo.h" 39 #include "lldb/Target/Target.h" 40 #include "lldb/Utility/LLDBAssert.h" 41 #include "lldb/Utility/PseudoTerminal.h" 42 #include "lldb/Utility/StringExtractor.h" 43 44 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 45 #include "NativeThreadLinux.h" 46 #include "ProcFileReader.h" 47 #include "Procfs.h" 48 49 // System includes - They have to be included after framework includes because they define some 50 // macros which collide with variable names in other modules 51 #include <linux/unistd.h> 52 #include <sys/socket.h> 53 54 #include <sys/syscall.h> 55 #include <sys/types.h> 56 #include <sys/user.h> 57 #include <sys/wait.h> 58 59 #include "lldb/Host/linux/Personality.h" 60 #include "lldb/Host/linux/Ptrace.h" 61 #include "lldb/Host/linux/Signalfd.h" 62 #include "lldb/Host/linux/Uio.h" 63 #include "lldb/Host/android/Android.h" 64 65 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS 0xffffffff 66 67 // Support hardware breakpoints in case it has not been defined 68 #ifndef TRAP_HWBKPT 69 #define TRAP_HWBKPT 4 70 #endif 71 72 using namespace lldb; 73 using namespace lldb_private; 74 using namespace lldb_private::process_linux; 75 using namespace llvm; 76 77 // Private bits we only need internally. 78 79 static bool ProcessVmReadvSupported() 80 { 81 static bool is_supported; 82 static std::once_flag flag; 83 84 std::call_once(flag, [] { 85 Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 86 87 uint32_t source = 0x47424742; 88 uint32_t dest = 0; 89 90 struct iovec local, remote; 91 remote.iov_base = &source; 92 local.iov_base = &dest; 93 remote.iov_len = local.iov_len = sizeof source; 94 95 // We shall try if cross-process-memory reads work by attempting to read a value from our own process. 96 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); 97 is_supported = (res == sizeof(source) && source == dest); 98 if (log) 99 { 100 if (is_supported) 101 log->Printf("%s: Detected kernel support for process_vm_readv syscall. Fast memory reads enabled.", 102 __FUNCTION__); 103 else 104 log->Printf("%s: syscall process_vm_readv failed (error: %s). Fast memory reads disabled.", 105 __FUNCTION__, strerror(errno)); 106 } 107 }); 108 109 return is_supported; 110 } 111 112 namespace 113 { 114 Error 115 ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch) 116 { 117 // Grab process info for the running process. 118 ProcessInstanceInfo process_info; 119 if (!platform.GetProcessInfo (pid, process_info)) 120 return Error("failed to get process info"); 121 122 // Resolve the executable module. 123 ModuleSP exe_module_sp; 124 ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture()); 125 FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ()); 126 Error error = platform.ResolveExecutable( 127 exe_module_spec, 128 exe_module_sp, 129 executable_search_paths.GetSize () ? &executable_search_paths : NULL); 130 131 if (!error.Success ()) 132 return error; 133 134 // Check if we've got our architecture from the exe_module. 135 arch = exe_module_sp->GetArchitecture (); 136 if (arch.IsValid ()) 137 return Error(); 138 else 139 return Error("failed to retrieve a valid architecture from the exe module"); 140 } 141 142 void 143 DisplayBytes (StreamString &s, void *bytes, uint32_t count) 144 { 145 uint8_t *ptr = (uint8_t *)bytes; 146 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 147 for(uint32_t i=0; i<loop_count; i++) 148 { 149 s.Printf ("[%x]", *ptr); 150 ptr++; 151 } 152 } 153 154 void 155 PtraceDisplayBytes(int &req, void *data, size_t data_size) 156 { 157 StreamString buf; 158 Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet ( 159 POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE)); 160 161 if (verbose_log) 162 { 163 switch(req) 164 { 165 case PTRACE_POKETEXT: 166 { 167 DisplayBytes(buf, &data, 8); 168 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData()); 169 break; 170 } 171 case PTRACE_POKEDATA: 172 { 173 DisplayBytes(buf, &data, 8); 174 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData()); 175 break; 176 } 177 case PTRACE_POKEUSER: 178 { 179 DisplayBytes(buf, &data, 8); 180 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData()); 181 break; 182 } 183 case PTRACE_SETREGS: 184 { 185 DisplayBytes(buf, data, data_size); 186 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData()); 187 break; 188 } 189 case PTRACE_SETFPREGS: 190 { 191 DisplayBytes(buf, data, data_size); 192 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData()); 193 break; 194 } 195 case PTRACE_SETSIGINFO: 196 { 197 DisplayBytes(buf, data, sizeof(siginfo_t)); 198 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData()); 199 break; 200 } 201 case PTRACE_SETREGSET: 202 { 203 // Extract iov_base from data, which is a pointer to the struct IOVEC 204 DisplayBytes(buf, *(void **)data, data_size); 205 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData()); 206 break; 207 } 208 default: 209 { 210 } 211 } 212 } 213 } 214 215 static constexpr unsigned k_ptrace_word_size = sizeof(void*); 216 static_assert(sizeof(long) >= k_ptrace_word_size, "Size of long must be larger than ptrace word size"); 217 } // end of anonymous namespace 218 219 // Simple helper function to ensure flags are enabled on the given file 220 // descriptor. 221 static Error 222 EnsureFDFlags(int fd, int flags) 223 { 224 Error error; 225 226 int status = fcntl(fd, F_GETFL); 227 if (status == -1) 228 { 229 error.SetErrorToErrno(); 230 return error; 231 } 232 233 if (fcntl(fd, F_SETFL, status | flags) == -1) 234 { 235 error.SetErrorToErrno(); 236 return error; 237 } 238 239 return error; 240 } 241 242 NativeProcessLinux::LaunchArgs::LaunchArgs(Module *module, 243 char const **argv, 244 char const **envp, 245 const FileSpec &stdin_file_spec, 246 const FileSpec &stdout_file_spec, 247 const FileSpec &stderr_file_spec, 248 const FileSpec &working_dir, 249 const ProcessLaunchInfo &launch_info) 250 : m_module(module), 251 m_argv(argv), 252 m_envp(envp), 253 m_stdin_file_spec(stdin_file_spec), 254 m_stdout_file_spec(stdout_file_spec), 255 m_stderr_file_spec(stderr_file_spec), 256 m_working_dir(working_dir), 257 m_launch_info(launch_info) 258 { 259 } 260 261 NativeProcessLinux::LaunchArgs::~LaunchArgs() 262 { } 263 264 // ----------------------------------------------------------------------------- 265 // Public Static Methods 266 // ----------------------------------------------------------------------------- 267 268 Error 269 NativeProcessProtocol::Launch ( 270 ProcessLaunchInfo &launch_info, 271 NativeProcessProtocol::NativeDelegate &native_delegate, 272 MainLoop &mainloop, 273 NativeProcessProtocolSP &native_process_sp) 274 { 275 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 276 277 lldb::ModuleSP exe_module_sp; 278 PlatformSP platform_sp (Platform::GetHostPlatform ()); 279 Error error = platform_sp->ResolveExecutable( 280 ModuleSpec(launch_info.GetExecutableFile(), launch_info.GetArchitecture()), 281 exe_module_sp, 282 nullptr); 283 284 if (! error.Success()) 285 return error; 286 287 // Verify the working directory is valid if one was specified. 288 FileSpec working_dir{launch_info.GetWorkingDirectory()}; 289 if (working_dir && 290 (!working_dir.ResolvePath() || 291 working_dir.GetFileType() != FileSpec::eFileTypeDirectory)) 292 { 293 error.SetErrorStringWithFormat ("No such file or directory: %s", 294 working_dir.GetCString()); 295 return error; 296 } 297 298 const FileAction *file_action; 299 300 // Default of empty will mean to use existing open file descriptors. 301 FileSpec stdin_file_spec{}; 302 FileSpec stdout_file_spec{}; 303 FileSpec stderr_file_spec{}; 304 305 file_action = launch_info.GetFileActionForFD (STDIN_FILENO); 306 if (file_action) 307 stdin_file_spec = file_action->GetFileSpec(); 308 309 file_action = launch_info.GetFileActionForFD (STDOUT_FILENO); 310 if (file_action) 311 stdout_file_spec = file_action->GetFileSpec(); 312 313 file_action = launch_info.GetFileActionForFD (STDERR_FILENO); 314 if (file_action) 315 stderr_file_spec = file_action->GetFileSpec(); 316 317 if (log) 318 { 319 if (stdin_file_spec) 320 log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'", 321 __FUNCTION__, stdin_file_spec.GetCString()); 322 else 323 log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__); 324 325 if (stdout_file_spec) 326 log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'", 327 __FUNCTION__, stdout_file_spec.GetCString()); 328 else 329 log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__); 330 331 if (stderr_file_spec) 332 log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'", 333 __FUNCTION__, stderr_file_spec.GetCString()); 334 else 335 log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__); 336 } 337 338 // Create the NativeProcessLinux in launch mode. 339 native_process_sp.reset (new NativeProcessLinux ()); 340 341 if (log) 342 { 343 int i = 0; 344 for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i) 345 { 346 log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr"); 347 ++i; 348 } 349 } 350 351 if (!native_process_sp->RegisterNativeDelegate (native_delegate)) 352 { 353 native_process_sp.reset (); 354 error.SetErrorStringWithFormat ("failed to register the native delegate"); 355 return error; 356 } 357 358 std::static_pointer_cast<NativeProcessLinux> (native_process_sp)->LaunchInferior ( 359 mainloop, 360 exe_module_sp.get(), 361 launch_info.GetArguments ().GetConstArgumentVector (), 362 launch_info.GetEnvironmentEntries ().GetConstArgumentVector (), 363 stdin_file_spec, 364 stdout_file_spec, 365 stderr_file_spec, 366 working_dir, 367 launch_info, 368 error); 369 370 if (error.Fail ()) 371 { 372 native_process_sp.reset (); 373 if (log) 374 log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ()); 375 return error; 376 } 377 378 launch_info.SetProcessID (native_process_sp->GetID ()); 379 380 return error; 381 } 382 383 Error 384 NativeProcessProtocol::Attach ( 385 lldb::pid_t pid, 386 NativeProcessProtocol::NativeDelegate &native_delegate, 387 MainLoop &mainloop, 388 NativeProcessProtocolSP &native_process_sp) 389 { 390 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 391 if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE)) 392 log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid); 393 394 // Grab the current platform architecture. This should be Linux, 395 // since this code is only intended to run on a Linux host. 396 PlatformSP platform_sp (Platform::GetHostPlatform ()); 397 if (!platform_sp) 398 return Error("failed to get a valid default platform"); 399 400 // Retrieve the architecture for the running process. 401 ArchSpec process_arch; 402 Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch); 403 if (!error.Success ()) 404 return error; 405 406 std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ()); 407 408 if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate)) 409 { 410 error.SetErrorStringWithFormat ("failed to register the native delegate"); 411 return error; 412 } 413 414 native_process_linux_sp->AttachToInferior (mainloop, pid, error); 415 if (!error.Success ()) 416 return error; 417 418 native_process_sp = native_process_linux_sp; 419 return error; 420 } 421 422 // ----------------------------------------------------------------------------- 423 // Public Instance Methods 424 // ----------------------------------------------------------------------------- 425 426 NativeProcessLinux::NativeProcessLinux () : 427 NativeProcessProtocol (LLDB_INVALID_PROCESS_ID), 428 m_arch (), 429 m_supports_mem_region (eLazyBoolCalculate), 430 m_mem_region_cache (), 431 m_mem_region_cache_mutex(), 432 m_pending_notification_tid(LLDB_INVALID_THREAD_ID) 433 { 434 } 435 436 void 437 NativeProcessLinux::LaunchInferior ( 438 MainLoop &mainloop, 439 Module *module, 440 const char *argv[], 441 const char *envp[], 442 const FileSpec &stdin_file_spec, 443 const FileSpec &stdout_file_spec, 444 const FileSpec &stderr_file_spec, 445 const FileSpec &working_dir, 446 const ProcessLaunchInfo &launch_info, 447 Error &error) 448 { 449 m_sigchld_handle = mainloop.RegisterSignal(SIGCHLD, 450 [this] (MainLoopBase &) { SigchldHandler(); }, error); 451 if (! m_sigchld_handle) 452 return; 453 454 if (module) 455 m_arch = module->GetArchitecture (); 456 457 SetState (eStateLaunching); 458 459 std::unique_ptr<LaunchArgs> args( 460 new LaunchArgs(module, argv, envp, 461 stdin_file_spec, 462 stdout_file_spec, 463 stderr_file_spec, 464 working_dir, 465 launch_info)); 466 467 Launch(args.get(), error); 468 } 469 470 void 471 NativeProcessLinux::AttachToInferior (MainLoop &mainloop, lldb::pid_t pid, Error &error) 472 { 473 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 474 if (log) 475 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid); 476 477 m_sigchld_handle = mainloop.RegisterSignal(SIGCHLD, 478 [this] (MainLoopBase &) { SigchldHandler(); }, error); 479 if (! m_sigchld_handle) 480 return; 481 482 // We can use the Host for everything except the ResolveExecutable portion. 