1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "NativeProcessLinux.h"
11 
12 // C Includes
13 #include <errno.h>
14 #include <stdint.h>
15 #include <string.h>
16 #include <unistd.h>
17 
18 // C++ Includes
19 #include <fstream>
20 #include <mutex>
21 #include <sstream>
22 #include <string>
23 #include <unordered_map>
24 
25 // Other libraries and framework includes
26 #include "lldb/Core/EmulateInstruction.h"
27 #include "lldb/Core/ModuleSpec.h"
28 #include "lldb/Core/RegisterValue.h"
29 #include "lldb/Core/State.h"
30 #include "lldb/Host/Host.h"
31 #include "lldb/Host/HostProcess.h"
32 #include "lldb/Host/PseudoTerminal.h"
33 #include "lldb/Host/ThreadLauncher.h"
34 #include "lldb/Host/common/NativeBreakpoint.h"
35 #include "lldb/Host/common/NativeRegisterContext.h"
36 #include "lldb/Host/linux/Ptrace.h"
37 #include "lldb/Host/linux/Uio.h"
38 #include "lldb/Host/posix/ProcessLauncherPosixFork.h"
39 #include "lldb/Symbol/ObjectFile.h"
40 #include "lldb/Target/Process.h"
41 #include "lldb/Target/ProcessLaunchInfo.h"
42 #include "lldb/Target/Target.h"
43 #include "lldb/Utility/LLDBAssert.h"
44 #include "lldb/Utility/Status.h"
45 #include "lldb/Utility/StringExtractor.h"
46 #include "llvm/Support/Errno.h"
47 #include "llvm/Support/FileSystem.h"
48 #include "llvm/Support/Threading.h"
49 
50 #include "NativeThreadLinux.h"
51 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
52 #include "Procfs.h"
53 
54 #include <linux/unistd.h>
55 #include <sys/socket.h>
56 #include <sys/syscall.h>
57 #include <sys/types.h>
58 #include <sys/user.h>
59 #include <sys/wait.h>
60 
61 // Support hardware breakpoints in case it has not been defined
62 #ifndef TRAP_HWBKPT
63 #define TRAP_HWBKPT 4
64 #endif
65 
66 using namespace lldb;
67 using namespace lldb_private;
68 using namespace lldb_private::process_linux;
69 using namespace llvm;
70 
71 // Private bits we only need internally.
72 
73 static bool ProcessVmReadvSupported() {
74   static bool is_supported;
75   static llvm::once_flag flag;
76 
77   llvm::call_once(flag, [] {
78     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
79 
80     uint32_t source = 0x47424742;
81     uint32_t dest = 0;
82 
83     struct iovec local, remote;
84     remote.iov_base = &source;
85     local.iov_base = &dest;
86     remote.iov_len = local.iov_len = sizeof source;
87 
88     // We shall try if cross-process-memory reads work by attempting to read a
89     // value from our own process.
90     ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
91     is_supported = (res == sizeof(source) && source == dest);
92     if (is_supported)
93       LLDB_LOG(log,
94                "Detected kernel support for process_vm_readv syscall. "
95                "Fast memory reads enabled.");
96     else
97       LLDB_LOG(log,
98                "syscall process_vm_readv failed (error: {0}). Fast memory "
99                "reads disabled.",
100                llvm::sys::StrError());
101   });
102 
103   return is_supported;
104 }
105 
106 namespace {
107 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) {
108   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
109   if (!log)
110     return;
111 
112   if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO))
113     LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec());
114   else
115     LLDB_LOG(log, "leaving STDIN as is");
116 
117   if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO))
118     LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec());
119   else
120     LLDB_LOG(log, "leaving STDOUT as is");
121 
122   if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO))
123     LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec());
124   else
125     LLDB_LOG(log, "leaving STDERR as is");
126 
127   int i = 0;
128   for (const char **args = info.GetArguments().GetConstArgumentVector(); *args;
129        ++args, ++i)
130     LLDB_LOG(log, "arg {0}: '{1}'", i, *args);
131 }
132 
133 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) {
134   uint8_t *ptr = (uint8_t *)bytes;
135   const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
136   for (uint32_t i = 0; i < loop_count; i++) {
137     s.Printf("[%x]", *ptr);
138     ptr++;
139   }
140 }
141 
142 void PtraceDisplayBytes(int &req, void *data, size_t data_size) {
143   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
144   if (!log)
145     return;
146   StreamString buf;
147 
148   switch (req) {
149   case PTRACE_POKETEXT: {
150     DisplayBytes(buf, &data, 8);
151     LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData());
152     break;
153   }
154   case PTRACE_POKEDATA: {
155     DisplayBytes(buf, &data, 8);
156     LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData());
157     break;
158   }
159   case PTRACE_POKEUSER: {
160     DisplayBytes(buf, &data, 8);
161     LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData());
162     break;
163   }
164   case PTRACE_SETREGS: {
165     DisplayBytes(buf, data, data_size);
166     LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData());
167     break;
168   }
169   case PTRACE_SETFPREGS: {
170     DisplayBytes(buf, data, data_size);
171     LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData());
172     break;
173   }
174   case PTRACE_SETSIGINFO: {
175     DisplayBytes(buf, data, sizeof(siginfo_t));
176     LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData());
177     break;
178   }
179   case PTRACE_SETREGSET: {
180     // Extract iov_base from data, which is a pointer to the struct IOVEC
181     DisplayBytes(buf, *(void **)data, data_size);
182     LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData());
183     break;
184   }
185   default: {}
186   }
187 }
188 
189 static constexpr unsigned k_ptrace_word_size = sizeof(void *);
190 static_assert(sizeof(long) >= k_ptrace_word_size,
191               "Size of long must be larger than ptrace word size");
192 } // end of anonymous namespace
193 
194 // Simple helper function to ensure flags are enabled on the given file
195 // descriptor.
196 static Status EnsureFDFlags(int fd, int flags) {
197   Status error;
198 
199   int status = fcntl(fd, F_GETFL);
200   if (status == -1) {
201     error.SetErrorToErrno();
202     return error;
203   }
204 
205   if (fcntl(fd, F_SETFL, status | flags) == -1) {
206     error.SetErrorToErrno();
207     return error;
208   }
209 
210   return error;
211 }
212 
213 // -----------------------------------------------------------------------------
214 // Public Static Methods
215 // -----------------------------------------------------------------------------
216 
217 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
218 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info,
219                                     NativeDelegate &native_delegate,
220                                     MainLoop &mainloop) const {
221   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
222 
223   MaybeLogLaunchInfo(launch_info);
224 
225   Status status;
226   ::pid_t pid = ProcessLauncherPosixFork()
227                     .LaunchProcess(launch_info, status)
228                     .GetProcessId();
229   LLDB_LOG(log, "pid = {0:x}", pid);
230   if (status.Fail()) {
231     LLDB_LOG(log, "failed to launch process: {0}", status);
232     return status.ToError();
233   }
234 
235   // Wait for the child process to trap on its call to execve.
236   int wstatus;
237   ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0);
238   assert(wpid == pid);
239   (void)wpid;
240   if (!WIFSTOPPED(wstatus)) {
241     LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}",
242              WaitStatus::Decode(wstatus));
243     return llvm::make_error<StringError>("Could not sync with inferior process",
244                                          llvm::inconvertibleErrorCode());
245   }
246   LLDB_LOG(log, "inferior started, now in stopped state");
247 
248   ArchSpec arch;
249   if ((status = ResolveProcessArchitecture(pid, arch)).Fail())
250     return status.ToError();
251 
252   // Set the architecture to the exe architecture.
253   LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid,
254            arch.GetArchitectureName());
255 
256   status = SetDefaultPtraceOpts(pid);
257   if (status.Fail()) {
258     LLDB_LOG(log, "failed to set default ptrace options: {0}", status);
259     return status.ToError();
260   }
261 
262   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
263       pid, launch_info.GetPTY().ReleaseMasterFileDescriptor(), native_delegate,
264       arch, mainloop, {pid}));
265 }
266 
267 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
268 NativeProcessLinux::Factory::Attach(
269     lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate,
270     MainLoop &mainloop) const {
271   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
272   LLDB_LOG(log, "pid = {0:x}", pid);
273 
274   // Retrieve the architecture for the running process.
275   ArchSpec arch;
276   Status status = ResolveProcessArchitecture(pid, arch);
277   if (!status.Success())
278     return status.ToError();
279 
280   auto tids_or = NativeProcessLinux::Attach(pid);
281   if (!tids_or)
282     return tids_or.takeError();
283 
284   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
285       pid, -1, native_delegate, arch, mainloop, *tids_or));
286 }
287 
288 // -----------------------------------------------------------------------------
289 // Public Instance Methods
290 // -----------------------------------------------------------------------------
291 
292 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd,
293                                        NativeDelegate &delegate,
294                                        const ArchSpec &arch, MainLoop &mainloop,
295                                        llvm::ArrayRef<::pid_t> tids)
296     : NativeProcessProtocol(pid, terminal_fd, delegate), m_arch(arch) {
297   if (m_terminal_fd != -1) {
298     Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
299     assert(status.Success());
300   }
301 
302   Status status;
303   m_sigchld_handle = mainloop.RegisterSignal(
304       SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status);
305   assert(m_sigchld_handle && status.Success());
306 
307   for (const auto &tid : tids) {
308     NativeThreadLinux &thread = AddThread(tid);
309     thread.SetStoppedBySignal(SIGSTOP);
310     ThreadWasCreated(thread);
311   }
312 
313   // Let our process instance know the thread has stopped.
314   SetCurrentThreadID(tids[0]);
315   SetState(StateType::eStateStopped, false);
316 
317   // Proccess any signals we received before installing our handler
318   SigchldHandler();
319 }
320 
321 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) {
322   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
323 
324   Status status;
325   // Use a map to keep track of the threads which we have attached/need to
326   // attach.
327   Host::TidMap tids_to_attach;
328   while (Host::FindProcessThreads(pid, tids_to_attach)) {
329     for (Host::TidMap::iterator it = tids_to_attach.begin();
330          it != tids_to_attach.end();) {
331       if (it->second == false) {
332         lldb::tid_t tid = it->first;
333 
334         // Attach to the requested process.
335         // An attach will cause the thread to stop with a SIGSTOP.
336         if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) {
337           // No such thread. The thread may have exited.
338           // More error handling may be needed.
339           if (status.GetError() == ESRCH) {
340             it = tids_to_attach.erase(it);
341             continue;
342           }
343           return status.ToError();
344         }
345 
346         int wpid =
347             llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL);
348         // Need to use __WALL otherwise we receive an error with errno=ECHLD
349         // At this point we should have a thread stopped if waitpid succeeds.
350         if (wpid < 0) {
351           // No such thread. The thread may have exited.
352           // More error handling may be needed.
