1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "NativeProcessLinux.h" 11 12 // C Includes 13 #include <errno.h> 14 #include <stdint.h> 15 #include <string.h> 16 #include <unistd.h> 17 18 // C++ Includes 19 #include <fstream> 20 #include <mutex> 21 #include <sstream> 22 #include <string> 23 #include <unordered_map> 24 25 // Other libraries and framework includes 26 #include "lldb/Core/EmulateInstruction.h" 27 #include "lldb/Core/ModuleSpec.h" 28 #include "lldb/Core/RegisterValue.h" 29 #include "lldb/Core/State.h" 30 #include "lldb/Host/Host.h" 31 #include "lldb/Host/HostProcess.h" 32 #include "lldb/Host/PseudoTerminal.h" 33 #include "lldb/Host/ThreadLauncher.h" 34 #include "lldb/Host/common/NativeBreakpoint.h" 35 #include "lldb/Host/common/NativeRegisterContext.h" 36 #include "lldb/Host/linux/Ptrace.h" 37 #include "lldb/Host/linux/Uio.h" 38 #include "lldb/Host/posix/ProcessLauncherPosixFork.h" 39 #include "lldb/Symbol/ObjectFile.h" 40 #include "lldb/Target/Process.h" 41 #include "lldb/Target/ProcessLaunchInfo.h" 42 #include "lldb/Target/Target.h" 43 #include "lldb/Utility/LLDBAssert.h" 44 #include "lldb/Utility/Status.h" 45 #include "lldb/Utility/StringExtractor.h" 46 #include "llvm/Support/Errno.h" 47 #include "llvm/Support/FileSystem.h" 48 #include "llvm/Support/Threading.h" 49 50 #include "NativeThreadLinux.h" 51 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 52 #include "Procfs.h" 53 54 #include <linux/unistd.h> 55 #include <sys/socket.h> 56 #include <sys/syscall.h> 57 #include <sys/types.h> 58 #include <sys/user.h> 59 #include <sys/wait.h> 60 61 // Support hardware breakpoints in case it has not been defined 62 #ifndef TRAP_HWBKPT 63 #define TRAP_HWBKPT 4 64 #endif 65 66 using namespace lldb; 67 using namespace lldb_private; 68 using namespace lldb_private::process_linux; 69 using namespace llvm; 70 71 // Private bits we only need internally. 72 73 static bool ProcessVmReadvSupported() { 74 static bool is_supported; 75 static llvm::once_flag flag; 76 77 llvm::call_once(flag, [] { 78 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 79 80 uint32_t source = 0x47424742; 81 uint32_t dest = 0; 82 83 struct iovec local, remote; 84 remote.iov_base = &source; 85 local.iov_base = &dest; 86 remote.iov_len = local.iov_len = sizeof source; 87 88 // We shall try if cross-process-memory reads work by attempting to read a 89 // value from our own process. 90 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); 91 is_supported = (res == sizeof(source) && source == dest); 92 if (is_supported) 93 LLDB_LOG(log, 94 "Detected kernel support for process_vm_readv syscall. " 95 "Fast memory reads enabled."); 96 else 97 LLDB_LOG(log, 98 "syscall process_vm_readv failed (error: {0}). Fast memory " 99 "reads disabled.", 100 llvm::sys::StrError()); 101 }); 102 103 return is_supported; 104 } 105 106 namespace { 107 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) { 108 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 109 if (!log) 110 return; 111 112 if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO)) 113 LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec()); 114 else 115 LLDB_LOG(log, "leaving STDIN as is"); 116 117 if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO)) 118 LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec()); 119 else 120 LLDB_LOG(log, "leaving STDOUT as is"); 121 122 if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO)) 123 LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec()); 124 else 125 LLDB_LOG(log, "leaving STDERR as is"); 126 127 int i = 0; 128 for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; 129 ++args, ++i) 130 LLDB_LOG(log, "arg {0}: '{1}'", i, *args); 131 } 132 133 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) { 134 uint8_t *ptr = (uint8_t *)bytes; 135 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 136 for (uint32_t i = 0; i < loop_count; i++) { 137 s.Printf("[%x]", *ptr); 138 ptr++; 139 } 140 } 141 142 void PtraceDisplayBytes(int &req, void *data, size_t data_size) { 143 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 144 if (!log) 145 return; 146 StreamString buf; 147 148 switch (req) { 149 case PTRACE_POKETEXT: { 150 DisplayBytes(buf, &data, 8); 151 LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData()); 152 break; 153 } 154 case PTRACE_POKEDATA: { 155 DisplayBytes(buf, &data, 8); 156 LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData()); 157 break; 158 } 159 case PTRACE_POKEUSER: { 160 DisplayBytes(buf, &data, 8); 161 LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData()); 162 break; 163 } 164 case PTRACE_SETREGS: { 165 DisplayBytes(buf, data, data_size); 166 LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData()); 167 break; 168 } 169 case PTRACE_SETFPREGS: { 170 DisplayBytes(buf, data, data_size); 171 LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData()); 172 break; 173 } 174 case PTRACE_SETSIGINFO: { 175 DisplayBytes(buf, data, sizeof(siginfo_t)); 176 LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData()); 177 break; 178 } 179 case PTRACE_SETREGSET: { 180 // Extract iov_base from data, which is a pointer to the struct iovec 181 DisplayBytes(buf, *(void **)data, data_size); 182 LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData()); 183 break; 184 } 185 default: {} 186 } 187 } 188 189 static constexpr unsigned k_ptrace_word_size = sizeof(void *); 190 static_assert(sizeof(long) >= k_ptrace_word_size, 191 "Size of long must be larger than ptrace word size"); 192 } // end of anonymous namespace 193 194 // Simple helper function to ensure flags are enabled on the given file 195 // descriptor. 196 static Status EnsureFDFlags(int fd, int flags) { 197 Status error; 198 199 int status = fcntl(fd, F_GETFL); 200 if (status == -1) { 201 error.SetErrorToErrno(); 202 return error; 203 } 204 205 if (fcntl(fd, F_SETFL, status | flags) == -1) { 206 error.SetErrorToErrno(); 207 return error; 208 } 209 210 return error; 211 } 212 213 // ----------------------------------------------------------------------------- 214 // Public Static Methods 215 // ----------------------------------------------------------------------------- 216 217 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 218 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info, 219 NativeDelegate &native_delegate, 220 MainLoop &mainloop) const { 221 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 222 223 MaybeLogLaunchInfo(launch_info); 224 225 Status status; 226 ::pid_t pid = ProcessLauncherPosixFork() 227 .LaunchProcess(launch_info, status) 228 .GetProcessId(); 229 LLDB_LOG(log, "pid = {0:x}", pid); 230 if (status.Fail()) { 231 LLDB_LOG(log, "failed to launch process: {0}", status); 232 return status.ToError(); 233 } 234 235 // Wait for the child process to trap on its call to execve. 236 int wstatus; 237 ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0); 238 assert(wpid == pid); 239 (void)wpid; 240 if (!WIFSTOPPED(wstatus)) { 241 LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}", 242 WaitStatus::Decode(wstatus)); 243 return llvm::make_error<StringError>("Could not sync with inferior process", 244 llvm::inconvertibleErrorCode()); 245 } 246 LLDB_LOG(log, "inferior started, now in stopped state"); 247 248 ProcessInstanceInfo Info; 249 if (!Host::GetProcessInfo(pid, Info)) { 250 return llvm::make_error<StringError>("Cannot get process architecture", 251 llvm::inconvertibleErrorCode()); 252 } 253 254 // Set the architecture to the exe architecture. 255 LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid, 256 Info.GetArchitecture().GetArchitectureName()); 257 258 status = SetDefaultPtraceOpts(pid); 259 if (status.Fail()) { 260 LLDB_LOG(log, "failed to set default ptrace options: {0}", status); 261 return status.ToError(); 262 } 263 264 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 265 pid, launch_info.GetPTY().ReleaseMasterFileDescriptor(), native_delegate, 266 Info.GetArchitecture(), mainloop, {pid})); 267 } 268 269 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 270 NativeProcessLinux::Factory::Attach( 271 lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate, 272 MainLoop &mainloop) const { 273 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 274 LLDB_LOG(log, "pid = {0:x}", pid); 275 276 // Retrieve the architecture for the running process. 277 ProcessInstanceInfo Info; 278 if (!Host::GetProcessInfo(pid, Info)) { 279 return llvm::make_error<StringError>("Cannot get process architecture", 280 llvm::inconvertibleErrorCode()); 281 } 282 283 auto tids_or = NativeProcessLinux::Attach(pid); 284 if (!tids_or) 285 return tids_or.takeError(); 286 287 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 288 pid, -1, native_delegate, Info.GetArchitecture(), mainloop, *tids_or)); 289 } 290 291 // ----------------------------------------------------------------------------- 292 // Public Instance Methods 293 // ----------------------------------------------------------------------------- 294 295 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd, 296 NativeDelegate &delegate, 297 const ArchSpec &arch, MainLoop &mainloop, 298 llvm::ArrayRef<::pid_t> tids) 299 : NativeProcessProtocol(pid, terminal_fd, delegate), m_arch(arch) { 300 if (m_terminal_fd != -1) { 301 Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 302 assert(status.Success()); 303 } 304 305 Status status; 306 m_sigchld_handle = mainloop.RegisterSignal( 307 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status); 308 assert(m_sigchld_handle && status.Success()); 309 310 for (const auto &tid : tids) { 311 NativeThreadLinux &thread = AddThread(tid); 312 thread.SetStoppedBySignal(SIGSTOP); 313 ThreadWasCreated(thread); 314 } 315 316 // Let our process instance know the thread has stopped. 317 SetCurrentThreadID(tids[0]); 318 SetState(StateType::eStateStopped, false); 319 320 // Proccess any signals we received before installing our handler 321 SigchldHandler(); 322 } 323 324 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) { 325 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 326 327 Status status; 328 // Use a map to keep track of the threads which we have attached/need to 329 // attach. 330 Host::TidMap tids_to_attach; 331 while (Host::FindProcessThreads(pid, tids_to_attach)) { 332 for (Host::TidMap::iterator it = tids_to_attach.begin(); 333 it != tids_to_attach.end();) { 334 if (it->second == false) { 335 lldb::tid_t tid = it->first; 336 337 // Attach to the requested process. 