483 PlatformSP platform_sp = Platform::GetHostPlatform (); 484 if (!platform_sp) 485 { 486 if (log) 487 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid); 488 error.SetErrorString ("no default platform available"); 489 return; 490 } 491 492 // Gather info about the process. 493 ProcessInstanceInfo process_info; 494 if (!platform_sp->GetProcessInfo (pid, process_info)) 495 { 496 if (log) 497 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid); 498 error.SetErrorString ("failed to get process info"); 499 return; 500 } 501 502 // Resolve the executable module 503 ModuleSP exe_module_sp; 504 FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths()); 505 ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture()); 506 error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp, 507 executable_search_paths.GetSize() ? &executable_search_paths : NULL); 508 if (!error.Success()) 509 return; 510 511 // Set the architecture to the exe architecture. 512 m_arch = exe_module_sp->GetArchitecture(); 513 if (log) 514 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ()); 515 516 m_pid = pid; 517 SetState(eStateAttaching); 518 519 Attach(pid, error); 520 } 521 522 ::pid_t 523 NativeProcessLinux::Launch(LaunchArgs *args, Error &error) 524 { 525 assert (args && "null args"); 526 527 const char **argv = args->m_argv; 528 const char **envp = args->m_envp; 529 const FileSpec working_dir = args->m_working_dir; 530 531 lldb_utility::PseudoTerminal terminal; 532 const size_t err_len = 1024; 533 char err_str[err_len]; 534 lldb::pid_t pid; 535 536 // Propagate the environment if one is not supplied. 537 if (envp == NULL || envp[0] == NULL) 538 envp = const_cast<const char **>(environ); 539 540 if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1)) 541 { 542 error.SetErrorToGenericError(); 543 error.SetErrorStringWithFormat("Process fork failed: %s", err_str); 544 return -1; 545 } 546 547 // Recognized child exit status codes. 548 enum { 549 ePtraceFailed = 1, 550 eDupStdinFailed, 551 eDupStdoutFailed, 552 eDupStderrFailed, 553 eChdirFailed, 554 eExecFailed, 555 eSetGidFailed, 556 eSetSigMaskFailed 557 }; 558 559 // Child process. 560 if (pid == 0) 561 { 562 // First, make sure we disable all logging. If we are logging to stdout, our logs can be 563 // mistaken for inferior output. 564 Log::DisableAllLogChannels(nullptr); 565 // FIXME consider opening a pipe between parent/child and have this forked child 566 // send log info to parent re: launch status. 567 568 // Start tracing this child that is about to exec. 569 error = PtraceWrapper(PTRACE_TRACEME, 0); 570 if (error.Fail()) 571 exit(ePtraceFailed); 572 573 // terminal has already dupped the tty descriptors to stdin/out/err. 574 // This closes original fd from which they were copied (and avoids 575 // leaking descriptors to the debugged process. 576 terminal.CloseSlaveFileDescriptor(); 577 578 // Do not inherit setgid powers. 579 if (setgid(getgid()) != 0) 580 exit(eSetGidFailed); 581 582 // Attempt to have our own process group. 583 if (setpgid(0, 0) != 0) 584 { 585 // FIXME log that this failed. This is common. 586 // Don't allow this to prevent an inferior exec. 587 } 588 589 // Dup file descriptors if needed. 590 if (args->m_stdin_file_spec) 591 if (!DupDescriptor(args->m_stdin_file_spec, STDIN_FILENO, O_RDONLY)) 592 exit(eDupStdinFailed); 593 594 if (args->m_stdout_file_spec) 595 if (!DupDescriptor(args->m_stdout_file_spec, STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC)) 596 exit(eDupStdoutFailed); 597 598 if (args->m_stderr_file_spec) 599 if (!DupDescriptor(args->m_stderr_file_spec, STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC)) 600 exit(eDupStderrFailed); 601 602 // Close everything besides stdin, stdout, and stderr that has no file 603 // action to avoid leaking 604 for (int fd = 3; fd < sysconf(_SC_OPEN_MAX); ++fd) 605 if (!args->m_launch_info.GetFileActionForFD(fd)) 606 close(fd); 607 608 // Change working directory 609 if (working_dir && 0 != ::chdir(working_dir.GetCString())) 610 exit(eChdirFailed); 611 612 // Disable ASLR if requested. 613 if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR)) 614 { 615 const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS); 616 if (old_personality == -1) 617 { 618 // Can't retrieve Linux personality. Cannot disable ASLR. 619 } 620 else 621 { 622 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality); 623 if (new_personality == -1) 624 { 625 // Disabling ASLR failed. 626 } 627 else 628 { 629 // Disabling ASLR succeeded. 630 } 631 } 632 } 633 634 // Clear the signal mask to prevent the child from being affected by 635 // any masking done by the parent. 636 sigset_t set; 637 if (sigemptyset(&set) != 0 || pthread_sigmask(SIG_SETMASK, &set, nullptr) != 0) 638 exit(eSetSigMaskFailed); 639 640 // Execute. We should never return... 641 execve(argv[0], 642 const_cast<char *const *>(argv), 643 const_cast<char *const *>(envp)); 644 645 // ...unless exec fails. In which case we definitely need to end the child here. 646 exit(eExecFailed); 647 } 648 649 // 650 // This is the parent code here. 651 // 652 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 653 654 // Wait for the child process to trap on its call to execve. 655 ::pid_t wpid; 656 int status; 657 if ((wpid = waitpid(pid, &status, 0)) < 0) 658 { 659 error.SetErrorToErrno(); 660 if (log) 661 log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s", 662 __FUNCTION__, error.AsCString ()); 663 664 // Mark the inferior as invalid. 665 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 666 SetState (StateType::eStateInvalid); 667 668 return -1; 669 } 670 else if (WIFEXITED(status)) 671 { 672 // open, dup or execve likely failed for some reason. 673 error.SetErrorToGenericError(); 674 switch (WEXITSTATUS(status)) 675 { 676 case ePtraceFailed: 677 error.SetErrorString("Child ptrace failed."); 678 break; 679 case eDupStdinFailed: 680 error.SetErrorString("Child open stdin failed."); 681 break; 682 case eDupStdoutFailed: 683 error.SetErrorString("Child open stdout failed."); 684 break; 685 case eDupStderrFailed: 686 error.SetErrorString("Child open stderr failed."); 687 break; 688 case eChdirFailed: 689 error.SetErrorString("Child failed to set working directory."); 690 break; 691 case eExecFailed: 692 error.SetErrorString("Child exec failed."); 693 break; 694 case eSetGidFailed: 695 error.SetErrorString("Child setgid failed."); 696 break; 697 case eSetSigMaskFailed: 698 error.SetErrorString("Child failed to set signal mask."); 699 break; 700 default: 701 error.SetErrorString("Child returned unknown exit status."); 702 break; 703 } 704 705 if (log) 706 { 707 log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP", 708 __FUNCTION__, 709 WEXITSTATUS(status)); 710 } 711 712 // Mark the inferior as invalid. 713 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 714 SetState (StateType::eStateInvalid); 715 716 return -1; 717 } 718 assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) && 719 "Could not sync with inferior process."); 720 721 if (log) 722 log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__); 723 724 error = SetDefaultPtraceOpts(pid); 725 if (error.Fail()) 726 { 727 if (log) 728 log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s", 729 __FUNCTION__, error.AsCString ()); 730 731 // Mark the inferior as invalid. 732 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 733 SetState (StateType::eStateInvalid); 734 735 return -1; 736 } 737 738 // Release the master terminal descriptor and pass it off to the 739 // NativeProcessLinux instance. Similarly stash the inferior pid. 740 m_terminal_fd = terminal.ReleaseMasterFileDescriptor(); 741 m_pid = pid; 742 743 // Set the terminal fd to be in non blocking mode (it simplifies the 744 // implementation of ProcessLinux::GetSTDOUT to have a non-blocking 745 // descriptor to read from). 746 error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 747 if (error.Fail()) 748 { 749 if (log) 750 log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s", 751 __FUNCTION__, error.AsCString ()); 752 753 // Mark the inferior as invalid. 754 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 755 SetState (StateType::eStateInvalid); 756 757 return -1; 758 } 759 760 if (log) 761 log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid); 762 763 NativeThreadLinuxSP thread_sp = AddThread(pid); 764 assert (thread_sp && "AddThread() returned a nullptr thread"); 765 thread_sp->SetStoppedBySignal(SIGSTOP); 766 ThreadWasCreated(*thread_sp); 767 768 // Let our process instance know the thread has stopped. 769 SetCurrentThreadID (thread_sp->GetID ()); 770 SetState (StateType::eStateStopped); 771 772 if (log) 773 { 774 if (error.Success ()) 775 { 776 log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__); 777 } 778 else 779 { 780 log->Printf ("NativeProcessLinux::%s inferior launching failed: %s", 781 __FUNCTION__, error.AsCString ()); 782 return -1; 783 } 784 } 785 return pid; 786 } 787 788 ::pid_t 789 NativeProcessLinux::Attach(lldb::pid_t pid, Error &error) 790 { 791 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 792 793 // Use a map to keep track of the threads which we have attached/need to attach. 794 Host::TidMap tids_to_attach; 795 if (pid <= 1) 796 { 797 error.SetErrorToGenericError(); 798 error.SetErrorString("Attaching to process 1 is not allowed."); 799 return -1; 800 } 801 802 while (Host::FindProcessThreads(pid, tids_to_attach)) 803 { 804 for (Host::TidMap::iterator it = tids_to_attach.begin(); 805 it != tids_to_attach.end();) 806 { 807 if (it->second == false) 808 { 809 lldb::tid_t tid = it->first; 810 811 // Attach to the requested process. 812 // An attach will cause the thread to stop with a SIGSTOP. 813 error = PtraceWrapper(PTRACE_ATTACH, tid); 814 if (error.Fail()) 815 { 816 // No such thread. The thread may have exited. 817 // More error handling may be needed. 818 if (error.GetError() == ESRCH) 819 { 820 it = tids_to_attach.erase(it); 821 continue; 822 } 823 else 824 return -1; 825 } 826 827 int status; 828 // Need to use __WALL otherwise we receive an error with errno=ECHLD 829 // At this point we should have a thread stopped if waitpid succeeds. 830 if ((status = waitpid(tid, NULL, __WALL)) < 0) 831 { 832 // No such thread. The thread may have exited. 833 // More error handling may be needed. 834 if (errno == ESRCH) 835 { 836 it = tids_to_attach.erase(it); 837 continue; 838 } 839 else 840 { 841 error.SetErrorToErrno(); 842 return -1; 843 } 844 } 845 846 error = SetDefaultPtraceOpts(tid); 847 if (error.Fail()) 848 return -1; 849 850 if (log) 851 log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid); 852 853 it->second = true; 854 855 // Create the thread, mark it as stopped. 856 NativeThreadLinuxSP thread_sp (AddThread(static_cast<lldb::tid_t>(tid))); 857 assert (thread_sp && "AddThread() returned a nullptr"); 858 859 // This will notify this is a new thread and tell the system it is stopped. 860 thread_sp->SetStoppedBySignal(SIGSTOP); 861 ThreadWasCreated(*thread_sp); 862 SetCurrentThreadID (thread_sp->GetID ()); 863 } 864 865 // move the loop forward 866 ++it; 867 } 868 } 869 870 if (tids_to_attach.size() > 0) 871 { 872 m_pid = pid; 873 // Let our process instance know the thread has stopped. 