1 //===-- NativeProcessLinux.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "NativeProcessLinux.h" 10 11 #include <cerrno> 12 #include <cstdint> 13 #include <cstring> 14 #include <unistd.h> 15 16 #include <fstream> 17 #include <mutex> 18 #include <sstream> 19 #include <string> 20 #include <unordered_map> 21 22 #include "NativeThreadLinux.h" 23 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 24 #include "Plugins/Process/Utility/LinuxProcMaps.h" 25 #include "Procfs.h" 26 #include "lldb/Core/ModuleSpec.h" 27 #include "lldb/Host/Host.h" 28 #include "lldb/Host/HostProcess.h" 29 #include "lldb/Host/ProcessLaunchInfo.h" 30 #include "lldb/Host/PseudoTerminal.h" 31 #include "lldb/Host/ThreadLauncher.h" 32 #include "lldb/Host/common/NativeRegisterContext.h" 33 #include "lldb/Host/linux/Host.h" 34 #include "lldb/Host/linux/Ptrace.h" 35 #include "lldb/Host/linux/Uio.h" 36 #include "lldb/Host/posix/ProcessLauncherPosixFork.h" 37 #include "lldb/Symbol/ObjectFile.h" 38 #include "lldb/Target/Process.h" 39 #include "lldb/Target/Target.h" 40 #include "lldb/Utility/LLDBAssert.h" 41 #include "lldb/Utility/State.h" 42 #include "lldb/Utility/Status.h" 43 #include "lldb/Utility/StringExtractor.h" 44 #include "llvm/ADT/ScopeExit.h" 45 #include "llvm/Support/Errno.h" 46 #include "llvm/Support/FileSystem.h" 47 #include "llvm/Support/Threading.h" 48 49 #include <linux/unistd.h> 50 #include <sys/socket.h> 51 #include <sys/syscall.h> 52 #include <sys/types.h> 53 #include <sys/user.h> 54 #include <sys/wait.h> 55 56 #ifdef __aarch64__ 57 #include <asm/hwcap.h> 58 #include <sys/auxv.h> 59 #endif 60 61 // Support hardware breakpoints in case it has not been defined 62 #ifndef TRAP_HWBKPT 63 #define TRAP_HWBKPT 4 64 #endif 65 66 #ifndef HWCAP2_MTE 67 #define HWCAP2_MTE (1 << 18) 68 #endif 69 70 using namespace lldb; 71 using namespace lldb_private; 72 using namespace lldb_private::process_linux; 73 using namespace llvm; 74 75 // Private bits we only need internally. 76 77 static bool ProcessVmReadvSupported() { 78 static bool is_supported; 79 static llvm::once_flag flag; 80 81 llvm::call_once(flag, [] { 82 Log *log = GetLog(POSIXLog::Process); 83 84 uint32_t source = 0x47424742; 85 uint32_t dest = 0; 86 87 struct iovec local, remote; 88 remote.iov_base = &source; 89 local.iov_base = &dest; 90 remote.iov_len = local.iov_len = sizeof source; 91 92 // We shall try if cross-process-memory reads work by attempting to read a 93 // value from our own process. 94 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); 95 is_supported = (res == sizeof(source) && source == dest); 96 if (is_supported) 97 LLDB_LOG(log, 98 "Detected kernel support for process_vm_readv syscall. " 99 "Fast memory reads enabled."); 100 else 101 LLDB_LOG(log, 102 "syscall process_vm_readv failed (error: {0}). Fast memory " 103 "reads disabled.", 104 llvm::sys::StrError()); 105 }); 106 107 return is_supported; 108 } 109 110 static void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) { 111 Log *log = GetLog(POSIXLog::Process); 112 if (!log) 113 return; 114 115 if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO)) 116 LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec()); 117 else 118 LLDB_LOG(log, "leaving STDIN as is"); 119 120 if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO)) 121 LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec()); 122 else 123 LLDB_LOG(log, "leaving STDOUT as is"); 124 125 if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO)) 126 LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec()); 127 else 128 LLDB_LOG(log, "leaving STDERR as is"); 129 130 int i = 0; 131 for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; 132 ++args, ++i) 133 LLDB_LOG(log, "arg {0}: '{1}'", i, *args); 134 } 135 136 static void DisplayBytes(StreamString &s, void *bytes, uint32_t count) { 137 uint8_t *ptr = (uint8_t *)bytes; 138 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 139 for (uint32_t i = 0; i < loop_count; i++) { 140 s.Printf("[%x]", *ptr); 141 ptr++; 142 } 143 } 144 145 static void PtraceDisplayBytes(int &req, void *data, size_t data_size) { 146 Log *log = GetLog(POSIXLog::Ptrace); 147 if (!log) 148 return; 149 StreamString buf; 150 151 switch (req) { 152 case PTRACE_POKETEXT: { 153 DisplayBytes(buf, &data, 8); 154 LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData()); 155 break; 156 } 157 case PTRACE_POKEDATA: { 158 DisplayBytes(buf, &data, 8); 159 LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData()); 160 break; 161 } 162 case PTRACE_POKEUSER: { 163 DisplayBytes(buf, &data, 8); 164 LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData()); 165 break; 166 } 167 case PTRACE_SETREGS: { 168 DisplayBytes(buf, data, data_size); 169 LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData()); 170 break; 171 } 172 case PTRACE_SETFPREGS: { 173 DisplayBytes(buf, data, data_size); 174 LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData()); 175 break; 176 } 177 case PTRACE_SETSIGINFO: { 178 DisplayBytes(buf, data, sizeof(siginfo_t)); 179 LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData()); 180 break; 181 } 182 case PTRACE_SETREGSET: { 183 // Extract iov_base from data, which is a pointer to the struct iovec 184 DisplayBytes(buf, *(void **)data, data_size); 185 LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData()); 186 break; 187 } 188 default: {} 189 } 190 } 191 192 static constexpr unsigned k_ptrace_word_size = sizeof(void *); 193 static_assert(sizeof(long) >= k_ptrace_word_size, 194 "Size of long must be larger than ptrace word size"); 195 196 // Simple helper function to ensure flags are enabled on the given file 197 // descriptor. 198 static Status EnsureFDFlags(int fd, int flags) { 199 Status error; 200 201 int status = fcntl(fd, F_GETFL); 202 if (status == -1) { 203 error.SetErrorToErrno(); 204 return error; 205 } 206 207 if (fcntl(fd, F_SETFL, status | flags) == -1) { 208 error.SetErrorToErrno(); 209 return error; 210 } 211 212 return error; 213 } 214 215 // Public Static Methods 216 217 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 218 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info, 219 NativeDelegate &native_delegate, 220 MainLoop &mainloop) const { 221 Log *log = GetLog(POSIXLog::Process); 222 223 MaybeLogLaunchInfo(launch_info); 224 225 Status status; 226 ::pid_t pid = ProcessLauncherPosixFork() 227 .LaunchProcess(launch_info, status) 228 .GetProcessId(); 229 LLDB_LOG(log, "pid = {0:x}", pid); 230 if (status.Fail()) { 231 LLDB_LOG(log, "failed to launch process: {0}", status); 232 return status.ToError(); 233 } 234 235 // Wait for the child process to trap on its call to execve. 236 int wstatus; 237 ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0); 238 assert(wpid == pid); 239 (void)wpid; 240 if (!WIFSTOPPED(wstatus)) { 241 LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}", 242 WaitStatus::Decode(wstatus)); 243 return llvm::make_error<StringError>("Could not sync with inferior process", 244 llvm::inconvertibleErrorCode()); 245 } 246 LLDB_LOG(log, "inferior started, now in stopped state"); 247 248 ProcessInstanceInfo Info; 249 if (!Host::GetProcessInfo(pid, Info)) { 250 return llvm::make_error<StringError>("Cannot get process architecture", 251 llvm::inconvertibleErrorCode()); 252 } 253 254 // Set the architecture to the exe architecture. 255 LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid, 256 Info.GetArchitecture().GetArchitectureName()); 257 258 status = SetDefaultPtraceOpts(pid); 259 if (status.Fail()) { 260 LLDB_LOG(log, "failed to set default ptrace options: {0}", status); 261 return status.ToError(); 262 } 263 264 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 265 pid, launch_info.GetPTY().ReleasePrimaryFileDescriptor(), native_delegate, 266 Info.GetArchitecture(), mainloop, {pid})); 267 } 268 269 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 270 NativeProcessLinux::Factory::Attach( 271 lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate, 272 MainLoop &mainloop) const { 273 Log *log = GetLog(POSIXLog::Process); 274 LLDB_LOG(log, "pid = {0:x}", pid); 275 276 // Retrieve the architecture for the running process. 