1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "NativeProcessLinux.h" 11 12 // C Includes 13 #include <errno.h> 14 #include <stdint.h> 15 #include <string.h> 16 #include <unistd.h> 17 18 // C++ Includes 19 #include <fstream> 20 #include <mutex> 21 #include <sstream> 22 #include <string> 23 #include <unordered_map> 24 25 // Other libraries and framework includes 26 #include "lldb/Core/EmulateInstruction.h" 27 #include "lldb/Core/ModuleSpec.h" 28 #include "lldb/Core/RegisterValue.h" 29 #include "lldb/Core/State.h" 30 #include "lldb/Host/Host.h" 31 #include "lldb/Host/HostProcess.h" 32 #include "lldb/Host/PseudoTerminal.h" 33 #include "lldb/Host/ThreadLauncher.h" 34 #include "lldb/Host/common/NativeBreakpoint.h" 35 #include "lldb/Host/common/NativeRegisterContext.h" 36 #include "lldb/Host/linux/Ptrace.h" 37 #include "lldb/Host/linux/Uio.h" 38 #include "lldb/Host/posix/ProcessLauncherPosixFork.h" 39 #include "lldb/Symbol/ObjectFile.h" 40 #include "lldb/Target/Process.h" 41 #include "lldb/Target/ProcessLaunchInfo.h" 42 #include "lldb/Target/Target.h" 43 #include "lldb/Utility/LLDBAssert.h" 44 #include "lldb/Utility/Status.h" 45 #include "lldb/Utility/StringExtractor.h" 46 #include "llvm/Support/Errno.h" 47 #include "llvm/Support/FileSystem.h" 48 #include "llvm/Support/Threading.h" 49 50 #include "NativeThreadLinux.h" 51 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 52 #include "Procfs.h" 53 54 #include <linux/unistd.h> 55 #include <sys/socket.h> 56 #include <sys/syscall.h> 57 #include <sys/types.h> 58 #include <sys/user.h> 59 #include <sys/wait.h> 60 61 // Support hardware breakpoints in case it has not been defined 62 #ifndef TRAP_HWBKPT 63 #define TRAP_HWBKPT 4 64 #endif 65 66 using namespace lldb; 67 using namespace lldb_private; 68 using namespace lldb_private::process_linux; 69 using namespace llvm; 70 71 // Private bits we only need internally. 72 73 static bool ProcessVmReadvSupported() { 74 static bool is_supported; 75 static llvm::once_flag flag; 76 77 llvm::call_once(flag, [] { 78 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 79 80 uint32_t source = 0x47424742; 81 uint32_t dest = 0; 82 83 struct iovec local, remote; 84 remote.iov_base = &source; 85 local.iov_base = &dest; 86 remote.iov_len = local.iov_len = sizeof source; 87 88 // We shall try if cross-process-memory reads work by attempting to read a 89 // value from our own process. 90 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); 91 is_supported = (res == sizeof(source) && source == dest); 92 if (is_supported) 93 LLDB_LOG(log, 94 "Detected kernel support for process_vm_readv syscall. " 95 "Fast memory reads enabled."); 96 else 97 LLDB_LOG(log, 98 "syscall process_vm_readv failed (error: {0}). Fast memory " 99 "reads disabled.", 100 llvm::sys::StrError()); 101 }); 102 103 return is_supported; 104 } 105 106 namespace { 107 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) { 108 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 109 if (!log) 110 return; 111 112 if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO)) 113 LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec()); 114 else 115 LLDB_LOG(log, "leaving STDIN as is"); 116 117 if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO)) 118 LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec()); 119 else 120 LLDB_LOG(log, "leaving STDOUT as is"); 121 122 if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO)) 123 LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec()); 124 else 125 LLDB_LOG(log, "leaving STDERR as is"); 126 127 int i = 0; 128 for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; 129 ++args, ++i) 130 LLDB_LOG(log, "arg {0}: '{1}'", i, *args); 131 } 132 133 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) { 134 uint8_t *ptr = (uint8_t *)bytes; 135 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 136 for (uint32_t i = 0; i < loop_count; i++) { 137 s.Printf("[%x]", *ptr); 138 ptr++; 139 } 140 } 141 142 void PtraceDisplayBytes(int &req, void *data, size_t data_size) { 143 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 144 if (!log) 145 return; 146 StreamString buf; 147 148 switch (req) { 149 case PTRACE_POKETEXT: { 150 DisplayBytes(buf, &data, 8); 151 LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData()); 152 break; 153 } 154 case PTRACE_POKEDATA: { 155 DisplayBytes(buf, &data, 8); 156 LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData()); 157 break; 158 } 159 case PTRACE_POKEUSER: { 160 DisplayBytes(buf, &data, 8); 161 LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData()); 162 break; 163 } 164 case PTRACE_SETREGS: { 165 DisplayBytes(buf, data, data_size); 166 LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData()); 167 break; 168 } 169 case PTRACE_SETFPREGS: { 170 DisplayBytes(buf, data, data_size); 171 LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData()); 172 break; 173 } 174 case PTRACE_SETSIGINFO: { 175 DisplayBytes(buf, data, sizeof(siginfo_t)); 176 LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData()); 177 break; 178 } 179 case PTRACE_SETREGSET: { 180 // Extract iov_base from data, which is a pointer to the struct IOVEC 181 DisplayBytes(buf, *(void **)data, data_size); 182 LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData()); 183 break; 184 } 185 default: {} 186 } 187 } 188 189 static constexpr unsigned k_ptrace_word_size = sizeof(void *); 190 static_assert(sizeof(long) >= k_ptrace_word_size, 191 "Size of long must be larger than ptrace word size"); 192 } // end of anonymous namespace 193 194 // Simple helper function to ensure flags are enabled on the given file 195 // descriptor. 196 static Status EnsureFDFlags(int fd, int flags) { 197 Status error; 198 199 int status = fcntl(fd, F_GETFL); 200 if (status == -1) { 201 error.SetErrorToErrno(); 202 return error; 203 } 204 205 if (fcntl(fd, F_SETFL, status | flags) == -1) { 206 error.SetErrorToErrno(); 207 return error; 208 } 209 210 return error; 211 } 212 213 // ----------------------------------------------------------------------------- 214 // Public Static Methods 215 // ----------------------------------------------------------------------------- 216 217 Status NativeProcessProtocol::Launch( 218 ProcessLaunchInfo &launch_info, 219 NativeProcessProtocol::NativeDelegate &native_delegate, MainLoop &mainloop, 220 NativeProcessProtocolSP &native_process_sp) { 221 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 222 223 Status error; 224 225 // Verify the working directory is valid if one was specified. 226 FileSpec working_dir{launch_info.GetWorkingDirectory()}; 227 if (working_dir && (!working_dir.ResolvePath() || 228 !llvm::sys::fs::is_directory(working_dir.GetPath()))) { 229 error.SetErrorStringWithFormat("No such file or directory: %s", 230 working_dir.GetCString()); 231 return error; 232 } 233 234 // Create the NativeProcessLinux in launch mode. 235 native_process_sp.reset(new NativeProcessLinux()); 236 237 if (!native_process_sp->RegisterNativeDelegate(native_delegate)) { 238 native_process_sp.reset(); 239 error.SetErrorStringWithFormat("failed to register the native delegate"); 240 return error; 241 } 242 243 error = std::static_pointer_cast<NativeProcessLinux>(native_process_sp) 244 ->LaunchInferior(mainloop, launch_info); 245 246 if (error.Fail()) { 247 native_process_sp.reset(); 248 LLDB_LOG(log, "failed to launch process: {0}", error); 249 return error; 250 } 251 252 launch_info.SetProcessID(native_process_sp->GetID()); 253 254 return error; 255 } 256 257 Status NativeProcessProtocol::Attach( 258 lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate, 259 MainLoop &mainloop, NativeProcessProtocolSP &native_process_sp) { 260 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 261 LLDB_LOG(log, "pid = {0:x}", pid); 262 263 // Retrieve the architecture for the running process. 