353           if (errno == ESRCH) {
354             it = tids_to_attach.erase(it);
355             continue;
356           }
357           return llvm::errorCodeToError(
358               std::error_code(errno, std::generic_category()));
359         }
360 
361         if ((status = SetDefaultPtraceOpts(tid)).Fail())
362           return status.ToError();
363 
364         LLDB_LOG(log, "adding tid = {0}", tid);
365         it->second = true;
366       }
367 
368       // move the loop forward
369       ++it;
370     }
371   }
372 
373   size_t tid_count = tids_to_attach.size();
374   if (tid_count == 0)
375     return llvm::make_error<StringError>("No such process",
376                                          llvm::inconvertibleErrorCode());
377 
378   std::vector<::pid_t> tids;
379   tids.reserve(tid_count);
380   for (const auto &p : tids_to_attach)
381     tids.push_back(p.first);
382   return std::move(tids);
383 }
384 
385 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) {
386   long ptrace_opts = 0;
387 
388   // Have the child raise an event on exit.  This is used to keep the child in
389   // limbo until it is destroyed.
390   ptrace_opts |= PTRACE_O_TRACEEXIT;
391 
392   // Have the tracer trace threads which spawn in the inferior process.
393   // TODO: if we want to support tracing the inferiors' child, add the
394   // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
395   ptrace_opts |= PTRACE_O_TRACECLONE;
396 
397   // Have the tracer notify us before execve returns
398   // (needed to disable legacy SIGTRAP generation)
399   ptrace_opts |= PTRACE_O_TRACEEXEC;
400 
401   return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts);
402 }
403 
404 // Handles all waitpid events from the inferior process.
405 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited,
406                                          WaitStatus status) {
407   Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
408 
409   // Certain activities differ based on whether the pid is the tid of the main
410   // thread.
411   const bool is_main_thread = (pid == GetID());
412 
413   // Handle when the thread exits.
414   if (exited) {
415     LLDB_LOG(log, "got exit signal({0}) , tid = {1} ({2} main thread)", signal,
416              pid, is_main_thread ? "is" : "is not");
417 
418     // This is a thread that exited.  Ensure we're not tracking it anymore.
419     const bool thread_found = StopTrackingThread(pid);
420 
421     if (is_main_thread) {
422       // We only set the exit status and notify the delegate if we haven't
423       // already set the process
424       // state to an exited state.  We normally should have received a SIGTRAP |
425       // (PTRACE_EVENT_EXIT << 8)
426       // for the main thread.
427       const bool already_notified = (GetState() == StateType::eStateExited) ||
428                                     (GetState() == StateType::eStateCrashed);
429       if (!already_notified) {
430         LLDB_LOG(
431             log,
432             "tid = {0} handling main thread exit ({1}), expected exit state "
433             "already set but state was {2} instead, setting exit state now",
434             pid,
435             thread_found ? "stopped tracking thread metadata"
436                          : "thread metadata not found",
437             GetState());
438         // The main thread exited.  We're done monitoring.  Report to delegate.
439         SetExitStatus(status, true);
440 
441         // Notify delegate that our process has exited.
442         SetState(StateType::eStateExited, true);
443       } else
444         LLDB_LOG(log, "tid = {0} main thread now exited (%s)", pid,
445                  thread_found ? "stopped tracking thread metadata"
446                               : "thread metadata not found");
447     } else {
448       // Do we want to report to the delegate in this case?  I think not.  If
449       // this was an orderly thread exit, we would already have received the
450       // SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, and we would have done an
451       // all-stop then.
452       LLDB_LOG(log, "tid = {0} handling non-main thread exit (%s)", pid,
453                thread_found ? "stopped tracking thread metadata"
454                             : "thread metadata not found");
455     }
456     return;
457   }
458 
459   siginfo_t info;
460   const auto info_err = GetSignalInfo(pid, &info);
461   auto thread_sp = GetThreadByID(pid);
462 
463   if (!thread_sp) {
464     // Normally, the only situation when we cannot find the thread is if we have
465     // just received a new thread notification. This is indicated by
466     // GetSignalInfo() returning si_code == SI_USER and si_pid == 0
467     LLDB_LOG(log, "received notification about an unknown tid {0}.", pid);
468 
469     if (info_err.Fail()) {
470       LLDB_LOG(log,
471                "(tid {0}) GetSignalInfo failed ({1}). "
472                "Ingoring this notification.",
473                pid, info_err);
474       return;
475     }
476 
477     LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code,
478              info.si_pid);
479 
480     NativeThreadLinux &thread = AddThread(pid);
481 
482     // Resume the newly created thread.
483     ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
484     ThreadWasCreated(thread);
485     return;
486   }
487 
488   // Get details on the signal raised.
489   if (info_err.Success()) {
490     // We have retrieved the signal info.  Dispatch appropriately.
491     if (info.si_signo == SIGTRAP)
492       MonitorSIGTRAP(info, *thread_sp);
493     else
494       MonitorSignal(info, *thread_sp, exited);
495   } else {
496     if (info_err.GetError() == EINVAL) {
497       // This is a group stop reception for this tid.
498       // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU
499       // into the tracee, triggering the group-stop mechanism. Normally
500       // receiving these would stop the process, pending a SIGCONT. Simulating
501       // this state in a debugger is hard and is generally not needed (one use
502       // case is debugging background task being managed by a shell). For
503       // general use, it is sufficient to stop the process in a signal-delivery
504       // stop which happens before the group stop. This done by MonitorSignal
505       // and works correctly for all signals.
506       LLDB_LOG(log,
507                "received a group stop for pid {0} tid {1}. Transparent "
508                "handling of group stops not supported, resuming the "
509                "thread.",
510                GetID(), pid);
511       ResumeThread(*thread_sp, thread_sp->GetState(),
512                    LLDB_INVALID_SIGNAL_NUMBER);
513     } else {
514       // ptrace(GETSIGINFO) failed (but not due to group-stop).
515 
516       // A return value of ESRCH means the thread/process is no longer on the
517       // system, so it was killed somehow outside of our control.  Either way,
518       // we can't do anything with it anymore.
519 
520       // Stop tracking the metadata for the thread since it's entirely off the
521       // system now.
522       const bool thread_found = StopTrackingThread(pid);
523 
524       LLDB_LOG(log,
525                "GetSignalInfo failed: {0}, tid = {1}, signal = {2}, "
526                "status = {3}, main_thread = {4}, thread_found: {5}",
527                info_err, pid, signal, status, is_main_thread, thread_found);
528 
529       if (is_main_thread) {
530         // Notify the delegate - our process is not available but appears to
531         // have been killed outside
532         // our control.  Is eStateExited the right exit state in this case?
533         SetExitStatus(status, true);
534         SetState(StateType::eStateExited, true);
535       } else {
536         // This thread was pulled out from underneath us.  Anything to do here?
537         // Do we want to do an all stop?
538         LLDB_LOG(log,
539                  "pid {0} tid {1} non-main thread exit occurred, didn't "
540                  "tell delegate anything since thread disappeared out "
541                  "from underneath us",
542                  GetID(), pid);
543       }
544     }
545   }
546 }
547 
548 void NativeProcessLinux::WaitForNewThread(::pid_t tid) {
549   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
550 
551   if (GetThreadByID(tid)) {
552     // We are already tracking the thread - we got the event on the new thread
553     // (see MonitorSignal) before this one. We are done.
554     return;
555   }
556 
557   // The thread is not tracked yet, let's wait for it to appear.
558   int status = -1;
559   LLDB_LOG(log,
560            "received thread creation event for tid {0}. tid not tracked "
561            "yet, waiting for thread to appear...",
562            tid);
563   ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, &status, __WALL);
564   // Since we are waiting on a specific tid, this must be the creation event.
565   // But let's do some checks just in case.
566   if (wait_pid != tid) {
567     LLDB_LOG(log,
568              "waiting for tid {0} failed. Assuming the thread has "
569              "disappeared in the meantime",
570              tid);
571     // The only way I know of this could happen is if the whole process was
572     // SIGKILLed in the mean time. In any case, we can't do anything about that
573     // now.
574     return;
575   }
576   if (WIFEXITED(status)) {
577     LLDB_LOG(log,
578              "waiting for tid {0} returned an 'exited' event. Not "
579              "tracking the thread.",
580              tid);
581     // Also a very improbable event.
582     return;
583   }
584 
585   LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid);
586   NativeThreadLinux &new_thread = AddThread(tid);
587 
588   ResumeThread(new_thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
589   ThreadWasCreated(new_thread);
590 }
591 
592 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info,
593                                         NativeThreadLinux &thread) {
594   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
595   const bool is_main_thread = (thread.GetID() == GetID());
596 
597   assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
598 
599   switch (info.si_code) {
600   // TODO: these two cases are required if we want to support tracing of the
601   // inferiors' children.  We'd need this to debug a monitor.
602   // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
603   // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
604 
605   case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): {
606     // This is the notification on the parent thread which informs us of new
607     // thread
608     // creation.
609     // We don't want to do anything with the parent thread so we just resume it.
610     // In case we
611     // want to implement "break on thread creation" functionality, we would need
612     // to stop
613     // here.
614 
615     unsigned long event_message = 0;
616     if (GetEventMessage(thread.GetID(), &event_message).Fail()) {
617       LLDB_LOG(log,
618                "pid {0} received thread creation event but "
619                "GetEventMessage failed so we don't know the new tid",
620                thread.GetID());
621     } else
622       WaitForNewThread(event_message);
623 
624     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
625     break;
626   }
627 
628   case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): {
629     LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP);
630 
631     // Exec clears any pending notifications.
632     m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
633 
634     // Remove all but the main thread here.  Linux fork creates a new process
635     // which only copies the main thread.
636     LLDB_LOG(log, "exec received, stop tracking all but main thread");
637 
638     for (auto i = m_threads.begin(); i != m_threads.end();) {
639       if ((*i)->GetID() == GetID())
640         i = m_threads.erase(i);
641       else
642         ++i;
643     }
644     assert(m_threads.size() == 1);
645     auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get());
646 
647     SetCurrentThreadID(main_thread->GetID());
648     main_thread->SetStoppedByExec();
649 
650     // Tell coordinator about about the "new" (since exec) stopped main thread.
651     ThreadWasCreated(*main_thread);
652 
653     // Let our delegate know we have just exec'd.
654     NotifyDidExec();
655 
656     // Let the process know we're stopped.
657     StopRunningThreads(main_thread->GetID());
658 
659     break;
660   }
661 
662   case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): {
663     // The inferior process or one of its threads is about to exit.
664     // We don't want to do anything with the thread so we just resume it. In
665     // case we
666     // want to implement "break on thread exit" functionality, we would need to
667     // stop
668     // here.
669 
670     unsigned long data = 0;
671     if (GetEventMessage(thread.GetID(), &data).Fail())
672       data = -1;
673 
674     LLDB_LOG(log,
675              "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, "
676              "WIFSIGNALED={2}, pid = {3}, main_thread = {4}",
677              data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(),
678              is_main_thread);
679 
680     if (is_main_thread)
681       SetExitStatus(WaitStatus::Decode(data), true);
682 
683     StateType state = thread.GetState();
684     if (!StateIsRunningState(state)) {
685       // Due to a kernel bug, we may sometimes get this stop after the inferior
686       // gets a
687       // SIGKILL. This confuses our state tracking logic in ResumeThread(),
688       // since normally,
689       // we should not be receiving any ptrace events while the inferior is
690       // stopped. This
691       // makes sure that the inferior is resumed and exits normally.