277 ProcessInstanceInfo Info; 278 if (!Host::GetProcessInfo(pid, Info)) { 279 return llvm::make_error<StringError>("Cannot get process architecture", 280 llvm::inconvertibleErrorCode()); 281 } 282 283 auto tids_or = NativeProcessLinux::Attach(pid); 284 if (!tids_or) 285 return tids_or.takeError(); 286 287 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 288 pid, -1, native_delegate, Info.GetArchitecture(), mainloop, *tids_or)); 289 } 290 291 NativeProcessLinux::Extension 292 NativeProcessLinux::Factory::GetSupportedExtensions() const { 293 NativeProcessLinux::Extension supported = 294 Extension::multiprocess | Extension::fork | Extension::vfork | 295 Extension::pass_signals | Extension::auxv | Extension::libraries_svr4 | 296 Extension::siginfo_read; 297 298 #ifdef __aarch64__ 299 // At this point we do not have a process so read auxv directly. 300 if ((getauxval(AT_HWCAP2) & HWCAP2_MTE)) 301 supported |= Extension::memory_tagging; 302 #endif 303 304 return supported; 305 } 306 307 // Public Instance Methods 308 309 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd, 310 NativeDelegate &delegate, 311 const ArchSpec &arch, MainLoop &mainloop, 312 llvm::ArrayRef<::pid_t> tids) 313 : NativeProcessELF(pid, terminal_fd, delegate), m_arch(arch), 314 m_main_loop(mainloop), m_intel_pt_manager(pid) { 315 if (m_terminal_fd != -1) { 316 Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 317 assert(status.Success()); 318 } 319 320 Status status; 321 m_sigchld_handle = mainloop.RegisterSignal( 322 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status); 323 assert(m_sigchld_handle && status.Success()); 324 325 for (const auto &tid : tids) { 326 NativeThreadLinux &thread = AddThread(tid, /*resume*/ false); 327 ThreadWasCreated(thread); 328 } 329 330 // Let our process instance know the thread has stopped. 331 SetCurrentThreadID(tids[0]); 332 SetState(StateType::eStateStopped, false); 333 334 // Proccess any signals we received before installing our handler 335 SigchldHandler(); 336 } 337 338 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) { 339 Log *log = GetLog(POSIXLog::Process); 340 341 Status status; 342 // Use a map to keep track of the threads which we have attached/need to 343 // attach. 344 Host::TidMap tids_to_attach; 345 while (Host::FindProcessThreads(pid, tids_to_attach)) { 346 for (Host::TidMap::iterator it = tids_to_attach.begin(); 347 it != tids_to_attach.end();) { 348 if (it->second == false) { 349 lldb::tid_t tid = it->first; 350 351 // Attach to the requested process. 352 // An attach will cause the thread to stop with a SIGSTOP. 353 if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) { 354 // No such thread. The thread may have exited. More error handling 355 // may be needed. 356 if (status.GetError() == ESRCH) { 357 it = tids_to_attach.erase(it); 358 continue; 359 } 360 return status.ToError(); 361 } 362 363 int wpid = 364 llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL); 365 // Need to use __WALL otherwise we receive an error with errno=ECHLD At 366 // this point we should have a thread stopped if waitpid succeeds. 367 if (wpid < 0) { 368 // No such thread. The thread may have exited. More error handling 369 // may be needed. 370 if (errno == ESRCH) { 371 it = tids_to_attach.erase(it); 372 continue; 373 } 374 return llvm::errorCodeToError( 375 std::error_code(errno, std::generic_category())); 376 } 377 378 if ((status = SetDefaultPtraceOpts(tid)).Fail()) 379 return status.ToError(); 380 381 LLDB_LOG(log, "adding tid = {0}", tid); 382 it->second = true; 383 } 384 385 // move the loop forward 386 ++it; 387 } 388 } 389 390 size_t tid_count = tids_to_attach.size(); 391 if (tid_count == 0) 392 return llvm::make_error<StringError>("No such process", 393 llvm::inconvertibleErrorCode()); 394 395 std::vector<::pid_t> tids; 396 tids.reserve(tid_count); 397 for (const auto &p : tids_to_attach) 398 tids.push_back(p.first); 399 return std::move(tids); 400 } 401 402 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) { 403 long ptrace_opts = 0; 404 405 // Have the child raise an event on exit. This is used to keep the child in 406 // limbo until it is destroyed. 407 ptrace_opts |= PTRACE_O_TRACEEXIT; 408 409 // Have the tracer trace threads which spawn in the inferior process. 410 ptrace_opts |= PTRACE_O_TRACECLONE; 411 412 // Have the tracer notify us before execve returns (needed to disable legacy 413 // SIGTRAP generation) 414 ptrace_opts |= PTRACE_O_TRACEEXEC; 415 416 // Have the tracer trace forked children. 417 ptrace_opts |= PTRACE_O_TRACEFORK; 418 419 // Have the tracer trace vforks. 420 ptrace_opts |= PTRACE_O_TRACEVFORK; 421 422 // Have the tracer trace vfork-done in order to restore breakpoints after 423 // the child finishes sharing memory. 424 ptrace_opts |= PTRACE_O_TRACEVFORKDONE; 425 426 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts); 427 } 428 429 // Handles all waitpid events from the inferior process. 430 void NativeProcessLinux::MonitorCallback(NativeThreadLinux &thread, 431 WaitStatus status) { 432 Log *log = GetLog(LLDBLog::Process); 433 434 // Certain activities differ based on whether the pid is the tid of the main 435 // thread. 436 const bool is_main_thread = (thread.GetID() == GetID()); 437 438 // Handle when the thread exits. 439 if (status.type == WaitStatus::Exit || status.type == WaitStatus::Signal) { 440 LLDB_LOG(log, 441 "got exit status({0}) , tid = {1} ({2} main thread), process " 442 "state = {3}", 443 status, thread.GetID(), is_main_thread ? "is" : "is not", 444 GetState()); 445 446 // This is a thread that exited. Ensure we're not tracking it anymore. 447 StopTrackingThread(thread); 448 449 if (is_main_thread) { 450 // The main thread exited. We're done monitoring. Report to delegate. 451 SetExitStatus(status, true); 452 453 // Notify delegate that our process has exited. 454 SetState(StateType::eStateExited, true); 455 } 456 return; 457 } 458 459 siginfo_t info; 460 const auto info_err = GetSignalInfo(thread.GetID(), &info); 461 462 // Get details on the signal raised. 463 if (info_err.Success()) { 464 // We have retrieved the signal info. Dispatch appropriately. 465 if (info.si_signo == SIGTRAP) 466 MonitorSIGTRAP(info, thread); 467 else 468 MonitorSignal(info, thread); 469 } else { 470 if (info_err.GetError() == EINVAL) { 471 // This is a group stop reception for this tid. We can reach here if we 472 // reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the tracee, 473 // triggering the group-stop mechanism. Normally receiving these would 474 // stop the process, pending a SIGCONT. Simulating this state in a 475 // debugger is hard and is generally not needed (one use case is 476 // debugging background task being managed by a shell). For general use, 477 // it is sufficient to stop the process in a signal-delivery stop which 478 // happens before the group stop. This done by MonitorSignal and works 479 // correctly for all signals. 480 LLDB_LOG(log, 481 "received a group stop for pid {0} tid {1}. Transparent " 482 "handling of group stops not supported, resuming the " 483 "thread.", 484 GetID(), thread.GetID()); 485 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 486 } else { 487 // ptrace(GETSIGINFO) failed (but not due to group-stop). 488 489 // A return value of ESRCH means the thread/process has died in the mean 490 // time. This can (e.g.) happen when another thread does an exit_group(2) 491 // or the entire process get SIGKILLed. 492 // We can't do anything with this thread anymore, but we keep it around 493 // until we get the WIFEXITED event. 494 495 LLDB_LOG(log, 496 "GetSignalInfo({0}) failed: {1}, status = {2}, main_thread = " 497 "{3}. Expecting WIFEXITED soon.", 498 thread.GetID(), info_err, status, is_main_thread); 499 } 500 } 501 } 502 503 void NativeProcessLinux::WaitForCloneNotification(::pid_t pid) { 504 Log *log = GetLog(POSIXLog::Process); 505 506 // The PID is not tracked yet, let's wait for it to appear. 507 int status = -1; 508 LLDB_LOG(log, 509 "received clone event for pid {0}. pid not tracked yet, " 510 "waiting for it to appear...", 511 pid); 512 ::pid_t wait_pid = 513 llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &status, __WALL); 514 515 // It's theoretically possible to get other events if the entire process was 516 // SIGKILLed before we got a chance to check this. In that case, we'll just 517 // clean everything up when we get the process exit event. 