338 // An attach will cause the thread to stop with a SIGSTOP. 339 if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) { 340 // No such thread. The thread may have exited. 341 // More error handling may be needed. 342 if (status.GetError() == ESRCH) { 343 it = tids_to_attach.erase(it); 344 continue; 345 } 346 return status.ToError(); 347 } 348 349 int wpid = 350 llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL); 351 // Need to use __WALL otherwise we receive an error with errno=ECHLD 352 // At this point we should have a thread stopped if waitpid succeeds. 353 if (wpid < 0) { 354 // No such thread. The thread may have exited. 355 // More error handling may be needed. 356 if (errno == ESRCH) { 357 it = tids_to_attach.erase(it); 358 continue; 359 } 360 return llvm::errorCodeToError( 361 std::error_code(errno, std::generic_category())); 362 } 363 364 if ((status = SetDefaultPtraceOpts(tid)).Fail()) 365 return status.ToError(); 366 367 LLDB_LOG(log, "adding tid = {0}", tid); 368 it->second = true; 369 } 370 371 // move the loop forward 372 ++it; 373 } 374 } 375 376 size_t tid_count = tids_to_attach.size(); 377 if (tid_count == 0) 378 return llvm::make_error<StringError>("No such process", 379 llvm::inconvertibleErrorCode()); 380 381 std::vector<::pid_t> tids; 382 tids.reserve(tid_count); 383 for (const auto &p : tids_to_attach) 384 tids.push_back(p.first); 385 return std::move(tids); 386 } 387 388 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) { 389 long ptrace_opts = 0; 390 391 // Have the child raise an event on exit. This is used to keep the child in 392 // limbo until it is destroyed. 393 ptrace_opts |= PTRACE_O_TRACEEXIT; 394 395 // Have the tracer trace threads which spawn in the inferior process. 396 // TODO: if we want to support tracing the inferiors' child, add the 397 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) 398 ptrace_opts |= PTRACE_O_TRACECLONE; 399 400 // Have the tracer notify us before execve returns 401 // (needed to disable legacy SIGTRAP generation) 402 ptrace_opts |= PTRACE_O_TRACEEXEC; 403 404 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts); 405 } 406 407 // Handles all waitpid events from the inferior process. 408 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited, 409 WaitStatus status) { 410 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 411 412 // Certain activities differ based on whether the pid is the tid of the main 413 // thread. 414 const bool is_main_thread = (pid == GetID()); 415 416 // Handle when the thread exits. 417 if (exited) { 418 LLDB_LOG(log, 419 "got exit signal({0}) , tid = {1} ({2} main thread), process " 420 "state = {3}", 421 signal, pid, is_main_thread ? "is" : "is not", GetState()); 422 423 // This is a thread that exited. Ensure we're not tracking it anymore. 424 StopTrackingThread(pid); 425 426 if (is_main_thread) { 427 // The main thread exited. We're done monitoring. Report to delegate. 428 SetExitStatus(status, true); 429 430 // Notify delegate that our process has exited. 431 SetState(StateType::eStateExited, true); 432 } 433 return; 434 } 435 436 siginfo_t info; 437 const auto info_err = GetSignalInfo(pid, &info); 438 auto thread_sp = GetThreadByID(pid); 439 440 if (!thread_sp) { 441 // Normally, the only situation when we cannot find the thread is if we have 442 // just received a new thread notification. This is indicated by 443 // GetSignalInfo() returning si_code == SI_USER and si_pid == 0 444 LLDB_LOG(log, "received notification about an unknown tid {0}.", pid); 445 446 if (info_err.Fail()) { 447 LLDB_LOG(log, 448 "(tid {0}) GetSignalInfo failed ({1}). " 449 "Ingoring this notification.", 450 pid, info_err); 451 return; 452 } 453 454 LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code, 455 info.si_pid); 456 457 NativeThreadLinux &thread = AddThread(pid); 458 459 // Resume the newly created thread. 460 ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 461 ThreadWasCreated(thread); 462 return; 463 } 464 465 // Get details on the signal raised. 466 if (info_err.Success()) { 467 // We have retrieved the signal info. Dispatch appropriately. 468 if (info.si_signo == SIGTRAP) 469 MonitorSIGTRAP(info, *thread_sp); 470 else 471 MonitorSignal(info, *thread_sp, exited); 472 } else { 473 if (info_err.GetError() == EINVAL) { 474 // This is a group stop reception for this tid. 475 // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU 476 // into the tracee, triggering the group-stop mechanism. Normally 477 // receiving these would stop the process, pending a SIGCONT. Simulating 478 // this state in a debugger is hard and is generally not needed (one use 479 // case is debugging background task being managed by a shell). For 480 // general use, it is sufficient to stop the process in a signal-delivery 481 // stop which happens before the group stop. This done by MonitorSignal 482 // and works correctly for all signals. 483 LLDB_LOG(log, 484 "received a group stop for pid {0} tid {1}. Transparent " 485 "handling of group stops not supported, resuming the " 486 "thread.", 487 GetID(), pid); 488 ResumeThread(*thread_sp, thread_sp->GetState(), 489 LLDB_INVALID_SIGNAL_NUMBER); 490 } else { 491 // ptrace(GETSIGINFO) failed (but not due to group-stop). 492 493 // A return value of ESRCH means the thread/process is no longer on the 494 // system, so it was killed somehow outside of our control. Either way, 495 // we can't do anything with it anymore. 496 497 // Stop tracking the metadata for the thread since it's entirely off the 498 // system now. 499 const bool thread_found = StopTrackingThread(pid); 500 501 LLDB_LOG(log, 502 "GetSignalInfo failed: {0}, tid = {1}, signal = {2}, " 503 "status = {3}, main_thread = {4}, thread_found: {5}", 504 info_err, pid, signal, status, is_main_thread, thread_found); 505 506 if (is_main_thread) { 507 // Notify the delegate - our process is not available but appears to 508 // have been killed outside 509 // our control. Is eStateExited the right exit state in this case? 510 SetExitStatus(status, true); 511 SetState(StateType::eStateExited, true); 512 } else { 513 // This thread was pulled out from underneath us. Anything to do here? 514 // Do we want to do an all stop? 515 LLDB_LOG(log, 516 "pid {0} tid {1} non-main thread exit occurred, didn't " 517 "tell delegate anything since thread disappeared out " 518 "from underneath us", 519 GetID(), pid); 520 } 521 } 522 } 523 } 524 525 void NativeProcessLinux::WaitForNewThread(::pid_t tid) { 526 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 527 528 if (GetThreadByID(tid)) { 529 // We are already tracking the thread - we got the event on the new thread 530 // (see MonitorSignal) before this one. We are done. 531 return; 532 } 533 534 // The thread is not tracked yet, let's wait for it to appear. 535 int status = -1; 536 LLDB_LOG(log, 537 "received thread creation event for tid {0}. tid not tracked " 538 "yet, waiting for thread to appear...", 539 tid); 540 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, &status, __WALL); 541 // Since we are waiting on a specific tid, this must be the creation event. 542 // But let's do some checks just in case. 543 if (wait_pid != tid) { 544 LLDB_LOG(log, 545 "waiting for tid {0} failed. Assuming the thread has " 546 "disappeared in the meantime", 547 tid); 548 // The only way I know of this could happen is if the whole process was 549 // SIGKILLed in the mean time. In any case, we can't do anything about that 550 // now. 551 return; 552 } 553 if (WIFEXITED(status)) { 554 LLDB_LOG(log, 555 "waiting for tid {0} returned an 'exited' event. Not " 556 "tracking the thread.", 557 tid); 558 // Also a very improbable event. 559 return; 560 } 561 562 LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid); 563 NativeThreadLinux &new_thread = AddThread(tid); 564 565 ResumeThread(new_thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 566 ThreadWasCreated(new_thread); 567 } 568 569 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, 570 NativeThreadLinux &thread) { 571 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 572 const bool is_main_thread = (thread.GetID() == GetID()); 573 574 assert(info.si_signo == SIGTRAP && "Unexpected child signal!"); 575 576 switch (info.si_code) { 577 // TODO: these two cases are required if we want to support tracing of the 578 // inferiors' children. We'd need this to debug a monitor. 579 // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 580 // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 581 582 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { 583 // This is the notification on the parent thread which informs us of new 584 // thread 585 // creation. 586 // We don't want to do anything with the parent thread so we just resume it. 587 // In case we 588 // want to implement "break on thread creation" functionality, we would need 589 // to stop 590 // here. 591 592 unsigned long event_message = 0; 593 if (GetEventMessage(thread.GetID(), &event_message).Fail()) { 594 LLDB_LOG(log, 595 "pid {0} received thread creation event but " 596 "GetEventMessage failed so we don't know the new tid", 597 thread.GetID()); 598 } else 599 WaitForNewThread(event_message); 600 601 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 602 break; 603 } 604 605 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): { 606 LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP); 607 608 // Exec clears any pending notifications. 609 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 610 611 // Remove all but the main thread here. Linux fork creates a new process 612 // which only copies the main thread. 613 LLDB_LOG(log, "exec received, stop tracking all but main thread"); 614 615 for (auto i = m_threads.begin(); i != m_threads.end();) { 616 if ((*i)->GetID() == GetID()) 617 i = m_threads.erase(i); 618 else 619 ++i; 620 } 621 assert(m_threads.size() == 1); 622 auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get()); 623 624 SetCurrentThreadID(main_thread->GetID()); 625 main_thread->SetStoppedByExec(); 626 627 // Tell coordinator about about the "new" (since exec) stopped main thread. 628 ThreadWasCreated(*main_thread); 629 630 // Let our delegate know we have just exec'd. 631 NotifyDidExec(); 632 633 // Let the process know we're stopped. 