1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "NativeProcessLinux.h" 11 12 // C Includes 13 #include <errno.h> 14 #include <stdint.h> 15 #include <string.h> 16 #include <unistd.h> 17 18 // C++ Includes 19 #include <fstream> 20 #include <mutex> 21 #include <sstream> 22 #include <string> 23 #include <unordered_map> 24 25 // Other libraries and framework includes 26 #include "lldb/Core/EmulateInstruction.h" 27 #include "lldb/Core/ModuleSpec.h" 28 #include "lldb/Core/RegisterValue.h" 29 #include "lldb/Core/State.h" 30 #include "lldb/Host/Host.h" 31 #include "lldb/Host/HostProcess.h" 32 #include "lldb/Host/PseudoTerminal.h" 33 #include "lldb/Host/ThreadLauncher.h" 34 #include "lldb/Host/common/NativeBreakpoint.h" 35 #include "lldb/Host/common/NativeRegisterContext.h" 36 #include "lldb/Host/linux/Ptrace.h" 37 #include "lldb/Host/linux/Uio.h" 38 #include "lldb/Host/posix/ProcessLauncherPosixFork.h" 39 #include "lldb/Symbol/ObjectFile.h" 40 #include "lldb/Target/Process.h" 41 #include "lldb/Target/ProcessLaunchInfo.h" 42 #include "lldb/Target/Target.h" 43 #include "lldb/Utility/LLDBAssert.h" 44 #include "lldb/Utility/Status.h" 45 #include "lldb/Utility/StringExtractor.h" 46 #include "llvm/Support/Errno.h" 47 #include "llvm/Support/FileSystem.h" 48 #include "llvm/Support/Threading.h" 49 50 #include "NativeThreadLinux.h" 51 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 52 #include "Procfs.h" 53 54 #include <linux/unistd.h> 55 #include <sys/socket.h> 56 #include <sys/syscall.h> 57 #include <sys/types.h> 58 #include <sys/user.h> 59 #include <sys/wait.h> 60 61 // Support hardware breakpoints in case it has not been defined 62 #ifndef TRAP_HWBKPT 63 #define TRAP_HWBKPT 4 64 #endif 65 66 using namespace lldb; 67 using namespace lldb_private; 68 using namespace lldb_private::process_linux; 69 using namespace llvm; 70 71 // Private bits we only need internally. 72 73 static bool ProcessVmReadvSupported() { 74 static bool is_supported; 75 static llvm::once_flag flag; 76 77 llvm::call_once(flag, [] { 78 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 79 80 uint32_t source = 0x47424742; 81 uint32_t dest = 0; 82 83 struct iovec local, remote; 84 remote.iov_base = &source; 85 local.iov_base = &dest; 86 remote.iov_len = local.iov_len = sizeof source; 87 88 // We shall try if cross-process-memory reads work by attempting to read a 89 // value from our own process. 90 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); 91 is_supported = (res == sizeof(source) && source == dest); 92 if (is_supported) 93 LLDB_LOG(log, 94 "Detected kernel support for process_vm_readv syscall. " 95 "Fast memory reads enabled."); 96 else 97 LLDB_LOG(log, 98 "syscall process_vm_readv failed (error: {0}). Fast memory " 99 "reads disabled.", 100 llvm::sys::StrError()); 101 }); 102 103 return is_supported; 104 } 105 106 namespace { 107 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) { 108 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 109 if (!log) 110 return; 111 112 if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO)) 113 LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec()); 114 else 115 LLDB_LOG(log, "leaving STDIN as is"); 116 117 if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO)) 118 LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec()); 119 else 120 LLDB_LOG(log, "leaving STDOUT as is"); 121 122 if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO)) 123 LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec()); 124 else 125 LLDB_LOG(log, "leaving STDERR as is"); 126 127 int i = 0; 128 for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; 129 ++args, ++i) 130 LLDB_LOG(log, "arg {0}: '{1}'", i, *args); 131 } 132 133 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) { 134 uint8_t *ptr = (uint8_t *)bytes; 135 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 136 for (uint32_t i = 0; i < loop_count; i++) { 137 s.Printf("[%x]", *ptr); 138 ptr++; 139 } 140 } 141 142 void PtraceDisplayBytes(int &req, void *data, size_t data_size) { 143 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 144 if (!log) 145 return; 146 StreamString buf; 147 148 switch (req) { 149 case PTRACE_POKETEXT: { 150 DisplayBytes(buf, &data, 8); 151 LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData()); 152 break; 153 } 154 case PTRACE_POKEDATA: { 155 DisplayBytes(buf, &data, 8); 156 LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData()); 157 break; 158 } 159 case PTRACE_POKEUSER: { 160 DisplayBytes(buf, &data, 8); 161 LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData()); 162 break; 163 } 164 case PTRACE_SETREGS: { 165 DisplayBytes(buf, data, data_size); 166 LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData()); 167 break; 168 } 169 case PTRACE_SETFPREGS: { 170 DisplayBytes(buf, data, data_size); 171 LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData()); 172 break; 173 } 174 case PTRACE_SETSIGINFO: { 175 DisplayBytes(buf, data, sizeof(siginfo_t)); 176 LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData()); 177 break; 178 } 179 case PTRACE_SETREGSET: { 180 // Extract iov_base from data, which is a pointer to the struct iovec 181 DisplayBytes(buf, *(void **)data, data_size); 182 LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData()); 183 break; 184 } 185 default: {} 186 } 187 } 188 189 static constexpr unsigned k_ptrace_word_size = sizeof(void *); 190 static_assert(sizeof(long) >= k_ptrace_word_size, 191 "Size of long must be larger than ptrace word size"); 192 } // end of anonymous namespace 193 194 // Simple helper function to ensure flags are enabled on the given file 195 // descriptor. 196 static Status EnsureFDFlags(int fd, int flags) { 197 Status error; 198 199 int status = fcntl(fd, F_GETFL); 200 if (status == -1) { 201 error.SetErrorToErrno(); 202 return error; 203 } 204 205 if (fcntl(fd, F_SETFL, status | flags) == -1) { 206 error.SetErrorToErrno(); 207 return error; 208 } 209 210 return error; 211 } 212 213 // ----------------------------------------------------------------------------- 214 // Public Static Methods 215 // ----------------------------------------------------------------------------- 216 217 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 218 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info, 219 NativeDelegate &native_delegate, 220 MainLoop &mainloop) const { 221 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 222 223 MaybeLogLaunchInfo(launch_info); 224 225 Status status; 226 ::pid_t pid = ProcessLauncherPosixFork() 227 .LaunchProcess(launch_info, status) 228 .GetProcessId(); 229 LLDB_LOG(log, "pid = {0:x}", pid); 230 if (status.Fail()) { 231 LLDB_LOG(log, "failed to launch process: {0}", status); 232 return status.ToError(); 233 } 234 235 // Wait for the child process to trap on its call to execve. 236 int wstatus; 237 ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0); 238 assert(wpid == pid); 239 (void)wpid; 240 if (!WIFSTOPPED(wstatus)) { 241 LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}", 242 WaitStatus::Decode(wstatus)); 243 return llvm::make_error<StringError>("Could not sync with inferior process", 244 llvm::inconvertibleErrorCode()); 245 } 246 LLDB_LOG(log, "inferior started, now in stopped state"); 247 248 ProcessInstanceInfo Info; 249 if (!Host::GetProcessInfo(pid, Info)) { 250 return llvm::make_error<StringError>("Cannot get process architecture", 251 llvm::inconvertibleErrorCode()); 252 } 253 254 // Set the architecture to the exe architecture. 255 LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid, 256 Info.GetArchitecture().GetArchitectureName()); 257 258 status = SetDefaultPtraceOpts(pid); 259 if (status.Fail()) { 260 LLDB_LOG(log, "failed to set default ptrace options: {0}", status); 261 return status.ToError(); 262 } 263 264 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 265 pid, launch_info.GetPTY().ReleaseMasterFileDescriptor(), native_delegate, 266 Info.GetArchitecture(), mainloop, {pid})); 267 } 268 269 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 270 NativeProcessLinux::Factory::Attach( 271 lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate, 272 MainLoop &mainloop) const { 273 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 274 LLDB_LOG(log, "pid = {0:x}", pid); 275 276 // Retrieve the architecture for the running process. 277 ProcessInstanceInfo Info; 278 if (!Host::GetProcessInfo(pid, Info)) { 279 return llvm::make_error<StringError>("Cannot get process architecture", 280 llvm::inconvertibleErrorCode()); 281 } 282 283 auto tids_or = NativeProcessLinux::Attach(pid); 284 if (!tids_or) 285 return tids_or.takeError(); 286 287 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 288 pid, -1, native_delegate, Info.GetArchitecture(), mainloop, *tids_or)); 289 } 290 291 // ----------------------------------------------------------------------------- 292 // Public Instance Methods 293 // ----------------------------------------------------------------------------- 294 295 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd, 296 NativeDelegate &delegate, 297 const ArchSpec &arch, MainLoop &mainloop, 298 llvm::ArrayRef<::pid_t> tids) 299 : NativeProcessProtocol(pid, terminal_fd, delegate), m_arch(arch) { 300 if (m_terminal_fd != -1) { 301 Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 302 assert(status.Success()); 303 } 304 305 Status status; 306 m_sigchld_handle = mainloop.RegisterSignal( 307 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status); 308 assert(m_sigchld_handle && status.Success()); 309 310 for (const auto &tid : tids) { 311 NativeThreadLinux &thread = AddThread(tid); 312 thread.SetStoppedBySignal(SIGSTOP); 313 ThreadWasCreated(thread); 314 } 315 316 // Let our process instance know the thread has stopped. 317 SetCurrentThreadID(tids[0]); 318 SetState(StateType::eStateStopped, false); 319 320 // Proccess any signals we received before installing our handler 321 SigchldHandler(); 322 } 323 324 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) { 325 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 326 327 Status status; 328 // Use a map to keep track of the threads which we have attached/need to 329 // attach. 330 Host::TidMap tids_to_attach; 331 while (Host::FindProcessThreads(pid, tids_to_attach)) { 332 for (Host::TidMap::iterator it = tids_to_attach.begin(); 333 it != tids_to_attach.end();) { 334 if (it->second == false) { 335 lldb::tid_t tid = it->first; 336 337 // Attach to the requested process. 338 // An attach will cause the thread to stop with a SIGSTOP. 