692       state = eStateRunning;
693     }
694     ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
695 
696     break;
697   }
698 
699   case 0:
700   case TRAP_TRACE:  // We receive this on single stepping.
701   case TRAP_HWBKPT: // We receive this on watchpoint hit
702   {
703     // If a watchpoint was hit, report it
704     uint32_t wp_index;
705     Status error = thread.GetRegisterContext()->GetWatchpointHitIndex(
706         wp_index, (uintptr_t)info.si_addr);
707     if (error.Fail())
708       LLDB_LOG(log,
709                "received error while checking for watchpoint hits, pid = "
710                "{0}, error = {1}",
711                thread.GetID(), error);
712     if (wp_index != LLDB_INVALID_INDEX32) {
713       MonitorWatchpoint(thread, wp_index);
714       break;
715     }
716 
717     // If a breakpoint was hit, report it
718     uint32_t bp_index;
719     error = thread.GetRegisterContext()->GetHardwareBreakHitIndex(
720         bp_index, (uintptr_t)info.si_addr);
721     if (error.Fail())
722       LLDB_LOG(log, "received error while checking for hardware "
723                     "breakpoint hits, pid = {0}, error = {1}",
724                thread.GetID(), error);
725     if (bp_index != LLDB_INVALID_INDEX32) {
726       MonitorBreakpoint(thread);
727       break;
728     }
729 
730     // Otherwise, report step over
731     MonitorTrace(thread);
732     break;
733   }
734 
735   case SI_KERNEL:
736 #if defined __mips__
737     // For mips there is no special signal for watchpoint
738     // So we check for watchpoint in kernel trap
739     {
740       // If a watchpoint was hit, report it
741       uint32_t wp_index;
742       Status error = thread.GetRegisterContext()->GetWatchpointHitIndex(
743           wp_index, LLDB_INVALID_ADDRESS);
744       if (error.Fail())
745         LLDB_LOG(log,
746                  "received error while checking for watchpoint hits, pid = "
747                  "{0}, error = {1}",
748                  thread.GetID(), error);
749       if (wp_index != LLDB_INVALID_INDEX32) {
750         MonitorWatchpoint(thread, wp_index);
751         break;
752       }
753     }
754 // NO BREAK
755 #endif
756   case TRAP_BRKPT:
757     MonitorBreakpoint(thread);
758     break;
759 
760   case SIGTRAP:
761   case (SIGTRAP | 0x80):
762     LLDB_LOG(
763         log,
764         "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming",
765         info.si_code, GetID(), thread.GetID());
766 
767     // Ignore these signals until we know more about them.
768     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
769     break;
770 
771   default:
772     LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}",
773              info.si_code, GetID(), thread.GetID());
774     MonitorSignal(info, thread, false);
775     break;
776   }
777 }
778 
779 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) {
780   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
781   LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID());
782 
783   // This thread is currently stopped.
784   thread.SetStoppedByTrace();
785 
786   StopRunningThreads(thread.GetID());
787 }
788 
789 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) {
790   Log *log(
791       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
792   LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID());
793 
794   // Mark the thread as stopped at breakpoint.
795   thread.SetStoppedByBreakpoint();
796   Status error = FixupBreakpointPCAsNeeded(thread);
797   if (error.Fail())
798     LLDB_LOG(log, "pid = {0} fixup: {1}", thread.GetID(), error);
799 
800   if (m_threads_stepping_with_breakpoint.find(thread.GetID()) !=
801       m_threads_stepping_with_breakpoint.end())
802     thread.SetStoppedByTrace();
803 
804   StopRunningThreads(thread.GetID());
805 }
806 
807 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread,
808                                            uint32_t wp_index) {
809   Log *log(
810       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
811   LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}",
812            thread.GetID(), wp_index);
813 
814   // Mark the thread as stopped at watchpoint.
815   // The address is at (lldb::addr_t)info->si_addr if we need it.
816   thread.SetStoppedByWatchpoint(wp_index);
817 
818   // We need to tell all other running threads before we notify the delegate
819   // about this stop.
820   StopRunningThreads(thread.GetID());
821 }
822 
823 void NativeProcessLinux::MonitorSignal(const siginfo_t &info,
824                                        NativeThreadLinux &thread, bool exited) {
825   const int signo = info.si_signo;
826   const bool is_from_llgs = info.si_pid == getpid();
827 
828   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
829 
830   // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
831   // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
832   // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
833   //
834   // IOW, user generated signals never generate what we consider to be a
835   // "crash".
836   //
837   // Similarly, ACK signals generated by this monitor.
838 
839   // Handle the signal.
840   LLDB_LOG(log,
841            "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, "
842            "waitpid pid = {4})",
843            Host::GetSignalAsCString(signo), signo, info.si_code,
844            thread.GetID());
845 
846   // Check for thread stop notification.
847   if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) {
848     // This is a tgkill()-based stop.
849     LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID());
850 
851     // Check that we're not already marked with a stop reason.
852     // Note this thread really shouldn't already be marked as stopped - if we
853     // were, that would imply that the kernel signaled us with the thread
854     // stopping which we handled and marked as stopped, and that, without an
855     // intervening resume, we received another stop.  It is more likely that we
856     // are missing the marking of a run state somewhere if we find that the
857     // thread was marked as stopped.
858     const StateType thread_state = thread.GetState();
859     if (!StateIsStoppedState(thread_state, false)) {
860       // An inferior thread has stopped because of a SIGSTOP we have sent it.
861       // Generally, these are not important stops and we don't want to report
862       // them as they are just used to stop other threads when one thread (the
863       // one with the *real* stop reason) hits a breakpoint (watchpoint,
864       // etc...). However, in the case of an asynchronous Interrupt(), this *is*
865       // the real stop reason, so we leave the signal intact if this is the
866       // thread that was chosen as the triggering thread.
867       if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
868         if (m_pending_notification_tid == thread.GetID())
869           thread.SetStoppedBySignal(SIGSTOP, &info);
870         else
871           thread.SetStoppedWithNoReason();
872 
873         SetCurrentThreadID(thread.GetID());
874         SignalIfAllThreadsStopped();
875       } else {
876         // We can end up here if stop was initiated by LLGS but by this time a
877         // thread stop has occurred - maybe initiated by another event.
878         Status error = ResumeThread(thread, thread.GetState(), 0);
879         if (error.Fail())
880           LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(),
881                    error);
882       }
883     } else {
884       LLDB_LOG(log,
885                "pid {0} tid {1}, thread was already marked as a stopped "
886                "state (state={2}), leaving stop signal as is",
887                GetID(), thread.GetID(), thread_state);
888       SignalIfAllThreadsStopped();
889     }
890 
891     // Done handling.
892     return;
893   }
894 
895   // Check if debugger should stop at this signal or just ignore it
896   // and resume the inferior.
897   if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) {
898      ResumeThread(thread, thread.GetState(), signo);
899      return;
900   }
901 
902   // This thread is stopped.
903   LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo));
904   thread.SetStoppedBySignal(signo, &info);
905 
906   // Send a stop to the debugger after we get all other threads to stop.
907   StopRunningThreads(thread.GetID());
908 }
909 
910 namespace {
911 
912 struct EmulatorBaton {
913   NativeProcessLinux *m_process;
914   NativeRegisterContext *m_reg_context;
915 
916   // eRegisterKindDWARF -> RegsiterValue
917   std::unordered_map<uint32_t, RegisterValue> m_register_values;
918 
919   EmulatorBaton(NativeProcessLinux *process, NativeRegisterContext *reg_context)
920       : m_process(process), m_reg_context(reg_context) {}
921 };
922 
923 } // anonymous namespace
924 
925 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton,
926                                  const EmulateInstruction::Context &context,
927                                  lldb::addr_t addr, void *dst, size_t length) {
928   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
929 
930   size_t bytes_read;
931   emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read);
932   return bytes_read;
933 }
934 
935 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton,
936                                  const RegisterInfo *reg_info,
937                                  RegisterValue &reg_value) {
938   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
939 
940   auto it = emulator_baton->m_register_values.find(
941       reg_info->kinds[eRegisterKindDWARF]);
942   if (it != emulator_baton->m_register_values.end()) {
943     reg_value = it->second;
944     return true;
945   }
946 
947   // The emulator only fill in the dwarf regsiter numbers (and in some case
948   // the generic register numbers). Get the full register info from the
949   // register context based on the dwarf register numbers.
950   const RegisterInfo *full_reg_info =
951       emulator_baton->m_reg_context->GetRegisterInfo(
952           eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
953 
954   Status error =
955       emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value);
956   if (error.Success())
957     return true;
958 
959   return false;
960 }
961 
962 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton,
963                                   const EmulateInstruction::Context &context,
964                                   const RegisterInfo *reg_info,
965                                   const RegisterValue &reg_value) {
966   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
967   emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] =
968       reg_value;
969   return true;
970 }
971 
972 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton,
973                                   const EmulateInstruction::Context &context,
974                                   lldb::addr_t addr, const void *dst,
975                                   size_t length) {
976   return length;
977 }
978 
979 static lldb::addr_t ReadFlags(NativeRegisterContext *regsiter_context) {
980   const RegisterInfo *flags_info = regsiter_context->GetRegisterInfo(
981       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
982   return regsiter_context->ReadRegisterAsUnsigned(flags_info,
983                                                   LLDB_INVALID_ADDRESS);
984 }
985 
986 Status
987 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) {
988   Status error;
989   NativeRegisterContextSP register_context_sp = thread.GetRegisterContext();
990 
991   std::unique_ptr<EmulateInstruction> emulator_ap(
992       EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying,
993                                      nullptr));
994 
995   if (emulator_ap == nullptr)
996     return Status("Instruction emulator not found!");
997 
998   EmulatorBaton baton(this, register_context_sp.get());
999   emulator_ap->SetBaton(&baton);
1000   emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
1001   emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
1002   emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
1003   emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
1004 
1005   if (!emulator_ap->ReadInstruction())
1006     return Status("Read instruction failed!");
1007 
1008   bool emulation_result =
1009       emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
1010 
1011   const RegisterInfo *reg_info_pc = register_context_sp->GetRegisterInfo(
1012       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
1013   const RegisterInfo *reg_info_flags = register_context_sp->GetRegisterInfo(
1014       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1015 
1016   auto pc_it =
1017       baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
1018   auto flags_it =
1019       baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
1020 
1021   lldb::addr_t next_pc;
1022   lldb::addr_t next_flags;
1023   if (emulation_result) {
1024     assert(pc_it != baton.m_register_values.end() &&
1025            "Emulation was successfull but PC wasn't updated");
1026     next_pc = pc_it->second.GetAsUInt64();
1027 
1028     if (flags_it != baton.m_register_values.end())
1029       next_flags = flags_it->second.GetAsUInt64();
1030     else
1031       next_flags = ReadFlags(register_context_sp.get());
1032   } else if (pc_it == baton.m_register_values.end()) {
1033     // Emulate instruction failed and it haven't changed PC. Advance PC
1034     // with the size of the current opcode because the emulation of all
1035     // PC modifying instruction should be successful. The failure most
1036     // likely caused by a not supported instruction which don't modify PC.