634 StopRunningThreads(main_thread->GetID()); 635 636 break; 637 } 638 639 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { 640 // The inferior process or one of its threads is about to exit. 641 // We don't want to do anything with the thread so we just resume it. In 642 // case we want to implement "break on thread exit" functionality, we would 643 // need to stop here. 644 645 unsigned long data = 0; 646 if (GetEventMessage(thread.GetID(), &data).Fail()) 647 data = -1; 648 649 LLDB_LOG(log, 650 "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, " 651 "WIFSIGNALED={2}, pid = {3}, main_thread = {4}", 652 data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(), 653 is_main_thread); 654 655 656 StateType state = thread.GetState(); 657 if (!StateIsRunningState(state)) { 658 // Due to a kernel bug, we may sometimes get this stop after the inferior 659 // gets a SIGKILL. This confuses our state tracking logic in 660 // ResumeThread(), since normally, we should not be receiving any ptrace 661 // events while the inferior is stopped. This makes sure that the inferior 662 // is resumed and exits normally. 663 state = eStateRunning; 664 } 665 ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); 666 667 break; 668 } 669 670 case 0: 671 case TRAP_TRACE: // We receive this on single stepping. 672 case TRAP_HWBKPT: // We receive this on watchpoint hit 673 { 674 // If a watchpoint was hit, report it 675 uint32_t wp_index; 676 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 677 wp_index, (uintptr_t)info.si_addr); 678 if (error.Fail()) 679 LLDB_LOG(log, 680 "received error while checking for watchpoint hits, pid = " 681 "{0}, error = {1}", 682 thread.GetID(), error); 683 if (wp_index != LLDB_INVALID_INDEX32) { 684 MonitorWatchpoint(thread, wp_index); 685 break; 686 } 687 688 // If a breakpoint was hit, report it 689 uint32_t bp_index; 690 error = thread.GetRegisterContext().GetHardwareBreakHitIndex( 691 bp_index, (uintptr_t)info.si_addr); 692 if (error.Fail()) 693 LLDB_LOG(log, "received error while checking for hardware " 694 "breakpoint hits, pid = {0}, error = {1}", 695 thread.GetID(), error); 696 if (bp_index != LLDB_INVALID_INDEX32) { 697 MonitorBreakpoint(thread); 698 break; 699 } 700 701 // Otherwise, report step over 702 MonitorTrace(thread); 703 break; 704 } 705 706 case SI_KERNEL: 707 #if defined __mips__ 708 // For mips there is no special signal for watchpoint 709 // So we check for watchpoint in kernel trap 710 { 711 // If a watchpoint was hit, report it 712 uint32_t wp_index; 713 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 714 wp_index, LLDB_INVALID_ADDRESS); 715 if (error.Fail()) 716 LLDB_LOG(log, 717 "received error while checking for watchpoint hits, pid = " 718 "{0}, error = {1}", 719 thread.GetID(), error); 720 if (wp_index != LLDB_INVALID_INDEX32) { 721 MonitorWatchpoint(thread, wp_index); 722 break; 723 } 724 } 725 // NO BREAK 726 #endif 727 case TRAP_BRKPT: 728 MonitorBreakpoint(thread); 729 break; 730 731 case SIGTRAP: 732 case (SIGTRAP | 0x80): 733 LLDB_LOG( 734 log, 735 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 736 info.si_code, GetID(), thread.GetID()); 737 738 // Ignore these signals until we know more about them. 739 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 740 break; 741 742 default: 743 LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}", 744 info.si_code, GetID(), thread.GetID()); 745 MonitorSignal(info, thread, false); 746 break; 747 } 748 } 749 750 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) { 751 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 752 LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID()); 753 754 // This thread is currently stopped. 755 thread.SetStoppedByTrace(); 756 757 StopRunningThreads(thread.GetID()); 758 } 759 760 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) { 761 Log *log( 762 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 763 LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID()); 764 765 // Mark the thread as stopped at breakpoint. 766 thread.SetStoppedByBreakpoint(); 767 Status error = FixupBreakpointPCAsNeeded(thread); 768 if (error.Fail()) 769 LLDB_LOG(log, "pid = {0} fixup: {1}", thread.GetID(), error); 770 771 if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != 772 m_threads_stepping_with_breakpoint.end()) 773 thread.SetStoppedByTrace(); 774 775 StopRunningThreads(thread.GetID()); 776 } 777 778 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, 779 uint32_t wp_index) { 780 Log *log( 781 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); 782 LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}", 783 thread.GetID(), wp_index); 784 785 // Mark the thread as stopped at watchpoint. 786 // The address is at (lldb::addr_t)info->si_addr if we need it. 787 thread.SetStoppedByWatchpoint(wp_index); 788 789 // We need to tell all other running threads before we notify the delegate 790 // about this stop. 791 StopRunningThreads(thread.GetID()); 792 } 793 794 void NativeProcessLinux::MonitorSignal(const siginfo_t &info, 795 NativeThreadLinux &thread, bool exited) { 796 const int signo = info.si_signo; 797 const bool is_from_llgs = info.si_pid == getpid(); 798 799 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 800 801 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 802 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a 803 // kill(2) or raise(3). Similarly for tgkill(2) on Linux. 804 // 805 // IOW, user generated signals never generate what we consider to be a 806 // "crash". 807 // 808 // Similarly, ACK signals generated by this monitor. 809 810 // Handle the signal. 811 LLDB_LOG(log, 812 "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, " 813 "waitpid pid = {4})", 814 Host::GetSignalAsCString(signo), signo, info.si_code, 815 thread.GetID()); 816 817 // Check for thread stop notification. 818 if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) { 819 // This is a tgkill()-based stop. 820 LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID()); 821 822 // Check that we're not already marked with a stop reason. 823 // Note this thread really shouldn't already be marked as stopped - if we 824 // were, that would imply that the kernel signaled us with the thread 825 // stopping which we handled and marked as stopped, and that, without an 826 // intervening resume, we received another stop. It is more likely that we 827 // are missing the marking of a run state somewhere if we find that the 828 // thread was marked as stopped. 829 const StateType thread_state = thread.GetState(); 830 if (!StateIsStoppedState(thread_state, false)) { 831 // An inferior thread has stopped because of a SIGSTOP we have sent it. 832 // Generally, these are not important stops and we don't want to report 833 // them as they are just used to stop other threads when one thread (the 834 // one with the *real* stop reason) hits a breakpoint (watchpoint, 835 // etc...). However, in the case of an asynchronous Interrupt(), this *is* 836 // the real stop reason, so we leave the signal intact if this is the 837 // thread that was chosen as the triggering thread. 838 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 839 if (m_pending_notification_tid == thread.GetID()) 840 thread.SetStoppedBySignal(SIGSTOP, &info); 841 else 842 thread.SetStoppedWithNoReason(); 843 844 SetCurrentThreadID(thread.GetID()); 845 SignalIfAllThreadsStopped(); 846 } else { 847 // We can end up here if stop was initiated by LLGS but by this time a 848 // thread stop has occurred - maybe initiated by another event. 849 Status error = ResumeThread(thread, thread.GetState(), 0); 850 if (error.Fail()) 851 LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(), 852 error); 853 } 854 } else { 855 LLDB_LOG(log, 856 "pid {0} tid {1}, thread was already marked as a stopped " 857 "state (state={2}), leaving stop signal as is", 858 GetID(), thread.GetID(), thread_state); 859 SignalIfAllThreadsStopped(); 860 } 861 862 // Done handling. 863 return; 864 } 865 866 // Check if debugger should stop at this signal or just ignore it 867 // and resume the inferior. 868 if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) { 869 ResumeThread(thread, thread.GetState(), signo); 870 return; 871 } 872 873 // This thread is stopped. 874 LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo)); 875 thread.SetStoppedBySignal(signo, &info); 876 877 // Send a stop to the debugger after we get all other threads to stop. 878 StopRunningThreads(thread.GetID()); 879 } 880 881 namespace { 882 883 struct EmulatorBaton { 884 NativeProcessLinux &m_process; 885 NativeRegisterContext &m_reg_context; 886 887 // eRegisterKindDWARF -> RegsiterValue 888 std::unordered_map<uint32_t, RegisterValue> m_register_values; 889 890 EmulatorBaton(NativeProcessLinux &process, NativeRegisterContext ®_context) 891 : m_process(process), m_reg_context(reg_context) {} 892 }; 893 894 } // anonymous namespace 895 896 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton, 897 const EmulateInstruction::Context &context, 898 lldb::addr_t addr, void *dst, size_t length) { 899 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 900 901 size_t bytes_read; 902 emulator_baton->m_process.ReadMemory(addr, dst, length, bytes_read); 903 return bytes_read; 904 } 905 906 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton, 907 const RegisterInfo *reg_info, 908 RegisterValue ®_value) { 909 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 910 911 auto it = emulator_baton->m_register_values.find( 912 reg_info->kinds[eRegisterKindDWARF]); 913 if (it != emulator_baton->m_register_values.end()) { 914 reg_value = it->second; 915 return true; 916 } 917 918 // The emulator only fill in the dwarf regsiter numbers (and in some case 919 // the generic register numbers). Get the full register info from the 920 // register context based on the dwarf register numbers. 