339 if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) { 340 // No such thread. The thread may have exited. 341 // More error handling may be needed. 342 if (status.GetError() == ESRCH) { 343 it = tids_to_attach.erase(it); 344 continue; 345 } 346 return status.ToError(); 347 } 348 349 int wpid = 350 llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL); 351 // Need to use __WALL otherwise we receive an error with errno=ECHLD 352 // At this point we should have a thread stopped if waitpid succeeds. 353 if (wpid < 0) { 354 // No such thread. The thread may have exited. 355 // More error handling may be needed. 356 if (errno == ESRCH) { 357 it = tids_to_attach.erase(it); 358 continue; 359 } 360 return llvm::errorCodeToError( 361 std::error_code(errno, std::generic_category())); 362 } 363 364 if ((status = SetDefaultPtraceOpts(tid)).Fail()) 365 return status.ToError(); 366 367 LLDB_LOG(log, "adding tid = {0}", tid); 368 it->second = true; 369 } 370 371 // move the loop forward 372 ++it; 373 } 374 } 375 376 size_t tid_count = tids_to_attach.size(); 377 if (tid_count == 0) 378 return llvm::make_error<StringError>("No such process", 379 llvm::inconvertibleErrorCode()); 380 381 std::vector<::pid_t> tids; 382 tids.reserve(tid_count); 383 for (const auto &p : tids_to_attach) 384 tids.push_back(p.first); 385 return std::move(tids); 386 } 387 388 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) { 389 long ptrace_opts = 0; 390 391 // Have the child raise an event on exit. This is used to keep the child in 392 // limbo until it is destroyed. 393 ptrace_opts |= PTRACE_O_TRACEEXIT; 394 395 // Have the tracer trace threads which spawn in the inferior process. 396 // TODO: if we want to support tracing the inferiors' child, add the 397 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) 398 ptrace_opts |= PTRACE_O_TRACECLONE; 399 400 // Have the tracer notify us before execve returns 401 // (needed to disable legacy SIGTRAP generation) 402 ptrace_opts |= PTRACE_O_TRACEEXEC; 403 404 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts); 405 } 406 407 // Handles all waitpid events from the inferior process. 408 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited, 409 WaitStatus status) { 410 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 411 412 // Certain activities differ based on whether the pid is the tid of the main 413 // thread. 414 const bool is_main_thread = (pid == GetID()); 415 416 // Handle when the thread exits. 417 if (exited) { 418 LLDB_LOG(log, 419 "got exit signal({0}) , tid = {1} ({2} main thread), process " 420 "state = {3}", 421 signal, pid, is_main_thread ? "is" : "is not", GetState()); 422 423 // This is a thread that exited. Ensure we're not tracking it anymore. 424 StopTrackingThread(pid); 425 426 if (is_main_thread) { 427 // The main thread exited. We're done monitoring. Report to delegate. 428 SetExitStatus(status, true); 429 430 // Notify delegate that our process has exited. 431 SetState(StateType::eStateExited, true); 432 } 433 return; 434 } 435 436 siginfo_t info; 437 const auto info_err = GetSignalInfo(pid, &info); 438 auto thread_sp = GetThreadByID(pid); 439 440 if (!thread_sp) { 441 // Normally, the only situation when we cannot find the thread is if we have 442 // just received a new thread notification. This is indicated by 443 // GetSignalInfo() returning si_code == SI_USER and si_pid == 0 444 LLDB_LOG(log, "received notification about an unknown tid {0}.", pid); 445 446 if (info_err.Fail()) { 447 LLDB_LOG(log, 448 "(tid {0}) GetSignalInfo failed ({1}). " 449 "Ingoring this notification.", 450 pid, info_err); 451 return; 452 } 453 454 LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code, 455 info.si_pid); 456 457 NativeThreadLinux &thread = AddThread(pid); 458 459 // Resume the newly created thread. 460 ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 461 ThreadWasCreated(thread); 462 return; 463 } 464 465 // Get details on the signal raised. 466 if (info_err.Success()) { 467 // We have retrieved the signal info. Dispatch appropriately. 468 if (info.si_signo == SIGTRAP) 469 MonitorSIGTRAP(info, *thread_sp); 470 else 471 MonitorSignal(info, *thread_sp, exited); 472 } else { 473 if (info_err.GetError() == EINVAL) { 474 // This is a group stop reception for this tid. 475 // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU 476 // into the tracee, triggering the group-stop mechanism. Normally 477 // receiving these would stop the process, pending a SIGCONT. Simulating 478 // this state in a debugger is hard and is generally not needed (one use 479 // case is debugging background task being managed by a shell). For 480 // general use, it is sufficient to stop the process in a signal-delivery 481 // stop which happens before the group stop. This done by MonitorSignal 482 // and works correctly for all signals. 483 LLDB_LOG(log, 484 "received a group stop for pid {0} tid {1}. Transparent " 485 "handling of group stops not supported, resuming the " 486 "thread.", 487 GetID(), pid); 488 ResumeThread(*thread_sp, thread_sp->GetState(), 489 LLDB_INVALID_SIGNAL_NUMBER); 490 } else { 491 // ptrace(GETSIGINFO) failed (but not due to group-stop). 492 493 // A return value of ESRCH means the thread/process is no longer on the 494 // system, so it was killed somehow outside of our control. Either way, 495 // we can't do anything with it anymore. 496 497 // Stop tracking the metadata for the thread since it's entirely off the 498 // system now. 499 const bool thread_found = StopTrackingThread(pid); 500 501 LLDB_LOG(log, 502 "GetSignalInfo failed: {0}, tid = {1}, signal = {2}, " 503 "status = {3}, main_thread = {4}, thread_found: {5}", 504 info_err, pid, signal, status, is_main_thread, thread_found); 505 506 if (is_main_thread) { 507 // Notify the delegate - our process is not available but appears to 508 // have been killed outside 509 // our control. Is eStateExited the right exit state in this case? 510 SetExitStatus(status, true); 511 SetState(StateType::eStateExited, true); 512 } else { 513 // This thread was pulled out from underneath us. Anything to do here? 514 // Do we want to do an all stop? 515 LLDB_LOG(log, 516 "pid {0} tid {1} non-main thread exit occurred, didn't " 517 "tell delegate anything since thread disappeared out " 518 "from underneath us", 519 GetID(), pid); 520 } 521 } 522 } 523 } 524 525 void NativeProcessLinux::WaitForNewThread(::pid_t tid) { 526 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 527 528 if (GetThreadByID(tid)) { 529 // We are already tracking the thread - we got the event on the new thread 530 // (see MonitorSignal) before this one. We are done. 531 return; 532 } 533 534 // The thread is not tracked yet, let's wait for it to appear. 535 int status = -1; 536 LLDB_LOG(log, 537 "received thread creation event for tid {0}. tid not tracked " 538 "yet, waiting for thread to appear...", 539 tid); 540 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, &status, __WALL); 541 // Since we are waiting on a specific tid, this must be the creation event. 542 // But let's do some checks just in case. 543 if (wait_pid != tid) { 544 LLDB_LOG(log, 545 "waiting for tid {0} failed. Assuming the thread has " 546 "disappeared in the meantime", 547 tid); 548 // The only way I know of this could happen is if the whole process was 549 // SIGKILLed in the mean time. In any case, we can't do anything about that 550 // now. 551 return; 552 } 553 if (WIFEXITED(status)) { 554 LLDB_LOG(log, 555 "waiting for tid {0} returned an 'exited' event. Not " 556 "tracking the thread.", 557 tid); 558 // Also a very improbable event. 559 return; 560 } 561 562 LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid); 563 NativeThreadLinux &new_thread = AddThread(tid); 564 565 ResumeThread(new_thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 566 ThreadWasCreated(new_thread); 567 } 568 569 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, 570 NativeThreadLinux &thread) { 571 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 572 const bool is_main_thread = (thread.GetID() == GetID()); 573 574 assert(info.si_signo == SIGTRAP && "Unexpected child signal!"); 575 576 switch (info.si_code) { 577 // TODO: these two cases are required if we want to support tracing of the 578 // inferiors' children. We'd need this to debug a monitor. 579 // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 580 // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 581 582 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { 583 // This is the notification on the parent thread which informs us of new 584 // thread 585 // creation. 586 // We don't want to do anything with the parent thread so we just resume it. 587 // In case we 588 // want to implement "break on thread creation" functionality, we would need 589 // to stop 590 // here. 591 592 unsigned long event_message = 0; 593 if (GetEventMessage(thread.GetID(), &event_message).Fail()) { 594 LLDB_LOG(log, 595 "pid {0} received thread creation event but " 596 "GetEventMessage failed so we don't know the new tid", 597 thread.GetID()); 598 } else 599 WaitForNewThread(event_message); 600 601 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 602 break; 603 } 604 605 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): { 606 LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP); 607 608 // Exec clears any pending notifications. 609 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 610 611 // Remove all but the main thread here. Linux fork creates a new process 612 // which only copies the main thread. 613 LLDB_LOG(log, "exec received, stop tracking all but main thread"); 614 615 for (auto i = m_threads.begin(); i != m_threads.end();) { 616 if ((*i)->GetID() == GetID()) 617 i = m_threads.erase(i); 618 else 619 ++i; 620 } 621 assert(m_threads.size() == 1); 622 auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get()); 623 624 SetCurrentThreadID(main_thread->GetID()); 625 main_thread->SetStoppedByExec(); 626 627 // Tell coordinator about about the "new" (since exec) stopped main thread. 628 ThreadWasCreated(*main_thread); 629 630 // Let our delegate know we have just exec'd. 631 NotifyDidExec(); 632 633 // Let the process know we're stopped. 