264 ArchSpec process_arch; 265 Status error = ResolveProcessArchitecture(pid, process_arch); 266 if (!error.Success()) 267 return error; 268 269 std::shared_ptr<NativeProcessLinux> native_process_linux_sp( 270 new NativeProcessLinux()); 271 272 if (!native_process_linux_sp->RegisterNativeDelegate(native_delegate)) { 273 error.SetErrorStringWithFormat("failed to register the native delegate"); 274 return error; 275 } 276 277 native_process_linux_sp->AttachToInferior(mainloop, pid, error); 278 if (!error.Success()) 279 return error; 280 281 native_process_sp = native_process_linux_sp; 282 return error; 283 } 284 285 // ----------------------------------------------------------------------------- 286 // Public Instance Methods 287 // ----------------------------------------------------------------------------- 288 289 NativeProcessLinux::NativeProcessLinux() 290 : NativeProcessProtocol(LLDB_INVALID_PROCESS_ID), m_arch(), 291 m_supports_mem_region(eLazyBoolCalculate), m_mem_region_cache(), 292 m_pending_notification_tid(LLDB_INVALID_THREAD_ID), 293 m_pt_proces_trace_id(LLDB_INVALID_UID) {} 294 295 void NativeProcessLinux::AttachToInferior(MainLoop &mainloop, lldb::pid_t pid, 296 Status &error) { 297 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 298 LLDB_LOG(log, "pid = {0:x}", pid); 299 300 m_sigchld_handle = mainloop.RegisterSignal( 301 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, error); 302 if (!m_sigchld_handle) 303 return; 304 305 error = ResolveProcessArchitecture(pid, m_arch); 306 if (!error.Success()) 307 return; 308 309 // Set the architecture to the exe architecture. 310 LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid, 311 m_arch.GetArchitectureName()); 312 m_pid = pid; 313 SetState(eStateAttaching); 314 315 Attach(pid, error); 316 } 317 318 Status NativeProcessLinux::LaunchInferior(MainLoop &mainloop, 319 ProcessLaunchInfo &launch_info) { 320 Status error; 321 m_sigchld_handle = mainloop.RegisterSignal( 322 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, error); 323 if (!m_sigchld_handle) 324 return error; 325 326 SetState(eStateLaunching); 327 328 MaybeLogLaunchInfo(launch_info); 329 330 ::pid_t pid = 331 ProcessLauncherPosixFork().LaunchProcess(launch_info, error).GetProcessId(); 332 if (error.Fail()) 333 return error; 334 335 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 336 337 // Wait for the child process to trap on its call to execve. 338 ::pid_t wpid; 339 int status; 340 if ((wpid = waitpid(pid, &status, 0)) < 0) { 341 error.SetErrorToErrno(); 342 LLDB_LOG(log, "waitpid for inferior failed with %s", error); 343 344 // Mark the inferior as invalid. 345 // FIXME this could really use a new state - eStateLaunchFailure. For now, 346 // using eStateInvalid. 347 SetState(StateType::eStateInvalid); 348 349 return error; 350 } 351 assert(WIFSTOPPED(status) && (wpid == static_cast<::pid_t>(pid)) && 352 "Could not sync with inferior process."); 353 354 LLDB_LOG(log, "inferior started, now in stopped state"); 355 error = SetDefaultPtraceOpts(pid); 356 if (error.Fail()) { 357 LLDB_LOG(log, "failed to set default ptrace options: {0}", error); 358 359 // Mark the inferior as invalid. 360 // FIXME this could really use a new state - eStateLaunchFailure. For now, 361 // using eStateInvalid. 362 SetState(StateType::eStateInvalid); 363 364 return error; 365 } 366 367 // Release the master terminal descriptor and pass it off to the 368 // NativeProcessLinux instance. Similarly stash the inferior pid. 369 m_terminal_fd = launch_info.GetPTY().ReleaseMasterFileDescriptor(); 370 m_pid = pid; 371 launch_info.SetProcessID(pid); 372 373 if (m_terminal_fd != -1) { 374 error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 375 if (error.Fail()) { 376 LLDB_LOG(log, 377 "inferior EnsureFDFlags failed for ensuring terminal " 378 "O_NONBLOCK setting: {0}", 379 error); 380 381 // Mark the inferior as invalid. 382 // FIXME this could really use a new state - eStateLaunchFailure. For 383 // now, using eStateInvalid. 