1037     next_pc =
1038         register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize();
1039     next_flags = ReadFlags(register_context_sp.get());
1040   } else {
1041     // The instruction emulation failed after it modified the PC. It is an
1042     // unknown error where we can't continue because the next instruction is
1043     // modifying the PC but we don't  know how.
1044     return Status("Instruction emulation failed unexpectedly.");
1045   }
1046 
1047   if (m_arch.GetMachine() == llvm::Triple::arm) {
1048     if (next_flags & 0x20) {
1049       // Thumb mode
1050       error = SetSoftwareBreakpoint(next_pc, 2);
1051     } else {
1052       // Arm mode
1053       error = SetSoftwareBreakpoint(next_pc, 4);
1054     }
1055   } else if (m_arch.GetMachine() == llvm::Triple::mips64 ||
1056              m_arch.GetMachine() == llvm::Triple::mips64el ||
1057              m_arch.GetMachine() == llvm::Triple::mips ||
1058              m_arch.GetMachine() == llvm::Triple::mipsel ||
1059              m_arch.GetMachine() == llvm::Triple::ppc64le)
1060     error = SetSoftwareBreakpoint(next_pc, 4);
1061   else {
1062     // No size hint is given for the next breakpoint
1063     error = SetSoftwareBreakpoint(next_pc, 0);
1064   }
1065 
1066   // If setting the breakpoint fails because next_pc is out of
1067   // the address space, ignore it and let the debugee segfault.
1068   if (error.GetError() == EIO || error.GetError() == EFAULT) {
1069     return Status();
1070   } else if (error.Fail())
1071     return error;
1072 
1073   m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc});
1074 
1075   return Status();
1076 }
1077 
1078 bool NativeProcessLinux::SupportHardwareSingleStepping() const {
1079   if (m_arch.GetMachine() == llvm::Triple::arm ||
1080       m_arch.GetMachine() == llvm::Triple::mips64 ||
1081       m_arch.GetMachine() == llvm::Triple::mips64el ||
1082       m_arch.GetMachine() == llvm::Triple::mips ||
1083       m_arch.GetMachine() == llvm::Triple::mipsel)
1084     return false;
1085   return true;
1086 }
1087 
1088 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) {
1089   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1090   LLDB_LOG(log, "pid {0}", GetID());
1091 
1092   bool software_single_step = !SupportHardwareSingleStepping();
1093 
1094   if (software_single_step) {
1095     for (const auto &thread : m_threads) {
1096       assert(thread && "thread list should not contain NULL threads");
1097 
1098       const ResumeAction *const action =
1099           resume_actions.GetActionForThread(thread->GetID(), true);
1100       if (action == nullptr)
1101         continue;
1102 
1103       if (action->state == eStateStepping) {
1104         Status error = SetupSoftwareSingleStepping(
1105             static_cast<NativeThreadLinux &>(*thread));
1106         if (error.Fail())
1107           return error;
1108       }
1109     }
1110   }
1111 
1112   for (const auto &thread : m_threads) {
1113     assert(thread && "thread list should not contain NULL threads");
1114 
1115     const ResumeAction *const action =
1116         resume_actions.GetActionForThread(thread->GetID(), true);
1117 
1118     if (action == nullptr) {
1119       LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(),
1120                thread->GetID());
1121       continue;
1122     }
1123 
1124     LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}",
1125              action->state, GetID(), thread->GetID());
1126 
1127     switch (action->state) {
1128     case eStateRunning:
1129     case eStateStepping: {
1130       // Run the thread, possibly feeding it the signal.
1131       const int signo = action->signal;
1132       ResumeThread(static_cast<NativeThreadLinux &>(*thread), action->state,
1133                    signo);
1134       break;
1135     }
1136 
1137     case eStateSuspended:
1138     case eStateStopped:
1139       llvm_unreachable("Unexpected state");
1140 
1141     default:
1142       return Status("NativeProcessLinux::%s (): unexpected state %s specified "
1143                     "for pid %" PRIu64 ", tid %" PRIu64,
1144                     __FUNCTION__, StateAsCString(action->state), GetID(),
1145                     thread->GetID());
1146     }
1147   }
1148 
1149   return Status();
1150 }
1151 
1152 Status NativeProcessLinux::Halt() {
1153   Status error;
1154 
1155   if (kill(GetID(), SIGSTOP) != 0)
1156     error.SetErrorToErrno();
1157 
1158   return error;
1159 }
1160 
1161 Status NativeProcessLinux::Detach() {
1162   Status error;
1163 
1164   // Stop monitoring the inferior.
1165   m_sigchld_handle.reset();
1166 
1167   // Tell ptrace to detach from the process.
1168   if (GetID() == LLDB_INVALID_PROCESS_ID)
1169     return error;
1170 
1171   for (const auto &thread : m_threads) {
1172     Status e = Detach(thread->GetID());
1173     if (e.Fail())
1174       error =
1175           e; // Save the error, but still attempt to detach from other threads.
1176   }
1177 
1178   m_processor_trace_monitor.clear();
1179   m_pt_proces_trace_id = LLDB_INVALID_UID;
1180 
1181   return error;
1182 }
1183 
1184 Status NativeProcessLinux::Signal(int signo) {
1185   Status error;
1186 
1187   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1188   LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo,
1189            Host::GetSignalAsCString(signo), GetID());
1190 
1191   if (kill(GetID(), signo))
1192     error.SetErrorToErrno();
1193 
1194   return error;
1195 }
1196 
1197 Status NativeProcessLinux::Interrupt() {
1198   // Pick a running thread (or if none, a not-dead stopped thread) as
1199   // the chosen thread that will be the stop-reason thread.
1200   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1201 
1202   NativeThreadProtocol *running_thread = nullptr;
1203   NativeThreadProtocol *stopped_thread = nullptr;
1204 
1205   LLDB_LOG(log, "selecting running thread for interrupt target");
1206   for (const auto &thread : m_threads) {
1207     // If we have a running or stepping thread, we'll call that the
1208     // target of the interrupt.
1209     const auto thread_state = thread->GetState();
1210     if (thread_state == eStateRunning || thread_state == eStateStepping) {
1211       running_thread = thread.get();
1212       break;
1213     } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) {
1214       // Remember the first non-dead stopped thread.  We'll use that as a backup
1215       // if there are no running threads.
1216       stopped_thread = thread.get();
1217     }
1218   }
1219 
1220   if (!running_thread && !stopped_thread) {
1221     Status error("found no running/stepping or live stopped threads as target "
1222                  "for interrupt");
1223     LLDB_LOG(log, "skipping due to error: {0}", error);
1224 
1225     return error;
1226   }
1227 
1228   NativeThreadProtocol *deferred_signal_thread =
1229       running_thread ? running_thread : stopped_thread;
1230 
1231   LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(),
1232            running_thread ? "running" : "stopped",
1233            deferred_signal_thread->GetID());
1234 
1235   StopRunningThreads(deferred_signal_thread->GetID());
1236 
1237   return Status();
1238 }
1239 
1240 Status NativeProcessLinux::Kill() {
1241   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1242   LLDB_LOG(log, "pid {0}", GetID());
1243 
1244   Status error;
1245 
1246   switch (m_state) {
1247   case StateType::eStateInvalid:
1248   case StateType::eStateExited:
1249   case StateType::eStateCrashed:
1250   case StateType::eStateDetached:
1251   case StateType::eStateUnloaded:
1252     // Nothing to do - the process is already dead.
1253     LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(),
1254              m_state);
1255     return error;
1256 
1257   case StateType::eStateConnected:
1258   case StateType::eStateAttaching:
1259   case StateType::eStateLaunching:
1260   case StateType::eStateStopped:
1261   case StateType::eStateRunning:
1262   case StateType::eStateStepping:
1263   case StateType::eStateSuspended:
1264     // We can try to kill a process in these states.
1265     break;
1266   }
1267 
1268   if (kill(GetID(), SIGKILL) != 0) {
1269     error.SetErrorToErrno();
1270     return error;
1271   }
1272 
1273   return error;
1274 }
1275 
1276 static Status
1277 ParseMemoryRegionInfoFromProcMapsLine(llvm::StringRef &maps_line,
1278                                       MemoryRegionInfo &memory_region_info) {
1279   memory_region_info.Clear();
1280 
1281   StringExtractor line_extractor(maps_line);
1282 
1283   // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode
1284   // pathname
1285   // perms: rwxp   (letter is present if set, '-' if not, final character is
1286   // p=private, s=shared).
1287 
1288   // Parse out the starting address
1289   lldb::addr_t start_address = line_extractor.GetHexMaxU64(false, 0);
1290 
1291   // Parse out hyphen separating start and end address from range.
1292   if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != '-'))
1293     return Status(
1294         "malformed /proc/{pid}/maps entry, missing dash between address range");
1295 
1296   // Parse out the ending address
1297   lldb::addr_t end_address = line_extractor.GetHexMaxU64(false, start_address);
1298 
1299   // Parse out the space after the address.
1300   if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != ' '))
1301     return Status(
1302         "malformed /proc/{pid}/maps entry, missing space after range");
1303 
1304   // Save the range.
1305   memory_region_info.GetRange().SetRangeBase(start_address);
1306   memory_region_info.GetRange().SetRangeEnd(end_address);
1307 
1308   // Any memory region in /proc/{pid}/maps is by definition mapped into the
1309   // process.
1310   memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes);
1311 
1312   // Parse out each permission entry.
1313   if (line_extractor.GetBytesLeft() < 4)
1314     return Status("malformed /proc/{pid}/maps entry, missing some portion of "
1315                   "permissions");
1316 
1317   // Handle read permission.
1318   const char read_perm_char = line_extractor.GetChar();
1319   if (read_perm_char == 'r')
1320     memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eYes);
1321   else if (read_perm_char == '-')
1322     memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1323   else
1324     return Status("unexpected /proc/{pid}/maps read permission char");
1325 
1326   // Handle write permission.
1327   const char write_perm_char = line_extractor.GetChar();
1328   if (write_perm_char == 'w')
1329     memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eYes);
1330   else if (write_perm_char == '-')
1331     memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1332   else
1333     return Status("unexpected /proc/{pid}/maps write permission char");
1334 
1335   // Handle execute permission.