634 StopRunningThreads(main_thread->GetID()); 635 636 break; 637 } 638 639 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { 640 // The inferior process or one of its threads is about to exit. 641 // We don't want to do anything with the thread so we just resume it. In 642 // case we want to implement "break on thread exit" functionality, we would 643 // need to stop here. 644 645 unsigned long data = 0; 646 if (GetEventMessage(thread.GetID(), &data).Fail()) 647 data = -1; 648 649 LLDB_LOG(log, 650 "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, " 651 "WIFSIGNALED={2}, pid = {3}, main_thread = {4}", 652 data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(), 653 is_main_thread); 654 655 656 StateType state = thread.GetState(); 657 if (!StateIsRunningState(state)) { 658 // Due to a kernel bug, we may sometimes get this stop after the inferior 659 // gets a SIGKILL. This confuses our state tracking logic in 660 // ResumeThread(), since normally, we should not be receiving any ptrace 661 // events while the inferior is stopped. This makes sure that the inferior 662 // is resumed and exits normally. 663 state = eStateRunning; 664 } 665 ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); 666 667 break; 668 } 669 670 case 0: 671 case TRAP_TRACE: // We receive this on single stepping. 672 case TRAP_HWBKPT: // We receive this on watchpoint hit 673 { 674 // If a watchpoint was hit, report it 675 uint32_t wp_index; 676 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 677 wp_index, (uintptr_t)info.si_addr); 678 if (error.Fail()) 679 LLDB_LOG(log, 680 "received error while checking for watchpoint hits, pid = " 681 "{0}, error = {1}", 682 thread.GetID(), error); 683 if (wp_index != LLDB_INVALID_INDEX32) { 684 MonitorWatchpoint(thread, wp_index); 685 break; 686 } 687 688 // If a breakpoint was hit, report it 689 uint32_t bp_index; 690 error = thread.GetRegisterContext().GetHardwareBreakHitIndex( 691 bp_index, (uintptr_t)info.si_addr); 692 if (error.Fail()) 693 LLDB_LOG(log, "received error while checking for hardware " 694 "breakpoint hits, pid = {0}, error = {1}", 695 thread.GetID(), error); 696 if (bp_index != LLDB_INVALID_INDEX32) { 697 MonitorBreakpoint(thread); 698 break; 699 } 700 701 // Otherwise, report step over 702 MonitorTrace(thread); 703 break; 704 } 705 706 case SI_KERNEL: 707 #if defined __mips__ 708 // For mips there is no special signal for watchpoint 709 // So we check for watchpoint in kernel trap 710 { 711 // If a watchpoint was hit, report it 712 uint32_t wp_index; 713 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 714 wp_index, LLDB_INVALID_ADDRESS); 715 if (error.Fail()) 716 LLDB_LOG(log, 717 "received error while checking for watchpoint hits, pid = " 718 "{0}, error = {1}", 719 thread.GetID(), error); 720 if (wp_index != LLDB_INVALID_INDEX32) { 721 MonitorWatchpoint(thread, wp_index); 722 break; 723 } 724 } 725 // NO BREAK 726 #endif 727 case TRAP_BRKPT: 728 MonitorBreakpoint(thread); 729 break; 730 731 case SIGTRAP: 732 case (SIGTRAP | 0x80): 733 LLDB_LOG( 734 log, 735 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 736 info.si_code, GetID(), thread.GetID()); 737 738 // Ignore these signals until we know more about them. 739 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 740 break; 741 742 default: 743 LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}", 744 info.si_code, GetID(), thread.GetID()); 745 MonitorSignal(info, thread, false); 746 break; 747 } 748 } 749 750 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) { 751 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 752 LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID()); 753 754 // This thread is currently stopped. 755 thread.SetStoppedByTrace(); 756 757 StopRunningThreads(thread.GetID()); 758 } 759 760 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) { 761 Log *log( 762 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 763 LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID()); 764 765 // Mark the thread as stopped at breakpoint. 766 thread.SetStoppedByBreakpoint(); 767 Status error = FixupBreakpointPCAsNeeded(thread); 768 if (error.Fail()) 769 LLDB_LOG(log, "pid = {0} fixup: {1}", thread.GetID(), error); 770 771 if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != 772 m_threads_stepping_with_breakpoint.end()) 773 thread.SetStoppedByTrace(); 774 775 StopRunningThreads(thread.GetID()); 776 } 777 778 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, 779 uint32_t wp_index) { 780 Log *log( 781 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); 782 LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}", 783 thread.GetID(), wp_index); 784 785 // Mark the thread as stopped at watchpoint. 786 // The address is at (lldb::addr_t)info->si_addr if we need it. 787 thread.SetStoppedByWatchpoint(wp_index); 788 789 // We need to tell all other running threads before we notify the delegate 790 // about this stop. 791 StopRunningThreads(thread.GetID()); 792 } 793 794 void NativeProcessLinux::MonitorSignal(const siginfo_t &info, 795 NativeThreadLinux &thread, bool exited) { 796 const int signo = info.si_signo; 797 const bool is_from_llgs = info.si_pid == getpid(); 798 799 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 800 801 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 802 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a 803 // kill(2) or raise(3). Similarly for tgkill(2) on Linux. 804 // 805 // IOW, user generated signals never generate what we consider to be a 806 // "crash". 807 // 808 // Similarly, ACK signals generated by this monitor. 809 810 // Handle the signal. 811 LLDB_LOG(log, 812 "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, " 813 "waitpid pid = {4})", 814 Host::GetSignalAsCString(signo), signo, info.si_code, 815 thread.GetID()); 816 817 // Check for thread stop notification. 818 if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) { 819 // This is a tgkill()-based stop. 820 LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID()); 821 822 // Check that we're not already marked with a stop reason. 823 // Note this thread really shouldn't already be marked as stopped - if we 824 // were, that would imply that the kernel signaled us with the thread 825 // stopping which we handled and marked as stopped, and that, without an 826 // intervening resume, we received another stop. It is more likely that we 827 // are missing the marking of a run state somewhere if we find that the 828 // thread was marked as stopped. 829 const StateType thread_state = thread.GetState(); 830 if (!StateIsStoppedState(thread_state, false)) { 831 // An inferior thread has stopped because of a SIGSTOP we have sent it. 832 // Generally, these are not important stops and we don't want to report 833 // them as they are just used to stop other threads when one thread (the 834 // one with the *real* stop reason) hits a breakpoint (watchpoint, 835 // etc...). However, in the case of an asynchronous Interrupt(), this *is* 836 // the real stop reason, so we leave the signal intact if this is the 837 // thread that was chosen as the triggering thread. 838 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 839 if (m_pending_notification_tid == thread.GetID()) 840 thread.SetStoppedBySignal(SIGSTOP, &info); 841 else 842 thread.SetStoppedWithNoReason(); 843 844 SetCurrentThreadID(thread.GetID()); 845 SignalIfAllThreadsStopped(); 846 } else { 847 // We can end up here if stop was initiated by LLGS but by this time a 848 // thread stop has occurred - maybe initiated by another event. 849 Status error = ResumeThread(thread, thread.GetState(), 0); 850 if (error.Fail()) 851 LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(), 852 error); 853 } 854 } else { 855 LLDB_LOG(log, 856 "pid {0} tid {1}, thread was already marked as a stopped " 857 "state (state={2}), leaving stop signal as is", 858 GetID(), thread.GetID(), thread_state); 859 SignalIfAllThreadsStopped(); 860 } 861 862 // Done handling. 863 return; 864 } 865 866 // Check if debugger should stop at this signal or just ignore it 867 // and resume the inferior. 868 if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) { 869 ResumeThread(thread, thread.GetState(), signo); 870 return; 871 } 872 873 // This thread is stopped. 874 LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo)); 875 thread.SetStoppedBySignal(signo, &info); 876 877 // Send a stop to the debugger after we get all other threads to stop. 878 StopRunningThreads(thread.GetID()); 879 } 880 881 namespace { 882 883 struct EmulatorBaton { 884 NativeProcessLinux &m_process; 885 NativeRegisterContext &m_reg_context; 886 887 // eRegisterKindDWARF -> RegsiterValue 888 std::unordered_map<uint32_t, RegisterValue> m_register_values; 889 890 EmulatorBaton(NativeProcessLinux &process, NativeRegisterContext ®_context) 891 : m_process(process), m_reg_context(reg_context) {} 892 }; 893 894 } // anonymous namespace 895 896 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton, 897 const EmulateInstruction::Context &context, 898 lldb::addr_t addr, void *dst, size_t length) { 899 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 900 901 size_t bytes_read; 902 emulator_baton->m_process.ReadMemory(addr, dst, length, bytes_read); 903 return bytes_read; 904 } 905 906 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton, 907 const RegisterInfo *reg_info, 908 RegisterValue ®_value) { 909 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 910 911 auto it = emulator_baton->m_register_values.find( 912 reg_info->kinds[eRegisterKindDWARF]); 913 if (it != emulator_baton->m_register_values.end()) { 914 reg_value = it->second; 915 return true; 916 } 917 918 // The emulator only fill in the dwarf regsiter numbers (and in some case 919 // the generic register numbers). Get the full register info from the 920 // register context based on the dwarf register numbers. 