874 SetState (StateType::eStateStopped); 875 } 876 else 877 { 878 error.SetErrorToGenericError(); 879 error.SetErrorString("No such process."); 880 return -1; 881 } 882 883 return pid; 884 } 885 886 Error 887 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) 888 { 889 long ptrace_opts = 0; 890 891 // Have the child raise an event on exit. This is used to keep the child in 892 // limbo until it is destroyed. 893 ptrace_opts |= PTRACE_O_TRACEEXIT; 894 895 // Have the tracer trace threads which spawn in the inferior process. 896 // TODO: if we want to support tracing the inferiors' child, add the 897 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) 898 ptrace_opts |= PTRACE_O_TRACECLONE; 899 900 // Have the tracer notify us before execve returns 901 // (needed to disable legacy SIGTRAP generation) 902 ptrace_opts |= PTRACE_O_TRACEEXEC; 903 904 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts); 905 } 906 907 static ExitType convert_pid_status_to_exit_type (int status) 908 { 909 if (WIFEXITED (status)) 910 return ExitType::eExitTypeExit; 911 else if (WIFSIGNALED (status)) 912 return ExitType::eExitTypeSignal; 913 else if (WIFSTOPPED (status)) 914 return ExitType::eExitTypeStop; 915 else 916 { 917 // We don't know what this is. 918 return ExitType::eExitTypeInvalid; 919 } 920 } 921 922 static int convert_pid_status_to_return_code (int status) 923 { 924 if (WIFEXITED (status)) 925 return WEXITSTATUS (status); 926 else if (WIFSIGNALED (status)) 927 return WTERMSIG (status); 928 else if (WIFSTOPPED (status)) 929 return WSTOPSIG (status); 930 else 931 { 932 // We don't know what this is. 933 return ExitType::eExitTypeInvalid; 934 } 935 } 936 937 // Handles all waitpid events from the inferior process. 938 void 939 NativeProcessLinux::MonitorCallback(lldb::pid_t pid, 940 bool exited, 941 int signal, 942 int status) 943 { 944 Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS)); 945 946 // Certain activities differ based on whether the pid is the tid of the main thread. 947 const bool is_main_thread = (pid == GetID ()); 948 949 // Handle when the thread exits. 950 if (exited) 951 { 952 if (log) 953 log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %" PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not"); 954 955 // This is a thread that exited. Ensure we're not tracking it anymore. 956 const bool thread_found = StopTrackingThread (pid); 957 958 if (is_main_thread) 959 { 960 // We only set the exit status and notify the delegate if we haven't already set the process 961 // state to an exited state. We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8) 962 // for the main thread. 963 const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed); 964 if (!already_notified) 965 { 966 if (log) 967 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ())); 968 // The main thread exited. We're done monitoring. Report to delegate. 969 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); 970 971 // Notify delegate that our process has exited. 972 SetState (StateType::eStateExited, true); 973 } 974 else 975 { 976 if (log) 977 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); 978 } 979 } 980 else 981 { 982 // Do we want to report to the delegate in this case? I think not. If this was an orderly 983 // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, 984 // and we would have done an all-stop then. 985 if (log) 986 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); 987 } 988 return; 989 } 990 991 siginfo_t info; 992 const auto info_err = GetSignalInfo(pid, &info); 993 auto thread_sp = GetThreadByID(pid); 994 995 if (! thread_sp) 996 { 997 // Normally, the only situation when we cannot find the thread is if we have just 998 // received a new thread notification. This is indicated by GetSignalInfo() returning 999 // si_code == SI_USER and si_pid == 0 1000 if (log) 1001 log->Printf("NativeProcessLinux::%s received notification about an unknown tid %" PRIu64 ".", __FUNCTION__, pid); 1002 1003 if (info_err.Fail()) 1004 { 1005 if (log) 1006 log->Printf("NativeProcessLinux::%s (tid %" PRIu64 ") GetSignalInfo failed (%s). Ingoring this notification.", __FUNCTION__, pid, info_err.AsCString()); 1007 return; 1008 } 1009 1010 if (log && (info.si_code != SI_USER || info.si_pid != 0)) 1011 log->Printf("NativeProcessLinux::%s (tid %" PRIu64 ") unexpected signal info (si_code: %d, si_pid: %d). Treating as a new thread notification anyway.", __FUNCTION__, pid, info.si_code, info.si_pid); 1012 1013 auto thread_sp = AddThread(pid); 1014 // Resume the newly created thread. 1015 ResumeThread(*thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 1016 ThreadWasCreated(*thread_sp); 1017 return; 1018 } 1019 1020 // Get details on the signal raised. 1021 if (info_err.Success()) 1022 { 1023 // We have retrieved the signal info. Dispatch appropriately. 1024 if (info.si_signo == SIGTRAP) 1025 MonitorSIGTRAP(info, *thread_sp); 1026 else 1027 MonitorSignal(info, *thread_sp, exited); 1028 } 1029 else 1030 { 1031 if (info_err.GetError() == EINVAL) 1032 { 1033 // This is a group stop reception for this tid. 1034 // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the 1035 // tracee, triggering the group-stop mechanism. Normally receiving these would stop 1036 // the process, pending a SIGCONT. Simulating this state in a debugger is hard and is 1037 // generally not needed (one use case is debugging background task being managed by a 1038 // shell). For general use, it is sufficient to stop the process in a signal-delivery 1039 // stop which happens before the group stop. This done by MonitorSignal and works 1040 // correctly for all signals. 1041 if (log) 1042 log->Printf("NativeProcessLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64 ". Transparent handling of group stops not supported, resuming the thread.", __FUNCTION__, GetID (), pid); 1043 ResumeThread(*thread_sp, thread_sp->GetState(), LLDB_INVALID_SIGNAL_NUMBER); 1044 } 1045 else 1046 { 1047 // ptrace(GETSIGINFO) failed (but not due to group-stop). 1048 1049 // A return value of ESRCH means the thread/process is no longer on the system, 1050 // so it was killed somehow outside of our control. Either way, we can't do anything 1051 // with it anymore. 1052 1053 // Stop tracking the metadata for the thread since it's entirely off the system now. 1054 const bool thread_found = StopTrackingThread (pid); 1055 1056 if (log) 1057 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)", 1058 __FUNCTION__, info_err.AsCString(), pid, signal, status, info_err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found"); 1059 1060 if (is_main_thread) 1061 { 1062 // Notify the delegate - our process is not available but appears to have been killed outside 1063 // our control. Is eStateExited the right exit state in this case? 1064 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); 1065 SetState (StateType::eStateExited, true); 1066 } 1067 else 1068 { 1069 // This thread was pulled out from underneath us. Anything to do here? Do we want to do an all stop? 1070 if (log) 1071 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid); 1072 } 1073 } 1074 } 1075 } 1076 1077 void 1078 NativeProcessLinux::WaitForNewThread(::pid_t tid) 1079 { 1080 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1081 1082 NativeThreadLinuxSP new_thread_sp = GetThreadByID(tid); 1083 1084 if (new_thread_sp) 1085 { 1086 // We are already tracking the thread - we got the event on the new thread (see 1087 // MonitorSignal) before this one. We are done. 1088 return; 1089 } 1090 1091 // The thread is not tracked yet, let's wait for it to appear. 1092 int status = -1; 1093 ::pid_t wait_pid; 1094 do 1095 { 1096 if (log) 1097 log->Printf ("NativeProcessLinux::%s() received thread creation event for tid %" PRIu32 ". tid not tracked yet, waiting for thread to appear...", __FUNCTION__, tid); 1098 wait_pid = waitpid(tid, &status, __WALL); 1099 } 1100 while (wait_pid == -1 && errno == EINTR); 1101 // Since we are waiting on a specific tid, this must be the creation event. But let's do 1102 // some checks just in case. 1103 if (wait_pid != tid) { 1104 if (log) 1105 log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime", __FUNCTION__, tid); 1106 // The only way I know of this could happen is if the whole process was 1107 // SIGKILLed in the mean time. In any case, we can't do anything about that now. 1108 return; 1109 } 1110 if (WIFEXITED(status)) 1111 { 1112 if (log) 1113 log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " returned an 'exited' event. Not tracking the thread.", __FUNCTION__, tid); 1114 // Also a very improbable event. 1115 return; 1116 } 1117 1118 siginfo_t info; 1119 Error error = GetSignalInfo(tid, &info); 1120 if (error.Fail()) 1121 { 1122 if (log) 1123 log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime.", __FUNCTION__, tid); 1124 return; 1125 } 1126 1127 if (((info.si_pid != 0) || (info.si_code != SI_USER)) && log) 1128 { 1129 // We should be getting a thread creation signal here, but we received something 1130 // else. There isn't much we can do about it now, so we will just log that. Since the 1131 // thread is alive and we are receiving events from it, we shall pretend that it was 1132 // created properly. 1133 log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " received unexpected signal with code %d from pid %d.", __FUNCTION__, tid, info.si_code, info.si_pid); 1134 } 1135 1136 if (log) 1137 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": tracking new thread tid %" PRIu32, 1138 __FUNCTION__, GetID (), tid); 1139 1140 new_thread_sp = AddThread(tid); 1141 ResumeThread(*new_thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 1142 ThreadWasCreated(*new_thread_sp); 1143 } 1144 1145 void 1146 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, NativeThreadLinux &thread) 1147 { 1148 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1149 const bool is_main_thread = (thread.GetID() == GetID ()); 1150 1151 assert(info.si_signo == SIGTRAP && "Unexpected child signal!"); 1152 1153 Mutex::Locker locker (m_threads_mutex); 1154 1155 switch (info.si_code) 1156 { 1157 // TODO: these two cases are required if we want to support tracing of the inferiors' children. We'd need this to debug a monitor. 1158 // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 1159 // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 1160 1161 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): 1162 { 1163 // This is the notification on the parent thread which informs us of new thread 1164 // creation. 1165 // We don't want to do anything with the parent thread so we just resume it. In case we 1166 // want to implement "break on thread creation" functionality, we would need to stop 1167 // here. 1168 1169 unsigned long event_message = 0; 1170 if (GetEventMessage(thread.GetID(), &event_message).Fail()) 1171 { 1172 if (log) 1173 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, thread.GetID()); 1174 } else 1175 WaitForNewThread(event_message); 1176 1177 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 1178 break; 1179 } 1180 1181 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): 1182 { 1183 NativeThreadLinuxSP main_thread_sp; 1184 if (log) 1185 log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info.si_code ^ SIGTRAP); 1186 1187 // Exec clears any pending notifications. 1188 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 1189 1190 // Remove all but the main thread here. Linux fork creates a new process which only copies the main thread. Mutexes are in undefined state. 1191 if (log) 1192 log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__); 1193 1194 for (auto thread_sp : m_threads) 1195 { 1196 const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID (); 1197 if (is_main_thread) 1198 { 1199 main_thread_sp = std::static_pointer_cast<NativeThreadLinux>(thread_sp); 1200 if (log) 1201 log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ()); 1202 } 1203 else 1204 { 1205 if (log) 1206 log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ()); 1207 } 1208 } 1209 1210 m_threads.clear (); 1211 1212 if (main_thread_sp) 1213 { 1214 m_threads.push_back (main_thread_sp); 1215 SetCurrentThreadID (main_thread_sp->GetID ()); 1216 main_thread_sp->SetStoppedByExec(); 1217 } 1218 else 1219 { 1220 SetCurrentThreadID (LLDB_INVALID_THREAD_ID); 1221 if (log) 1222 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ()); 1223 } 1224 1225 // Tell coordinator about about the "new" (since exec) stopped main thread. 