518 519 LLDB_LOG(log, 520 "waitpid({0}, &status, __WALL) => {1} (errno: {2}, status = {3})", 521 pid, wait_pid, errno, WaitStatus::Decode(status)); 522 } 523 524 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, 525 NativeThreadLinux &thread) { 526 Log *log = GetLog(POSIXLog::Process); 527 const bool is_main_thread = (thread.GetID() == GetID()); 528 529 assert(info.si_signo == SIGTRAP && "Unexpected child signal!"); 530 531 switch (info.si_code) { 532 case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 533 case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 534 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { 535 // This can either mean a new thread or a new process spawned via 536 // clone(2) without SIGCHLD or CLONE_VFORK flag. Note that clone(2) 537 // can also cause PTRACE_EVENT_FORK and PTRACE_EVENT_VFORK if one 538 // of these flags are passed. 539 540 unsigned long event_message = 0; 541 if (GetEventMessage(thread.GetID(), &event_message).Fail()) { 542 LLDB_LOG(log, 543 "pid {0} received clone() event but GetEventMessage failed " 544 "so we don't know the new pid/tid", 545 thread.GetID()); 546 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 547 } else { 548 MonitorClone(thread, event_message, info.si_code >> 8); 549 } 550 551 break; 552 } 553 554 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): { 555 LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP); 556 557 // Exec clears any pending notifications. 558 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 559 560 // Remove all but the main thread here. Linux fork creates a new process 561 // which only copies the main thread. 562 LLDB_LOG(log, "exec received, stop tracking all but main thread"); 563 564 llvm::erase_if(m_threads, [&](std::unique_ptr<NativeThreadProtocol> &t) { 565 return t->GetID() != GetID(); 566 }); 567 assert(m_threads.size() == 1); 568 auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get()); 569 570 SetCurrentThreadID(main_thread->GetID()); 571 main_thread->SetStoppedByExec(); 572 573 // Tell coordinator about about the "new" (since exec) stopped main thread. 574 ThreadWasCreated(*main_thread); 575 576 // Let our delegate know we have just exec'd. 577 NotifyDidExec(); 578 579 // Let the process know we're stopped. 580 StopRunningThreads(main_thread->GetID()); 581 582 break; 583 } 584 585 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { 586 // The inferior process or one of its threads is about to exit. We don't 587 // want to do anything with the thread so we just resume it. In case we 588 // want to implement "break on thread exit" functionality, we would need to 589 // stop here. 590 591 unsigned long data = 0; 592 if (GetEventMessage(thread.GetID(), &data).Fail()) 593 data = -1; 594 595 LLDB_LOG(log, 596 "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, " 597 "WIFSIGNALED={2}, pid = {3}, main_thread = {4}", 598 data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(), 599 is_main_thread); 600 601 602 StateType state = thread.GetState(); 603 if (!StateIsRunningState(state)) { 604 // Due to a kernel bug, we may sometimes get this stop after the inferior 605 // gets a SIGKILL. This confuses our state tracking logic in 606 // ResumeThread(), since normally, we should not be receiving any ptrace 607 // events while the inferior is stopped. This makes sure that the 608 // inferior is resumed and exits normally. 609 state = eStateRunning; 610 } 611 ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); 612 613 break; 614 } 615 616 case (SIGTRAP | (PTRACE_EVENT_VFORK_DONE << 8)): { 617 if (bool(m_enabled_extensions & Extension::vfork)) { 618 thread.SetStoppedByVForkDone(); 619 StopRunningThreads(thread.GetID()); 620 } 621 else 622 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 623 break; 624 } 625 626 case 0: 627 case TRAP_TRACE: // We receive this on single stepping. 628 case TRAP_HWBKPT: // We receive this on watchpoint hit 629 { 630 // If a watchpoint was hit, report it 631 uint32_t wp_index; 632 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 633 wp_index, (uintptr_t)info.si_addr); 634 if (error.Fail()) 635 LLDB_LOG(log, 636 "received error while checking for watchpoint hits, pid = " 637 "{0}, error = {1}", 638 thread.GetID(), error); 639 if (wp_index != LLDB_INVALID_INDEX32) { 640 MonitorWatchpoint(thread, wp_index); 641 break; 642 } 643 644 // If a breakpoint was hit, report it 645 uint32_t bp_index; 646 error = thread.GetRegisterContext().GetHardwareBreakHitIndex( 647 bp_index, (uintptr_t)info.si_addr); 648 if (error.Fail()) 649 LLDB_LOG(log, "received error while checking for hardware " 650 "breakpoint hits, pid = {0}, error = {1}", 651 thread.GetID(), error); 652 if (bp_index != LLDB_INVALID_INDEX32) { 653 MonitorBreakpoint(thread); 654 break; 655 } 656 657 // Otherwise, report step over 658 MonitorTrace(thread); 659 break; 660 } 661 662 case SI_KERNEL: 663 #if defined __mips__ 664 // For mips there is no special signal for watchpoint So we check for 665 // watchpoint in kernel trap 666 { 667 // If a watchpoint was hit, report it 668 uint32_t wp_index; 669 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 670 wp_index, LLDB_INVALID_ADDRESS); 671 if (error.Fail()) 672 LLDB_LOG(log, 673 "received error while checking for watchpoint hits, pid = " 674 "{0}, error = {1}", 675 thread.GetID(), error); 676 if (wp_index != LLDB_INVALID_INDEX32) { 677 MonitorWatchpoint(thread, wp_index); 678 break; 679 } 680 } 681 // NO BREAK 682 #endif 683 case TRAP_BRKPT: 684 MonitorBreakpoint(thread); 685 break; 686 687 case SIGTRAP: 688 case (SIGTRAP | 0x80): 689 LLDB_LOG( 690 log, 691 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 692 info.si_code, GetID(), thread.GetID()); 693 694 // Ignore these signals until we know more about them. 695 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 696 break; 697 698 default: 699 LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}", 700 info.si_code, GetID(), thread.GetID()); 701 MonitorSignal(info, thread); 702 break; 703 } 704 } 705 706 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) { 707 Log *log = GetLog(POSIXLog::Process); 708 LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID()); 709 710 // This thread is currently stopped. 711 thread.SetStoppedByTrace(); 712 713 StopRunningThreads(thread.GetID()); 714 } 715 716 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) { 717 Log *log = GetLog(LLDBLog::Process | LLDBLog::Breakpoints); 718 LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID()); 719 720 // Mark the thread as stopped at breakpoint. 721 thread.SetStoppedByBreakpoint(); 722 FixupBreakpointPCAsNeeded(thread); 723 724 if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != 725 m_threads_stepping_with_breakpoint.end()) 726 thread.SetStoppedByTrace(); 727 728 StopRunningThreads(thread.GetID()); 729 } 730 731 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, 732 uint32_t wp_index) { 733 Log *log = GetLog(LLDBLog::Process | LLDBLog::Watchpoints); 734 LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}", 735 thread.GetID(), wp_index); 736 737 // Mark the thread as stopped at watchpoint. The address is at 738 // (lldb::addr_t)info->si_addr if we need it. 739 thread.SetStoppedByWatchpoint(wp_index); 740 741 // We need to tell all other running threads before we notify the delegate 742 // about this stop. 743 StopRunningThreads(thread.GetID()); 744 } 745 746 void NativeProcessLinux::MonitorSignal(const siginfo_t &info, 747 NativeThreadLinux &thread) { 748 const int signo = info.si_signo; 749 const bool is_from_llgs = info.si_pid == getpid(); 750 751 Log *log = GetLog(POSIXLog::Process); 752 753 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 754 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2) 755 // or raise(3). Similarly for tgkill(2) on Linux. 756 // 757 // IOW, user generated signals never generate what we consider to be a 758 // "crash". 759 // 760 // Similarly, ACK signals generated by this monitor. 761 762 // Handle the signal. 763 LLDB_LOG(log, 764 "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, " 765 "waitpid pid = {4})", 766 Host::GetSignalAsCString(signo), signo, info.si_code, 767 thread.GetID()); 768 769 // Check for thread stop notification. 