921 const RegisterInfo *full_reg_info = 922 emulator_baton->m_reg_context.GetRegisterInfo( 923 eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]); 924 925 Status error = 926 emulator_baton->m_reg_context.ReadRegister(full_reg_info, reg_value); 927 if (error.Success()) 928 return true; 929 930 return false; 931 } 932 933 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton, 934 const EmulateInstruction::Context &context, 935 const RegisterInfo *reg_info, 936 const RegisterValue ®_value) { 937 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 938 emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = 939 reg_value; 940 return true; 941 } 942 943 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton, 944 const EmulateInstruction::Context &context, 945 lldb::addr_t addr, const void *dst, 946 size_t length) { 947 return length; 948 } 949 950 static lldb::addr_t ReadFlags(NativeRegisterContext ®siter_context) { 951 const RegisterInfo *flags_info = regsiter_context.GetRegisterInfo( 952 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 953 return regsiter_context.ReadRegisterAsUnsigned(flags_info, 954 LLDB_INVALID_ADDRESS); 955 } 956 957 Status 958 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) { 959 Status error; 960 NativeRegisterContext& register_context = thread.GetRegisterContext(); 961 962 std::unique_ptr<EmulateInstruction> emulator_ap( 963 EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, 964 nullptr)); 965 966 if (emulator_ap == nullptr) 967 return Status("Instruction emulator not found!"); 968 969 EmulatorBaton baton(*this, register_context); 970 emulator_ap->SetBaton(&baton); 971 emulator_ap->SetReadMemCallback(&ReadMemoryCallback); 972 emulator_ap->SetReadRegCallback(&ReadRegisterCallback); 973 emulator_ap->SetWriteMemCallback(&WriteMemoryCallback); 974 emulator_ap->SetWriteRegCallback(&WriteRegisterCallback); 975 976 if (!emulator_ap->ReadInstruction()) 977 return Status("Read instruction failed!"); 978 979 bool emulation_result = 980 emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC); 981 982 const RegisterInfo *reg_info_pc = register_context.GetRegisterInfo( 983 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); 984 const RegisterInfo *reg_info_flags = register_context.GetRegisterInfo( 985 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 986 987 auto pc_it = 988 baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]); 989 auto flags_it = 990 baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]); 991 992 lldb::addr_t next_pc; 993 lldb::addr_t next_flags; 994 if (emulation_result) { 995 assert(pc_it != baton.m_register_values.end() && 996 "Emulation was successfull but PC wasn't updated"); 997 next_pc = pc_it->second.GetAsUInt64(); 998 999 if (flags_it != baton.m_register_values.end()) 1000 next_flags = flags_it->second.GetAsUInt64(); 1001 else 1002 next_flags = ReadFlags(register_context); 1003 } else if (pc_it == baton.m_register_values.end()) { 1004 // Emulate instruction failed and it haven't changed PC. Advance PC 1005 // with the size of the current opcode because the emulation of all 1006 // PC modifying instruction should be successful. The failure most 1007 // likely caused by a not supported instruction which don't modify PC. 1008 next_pc = register_context.GetPC() + emulator_ap->GetOpcode().GetByteSize(); 1009 next_flags = ReadFlags(register_context); 1010 } else { 1011 // The instruction emulation failed after it modified the PC. It is an 1012 // unknown error where we can't continue because the next instruction is 1013 // modifying the PC but we don't know how. 1014 return Status("Instruction emulation failed unexpectedly."); 1015 } 1016 1017 if (m_arch.GetMachine() == llvm::Triple::arm) { 1018 if (next_flags & 0x20) { 1019 // Thumb mode 1020 error = SetSoftwareBreakpoint(next_pc, 2); 1021 } else { 1022 // Arm mode 1023 error = SetSoftwareBreakpoint(next_pc, 4); 1024 } 1025 } else if (m_arch.GetMachine() == llvm::Triple::mips64 || 1026 m_arch.GetMachine() == llvm::Triple::mips64el || 1027 m_arch.GetMachine() == llvm::Triple::mips || 1028 m_arch.GetMachine() == llvm::Triple::mipsel || 1029 m_arch.GetMachine() == llvm::Triple::ppc64le) 1030 error = SetSoftwareBreakpoint(next_pc, 4); 1031 else { 1032 // No size hint is given for the next breakpoint 1033 error = SetSoftwareBreakpoint(next_pc, 0); 1034 } 1035 1036 // If setting the breakpoint fails because next_pc is out of 1037 // the address space, ignore it and let the debugee segfault. 1038 if (error.GetError() == EIO || error.GetError() == EFAULT) { 1039 return Status(); 1040 } else if (error.Fail()) 1041 return error; 1042 1043 m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc}); 1044 1045 return Status(); 1046 } 1047 1048 bool NativeProcessLinux::SupportHardwareSingleStepping() const { 1049 if (m_arch.GetMachine() == llvm::Triple::arm || 1050 m_arch.GetMachine() == llvm::Triple::mips64 || 1051 m_arch.GetMachine() == llvm::Triple::mips64el || 1052 m_arch.GetMachine() == llvm::Triple::mips || 1053 m_arch.GetMachine() == llvm::Triple::mipsel) 1054 return false; 1055 return true; 1056 } 1057 1058 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) { 1059 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1060 LLDB_LOG(log, "pid {0}", GetID()); 1061 1062 bool software_single_step = !SupportHardwareSingleStepping(); 1063 1064 if (software_single_step) { 1065 for (const auto &thread : m_threads) { 1066 assert(thread && "thread list should not contain NULL threads"); 1067 1068 const ResumeAction *const action = 1069 resume_actions.GetActionForThread(thread->GetID(), true); 1070 if (action == nullptr) 1071 continue; 1072 1073 if (action->state == eStateStepping) { 1074 Status error = SetupSoftwareSingleStepping( 1075 static_cast<NativeThreadLinux &>(*thread)); 1076 if (error.Fail()) 1077 return error; 1078 } 1079 } 1080 } 1081 1082 for (const auto &thread : m_threads) { 1083 assert(thread && "thread list should not contain NULL threads"); 1084 1085 const ResumeAction *const action = 1086 resume_actions.GetActionForThread(thread->GetID(), true); 1087 1088 if (action == nullptr) { 1089 LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(), 1090 thread->GetID()); 1091 continue; 1092 } 1093 1094 LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}", 1095 action->state, GetID(), thread->GetID()); 1096 1097 switch (action->state) { 1098 case eStateRunning: 1099 case eStateStepping: { 1100 // Run the thread, possibly feeding it the signal. 1101 const int signo = action->signal; 1102 ResumeThread(static_cast<NativeThreadLinux &>(*thread), action->state, 1103 signo); 1104 break; 1105 } 1106 1107 case eStateSuspended: 1108 case eStateStopped: 1109 llvm_unreachable("Unexpected state"); 1110 1111 default: 1112 return Status("NativeProcessLinux::%s (): unexpected state %s specified " 1113 "for pid %" PRIu64 ", tid %" PRIu64, 1114 __FUNCTION__, StateAsCString(action->state), GetID(), 1115 thread->GetID()); 1116 } 1117 } 1118 1119 return Status(); 1120 } 1121 1122 Status NativeProcessLinux::Halt() { 1123 Status error; 1124 1125 if (kill(GetID(), SIGSTOP) != 0) 1126 error.SetErrorToErrno(); 1127 1128 return error; 1129 } 1130 1131 Status NativeProcessLinux::Detach() { 1132 Status error; 1133 1134 // Stop monitoring the inferior. 1135 m_sigchld_handle.reset(); 1136 1137 // Tell ptrace to detach from the process. 1138 if (GetID() == LLDB_INVALID_PROCESS_ID) 1139 return error; 1140 1141 for (const auto &thread : m_threads) { 1142 Status e = Detach(thread->GetID()); 1143 if (e.Fail()) 1144 error = 1145 e; // Save the error, but still attempt to detach from other threads. 1146 } 1147 1148 m_processor_trace_monitor.clear(); 1149 m_pt_proces_trace_id = LLDB_INVALID_UID; 1150 1151 return error; 1152 } 1153 1154 Status NativeProcessLinux::Signal(int signo) { 1155 Status error; 1156 1157 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1158 LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo, 1159 Host::GetSignalAsCString(signo), GetID()); 1160 1161 if (kill(GetID(), signo)) 1162 error.SetErrorToErrno(); 1163 1164 return error; 1165 } 1166 1167 Status NativeProcessLinux::Interrupt() { 1168 // Pick a running thread (or if none, a not-dead stopped thread) as 1169 // the chosen thread that will be the stop-reason thread. 1170 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1171 1172 NativeThreadProtocol *running_thread = nullptr; 1173 NativeThreadProtocol *stopped_thread = nullptr; 1174 1175 LLDB_LOG(log, "selecting running thread for interrupt target"); 1176 for (const auto &thread : m_threads) { 1177 // If we have a running or stepping thread, we'll call that the 1178 // target of the interrupt. 1179 const auto thread_state = thread->GetState(); 1180 if (thread_state == eStateRunning || thread_state == eStateStepping) { 1181 running_thread = thread.get(); 1182 break; 1183 } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) { 1184 // Remember the first non-dead stopped thread. We'll use that as a backup 1185 // if there are no running threads. 1186 stopped_thread = thread.get(); 1187 } 1188 } 1189 1190 if (!running_thread && !stopped_thread) { 1191 Status error("found no running/stepping or live stopped threads as target " 1192 "for interrupt"); 1193 LLDB_LOG(log, "skipping due to error: {0}", error); 1194 1195 return error; 1196 } 1197 1198 NativeThreadProtocol *deferred_signal_thread = 1199 running_thread ? running_thread : stopped_thread; 1200 1201 LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(), 1202 running_thread ? "running" : "stopped", 1203 deferred_signal_thread->GetID()); 1204 1205 StopRunningThreads(deferred_signal_thread->GetID()); 1206 1207 return Status(); 1208 } 1209 1210 Status NativeProcessLinux::Kill() { 1211 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1212 LLDB_LOG(log, "pid {0}", GetID()); 1213 1214 Status error; 1215 1216 switch (m_state) { 1217 case StateType::eStateInvalid: 1218 case StateType::eStateExited: 1219 case StateType::eStateCrashed: 1220 case StateType::eStateDetached: 1221 case StateType::eStateUnloaded: 1222 // Nothing to do - the process is already dead. 1223 LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(), 1224 m_state); 1225 return error; 1226 1227 case StateType::eStateConnected: 1228 case StateType::eStateAttaching: 1229 case StateType::eStateLaunching: 1230 case StateType::eStateStopped: 1231 case StateType::eStateRunning: 1232 case StateType::eStateStepping: 1233 case StateType::eStateSuspended: 1234 // We can try to kill a process in these states. 1235 break; 1236 } 1237 1238 if (kill(GetID(), SIGKILL) != 0) { 1239 error.SetErrorToErrno(); 1240 return error; 1241 } 1242 1243 return error; 1244 } 1245 1246 static Status 1247 ParseMemoryRegionInfoFromProcMapsLine(llvm::StringRef &maps_line, 1248 MemoryRegionInfo &memory_region_info) { 1249 memory_region_info.Clear(); 1250 1251 StringExtractor line_extractor(maps_line); 1252 1253 // Format: {address_start_hex}-{address_end_hex} perms offset dev inode 1254 // pathname 1255 // perms: rwxp (letter is present if set, '-' if not, final character is 1256 // p=private, s=shared). 1257 1258 // Parse out the starting address 1259 lldb::addr_t start_address = line_extractor.GetHexMaxU64(false, 0); 1260 1261 // Parse out hyphen separating start and end address from range. 1262 if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != '-')) 1263 return Status( 1264 "malformed /proc/{pid}/maps entry, missing dash between address range"); 1265 1266 // Parse out the ending address 1267 lldb::addr_t end_address = line_extractor.GetHexMaxU64(false, start_address); 1268 1269 // Parse out the space after the address. 1270 if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != ' ')) 1271 return Status( 1272 "malformed /proc/{pid}/maps entry, missing space after range"); 1273 1274 // Save the range. 1275 memory_region_info.GetRange().SetRangeBase(start_address); 1276 memory_region_info.GetRange().SetRangeEnd(end_address); 1277 1278 // Any memory region in /proc/{pid}/maps is by definition mapped into the 1279 // process. 1280 memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes); 1281 1282 // Parse out each permission entry. 1283 if (line_extractor.GetBytesLeft() < 4) 1284 return Status("malformed /proc/{pid}/maps entry, missing some portion of " 1285 "permissions"); 1286 1287 // Handle read permission. 1288 const char read_perm_char = line_extractor.GetChar(); 1289 if (read_perm_char == 'r') 1290 memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eYes); 1291 else if (read_perm_char == '-') 1292 memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1293 else 1294 return Status("unexpected /proc/{pid}/maps read permission char"); 1295 1296 // Handle write permission. 1297 const char write_perm_char = line_extractor.GetChar(); 1298 if (write_perm_char == 'w') 1299 memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eYes); 1300 else if (write_perm_char == '-') 1301 memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1302 else 1303 return Status("unexpected /proc/{pid}/maps write permission char"); 1304 1305 // Handle execute permission. 1306 const char exec_perm_char = line_extractor.GetChar(); 1307 if (exec_perm_char == 'x') 1308 memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eYes); 1309 else if (exec_perm_char == '-') 1310 memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1311 else 1312 return Status("unexpected /proc/{pid}/maps exec permission char"); 1313 1314 line_extractor.GetChar(); // Read the private bit 1315 line_extractor.SkipSpaces(); // Skip the separator 1316 line_extractor.GetHexMaxU64(false, 0); // Read the offset 1317 line_extractor.GetHexMaxU64(false, 0); // Read the major device number 1318 line_extractor.GetChar(); // Read the device id separator 1319 line_extractor.GetHexMaxU64(false, 0); // Read the major device number 1320 line_extractor.SkipSpaces(); // Skip the separator 1321 line_extractor.GetU64(0, 10); // Read the inode number 1322 1323 line_extractor.SkipSpaces(); 1324 const char *name = line_extractor.Peek(); 1325 if (name) 1326 memory_region_info.SetName(name); 1327 1328 return Status(); 1329 } 1330 1331 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr, 1332 MemoryRegionInfo &range_info) { 1333 // FIXME review that the final memory region returned extends to the end of 1334 // the virtual address space, 1335 // with no perms if it is not mapped. 1336 1337 // Use an approach that reads memory regions from /proc/{pid}/maps. 1338 // Assume proc maps entries are in ascending order. 1339 // FIXME assert if we find differently. 1340 1341 if (m_supports_mem_region == LazyBool::eLazyBoolNo) { 1342 // We're done. 1343 return Status("unsupported"); 1344 } 1345 1346 Status error = PopulateMemoryRegionCache(); 1347 if (error.Fail()) { 1348 return error; 1349 } 1350 1351 lldb::addr_t prev_base_address = 0; 1352 1353 // FIXME start by finding the last region that is <= target address using 1354 // binary search. Data is sorted. 1355 // There can be a ton of regions on pthreads apps with lots of threads. 1356 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end(); 1357 ++it) { 1358 MemoryRegionInfo &proc_entry_info = it->first; 1359 1360 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 1361 assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) && 1362 "descending /proc/pid/maps entries detected, unexpected"); 1363 prev_base_address = proc_entry_info.GetRange().GetRangeBase(); 1364 UNUSED_IF_ASSERT_DISABLED(prev_base_address); 1365 1366 // If the target address comes before this entry, indicate distance to next 1367 // region. 1368 if (load_addr < proc_entry_info.GetRange().GetRangeBase()) { 1369 range_info.GetRange().SetRangeBase(load_addr); 1370 range_info.GetRange().SetByteSize( 1371 proc_entry_info.GetRange().GetRangeBase() - load_addr); 1372 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1373 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1374 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1375 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1376 1377 return error; 1378 } else if (proc_entry_info.GetRange().Contains(load_addr)) { 1379 // The target address is within the memory region we're processing here. 1380 range_info = proc_entry_info; 1381 return error; 1382 } 1383 1384 // The target memory address comes somewhere after the region we just 1385 // parsed. 1386 } 1387 1388 // If we made it here, we didn't find an entry that contained the given 1389 // address. Return the 1390 // load_addr as start and the amount of bytes betwwen load address and the end 1391 // of the memory as 1392 // size. 1393 range_info.GetRange().SetRangeBase(load_addr); 1394 range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS); 1395 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1396 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1397 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1398 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1399 return error; 1400 } 1401 1402 Status NativeProcessLinux::PopulateMemoryRegionCache() { 1403 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1404 1405 // If our cache is empty, pull the latest. There should always be at least 1406 // one memory region if memory region handling is supported. 1407 if (!m_mem_region_cache.empty()) { 1408 LLDB_LOG(log, "reusing {0} cached memory region entries", 1409 m_mem_region_cache.size()); 1410 return Status(); 1411 } 1412 1413 auto BufferOrError = getProcFile(GetID(), "maps"); 1414 if (!BufferOrError) { 1415 m_supports_mem_region = LazyBool::eLazyBoolNo; 1416 return BufferOrError.getError(); 1417 } 1418 StringRef Rest = BufferOrError.get()->getBuffer(); 1419 while (! Rest.empty()) { 1420 StringRef Line; 1421 std::tie(Line, Rest) = Rest.split('\n'); 1422 MemoryRegionInfo info; 1423 const Status parse_error = 1424 ParseMemoryRegionInfoFromProcMapsLine(Line, info); 1425 if (parse_error.Fail()) { 1426 LLDB_LOG(log, "failed to parse proc maps line '{0}': {1}", Line, 1427 parse_error); 1428 m_supports_mem_region = LazyBool::eLazyBoolNo; 1429 return parse_error; 1430 } 1431 m_mem_region_cache.emplace_back( 1432 info, FileSpec(info.GetName().GetCString(), true)); 1433 } 1434 1435 if (m_mem_region_cache.empty()) { 1436 // No entries after attempting to read them. This shouldn't happen if 1437 // /proc/{pid}/maps is supported. Assume we don't support map entries 1438 // via procfs. 1439 m_supports_mem_region = LazyBool::eLazyBoolNo; 1440 LLDB_LOG(log, 1441 "failed to find any procfs maps entries, assuming no support " 1442 "for memory region metadata retrieval"); 1443 return Status("not supported"); 1444 } 1445 1446 LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps", 1447 m_mem_region_cache.size(), GetID()); 1448 1449 // We support memory retrieval, remember that. 1450 m_supports_mem_region = LazyBool::eLazyBoolYes; 1451 return Status(); 1452 } 1453 1454 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) { 1455 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1456 LLDB_LOG(log, "newBumpId={0}", newBumpId); 1457 LLDB_LOG(log, "clearing {0} entries from memory region cache", 1458 m_mem_region_cache.size()); 1459 m_mem_region_cache.clear(); 1460 } 1461 1462 Status NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, 1463 lldb::addr_t &addr) { 1464 // FIXME implementing this requires the equivalent of 1465 // InferiorCallPOSIX::InferiorCallMmap, which depends on 1466 // functional ThreadPlans working with Native*Protocol. 1467 #if 1 1468 return Status("not implemented yet"); 1469 #else 1470 addr = LLDB_INVALID_ADDRESS; 1471 1472 unsigned prot = 0; 1473 if (permissions & lldb::ePermissionsReadable) 1474 prot |= eMmapProtRead; 1475 if (permissions & lldb::ePermissionsWritable) 1476 prot |= eMmapProtWrite; 1477 if (permissions & lldb::ePermissionsExecutable) 1478 prot |= eMmapProtExec; 1479 1480 // TODO implement this directly in NativeProcessLinux 1481 // (and lift to NativeProcessPOSIX if/when that class is 1482 // refactored out). 1483 if (InferiorCallMmap(this, addr, 0, size, prot, 1484 eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { 1485 m_addr_to_mmap_size[addr] = size; 1486 return Status(); 1487 } else { 1488 addr = LLDB_INVALID_ADDRESS; 1489 return Status("unable to allocate %" PRIu64 1490 " bytes of memory with permissions %s", 1491 size, GetPermissionsAsCString(permissions)); 1492 } 1493 #endif 1494 } 1495 1496 Status NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) { 1497 // FIXME see comments in AllocateMemory - required lower-level 1498 // bits not in place yet (ThreadPlans) 1499 return Status("not implemented"); 1500 } 1501 1502 lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress() { 1503 // punt on this for now 1504 return LLDB_INVALID_ADDRESS; 1505 } 1506 1507 size_t NativeProcessLinux::UpdateThreads() { 1508 // The NativeProcessLinux monitoring threads are always up to date 1509 // with respect to thread state and they keep the thread list 1510 // populated properly. All this method needs to do is return the 1511 // thread count. 