1226 ThreadWasCreated(*main_thread_sp); 1227 1228 // Let our delegate know we have just exec'd. 1229 NotifyDidExec (); 1230 1231 // If we have a main thread, indicate we are stopped. 1232 assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked"); 1233 1234 // Let the process know we're stopped. 1235 StopRunningThreads(main_thread_sp->GetID()); 1236 1237 break; 1238 } 1239 1240 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): 1241 { 1242 // The inferior process or one of its threads is about to exit. 1243 // We don't want to do anything with the thread so we just resume it. In case we 1244 // want to implement "break on thread exit" functionality, we would need to stop 1245 // here. 1246 1247 unsigned long data = 0; 1248 if (GetEventMessage(thread.GetID(), &data).Fail()) 1249 data = -1; 1250 1251 if (log) 1252 { 1253 log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)", 1254 __FUNCTION__, 1255 data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false", 1256 thread.GetID(), 1257 is_main_thread ? "is main thread" : "not main thread"); 1258 } 1259 1260 if (is_main_thread) 1261 { 1262 SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true); 1263 } 1264 1265 StateType state = thread.GetState(); 1266 if (! StateIsRunningState(state)) 1267 { 1268 // Due to a kernel bug, we may sometimes get this stop after the inferior gets a 1269 // SIGKILL. This confuses our state tracking logic in ResumeThread(), since normally, 1270 // we should not be receiving any ptrace events while the inferior is stopped. This 1271 // makes sure that the inferior is resumed and exits normally. 1272 state = eStateRunning; 1273 } 1274 ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); 1275 1276 break; 1277 } 1278 1279 case 0: 1280 case TRAP_TRACE: // We receive this on single stepping. 1281 case TRAP_HWBKPT: // We receive this on watchpoint hit 1282 { 1283 // If a watchpoint was hit, report it 1284 uint32_t wp_index; 1285 Error error = thread.GetRegisterContext()->GetWatchpointHitIndex(wp_index, (uintptr_t)info.si_addr); 1286 if (error.Fail() && log) 1287 log->Printf("NativeProcessLinux::%s() " 1288 "received error while checking for watchpoint hits, " 1289 "pid = %" PRIu64 " error = %s", 1290 __FUNCTION__, thread.GetID(), error.AsCString()); 1291 if (wp_index != LLDB_INVALID_INDEX32) 1292 { 1293 MonitorWatchpoint(thread, wp_index); 1294 break; 1295 } 1296 1297 // Otherwise, report step over 1298 MonitorTrace(thread); 1299 break; 1300 } 1301 1302 case SI_KERNEL: 1303 #if defined __mips__ 1304 // For mips there is no special signal for watchpoint 1305 // So we check for watchpoint in kernel trap 1306 { 1307 // If a watchpoint was hit, report it 1308 uint32_t wp_index; 1309 Error error = thread.GetRegisterContext()->GetWatchpointHitIndex(wp_index, LLDB_INVALID_ADDRESS); 1310 if (error.Fail() && log) 1311 log->Printf("NativeProcessLinux::%s() " 1312 "received error while checking for watchpoint hits, " 1313 "pid = %" PRIu64 " error = %s", 1314 __FUNCTION__, thread.GetID(), error.AsCString()); 1315 if (wp_index != LLDB_INVALID_INDEX32) 1316 { 1317 MonitorWatchpoint(thread, wp_index); 1318 break; 1319 } 1320 } 1321 // NO BREAK 1322 #endif 1323 case TRAP_BRKPT: 1324 MonitorBreakpoint(thread); 1325 break; 1326 1327 case SIGTRAP: 1328 case (SIGTRAP | 0x80): 1329 if (log) 1330 log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), thread.GetID()); 1331 1332 // Ignore these signals until we know more about them. 1333 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 1334 break; 1335 1336 default: 1337 assert(false && "Unexpected SIGTRAP code!"); 1338 if (log) 1339 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%d", 1340 __FUNCTION__, GetID(), thread.GetID(), info.si_code); 1341 break; 1342 1343 } 1344 } 1345 1346 void 1347 NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) 1348 { 1349 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1350 if (log) 1351 log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)", 1352 __FUNCTION__, thread.GetID()); 1353 1354 // This thread is currently stopped. 1355 thread.SetStoppedByTrace(); 1356 1357 StopRunningThreads(thread.GetID()); 1358 } 1359 1360 void 1361 NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) 1362 { 1363 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 1364 if (log) 1365 log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64, 1366 __FUNCTION__, thread.GetID()); 1367 1368 // Mark the thread as stopped at breakpoint. 1369 thread.SetStoppedByBreakpoint(); 1370 Error error = FixupBreakpointPCAsNeeded(thread); 1371 if (error.Fail()) 1372 if (log) 1373 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s", 1374 __FUNCTION__, thread.GetID(), error.AsCString()); 1375 1376 if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != m_threads_stepping_with_breakpoint.end()) 1377 thread.SetStoppedByTrace(); 1378 1379 StopRunningThreads(thread.GetID()); 1380 } 1381 1382 void 1383 NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, uint32_t wp_index) 1384 { 1385 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); 1386 if (log) 1387 log->Printf("NativeProcessLinux::%s() received watchpoint event, " 1388 "pid = %" PRIu64 ", wp_index = %" PRIu32, 1389 __FUNCTION__, thread.GetID(), wp_index); 1390 1391 // Mark the thread as stopped at watchpoint. 1392 // The address is at (lldb::addr_t)info->si_addr if we need it. 1393 thread.SetStoppedByWatchpoint(wp_index); 1394 1395 // We need to tell all other running threads before we notify the delegate about this stop. 1396 StopRunningThreads(thread.GetID()); 1397 } 1398 1399 void 1400 NativeProcessLinux::MonitorSignal(const siginfo_t &info, NativeThreadLinux &thread, bool exited) 1401 { 1402 const int signo = info.si_signo; 1403 const bool is_from_llgs = info.si_pid == getpid (); 1404 1405 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1406 1407 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 1408 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a 1409 // kill(2) or raise(3). Similarly for tgkill(2) on Linux. 1410 // 1411 // IOW, user generated signals never generate what we consider to be a 1412 // "crash". 1413 // 1414 // Similarly, ACK signals generated by this monitor. 1415 1416 Mutex::Locker locker (m_threads_mutex); 1417 1418 // Handle the signal. 1419 if (info.si_code == SI_TKILL || info.si_code == SI_USER) 1420 { 1421 if (log) 1422 log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")", 1423 __FUNCTION__, 1424 Host::GetSignalAsCString(signo), 1425 signo, 1426 (info.si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"), 1427 info.si_pid, 1428 is_from_llgs ? "from llgs" : "not from llgs", 1429 thread.GetID()); 1430 } 1431 1432 // Check for thread stop notification. 1433 if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) 1434 { 1435 // This is a tgkill()-based stop. 1436 if (log) 1437 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped", 1438 __FUNCTION__, 1439 GetID (), 1440 thread.GetID()); 1441 1442 // Check that we're not already marked with a stop reason. 1443 // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that 1444 // the kernel signaled us with the thread stopping which we handled and marked as stopped, 1445 // and that, without an intervening resume, we received another stop. It is more likely 1446 // that we are missing the marking of a run state somewhere if we find that the thread was 1447 // marked as stopped. 1448 const StateType thread_state = thread.GetState(); 1449 if (!StateIsStoppedState (thread_state, false)) 1450 { 1451 // An inferior thread has stopped because of a SIGSTOP we have sent it. 1452 // Generally, these are not important stops and we don't want to report them as 1453 // they are just used to stop other threads when one thread (the one with the 1454 // *real* stop reason) hits a breakpoint (watchpoint, etc...). However, in the 1455 // case of an asynchronous Interrupt(), this *is* the real stop reason, so we 1456 // leave the signal intact if this is the thread that was chosen as the 1457 // triggering thread. 1458 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) 1459 { 1460 if (m_pending_notification_tid == thread.GetID()) 1461 thread.SetStoppedBySignal(SIGSTOP, &info); 1462 else 1463 thread.SetStoppedWithNoReason(); 1464 1465 SetCurrentThreadID (thread.GetID ()); 1466 SignalIfAllThreadsStopped(); 1467 } 1468 else 1469 { 1470 // We can end up here if stop was initiated by LLGS but by this time a 1471 // thread stop has occurred - maybe initiated by another event. 1472 Error error = ResumeThread(thread, thread.GetState(), 0); 1473 if (error.Fail() && log) 1474 { 1475 log->Printf("NativeProcessLinux::%s failed to resume thread tid %" PRIu64 ": %s", 1476 __FUNCTION__, thread.GetID(), error.AsCString()); 1477 } 1478 } 1479 } 1480 else 1481 { 1482 if (log) 1483 { 1484 // Retrieve the signal name if the thread was stopped by a signal. 1485 int stop_signo = 0; 1486 const bool stopped_by_signal = thread.IsStopped(&stop_signo); 1487 const char *signal_name = stopped_by_signal ? Host::GetSignalAsCString(stop_signo) : "<not stopped by signal>"; 1488 if (!signal_name) 1489 signal_name = "<no-signal-name>"; 1490 1491 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is", 1492 __FUNCTION__, 1493 GetID (), 1494 thread.GetID(), 1495 StateAsCString (thread_state), 1496 stop_signo, 1497 signal_name); 1498 } 1499 SignalIfAllThreadsStopped(); 1500 } 1501 1502 // Done handling. 1503 return; 1504 } 1505 1506 if (log) 1507 log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, Host::GetSignalAsCString(signo)); 1508 1509 // This thread is stopped. 1510 thread.SetStoppedBySignal(signo, &info); 1511 1512 // Send a stop to the debugger after we get all other threads to stop. 1513 StopRunningThreads(thread.GetID()); 1514 } 1515 1516 namespace { 1517 1518 struct EmulatorBaton 1519 { 1520 NativeProcessLinux* m_process; 1521 NativeRegisterContext* m_reg_context; 1522 1523 // eRegisterKindDWARF -> RegsiterValue 1524 std::unordered_map<uint32_t, RegisterValue> m_register_values; 1525 1526 EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) : 1527 m_process(process), m_reg_context(reg_context) {} 1528 }; 1529 1530 } // anonymous namespace 1531 1532 static size_t 1533 ReadMemoryCallback (EmulateInstruction *instruction, 1534 void *baton, 1535 const EmulateInstruction::Context &context, 1536 lldb::addr_t addr, 1537 void *dst, 1538 size_t length) 1539 { 1540 EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton); 1541 1542 size_t bytes_read; 1543 emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read); 1544 return bytes_read; 1545 } 1546 1547 static bool 1548 ReadRegisterCallback (EmulateInstruction *instruction, 1549 void *baton, 1550 const RegisterInfo *reg_info, 1551 RegisterValue ®_value) 1552 { 1553 EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton); 1554 1555 auto it = emulator_baton->m_register_values.find(reg_info->kinds[eRegisterKindDWARF]); 1556 if (it != emulator_baton->m_register_values.end()) 1557 { 1558 reg_value = it->second; 1559 return true; 1560 } 1561 1562 // The emulator only fill in the dwarf regsiter numbers (and in some case 1563 // the generic register numbers). Get the full register info from the 1564 // register context based on the dwarf register numbers. 