770 if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) { 771 // This is a tgkill()-based stop. 772 LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID()); 773 774 // Check that we're not already marked with a stop reason. Note this thread 775 // really shouldn't already be marked as stopped - if we were, that would 776 // imply that the kernel signaled us with the thread stopping which we 777 // handled and marked as stopped, and that, without an intervening resume, 778 // we received another stop. It is more likely that we are missing the 779 // marking of a run state somewhere if we find that the thread was marked 780 // as stopped. 781 const StateType thread_state = thread.GetState(); 782 if (!StateIsStoppedState(thread_state, false)) { 783 // An inferior thread has stopped because of a SIGSTOP we have sent it. 784 // Generally, these are not important stops and we don't want to report 785 // them as they are just used to stop other threads when one thread (the 786 // one with the *real* stop reason) hits a breakpoint (watchpoint, 787 // etc...). However, in the case of an asynchronous Interrupt(), this 788 // *is* the real stop reason, so we leave the signal intact if this is 789 // the thread that was chosen as the triggering thread. 790 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 791 if (m_pending_notification_tid == thread.GetID()) 792 thread.SetStoppedBySignal(SIGSTOP, &info); 793 else 794 thread.SetStoppedWithNoReason(); 795 796 SetCurrentThreadID(thread.GetID()); 797 SignalIfAllThreadsStopped(); 798 } else { 799 // We can end up here if stop was initiated by LLGS but by this time a 800 // thread stop has occurred - maybe initiated by another event. 801 Status error = ResumeThread(thread, thread.GetState(), 0); 802 if (error.Fail()) 803 LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(), 804 error); 805 } 806 } else { 807 LLDB_LOG(log, 808 "pid {0} tid {1}, thread was already marked as a stopped " 809 "state (state={2}), leaving stop signal as is", 810 GetID(), thread.GetID(), thread_state); 811 SignalIfAllThreadsStopped(); 812 } 813 814 // Done handling. 815 return; 816 } 817 818 // Check if debugger should stop at this signal or just ignore it and resume 819 // the inferior. 820 if (m_signals_to_ignore.contains(signo)) { 821 ResumeThread(thread, thread.GetState(), signo); 822 return; 823 } 824 825 // This thread is stopped. 826 LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo)); 827 thread.SetStoppedBySignal(signo, &info); 828 829 // Send a stop to the debugger after we get all other threads to stop. 830 StopRunningThreads(thread.GetID()); 831 } 832 833 bool NativeProcessLinux::MonitorClone(NativeThreadLinux &parent, 834 lldb::pid_t child_pid, int event) { 835 Log *log = GetLog(POSIXLog::Process); 836 LLDB_LOG(log, "parent_tid={0}, child_pid={1}, event={2}", parent.GetID(), 837 child_pid, event); 838 839 WaitForCloneNotification(child_pid); 840 841 switch (event) { 842 case PTRACE_EVENT_CLONE: { 843 // PTRACE_EVENT_CLONE can either mean a new thread or a new process. 844 // Try to grab the new process' PGID to figure out which one it is. 845 // If PGID is the same as the PID, then it's a new process. Otherwise, 846 // it's a thread. 847 auto tgid_ret = getPIDForTID(child_pid); 848 if (tgid_ret != child_pid) { 849 // A new thread should have PGID matching our process' PID. 850 assert(!tgid_ret || tgid_ret.getValue() == GetID()); 851 852 NativeThreadLinux &child_thread = AddThread(child_pid, /*resume*/ true); 853 ThreadWasCreated(child_thread); 854 855 // Resume the parent. 856 ResumeThread(parent, parent.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 857 break; 858 } 859 } 860 LLVM_FALLTHROUGH; 861 case PTRACE_EVENT_FORK: 862 case PTRACE_EVENT_VFORK: { 863 bool is_vfork = event == PTRACE_EVENT_VFORK; 864 std::unique_ptr<NativeProcessLinux> child_process{new NativeProcessLinux( 865 static_cast<::pid_t>(child_pid), m_terminal_fd, m_delegate, m_arch, 866 m_main_loop, {static_cast<::pid_t>(child_pid)})}; 867 if (!is_vfork) 868 child_process->m_software_breakpoints = m_software_breakpoints; 869 870 Extension expected_ext = is_vfork ? Extension::vfork : Extension::fork; 871 if (bool(m_enabled_extensions & expected_ext)) { 872 m_delegate.NewSubprocess(this, std::move(child_process)); 873 // NB: non-vfork clone() is reported as fork 874 parent.SetStoppedByFork(is_vfork, child_pid); 875 StopRunningThreads(parent.GetID()); 876 } else { 877 child_process->Detach(); 878 ResumeThread(parent, parent.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 879 } 880 break; 881 } 882 default: 883 llvm_unreachable("unknown clone_info.event"); 884 } 885 886 return true; 887 } 888 889 bool NativeProcessLinux::SupportHardwareSingleStepping() const { 890 if (m_arch.GetMachine() == llvm::Triple::arm || m_arch.IsMIPS()) 891 return false; 892 return true; 893 } 894 895 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) { 896 Log *log = GetLog(POSIXLog::Process); 897 LLDB_LOG(log, "pid {0}", GetID()); 898 899 bool software_single_step = !SupportHardwareSingleStepping(); 900 901 if (software_single_step) { 902 for (const auto &thread : m_threads) { 903 assert(thread && "thread list should not contain NULL threads"); 904 905 const ResumeAction *const action = 906 resume_actions.GetActionForThread(thread->GetID(), true); 907 if (action == nullptr) 908 continue; 909 910 if (action->state == eStateStepping) { 911 Status error = SetupSoftwareSingleStepping( 912 static_cast<NativeThreadLinux &>(*thread)); 913 if (error.Fail()) 914 return error; 915 } 916 } 917 } 918 919 for (const auto &thread : m_threads) { 920 assert(thread && "thread list should not contain NULL threads"); 921 922 const ResumeAction *const action = 923 resume_actions.GetActionForThread(thread->GetID(), true); 924 925 if (action == nullptr) { 926 LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(), 927 thread->GetID()); 928 continue; 929 } 930 931 LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}", 932 action->state, GetID(), thread->GetID()); 933 934 switch (action->state) { 935 case eStateRunning: 936 case eStateStepping: { 937 // Run the thread, possibly feeding it the signal. 938 const int signo = action->signal; 939 ResumeThread(static_cast<NativeThreadLinux &>(*thread), action->state, 940 signo); 941 break; 942 } 943 944 case eStateSuspended: 945 case eStateStopped: 946 llvm_unreachable("Unexpected state"); 947 948 default: 949 return Status("NativeProcessLinux::%s (): unexpected state %s specified " 950 "for pid %" PRIu64 ", tid %" PRIu64, 951 __FUNCTION__, StateAsCString(action->state), GetID(), 952 thread->GetID()); 953 } 954 } 955 956 return Status(); 957 } 958 959 Status NativeProcessLinux::Halt() { 960 Status error; 961 962 if (kill(GetID(), SIGSTOP) != 0) 963 error.SetErrorToErrno(); 964 965 return error; 966 } 967 968 Status NativeProcessLinux::Detach() { 969 Status error; 970 971 // Stop monitoring the inferior. 972 m_sigchld_handle.reset(); 973 974 // Tell ptrace to detach from the process. 975 if (GetID() == LLDB_INVALID_PROCESS_ID) 976 return error; 977 978 for (const auto &thread : m_threads) { 979 Status e = Detach(thread->GetID()); 980 if (e.Fail()) 981 error = 982 e; // Save the error, but still attempt to detach from other threads. 983 } 984 985 m_intel_pt_manager.Clear(); 986 987 return error; 988 } 989 990 Status NativeProcessLinux::Signal(int signo) { 991 Status error; 992 993 Log *log = GetLog(POSIXLog::Process); 994 LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo, 995 Host::GetSignalAsCString(signo), GetID()); 996 997 if (kill(GetID(), signo)) 998 error.SetErrorToErrno(); 999 1000 return error; 1001 } 1002 1003 Status NativeProcessLinux::Interrupt() { 1004 // Pick a running thread (or if none, a not-dead stopped thread) as the 1005 // chosen thread that will be the stop-reason thread. 1006 Log *log = GetLog(POSIXLog::Process); 1007 1008 NativeThreadProtocol *running_thread = nullptr; 1009 NativeThreadProtocol *stopped_thread = nullptr; 1010 1011 LLDB_LOG(log, "selecting running thread for interrupt target"); 1012 for (const auto &thread : m_threads) { 1013 // If we have a running or stepping thread, we'll call that the target of 1014 // the interrupt. 1015 const auto thread_state = thread->GetState(); 1016 if (thread_state == eStateRunning || thread_state == eStateStepping) { 1017 running_thread = thread.get(); 1018 break; 1019 } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) { 1020 // Remember the first non-dead stopped thread. We'll use that as a 1021 // backup if there are no running threads. 