921 const RegisterInfo *full_reg_info = 922 emulator_baton->m_reg_context.GetRegisterInfo( 923 eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]); 924 925 Status error = 926 emulator_baton->m_reg_context.ReadRegister(full_reg_info, reg_value); 927 if (error.Success()) 928 return true; 929 930 return false; 931 } 932 933 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton, 934 const EmulateInstruction::Context &context, 935 const RegisterInfo *reg_info, 936 const RegisterValue ®_value) { 937 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 938 emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = 939 reg_value; 940 return true; 941 } 942 943 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton, 944 const EmulateInstruction::Context &context, 945 lldb::addr_t addr, const void *dst, 946 size_t length) { 947 return length; 948 } 949 950 static lldb::addr_t ReadFlags(NativeRegisterContext ®siter_context) { 951 const RegisterInfo *flags_info = regsiter_context.GetRegisterInfo( 952 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 953 return regsiter_context.ReadRegisterAsUnsigned(flags_info, 954 LLDB_INVALID_ADDRESS); 955 } 956 957 Status 958 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) { 959 Status error; 960 NativeRegisterContext& register_context = thread.GetRegisterContext(); 961 962 std::unique_ptr<EmulateInstruction> emulator_ap( 963 EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, 964 nullptr)); 965 966 if (emulator_ap == nullptr) 967 return Status("Instruction emulator not found!"); 968 969 EmulatorBaton baton(*this, register_context); 970 emulator_ap->SetBaton(&baton); 971 emulator_ap->SetReadMemCallback(&ReadMemoryCallback); 972 emulator_ap->SetReadRegCallback(&ReadRegisterCallback); 973 emulator_ap->SetWriteMemCallback(&WriteMemoryCallback); 974 emulator_ap->SetWriteRegCallback(&WriteRegisterCallback); 975 976 if (!emulator_ap->ReadInstruction()) 977 return Status("Read instruction failed!"); 978 979 bool emulation_result = 980 emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC); 981 982 const RegisterInfo *reg_info_pc = register_context.GetRegisterInfo( 983 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); 984 const RegisterInfo *reg_info_flags = register_context.GetRegisterInfo( 985 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 986 987 auto pc_it = 988 baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]); 989 auto flags_it = 990 baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]); 991 992 lldb::addr_t next_pc; 993 lldb::addr_t next_flags; 994 if (emulation_result) { 995 assert(pc_it != baton.m_register_values.end() && 996 "Emulation was successfull but PC wasn't updated"); 997 next_pc = pc_it->second.GetAsUInt64(); 998 999 if (flags_it != baton.m_register_values.end()) 1000 next_flags = flags_it->second.GetAsUInt64(); 1001 else 1002 next_flags = ReadFlags(register_context); 1003 } else if (pc_it == baton.m_register_values.end()) { 1004 // Emulate instruction failed and it haven't changed PC. Advance PC 1005 // with the size of the current opcode because the emulation of all 1006 // PC modifying instruction should be successful. The failure most 1007 // likely caused by a not supported instruction which don't modify PC. 1008 next_pc = register_context.GetPC() + emulator_ap->GetOpcode().GetByteSize(); 1009 next_flags = ReadFlags(register_context); 1010 } else { 1011 // The instruction emulation failed after it modified the PC. It is an 1012 // unknown error where we can't continue because the next instruction is 1013 // modifying the PC but we don't know how. 1014 return Status("Instruction emulation failed unexpectedly."); 1015 } 1016 1017 if (m_arch.GetMachine() == llvm::Triple::arm) { 1018 if (next_flags & 0x20) { 1019 // Thumb mode 1020 error = SetSoftwareBreakpoint(next_pc, 2); 1021 } else { 1022 // Arm mode 1023 error = SetSoftwareBreakpoint(next_pc, 4); 1024 } 1025 } else if (m_arch.GetMachine() == llvm::Triple::mips64 || 1026 m_arch.GetMachine() == llvm::Triple::mips64el || 1027 m_arch.GetMachine() == llvm::Triple::mips || 1028 m_arch.GetMachine() == llvm::Triple::mipsel || 1029 m_arch.GetMachine() == llvm::Triple::ppc64le) 1030 error = SetSoftwareBreakpoint(next_pc, 4); 1031 else { 1032 // No size hint is given for the next breakpoint 1033 error = SetSoftwareBreakpoint(next_pc, 0); 1034 } 1035 1036 // If setting the breakpoint fails because next_pc is out of 1037 // the address space, ignore it and let the debugee segfault. 1038 if (error.GetError() == EIO || error.GetError() == EFAULT) { 1039 return Status(); 1040 } else if (error.Fail()) 1041 return error; 1042 1043 m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc}); 1044 1045 return Status(); 1046 } 1047 1048 bool NativeProcessLinux::SupportHardwareSingleStepping() const { 1049 if (m_arch.GetMachine() == llvm::Triple::arm || 1050 m_arch.GetMachine() == llvm::Triple::mips64 || 1051 m_arch.GetMachine() == llvm::Triple::mips64el || 1052 m_arch.GetMachine() == llvm::Triple::mips || 1053 m_arch.GetMachine() == llvm::Triple::mipsel) 1054 return false; 1055 return true; 1056 } 1057 1058 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) { 1059 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1060 LLDB_LOG(log, "pid {0}", GetID()); 1061 1062 bool software_single_step = !SupportHardwareSingleStepping(); 1063 1064 if (software_single_step) { 1065 for (const auto &thread : m_threads) { 1066 assert(thread && "thread list should not contain NULL threads"); 1067 1068 const ResumeAction *const action = 1069 resume_actions.GetActionForThread(thread->GetID(), true); 1070 if (action == nullptr) 1071 continue; 1072 1073 if (action->state == eStateStepping) { 1074 Status error = SetupSoftwareSingleStepping( 1075 static_cast<NativeThreadLinux &>(*thread)); 1076 if (error.Fail()) 1077 return error; 1078 } 1079 } 1080 } 1081 1082 for (const auto &thread : m_threads) { 1083 assert(thread && "thread list should not contain NULL threads"); 1084 1085 const ResumeAction *const action = 1086 resume_actions.GetActionForThread(thread->GetID(), true); 1087 1088 if (action == nullptr) { 1089 LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(), 1090 thread->GetID()); 1091 continue; 1092 } 1093 1094 LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}", 1095 action->state, GetID(), thread->GetID()); 1096 1097 switch (action->state) { 1098 case eStateRunning: 1099 case eStateStepping: { 1100 // Run the thread, possibly feeding it the signal. 1101 const int signo = action->signal; 1102 ResumeThread(static_cast<NativeThreadLinux &>(*thread), action->state, 1103 signo); 1104 break; 1105 } 1106 1107 case eStateSuspended: 1108 case eStateStopped: 1109 llvm_unreachable("Unexpected state"); 1110 1111 default: 1112 return Status("NativeProcessLinux::%s (): unexpected state %s specified " 1113 "for pid %" PRIu64 ", tid %" PRIu64, 1114 __FUNCTION__, StateAsCString(action->state), GetID(), 1115 thread->GetID()); 1116 } 1117 } 1118 1119 return Status(); 1120 } 1121 1122 Status NativeProcessLinux::Halt() { 1123 Status error; 1124 1125 if (kill(GetID(), SIGSTOP) != 0) 1126 error.SetErrorToErrno(); 1127 1128 return error; 1129 } 1130 1131 Status NativeProcessLinux::Detach() { 1132 Status error; 1133 1134 // Stop monitoring the inferior. 1135 m_sigchld_handle.reset(); 1136 1137 // Tell ptrace to detach from the process. 1138 if (GetID() == LLDB_INVALID_PROCESS_ID) 1139 return error; 1140 1141 for (const auto &thread : m_threads) { 1142 Status e = Detach(thread->GetID()); 1143 if (e.Fail()) 1144 error = 1145 e; // Save the error, but still attempt to detach from other threads. 1146 } 1147 1148 m_processor_trace_monitor.clear(); 1149 m_pt_proces_trace_id = LLDB_INVALID_UID; 1150 1151 return error; 1152 } 1153 1154 Status NativeProcessLinux::Signal(int signo) { 1155 Status error; 1156 1157 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1158 LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo, 1159 Host::GetSignalAsCString(signo), GetID()); 1160 1161 if (kill(GetID(), signo)) 1162 error.SetErrorToErrno(); 1163 1164 return error; 1165 } 1166 1167 Status NativeProcessLinux::Interrupt() { 1168 // Pick a running thread (or if none, a not-dead stopped thread) as 1169 // the chosen thread that will be the stop-reason thread. 1170 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1171 1172 NativeThreadProtocol *running_thread = nullptr; 1173 NativeThreadProtocol *stopped_thread = nullptr; 1174 1175 LLDB_LOG(log, "selecting running thread for interrupt target"); 1176 for (const auto &thread : m_threads) { 1177 // If we have a running or stepping thread, we'll call that the 1178 // target of the interrupt. 1179 const auto thread_state = thread->GetState(); 1180 if (thread_state == eStateRunning || thread_state == eStateStepping) { 1181 running_thread = thread.get(); 1182 break; 1183 } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) { 1184 // Remember the first non-dead stopped thread. We'll use that as a backup 1185 // if there are no running threads. 1186 stopped_thread = thread.get(); 1187 } 1188 } 1189 1190 if (!running_thread && !stopped_thread) { 1191 Status error("found no running/stepping or live stopped threads as target " 1192 "for interrupt"); 1193 LLDB_LOG(log, "skipping due to error: {0}", error); 1194 1195 return error; 1196 } 1197 1198 NativeThreadProtocol *deferred_signal_thread = 1199 running_thread ? running_thread : stopped_thread; 1200 1201 LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(), 1202 running_thread ? "running" : "stopped", 1203 deferred_signal_thread->GetID()); 1204 1205 StopRunningThreads(deferred_signal_thread->GetID()); 1206 1207 return Status(); 1208 } 1209 1210 Status NativeProcessLinux::Kill() { 1211 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1212 LLDB_LOG(log, "pid {0}", GetID()); 1213 1214 Status error; 1215 1216 switch (m_state) { 1217 case StateType::eStateInvalid: 1218 case StateType::eStateExited: 1219 case StateType::eStateCrashed: 1220 case StateType::eStateDetached: 1221 case StateType::eStateUnloaded: 1222 // Nothing to do - the process is already dead. 1223 LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(), 1224 m_state); 1225 return error; 1226 1227 case StateType::eStateConnected: 1228 case StateType::eStateAttaching: 1229 case StateType::eStateLaunching: 1230 case StateType::eStateStopped: 1231 case StateType::eStateRunning: 1232 case StateType::eStateStepping: 1233 case StateType::eStateSuspended: 1234 // We can try to kill a process in these states. 1235 break; 1236 } 1237 1238 if (kill(GetID(), SIGKILL) != 0) { 1239 error.SetErrorToErrno(); 1240 return error; 1241 } 1242 1243 return error; 1244 } 1245 1246 static Status 1247 ParseMemoryRegionInfoFromProcMapsLine(llvm::StringRef &maps_line, 1248 MemoryRegionInfo &memory_region_info) { 1249 memory_region_info.Clear(); 1250 1251 StringExtractor line_extractor(maps_line); 1252 1253 // Format: {address_start_hex}-{address_end_hex} perms offset dev inode 1254 // pathname 1255 // perms: rwxp (letter is present if set, '-' if not, final character is 1256 // p=private, s=shared). 1257 1258 // Parse out the starting address 1259 lldb::addr_t start_address = line_extractor.GetHexMaxU64(false, 0); 1260 1261 // Parse out hyphen separating start and end address from range. 1262 if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != '-')) 1263 return Status( 1264 "malformed /proc/{pid}/maps entry, missing dash between address range"); 1265 1266 // Parse out the ending address 1267 lldb::addr_t end_address = line_extractor.GetHexMaxU64(false, start_address); 1268 1269 // Parse out the space after the address. 1270 if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != ' ')) 1271 return Status( 1272 "malformed /proc/{pid}/maps entry, missing space after range"); 1273 1274 // Save the range. 1275 memory_region_info.GetRange().SetRangeBase(start_address); 1276 memory_region_info.GetRange().SetRangeEnd(end_address); 1277 1278 // Any memory region in /proc/{pid}/maps is by definition mapped into the 1279 // process. 1280 memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes); 1281 1282 // Parse out each permission entry. 1283 if (line_extractor.GetBytesLeft() < 4) 1284 return Status("malformed /proc/{pid}/maps entry, missing some portion of " 1285 "permissions"); 1286 1287 // Handle read permission. 1288 const char read_perm_char = line_extractor.GetChar(); 1289 if (read_perm_char == 'r') 1290 memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eYes); 1291 else if (read_perm_char == '-') 1292 memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1293 else 1294 return Status("unexpected /proc/{pid}/maps read permission char"); 1295 1296 // Handle write permission. 1297 const char write_perm_char = line_extractor.GetChar(); 1298 if (write_perm_char == 'w') 1299 memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eYes); 1300 else if (write_perm_char == '-') 1301 memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1302 else 1303 return Status("unexpected /proc/{pid}/maps write permission char"); 1304 1305 // Handle execute permission. 1306 const char exec_perm_char = line_extractor.GetChar(); 1307 if (exec_perm_char == 'x') 1308 memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eYes); 1309 else if (exec_perm_char == '-') 1310 memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1311 else 1312 return Status("unexpected /proc/{pid}/maps exec permission char"); 1313 1314 line_extractor.GetChar(); // Read the private bit 1315 line_extractor.SkipSpaces(); // Skip the separator 1316 line_extractor.GetHexMaxU64(false, 0); // Read the offset 1317 line_extractor.GetHexMaxU64(false, 0); // Read the major device number 1318 line_extractor.GetChar(); // Read the device id separator 1319 line_extractor.GetHexMaxU64(false, 0); // Read the major device number 1320 line_extractor.SkipSpaces(); // Skip the separator 1321 line_extractor.GetU64(0, 10); // Read the inode number 1322 1323 line_extractor.SkipSpaces(); 1324 const char *name = line_extractor.Peek(); 1325 if (name) 1326 memory_region_info.SetName(name); 1327 1328 return Status(); 1329 } 1330 1331 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr, 1332 MemoryRegionInfo &range_info) { 1333 // FIXME review that the final memory region returned extends to the end of 1334 // the virtual address space, 1335 // with no perms if it is not mapped. 1336 1337 // Use an approach that reads memory regions from /proc/{pid}/maps. 1338 // Assume proc maps entries are in ascending order. 1339 // FIXME assert if we find differently. 1340 1341 if (m_supports_mem_region == LazyBool::eLazyBoolNo) { 1342 // We're done. 1343 return Status("unsupported"); 1344 } 1345 1346 Status error = PopulateMemoryRegionCache(); 1347 if (error.Fail()) { 1348 return error; 1349 } 1350 1351 lldb::addr_t prev_base_address = 0; 1352 1353 // FIXME start by finding the last region that is <= target address using 1354 // binary search. Data is sorted. 1355 // There can be a ton of regions on pthreads apps with lots of threads. 1356 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end(); 1357 ++it) { 1358 MemoryRegionInfo &proc_entry_info = it->first; 1359 1360 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 1361 assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) && 1362 "descending /proc/pid/maps entries detected, unexpected"); 1363 prev_base_address = proc_entry_info.GetRange().GetRangeBase(); 1364 UNUSED_IF_ASSERT_DISABLED(prev_base_address); 1365 1366 // If the target address comes before this entry, indicate distance to next 1367 // region. 1368 if (load_addr < proc_entry_info.GetRange().GetRangeBase()) { 1369 range_info.GetRange().SetRangeBase(load_addr); 1370 range_info.GetRange().SetByteSize( 1371 proc_entry_info.GetRange().GetRangeBase() - load_addr); 1372 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1373 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1374 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1375 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1376 1377 return error; 1378 } else if (proc_entry_info.GetRange().Contains(load_addr)) { 1379 // The target address is within the memory region we're processing here. 1380 range_info = proc_entry_info; 1381 return error; 1382 } 1383 1384 // The target memory address comes somewhere after the region we just 1385 // parsed. 1386 } 1387 1388 // If we made it here, we didn't find an entry that contained the given 1389 // address. Return the 1390 // load_addr as start and the amount of bytes betwwen load address and the end 1391 // of the memory as 1392 // size. 1393 range_info.GetRange().SetRangeBase(load_addr); 1394 range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS); 1395 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1396 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1397 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1398 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1399 return error; 1400 } 1401 1402 Status NativeProcessLinux::PopulateMemoryRegionCache() { 1403 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1404 1405 // If our cache is empty, pull the latest. There should always be at least 1406 // one memory region if memory region handling is supported. 1407 if (!m_mem_region_cache.empty()) { 1408 LLDB_LOG(log, "reusing {0} cached memory region entries", 1409 m_mem_region_cache.size()); 1410 return Status(); 1411 } 1412 1413 auto BufferOrError = getProcFile(GetID(), "maps"); 1414 if (!BufferOrError) { 1415 m_supports_mem_region = LazyBool::eLazyBoolNo; 1416 return BufferOrError.getError(); 1417 } 1418 StringRef Rest = BufferOrError.get()->getBuffer(); 1419 while (! Rest.empty()) { 1420 StringRef Line; 1421 std::tie(Line, Rest) = Rest.split('\n'); 1422 MemoryRegionInfo info; 1423 const Status parse_error = 1424 ParseMemoryRegionInfoFromProcMapsLine(Line, info); 1425 if (parse_error.Fail()) { 1426 LLDB_LOG(log, "failed to parse proc maps line '{0}': {1}", Line, 1427 parse_error); 1428 m_supports_mem_region = LazyBool::eLazyBoolNo; 1429 return parse_error; 1430 } 1431 m_mem_region_cache.emplace_back( 1432 info, FileSpec(info.GetName().GetCString(), true)); 1433 } 1434 1435 if (m_mem_region_cache.empty()) { 1436 // No entries after attempting to read them. This shouldn't happen if 1437 // /proc/{pid}/maps is supported. Assume we don't support map entries 1438 // via procfs. 1439 m_supports_mem_region = LazyBool::eLazyBoolNo; 1440 LLDB_LOG(log, 1441 "failed to find any procfs maps entries, assuming no support " 1442 "for memory region metadata retrieval"); 1443 return Status("not supported"); 1444 } 1445 1446 LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps", 1447 m_mem_region_cache.size(), GetID()); 1448 1449 // We support memory retrieval, remember that. 1450 m_supports_mem_region = LazyBool::eLazyBoolYes; 1451 return Status(); 1452 } 1453 1454 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) { 1455 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1456 LLDB_LOG(log, "newBumpId={0}", newBumpId); 1457 LLDB_LOG(log, "clearing {0} entries from memory region cache", 1458 m_mem_region_cache.size()); 1459 m_mem_region_cache.clear(); 1460 } 1461 1462 Status NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, 1463 lldb::addr_t &addr) { 1464 // FIXME implementing this requires the equivalent of 1465 // InferiorCallPOSIX::InferiorCallMmap, which depends on 1466 // functional ThreadPlans working with Native*Protocol. 1467 #if 1 1468 return Status("not implemented yet"); 1469 #else 1470 addr = LLDB_INVALID_ADDRESS; 1471 1472 unsigned prot = 0; 1473 if (permissions & lldb::ePermissionsReadable) 1474 prot |= eMmapProtRead; 1475 if (permissions & lldb::ePermissionsWritable) 1476 prot |= eMmapProtWrite; 1477 if (permissions & lldb::ePermissionsExecutable) 1478 prot |= eMmapProtExec; 1479 1480 // TODO implement this directly in NativeProcessLinux 1481 // (and lift to NativeProcessPOSIX if/when that class is 1482 // refactored out). 1483 if (InferiorCallMmap(this, addr, 0, size, prot, 1484 eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { 1485 m_addr_to_mmap_size[addr] = size; 1486 return Status(); 1487 } else { 1488 addr = LLDB_INVALID_ADDRESS; 1489 return Status("unable to allocate %" PRIu64 1490 " bytes of memory with permissions %s", 1491 size, GetPermissionsAsCString(permissions)); 1492 } 1493 #endif 1494 } 1495 1496 Status NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) { 1497 // FIXME see comments in AllocateMemory - required lower-level 1498 // bits not in place yet (ThreadPlans) 1499 return Status("not implemented"); 1500 } 1501 1502 lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress() { 1503 // punt on this for now 1504 return LLDB_INVALID_ADDRESS; 1505 } 1506 1507 size_t NativeProcessLinux::UpdateThreads() { 1508 // The NativeProcessLinux monitoring threads are always up to date 1509 // with respect to thread state and they keep the thread list 1510 // populated properly. All this method needs to do is return the 1511 // thread count. 