1565 const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo( 1566 eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]); 1567 1568 Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value); 1569 if (error.Success()) 1570 return true; 1571 1572 return false; 1573 } 1574 1575 static bool 1576 WriteRegisterCallback (EmulateInstruction *instruction, 1577 void *baton, 1578 const EmulateInstruction::Context &context, 1579 const RegisterInfo *reg_info, 1580 const RegisterValue ®_value) 1581 { 1582 EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton); 1583 emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value; 1584 return true; 1585 } 1586 1587 static size_t 1588 WriteMemoryCallback (EmulateInstruction *instruction, 1589 void *baton, 1590 const EmulateInstruction::Context &context, 1591 lldb::addr_t addr, 1592 const void *dst, 1593 size_t length) 1594 { 1595 return length; 1596 } 1597 1598 static lldb::addr_t 1599 ReadFlags (NativeRegisterContext* regsiter_context) 1600 { 1601 const RegisterInfo* flags_info = regsiter_context->GetRegisterInfo( 1602 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 1603 return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS); 1604 } 1605 1606 Error 1607 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) 1608 { 1609 Error error; 1610 NativeRegisterContextSP register_context_sp = thread.GetRegisterContext(); 1611 1612 std::unique_ptr<EmulateInstruction> emulator_ap( 1613 EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr)); 1614 1615 if (emulator_ap == nullptr) 1616 return Error("Instruction emulator not found!"); 1617 1618 EmulatorBaton baton(this, register_context_sp.get()); 1619 emulator_ap->SetBaton(&baton); 1620 emulator_ap->SetReadMemCallback(&ReadMemoryCallback); 1621 emulator_ap->SetReadRegCallback(&ReadRegisterCallback); 1622 emulator_ap->SetWriteMemCallback(&WriteMemoryCallback); 1623 emulator_ap->SetWriteRegCallback(&WriteRegisterCallback); 1624 1625 if (!emulator_ap->ReadInstruction()) 1626 return Error("Read instruction failed!"); 1627 1628 bool emulation_result = emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC); 1629 1630 const RegisterInfo* reg_info_pc = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); 1631 const RegisterInfo* reg_info_flags = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 1632 1633 auto pc_it = baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]); 1634 auto flags_it = baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]); 1635 1636 lldb::addr_t next_pc; 1637 lldb::addr_t next_flags; 1638 if (emulation_result) 1639 { 1640 assert(pc_it != baton.m_register_values.end() && "Emulation was successfull but PC wasn't updated"); 1641 next_pc = pc_it->second.GetAsUInt64(); 1642 1643 if (flags_it != baton.m_register_values.end()) 1644 next_flags = flags_it->second.GetAsUInt64(); 1645 else 1646 next_flags = ReadFlags (register_context_sp.get()); 1647 } 1648 else if (pc_it == baton.m_register_values.end()) 1649 { 1650 // Emulate instruction failed and it haven't changed PC. Advance PC 1651 // with the size of the current opcode because the emulation of all 1652 // PC modifying instruction should be successful. The failure most 1653 // likely caused by a not supported instruction which don't modify PC. 1654 next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize(); 1655 next_flags = ReadFlags (register_context_sp.get()); 1656 } 1657 else 1658 { 1659 // The instruction emulation failed after it modified the PC. It is an 1660 // unknown error where we can't continue because the next instruction is 1661 // modifying the PC but we don't know how. 1662 return Error ("Instruction emulation failed unexpectedly."); 1663 } 1664 1665 if (m_arch.GetMachine() == llvm::Triple::arm) 1666 { 1667 if (next_flags & 0x20) 1668 { 1669 // Thumb mode 1670 error = SetSoftwareBreakpoint(next_pc, 2); 1671 } 1672 else 1673 { 1674 // Arm mode 1675 error = SetSoftwareBreakpoint(next_pc, 4); 1676 } 1677 } 1678 else if (m_arch.GetMachine() == llvm::Triple::mips64 1679 || m_arch.GetMachine() == llvm::Triple::mips64el 1680 || m_arch.GetMachine() == llvm::Triple::mips 1681 || m_arch.GetMachine() == llvm::Triple::mipsel) 1682 error = SetSoftwareBreakpoint(next_pc, 4); 1683 else 1684 { 1685 // No size hint is given for the next breakpoint 1686 error = SetSoftwareBreakpoint(next_pc, 0); 1687 } 1688 1689 if (error.Fail()) 1690 return error; 1691 1692 m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc}); 1693 1694 return Error(); 1695 } 1696 1697 bool 1698 NativeProcessLinux::SupportHardwareSingleStepping() const 1699 { 1700 if (m_arch.GetMachine() == llvm::Triple::arm 1701 || m_arch.GetMachine() == llvm::Triple::mips64 || m_arch.GetMachine() == llvm::Triple::mips64el 1702 || m_arch.GetMachine() == llvm::Triple::mips || m_arch.GetMachine() == llvm::Triple::mipsel) 1703 return false; 1704 return true; 1705 } 1706 1707 Error 1708 NativeProcessLinux::Resume (const ResumeActionList &resume_actions) 1709 { 1710 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD)); 1711 if (log) 1712 log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ()); 1713 1714 bool software_single_step = !SupportHardwareSingleStepping(); 1715 1716 Mutex::Locker locker (m_threads_mutex); 1717 1718 if (software_single_step) 1719 { 1720 for (auto thread_sp : m_threads) 1721 { 1722 assert (thread_sp && "thread list should not contain NULL threads"); 1723 1724 const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true); 1725 if (action == nullptr) 1726 continue; 1727 1728 if (action->state == eStateStepping) 1729 { 1730 Error error = SetupSoftwareSingleStepping(static_cast<NativeThreadLinux &>(*thread_sp)); 1731 if (error.Fail()) 1732 return error; 1733 } 1734 } 1735 } 1736 1737 for (auto thread_sp : m_threads) 1738 { 1739 assert (thread_sp && "thread list should not contain NULL threads"); 1740 1741 const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true); 1742 1743 if (action == nullptr) 1744 { 1745 if (log) 1746 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64, 1747 __FUNCTION__, GetID (), thread_sp->GetID ()); 1748 continue; 1749 } 1750 1751 if (log) 1752 { 1753 log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64, 1754 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); 1755 } 1756 1757 switch (action->state) 1758 { 1759 case eStateRunning: 1760 case eStateStepping: 1761 { 1762 // Run the thread, possibly feeding it the signal. 1763 const int signo = action->signal; 1764 ResumeThread(static_cast<NativeThreadLinux &>(*thread_sp), action->state, signo); 1765 break; 1766 } 1767 1768 case eStateSuspended: 1769 case eStateStopped: 1770 lldbassert(0 && "Unexpected state"); 1771 1772 default: 1773 return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64, 1774 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); 1775 } 1776 } 1777 1778 return Error(); 1779 } 1780 1781 Error 1782 NativeProcessLinux::Halt () 1783 { 1784 Error error; 1785 1786 if (kill (GetID (), SIGSTOP) != 0) 1787 error.SetErrorToErrno (); 1788 1789 return error; 1790 } 1791 1792 Error 1793 NativeProcessLinux::Detach () 1794 { 1795 Error error; 1796 1797 // Stop monitoring the inferior. 1798 m_sigchld_handle.reset(); 1799 1800 // Tell ptrace to detach from the process. 1801 if (GetID () == LLDB_INVALID_PROCESS_ID) 1802 return error; 1803 1804 for (auto thread_sp : m_threads) 1805 { 1806 Error e = Detach(thread_sp->GetID()); 1807 if (e.Fail()) 1808 error = e; // Save the error, but still attempt to detach from other threads. 1809 } 1810 1811 return error; 1812 } 1813 1814 Error 1815 NativeProcessLinux::Signal (int signo) 1816 { 1817 Error error; 1818 1819 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1820 if (log) 1821 log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64, 1822 __FUNCTION__, signo, Host::GetSignalAsCString(signo), GetID()); 1823 1824 if (kill(GetID(), signo)) 1825 error.SetErrorToErrno(); 1826 1827 return error; 1828 } 1829 1830 Error 1831 NativeProcessLinux::Interrupt () 1832 { 1833 // Pick a running thread (or if none, a not-dead stopped thread) as 1834 // the chosen thread that will be the stop-reason thread. 1835 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1836 1837 NativeThreadProtocolSP running_thread_sp; 1838 NativeThreadProtocolSP stopped_thread_sp; 1839 1840 if (log) 1841 log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__); 1842 1843 Mutex::Locker locker (m_threads_mutex); 1844 1845 for (auto thread_sp : m_threads) 1846 { 1847 // The thread shouldn't be null but lets just cover that here. 1848 if (!thread_sp) 1849 continue; 1850 1851 // If we have a running or stepping thread, we'll call that the 1852 // target of the interrupt. 1853 const auto thread_state = thread_sp->GetState (); 1854 if (thread_state == eStateRunning || 1855 thread_state == eStateStepping) 1856 { 1857 running_thread_sp = thread_sp; 1858 break; 1859 } 1860 else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true)) 1861 { 1862 // Remember the first non-dead stopped thread. We'll use that as a backup if there are no running threads. 1863 stopped_thread_sp = thread_sp; 1864 } 1865 } 1866 1867 if (!running_thread_sp && !stopped_thread_sp) 1868 { 1869 Error error("found no running/stepping or live stopped threads as target for interrupt"); 1870 if (log) 1871 log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ()); 1872 1873 return error; 1874 } 1875 1876 NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp; 1877 1878 if (log) 1879 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target", 1880 __FUNCTION__, 1881 GetID (), 1882 running_thread_sp ? "running" : "stopped", 1883 deferred_signal_thread_sp->GetID ()); 1884 1885 StopRunningThreads(deferred_signal_thread_sp->GetID()); 1886 1887 return Error(); 1888 } 1889 1890 Error 1891 NativeProcessLinux::Kill () 1892 { 1893 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1894 if (log) 1895 log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ()); 1896 1897 Error error; 1898 1899 switch (m_state) 1900 { 1901 case StateType::eStateInvalid: 1902 case StateType::eStateExited: 1903 case StateType::eStateCrashed: 1904 case StateType::eStateDetached: 1905 case StateType::eStateUnloaded: 1906 // Nothing to do - the process is already dead. 1907 if (log) 1908 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state)); 1909 return error; 1910 1911 case StateType::eStateConnected: 1912 case StateType::eStateAttaching: 1913 case StateType::eStateLaunching: 1914 case StateType::eStateStopped: 1915 case StateType::eStateRunning: 1916 case StateType::eStateStepping: 1917 case StateType::eStateSuspended: 1918 // We can try to kill a process in these states. 1919 break; 1920 } 1921 1922 if (kill (GetID (), SIGKILL) != 0) 1923 { 1924 error.SetErrorToErrno (); 1925 return error; 1926 } 1927 1928 return error; 1929 } 1930 1931 static Error 1932 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info) 1933 { 1934 memory_region_info.Clear(); 1935 1936 StringExtractor line_extractor (maps_line.c_str ()); 1937 1938 // Format: {address_start_hex}-{address_end_hex} perms offset dev inode pathname 1939 // perms: rwxp (letter is present if set, '-' if not, final character is p=private, s=shared). 1940 1941 // Parse out the starting address 1942 lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0); 1943 1944 // Parse out hyphen separating start and end address from range. 1945 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-')) 1946 return Error ("malformed /proc/{pid}/maps entry, missing dash between address range"); 1947 1948 // Parse out the ending address 1949 lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address); 1950 1951 // Parse out the space after the address. 1952 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' ')) 1953 return Error ("malformed /proc/{pid}/maps entry, missing space after range"); 1954 1955 // Save the range. 1956 memory_region_info.GetRange ().SetRangeBase (start_address); 1957 memory_region_info.GetRange ().SetRangeEnd (end_address); 1958 1959 // Parse out each permission entry. 1960 if (line_extractor.GetBytesLeft () < 4) 1961 return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions"); 1962 1963 // Handle read permission. 1964 const char read_perm_char = line_extractor.GetChar (); 1965 if (read_perm_char == 'r') 1966 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes); 1967 else 1968 { 1969 assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" ); 1970 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 1971 } 1972 1973 // Handle write permission. 1974 const char write_perm_char = line_extractor.GetChar (); 1975 if (write_perm_char == 'w') 1976 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes); 1977 else 1978 { 1979 assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" ); 1980 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 1981 } 1982 1983 // Handle execute permission. 