1022 stopped_thread = thread.get(); 1023 } 1024 } 1025 1026 if (!running_thread && !stopped_thread) { 1027 Status error("found no running/stepping or live stopped threads as target " 1028 "for interrupt"); 1029 LLDB_LOG(log, "skipping due to error: {0}", error); 1030 1031 return error; 1032 } 1033 1034 NativeThreadProtocol *deferred_signal_thread = 1035 running_thread ? running_thread : stopped_thread; 1036 1037 LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(), 1038 running_thread ? "running" : "stopped", 1039 deferred_signal_thread->GetID()); 1040 1041 StopRunningThreads(deferred_signal_thread->GetID()); 1042 1043 return Status(); 1044 } 1045 1046 Status NativeProcessLinux::Kill() { 1047 Log *log = GetLog(POSIXLog::Process); 1048 LLDB_LOG(log, "pid {0}", GetID()); 1049 1050 Status error; 1051 1052 switch (m_state) { 1053 case StateType::eStateInvalid: 1054 case StateType::eStateExited: 1055 case StateType::eStateCrashed: 1056 case StateType::eStateDetached: 1057 case StateType::eStateUnloaded: 1058 // Nothing to do - the process is already dead. 1059 LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(), 1060 m_state); 1061 return error; 1062 1063 case StateType::eStateConnected: 1064 case StateType::eStateAttaching: 1065 case StateType::eStateLaunching: 1066 case StateType::eStateStopped: 1067 case StateType::eStateRunning: 1068 case StateType::eStateStepping: 1069 case StateType::eStateSuspended: 1070 // We can try to kill a process in these states. 1071 break; 1072 } 1073 1074 if (kill(GetID(), SIGKILL) != 0) { 1075 error.SetErrorToErrno(); 1076 return error; 1077 } 1078 1079 return error; 1080 } 1081 1082 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr, 1083 MemoryRegionInfo &range_info) { 1084 // FIXME review that the final memory region returned extends to the end of 1085 // the virtual address space, 1086 // with no perms if it is not mapped. 1087 1088 // Use an approach that reads memory regions from /proc/{pid}/maps. Assume 1089 // proc maps entries are in ascending order. 1090 // FIXME assert if we find differently. 1091 1092 if (m_supports_mem_region == LazyBool::eLazyBoolNo) { 1093 // We're done. 1094 return Status("unsupported"); 1095 } 1096 1097 Status error = PopulateMemoryRegionCache(); 1098 if (error.Fail()) { 1099 return error; 1100 } 1101 1102 lldb::addr_t prev_base_address = 0; 1103 1104 // FIXME start by finding the last region that is <= target address using 1105 // binary search. Data is sorted. 1106 // There can be a ton of regions on pthreads apps with lots of threads. 1107 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end(); 1108 ++it) { 1109 MemoryRegionInfo &proc_entry_info = it->first; 1110 1111 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 1112 assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) && 1113 "descending /proc/pid/maps entries detected, unexpected"); 1114 prev_base_address = proc_entry_info.GetRange().GetRangeBase(); 1115 UNUSED_IF_ASSERT_DISABLED(prev_base_address); 1116 1117 // If the target address comes before this entry, indicate distance to next 1118 // region. 1119 if (load_addr < proc_entry_info.GetRange().GetRangeBase()) { 1120 range_info.GetRange().SetRangeBase(load_addr); 1121 range_info.GetRange().SetByteSize( 1122 proc_entry_info.GetRange().GetRangeBase() - load_addr); 1123 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1124 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1125 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1126 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1127 1128 return error; 1129 } else if (proc_entry_info.GetRange().Contains(load_addr)) { 1130 // The target address is within the memory region we're processing here. 1131 range_info = proc_entry_info; 1132 return error; 1133 } 1134 1135 // The target memory address comes somewhere after the region we just 1136 // parsed. 1137 } 1138 1139 // If we made it here, we didn't find an entry that contained the given 1140 // address. Return the load_addr as start and the amount of bytes betwwen 1141 // load address and the end of the memory as size. 1142 range_info.GetRange().SetRangeBase(load_addr); 1143 range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS); 1144 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1145 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1146 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1147 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1148 return error; 1149 } 1150 1151 Status NativeProcessLinux::PopulateMemoryRegionCache() { 1152 Log *log = GetLog(POSIXLog::Process); 1153 1154 // If our cache is empty, pull the latest. There should always be at least 1155 // one memory region if memory region handling is supported. 1156 if (!m_mem_region_cache.empty()) { 1157 LLDB_LOG(log, "reusing {0} cached memory region entries", 1158 m_mem_region_cache.size()); 1159 return Status(); 1160 } 1161 1162 Status Result; 1163 LinuxMapCallback callback = [&](llvm::Expected<MemoryRegionInfo> Info) { 1164 if (Info) { 1165 FileSpec file_spec(Info->GetName().GetCString()); 1166 FileSystem::Instance().Resolve(file_spec); 1167 m_mem_region_cache.emplace_back(*Info, file_spec); 1168 return true; 1169 } 1170 1171 Result = Info.takeError(); 1172 m_supports_mem_region = LazyBool::eLazyBoolNo; 1173 LLDB_LOG(log, "failed to parse proc maps: {0}", Result); 1174 return false; 1175 }; 1176 1177 // Linux kernel since 2.6.14 has /proc/{pid}/smaps 1178 // if CONFIG_PROC_PAGE_MONITOR is enabled 1179 auto BufferOrError = getProcFile(GetID(), "smaps"); 1180 if (BufferOrError) 1181 ParseLinuxSMapRegions(BufferOrError.get()->getBuffer(), callback); 1182 else { 1183 BufferOrError = getProcFile(GetID(), "maps"); 1184 if (!BufferOrError) { 1185 m_supports_mem_region = LazyBool::eLazyBoolNo; 1186 return BufferOrError.getError(); 1187 } 1188 1189 ParseLinuxMapRegions(BufferOrError.get()->getBuffer(), callback); 1190 } 1191 1192 if (Result.Fail()) 1193 return Result; 1194 1195 if (m_mem_region_cache.empty()) { 1196 // No entries after attempting to read them. This shouldn't happen if 1197 // /proc/{pid}/maps is supported. Assume we don't support map entries via 1198 // procfs. 1199 m_supports_mem_region = LazyBool::eLazyBoolNo; 1200 LLDB_LOG(log, 1201 "failed to find any procfs maps entries, assuming no support " 1202 "for memory region metadata retrieval"); 1203 return Status("not supported"); 1204 } 1205 1206 LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps", 1207 m_mem_region_cache.size(), GetID()); 1208 1209 // We support memory retrieval, remember that. 1210 m_supports_mem_region = LazyBool::eLazyBoolYes; 1211 return Status(); 1212 } 1213 1214 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) { 1215 Log *log = GetLog(POSIXLog::Process); 1216 LLDB_LOG(log, "newBumpId={0}", newBumpId); 1217 LLDB_LOG(log, "clearing {0} entries from memory region cache", 1218 m_mem_region_cache.size()); 1219 m_mem_region_cache.clear(); 1220 } 1221 1222 llvm::Expected<uint64_t> 1223 NativeProcessLinux::Syscall(llvm::ArrayRef<uint64_t> args) { 1224 PopulateMemoryRegionCache(); 1225 auto region_it = llvm::find_if(m_mem_region_cache, [](const auto &pair) { 1226 return pair.first.GetExecutable() == MemoryRegionInfo::eYes; 1227 }); 1228 if (region_it == m_mem_region_cache.end()) 1229 return llvm::createStringError(llvm::inconvertibleErrorCode(), 1230 "No executable memory region found!"); 1231 1232 addr_t exe_addr = region_it->first.GetRange().GetRangeBase(); 1233 1234 NativeThreadLinux &thread = *GetThreadByID(GetID()); 1235 assert(thread.GetState() == eStateStopped); 1236 NativeRegisterContextLinux ®_ctx = thread.GetRegisterContext(); 1237 1238 NativeRegisterContextLinux::SyscallData syscall_data = 1239 *reg_ctx.GetSyscallData(); 1240 1241 DataBufferSP registers_sp; 1242 if (llvm::Error Err = reg_ctx.ReadAllRegisterValues(registers_sp).ToError()) 1243 return std::move(Err); 1244 auto restore_regs = llvm::make_scope_exit( 1245 [&] { reg_ctx.WriteAllRegisterValues(registers_sp); }); 1246 1247 llvm::SmallVector<uint8_t, 8> memory(syscall_data.Insn.size()); 1248 size_t bytes_read; 1249 if (llvm::Error Err = 1250 ReadMemory(exe_addr, memory.data(), memory.size(), bytes_read) 1251 .ToError()) { 1252 return std::move(Err); 1253 } 1254 1255 auto restore_mem = llvm::make_scope_exit( 1256 [&] { WriteMemory(exe_addr, memory.data(), memory.size(), bytes_read); }); 1257 1258 if (llvm::Error Err = reg_ctx.SetPC(exe_addr).ToError()) 1259 return std::move(Err); 1260 1261 for (const auto &zip : llvm::zip_first(args, syscall_data.Args)) { 1262 if (llvm::Error Err = 1263 reg_ctx 1264 .WriteRegisterFromUnsigned(std::get<1>(zip), std::get<0>(zip)) 1265 .ToError()) { 1266 return std::move(Err); 1267 } 1268 } 1269 if (llvm::Error Err = WriteMemory(exe_addr, syscall_data.Insn.data(), 1270 syscall_data.Insn.size(), bytes_read) 1271 .ToError()) 1272 return std::move(Err); 1273 1274 m_mem_region_cache.clear(); 1275 1276 // With software single stepping the syscall insn buffer must also include a 1277 // trap instruction to stop the process. 