1512 return m_threads.size(); 1513 } 1514 1515 Status NativeProcessLinux::GetSoftwareBreakpointPCOffset( 1516 uint32_t &actual_opcode_size) { 1517 // FIXME put this behind a breakpoint protocol class that can be 1518 // set per architecture. Need ARM, MIPS support here. 1519 static const uint8_t g_i386_opcode[] = {0xCC}; 1520 static const uint8_t g_s390x_opcode[] = {0x00, 0x01}; 1521 static const uint8_t g_ppc64le_opcode[] = {0x08, 0x00, 0xe0, 0x7f}; // trap 1522 1523 switch (m_arch.GetMachine()) { 1524 case llvm::Triple::x86: 1525 case llvm::Triple::x86_64: 1526 actual_opcode_size = static_cast<uint32_t>(sizeof(g_i386_opcode)); 1527 return Status(); 1528 1529 case llvm::Triple::systemz: 1530 actual_opcode_size = static_cast<uint32_t>(sizeof(g_s390x_opcode)); 1531 return Status(); 1532 1533 case llvm::Triple::ppc64le: 1534 actual_opcode_size = static_cast<uint32_t>(sizeof(g_ppc64le_opcode)); 1535 return Status(); 1536 1537 case llvm::Triple::arm: 1538 case llvm::Triple::aarch64: 1539 case llvm::Triple::mips64: 1540 case llvm::Triple::mips64el: 1541 case llvm::Triple::mips: 1542 case llvm::Triple::mipsel: 1543 // On these architectures the PC don't get updated for breakpoint hits 1544 actual_opcode_size = 0; 1545 return Status(); 1546 1547 default: 1548 assert(false && "CPU type not supported!"); 1549 return Status("CPU type not supported"); 1550 } 1551 } 1552 1553 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size, 1554 bool hardware) { 1555 if (hardware) 1556 return SetHardwareBreakpoint(addr, size); 1557 else 1558 return SetSoftwareBreakpoint(addr, size); 1559 } 1560 1561 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) { 1562 if (hardware) 1563 return RemoveHardwareBreakpoint(addr); 1564 else 1565 return NativeProcessProtocol::RemoveBreakpoint(addr); 1566 } 1567 1568 Status NativeProcessLinux::GetSoftwareBreakpointTrapOpcode( 1569 size_t trap_opcode_size_hint, size_t &actual_opcode_size, 1570 const uint8_t *&trap_opcode_bytes) { 1571 // FIXME put this behind a breakpoint protocol class that can be set per 1572 // architecture. Need MIPS support here. 1573 static const uint8_t g_aarch64_opcode[] = {0x00, 0x00, 0x20, 0xd4}; 1574 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 1575 // linux kernel does otherwise. 1576 static const uint8_t g_arm_breakpoint_opcode[] = {0xf0, 0x01, 0xf0, 0xe7}; 1577 static const uint8_t g_i386_opcode[] = {0xCC}; 1578 static const uint8_t g_mips64_opcode[] = {0x00, 0x00, 0x00, 0x0d}; 1579 static const uint8_t g_mips64el_opcode[] = {0x0d, 0x00, 0x00, 0x00}; 1580 static const uint8_t g_s390x_opcode[] = {0x00, 0x01}; 1581 static const uint8_t g_thumb_breakpoint_opcode[] = {0x01, 0xde}; 1582 static const uint8_t g_ppc64le_opcode[] = {0x08, 0x00, 0xe0, 0x7f}; // trap 1583 1584 switch (m_arch.GetMachine()) { 1585 case llvm::Triple::aarch64: 1586 trap_opcode_bytes = g_aarch64_opcode; 1587 actual_opcode_size = sizeof(g_aarch64_opcode); 1588 return Status(); 1589 1590 case llvm::Triple::arm: 1591 switch (trap_opcode_size_hint) { 1592 case 2: 1593 trap_opcode_bytes = g_thumb_breakpoint_opcode; 1594 actual_opcode_size = sizeof(g_thumb_breakpoint_opcode); 1595 return Status(); 1596 case 4: 1597 trap_opcode_bytes = g_arm_breakpoint_opcode; 1598 actual_opcode_size = sizeof(g_arm_breakpoint_opcode); 1599 return Status(); 1600 default: 1601 assert(false && "Unrecognised trap opcode size hint!"); 1602 return Status("Unrecognised trap opcode size hint!"); 1603 } 1604 1605 case llvm::Triple::x86: 1606 case llvm::Triple::x86_64: 1607 trap_opcode_bytes = g_i386_opcode; 1608 actual_opcode_size = sizeof(g_i386_opcode); 1609 return Status(); 1610 1611 case llvm::Triple::mips: 1612 case llvm::Triple::mips64: 1613 trap_opcode_bytes = g_mips64_opcode; 1614 actual_opcode_size = sizeof(g_mips64_opcode); 1615 return Status(); 1616 1617 case llvm::Triple::mipsel: 1618 case llvm::Triple::mips64el: 1619 trap_opcode_bytes = g_mips64el_opcode; 1620 actual_opcode_size = sizeof(g_mips64el_opcode); 1621 return Status(); 1622 1623 case llvm::Triple::systemz: 1624 trap_opcode_bytes = g_s390x_opcode; 1625 actual_opcode_size = sizeof(g_s390x_opcode); 1626 return Status(); 1627 1628 case llvm::Triple::ppc64le: 1629 trap_opcode_bytes = g_ppc64le_opcode; 1630 actual_opcode_size = sizeof(g_ppc64le_opcode); 1631 return Status(); 1632 1633 default: 1634 assert(false && "CPU type not supported!"); 1635 return Status("CPU type not supported"); 1636 } 1637 } 1638 1639 #if 0 1640 ProcessMessage::CrashReason 1641 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info) 1642 { 1643 ProcessMessage::CrashReason reason; 1644 assert(info->si_signo == SIGSEGV); 1645 1646 reason = ProcessMessage::eInvalidCrashReason; 1647 1648 switch (info->si_code) 1649 { 1650 default: 1651 assert(false && "unexpected si_code for SIGSEGV"); 1652 break; 1653 case SI_KERNEL: 1654 // Linux will occasionally send spurious SI_KERNEL codes. 1655 // (this is poorly documented in sigaction) 1656 // One way to get this is via unaligned SIMD loads. 1657 reason = ProcessMessage::eInvalidAddress; // for lack of anything better 1658 break; 1659 case SEGV_MAPERR: 1660 reason = ProcessMessage::eInvalidAddress; 1661 break; 1662 case SEGV_ACCERR: 1663 reason = ProcessMessage::ePrivilegedAddress; 1664 break; 1665 } 1666 1667 return reason; 1668 } 1669 #endif 1670 1671 #if 0 1672 ProcessMessage::CrashReason 1673 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info) 1674 { 1675 ProcessMessage::CrashReason reason; 1676 assert(info->si_signo == SIGILL); 1677 1678 reason = ProcessMessage::eInvalidCrashReason; 1679 1680 switch (info->si_code) 1681 { 1682 default: 1683 assert(false && "unexpected si_code for SIGILL"); 1684 break; 1685 case ILL_ILLOPC: 1686 reason = ProcessMessage::eIllegalOpcode; 1687 break; 1688 case ILL_ILLOPN: 1689 reason = ProcessMessage::eIllegalOperand; 1690 break; 1691 case ILL_ILLADR: 1692 reason = ProcessMessage::eIllegalAddressingMode; 1693 break; 1694 case ILL_ILLTRP: 1695 reason = ProcessMessage::eIllegalTrap; 1696 break; 1697 case ILL_PRVOPC: 1698 reason = ProcessMessage::ePrivilegedOpcode; 1699 break; 1700 case ILL_PRVREG: 1701 reason = ProcessMessage::ePrivilegedRegister; 1702 break; 1703 case ILL_COPROC: 1704 reason = ProcessMessage::eCoprocessorError; 1705 break; 1706 case ILL_BADSTK: 1707 reason = ProcessMessage::eInternalStackError; 1708 break; 1709 } 1710 1711 return reason; 1712 } 1713 #endif 1714 1715 #if 0 1716 ProcessMessage::CrashReason 1717 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info) 1718 { 1719 ProcessMessage::CrashReason reason; 1720 assert(info->si_signo == SIGFPE); 1721 1722 reason = ProcessMessage::eInvalidCrashReason; 1723 1724 switch (info->si_code) 1725 { 1726 default: 1727 assert(false && "unexpected si_code for SIGFPE"); 1728 break; 1729 case FPE_INTDIV: 1730 reason = ProcessMessage::eIntegerDivideByZero; 1731 break; 1732 case FPE_INTOVF: 1733 reason = ProcessMessage::eIntegerOverflow; 1734 break; 1735 case FPE_FLTDIV: 1736 reason = ProcessMessage::eFloatDivideByZero; 1737 break; 1738 case FPE_FLTOVF: 1739 reason = ProcessMessage::eFloatOverflow; 1740 break; 1741 case FPE_FLTUND: 1742 reason = ProcessMessage::eFloatUnderflow; 1743 break; 1744 case FPE_FLTRES: 1745 reason = ProcessMessage::eFloatInexactResult; 1746 break; 1747 case FPE_FLTINV: 1748 reason = ProcessMessage::eFloatInvalidOperation; 1749 break; 1750 case FPE_FLTSUB: 1751 reason = ProcessMessage::eFloatSubscriptRange; 1752 break; 1753 } 1754 1755 return reason; 1756 } 1757 #endif 1758 1759 #if 0 1760 ProcessMessage::CrashReason 1761 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info) 1762 { 1763 ProcessMessage::CrashReason reason; 1764 assert(info->si_signo == SIGBUS); 1765 1766 reason = ProcessMessage::eInvalidCrashReason; 1767 1768 switch (info->si_code) 1769 { 1770 default: 1771 assert(false && "unexpected si_code for SIGBUS"); 1772 break; 1773 case BUS_ADRALN: 1774 reason = ProcessMessage::eIllegalAlignment; 1775 break; 1776 case BUS_ADRERR: 1777 reason = ProcessMessage::eIllegalAddress; 1778 break; 1779 case BUS_OBJERR: 1780 reason = ProcessMessage::eHardwareError; 1781 break; 1782 } 1783 1784 return reason; 1785 } 1786 #endif 1787 1788 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size, 1789 size_t &bytes_read) { 1790 if (ProcessVmReadvSupported()) { 1791 // The process_vm_readv path is about 50 times faster than ptrace api. We 1792 // want to use 1793 // this syscall if it is supported. 1794 1795 const ::pid_t pid = GetID(); 1796 1797 struct iovec local_iov, remote_iov; 1798 local_iov.iov_base = buf; 1799 local_iov.iov_len = size; 1800 remote_iov.iov_base = reinterpret_cast<void *>(addr); 1801 remote_iov.iov_len = size; 1802 1803 bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0); 1804 const bool success = bytes_read == size; 1805 1806 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1807 LLDB_LOG(log, 1808 "using process_vm_readv to read {0} bytes from inferior " 1809 "address {1:x}: {2}", 1810 size, addr, success ? "Success" : llvm::sys::StrError(errno)); 1811 1812 if (success) 1813 return Status(); 1814 // else the call failed for some reason, let's retry the read using ptrace 1815 // api. 1816 } 1817 1818 unsigned char *dst = static_cast<unsigned char *>(buf); 1819 size_t remainder; 1820 long data; 1821 1822 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1823 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1824 1825 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { 1826 Status error = NativeProcessLinux::PtraceWrapper( 1827 PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data); 1828 if (error.Fail()) 1829 return error; 1830 1831 remainder = size - bytes_read; 1832 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1833 1834 // Copy the data into our buffer 1835 memcpy(dst, &data, remainder); 1836 1837 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1838 addr += k_ptrace_word_size; 1839 dst += k_ptrace_word_size; 1840 } 1841 return Status(); 1842 } 1843 1844 Status NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, 1845 size_t size, 1846 size_t &bytes_read) { 1847 Status error = ReadMemory(addr, buf, size, bytes_read); 1848 if (error.Fail()) 1849 return error; 1850 return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size); 1851 } 1852 1853 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, 1854 size_t size, size_t &bytes_written) { 1855 const unsigned char *src = static_cast<const unsigned char *>(buf); 1856 size_t remainder; 1857 Status error; 1858 1859 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1860 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1861 1862 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { 1863 remainder = size - bytes_written; 1864 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1865 1866 if (remainder == k_ptrace_word_size) { 1867 unsigned long data = 0; 1868 memcpy(&data, src, k_ptrace_word_size); 1869 1870 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1871 error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), 1872 (void *)addr, (void *)data); 1873 if (error.Fail()) 1874 return error; 1875 } else { 1876 unsigned char buff[8]; 1877 size_t bytes_read; 1878 error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read); 1879 if (error.Fail()) 1880 return error; 1881 1882 memcpy(buff, src, remainder); 1883 1884 size_t bytes_written_rec; 1885 error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec); 1886 if (error.Fail()) 1887 return error; 1888 1889 LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src, 1890 *(unsigned long *)buff); 1891 } 1892 1893 addr += k_ptrace_word_size; 1894 src += k_ptrace_word_size; 1895 } 1896 return error; 1897 } 1898 1899 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) { 1900 return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); 1901 } 1902 1903 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid, 1904 unsigned long *message) { 1905 return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); 1906 } 1907 1908 Status NativeProcessLinux::Detach(lldb::tid_t tid) { 1909 if (tid == LLDB_INVALID_THREAD_ID) 1910 return Status(); 1911 1912 return PtraceWrapper(PTRACE_DETACH, tid); 1913 } 1914 1915 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) { 1916 for (const auto &thread : m_threads) { 1917 assert(thread && "thread list should not contain NULL threads"); 1918 if (thread->GetID() == thread_id) { 1919 // We have this thread. 