1336   const char exec_perm_char = line_extractor.GetChar();
1337   if (exec_perm_char == 'x')
1338     memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eYes);
1339   else if (exec_perm_char == '-')
1340     memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1341   else
1342     return Status("unexpected /proc/{pid}/maps exec permission char");
1343 
1344   line_extractor.GetChar();              // Read the private bit
1345   line_extractor.SkipSpaces();           // Skip the separator
1346   line_extractor.GetHexMaxU64(false, 0); // Read the offset
1347   line_extractor.GetHexMaxU64(false, 0); // Read the major device number
1348   line_extractor.GetChar();              // Read the device id separator
1349   line_extractor.GetHexMaxU64(false, 0); // Read the major device number
1350   line_extractor.SkipSpaces();           // Skip the separator
1351   line_extractor.GetU64(0, 10);          // Read the inode number
1352 
1353   line_extractor.SkipSpaces();
1354   const char *name = line_extractor.Peek();
1355   if (name)
1356     memory_region_info.SetName(name);
1357 
1358   return Status();
1359 }
1360 
1361 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr,
1362                                                MemoryRegionInfo &range_info) {
1363   // FIXME review that the final memory region returned extends to the end of
1364   // the virtual address space,
1365   // with no perms if it is not mapped.
1366 
1367   // Use an approach that reads memory regions from /proc/{pid}/maps.
1368   // Assume proc maps entries are in ascending order.
1369   // FIXME assert if we find differently.
1370 
1371   if (m_supports_mem_region == LazyBool::eLazyBoolNo) {
1372     // We're done.
1373     return Status("unsupported");
1374   }
1375 
1376   Status error = PopulateMemoryRegionCache();
1377   if (error.Fail()) {
1378     return error;
1379   }
1380 
1381   lldb::addr_t prev_base_address = 0;
1382 
1383   // FIXME start by finding the last region that is <= target address using
1384   // binary search.  Data is sorted.
1385   // There can be a ton of regions on pthreads apps with lots of threads.
1386   for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end();
1387        ++it) {
1388     MemoryRegionInfo &proc_entry_info = it->first;
1389 
1390     // Sanity check assumption that /proc/{pid}/maps entries are ascending.
1391     assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) &&
1392            "descending /proc/pid/maps entries detected, unexpected");
1393     prev_base_address = proc_entry_info.GetRange().GetRangeBase();
1394     UNUSED_IF_ASSERT_DISABLED(prev_base_address);
1395 
1396     // If the target address comes before this entry, indicate distance to next
1397     // region.
1398     if (load_addr < proc_entry_info.GetRange().GetRangeBase()) {
1399       range_info.GetRange().SetRangeBase(load_addr);
1400       range_info.GetRange().SetByteSize(
1401           proc_entry_info.GetRange().GetRangeBase() - load_addr);
1402       range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1403       range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1404       range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1405       range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1406 
1407       return error;
1408     } else if (proc_entry_info.GetRange().Contains(load_addr)) {
1409       // The target address is within the memory region we're processing here.
1410       range_info = proc_entry_info;
1411       return error;
1412     }
1413 
1414     // The target memory address comes somewhere after the region we just
1415     // parsed.
1416   }
1417 
1418   // If we made it here, we didn't find an entry that contained the given
1419   // address. Return the
1420   // load_addr as start and the amount of bytes betwwen load address and the end
1421   // of the memory as
1422   // size.
1423   range_info.GetRange().SetRangeBase(load_addr);
1424   range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS);
1425   range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1426   range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1427   range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1428   range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1429   return error;
1430 }
1431 
1432 Status NativeProcessLinux::PopulateMemoryRegionCache() {
1433   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1434 
1435   // If our cache is empty, pull the latest.  There should always be at least
1436   // one memory region if memory region handling is supported.
1437   if (!m_mem_region_cache.empty()) {
1438     LLDB_LOG(log, "reusing {0} cached memory region entries",
1439              m_mem_region_cache.size());
1440     return Status();
1441   }
1442 
1443   auto BufferOrError = getProcFile(GetID(), "maps");
1444   if (!BufferOrError) {
1445     m_supports_mem_region = LazyBool::eLazyBoolNo;
1446     return BufferOrError.getError();
1447   }
1448   StringRef Rest = BufferOrError.get()->getBuffer();
1449   while (! Rest.empty()) {
1450     StringRef Line;
1451     std::tie(Line, Rest) = Rest.split('\n');
1452     MemoryRegionInfo info;
1453     const Status parse_error =
1454         ParseMemoryRegionInfoFromProcMapsLine(Line, info);
1455     if (parse_error.Fail()) {
1456       LLDB_LOG(log, "failed to parse proc maps line '{0}': {1}", Line,
1457                parse_error);
1458       m_supports_mem_region = LazyBool::eLazyBoolNo;
1459       return parse_error;
1460     }
1461     m_mem_region_cache.emplace_back(
1462         info, FileSpec(info.GetName().GetCString(), true));
1463   }
1464 
1465   if (m_mem_region_cache.empty()) {
1466     // No entries after attempting to read them.  This shouldn't happen if
1467     // /proc/{pid}/maps is supported. Assume we don't support map entries
1468     // via procfs.
1469     m_supports_mem_region = LazyBool::eLazyBoolNo;
1470     LLDB_LOG(log,
1471              "failed to find any procfs maps entries, assuming no support "
1472              "for memory region metadata retrieval");
1473     return Status("not supported");
1474   }
1475 
1476   LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps",
1477            m_mem_region_cache.size(), GetID());
1478 
1479   // We support memory retrieval, remember that.
1480   m_supports_mem_region = LazyBool::eLazyBoolYes;
1481   return Status();
1482 }
1483 
1484 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) {
1485   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1486   LLDB_LOG(log, "newBumpId={0}", newBumpId);
1487   LLDB_LOG(log, "clearing {0} entries from memory region cache",
1488            m_mem_region_cache.size());
1489   m_mem_region_cache.clear();
1490 }
1491 
1492 Status NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions,
1493                                           lldb::addr_t &addr) {
1494 // FIXME implementing this requires the equivalent of
1495 // InferiorCallPOSIX::InferiorCallMmap, which depends on
1496 // functional ThreadPlans working with Native*Protocol.
1497 #if 1
1498   return Status("not implemented yet");
1499 #else
1500   addr = LLDB_INVALID_ADDRESS;
1501 
1502   unsigned prot = 0;
1503   if (permissions & lldb::ePermissionsReadable)
1504     prot |= eMmapProtRead;
1505   if (permissions & lldb::ePermissionsWritable)
1506     prot |= eMmapProtWrite;
1507   if (permissions & lldb::ePermissionsExecutable)
1508     prot |= eMmapProtExec;
1509 
1510   // TODO implement this directly in NativeProcessLinux
1511   // (and lift to NativeProcessPOSIX if/when that class is
1512   // refactored out).
1513   if (InferiorCallMmap(this, addr, 0, size, prot,
1514                        eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
1515     m_addr_to_mmap_size[addr] = size;
1516     return Status();
1517   } else {
1518     addr = LLDB_INVALID_ADDRESS;
1519     return Status("unable to allocate %" PRIu64
1520                   " bytes of memory with permissions %s",
1521                   size, GetPermissionsAsCString(permissions));
1522   }
1523 #endif
1524 }
1525 
1526 Status NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) {
1527   // FIXME see comments in AllocateMemory - required lower-level
1528   // bits not in place yet (ThreadPlans)
1529   return Status("not implemented");
1530 }
1531 
1532 lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress() {
1533   // punt on this for now
1534   return LLDB_INVALID_ADDRESS;
1535 }
1536 
1537 size_t NativeProcessLinux::UpdateThreads() {
1538   // The NativeProcessLinux monitoring threads are always up to date
1539   // with respect to thread state and they keep the thread list
1540   // populated properly. All this method needs to do is return the
1541   // thread count.
1542   return m_threads.size();
1543 }
1544 
1545 bool NativeProcessLinux::GetArchitecture(ArchSpec &arch) const {
1546   arch = m_arch;
1547   return true;
1548 }
1549 
1550 Status NativeProcessLinux::GetSoftwareBreakpointPCOffset(
1551     uint32_t &actual_opcode_size) {
1552   // FIXME put this behind a breakpoint protocol class that can be
1553   // set per architecture.  Need ARM, MIPS support here.
1554   static const uint8_t g_i386_opcode[] = {0xCC};
1555   static const uint8_t g_s390x_opcode[] = {0x00, 0x01};
1556   static const uint8_t g_ppc64le_opcode[] = {0x08, 0x00, 0xe0, 0x7f}; // trap
1557 
1558   switch (m_arch.GetMachine()) {
1559   case llvm::Triple::x86:
1560   case llvm::Triple::x86_64:
1561     actual_opcode_size = static_cast<uint32_t>(sizeof(g_i386_opcode));
1562     return Status();
1563 
1564   case llvm::Triple::systemz:
1565     actual_opcode_size = static_cast<uint32_t>(sizeof(g_s390x_opcode));
1566     return Status();
1567 
1568   case llvm::Triple::ppc64le:
1569     actual_opcode_size = static_cast<uint32_t>(sizeof(g_ppc64le_opcode));
1570     return Status();
1571 
1572   case llvm::Triple::arm:
1573   case llvm::Triple::aarch64:
1574   case llvm::Triple::mips64:
1575   case llvm::Triple::mips64el:
1576   case llvm::Triple::mips:
1577   case llvm::Triple::mipsel:
1578     // On these architectures the PC don't get updated for breakpoint hits
1579     actual_opcode_size = 0;
1580     return Status();
1581 
1582   default:
1583     assert(false && "CPU type not supported!");
1584     return Status("CPU type not supported");
1585   }
1586 }
1587 
1588 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size,
1589                                          bool hardware) {
1590   if (hardware)
1591     return SetHardwareBreakpoint(addr, size);
1592   else
1593     return SetSoftwareBreakpoint(addr, size);
1594 }
1595 
1596 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) {
1597   if (hardware)
1598     return RemoveHardwareBreakpoint(addr);
1599   else
1600     return NativeProcessProtocol::RemoveBreakpoint(addr);
1601 }
1602 
1603 Status NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(
1604     size_t trap_opcode_size_hint, size_t &actual_opcode_size,
1605     const uint8_t *&trap_opcode_bytes) {
1606   // FIXME put this behind a breakpoint protocol class that can be set per
1607   // architecture.  Need MIPS support here.
1608   static const uint8_t g_aarch64_opcode[] = {0x00, 0x00, 0x20, 0xd4};
1609   // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
1610   // linux kernel does otherwise.