1278 int req = SupportHardwareSingleStepping() ? PTRACE_SINGLESTEP : PTRACE_CONT; 1279 if (llvm::Error Err = 1280 PtraceWrapper(req, thread.GetID(), nullptr, nullptr).ToError()) 1281 return std::move(Err); 1282 1283 int status; 1284 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, thread.GetID(), 1285 &status, __WALL); 1286 if (wait_pid == -1) { 1287 return llvm::errorCodeToError( 1288 std::error_code(errno, std::generic_category())); 1289 } 1290 assert((unsigned)wait_pid == thread.GetID()); 1291 1292 uint64_t result = reg_ctx.ReadRegisterAsUnsigned(syscall_data.Result, -ESRCH); 1293 1294 // Values larger than this are actually negative errno numbers. 1295 uint64_t errno_threshold = 1296 (uint64_t(-1) >> (64 - 8 * m_arch.GetAddressByteSize())) - 0x1000; 1297 if (result > errno_threshold) { 1298 return llvm::errorCodeToError( 1299 std::error_code(-result & 0xfff, std::generic_category())); 1300 } 1301 1302 return result; 1303 } 1304 1305 llvm::Expected<addr_t> 1306 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions) { 1307 1308 llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data = 1309 GetCurrentThread()->GetRegisterContext().GetMmapData(); 1310 if (!mmap_data) 1311 return llvm::make_error<UnimplementedError>(); 1312 1313 unsigned prot = PROT_NONE; 1314 assert((permissions & (ePermissionsReadable | ePermissionsWritable | 1315 ePermissionsExecutable)) == permissions && 1316 "Unknown permission!"); 1317 if (permissions & ePermissionsReadable) 1318 prot |= PROT_READ; 1319 if (permissions & ePermissionsWritable) 1320 prot |= PROT_WRITE; 1321 if (permissions & ePermissionsExecutable) 1322 prot |= PROT_EXEC; 1323 1324 llvm::Expected<uint64_t> Result = 1325 Syscall({mmap_data->SysMmap, 0, size, prot, MAP_ANONYMOUS | MAP_PRIVATE, 1326 uint64_t(-1), 0}); 1327 if (Result) 1328 m_allocated_memory.try_emplace(*Result, size); 1329 return Result; 1330 } 1331 1332 llvm::Error NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) { 1333 llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data = 1334 GetCurrentThread()->GetRegisterContext().GetMmapData(); 1335 if (!mmap_data) 1336 return llvm::make_error<UnimplementedError>(); 1337 1338 auto it = m_allocated_memory.find(addr); 1339 if (it == m_allocated_memory.end()) 1340 return llvm::createStringError(llvm::errc::invalid_argument, 1341 "Memory not allocated by the debugger."); 1342 1343 llvm::Expected<uint64_t> Result = 1344 Syscall({mmap_data->SysMunmap, addr, it->second}); 1345 if (!Result) 1346 return Result.takeError(); 1347 1348 m_allocated_memory.erase(it); 1349 return llvm::Error::success(); 1350 } 1351 1352 Status NativeProcessLinux::ReadMemoryTags(int32_t type, lldb::addr_t addr, 1353 size_t len, 1354 std::vector<uint8_t> &tags) { 1355 llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details = 1356 GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type); 1357 if (!details) 1358 return Status(details.takeError()); 1359 1360 // Ignore 0 length read 1361 if (!len) 1362 return Status(); 1363 1364 // lldb will align the range it requests but it is not required to by 1365 // the protocol so we'll do it again just in case. 1366 // Remove tag bits too. Ptrace calls may work regardless but that 1367 // is not a guarantee. 1368 MemoryTagManager::TagRange range(details->manager->RemoveTagBits(addr), len); 1369 range = details->manager->ExpandToGranule(range); 1370 1371 // Allocate enough space for all tags to be read 1372 size_t num_tags = range.GetByteSize() / details->manager->GetGranuleSize(); 1373 tags.resize(num_tags * details->manager->GetTagSizeInBytes()); 1374 1375 struct iovec tags_iovec; 1376 uint8_t *dest = tags.data(); 1377 lldb::addr_t read_addr = range.GetRangeBase(); 1378 1379 // This call can return partial data so loop until we error or 1380 // get all tags back. 1381 while (num_tags) { 1382 tags_iovec.iov_base = dest; 1383 tags_iovec.iov_len = num_tags; 1384 1385 Status error = NativeProcessLinux::PtraceWrapper( 1386 details->ptrace_read_req, GetID(), reinterpret_cast<void *>(read_addr), 1387 static_cast<void *>(&tags_iovec), 0, nullptr); 1388 1389 if (error.Fail()) { 1390 // Discard partial reads 1391 tags.resize(0); 1392 return error; 1393 } 1394 1395 size_t tags_read = tags_iovec.iov_len; 1396 assert(tags_read && (tags_read <= num_tags)); 1397 1398 dest += tags_read * details->manager->GetTagSizeInBytes(); 1399 read_addr += details->manager->GetGranuleSize() * tags_read; 1400 num_tags -= tags_read; 1401 } 1402 1403 return Status(); 1404 } 1405 1406 Status NativeProcessLinux::WriteMemoryTags(int32_t type, lldb::addr_t addr, 1407 size_t len, 1408 const std::vector<uint8_t> &tags) { 1409 llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details = 1410 GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type); 1411 if (!details) 1412 return Status(details.takeError()); 1413 1414 // Ignore 0 length write 1415 if (!len) 1416 return Status(); 1417 1418 // lldb will align the range it requests but it is not required to by 1419 // the protocol so we'll do it again just in case. 1420 // Remove tag bits too. Ptrace calls may work regardless but that 1421 // is not a guarantee. 1422 MemoryTagManager::TagRange range(details->manager->RemoveTagBits(addr), len); 1423 range = details->manager->ExpandToGranule(range); 1424 1425 // Not checking number of tags here, we may repeat them below 1426 llvm::Expected<std::vector<lldb::addr_t>> unpacked_tags_or_err = 1427 details->manager->UnpackTagsData(tags); 1428 if (!unpacked_tags_or_err) 1429 return Status(unpacked_tags_or_err.takeError()); 1430 1431 llvm::Expected<std::vector<lldb::addr_t>> repeated_tags_or_err = 1432 details->manager->RepeatTagsForRange(*unpacked_tags_or_err, range); 1433 if (!repeated_tags_or_err) 1434 return Status(repeated_tags_or_err.takeError()); 1435 1436 // Repack them for ptrace to use 1437 llvm::Expected<std::vector<uint8_t>> final_tag_data = 1438 details->manager->PackTags(*repeated_tags_or_err); 1439 if (!final_tag_data) 1440 return Status(final_tag_data.takeError()); 1441 1442 struct iovec tags_vec; 1443 uint8_t *src = final_tag_data->data(); 1444 lldb::addr_t write_addr = range.GetRangeBase(); 1445 // unpacked tags size because the number of bytes per tag might not be 1 1446 size_t num_tags = repeated_tags_or_err->size(); 1447 1448 // This call can partially write tags, so we loop until we 1449 // error or all tags have been written. 1450 while (num_tags > 0) { 1451 tags_vec.iov_base = src; 1452 tags_vec.iov_len = num_tags; 1453 1454 Status error = NativeProcessLinux::PtraceWrapper( 1455 details->ptrace_write_req, GetID(), 1456 reinterpret_cast<void *>(write_addr), static_cast<void *>(&tags_vec), 0, 1457 nullptr); 1458 1459 if (error.Fail()) { 1460 // Don't attempt to restore the original values in the case of a partial 1461 // write 1462 return error; 1463 } 1464 1465 size_t tags_written = tags_vec.iov_len; 1466 assert(tags_written && (tags_written <= num_tags)); 1467 1468 src += tags_written * details->manager->GetTagSizeInBytes(); 1469 write_addr += details->manager->GetGranuleSize() * tags_written; 1470 num_tags -= tags_written; 1471 } 1472 1473 return Status(); 1474 } 1475 1476 size_t NativeProcessLinux::UpdateThreads() { 1477 // The NativeProcessLinux monitoring threads are always up to date with 1478 // respect to thread state and they keep the thread list populated properly. 1479 // All this method needs to do is return the thread count. 