384 SetState(StateType::eStateInvalid); 385 386 return error; 387 } 388 } 389 390 LLDB_LOG(log, "adding pid = {0}", pid); 391 ResolveProcessArchitecture(m_pid, m_arch); 392 NativeThreadLinuxSP thread_sp = AddThread(pid); 393 assert(thread_sp && "AddThread() returned a nullptr thread"); 394 thread_sp->SetStoppedBySignal(SIGSTOP); 395 ThreadWasCreated(*thread_sp); 396 397 // Let our process instance know the thread has stopped. 398 SetCurrentThreadID(thread_sp->GetID()); 399 SetState(StateType::eStateStopped); 400 401 if (error.Fail()) 402 LLDB_LOG(log, "inferior launching failed {0}", error); 403 return error; 404 } 405 406 ::pid_t NativeProcessLinux::Attach(lldb::pid_t pid, Status &error) { 407 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 408 409 // Use a map to keep track of the threads which we have attached/need to 410 // attach. 411 Host::TidMap tids_to_attach; 412 if (pid <= 1) { 413 error.SetErrorToGenericError(); 414 error.SetErrorString("Attaching to process 1 is not allowed."); 415 return -1; 416 } 417 418 while (Host::FindProcessThreads(pid, tids_to_attach)) { 419 for (Host::TidMap::iterator it = tids_to_attach.begin(); 420 it != tids_to_attach.end();) { 421 if (it->second == false) { 422 lldb::tid_t tid = it->first; 423 424 // Attach to the requested process. 425 // An attach will cause the thread to stop with a SIGSTOP. 426 error = PtraceWrapper(PTRACE_ATTACH, tid); 427 if (error.Fail()) { 428 // No such thread. The thread may have exited. 429 // More error handling may be needed. 430 if (error.GetError() == ESRCH) { 431 it = tids_to_attach.erase(it); 432 continue; 433 } else 434 return -1; 435 } 436 437 int status; 438 // Need to use __WALL otherwise we receive an error with errno=ECHLD 439 // At this point we should have a thread stopped if waitpid succeeds. 440 if ((status = waitpid(tid, NULL, __WALL)) < 0) { 441 // No such thread. The thread may have exited. 442 // More error handling may be needed. 443 if (errno == ESRCH) { 444 it = tids_to_attach.erase(it); 445 continue; 446 } else { 447 error.SetErrorToErrno(); 448 return -1; 449 } 450 } 451 452 error = SetDefaultPtraceOpts(tid); 453 if (error.Fail()) 454 return -1; 455 456 LLDB_LOG(log, "adding tid = {0}", tid); 457 it->second = true; 458 459 // Create the thread, mark it as stopped. 460 NativeThreadLinuxSP thread_sp(AddThread(static_cast<lldb::tid_t>(tid))); 461 assert(thread_sp && "AddThread() returned a nullptr"); 462 463 // This will notify this is a new thread and tell the system it is 464 // stopped. 465 thread_sp->SetStoppedBySignal(SIGSTOP); 466 ThreadWasCreated(*thread_sp); 467 SetCurrentThreadID(thread_sp->GetID()); 468 } 469 470 // move the loop forward 471 ++it; 472 } 473 } 474 475 if (tids_to_attach.size() > 0) { 476 m_pid = pid; 477 // Let our process instance know the thread has stopped. 478 SetState(StateType::eStateStopped); 479 } else { 480 error.SetErrorToGenericError(); 481 error.SetErrorString("No such process."); 482 return -1; 483 } 484 485 return pid; 486 } 487 488 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) { 489 long ptrace_opts = 0; 490 491 // Have the child raise an event on exit. This is used to keep the child in 492 // limbo until it is destroyed. 493 ptrace_opts |= PTRACE_O_TRACEEXIT; 494 495 // Have the tracer trace threads which spawn in the inferior process. 496 // TODO: if we want to support tracing the inferiors' child, add the 497 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) 498 ptrace_opts |= PTRACE_O_TRACECLONE; 499 500 // Have the tracer notify us before execve returns 501 // (needed to disable legacy SIGTRAP generation) 502 ptrace_opts |= PTRACE_O_TRACEEXEC; 503 504 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts); 505 } 506 507 // Handles all waitpid events from the inferior process. 508 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited, 509 WaitStatus status) { 510 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 511 512 // Certain activities differ based on whether the pid is the tid of the main 513 // thread. 