1984 const char exec_perm_char = line_extractor.GetChar (); 1985 if (exec_perm_char == 'x') 1986 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes); 1987 else 1988 { 1989 assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" ); 1990 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 1991 } 1992 1993 return Error (); 1994 } 1995 1996 Error 1997 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info) 1998 { 1999 // FIXME review that the final memory region returned extends to the end of the virtual address space, 2000 // with no perms if it is not mapped. 2001 2002 // Use an approach that reads memory regions from /proc/{pid}/maps. 2003 // Assume proc maps entries are in ascending order. 2004 // FIXME assert if we find differently. 2005 Mutex::Locker locker (m_mem_region_cache_mutex); 2006 2007 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2008 Error error; 2009 2010 if (m_supports_mem_region == LazyBool::eLazyBoolNo) 2011 { 2012 // We're done. 2013 error.SetErrorString ("unsupported"); 2014 return error; 2015 } 2016 2017 // If our cache is empty, pull the latest. There should always be at least one memory region 2018 // if memory region handling is supported. 2019 if (m_mem_region_cache.empty ()) 2020 { 2021 error = ProcFileReader::ProcessLineByLine (GetID (), "maps", 2022 [&] (const std::string &line) -> bool 2023 { 2024 MemoryRegionInfo info; 2025 const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info); 2026 if (parse_error.Success ()) 2027 { 2028 m_mem_region_cache.push_back (info); 2029 return true; 2030 } 2031 else 2032 { 2033 if (log) 2034 log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ()); 2035 return false; 2036 } 2037 }); 2038 2039 // If we had an error, we'll mark unsupported. 2040 if (error.Fail ()) 2041 { 2042 m_supports_mem_region = LazyBool::eLazyBoolNo; 2043 return error; 2044 } 2045 else if (m_mem_region_cache.empty ()) 2046 { 2047 // No entries after attempting to read them. This shouldn't happen if /proc/{pid}/maps 2048 // is supported. Assume we don't support map entries via procfs. 2049 if (log) 2050 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__); 2051 m_supports_mem_region = LazyBool::eLazyBoolNo; 2052 error.SetErrorString ("not supported"); 2053 return error; 2054 } 2055 2056 if (log) 2057 log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ()); 2058 2059 // We support memory retrieval, remember that. 2060 m_supports_mem_region = LazyBool::eLazyBoolYes; 2061 } 2062 else 2063 { 2064 if (log) 2065 log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ())); 2066 } 2067 2068 lldb::addr_t prev_base_address = 0; 2069 2070 // FIXME start by finding the last region that is <= target address using binary search. Data is sorted. 2071 // There can be a ton of regions on pthreads apps with lots of threads. 2072 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it) 2073 { 2074 MemoryRegionInfo &proc_entry_info = *it; 2075 2076 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 2077 assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected"); 2078 prev_base_address = proc_entry_info.GetRange ().GetRangeBase (); 2079 2080 // If the target address comes before this entry, indicate distance to next region. 2081 if (load_addr < proc_entry_info.GetRange ().GetRangeBase ()) 2082 { 2083 range_info.GetRange ().SetRangeBase (load_addr); 2084 range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr); 2085 range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 2086 range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 2087 range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 2088 2089 return error; 2090 } 2091 else if (proc_entry_info.GetRange ().Contains (load_addr)) 2092 { 2093 // The target address is within the memory region we're processing here. 2094 range_info = proc_entry_info; 2095 return error; 2096 } 2097 2098 // The target memory address comes somewhere after the region we just parsed. 2099 } 2100 2101 // If we made it here, we didn't find an entry that contained the given address. Return the 2102 // load_addr as start and the amount of bytes betwwen load address and the end of the memory as 2103 // size. 2104 range_info.GetRange ().SetRangeBase (load_addr); 2105 switch (m_arch.GetAddressByteSize()) 2106 { 2107 case 4: 2108 range_info.GetRange ().SetByteSize (0x100000000ull - load_addr); 2109 break; 2110 case 8: 2111 range_info.GetRange ().SetByteSize (0ull - load_addr); 2112 break; 2113 default: 2114 assert(false && "Unrecognized data byte size"); 2115 break; 2116 } 2117 range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 2118 range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 2119 range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 2120 return error; 2121 } 2122 2123 void 2124 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId) 2125 { 2126 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2127 if (log) 2128 log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId); 2129 2130 { 2131 Mutex::Locker locker (m_mem_region_cache_mutex); 2132 if (log) 2133 log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ())); 2134 m_mem_region_cache.clear (); 2135 } 2136 } 2137 2138 Error 2139 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, lldb::addr_t &addr) 2140 { 2141 // FIXME implementing this requires the equivalent of 2142 // InferiorCallPOSIX::InferiorCallMmap, which depends on 2143 // functional ThreadPlans working with Native*Protocol. 2144 #if 1 2145 return Error ("not implemented yet"); 2146 #else 2147 addr = LLDB_INVALID_ADDRESS; 2148 2149 unsigned prot = 0; 2150 if (permissions & lldb::ePermissionsReadable) 2151 prot |= eMmapProtRead; 2152 if (permissions & lldb::ePermissionsWritable) 2153 prot |= eMmapProtWrite; 2154 if (permissions & lldb::ePermissionsExecutable) 2155 prot |= eMmapProtExec; 2156 2157 // TODO implement this directly in NativeProcessLinux 2158 // (and lift to NativeProcessPOSIX if/when that class is 2159 // refactored out). 2160 if (InferiorCallMmap(this, addr, 0, size, prot, 2161 eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { 2162 m_addr_to_mmap_size[addr] = size; 2163 return Error (); 2164 } else { 2165 addr = LLDB_INVALID_ADDRESS; 2166 return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions)); 2167 } 2168 #endif 2169 } 2170 2171 Error 2172 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr) 2173 { 2174 // FIXME see comments in AllocateMemory - required lower-level 2175 // bits not in place yet (ThreadPlans) 2176 return Error ("not implemented"); 2177 } 2178 2179 lldb::addr_t 2180 NativeProcessLinux::GetSharedLibraryInfoAddress () 2181 { 2182 #if 1 2183 // punt on this for now 2184 return LLDB_INVALID_ADDRESS; 2185 #else 2186 // Return the image info address for the exe module 2187 #if 1 2188 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2189 2190 ModuleSP module_sp; 2191 Error error = GetExeModuleSP (module_sp); 2192 if (error.Fail ()) 2193 { 2194 if (log) 2195 log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ()); 2196 return LLDB_INVALID_ADDRESS; 2197 } 2198 2199 if (module_sp == nullptr) 2200 { 2201 if (log) 2202 log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__); 2203 return LLDB_INVALID_ADDRESS; 2204 } 2205 2206 ObjectFileSP object_file_sp = module_sp->GetObjectFile (); 2207 if (object_file_sp == nullptr) 2208 { 2209 if (log) 2210 log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__); 2211 return LLDB_INVALID_ADDRESS; 2212 } 2213 2214 return obj_file_sp->GetImageInfoAddress(); 2215 #else 2216 Target *target = &GetTarget(); 2217 ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile(); 2218 Address addr = obj_file->GetImageInfoAddress(target); 2219 2220 if (addr.IsValid()) 2221 return addr.GetLoadAddress(target); 2222 return LLDB_INVALID_ADDRESS; 2223 #endif 2224 #endif // punt on this for now 2225 } 2226 2227 size_t 2228 NativeProcessLinux::UpdateThreads () 2229 { 2230 // The NativeProcessLinux monitoring threads are always up to date 2231 // with respect to thread state and they keep the thread list 2232 // populated properly. All this method needs to do is return the 2233 // thread count. 2234 Mutex::Locker locker (m_threads_mutex); 2235 return m_threads.size (); 2236 } 2237 2238 bool 2239 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const 2240 { 2241 arch = m_arch; 2242 return true; 2243 } 2244 2245 Error 2246 NativeProcessLinux::GetSoftwareBreakpointPCOffset(uint32_t &actual_opcode_size) 2247 { 2248 // FIXME put this behind a breakpoint protocol class that can be 2249 // set per architecture. Need ARM, MIPS support here. 2250 static const uint8_t g_i386_opcode [] = { 0xCC }; 2251 2252 switch (m_arch.GetMachine ()) 2253 { 2254 case llvm::Triple::x86: 2255 case llvm::Triple::x86_64: 2256 actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode)); 2257 return Error (); 2258 2259 case llvm::Triple::arm: 2260 case llvm::Triple::aarch64: 2261 case llvm::Triple::mips64: 2262 case llvm::Triple::mips64el: 2263 case llvm::Triple::mips: 2264 case llvm::Triple::mipsel: 2265 // On these architectures the PC don't get updated for breakpoint hits 2266 actual_opcode_size = 0; 2267 return Error (); 2268 2269 default: 2270 assert(false && "CPU type not supported!"); 2271 return Error ("CPU type not supported"); 2272 } 2273 } 2274 2275 Error 2276 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware) 2277 { 2278 if (hardware) 2279 return Error ("NativeProcessLinux does not support hardware breakpoints"); 2280 else 2281 return SetSoftwareBreakpoint (addr, size); 2282 } 2283 2284 Error 2285 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint, 2286 size_t &actual_opcode_size, 2287 const uint8_t *&trap_opcode_bytes) 2288 { 2289 // FIXME put this behind a breakpoint protocol class that can be set per 2290 // architecture. Need MIPS support here. 2291 static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 }; 2292 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 2293 // linux kernel does otherwise. 2294 static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 }; 2295 static const uint8_t g_i386_opcode [] = { 0xCC }; 2296 static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d }; 2297 static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 }; 2298 static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde }; 2299 2300 switch (m_arch.GetMachine ()) 2301 { 2302 case llvm::Triple::aarch64: 2303 trap_opcode_bytes = g_aarch64_opcode; 2304 actual_opcode_size = sizeof(g_aarch64_opcode); 2305 return Error (); 2306 2307 case llvm::Triple::arm: 2308 switch (trap_opcode_size_hint) 2309 { 2310 case 2: 2311 trap_opcode_bytes = g_thumb_breakpoint_opcode; 2312 actual_opcode_size = sizeof(g_thumb_breakpoint_opcode); 2313 return Error (); 2314 case 4: 2315 trap_opcode_bytes = g_arm_breakpoint_opcode; 2316 actual_opcode_size = sizeof(g_arm_breakpoint_opcode); 2317 return Error (); 2318 default: 2319 assert(false && "Unrecognised trap opcode size hint!"); 2320 return Error ("Unrecognised trap opcode size hint!"); 2321 } 2322 2323 case llvm::Triple::x86: 2324 case llvm::Triple::x86_64: 2325 trap_opcode_bytes = g_i386_opcode; 2326 actual_opcode_size = sizeof(g_i386_opcode); 2327 return Error (); 2328 2329 case llvm::Triple::mips: 2330 case llvm::Triple::mips64: 2331 trap_opcode_bytes = g_mips64_opcode; 2332 actual_opcode_size = sizeof(g_mips64_opcode); 2333 return Error (); 2334 2335 case llvm::Triple::mipsel: 2336 case llvm::Triple::mips64el: 2337 trap_opcode_bytes = g_mips64el_opcode; 2338 actual_opcode_size = sizeof(g_mips64el_opcode); 2339 return Error (); 2340 2341 default: 2342 assert(false && "CPU type not supported!"); 2343 return Error ("CPU type not supported"); 2344 } 2345 } 2346 2347 #if 0 2348 ProcessMessage::CrashReason 2349 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info) 2350 { 2351 ProcessMessage::CrashReason reason; 2352 assert(info->si_signo == SIGSEGV); 2353 2354 reason = ProcessMessage::eInvalidCrashReason; 2355 2356 switch (info->si_code) 2357 { 2358 default: 2359 assert(false && "unexpected si_code for SIGSEGV"); 2360 break; 2361 case SI_KERNEL: 2362 // Linux will occasionally send spurious SI_KERNEL codes. 