1480 return m_threads.size(); 1481 } 1482 1483 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size, 1484 bool hardware) { 1485 if (hardware) 1486 return SetHardwareBreakpoint(addr, size); 1487 else 1488 return SetSoftwareBreakpoint(addr, size); 1489 } 1490 1491 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) { 1492 if (hardware) 1493 return RemoveHardwareBreakpoint(addr); 1494 else 1495 return NativeProcessProtocol::RemoveBreakpoint(addr); 1496 } 1497 1498 llvm::Expected<llvm::ArrayRef<uint8_t>> 1499 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(size_t size_hint) { 1500 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 1501 // linux kernel does otherwise. 1502 static const uint8_t g_arm_opcode[] = {0xf0, 0x01, 0xf0, 0xe7}; 1503 static const uint8_t g_thumb_opcode[] = {0x01, 0xde}; 1504 1505 switch (GetArchitecture().GetMachine()) { 1506 case llvm::Triple::arm: 1507 switch (size_hint) { 1508 case 2: 1509 return llvm::makeArrayRef(g_thumb_opcode); 1510 case 4: 1511 return llvm::makeArrayRef(g_arm_opcode); 1512 default: 1513 return llvm::createStringError(llvm::inconvertibleErrorCode(), 1514 "Unrecognised trap opcode size hint!"); 1515 } 1516 default: 1517 return NativeProcessProtocol::GetSoftwareBreakpointTrapOpcode(size_hint); 1518 } 1519 } 1520 1521 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size, 1522 size_t &bytes_read) { 1523 if (ProcessVmReadvSupported()) { 1524 // The process_vm_readv path is about 50 times faster than ptrace api. We 1525 // want to use this syscall if it is supported. 1526 1527 const ::pid_t pid = GetID(); 1528 1529 struct iovec local_iov, remote_iov; 1530 local_iov.iov_base = buf; 1531 local_iov.iov_len = size; 1532 remote_iov.iov_base = reinterpret_cast<void *>(addr); 1533 remote_iov.iov_len = size; 1534 1535 bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0); 1536 const bool success = bytes_read == size; 1537 1538 Log *log = GetLog(POSIXLog::Process); 1539 LLDB_LOG(log, 1540 "using process_vm_readv to read {0} bytes from inferior " 1541 "address {1:x}: {2}", 1542 size, addr, success ? "Success" : llvm::sys::StrError(errno)); 1543 1544 if (success) 1545 return Status(); 1546 // else the call failed for some reason, let's retry the read using ptrace 1547 // api. 1548 } 1549 1550 unsigned char *dst = static_cast<unsigned char *>(buf); 1551 size_t remainder; 1552 long data; 1553 1554 Log *log = GetLog(POSIXLog::Memory); 1555 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1556 1557 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { 1558 Status error = NativeProcessLinux::PtraceWrapper( 1559 PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data); 1560 if (error.Fail()) 1561 return error; 1562 1563 remainder = size - bytes_read; 1564 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1565 1566 // Copy the data into our buffer 1567 memcpy(dst, &data, remainder); 1568 1569 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1570 addr += k_ptrace_word_size; 1571 dst += k_ptrace_word_size; 1572 } 1573 return Status(); 1574 } 1575 1576 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, 1577 size_t size, size_t &bytes_written) { 1578 const unsigned char *src = static_cast<const unsigned char *>(buf); 1579 size_t remainder; 1580 Status error; 1581 1582 Log *log = GetLog(POSIXLog::Memory); 1583 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1584 1585 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { 1586 remainder = size - bytes_written; 1587 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1588 1589 if (remainder == k_ptrace_word_size) { 1590 unsigned long data = 0; 1591 memcpy(&data, src, k_ptrace_word_size); 1592 1593 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1594 error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), 1595 (void *)addr, (void *)data); 1596 if (error.Fail()) 1597 return error; 1598 } else { 1599 unsigned char buff[8]; 1600 size_t bytes_read; 1601 error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read); 1602 if (error.Fail()) 1603 return error; 1604 1605 memcpy(buff, src, remainder); 1606 1607 size_t bytes_written_rec; 1608 error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec); 1609 if (error.Fail()) 1610 return error; 1611 1612 LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src, 1613 *(unsigned long *)buff); 1614 } 1615 1616 addr += k_ptrace_word_size; 1617 src += k_ptrace_word_size; 1618 } 1619 return error; 1620 } 1621 1622 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) const { 1623 return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); 1624 } 1625 1626 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid, 1627 unsigned long *message) { 1628 return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); 1629 } 1630 1631 Status NativeProcessLinux::Detach(lldb::tid_t tid) { 1632 if (tid == LLDB_INVALID_THREAD_ID) 1633 return Status(); 1634 1635 return PtraceWrapper(PTRACE_DETACH, tid); 1636 } 1637 1638 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) { 1639 for (const auto &thread : m_threads) { 1640 assert(thread && "thread list should not contain NULL threads"); 1641 if (thread->GetID() == thread_id) { 1642 // We have this thread. 1643 return true; 1644 } 1645 } 1646 1647 // We don't have this thread. 1648 return false; 1649 } 1650 1651 void NativeProcessLinux::StopTrackingThread(NativeThreadLinux &thread) { 1652 Log *const log = GetLog(POSIXLog::Thread); 1653 lldb::tid_t thread_id = thread.GetID(); 1654 LLDB_LOG(log, "tid: {0}", thread_id); 1655 1656 auto it = llvm::find_if(m_threads, [&](const auto &thread_up) { 1657 return thread_up.get() == &thread; 1658 }); 1659 assert(it != m_threads.end()); 1660 m_threads.erase(it); 1661 1662 NotifyTracersOfThreadDestroyed(thread_id); 1663 SignalIfAllThreadsStopped(); 1664 } 1665 1666 Status NativeProcessLinux::NotifyTracersOfNewThread(lldb::tid_t tid) { 1667 Log *log = GetLog(POSIXLog::Thread); 1668 Status error(m_intel_pt_manager.OnThreadCreated(tid)); 1669 if (error.Fail()) 1670 LLDB_LOG(log, "Failed to trace a new thread with intel-pt, tid = {0}. {1}", 1671 tid, error.AsCString()); 1672 return error; 1673 } 1674 1675 Status NativeProcessLinux::NotifyTracersOfThreadDestroyed(lldb::tid_t tid) { 1676 Log *log = GetLog(POSIXLog::Thread); 1677 Status error(m_intel_pt_manager.OnThreadDestroyed(tid)); 1678 if (error.Fail()) 1679 LLDB_LOG(log, 1680 "Failed to stop a destroyed thread with intel-pt, tid = {0}. {1}", 1681 tid, error.AsCString()); 1682 return error; 1683 } 1684 1685 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id, 1686 bool resume) { 1687 Log *log = GetLog(POSIXLog::Thread); 1688 LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id); 1689 1690 assert(!HasThreadNoLock(thread_id) && 1691 "attempted to add a thread by id that already exists"); 1692 1693 // If this is the first thread, save it as the current thread 1694 if (m_threads.empty()) 1695 SetCurrentThreadID(thread_id); 1696 1697 m_threads.push_back(std::make_unique<NativeThreadLinux>(*this, thread_id)); 1698 NativeThreadLinux &thread = 1699 static_cast<NativeThreadLinux &>(*m_threads.back()); 1700 1701 Status tracing_error = NotifyTracersOfNewThread(thread.GetID()); 1702 if (tracing_error.Fail()) { 1703 thread.SetStoppedByProcessorTrace(tracing_error.AsCString()); 1704 StopRunningThreads(thread.GetID()); 1705 } else if (resume) 1706 ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 1707 else 1708 thread.SetStoppedBySignal(SIGSTOP); 1709 1710 return thread; 1711 } 1712 1713 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path, 1714 FileSpec &file_spec) { 1715 Status error = PopulateMemoryRegionCache(); 1716 if (error.Fail()) 1717 return error; 1718 1719 FileSpec module_file_spec(module_path); 1720 FileSystem::Instance().Resolve(module_file_spec); 1721 1722 file_spec.Clear(); 1723 for (const auto &it : m_mem_region_cache) { 1724 if (it.second.GetFilename() == module_file_spec.GetFilename()) { 1725 file_spec = it.second; 1726 return Status(); 1727 } 1728 } 1729 return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 1730 module_file_spec.GetFilename().AsCString(), GetID()); 1731 } 1732 1733 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name, 1734 lldb::addr_t &load_addr) { 1735 load_addr = LLDB_INVALID_ADDRESS; 1736 Status error = PopulateMemoryRegionCache(); 1737 if (error.Fail()) 1738 return error; 1739 1740 FileSpec file(file_name); 1741 for (const auto &it : m_mem_region_cache) { 1742 if (it.second == file) { 1743 load_addr = it.first.GetRange().GetRangeBase(); 1744 return Status(); 1745 } 1746 } 1747 return Status("No load address found for specified file."); 1748 } 1749 1750 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) { 1751 return static_cast<NativeThreadLinux *>( 1752 NativeProcessProtocol::GetThreadByID(tid)); 1753 } 1754 1755 NativeThreadLinux *NativeProcessLinux::GetCurrentThread() { 1756 return static_cast<NativeThreadLinux *>( 1757 NativeProcessProtocol::GetCurrentThread()); 1758 } 1759 1760 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, 1761 lldb::StateType state, int signo) { 1762 Log *const log = GetLog(POSIXLog::Thread); 1763 LLDB_LOG(log, "tid: {0}", thread.GetID()); 1764 1765 // Before we do the resume below, first check if we have a pending stop 1766 // notification that is currently waiting for all threads to stop. This is 1767 // potentially a buggy situation since we're ostensibly waiting for threads 1768 // to stop before we send out the pending notification, and here we are 1769 // resuming one before we send out the pending stop notification. 