1512 return m_threads.size(); 1513 } 1514 1515 Status NativeProcessLinux::GetSoftwareBreakpointPCOffset( 1516 uint32_t &actual_opcode_size) { 1517 // FIXME put this behind a breakpoint protocol class that can be 1518 // set per architecture. Need ARM, MIPS support here. 1519 static const uint8_t g_i386_opcode[] = {0xCC}; 1520 static const uint8_t g_s390x_opcode[] = {0x00, 0x01}; 1521 1522 switch (m_arch.GetMachine()) { 1523 case llvm::Triple::x86: 1524 case llvm::Triple::x86_64: 1525 actual_opcode_size = static_cast<uint32_t>(sizeof(g_i386_opcode)); 1526 return Status(); 1527 1528 case llvm::Triple::systemz: 1529 actual_opcode_size = static_cast<uint32_t>(sizeof(g_s390x_opcode)); 1530 return Status(); 1531 1532 case llvm::Triple::arm: 1533 case llvm::Triple::aarch64: 1534 case llvm::Triple::mips64: 1535 case llvm::Triple::mips64el: 1536 case llvm::Triple::mips: 1537 case llvm::Triple::mipsel: 1538 case llvm::Triple::ppc64le: 1539 // On these architectures the PC don't get updated for breakpoint hits 1540 actual_opcode_size = 0; 1541 return Status(); 1542 1543 default: 1544 assert(false && "CPU type not supported!"); 1545 return Status("CPU type not supported"); 1546 } 1547 } 1548 1549 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size, 1550 bool hardware) { 1551 if (hardware) 1552 return SetHardwareBreakpoint(addr, size); 1553 else 1554 return SetSoftwareBreakpoint(addr, size); 1555 } 1556 1557 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) { 1558 if (hardware) 1559 return RemoveHardwareBreakpoint(addr); 1560 else 1561 return NativeProcessProtocol::RemoveBreakpoint(addr); 1562 } 1563 1564 Status NativeProcessLinux::GetSoftwareBreakpointTrapOpcode( 1565 size_t trap_opcode_size_hint, size_t &actual_opcode_size, 1566 const uint8_t *&trap_opcode_bytes) { 1567 // FIXME put this behind a breakpoint protocol class that can be set per 1568 // architecture. Need MIPS support here. 1569 static const uint8_t g_aarch64_opcode[] = {0x00, 0x00, 0x20, 0xd4}; 1570 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 1571 // linux kernel does otherwise. 1572 static const uint8_t g_arm_breakpoint_opcode[] = {0xf0, 0x01, 0xf0, 0xe7}; 1573 static const uint8_t g_i386_opcode[] = {0xCC}; 1574 static const uint8_t g_mips64_opcode[] = {0x00, 0x00, 0x00, 0x0d}; 1575 static const uint8_t g_mips64el_opcode[] = {0x0d, 0x00, 0x00, 0x00}; 1576 static const uint8_t g_s390x_opcode[] = {0x00, 0x01}; 1577 static const uint8_t g_thumb_breakpoint_opcode[] = {0x01, 0xde}; 1578 static const uint8_t g_ppc64le_opcode[] = {0x08, 0x00, 0xe0, 0x7f}; // trap 1579 1580 switch (m_arch.GetMachine()) { 1581 case llvm::Triple::aarch64: 1582 trap_opcode_bytes = g_aarch64_opcode; 1583 actual_opcode_size = sizeof(g_aarch64_opcode); 1584 return Status(); 1585 1586 case llvm::Triple::arm: 1587 switch (trap_opcode_size_hint) { 1588 case 2: 1589 trap_opcode_bytes = g_thumb_breakpoint_opcode; 1590 actual_opcode_size = sizeof(g_thumb_breakpoint_opcode); 1591 return Status(); 1592 case 4: 1593 trap_opcode_bytes = g_arm_breakpoint_opcode; 1594 actual_opcode_size = sizeof(g_arm_breakpoint_opcode); 1595 return Status(); 1596 default: 1597 assert(false && "Unrecognised trap opcode size hint!"); 1598 return Status("Unrecognised trap opcode size hint!"); 1599 } 1600 1601 case llvm::Triple::x86: 1602 case llvm::Triple::x86_64: 1603 trap_opcode_bytes = g_i386_opcode; 1604 actual_opcode_size = sizeof(g_i386_opcode); 1605 return Status(); 1606 1607 case llvm::Triple::mips: 1608 case llvm::Triple::mips64: 1609 trap_opcode_bytes = g_mips64_opcode; 1610 actual_opcode_size = sizeof(g_mips64_opcode); 1611 return Status(); 1612 1613 case llvm::Triple::mipsel: 1614 case llvm::Triple::mips64el: 1615 trap_opcode_bytes = g_mips64el_opcode; 1616 actual_opcode_size = sizeof(g_mips64el_opcode); 1617 return Status(); 1618 1619 case llvm::Triple::systemz: 1620 trap_opcode_bytes = g_s390x_opcode; 1621 actual_opcode_size = sizeof(g_s390x_opcode); 1622 return Status(); 1623 1624 case llvm::Triple::ppc64le: 1625 trap_opcode_bytes = g_ppc64le_opcode; 1626 actual_opcode_size = sizeof(g_ppc64le_opcode); 1627 return Status(); 1628 1629 default: 1630 assert(false && "CPU type not supported!"); 1631 return Status("CPU type not supported"); 1632 } 1633 } 1634 1635 #if 0 1636 ProcessMessage::CrashReason 1637 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info) 1638 { 1639 ProcessMessage::CrashReason reason; 1640 assert(info->si_signo == SIGSEGV); 1641 1642 reason = ProcessMessage::eInvalidCrashReason; 1643 1644 switch (info->si_code) 1645 { 1646 default: 1647 assert(false && "unexpected si_code for SIGSEGV"); 1648 break; 1649 case SI_KERNEL: 1650 // Linux will occasionally send spurious SI_KERNEL codes. 1651 // (this is poorly documented in sigaction) 1652 // One way to get this is via unaligned SIMD loads. 1653 reason = ProcessMessage::eInvalidAddress; // for lack of anything better 1654 break; 1655 case SEGV_MAPERR: 1656 reason = ProcessMessage::eInvalidAddress; 1657 break; 1658 case SEGV_ACCERR: 1659 reason = ProcessMessage::ePrivilegedAddress; 1660 break; 1661 } 1662 1663 return reason; 1664 } 1665 #endif 1666 1667 #if 0 1668 ProcessMessage::CrashReason 1669 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info) 1670 { 1671 ProcessMessage::CrashReason reason; 1672 assert(info->si_signo == SIGILL); 1673 1674 reason = ProcessMessage::eInvalidCrashReason; 1675 1676 switch (info->si_code) 1677 { 1678 default: 1679 assert(false && "unexpected si_code for SIGILL"); 1680 break; 1681 case ILL_ILLOPC: 1682 reason = ProcessMessage::eIllegalOpcode; 1683 break; 1684 case ILL_ILLOPN: 1685 reason = ProcessMessage::eIllegalOperand; 1686 break; 1687 case ILL_ILLADR: 1688 reason = ProcessMessage::eIllegalAddressingMode; 1689 break; 1690 case ILL_ILLTRP: 1691 reason = ProcessMessage::eIllegalTrap; 1692 break; 1693 case ILL_PRVOPC: 1694 reason = ProcessMessage::ePrivilegedOpcode; 1695 break; 1696 case ILL_PRVREG: 1697 reason = ProcessMessage::ePrivilegedRegister; 1698 break; 1699 case ILL_COPROC: 1700 reason = ProcessMessage::eCoprocessorError; 1701 break; 1702 case ILL_BADSTK: 1703 reason = ProcessMessage::eInternalStackError; 1704 break; 1705 } 1706 1707 return reason; 1708 } 1709 #endif 1710 1711 #if 0 1712 ProcessMessage::CrashReason 1713 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info) 1714 { 1715 ProcessMessage::CrashReason reason; 1716 assert(info->si_signo == SIGFPE); 1717 1718 reason = ProcessMessage::eInvalidCrashReason; 1719 1720 switch (info->si_code) 1721 { 1722 default: 1723 assert(false && "unexpected si_code for SIGFPE"); 1724 break; 1725 case FPE_INTDIV: 1726 reason = ProcessMessage::eIntegerDivideByZero; 1727 break; 1728 case FPE_INTOVF: 1729 reason = ProcessMessage::eIntegerOverflow; 1730 break; 1731 case FPE_FLTDIV: 1732 reason = ProcessMessage::eFloatDivideByZero; 1733 break; 1734 case FPE_FLTOVF: 1735 reason = ProcessMessage::eFloatOverflow; 1736 break; 1737 case FPE_FLTUND: 1738 reason = ProcessMessage::eFloatUnderflow; 1739 break; 1740 case FPE_FLTRES: 1741 reason = ProcessMessage::eFloatInexactResult; 1742 break; 1743 case FPE_FLTINV: 1744 reason = ProcessMessage::eFloatInvalidOperation; 1745 break; 1746 case FPE_FLTSUB: 1747 reason = ProcessMessage::eFloatSubscriptRange; 1748 break; 1749 } 1750 1751 return reason; 1752 } 1753 #endif 1754 1755 #if 0 1756 ProcessMessage::CrashReason 1757 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info) 1758 { 1759 ProcessMessage::CrashReason reason; 1760 assert(info->si_signo == SIGBUS); 1761 1762 reason = ProcessMessage::eInvalidCrashReason; 1763 1764 switch (info->si_code) 1765 { 1766 default: 1767 assert(false && "unexpected si_code for SIGBUS"); 1768 break; 1769 case BUS_ADRALN: 1770 reason = ProcessMessage::eIllegalAlignment; 1771 break; 1772 case BUS_ADRERR: 1773 reason = ProcessMessage::eIllegalAddress; 1774 break; 1775 case BUS_OBJERR: 1776 reason = ProcessMessage::eHardwareError; 1777 break; 1778 } 1779 1780 return reason; 1781 } 1782 #endif 1783 1784 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size, 1785 size_t &bytes_read) { 1786 if (ProcessVmReadvSupported()) { 1787 // The process_vm_readv path is about 50 times faster than ptrace api. We 1788 // want to use 1789 // this syscall if it is supported. 1790 1791 const ::pid_t pid = GetID(); 1792 1793 struct iovec local_iov, remote_iov; 1794 local_iov.iov_base = buf; 1795 local_iov.iov_len = size; 1796 remote_iov.iov_base = reinterpret_cast<void *>(addr); 1797 remote_iov.iov_len = size; 1798 1799 bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0); 1800 const bool success = bytes_read == size; 1801 1802 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1803 LLDB_LOG(log, 1804 "using process_vm_readv to read {0} bytes from inferior " 1805 "address {1:x}: {2}", 1806 size, addr, success ? "Success" : llvm::sys::StrError(errno)); 1807 1808 if (success) 1809 return Status(); 1810 // else the call failed for some reason, let's retry the read using ptrace 1811 // api. 1812 } 1813 1814 unsigned char *dst = static_cast<unsigned char *>(buf); 1815 size_t remainder; 1816 long data; 1817 1818 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1819 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1820 1821 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { 1822 Status error = NativeProcessLinux::PtraceWrapper( 1823 PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data); 1824 if (error.Fail()) 1825 return error; 1826 1827 remainder = size - bytes_read; 1828 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1829 1830 // Copy the data into our buffer 1831 memcpy(dst, &data, remainder); 1832 1833 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1834 addr += k_ptrace_word_size; 1835 dst += k_ptrace_word_size; 1836 } 1837 return Status(); 1838 } 1839 1840 Status NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, 1841 size_t size, 1842 size_t &bytes_read) { 1843 Status error = ReadMemory(addr, buf, size, bytes_read); 1844 if (error.Fail()) 1845 return error; 1846 return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size); 1847 } 1848 1849 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, 1850 size_t size, size_t &bytes_written) { 1851 const unsigned char *src = static_cast<const unsigned char *>(buf); 1852 size_t remainder; 1853 Status error; 1854 1855 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1856 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1857 1858 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { 1859 remainder = size - bytes_written; 1860 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1861 1862 if (remainder == k_ptrace_word_size) { 1863 unsigned long data = 0; 1864 memcpy(&data, src, k_ptrace_word_size); 1865 1866 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1867 error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), 1868 (void *)addr, (void *)data); 1869 if (error.Fail()) 1870 return error; 1871 } else { 1872 unsigned char buff[8]; 1873 size_t bytes_read; 1874 error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read); 1875 if (error.Fail()) 1876 return error; 1877 1878 memcpy(buff, src, remainder); 1879 1880 size_t bytes_written_rec; 1881 error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec); 1882 if (error.Fail()) 1883 return error; 1884 1885 LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src, 1886 *(unsigned long *)buff); 1887 } 1888 1889 addr += k_ptrace_word_size; 1890 src += k_ptrace_word_size; 1891 } 1892 return error; 1893 } 1894 1895 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) { 1896 return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); 1897 } 1898 1899 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid, 1900 unsigned long *message) { 1901 return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); 1902 } 1903 1904 Status NativeProcessLinux::Detach(lldb::tid_t tid) { 1905 if (tid == LLDB_INVALID_THREAD_ID) 1906 return Status(); 1907 1908 return PtraceWrapper(PTRACE_DETACH, tid); 1909 } 1910 1911 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) { 1912 for (const auto &thread : m_threads) { 1913 assert(thread && "thread list should not contain NULL threads"); 1914 if (thread->GetID() == thread_id) { 1915 // We have this thread. 