2363 // (this is poorly documented in sigaction) 2364 // One way to get this is via unaligned SIMD loads. 2365 reason = ProcessMessage::eInvalidAddress; // for lack of anything better 2366 break; 2367 case SEGV_MAPERR: 2368 reason = ProcessMessage::eInvalidAddress; 2369 break; 2370 case SEGV_ACCERR: 2371 reason = ProcessMessage::ePrivilegedAddress; 2372 break; 2373 } 2374 2375 return reason; 2376 } 2377 #endif 2378 2379 2380 #if 0 2381 ProcessMessage::CrashReason 2382 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info) 2383 { 2384 ProcessMessage::CrashReason reason; 2385 assert(info->si_signo == SIGILL); 2386 2387 reason = ProcessMessage::eInvalidCrashReason; 2388 2389 switch (info->si_code) 2390 { 2391 default: 2392 assert(false && "unexpected si_code for SIGILL"); 2393 break; 2394 case ILL_ILLOPC: 2395 reason = ProcessMessage::eIllegalOpcode; 2396 break; 2397 case ILL_ILLOPN: 2398 reason = ProcessMessage::eIllegalOperand; 2399 break; 2400 case ILL_ILLADR: 2401 reason = ProcessMessage::eIllegalAddressingMode; 2402 break; 2403 case ILL_ILLTRP: 2404 reason = ProcessMessage::eIllegalTrap; 2405 break; 2406 case ILL_PRVOPC: 2407 reason = ProcessMessage::ePrivilegedOpcode; 2408 break; 2409 case ILL_PRVREG: 2410 reason = ProcessMessage::ePrivilegedRegister; 2411 break; 2412 case ILL_COPROC: 2413 reason = ProcessMessage::eCoprocessorError; 2414 break; 2415 case ILL_BADSTK: 2416 reason = ProcessMessage::eInternalStackError; 2417 break; 2418 } 2419 2420 return reason; 2421 } 2422 #endif 2423 2424 #if 0 2425 ProcessMessage::CrashReason 2426 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info) 2427 { 2428 ProcessMessage::CrashReason reason; 2429 assert(info->si_signo == SIGFPE); 2430 2431 reason = ProcessMessage::eInvalidCrashReason; 2432 2433 switch (info->si_code) 2434 { 2435 default: 2436 assert(false && "unexpected si_code for SIGFPE"); 2437 break; 2438 case FPE_INTDIV: 2439 reason = ProcessMessage::eIntegerDivideByZero; 2440 break; 2441 case FPE_INTOVF: 2442 reason = ProcessMessage::eIntegerOverflow; 2443 break; 2444 case FPE_FLTDIV: 2445 reason = ProcessMessage::eFloatDivideByZero; 2446 break; 2447 case FPE_FLTOVF: 2448 reason = ProcessMessage::eFloatOverflow; 2449 break; 2450 case FPE_FLTUND: 2451 reason = ProcessMessage::eFloatUnderflow; 2452 break; 2453 case FPE_FLTRES: 2454 reason = ProcessMessage::eFloatInexactResult; 2455 break; 2456 case FPE_FLTINV: 2457 reason = ProcessMessage::eFloatInvalidOperation; 2458 break; 2459 case FPE_FLTSUB: 2460 reason = ProcessMessage::eFloatSubscriptRange; 2461 break; 2462 } 2463 2464 return reason; 2465 } 2466 #endif 2467 2468 #if 0 2469 ProcessMessage::CrashReason 2470 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info) 2471 { 2472 ProcessMessage::CrashReason reason; 2473 assert(info->si_signo == SIGBUS); 2474 2475 reason = ProcessMessage::eInvalidCrashReason; 2476 2477 switch (info->si_code) 2478 { 2479 default: 2480 assert(false && "unexpected si_code for SIGBUS"); 2481 break; 2482 case BUS_ADRALN: 2483 reason = ProcessMessage::eIllegalAlignment; 2484 break; 2485 case BUS_ADRERR: 2486 reason = ProcessMessage::eIllegalAddress; 2487 break; 2488 case BUS_OBJERR: 2489 reason = ProcessMessage::eHardwareError; 2490 break; 2491 } 2492 2493 return reason; 2494 } 2495 #endif 2496 2497 Error 2498 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read) 2499 { 2500 if (ProcessVmReadvSupported()) { 2501 // The process_vm_readv path is about 50 times faster than ptrace api. We want to use 2502 // this syscall if it is supported. 2503 2504 const ::pid_t pid = GetID(); 2505 2506 struct iovec local_iov, remote_iov; 2507 local_iov.iov_base = buf; 2508 local_iov.iov_len = size; 2509 remote_iov.iov_base = reinterpret_cast<void *>(addr); 2510 remote_iov.iov_len = size; 2511 2512 bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0); 2513 const bool success = bytes_read == size; 2514 2515 Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2516 if (log) 2517 log->Printf ("NativeProcessLinux::%s using process_vm_readv to read %zd bytes from inferior address 0x%" PRIx64": %s", 2518 __FUNCTION__, size, addr, success ? "Success" : strerror(errno)); 2519 2520 if (success) 2521 return Error(); 2522 // else 2523 // the call failed for some reason, let's retry the read using ptrace api. 2524 } 2525 2526 unsigned char *dst = static_cast<unsigned char*>(buf); 2527 size_t remainder; 2528 long data; 2529 2530 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); 2531 if (log) 2532 ProcessPOSIXLog::IncNestLevel(); 2533 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) 2534 log->Printf ("NativeProcessLinux::%s(%p, %p, %zd, _)", __FUNCTION__, (void*)addr, buf, size); 2535 2536 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) 2537 { 2538 Error error = NativeProcessLinux::PtraceWrapper(PTRACE_PEEKDATA, GetID(), (void*)addr, nullptr, 0, &data); 2539 if (error.Fail()) 2540 { 2541 if (log) 2542 ProcessPOSIXLog::DecNestLevel(); 2543 return error; 2544 } 2545 2546 remainder = size - bytes_read; 2547 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 2548 2549 // Copy the data into our buffer 2550 for (unsigned i = 0; i < remainder; ++i) 2551 dst[i] = ((data >> i*8) & 0xFF); 2552 2553 if (log && ProcessPOSIXLog::AtTopNestLevel() && 2554 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 2555 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 2556 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 2557 { 2558 uintptr_t print_dst = 0; 2559 // Format bytes from data by moving into print_dst for log output 2560 for (unsigned i = 0; i < remainder; ++i) 2561 print_dst |= (((data >> i*8) & 0xFF) << i*8); 2562 log->Printf ("NativeProcessLinux::%s() [0x%" PRIx64 "]:0x%" PRIx64 " (0x%" PRIx64 ")", 2563 __FUNCTION__, addr, uint64_t(print_dst), uint64_t(data)); 2564 } 2565 addr += k_ptrace_word_size; 2566 dst += k_ptrace_word_size; 2567 } 2568 2569 if (log) 2570 ProcessPOSIXLog::DecNestLevel(); 2571 return Error(); 2572 } 2573 2574 Error 2575 NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read) 2576 { 2577 Error error = ReadMemory(addr, buf, size, bytes_read); 2578 if (error.Fail()) return error; 2579 return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size); 2580 } 2581 2582 Error 2583 NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, size_t size, size_t &bytes_written) 2584 { 2585 const unsigned char *src = static_cast<const unsigned char*>(buf); 2586 size_t remainder; 2587 Error error; 2588 2589 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); 2590 if (log) 2591 ProcessPOSIXLog::IncNestLevel(); 2592 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) 2593 log->Printf ("NativeProcessLinux::%s(0x%" PRIx64 ", %p, %zu)", __FUNCTION__, addr, buf, size); 2594 2595 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) 2596 { 2597 remainder = size - bytes_written; 2598 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 2599 2600 if (remainder == k_ptrace_word_size) 2601 { 2602 unsigned long data = 0; 2603 for (unsigned i = 0; i < k_ptrace_word_size; ++i) 2604 data |= (unsigned long)src[i] << i*8; 2605 2606 if (log && ProcessPOSIXLog::AtTopNestLevel() && 2607 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 2608 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 2609 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 2610 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 2611 (void*)addr, *(const unsigned long*)src, data); 2612 2613 error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), (void*)addr, (void*)data); 2614 if (error.Fail()) 2615 { 2616 if (log) 2617 ProcessPOSIXLog::DecNestLevel(); 2618 return error; 2619 } 2620 } 2621 else 2622 { 2623 unsigned char buff[8]; 2624 size_t bytes_read; 2625 error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read); 2626 if (error.Fail()) 2627 { 2628 if (log) 2629 ProcessPOSIXLog::DecNestLevel(); 2630 return error; 2631 } 2632 2633 memcpy(buff, src, remainder); 2634 2635 size_t bytes_written_rec; 2636 error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec); 2637 if (error.Fail()) 2638 { 2639 if (log) 2640 ProcessPOSIXLog::DecNestLevel(); 2641 return error; 2642 } 2643 2644 if (log && ProcessPOSIXLog::AtTopNestLevel() && 2645 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 2646 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 2647 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 2648 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 2649 (void*)addr, *(const unsigned long*)src, *(unsigned long*)buff); 2650 } 2651 2652 addr += k_ptrace_word_size; 2653 src += k_ptrace_word_size; 2654 } 2655 if (log) 2656 ProcessPOSIXLog::DecNestLevel(); 2657 return error; 2658 } 2659 2660 Error 2661 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo) 2662 { 2663 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2664 2665 if (log) 2666 log->Printf ("NativeProcessLinux::%s() resuming thread = %" PRIu64 " with signal %s", __FUNCTION__, tid, 2667 Host::GetSignalAsCString(signo)); 2668 2669 2670 2671 intptr_t data = 0; 2672 2673 if (signo != LLDB_INVALID_SIGNAL_NUMBER) 2674 data = signo; 2675 2676 Error error = PtraceWrapper(PTRACE_CONT, tid, nullptr, (void*)data); 2677 2678 if (log) 2679 log->Printf ("NativeProcessLinux::%s() resuming thread = %" PRIu64 " result = %s", __FUNCTION__, tid, error.Success() ? "true" : "false"); 2680 return error; 2681 } 2682 2683 Error 2684 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo) 2685 { 2686 intptr_t data = 0; 2687 2688 if (signo != LLDB_INVALID_SIGNAL_NUMBER) 2689 data = signo; 2690 2691 // If hardware single-stepping is not supported, we just do a continue. The breakpoint on the 2692 // next instruction has been setup in NativeProcessLinux::Resume. 2693 return PtraceWrapper(SupportHardwareSingleStepping() ? PTRACE_SINGLESTEP : PTRACE_CONT, 2694 tid, nullptr, (void*)data); 2695 } 2696 2697 Error 2698 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) 2699 { 2700 return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); 2701 } 2702 2703 Error 2704 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message) 2705 { 2706 return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); 2707 } 2708 2709 Error 2710 NativeProcessLinux::Detach(lldb::tid_t tid) 2711 { 2712 if (tid == LLDB_INVALID_THREAD_ID) 2713 return Error(); 2714 2715 return PtraceWrapper(PTRACE_DETACH, tid); 2716 } 2717 2718 bool 2719 NativeProcessLinux::DupDescriptor(const FileSpec &file_spec, int fd, int flags) 2720 { 2721 int target_fd = open(file_spec.GetCString(), flags, 0666); 2722 2723 if (target_fd == -1) 2724 return false; 2725 2726 if (dup2(target_fd, fd) == -1) 2727 return false; 2728 2729 return (close(target_fd) == -1) ? false : true; 2730 } 2731 2732 bool 2733 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id) 2734 { 2735 for (auto thread_sp : m_threads) 2736 { 2737 assert (thread_sp && "thread list should not contain NULL threads"); 2738 if (thread_sp->GetID () == thread_id) 2739 { 2740 // We have this thread. 2741 return true; 2742 } 2743 } 2744 2745 // We don't have this thread. 2746 return false; 2747 } 2748 2749 bool 2750 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id) 2751 { 2752 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 2753 2754 if (log) 2755 log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread_id); 2756 2757 bool found = false; 2758 2759 Mutex::Locker locker (m_threads_mutex); 2760 for (auto it = m_threads.begin (); it != m_threads.end (); ++it) 2761 { 2762 if (*it && ((*it)->GetID () == thread_id)) 2763 { 2764 m_threads.erase (it); 2765 found = true; 2766 break; 2767 } 2768 } 2769 2770 SignalIfAllThreadsStopped(); 2771 2772 return found; 2773 } 2774 2775 NativeThreadLinuxSP 2776 NativeProcessLinux::AddThread (lldb::tid_t thread_id) 2777 { 2778 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 2779 2780 Mutex::Locker locker (m_threads_mutex); 2781 2782 if (log) 2783 { 2784 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64, 2785 __FUNCTION__, 2786 GetID (), 2787 thread_id); 2788 } 2789 2790 assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists"); 2791 2792 // If this is the first thread, save it as the current thread 2793 if (m_threads.empty ()) 2794 SetCurrentThreadID (thread_id); 2795 2796 auto thread_sp = std::make_shared<NativeThreadLinux>(this, thread_id); 2797 m_threads.push_back (thread_sp); 2798 return thread_sp; 2799 } 2800 2801 Error 2802 NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread) 2803 { 2804 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS)); 2805 2806 Error error; 2807 2808 // Find out the size of a breakpoint (might depend on where we are in the code). 