1920 return true; 1921 } 1922 } 1923 1924 // We don't have this thread. 1925 return false; 1926 } 1927 1928 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) { 1929 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1930 LLDB_LOG(log, "tid: {0})", thread_id); 1931 1932 bool found = false; 1933 for (auto it = m_threads.begin(); it != m_threads.end(); ++it) { 1934 if (*it && ((*it)->GetID() == thread_id)) { 1935 m_threads.erase(it); 1936 found = true; 1937 break; 1938 } 1939 } 1940 1941 if (found) 1942 StopTracingForThread(thread_id); 1943 SignalIfAllThreadsStopped(); 1944 return found; 1945 } 1946 1947 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id) { 1948 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD)); 1949 LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id); 1950 1951 assert(!HasThreadNoLock(thread_id) && 1952 "attempted to add a thread by id that already exists"); 1953 1954 // If this is the first thread, save it as the current thread 1955 if (m_threads.empty()) 1956 SetCurrentThreadID(thread_id); 1957 1958 m_threads.push_back(llvm::make_unique<NativeThreadLinux>(*this, thread_id)); 1959 1960 if (m_pt_proces_trace_id != LLDB_INVALID_UID) { 1961 auto traceMonitor = ProcessorTraceMonitor::Create( 1962 GetID(), thread_id, m_pt_process_trace_config, true); 1963 if (traceMonitor) { 1964 m_pt_traced_thread_group.insert(thread_id); 1965 m_processor_trace_monitor.insert( 1966 std::make_pair(thread_id, std::move(*traceMonitor))); 1967 } else { 1968 LLDB_LOG(log, "failed to start trace on thread {0}", thread_id); 1969 Status error(traceMonitor.takeError()); 1970 LLDB_LOG(log, "error {0}", error); 1971 } 1972 } 1973 1974 return static_cast<NativeThreadLinux &>(*m_threads.back()); 1975 } 1976 1977 Status 1978 NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread) { 1979 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 1980 1981 Status error; 1982 1983 // Find out the size of a breakpoint (might depend on where we are in the 1984 // code). 1985 NativeRegisterContext &context = thread.GetRegisterContext(); 1986 1987 uint32_t breakpoint_size = 0; 1988 error = GetSoftwareBreakpointPCOffset(breakpoint_size); 1989 if (error.Fail()) { 1990 LLDB_LOG(log, "GetBreakpointSize() failed: {0}", error); 1991 return error; 1992 } else 1993 LLDB_LOG(log, "breakpoint size: {0}", breakpoint_size); 1994 1995 // First try probing for a breakpoint at a software breakpoint location: PC - 1996 // breakpoint size. 1997 const lldb::addr_t initial_pc_addr = context.GetPCfromBreakpointLocation(); 1998 lldb::addr_t breakpoint_addr = initial_pc_addr; 1999 if (breakpoint_size > 0) { 2000 // Do not allow breakpoint probe to wrap around. 2001 if (breakpoint_addr >= breakpoint_size) 2002 breakpoint_addr -= breakpoint_size; 2003 } 2004 2005 // Check if we stopped because of a breakpoint. 2006 NativeBreakpointSP breakpoint_sp; 2007 error = m_breakpoint_list.GetBreakpoint(breakpoint_addr, breakpoint_sp); 2008 if (!error.Success() || !breakpoint_sp) { 2009 // We didn't find one at a software probe location. Nothing to do. 2010 LLDB_LOG(log, 2011 "pid {0} no lldb breakpoint found at current pc with " 2012 "adjustment: {1}", 2013 GetID(), breakpoint_addr); 2014 return Status(); 2015 } 2016 2017 // If the breakpoint is not a software breakpoint, nothing to do. 2018 if (!breakpoint_sp->IsSoftwareBreakpoint()) { 2019 LLDB_LOG( 2020 log, 2021 "pid {0} breakpoint found at {1:x}, not software, nothing to adjust", 2022 GetID(), breakpoint_addr); 2023 return Status(); 2024 } 2025 2026 // 2027 // We have a software breakpoint and need to adjust the PC. 2028 // 2029 2030 // Sanity check. 2031 if (breakpoint_size == 0) { 2032 // Nothing to do! How did we get here? 2033 LLDB_LOG(log, 2034 "pid {0} breakpoint found at {1:x}, it is software, but the " 2035 "size is zero, nothing to do (unexpected)", 2036 GetID(), breakpoint_addr); 2037 return Status(); 2038 } 2039 2040 // Change the program counter. 2041 LLDB_LOG(log, "pid {0} tid {1}: changing PC from {2:x} to {3:x}", GetID(), 2042 thread.GetID(), initial_pc_addr, breakpoint_addr); 2043 2044 error = context.SetPC(breakpoint_addr); 2045 if (error.Fail()) { 2046 LLDB_LOG(log, "pid {0} tid {1}: failed to set PC: {2}", GetID(), 2047 thread.GetID(), error); 2048 return error; 2049 } 2050 2051 return error; 2052 } 2053 2054 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path, 2055 FileSpec &file_spec) { 2056 Status error = PopulateMemoryRegionCache(); 2057 if (error.Fail()) 2058 return error; 2059 2060 FileSpec module_file_spec(module_path, true); 2061 2062 file_spec.Clear(); 2063 for (const auto &it : m_mem_region_cache) { 2064 if (it.second.GetFilename() == module_file_spec.GetFilename()) { 2065 file_spec = it.second; 2066 return Status(); 2067 } 2068 } 2069 return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 2070 module_file_spec.GetFilename().AsCString(), GetID()); 2071 } 2072 2073 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name, 2074 lldb::addr_t &load_addr) { 2075 load_addr = LLDB_INVALID_ADDRESS; 2076 Status error = PopulateMemoryRegionCache(); 2077 if (error.Fail()) 2078 return error; 2079 2080 FileSpec file(file_name, false); 2081 for (const auto &it : m_mem_region_cache) { 2082 if (it.second == file) { 2083 load_addr = it.first.GetRange().GetRangeBase(); 2084 return Status(); 2085 } 2086 } 2087 return Status("No load address found for specified file."); 2088 } 2089 2090 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) { 2091 return static_cast<NativeThreadLinux *>( 2092 NativeProcessProtocol::GetThreadByID(tid)); 2093 } 2094 2095 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, 2096 lldb::StateType state, int signo) { 2097 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2098 LLDB_LOG(log, "tid: {0}", thread.GetID()); 2099 2100 // Before we do the resume below, first check if we have a pending 2101 // stop notification that is currently waiting for 2102 // all threads to stop. This is potentially a buggy situation since 2103 // we're ostensibly waiting for threads to stop before we send out the 2104 // pending notification, and here we are resuming one before we send 2105 // out the pending stop notification. 2106 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 2107 LLDB_LOG(log, 2108 "about to resume tid {0} per explicit request but we have a " 2109 "pending stop notification (tid {1}) that is actively " 2110 "waiting for this thread to stop. Valid sequence of events?", 2111 thread.GetID(), m_pending_notification_tid); 2112 } 2113 2114 // Request a resume. We expect this to be synchronous and the system 2115 // to reflect it is running after this completes. 2116 switch (state) { 2117 case eStateRunning: { 2118 const auto resume_result = thread.Resume(signo); 2119 if (resume_result.Success()) 2120 SetState(eStateRunning, true); 2121 return resume_result; 2122 } 2123 case eStateStepping: { 2124 const auto step_result = thread.SingleStep(signo); 2125 if (step_result.Success()) 2126 SetState(eStateRunning, true); 2127 return step_result; 2128 } 2129 default: 2130 LLDB_LOG(log, "Unhandled state {0}.", state); 2131 llvm_unreachable("Unhandled state for resume"); 2132 } 2133 } 2134 2135 //===----------------------------------------------------------------------===// 2136 2137 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) { 2138 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2139 LLDB_LOG(log, "about to process event: (triggering_tid: {0})", 2140 triggering_tid); 2141 2142 m_pending_notification_tid = triggering_tid; 2143 2144 // Request a stop for all the thread stops that need to be stopped 2145 // and are not already known to be stopped. 2146 for (const auto &thread : m_threads) { 2147 if (StateIsRunningState(thread->GetState())) 2148 static_cast<NativeThreadLinux *>(thread.get())->RequestStop(); 2149 } 2150 2151 SignalIfAllThreadsStopped(); 2152 LLDB_LOG(log, "event processing done"); 2153 } 2154 2155 void NativeProcessLinux::SignalIfAllThreadsStopped() { 2156 if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) 2157 return; // No pending notification. Nothing to do. 2158 2159 for (const auto &thread_sp : m_threads) { 2160 if (StateIsRunningState(thread_sp->GetState())) 2161 return; // Some threads are still running. Don't signal yet. 2162 } 2163 2164 // We have a pending notification and all threads have stopped. 2165 Log *log( 2166 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 2167 2168 // Clear any temporary breakpoints we used to implement software single 2169 // stepping. 2170 for (const auto &thread_info : m_threads_stepping_with_breakpoint) { 2171 Status error = RemoveBreakpoint(thread_info.second); 2172 if (error.Fail()) 2173 LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}", 2174 thread_info.first, error); 2175 } 2176 m_threads_stepping_with_breakpoint.clear(); 2177 2178 // Notify the delegate about the stop 2179 SetCurrentThreadID(m_pending_notification_tid); 2180 SetState(StateType::eStateStopped, true); 2181 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 2182 } 2183 2184 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) { 2185 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2186 LLDB_LOG(log, "tid: {0}", thread.GetID()); 2187 2188 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && 2189 StateIsRunningState(thread.GetState())) { 2190 // We will need to wait for this new thread to stop as well before firing 2191 // the 2192 // notification. 2193 thread.RequestStop(); 2194 } 2195 } 2196 2197 void NativeProcessLinux::SigchldHandler() { 2198 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 2199 // Process all pending waitpid notifications. 