1916 return true; 1917 } 1918 } 1919 1920 // We don't have this thread. 1921 return false; 1922 } 1923 1924 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) { 1925 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1926 LLDB_LOG(log, "tid: {0})", thread_id); 1927 1928 bool found = false; 1929 for (auto it = m_threads.begin(); it != m_threads.end(); ++it) { 1930 if (*it && ((*it)->GetID() == thread_id)) { 1931 m_threads.erase(it); 1932 found = true; 1933 break; 1934 } 1935 } 1936 1937 if (found) 1938 StopTracingForThread(thread_id); 1939 SignalIfAllThreadsStopped(); 1940 return found; 1941 } 1942 1943 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id) { 1944 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD)); 1945 LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id); 1946 1947 assert(!HasThreadNoLock(thread_id) && 1948 "attempted to add a thread by id that already exists"); 1949 1950 // If this is the first thread, save it as the current thread 1951 if (m_threads.empty()) 1952 SetCurrentThreadID(thread_id); 1953 1954 m_threads.push_back(llvm::make_unique<NativeThreadLinux>(*this, thread_id)); 1955 1956 if (m_pt_proces_trace_id != LLDB_INVALID_UID) { 1957 auto traceMonitor = ProcessorTraceMonitor::Create( 1958 GetID(), thread_id, m_pt_process_trace_config, true); 1959 if (traceMonitor) { 1960 m_pt_traced_thread_group.insert(thread_id); 1961 m_processor_trace_monitor.insert( 1962 std::make_pair(thread_id, std::move(*traceMonitor))); 1963 } else { 1964 LLDB_LOG(log, "failed to start trace on thread {0}", thread_id); 1965 Status error(traceMonitor.takeError()); 1966 LLDB_LOG(log, "error {0}", error); 1967 } 1968 } 1969 1970 return static_cast<NativeThreadLinux &>(*m_threads.back()); 1971 } 1972 1973 Status 1974 NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread) { 1975 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 1976 1977 Status error; 1978 1979 // Find out the size of a breakpoint (might depend on where we are in the 1980 // code). 1981 NativeRegisterContext &context = thread.GetRegisterContext(); 1982 1983 uint32_t breakpoint_size = 0; 1984 error = GetSoftwareBreakpointPCOffset(breakpoint_size); 1985 if (error.Fail()) { 1986 LLDB_LOG(log, "GetBreakpointSize() failed: {0}", error); 1987 return error; 1988 } else 1989 LLDB_LOG(log, "breakpoint size: {0}", breakpoint_size); 1990 1991 // First try probing for a breakpoint at a software breakpoint location: PC - 1992 // breakpoint size. 1993 const lldb::addr_t initial_pc_addr = context.GetPCfromBreakpointLocation(); 1994 lldb::addr_t breakpoint_addr = initial_pc_addr; 1995 if (breakpoint_size > 0) { 1996 // Do not allow breakpoint probe to wrap around. 1997 if (breakpoint_addr >= breakpoint_size) 1998 breakpoint_addr -= breakpoint_size; 1999 } 2000 2001 // Check if we stopped because of a breakpoint. 2002 NativeBreakpointSP breakpoint_sp; 2003 error = m_breakpoint_list.GetBreakpoint(breakpoint_addr, breakpoint_sp); 2004 if (!error.Success() || !breakpoint_sp) { 2005 // We didn't find one at a software probe location. Nothing to do. 2006 LLDB_LOG(log, 2007 "pid {0} no lldb breakpoint found at current pc with " 2008 "adjustment: {1}", 2009 GetID(), breakpoint_addr); 2010 return Status(); 2011 } 2012 2013 // If the breakpoint is not a software breakpoint, nothing to do. 2014 if (!breakpoint_sp->IsSoftwareBreakpoint()) { 2015 LLDB_LOG( 2016 log, 2017 "pid {0} breakpoint found at {1:x}, not software, nothing to adjust", 2018 GetID(), breakpoint_addr); 2019 return Status(); 2020 } 2021 2022 // 2023 // We have a software breakpoint and need to adjust the PC. 2024 // 2025 2026 // Sanity check. 2027 if (breakpoint_size == 0) { 2028 // Nothing to do! How did we get here? 2029 LLDB_LOG(log, 2030 "pid {0} breakpoint found at {1:x}, it is software, but the " 2031 "size is zero, nothing to do (unexpected)", 2032 GetID(), breakpoint_addr); 2033 return Status(); 2034 } 2035 2036 // Change the program counter. 2037 LLDB_LOG(log, "pid {0} tid {1}: changing PC from {2:x} to {3:x}", GetID(), 2038 thread.GetID(), initial_pc_addr, breakpoint_addr); 2039 2040 error = context.SetPC(breakpoint_addr); 2041 if (error.Fail()) { 2042 LLDB_LOG(log, "pid {0} tid {1}: failed to set PC: {2}", GetID(), 2043 thread.GetID(), error); 2044 return error; 2045 } 2046 2047 return error; 2048 } 2049 2050 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path, 2051 FileSpec &file_spec) { 2052 Status error = PopulateMemoryRegionCache(); 2053 if (error.Fail()) 2054 return error; 2055 2056 FileSpec module_file_spec(module_path, true); 2057 2058 file_spec.Clear(); 2059 for (const auto &it : m_mem_region_cache) { 2060 if (it.second.GetFilename() == module_file_spec.GetFilename()) { 2061 file_spec = it.second; 2062 return Status(); 2063 } 2064 } 2065 return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 2066 module_file_spec.GetFilename().AsCString(), GetID()); 2067 } 2068 2069 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name, 2070 lldb::addr_t &load_addr) { 2071 load_addr = LLDB_INVALID_ADDRESS; 2072 Status error = PopulateMemoryRegionCache(); 2073 if (error.Fail()) 2074 return error; 2075 2076 FileSpec file(file_name, false); 2077 for (const auto &it : m_mem_region_cache) { 2078 if (it.second == file) { 2079 load_addr = it.first.GetRange().GetRangeBase(); 2080 return Status(); 2081 } 2082 } 2083 return Status("No load address found for specified file."); 2084 } 2085 2086 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) { 2087 return static_cast<NativeThreadLinux *>( 2088 NativeProcessProtocol::GetThreadByID(tid)); 2089 } 2090 2091 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, 2092 lldb::StateType state, int signo) { 2093 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2094 LLDB_LOG(log, "tid: {0}", thread.GetID()); 2095 2096 // Before we do the resume below, first check if we have a pending 2097 // stop notification that is currently waiting for 2098 // all threads to stop. This is potentially a buggy situation since 2099 // we're ostensibly waiting for threads to stop before we send out the 2100 // pending notification, and here we are resuming one before we send 2101 // out the pending stop notification. 2102 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 2103 LLDB_LOG(log, 2104 "about to resume tid {0} per explicit request but we have a " 2105 "pending stop notification (tid {1}) that is actively " 2106 "waiting for this thread to stop. Valid sequence of events?", 2107 thread.GetID(), m_pending_notification_tid); 2108 } 2109 2110 // Request a resume. We expect this to be synchronous and the system 2111 // to reflect it is running after this completes. 2112 switch (state) { 2113 case eStateRunning: { 2114 const auto resume_result = thread.Resume(signo); 2115 if (resume_result.Success()) 2116 SetState(eStateRunning, true); 2117 return resume_result; 2118 } 2119 case eStateStepping: { 2120 const auto step_result = thread.SingleStep(signo); 2121 if (step_result.Success()) 2122 SetState(eStateRunning, true); 2123 return step_result; 2124 } 2125 default: 2126 LLDB_LOG(log, "Unhandled state {0}.", state); 2127 llvm_unreachable("Unhandled state for resume"); 2128 } 2129 } 2130 2131 //===----------------------------------------------------------------------===// 2132 2133 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) { 2134 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2135 LLDB_LOG(log, "about to process event: (triggering_tid: {0})", 2136 triggering_tid); 2137 2138 m_pending_notification_tid = triggering_tid; 2139 2140 // Request a stop for all the thread stops that need to be stopped 2141 // and are not already known to be stopped. 2142 for (const auto &thread : m_threads) { 2143 if (StateIsRunningState(thread->GetState())) 2144 static_cast<NativeThreadLinux *>(thread.get())->RequestStop(); 2145 } 2146 2147 SignalIfAllThreadsStopped(); 2148 LLDB_LOG(log, "event processing done"); 2149 } 2150 2151 void NativeProcessLinux::SignalIfAllThreadsStopped() { 2152 if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) 2153 return; // No pending notification. Nothing to do. 2154 2155 for (const auto &thread_sp : m_threads) { 2156 if (StateIsRunningState(thread_sp->GetState())) 2157 return; // Some threads are still running. Don't signal yet. 2158 } 2159 2160 // We have a pending notification and all threads have stopped. 2161 Log *log( 2162 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 2163 2164 // Clear any temporary breakpoints we used to implement software single 2165 // stepping. 2166 for (const auto &thread_info : m_threads_stepping_with_breakpoint) { 2167 Status error = RemoveBreakpoint(thread_info.second); 2168 if (error.Fail()) 2169 LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}", 2170 thread_info.first, error); 2171 } 2172 m_threads_stepping_with_breakpoint.clear(); 2173 2174 // Notify the delegate about the stop 2175 SetCurrentThreadID(m_pending_notification_tid); 2176 SetState(StateType::eStateStopped, true); 2177 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 2178 } 2179 2180 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) { 2181 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2182 LLDB_LOG(log, "tid: {0}", thread.GetID()); 2183 2184 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && 2185 StateIsRunningState(thread.GetState())) { 2186 // We will need to wait for this new thread to stop as well before firing 2187 // the 2188 // notification. 2189 thread.RequestStop(); 2190 } 2191 } 2192 2193 void NativeProcessLinux::SigchldHandler() { 2194 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 2195 // Process all pending waitpid notifications. 