1770 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 1771 LLDB_LOG(log, 1772 "about to resume tid {0} per explicit request but we have a " 1773 "pending stop notification (tid {1}) that is actively " 1774 "waiting for this thread to stop. Valid sequence of events?", 1775 thread.GetID(), m_pending_notification_tid); 1776 } 1777 1778 // Request a resume. We expect this to be synchronous and the system to 1779 // reflect it is running after this completes. 1780 switch (state) { 1781 case eStateRunning: { 1782 const auto resume_result = thread.Resume(signo); 1783 if (resume_result.Success()) 1784 SetState(eStateRunning, true); 1785 return resume_result; 1786 } 1787 case eStateStepping: { 1788 const auto step_result = thread.SingleStep(signo); 1789 if (step_result.Success()) 1790 SetState(eStateRunning, true); 1791 return step_result; 1792 } 1793 default: 1794 LLDB_LOG(log, "Unhandled state {0}.", state); 1795 llvm_unreachable("Unhandled state for resume"); 1796 } 1797 } 1798 1799 //===----------------------------------------------------------------------===// 1800 1801 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) { 1802 Log *const log = GetLog(POSIXLog::Thread); 1803 LLDB_LOG(log, "about to process event: (triggering_tid: {0})", 1804 triggering_tid); 1805 1806 m_pending_notification_tid = triggering_tid; 1807 1808 // Request a stop for all the thread stops that need to be stopped and are 1809 // not already known to be stopped. 1810 for (const auto &thread : m_threads) { 1811 if (StateIsRunningState(thread->GetState())) 1812 static_cast<NativeThreadLinux *>(thread.get())->RequestStop(); 1813 } 1814 1815 SignalIfAllThreadsStopped(); 1816 LLDB_LOG(log, "event processing done"); 1817 } 1818 1819 void NativeProcessLinux::SignalIfAllThreadsStopped() { 1820 if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) 1821 return; // No pending notification. Nothing to do. 1822 1823 for (const auto &thread_sp : m_threads) { 1824 if (StateIsRunningState(thread_sp->GetState())) 1825 return; // Some threads are still running. Don't signal yet. 1826 } 1827 1828 // We have a pending notification and all threads have stopped. 1829 Log *log = GetLog(LLDBLog::Process | LLDBLog::Breakpoints); 1830 1831 // Clear any temporary breakpoints we used to implement software single 1832 // stepping. 1833 for (const auto &thread_info : m_threads_stepping_with_breakpoint) { 1834 Status error = RemoveBreakpoint(thread_info.second); 1835 if (error.Fail()) 1836 LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}", 1837 thread_info.first, error); 1838 } 1839 m_threads_stepping_with_breakpoint.clear(); 1840 1841 // Notify the delegate about the stop 1842 SetCurrentThreadID(m_pending_notification_tid); 1843 SetState(StateType::eStateStopped, true); 1844 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 1845 } 1846 1847 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) { 1848 Log *const log = GetLog(POSIXLog::Thread); 1849 LLDB_LOG(log, "tid: {0}", thread.GetID()); 1850 1851 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && 1852 StateIsRunningState(thread.GetState())) { 1853 // We will need to wait for this new thread to stop as well before firing 1854 // the notification. 1855 thread.RequestStop(); 1856 } 1857 } 1858 1859 void NativeProcessLinux::SigchldHandler() { 1860 Log *log = GetLog(POSIXLog::Process); 1861 1862 // Threads can appear or disappear as a result of event processing, so gather 1863 // the events upfront. 1864 llvm::DenseMap<lldb::tid_t, WaitStatus> tid_events; 1865 for (const auto &thread_up : m_threads) { 1866 int status = -1; 1867 ::pid_t wait_pid = 1868 llvm::sys::RetryAfterSignal(-1, ::waitpid, thread_up->GetID(), &status, 1869 __WALL | __WNOTHREAD | WNOHANG); 1870 1871 if (wait_pid == 0) 1872 continue; // Nothing to do for this thread. 1873 1874 if (wait_pid == -1) { 1875 Status error(errno, eErrorTypePOSIX); 1876 LLDB_LOG(log, "waitpid({0}, &status, _) failed: {1}", thread_up->GetID(), 1877 error); 1878 continue; 1879 } 1880 1881 assert(wait_pid == static_cast<::pid_t>(thread_up->GetID())); 1882 1883 WaitStatus wait_status = WaitStatus::Decode(status); 1884 1885 LLDB_LOG(log, "waitpid({0}) got status = {1}", thread_up->GetID(), 1886 wait_status); 1887 tid_events.try_emplace(thread_up->GetID(), wait_status); 1888 } 1889 1890 for (auto &KV : tid_events) { 1891 LLDB_LOG(log, "processing {0}({1}) ...", KV.first, KV.second); 1892 NativeThreadLinux *thread = GetThreadByID(KV.first); 1893 if (thread) { 1894 MonitorCallback(*thread, KV.second); 1895 } else { 1896 // This can happen if one of the events is an main thread exit. 1897 LLDB_LOG(log, "... but the thread has disappeared"); 1898 } 1899 } 1900 } 1901 1902 // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets 1903 // errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) 1904 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, 1905 void *data, size_t data_size, 1906 long *result) { 1907 Status error; 1908 long int ret; 1909 1910 Log *log = GetLog(POSIXLog::Ptrace); 1911 1912 PtraceDisplayBytes(req, data, data_size); 1913 1914 errno = 0; 1915 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 1916 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 1917 *(unsigned int *)addr, data); 1918 else 1919 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 1920 addr, data); 1921 1922 if (ret == -1) 1923 error.SetErrorToErrno(); 1924 1925 if (result) 1926 *result = ret; 1927 1928 LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data, 1929 data_size, ret); 1930 1931 PtraceDisplayBytes(req, data, data_size); 1932 1933 if (error.Fail()) 1934 LLDB_LOG(log, "ptrace() failed: {0}", error); 1935 1936 return error; 1937 } 1938 1939 llvm::Expected<TraceSupportedResponse> NativeProcessLinux::TraceSupported() { 1940 if (IntelPTManager::IsSupported()) 1941 return TraceSupportedResponse{"intel-pt", "Intel Processor Trace"}; 1942 return NativeProcessProtocol::TraceSupported(); 1943 } 1944 1945 Error NativeProcessLinux::TraceStart(StringRef json_request, StringRef type) { 1946 if (type == "intel-pt") { 1947 if (Expected<TraceIntelPTStartRequest> request = 1948 json::parse<TraceIntelPTStartRequest>(json_request, 1949 "TraceIntelPTStartRequest")) { 1950 std::vector<lldb::tid_t> process_threads; 1951 for (auto &thread : m_threads) 1952 process_threads.push_back(thread->GetID()); 1953 return m_intel_pt_manager.TraceStart(*request, process_threads); 1954 } else 1955 return request.takeError(); 1956 } 1957 1958 return NativeProcessProtocol::TraceStart(json_request, type); 1959 } 1960 1961 Error NativeProcessLinux::TraceStop(const TraceStopRequest &request) { 1962 if (request.type == "intel-pt") 1963 return m_intel_pt_manager.TraceStop(request); 1964 return NativeProcessProtocol::TraceStop(request); 1965 } 1966 1967 Expected<json::Value> NativeProcessLinux::TraceGetState(StringRef type) { 1968 if (type == "intel-pt") 1969 return m_intel_pt_manager.GetState(); 1970 return NativeProcessProtocol::TraceGetState(type); 1971 } 1972 1973 Expected<std::vector<uint8_t>> NativeProcessLinux::TraceGetBinaryData( 1974 const TraceGetBinaryDataRequest &request) { 1975 if (request.type == "intel-pt") 1976 return m_intel_pt_manager.GetBinaryData(request); 1977 return NativeProcessProtocol::TraceGetBinaryData(request); 1978 } 1979