1611   static const uint8_t g_arm_breakpoint_opcode[] = {0xf0, 0x01, 0xf0, 0xe7};
1612   static const uint8_t g_i386_opcode[] = {0xCC};
1613   static const uint8_t g_mips64_opcode[] = {0x00, 0x00, 0x00, 0x0d};
1614   static const uint8_t g_mips64el_opcode[] = {0x0d, 0x00, 0x00, 0x00};
1615   static const uint8_t g_s390x_opcode[] = {0x00, 0x01};
1616   static const uint8_t g_thumb_breakpoint_opcode[] = {0x01, 0xde};
1617   static const uint8_t g_ppc64le_opcode[] = {0x08, 0x00, 0xe0, 0x7f}; // trap
1618 
1619   switch (m_arch.GetMachine()) {
1620   case llvm::Triple::aarch64:
1621     trap_opcode_bytes = g_aarch64_opcode;
1622     actual_opcode_size = sizeof(g_aarch64_opcode);
1623     return Status();
1624 
1625   case llvm::Triple::arm:
1626     switch (trap_opcode_size_hint) {
1627     case 2:
1628       trap_opcode_bytes = g_thumb_breakpoint_opcode;
1629       actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
1630       return Status();
1631     case 4:
1632       trap_opcode_bytes = g_arm_breakpoint_opcode;
1633       actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
1634       return Status();
1635     default:
1636       assert(false && "Unrecognised trap opcode size hint!");
1637       return Status("Unrecognised trap opcode size hint!");
1638     }
1639 
1640   case llvm::Triple::x86:
1641   case llvm::Triple::x86_64:
1642     trap_opcode_bytes = g_i386_opcode;
1643     actual_opcode_size = sizeof(g_i386_opcode);
1644     return Status();
1645 
1646   case llvm::Triple::mips:
1647   case llvm::Triple::mips64:
1648     trap_opcode_bytes = g_mips64_opcode;
1649     actual_opcode_size = sizeof(g_mips64_opcode);
1650     return Status();
1651 
1652   case llvm::Triple::mipsel:
1653   case llvm::Triple::mips64el:
1654     trap_opcode_bytes = g_mips64el_opcode;
1655     actual_opcode_size = sizeof(g_mips64el_opcode);
1656     return Status();
1657 
1658   case llvm::Triple::systemz:
1659     trap_opcode_bytes = g_s390x_opcode;
1660     actual_opcode_size = sizeof(g_s390x_opcode);
1661     return Status();
1662 
1663   case llvm::Triple::ppc64le:
1664     trap_opcode_bytes = g_ppc64le_opcode;
1665     actual_opcode_size = sizeof(g_ppc64le_opcode);
1666     return Status();
1667 
1668   default:
1669     assert(false && "CPU type not supported!");
1670     return Status("CPU type not supported");
1671   }
1672 }
1673 
1674 #if 0
1675 ProcessMessage::CrashReason
1676 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
1677 {
1678     ProcessMessage::CrashReason reason;
1679     assert(info->si_signo == SIGSEGV);
1680 
1681     reason = ProcessMessage::eInvalidCrashReason;
1682 
1683     switch (info->si_code)
1684     {
1685     default:
1686         assert(false && "unexpected si_code for SIGSEGV");
1687         break;
1688     case SI_KERNEL:
1689         // Linux will occasionally send spurious SI_KERNEL codes.
1690         // (this is poorly documented in sigaction)
1691         // One way to get this is via unaligned SIMD loads.
1692         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
1693         break;
1694     case SEGV_MAPERR:
1695         reason = ProcessMessage::eInvalidAddress;
1696         break;
1697     case SEGV_ACCERR:
1698         reason = ProcessMessage::ePrivilegedAddress;
1699         break;
1700     }
1701 
1702     return reason;
1703 }
1704 #endif
1705 
1706 #if 0
1707 ProcessMessage::CrashReason
1708 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
1709 {
1710     ProcessMessage::CrashReason reason;
1711     assert(info->si_signo == SIGILL);
1712 
1713     reason = ProcessMessage::eInvalidCrashReason;
1714 
1715     switch (info->si_code)
1716     {
1717     default:
1718         assert(false && "unexpected si_code for SIGILL");
1719         break;
1720     case ILL_ILLOPC:
1721         reason = ProcessMessage::eIllegalOpcode;
1722         break;
1723     case ILL_ILLOPN:
1724         reason = ProcessMessage::eIllegalOperand;
1725         break;
1726     case ILL_ILLADR:
1727         reason = ProcessMessage::eIllegalAddressingMode;
1728         break;
1729     case ILL_ILLTRP:
1730         reason = ProcessMessage::eIllegalTrap;
1731         break;
1732     case ILL_PRVOPC:
1733         reason = ProcessMessage::ePrivilegedOpcode;
1734         break;
1735     case ILL_PRVREG:
1736         reason = ProcessMessage::ePrivilegedRegister;
1737         break;
1738     case ILL_COPROC:
1739         reason = ProcessMessage::eCoprocessorError;
1740         break;
1741     case ILL_BADSTK:
1742         reason = ProcessMessage::eInternalStackError;
1743         break;
1744     }
1745 
1746     return reason;
1747 }
1748 #endif
1749 
1750 #if 0
1751 ProcessMessage::CrashReason
1752 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
1753 {
1754     ProcessMessage::CrashReason reason;
1755     assert(info->si_signo == SIGFPE);
1756 
1757     reason = ProcessMessage::eInvalidCrashReason;
1758 
1759     switch (info->si_code)
1760     {
1761     default:
1762         assert(false && "unexpected si_code for SIGFPE");
1763         break;
1764     case FPE_INTDIV:
1765         reason = ProcessMessage::eIntegerDivideByZero;
1766         break;
1767     case FPE_INTOVF:
1768         reason = ProcessMessage::eIntegerOverflow;
1769         break;
1770     case FPE_FLTDIV:
1771         reason = ProcessMessage::eFloatDivideByZero;
1772         break;
1773     case FPE_FLTOVF:
1774         reason = ProcessMessage::eFloatOverflow;
1775         break;
1776     case FPE_FLTUND:
1777         reason = ProcessMessage::eFloatUnderflow;
1778         break;
1779     case FPE_FLTRES:
1780         reason = ProcessMessage::eFloatInexactResult;
1781         break;
1782     case FPE_FLTINV:
1783         reason = ProcessMessage::eFloatInvalidOperation;
1784         break;
1785     case FPE_FLTSUB:
1786         reason = ProcessMessage::eFloatSubscriptRange;
1787         break;
1788     }
1789 
1790     return reason;
1791 }
1792 #endif
1793 
1794 #if 0
1795 ProcessMessage::CrashReason
1796 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
1797 {
1798     ProcessMessage::CrashReason reason;
1799     assert(info->si_signo == SIGBUS);
1800 
1801     reason = ProcessMessage::eInvalidCrashReason;
1802 
1803     switch (info->si_code)
1804     {
1805     default:
1806         assert(false && "unexpected si_code for SIGBUS");
1807         break;
1808     case BUS_ADRALN:
1809         reason = ProcessMessage::eIllegalAlignment;
1810         break;
1811     case BUS_ADRERR:
1812         reason = ProcessMessage::eIllegalAddress;
1813         break;
1814     case BUS_OBJERR:
1815         reason = ProcessMessage::eHardwareError;
1816         break;
1817     }
1818 
1819     return reason;
1820 }
1821 #endif
1822 
1823 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size,
1824                                       size_t &bytes_read) {
1825   if (ProcessVmReadvSupported()) {
1826     // The process_vm_readv path is about 50 times faster than ptrace api. We
1827     // want to use
1828     // this syscall if it is supported.
1829 
1830     const ::pid_t pid = GetID();
1831 
1832     struct iovec local_iov, remote_iov;
1833     local_iov.iov_base = buf;
1834     local_iov.iov_len = size;
1835     remote_iov.iov_base = reinterpret_cast<void *>(addr);
1836     remote_iov.iov_len = size;
1837 
1838     bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
1839     const bool success = bytes_read == size;
1840 
1841     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1842     LLDB_LOG(log,
1843              "using process_vm_readv to read {0} bytes from inferior "
1844              "address {1:x}: {2}",
1845              size, addr, success ? "Success" : llvm::sys::StrError(errno));
1846 
1847     if (success)
1848       return Status();
1849     // else the call failed for some reason, let's retry the read using ptrace
1850     // api.
1851   }
1852 
1853   unsigned char *dst = static_cast<unsigned char *>(buf);
1854   size_t remainder;
1855   long data;
1856 
1857   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1858   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1859 
1860   for (bytes_read = 0; bytes_read < size; bytes_read += remainder) {
1861     Status error = NativeProcessLinux::PtraceWrapper(
1862         PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data);
1863     if (error.Fail())
1864       return error;
1865 
1866     remainder = size - bytes_read;
1867     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1868 
1869     // Copy the data into our buffer
1870     memcpy(dst, &data, remainder);
1871 
1872     LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1873     addr += k_ptrace_word_size;
1874     dst += k_ptrace_word_size;
1875   }
1876   return Status();
1877 }
1878 
1879 Status NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf,
1880                                                  size_t size,
1881                                                  size_t &bytes_read) {
1882   Status error = ReadMemory(addr, buf, size, bytes_read);
1883   if (error.Fail())
1884     return error;
1885   return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size);
1886 }
1887 
1888 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf,
1889                                        size_t size, size_t &bytes_written) {
1890   const unsigned char *src = static_cast<const unsigned char *>(buf);
1891   size_t remainder;
1892   Status error;
1893 
1894   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1895   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1896 
1897   for (bytes_written = 0; bytes_written < size; bytes_written += remainder) {
1898     remainder = size - bytes_written;
1899     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1900 
1901     if (remainder == k_ptrace_word_size) {
1902       unsigned long data = 0;
1903       memcpy(&data, src, k_ptrace_word_size);
1904 
1905       LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1906       error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(),
1907                                                 (void *)addr, (void *)data);
1908       if (error.Fail())
1909         return error;
1910     } else {
1911       unsigned char buff[8];
1912       size_t bytes_read;
1913       error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
1914       if (error.Fail())
1915         return error;
1916 
1917       memcpy(buff, src, remainder);
1918 
1919       size_t bytes_written_rec;
1920       error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
1921       if (error.Fail())
1922         return error;
1923 
1924       LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src,
1925                *(unsigned long *)buff);
1926     }
1927 
1928     addr += k_ptrace_word_size;
1929     src += k_ptrace_word_size;
1930   }
1931   return error;
1932 }
1933 
1934 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) {
1935   return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
1936 }
1937 
1938 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid,
1939                                            unsigned long *message) {
1940   return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
1941 }
1942 
1943 Status NativeProcessLinux::Detach(lldb::tid_t tid) {
1944   if (tid == LLDB_INVALID_THREAD_ID)
1945     return Status();
1946 
1947   return PtraceWrapper(PTRACE_DETACH, tid);
1948 }
1949 
1950 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) {
1951   for (const auto &thread : m_threads) {
1952     assert(thread && "thread list should not contain NULL threads");
1953     if (thread->GetID() == thread_id) {
1954       // We have this thread.
1955       return true;
1956     }
1957   }
1958 
1959   // We don't have this thread.