2809 NativeRegisterContextSP context_sp = thread.GetRegisterContext(); 2810 if (!context_sp) 2811 { 2812 error.SetErrorString ("cannot get a NativeRegisterContext for the thread"); 2813 if (log) 2814 log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); 2815 return error; 2816 } 2817 2818 uint32_t breakpoint_size = 0; 2819 error = GetSoftwareBreakpointPCOffset(breakpoint_size); 2820 if (error.Fail ()) 2821 { 2822 if (log) 2823 log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ()); 2824 return error; 2825 } 2826 else 2827 { 2828 if (log) 2829 log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size); 2830 } 2831 2832 // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size. 2833 const lldb::addr_t initial_pc_addr = context_sp->GetPCfromBreakpointLocation (); 2834 lldb::addr_t breakpoint_addr = initial_pc_addr; 2835 if (breakpoint_size > 0) 2836 { 2837 // Do not allow breakpoint probe to wrap around. 2838 if (breakpoint_addr >= breakpoint_size) 2839 breakpoint_addr -= breakpoint_size; 2840 } 2841 2842 // Check if we stopped because of a breakpoint. 2843 NativeBreakpointSP breakpoint_sp; 2844 error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp); 2845 if (!error.Success () || !breakpoint_sp) 2846 { 2847 // We didn't find one at a software probe location. Nothing to do. 2848 if (log) 2849 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr); 2850 return Error (); 2851 } 2852 2853 // If the breakpoint is not a software breakpoint, nothing to do. 2854 if (!breakpoint_sp->IsSoftwareBreakpoint ()) 2855 { 2856 if (log) 2857 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr); 2858 return Error (); 2859 } 2860 2861 // 2862 // We have a software breakpoint and need to adjust the PC. 2863 // 2864 2865 // Sanity check. 2866 if (breakpoint_size == 0) 2867 { 2868 // Nothing to do! How did we get here? 2869 if (log) 2870 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr); 2871 return Error (); 2872 } 2873 2874 // Change the program counter. 2875 if (log) 2876 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID(), thread.GetID(), initial_pc_addr, breakpoint_addr); 2877 2878 error = context_sp->SetPC (breakpoint_addr); 2879 if (error.Fail ()) 2880 { 2881 if (log) 2882 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID(), thread.GetID(), error.AsCString ()); 2883 return error; 2884 } 2885 2886 return error; 2887 } 2888 2889 Error 2890 NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec) 2891 { 2892 FileSpec module_file_spec(module_path, true); 2893 2894 bool found = false; 2895 file_spec.Clear(); 2896 ProcFileReader::ProcessLineByLine(GetID(), "maps", 2897 [&] (const std::string &line) 2898 { 2899 SmallVector<StringRef, 16> columns; 2900 StringRef(line).split(columns, " ", -1, false); 2901 if (columns.size() < 6) 2902 return true; // continue searching 2903 2904 FileSpec this_file_spec(columns[5].str().c_str(), false); 2905 if (this_file_spec.GetFilename() != module_file_spec.GetFilename()) 2906 return true; // continue searching 2907 2908 file_spec = this_file_spec; 2909 found = true; 2910 return false; // we are done 2911 }); 2912 2913 if (! found) 2914 return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 2915 module_file_spec.GetFilename().AsCString(), GetID()); 2916 2917 return Error(); 2918 } 2919 2920 Error 2921 NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef& file_name, lldb::addr_t& load_addr) 2922 { 2923 load_addr = LLDB_INVALID_ADDRESS; 2924 Error error = ProcFileReader::ProcessLineByLine (GetID (), "maps", 2925 [&] (const std::string &line) -> bool 2926 { 2927 StringRef maps_row(line); 2928 2929 SmallVector<StringRef, 16> maps_columns; 2930 maps_row.split(maps_columns, StringRef(" "), -1, false); 2931 2932 if (maps_columns.size() < 6) 2933 { 2934 // Return true to continue reading the proc file 2935 return true; 2936 } 2937 2938 if (maps_columns[5] == file_name) 2939 { 2940 StringExtractor addr_extractor(maps_columns[0].str().c_str()); 2941 load_addr = addr_extractor.GetHexMaxU64(false, LLDB_INVALID_ADDRESS); 2942 2943 // Return false to stop reading the proc file further 2944 return false; 2945 } 2946 2947 // Return true to continue reading the proc file 2948 return true; 2949 }); 2950 return error; 2951 } 2952 2953 NativeThreadLinuxSP 2954 NativeProcessLinux::GetThreadByID(lldb::tid_t tid) 2955 { 2956 return std::static_pointer_cast<NativeThreadLinux>(NativeProcessProtocol::GetThreadByID(tid)); 2957 } 2958 2959 Error 2960 NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, lldb::StateType state, int signo) 2961 { 2962 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 2963 2964 if (log) 2965 log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", 2966 __FUNCTION__, thread.GetID()); 2967 2968 // Before we do the resume below, first check if we have a pending 2969 // stop notification that is currently waiting for 2970 // all threads to stop. This is potentially a buggy situation since 2971 // we're ostensibly waiting for threads to stop before we send out the 2972 // pending notification, and here we are resuming one before we send 2973 // out the pending stop notification. 2974 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && log) 2975 { 2976 log->Printf("NativeProcessLinux::%s about to resume tid %" PRIu64 " per explicit request but we have a pending stop notification (tid %" PRIu64 ") that is actively waiting for this thread to stop. Valid sequence of events?", __FUNCTION__, thread.GetID(), m_pending_notification_tid); 2977 } 2978 2979 // Request a resume. We expect this to be synchronous and the system 2980 // to reflect it is running after this completes. 2981 switch (state) 2982 { 2983 case eStateRunning: 2984 { 2985 thread.SetRunning(); 2986 const auto resume_result = Resume(thread.GetID(), signo); 2987 if (resume_result.Success()) 2988 SetState(eStateRunning, true); 2989 return resume_result; 2990 } 2991 case eStateStepping: 2992 { 2993 thread.SetStepping(); 2994 const auto step_result = SingleStep(thread.GetID(), signo); 2995 if (step_result.Success()) 2996 SetState(eStateRunning, true); 2997 return step_result; 2998 } 2999 default: 3000 if (log) 3001 log->Printf("NativeProcessLinux::%s Unhandled state %s.", 3002 __FUNCTION__, StateAsCString(state)); 3003 llvm_unreachable("Unhandled state for resume"); 3004 } 3005 } 3006 3007 //===----------------------------------------------------------------------===// 3008 3009 void 3010 NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) 3011 { 3012 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 3013 3014 if (log) 3015 { 3016 log->Printf("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ")", 3017 __FUNCTION__, triggering_tid); 3018 } 3019 3020 m_pending_notification_tid = triggering_tid; 3021 3022 // Request a stop for all the thread stops that need to be stopped 3023 // and are not already known to be stopped. 3024 for (const auto &thread_sp: m_threads) 3025 { 3026 if (StateIsRunningState(thread_sp->GetState())) 3027 static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop(); 3028 } 3029 3030 SignalIfAllThreadsStopped(); 3031 3032 if (log) 3033 { 3034 log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__); 3035 } 3036 } 3037 3038 void 3039 NativeProcessLinux::SignalIfAllThreadsStopped() 3040 { 3041 if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) 3042 return; // No pending notification. Nothing to do. 3043 3044 for (const auto &thread_sp: m_threads) 3045 { 3046 if (StateIsRunningState(thread_sp->GetState())) 3047 return; // Some threads are still running. Don't signal yet. 3048 } 3049 3050 // We have a pending notification and all threads have stopped. 3051 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 3052 3053 // Clear any temporary breakpoints we used to implement software single stepping. 3054 for (const auto &thread_info: m_threads_stepping_with_breakpoint) 3055 { 3056 Error error = RemoveBreakpoint (thread_info.second); 3057 if (error.Fail()) 3058 if (log) 3059 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s", 3060 __FUNCTION__, thread_info.first, error.AsCString()); 3061 } 3062 m_threads_stepping_with_breakpoint.clear(); 3063 3064 // Notify the delegate about the stop 3065 SetCurrentThreadID(m_pending_notification_tid); 3066 SetState(StateType::eStateStopped, true); 3067 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 3068 } 3069 3070 void 3071 NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) 3072 { 3073 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 3074 3075 if (log) 3076 log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread.GetID()); 3077 3078 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && StateIsRunningState(thread.GetState())) 3079 { 3080 // We will need to wait for this new thread to stop as well before firing the 3081 // notification. 3082 thread.RequestStop(); 3083 } 3084 } 3085 3086 void 3087 NativeProcessLinux::SigchldHandler() 3088 { 3089 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3090 // Process all pending waitpid notifications. 3091 while (true) 3092 { 3093 int status = -1; 3094 ::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG); 3095 3096 if (wait_pid == 0) 3097 break; // We are done. 3098 3099 if (wait_pid == -1) 3100 { 3101 if (errno == EINTR) 3102 continue; 3103 3104 Error error(errno, eErrorTypePOSIX); 3105 if (log) 3106 log->Printf("NativeProcessLinux::%s waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG) failed: %s", 3107 __FUNCTION__, error.AsCString()); 3108 break; 3109 } 3110 3111 bool exited = false; 3112 int signal = 0; 3113 int exit_status = 0; 3114 const char *status_cstr = nullptr; 3115 if (WIFSTOPPED(status)) 3116 { 3117 signal = WSTOPSIG(status); 3118 status_cstr = "STOPPED"; 3119 } 3120 else if (WIFEXITED(status)) 3121 { 3122 exit_status = WEXITSTATUS(status); 3123 status_cstr = "EXITED"; 3124 exited = true; 3125 } 3126 else if (WIFSIGNALED(status)) 3127 { 3128 signal = WTERMSIG(status); 3129 status_cstr = "SIGNALED"; 3130 if (wait_pid == static_cast< ::pid_t>(GetID())) { 3131 exited = true; 3132 exit_status = -1; 3133 } 3134 } 3135 else 3136 status_cstr = "(\?\?\?)"; 3137 3138 if (log) 3139 log->Printf("NativeProcessLinux::%s: waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG)" 3140 "=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i", 3141 __FUNCTION__, wait_pid, status, status_cstr, signal, exit_status); 3142 3143 MonitorCallback (wait_pid, exited, signal, exit_status); 3144 } 3145 } 3146 3147 // Wrapper for ptrace to catch errors and log calls. 3148 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) 3149 Error 3150 NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, long *result) 3151 { 3152 Error error; 3153 long int ret; 3154 3155 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE)); 3156 3157 PtraceDisplayBytes(req, data, data_size); 3158 3159 errno = 0; 3160 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 3161 ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data); 3162 else 3163 ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data); 3164 3165 if (ret == -1) 3166 error.SetErrorToErrno(); 3167 3168 if (result) 3169 *result = ret; 3170 3171 if (log) 3172 log->Printf("ptrace(%d, %" PRIu64 ", %p, %p, %zu)=%lX", req, pid, addr, data, data_size, ret); 3173 3174 PtraceDisplayBytes(req, data, data_size); 3175 3176 if (log && error.GetError() != 0) 3177 { 3178 const char* str; 3179 switch (error.GetError()) 3180 { 3181 case ESRCH: str = "ESRCH"; break; 3182 case EINVAL: str = "EINVAL"; break; 3183 case EBUSY: str = "EBUSY"; break; 3184 case EPERM: str = "EPERM"; break; 3185 default: str = error.AsCString(); 3186 } 3187 log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str); 3188 } 3189 3190 return error; 3191 } 3192