514 const bool is_main_thread = (pid == GetID()); 515 516 // Handle when the thread exits. 517 if (exited) { 518 LLDB_LOG(log, "got exit signal({0}) , tid = {1} ({2} main thread)", signal, 519 pid, is_main_thread ? "is" : "is not"); 520 521 // This is a thread that exited. Ensure we're not tracking it anymore. 522 const bool thread_found = StopTrackingThread(pid); 523 524 if (is_main_thread) { 525 // We only set the exit status and notify the delegate if we haven't 526 // already set the process 527 // state to an exited state. We normally should have received a SIGTRAP | 528 // (PTRACE_EVENT_EXIT << 8) 529 // for the main thread. 530 const bool already_notified = (GetState() == StateType::eStateExited) || 531 (GetState() == StateType::eStateCrashed); 532 if (!already_notified) { 533 LLDB_LOG( 534 log, 535 "tid = {0} handling main thread exit ({1}), expected exit state " 536 "already set but state was {2} instead, setting exit state now", 537 pid, 538 thread_found ? "stopped tracking thread metadata" 539 : "thread metadata not found", 540 GetState()); 541 // The main thread exited. We're done monitoring. Report to delegate. 542 SetExitStatus(status, true); 543 544 // Notify delegate that our process has exited. 545 SetState(StateType::eStateExited, true); 546 } else 547 LLDB_LOG(log, "tid = {0} main thread now exited (%s)", pid, 548 thread_found ? "stopped tracking thread metadata" 549 : "thread metadata not found"); 550 } else { 551 // Do we want to report to the delegate in this case? I think not. If 552 // this was an orderly thread exit, we would already have received the 553 // SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, and we would have done an 554 // all-stop then. 555 LLDB_LOG(log, "tid = {0} handling non-main thread exit (%s)", pid, 556 thread_found ? "stopped tracking thread metadata" 557 : "thread metadata not found"); 558 } 559 return; 560 } 561 562 siginfo_t info; 563 const auto info_err = GetSignalInfo(pid, &info); 564 auto thread_sp = GetThreadByID(pid); 565 566 if (!thread_sp) { 567 // Normally, the only situation when we cannot find the thread is if we have 568 // just received a new thread notification. This is indicated by 569 // GetSignalInfo() returning si_code == SI_USER and si_pid == 0 570 LLDB_LOG(log, "received notification about an unknown tid {0}.", pid); 571 572 if (info_err.Fail()) { 573 LLDB_LOG(log, 574 "(tid {0}) GetSignalInfo failed ({1}). " 575 "Ingoring this notification.", 576 pid, info_err); 577 return; 578 } 579 580 LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code, 581 info.si_pid); 582 583 auto thread_sp = AddThread(pid); 584 585 // Resume the newly created thread. 586 ResumeThread(*thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 587 ThreadWasCreated(*thread_sp); 588 return; 589 } 590 591 // Get details on the signal raised. 592 if (info_err.Success()) { 593 // We have retrieved the signal info. Dispatch appropriately. 594 if (info.si_signo == SIGTRAP) 595 MonitorSIGTRAP(info, *thread_sp); 596 else 597 MonitorSignal(info, *thread_sp, exited); 598 } else { 599 if (info_err.GetError() == EINVAL) { 600 // This is a group stop reception for this tid. 601 // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU 602 // into the tracee, triggering the group-stop mechanism. Normally 603 // receiving these would stop the process, pending a SIGCONT. Simulating 604 // this state in a debugger is hard and is generally not needed (one use 605 // case is debugging background task being managed by a shell). For 606 // general use, it is sufficient to stop the process in a signal-delivery 607 // stop which happens before the group stop. This done by MonitorSignal 608 // and works correctly for all signals. 609 LLDB_LOG(log, 610 "received a group stop for pid {0} tid {1}. Transparent " 611 "handling of group stops not supported, resuming the " 612 "thread.", 613 GetID(), pid); 614 ResumeThread(*thread_sp, thread_sp->GetState(), 615 LLDB_INVALID_SIGNAL_NUMBER); 616 } else { 617 // ptrace(GETSIGINFO) failed (but not due to group-stop). 