1960   return false;
1961 }
1962 
1963 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) {
1964   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1965   LLDB_LOG(log, "tid: {0})", thread_id);
1966 
1967   bool found = false;
1968   for (auto it = m_threads.begin(); it != m_threads.end(); ++it) {
1969     if (*it && ((*it)->GetID() == thread_id)) {
1970       m_threads.erase(it);
1971       found = true;
1972       break;
1973     }
1974   }
1975 
1976   if (found)
1977     StopTracingForThread(thread_id);
1978   SignalIfAllThreadsStopped();
1979   return found;
1980 }
1981 
1982 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id) {
1983   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD));
1984   LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id);
1985 
1986   assert(!HasThreadNoLock(thread_id) &&
1987          "attempted to add a thread by id that already exists");
1988 
1989   // If this is the first thread, save it as the current thread
1990   if (m_threads.empty())
1991     SetCurrentThreadID(thread_id);
1992 
1993   m_threads.push_back(llvm::make_unique<NativeThreadLinux>(*this, thread_id));
1994 
1995   if (m_pt_proces_trace_id != LLDB_INVALID_UID) {
1996     auto traceMonitor = ProcessorTraceMonitor::Create(
1997         GetID(), thread_id, m_pt_process_trace_config, true);
1998     if (traceMonitor) {
1999       m_pt_traced_thread_group.insert(thread_id);
2000       m_processor_trace_monitor.insert(
2001           std::make_pair(thread_id, std::move(*traceMonitor)));
2002     } else {
2003       LLDB_LOG(log, "failed to start trace on thread {0}", thread_id);
2004       Status error(traceMonitor.takeError());
2005       LLDB_LOG(log, "error {0}", error);
2006     }
2007   }
2008 
2009   return static_cast<NativeThreadLinux &>(*m_threads.back());
2010 }
2011 
2012 Status
2013 NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread) {
2014   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
2015 
2016   Status error;
2017 
2018   // Find out the size of a breakpoint (might depend on where we are in the
2019   // code).
2020   NativeRegisterContextSP context_sp = thread.GetRegisterContext();
2021   if (!context_sp) {
2022     error.SetErrorString("cannot get a NativeRegisterContext for the thread");
2023     LLDB_LOG(log, "failed: {0}", error);
2024     return error;
2025   }
2026 
2027   uint32_t breakpoint_size = 0;
2028   error = GetSoftwareBreakpointPCOffset(breakpoint_size);
2029   if (error.Fail()) {
2030     LLDB_LOG(log, "GetBreakpointSize() failed: {0}", error);
2031     return error;
2032   } else
2033     LLDB_LOG(log, "breakpoint size: {0}", breakpoint_size);
2034 
2035   // First try probing for a breakpoint at a software breakpoint location: PC -
2036   // breakpoint size.
2037   const lldb::addr_t initial_pc_addr =
2038       context_sp->GetPCfromBreakpointLocation();
2039   lldb::addr_t breakpoint_addr = initial_pc_addr;
2040   if (breakpoint_size > 0) {
2041     // Do not allow breakpoint probe to wrap around.
2042     if (breakpoint_addr >= breakpoint_size)
2043       breakpoint_addr -= breakpoint_size;
2044   }
2045 
2046   // Check if we stopped because of a breakpoint.
2047   NativeBreakpointSP breakpoint_sp;
2048   error = m_breakpoint_list.GetBreakpoint(breakpoint_addr, breakpoint_sp);
2049   if (!error.Success() || !breakpoint_sp) {
2050     // We didn't find one at a software probe location.  Nothing to do.
2051     LLDB_LOG(log,
2052              "pid {0} no lldb breakpoint found at current pc with "
2053              "adjustment: {1}",
2054              GetID(), breakpoint_addr);
2055     return Status();
2056   }
2057 
2058   // If the breakpoint is not a software breakpoint, nothing to do.
2059   if (!breakpoint_sp->IsSoftwareBreakpoint()) {
2060     LLDB_LOG(
2061         log,
2062         "pid {0} breakpoint found at {1:x}, not software, nothing to adjust",
2063         GetID(), breakpoint_addr);
2064     return Status();
2065   }
2066 
2067   //
2068   // We have a software breakpoint and need to adjust the PC.
2069   //
2070 
2071   // Sanity check.
2072   if (breakpoint_size == 0) {
2073     // Nothing to do!  How did we get here?
2074     LLDB_LOG(log,
2075              "pid {0} breakpoint found at {1:x}, it is software, but the "
2076              "size is zero, nothing to do (unexpected)",
2077              GetID(), breakpoint_addr);
2078     return Status();
2079   }
2080 
2081   // Change the program counter.
2082   LLDB_LOG(log, "pid {0} tid {1}: changing PC from {2:x} to {3:x}", GetID(),
2083            thread.GetID(), initial_pc_addr, breakpoint_addr);
2084 
2085   error = context_sp->SetPC(breakpoint_addr);
2086   if (error.Fail()) {
2087     LLDB_LOG(log, "pid {0} tid {1}: failed to set PC: {2}", GetID(),
2088              thread.GetID(), error);
2089     return error;
2090   }
2091 
2092   return error;
2093 }
2094 
2095 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path,
2096                                                    FileSpec &file_spec) {
2097   Status error = PopulateMemoryRegionCache();
2098   if (error.Fail())
2099     return error;
2100 
2101   FileSpec module_file_spec(module_path, true);
2102 
2103   file_spec.Clear();
2104   for (const auto &it : m_mem_region_cache) {
2105     if (it.second.GetFilename() == module_file_spec.GetFilename()) {
2106       file_spec = it.second;
2107       return Status();
2108     }
2109   }
2110   return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
2111                 module_file_spec.GetFilename().AsCString(), GetID());
2112 }
2113 
2114 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name,
2115                                               lldb::addr_t &load_addr) {
2116   load_addr = LLDB_INVALID_ADDRESS;
2117   Status error = PopulateMemoryRegionCache();
2118   if (error.Fail())
2119     return error;
2120 
2121   FileSpec file(file_name, false);
2122   for (const auto &it : m_mem_region_cache) {
2123     if (it.second == file) {
2124       load_addr = it.first.GetRange().GetRangeBase();
2125       return Status();
2126     }
2127   }
2128   return Status("No load address found for specified file.");
2129 }
2130 
2131 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) {
2132   return static_cast<NativeThreadLinux *>(
2133       NativeProcessProtocol::GetThreadByID(tid));
2134 }
2135 
2136 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread,
2137                                         lldb::StateType state, int signo) {
2138   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2139   LLDB_LOG(log, "tid: {0}", thread.GetID());
2140 
2141   // Before we do the resume below, first check if we have a pending
2142   // stop notification that is currently waiting for
2143   // all threads to stop.  This is potentially a buggy situation since
2144   // we're ostensibly waiting for threads to stop before we send out the
2145   // pending notification, and here we are resuming one before we send
2146   // out the pending stop notification.
2147   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
2148     LLDB_LOG(log,
2149              "about to resume tid {0} per explicit request but we have a "
2150              "pending stop notification (tid {1}) that is actively "
2151              "waiting for this thread to stop. Valid sequence of events?",
2152              thread.GetID(), m_pending_notification_tid);
2153   }
2154 
2155   // Request a resume.  We expect this to be synchronous and the system
2156   // to reflect it is running after this completes.
2157   switch (state) {
2158   case eStateRunning: {
2159     const auto resume_result = thread.Resume(signo);
2160     if (resume_result.Success())
2161       SetState(eStateRunning, true);
2162     return resume_result;
2163   }
2164   case eStateStepping: {
2165     const auto step_result = thread.SingleStep(signo);
2166     if (step_result.Success())
2167       SetState(eStateRunning, true);
2168     return step_result;
2169   }
2170   default:
2171     LLDB_LOG(log, "Unhandled state {0}.", state);
2172     llvm_unreachable("Unhandled state for resume");
2173   }
2174 }
2175 
2176 //===----------------------------------------------------------------------===//
2177 
2178 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) {
2179   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2180   LLDB_LOG(log, "about to process event: (triggering_tid: {0})",
2181            triggering_tid);
2182 
2183   m_pending_notification_tid = triggering_tid;
2184 
2185   // Request a stop for all the thread stops that need to be stopped
2186   // and are not already known to be stopped.
2187   for (const auto &thread : m_threads) {
2188     if (StateIsRunningState(thread->GetState()))
2189       static_cast<NativeThreadLinux *>(thread.get())->RequestStop();
2190   }
2191 
2192   SignalIfAllThreadsStopped();
2193   LLDB_LOG(log, "event processing done");
2194 }
2195 
2196 void NativeProcessLinux::SignalIfAllThreadsStopped() {
2197   if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
2198     return; // No pending notification. Nothing to do.
2199 
2200   for (const auto &thread_sp : m_threads) {
2201     if (StateIsRunningState(thread_sp->GetState()))
2202       return; // Some threads are still running. Don't signal yet.
2203   }
2204 
2205   // We have a pending notification and all threads have stopped.
2206   Log *log(
2207       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
2208 
2209   // Clear any temporary breakpoints we used to implement software single
2210   // stepping.
2211   for (const auto &thread_info : m_threads_stepping_with_breakpoint) {
2212     Status error = RemoveBreakpoint(thread_info.second);
2213     if (error.Fail())
2214       LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}",
2215                thread_info.first, error);
2216   }
2217   m_threads_stepping_with_breakpoint.clear();
2218 
2219   // Notify the delegate about the stop
2220   SetCurrentThreadID(m_pending_notification_tid);
2221   SetState(StateType::eStateStopped, true);
2222   m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
2223 }
2224 
2225 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) {
2226   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2227   LLDB_LOG(log, "tid: {0}", thread.GetID());
2228 
2229   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID &&
2230       StateIsRunningState(thread.GetState())) {
2231     // We will need to wait for this new thread to stop as well before firing
2232     // the
2233     // notification.
2234     thread.RequestStop();
2235   }
2236 }
2237 
2238 void NativeProcessLinux::SigchldHandler() {
2239   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
2240   // Process all pending waitpid notifications.
2241   while (true) {
2242     int status = -1;
2243     ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, -1, &status,
2244                                           __WALL | __WNOTHREAD | WNOHANG);
2245 
2246     if (wait_pid == 0)
2247       break; // We are done.
2248 
2249     if (wait_pid == -1) {
2250       Status error(errno, eErrorTypePOSIX);
2251       LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error);
2252       break;
2253     }
2254 
2255     WaitStatus wait_status = WaitStatus::Decode(status);
2256     bool exited = wait_status.type == WaitStatus::Exit ||
2257                   (wait_status.type == WaitStatus::Signal &&
2258                    wait_pid == static_cast<::pid_t>(GetID()));
2259 
2260     LLDB_LOG(
2261         log,
2262         "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}",
2263         wait_pid, wait_status, exited);
2264 
2265     MonitorCallback(wait_pid, exited, wait_status);
2266   }
2267 }
2268 
2269 // Wrapper for ptrace to catch errors and log calls.
2270 // Note that ptrace sets errno on error because -1 can be a valid result (i.e.