2200 while (true) { 2201 int status = -1; 2202 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, -1, &status, 2203 __WALL | __WNOTHREAD | WNOHANG); 2204 2205 if (wait_pid == 0) 2206 break; // We are done. 2207 2208 if (wait_pid == -1) { 2209 Status error(errno, eErrorTypePOSIX); 2210 LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error); 2211 break; 2212 } 2213 2214 WaitStatus wait_status = WaitStatus::Decode(status); 2215 bool exited = wait_status.type == WaitStatus::Exit || 2216 (wait_status.type == WaitStatus::Signal && 2217 wait_pid == static_cast<::pid_t>(GetID())); 2218 2219 LLDB_LOG( 2220 log, 2221 "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}", 2222 wait_pid, wait_status, exited); 2223 2224 MonitorCallback(wait_pid, exited, wait_status); 2225 } 2226 } 2227 2228 // Wrapper for ptrace to catch errors and log calls. 2229 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. 2230 // for PTRACE_PEEK*) 2231 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, 2232 void *data, size_t data_size, 2233 long *result) { 2234 Status error; 2235 long int ret; 2236 2237 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2238 2239 PtraceDisplayBytes(req, data, data_size); 2240 2241 errno = 0; 2242 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 2243 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 2244 *(unsigned int *)addr, data); 2245 else 2246 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 2247 addr, data); 2248 2249 if (ret == -1) 2250 error.SetErrorToErrno(); 2251 2252 if (result) 2253 *result = ret; 2254 2255 LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data, 2256 data_size, ret); 2257 2258 PtraceDisplayBytes(req, data, data_size); 2259 2260 if (error.Fail()) 2261 LLDB_LOG(log, "ptrace() failed: {0}", error); 2262 2263 return error; 2264 } 2265 2266 llvm::Expected<ProcessorTraceMonitor &> 2267 NativeProcessLinux::LookupProcessorTraceInstance(lldb::user_id_t traceid, 2268 lldb::tid_t thread) { 2269 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2270 if (thread == LLDB_INVALID_THREAD_ID && traceid == m_pt_proces_trace_id) { 2271 LLDB_LOG(log, "thread not specified: {0}", traceid); 2272 return Status("tracing not active thread not specified").ToError(); 2273 } 2274 2275 for (auto& iter : m_processor_trace_monitor) { 2276 if (traceid == iter.second->GetTraceID() && 2277 (thread == iter.first || thread == LLDB_INVALID_THREAD_ID)) 2278 return *(iter.second); 2279 } 2280 2281 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 2282 return Status("tracing not active for this thread").ToError(); 2283 } 2284 2285 Status NativeProcessLinux::GetMetaData(lldb::user_id_t traceid, 2286 lldb::tid_t thread, 2287 llvm::MutableArrayRef<uint8_t> &buffer, 2288 size_t offset) { 2289 TraceOptions trace_options; 2290 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2291 Status error; 2292 2293 LLDB_LOG(log, "traceid {0}", traceid); 2294 2295 auto perf_monitor = LookupProcessorTraceInstance(traceid, thread); 2296 if (!perf_monitor) { 2297 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 2298 buffer = buffer.slice(buffer.size()); 2299 error = perf_monitor.takeError(); 2300 return error; 2301 } 2302 return (*perf_monitor).ReadPerfTraceData(buffer, offset); 2303 } 2304 2305 Status NativeProcessLinux::GetData(lldb::user_id_t traceid, lldb::tid_t thread, 2306 llvm::MutableArrayRef<uint8_t> &buffer, 2307 size_t offset) { 2308 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2309 Status error; 2310 2311 LLDB_LOG(log, "traceid {0}", traceid); 2312 2313 auto perf_monitor = LookupProcessorTraceInstance(traceid, thread); 2314 if (!perf_monitor) { 2315 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 2316 buffer = buffer.slice(buffer.size()); 2317 error = perf_monitor.takeError(); 2318 return error; 2319 } 2320 return (*perf_monitor).ReadPerfTraceAux(buffer, offset); 2321 } 2322 2323 Status NativeProcessLinux::GetTraceConfig(lldb::user_id_t traceid, 2324 TraceOptions &config) { 2325 Status error; 2326 if (config.getThreadID() == LLDB_INVALID_THREAD_ID && 2327 m_pt_proces_trace_id == traceid) { 2328 if (m_pt_proces_trace_id == LLDB_INVALID_UID) { 2329 error.SetErrorString("tracing not active for this process"); 2330 return error; 2331 } 2332 config = m_pt_process_trace_config; 2333 } else { 2334 auto perf_monitor = 2335 LookupProcessorTraceInstance(traceid, config.getThreadID()); 2336 if (!perf_monitor) { 2337 error = perf_monitor.takeError(); 2338 return error; 2339 } 2340 error = (*perf_monitor).GetTraceConfig(config); 2341 } 2342 return error; 2343 } 2344 2345 lldb::user_id_t 2346 NativeProcessLinux::StartTraceGroup(const TraceOptions &config, 2347 Status &error) { 2348 2349 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2350 if (config.getType() != TraceType::eTraceTypeProcessorTrace) 2351 return LLDB_INVALID_UID; 2352 2353 if (m_pt_proces_trace_id != LLDB_INVALID_UID) { 2354 error.SetErrorString("tracing already active on this process"); 2355 return m_pt_proces_trace_id; 2356 } 2357 2358 for (const auto &thread_sp : m_threads) { 2359 if (auto traceInstance = ProcessorTraceMonitor::Create( 2360 GetID(), thread_sp->GetID(), config, true)) { 2361 m_pt_traced_thread_group.insert(thread_sp->GetID()); 2362 m_processor_trace_monitor.insert( 2363 std::make_pair(thread_sp->GetID(), std::move(*traceInstance))); 2364 } 2365 } 2366 2367 m_pt_process_trace_config = config; 2368 error = ProcessorTraceMonitor::GetCPUType(m_pt_process_trace_config); 2369 2370 // Trace on Complete process will have traceid of 0 2371 m_pt_proces_trace_id = 0; 2372 2373 LLDB_LOG(log, "Process Trace ID {0}", m_pt_proces_trace_id); 2374 return m_pt_proces_trace_id; 2375 } 2376 2377 lldb::user_id_t NativeProcessLinux::StartTrace(const TraceOptions &config, 2378 Status &error) { 2379 if (config.getType() != TraceType::eTraceTypeProcessorTrace) 2380 return NativeProcessProtocol::StartTrace(config, error); 2381 2382 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2383 2384 lldb::tid_t threadid = config.getThreadID(); 2385 2386 if (threadid == LLDB_INVALID_THREAD_ID) 2387 return StartTraceGroup(config, error); 2388 2389 auto thread_sp = GetThreadByID(threadid); 2390 if (!thread_sp) { 2391 // Thread not tracked by lldb so don't trace. 2392 error.SetErrorString("invalid thread id"); 2393 return LLDB_INVALID_UID; 2394 } 2395 2396 const auto &iter = m_processor_trace_monitor.find(threadid); 2397 if (iter != m_processor_trace_monitor.end()) { 2398 LLDB_LOG(log, "Thread already being traced"); 2399 error.SetErrorString("tracing already active on this thread"); 2400 return LLDB_INVALID_UID; 2401 } 2402 2403 auto traceMonitor = 2404 ProcessorTraceMonitor::Create(GetID(), threadid, config, false); 2405 if (!traceMonitor) { 2406 error = traceMonitor.takeError(); 2407 LLDB_LOG(log, "error {0}", error); 2408 return LLDB_INVALID_UID; 2409 } 2410 lldb::user_id_t ret_trace_id = (*traceMonitor)->GetTraceID(); 2411 m_processor_trace_monitor.insert( 2412 std::make_pair(threadid, std::move(*traceMonitor))); 2413 return ret_trace_id; 2414 } 2415 2416 Status NativeProcessLinux::StopTracingForThread(lldb::tid_t thread) { 2417 Status error; 2418 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2419 LLDB_LOG(log, "Thread {0}", thread); 2420 2421 const auto& iter = m_processor_trace_monitor.find(thread); 2422 if (iter == m_processor_trace_monitor.end()) { 2423 error.SetErrorString("tracing not active for this thread"); 2424 return error; 2425 } 2426 2427 if (iter->second->GetTraceID() == m_pt_proces_trace_id) { 2428 // traceid maps to the whole process so we have to erase it from the 2429 // thread group. 2430 LLDB_LOG(log, "traceid maps to process"); 2431 m_pt_traced_thread_group.erase(thread); 2432 } 2433 m_processor_trace_monitor.erase(iter); 2434 2435 return error; 2436 } 2437 2438 Status NativeProcessLinux::StopTrace(lldb::user_id_t traceid, 2439 lldb::tid_t thread) { 2440 Status error; 2441 2442 TraceOptions trace_options; 2443 trace_options.setThreadID(thread); 2444 error = NativeProcessLinux::GetTraceConfig(traceid, trace_options); 2445 2446 if (error.Fail()) 2447 return error; 2448 2449 switch (trace_options.getType()) { 2450 case lldb::TraceType::eTraceTypeProcessorTrace: 2451 if (traceid == m_pt_proces_trace_id && 2452 thread == LLDB_INVALID_THREAD_ID) 2453 StopProcessorTracingOnProcess(); 2454 else 2455 error = StopProcessorTracingOnThread(traceid, thread); 2456 break; 2457 default: 2458 error.SetErrorString("trace not supported"); 2459 break; 2460 } 2461 2462 return error; 2463 } 2464 2465 void NativeProcessLinux::StopProcessorTracingOnProcess() { 2466 for (auto thread_id_iter : m_pt_traced_thread_group) 2467 m_processor_trace_monitor.erase(thread_id_iter); 2468 m_pt_traced_thread_group.clear(); 2469 m_pt_proces_trace_id = LLDB_INVALID_UID; 2470 } 2471 2472 Status NativeProcessLinux::StopProcessorTracingOnThread(lldb::user_id_t traceid, 2473 lldb::tid_t thread) { 2474 Status error; 2475 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2476 2477 if (thread == LLDB_INVALID_THREAD_ID) { 2478 for (auto& iter : m_processor_trace_monitor) { 2479 if (iter.second->GetTraceID() == traceid) { 2480 // Stopping a trace instance for an individual thread 2481 // hence there will only be one traceid that can match. 2482 m_processor_trace_monitor.erase(iter.first); 2483 return error; 2484 } 2485 LLDB_LOG(log, "Trace ID {0}", iter.second->GetTraceID()); 2486 } 2487 2488 LLDB_LOG(log, "Invalid TraceID"); 2489 error.SetErrorString("invalid trace id"); 2490 return error; 2491 } 2492 2493 // thread is specified so we can use find function on the map. 2494 const auto& iter = m_processor_trace_monitor.find(thread); 2495 if (iter == m_processor_trace_monitor.end()) { 2496 // thread not found in our map. 2497 LLDB_LOG(log, "thread not being traced"); 2498 error.SetErrorString("tracing not active for this thread"); 2499 return error; 2500 } 2501 if (iter->second->GetTraceID() != traceid) { 2502 // traceid did not match so it has to be invalid. 2503 LLDB_LOG(log, "Invalid TraceID"); 2504 error.SetErrorString("invalid trace id"); 2505 return error; 2506 } 2507 2508 LLDB_LOG(log, "UID - {0} , Thread -{1}", traceid, thread); 2509 2510 if (traceid == m_pt_proces_trace_id) { 2511 // traceid maps to the whole process so we have to erase it from the 2512 // thread group. 2513 LLDB_LOG(log, "traceid maps to process"); 2514 m_pt_traced_thread_group.erase(thread); 2515 } 2516 m_processor_trace_monitor.erase(iter); 2517 2518 return error; 2519 } 2520