2196 while (true) { 2197 int status = -1; 2198 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, -1, &status, 2199 __WALL | __WNOTHREAD | WNOHANG); 2200 2201 if (wait_pid == 0) 2202 break; // We are done. 2203 2204 if (wait_pid == -1) { 2205 Status error(errno, eErrorTypePOSIX); 2206 LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error); 2207 break; 2208 } 2209 2210 WaitStatus wait_status = WaitStatus::Decode(status); 2211 bool exited = wait_status.type == WaitStatus::Exit || 2212 (wait_status.type == WaitStatus::Signal && 2213 wait_pid == static_cast<::pid_t>(GetID())); 2214 2215 LLDB_LOG( 2216 log, 2217 "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}", 2218 wait_pid, wait_status, exited); 2219 2220 MonitorCallback(wait_pid, exited, wait_status); 2221 } 2222 } 2223 2224 // Wrapper for ptrace to catch errors and log calls. 2225 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. 2226 // for PTRACE_PEEK*) 2227 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, 2228 void *data, size_t data_size, 2229 long *result) { 2230 Status error; 2231 long int ret; 2232 2233 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2234 2235 PtraceDisplayBytes(req, data, data_size); 2236 2237 errno = 0; 2238 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 2239 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 2240 *(unsigned int *)addr, data); 2241 else 2242 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 2243 addr, data); 2244 2245 if (ret == -1) 2246 error.SetErrorToErrno(); 2247 2248 if (result) 2249 *result = ret; 2250 2251 LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data, 2252 data_size, ret); 2253 2254 PtraceDisplayBytes(req, data, data_size); 2255 2256 if (error.Fail()) 2257 LLDB_LOG(log, "ptrace() failed: {0}", error); 2258 2259 return error; 2260 } 2261 2262 llvm::Expected<ProcessorTraceMonitor &> 2263 NativeProcessLinux::LookupProcessorTraceInstance(lldb::user_id_t traceid, 2264 lldb::tid_t thread) { 2265 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2266 if (thread == LLDB_INVALID_THREAD_ID && traceid == m_pt_proces_trace_id) { 2267 LLDB_LOG(log, "thread not specified: {0}", traceid); 2268 return Status("tracing not active thread not specified").ToError(); 2269 } 2270 2271 for (auto& iter : m_processor_trace_monitor) { 2272 if (traceid == iter.second->GetTraceID() && 2273 (thread == iter.first || thread == LLDB_INVALID_THREAD_ID)) 2274 return *(iter.second); 2275 } 2276 2277 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 2278 return Status("tracing not active for this thread").ToError(); 2279 } 2280 2281 Status NativeProcessLinux::GetMetaData(lldb::user_id_t traceid, 2282 lldb::tid_t thread, 2283 llvm::MutableArrayRef<uint8_t> &buffer, 2284 size_t offset) { 2285 TraceOptions trace_options; 2286 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2287 Status error; 2288 2289 LLDB_LOG(log, "traceid {0}", traceid); 2290 2291 auto perf_monitor = LookupProcessorTraceInstance(traceid, thread); 2292 if (!perf_monitor) { 2293 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 2294 buffer = buffer.slice(buffer.size()); 2295 error = perf_monitor.takeError(); 2296 return error; 2297 } 2298 return (*perf_monitor).ReadPerfTraceData(buffer, offset); 2299 } 2300 2301 Status NativeProcessLinux::GetData(lldb::user_id_t traceid, lldb::tid_t thread, 2302 llvm::MutableArrayRef<uint8_t> &buffer, 2303 size_t offset) { 2304 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2305 Status error; 2306 2307 LLDB_LOG(log, "traceid {0}", traceid); 2308 2309 auto perf_monitor = LookupProcessorTraceInstance(traceid, thread); 2310 if (!perf_monitor) { 2311 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 2312 buffer = buffer.slice(buffer.size()); 2313 error = perf_monitor.takeError(); 2314 return error; 2315 } 2316 return (*perf_monitor).ReadPerfTraceAux(buffer, offset); 2317 } 2318 2319 Status NativeProcessLinux::GetTraceConfig(lldb::user_id_t traceid, 2320 TraceOptions &config) { 2321 Status error; 2322 if (config.getThreadID() == LLDB_INVALID_THREAD_ID && 2323 m_pt_proces_trace_id == traceid) { 2324 if (m_pt_proces_trace_id == LLDB_INVALID_UID) { 2325 error.SetErrorString("tracing not active for this process"); 2326 return error; 2327 } 2328 config = m_pt_process_trace_config; 2329 } else { 2330 auto perf_monitor = 2331 LookupProcessorTraceInstance(traceid, config.getThreadID()); 2332 if (!perf_monitor) { 2333 error = perf_monitor.takeError(); 2334 return error; 2335 } 2336 error = (*perf_monitor).GetTraceConfig(config); 2337 } 2338 return error; 2339 } 2340 2341 lldb::user_id_t 2342 NativeProcessLinux::StartTraceGroup(const TraceOptions &config, 2343 Status &error) { 2344 2345 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2346 if (config.getType() != TraceType::eTraceTypeProcessorTrace) 2347 return LLDB_INVALID_UID; 2348 2349 if (m_pt_proces_trace_id != LLDB_INVALID_UID) { 2350 error.SetErrorString("tracing already active on this process"); 2351 return m_pt_proces_trace_id; 2352 } 2353 2354 for (const auto &thread_sp : m_threads) { 2355 if (auto traceInstance = ProcessorTraceMonitor::Create( 2356 GetID(), thread_sp->GetID(), config, true)) { 2357 m_pt_traced_thread_group.insert(thread_sp->GetID()); 2358 m_processor_trace_monitor.insert( 2359 std::make_pair(thread_sp->GetID(), std::move(*traceInstance))); 2360 } 2361 } 2362 2363 m_pt_process_trace_config = config; 2364 error = ProcessorTraceMonitor::GetCPUType(m_pt_process_trace_config); 2365 2366 // Trace on Complete process will have traceid of 0 2367 m_pt_proces_trace_id = 0; 2368 2369 LLDB_LOG(log, "Process Trace ID {0}", m_pt_proces_trace_id); 2370 return m_pt_proces_trace_id; 2371 } 2372 2373 lldb::user_id_t NativeProcessLinux::StartTrace(const TraceOptions &config, 2374 Status &error) { 2375 if (config.getType() != TraceType::eTraceTypeProcessorTrace) 2376 return NativeProcessProtocol::StartTrace(config, error); 2377 2378 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2379 2380 lldb::tid_t threadid = config.getThreadID(); 2381 2382 if (threadid == LLDB_INVALID_THREAD_ID) 2383 return StartTraceGroup(config, error); 2384 2385 auto thread_sp = GetThreadByID(threadid); 2386 if (!thread_sp) { 2387 // Thread not tracked by lldb so don't trace. 2388 error.SetErrorString("invalid thread id"); 2389 return LLDB_INVALID_UID; 2390 } 2391 2392 const auto &iter = m_processor_trace_monitor.find(threadid); 2393 if (iter != m_processor_trace_monitor.end()) { 2394 LLDB_LOG(log, "Thread already being traced"); 2395 error.SetErrorString("tracing already active on this thread"); 2396 return LLDB_INVALID_UID; 2397 } 2398 2399 auto traceMonitor = 2400 ProcessorTraceMonitor::Create(GetID(), threadid, config, false); 2401 if (!traceMonitor) { 2402 error = traceMonitor.takeError(); 2403 LLDB_LOG(log, "error {0}", error); 2404 return LLDB_INVALID_UID; 2405 } 2406 lldb::user_id_t ret_trace_id = (*traceMonitor)->GetTraceID(); 2407 m_processor_trace_monitor.insert( 2408 std::make_pair(threadid, std::move(*traceMonitor))); 2409 return ret_trace_id; 2410 } 2411 2412 Status NativeProcessLinux::StopTracingForThread(lldb::tid_t thread) { 2413 Status error; 2414 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2415 LLDB_LOG(log, "Thread {0}", thread); 2416 2417 const auto& iter = m_processor_trace_monitor.find(thread); 2418 if (iter == m_processor_trace_monitor.end()) { 2419 error.SetErrorString("tracing not active for this thread"); 2420 return error; 2421 } 2422 2423 if (iter->second->GetTraceID() == m_pt_proces_trace_id) { 2424 // traceid maps to the whole process so we have to erase it from the 2425 // thread group. 2426 LLDB_LOG(log, "traceid maps to process"); 2427 m_pt_traced_thread_group.erase(thread); 2428 } 2429 m_processor_trace_monitor.erase(iter); 2430 2431 return error; 2432 } 2433 2434 Status NativeProcessLinux::StopTrace(lldb::user_id_t traceid, 2435 lldb::tid_t thread) { 2436 Status error; 2437 2438 TraceOptions trace_options; 2439 trace_options.setThreadID(thread); 2440 error = NativeProcessLinux::GetTraceConfig(traceid, trace_options); 2441 2442 if (error.Fail()) 2443 return error; 2444 2445 switch (trace_options.getType()) { 2446 case lldb::TraceType::eTraceTypeProcessorTrace: 2447 if (traceid == m_pt_proces_trace_id && 2448 thread == LLDB_INVALID_THREAD_ID) 2449 StopProcessorTracingOnProcess(); 2450 else 2451 error = StopProcessorTracingOnThread(traceid, thread); 2452 break; 2453 default: 2454 error.SetErrorString("trace not supported"); 2455 break; 2456 } 2457 2458 return error; 2459 } 2460 2461 void NativeProcessLinux::StopProcessorTracingOnProcess() { 2462 for (auto thread_id_iter : m_pt_traced_thread_group) 2463 m_processor_trace_monitor.erase(thread_id_iter); 2464 m_pt_traced_thread_group.clear(); 2465 m_pt_proces_trace_id = LLDB_INVALID_UID; 2466 } 2467 2468 Status NativeProcessLinux::StopProcessorTracingOnThread(lldb::user_id_t traceid, 2469 lldb::tid_t thread) { 2470 Status error; 2471 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2472 2473 if (thread == LLDB_INVALID_THREAD_ID) { 2474 for (auto& iter : m_processor_trace_monitor) { 2475 if (iter.second->GetTraceID() == traceid) { 2476 // Stopping a trace instance for an individual thread 2477 // hence there will only be one traceid that can match. 2478 m_processor_trace_monitor.erase(iter.first); 2479 return error; 2480 } 2481 LLDB_LOG(log, "Trace ID {0}", iter.second->GetTraceID()); 2482 } 2483 2484 LLDB_LOG(log, "Invalid TraceID"); 2485 error.SetErrorString("invalid trace id"); 2486 return error; 2487 } 2488 2489 // thread is specified so we can use find function on the map. 2490 const auto& iter = m_processor_trace_monitor.find(thread); 2491 if (iter == m_processor_trace_monitor.end()) { 2492 // thread not found in our map. 2493 LLDB_LOG(log, "thread not being traced"); 2494 error.SetErrorString("tracing not active for this thread"); 2495 return error; 2496 } 2497 if (iter->second->GetTraceID() != traceid) { 2498 // traceid did not match so it has to be invalid. 2499 LLDB_LOG(log, "Invalid TraceID"); 2500 error.SetErrorString("invalid trace id"); 2501 return error; 2502 } 2503 2504 LLDB_LOG(log, "UID - {0} , Thread -{1}", traceid, thread); 2505 2506 if (traceid == m_pt_proces_trace_id) { 2507 // traceid maps to the whole process so we have to erase it from the 2508 // thread group. 2509 LLDB_LOG(log, "traceid maps to process"); 2510 m_pt_traced_thread_group.erase(thread); 2511 } 2512 m_processor_trace_monitor.erase(iter); 2513 2514 return error; 2515 } 2516