2271 // for PTRACE_PEEK*)
2272 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr,
2273                                          void *data, size_t data_size,
2274                                          long *result) {
2275   Status error;
2276   long int ret;
2277 
2278   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2279 
2280   PtraceDisplayBytes(req, data, data_size);
2281 
2282   errno = 0;
2283   if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
2284     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
2285                  *(unsigned int *)addr, data);
2286   else
2287     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
2288                  addr, data);
2289 
2290   if (ret == -1)
2291     error.SetErrorToErrno();
2292 
2293   if (result)
2294     *result = ret;
2295 
2296   LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data,
2297            data_size, ret);
2298 
2299   PtraceDisplayBytes(req, data, data_size);
2300 
2301   if (error.Fail())
2302     LLDB_LOG(log, "ptrace() failed: {0}", error);
2303 
2304   return error;
2305 }
2306 
2307 llvm::Expected<ProcessorTraceMonitor &>
2308 NativeProcessLinux::LookupProcessorTraceInstance(lldb::user_id_t traceid,
2309                                                  lldb::tid_t thread) {
2310   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2311   if (thread == LLDB_INVALID_THREAD_ID && traceid == m_pt_proces_trace_id) {
2312     LLDB_LOG(log, "thread not specified: {0}", traceid);
2313     return Status("tracing not active thread not specified").ToError();
2314   }
2315 
2316   for (auto& iter : m_processor_trace_monitor) {
2317     if (traceid == iter.second->GetTraceID() &&
2318         (thread == iter.first || thread == LLDB_INVALID_THREAD_ID))
2319       return *(iter.second);
2320   }
2321 
2322   LLDB_LOG(log, "traceid not being traced: {0}", traceid);
2323   return Status("tracing not active for this thread").ToError();
2324 }
2325 
2326 Status NativeProcessLinux::GetMetaData(lldb::user_id_t traceid,
2327                                        lldb::tid_t thread,
2328                                        llvm::MutableArrayRef<uint8_t> &buffer,
2329                                        size_t offset) {
2330   TraceOptions trace_options;
2331   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2332   Status error;
2333 
2334   LLDB_LOG(log, "traceid {0}", traceid);
2335 
2336   auto perf_monitor = LookupProcessorTraceInstance(traceid, thread);
2337   if (!perf_monitor) {
2338     LLDB_LOG(log, "traceid not being traced: {0}", traceid);
2339     buffer = buffer.slice(buffer.size());
2340     error = perf_monitor.takeError();
2341     return error;
2342   }
2343   return (*perf_monitor).ReadPerfTraceData(buffer, offset);
2344 }
2345 
2346 Status NativeProcessLinux::GetData(lldb::user_id_t traceid, lldb::tid_t thread,
2347                                    llvm::MutableArrayRef<uint8_t> &buffer,
2348                                    size_t offset) {
2349   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2350   Status error;
2351 
2352   LLDB_LOG(log, "traceid {0}", traceid);
2353 
2354   auto perf_monitor = LookupProcessorTraceInstance(traceid, thread);
2355   if (!perf_monitor) {
2356     LLDB_LOG(log, "traceid not being traced: {0}", traceid);
2357     buffer = buffer.slice(buffer.size());
2358     error = perf_monitor.takeError();
2359     return error;
2360   }
2361   return (*perf_monitor).ReadPerfTraceAux(buffer, offset);
2362 }
2363 
2364 Status NativeProcessLinux::GetTraceConfig(lldb::user_id_t traceid,
2365                                           TraceOptions &config) {
2366   Status error;
2367   if (config.getThreadID() == LLDB_INVALID_THREAD_ID &&
2368       m_pt_proces_trace_id == traceid) {
2369     if (m_pt_proces_trace_id == LLDB_INVALID_UID) {
2370       error.SetErrorString("tracing not active for this process");
2371       return error;
2372     }
2373     config = m_pt_process_trace_config;
2374   } else {
2375     auto perf_monitor =
2376         LookupProcessorTraceInstance(traceid, config.getThreadID());
2377     if (!perf_monitor) {
2378       error = perf_monitor.takeError();
2379       return error;
2380     }
2381     error = (*perf_monitor).GetTraceConfig(config);
2382   }
2383   return error;
2384 }
2385 
2386 lldb::user_id_t
2387 NativeProcessLinux::StartTraceGroup(const TraceOptions &config,
2388                                            Status &error) {
2389 
2390   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2391   if (config.getType() != TraceType::eTraceTypeProcessorTrace)
2392     return LLDB_INVALID_UID;
2393 
2394   if (m_pt_proces_trace_id != LLDB_INVALID_UID) {
2395     error.SetErrorString("tracing already active on this process");
2396     return m_pt_proces_trace_id;
2397   }
2398 
2399   for (const auto &thread_sp : m_threads) {
2400     if (auto traceInstance = ProcessorTraceMonitor::Create(
2401             GetID(), thread_sp->GetID(), config, true)) {
2402       m_pt_traced_thread_group.insert(thread_sp->GetID());
2403       m_processor_trace_monitor.insert(
2404           std::make_pair(thread_sp->GetID(), std::move(*traceInstance)));
2405     }
2406   }
2407 
2408   m_pt_process_trace_config = config;
2409   error = ProcessorTraceMonitor::GetCPUType(m_pt_process_trace_config);
2410 
2411   // Trace on Complete process will have traceid of 0
2412   m_pt_proces_trace_id = 0;
2413 
2414   LLDB_LOG(log, "Process Trace ID {0}", m_pt_proces_trace_id);
2415   return m_pt_proces_trace_id;
2416 }
2417 
2418 lldb::user_id_t NativeProcessLinux::StartTrace(const TraceOptions &config,
2419                                                Status &error) {
2420   if (config.getType() != TraceType::eTraceTypeProcessorTrace)
2421     return NativeProcessProtocol::StartTrace(config, error);
2422 
2423   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2424 
2425   lldb::tid_t threadid = config.getThreadID();
2426 
2427   if (threadid == LLDB_INVALID_THREAD_ID)
2428     return StartTraceGroup(config, error);
2429 
2430   auto thread_sp = GetThreadByID(threadid);
2431   if (!thread_sp) {
2432     // Thread not tracked by lldb so don't trace.
2433     error.SetErrorString("invalid thread id");
2434     return LLDB_INVALID_UID;
2435   }
2436 
2437   const auto &iter = m_processor_trace_monitor.find(threadid);
2438   if (iter != m_processor_trace_monitor.end()) {
2439     LLDB_LOG(log, "Thread already being traced");
2440     error.SetErrorString("tracing already active on this thread");
2441     return LLDB_INVALID_UID;
2442   }
2443 
2444   auto traceMonitor =
2445       ProcessorTraceMonitor::Create(GetID(), threadid, config, false);
2446   if (!traceMonitor) {
2447     error = traceMonitor.takeError();
2448     LLDB_LOG(log, "error {0}", error);
2449     return LLDB_INVALID_UID;
2450   }
2451   lldb::user_id_t ret_trace_id = (*traceMonitor)->GetTraceID();
2452   m_processor_trace_monitor.insert(
2453       std::make_pair(threadid, std::move(*traceMonitor)));
2454   return ret_trace_id;
2455 }
2456 
2457 Status NativeProcessLinux::StopTracingForThread(lldb::tid_t thread) {
2458   Status error;
2459   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2460   LLDB_LOG(log, "Thread {0}", thread);
2461 
2462   const auto& iter = m_processor_trace_monitor.find(thread);
2463   if (iter == m_processor_trace_monitor.end()) {
2464     error.SetErrorString("tracing not active for this thread");
2465     return error;
2466   }
2467 
2468   if (iter->second->GetTraceID() == m_pt_proces_trace_id) {
2469     // traceid maps to the whole process so we have to erase it from the
2470     // thread group.
2471     LLDB_LOG(log, "traceid maps to process");
2472     m_pt_traced_thread_group.erase(thread);
2473   }
2474   m_processor_trace_monitor.erase(iter);
2475 
2476   return error;
2477 }
2478 
2479 Status NativeProcessLinux::StopTrace(lldb::user_id_t traceid,
2480                                      lldb::tid_t thread) {
2481   Status error;
2482 
2483   TraceOptions trace_options;
2484   trace_options.setThreadID(thread);
2485   error = NativeProcessLinux::GetTraceConfig(traceid, trace_options);
2486 
2487   if (error.Fail())
2488     return error;
2489 
2490   switch (trace_options.getType()) {
2491   case lldb::TraceType::eTraceTypeProcessorTrace:
2492     if (traceid == m_pt_proces_trace_id &&
2493         thread == LLDB_INVALID_THREAD_ID)
2494       StopProcessorTracingOnProcess();
2495     else
2496       error = StopProcessorTracingOnThread(traceid, thread);
2497     break;
2498   default:
2499     error.SetErrorString("trace not supported");
2500     break;
2501   }
2502 
2503   return error;
2504 }
2505 
2506 void NativeProcessLinux::StopProcessorTracingOnProcess() {
2507   for (auto thread_id_iter : m_pt_traced_thread_group)
2508     m_processor_trace_monitor.erase(thread_id_iter);
2509   m_pt_traced_thread_group.clear();
2510   m_pt_proces_trace_id = LLDB_INVALID_UID;
2511 }
2512 
2513 Status NativeProcessLinux::StopProcessorTracingOnThread(lldb::user_id_t traceid,
2514                                                         lldb::tid_t thread) {
2515   Status error;
2516   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2517 
2518   if (thread == LLDB_INVALID_THREAD_ID) {
2519     for (auto& iter : m_processor_trace_monitor) {
2520       if (iter.second->GetTraceID() == traceid) {
2521         // Stopping a trace instance for an individual thread
2522         // hence there will only be one traceid that can match.
2523         m_processor_trace_monitor.erase(iter.first);
2524         return error;
2525       }
2526       LLDB_LOG(log, "Trace ID {0}", iter.second->GetTraceID());
2527     }
2528 
2529     LLDB_LOG(log, "Invalid TraceID");
2530     error.SetErrorString("invalid trace id");
2531     return error;
2532   }
2533 
2534   // thread is specified so we can use find function on the map.
2535   const auto& iter = m_processor_trace_monitor.find(thread);
2536   if (iter == m_processor_trace_monitor.end()) {
2537     // thread not found in our map.
2538     LLDB_LOG(log, "thread not being traced");
2539     error.SetErrorString("tracing not active for this thread");
2540     return error;
2541   }
2542   if (iter->second->GetTraceID() != traceid) {
2543     // traceid did not match so it has to be invalid.
2544     LLDB_LOG(log, "Invalid TraceID");
2545     error.SetErrorString("invalid trace id");
2546     return error;
2547   }
2548 
2549   LLDB_LOG(log, "UID - {0} , Thread -{1}", traceid, thread);
2550 
2551   if (traceid == m_pt_proces_trace_id) {
2552     // traceid maps to the whole process so we have to erase it from the
2553     // thread group.
2554     LLDB_LOG(log, "traceid maps to process");
2555     m_pt_traced_thread_group.erase(thread);
2556   }
2557   m_processor_trace_monitor.erase(iter);
2558 
2559   return error;
2560 }
2561