618 619 // A return value of ESRCH means the thread/process is no longer on the 620 // system, so it was killed somehow outside of our control. Either way, 621 // we can't do anything with it anymore. 622 623 // Stop tracking the metadata for the thread since it's entirely off the 624 // system now. 625 const bool thread_found = StopTrackingThread(pid); 626 627 LLDB_LOG(log, 628 "GetSignalInfo failed: {0}, tid = {1}, signal = {2}, " 629 "status = {3}, main_thread = {4}, thread_found: {5}", 630 info_err, pid, signal, status, is_main_thread, thread_found); 631 632 if (is_main_thread) { 633 // Notify the delegate - our process is not available but appears to 634 // have been killed outside 635 // our control. Is eStateExited the right exit state in this case? 636 SetExitStatus(status, true); 637 SetState(StateType::eStateExited, true); 638 } else { 639 // This thread was pulled out from underneath us. Anything to do here? 640 // Do we want to do an all stop? 641 LLDB_LOG(log, 642 "pid {0} tid {1} non-main thread exit occurred, didn't " 643 "tell delegate anything since thread disappeared out " 644 "from underneath us", 645 GetID(), pid); 646 } 647 } 648 } 649 } 650 651 void NativeProcessLinux::WaitForNewThread(::pid_t tid) { 652 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 653 654 NativeThreadLinuxSP new_thread_sp = GetThreadByID(tid); 655 656 if (new_thread_sp) { 657 // We are already tracking the thread - we got the event on the new thread 658 // (see 659 // MonitorSignal) before this one. We are done. 660 return; 661 } 662 663 // The thread is not tracked yet, let's wait for it to appear. 664 int status = -1; 665 ::pid_t wait_pid; 666 do { 667 LLDB_LOG(log, 668 "received thread creation event for tid {0}. tid not tracked " 669 "yet, waiting for thread to appear...", 670 tid); 671 wait_pid = waitpid(tid, &status, __WALL); 672 } while (wait_pid == -1 && errno == EINTR); 673 // Since we are waiting on a specific tid, this must be the creation event. 674 // But let's do some checks just in case. 675 if (wait_pid != tid) { 676 LLDB_LOG(log, 677 "waiting for tid {0} failed. Assuming the thread has " 678 "disappeared in the meantime", 679 tid); 680 // The only way I know of this could happen is if the whole process was 681 // SIGKILLed in the mean time. In any case, we can't do anything about that 682 // now. 683 return; 684 } 685 if (WIFEXITED(status)) { 686 LLDB_LOG(log, 687 "waiting for tid {0} returned an 'exited' event. Not " 688 "tracking the thread.", 689 tid); 690 // Also a very improbable event. 691 return; 692 } 693 694 LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid); 695 new_thread_sp = AddThread(tid); 696 697 ResumeThread(*new_thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 698 ThreadWasCreated(*new_thread_sp); 699 } 700 701 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, 702 NativeThreadLinux &thread) { 703 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 704 const bool is_main_thread = (thread.GetID() == GetID()); 705 706 assert(info.si_signo == SIGTRAP && "Unexpected child signal!"); 707 708 switch (info.si_code) { 709 // TODO: these two cases are required if we want to support tracing of the 710 // inferiors' children. We'd need this to debug a monitor. 711 // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 712 // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 713 714 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { 715 // This is the notification on the parent thread which informs us of new 716 // thread 717 // creation. 718 // We don't want to do anything with the parent thread so we just resume it. 719 // In case we 720 // want to implement "break on thread creation" functionality, we would need 721 // to stop 722 // here. 723 724 unsigned long event_message = 0; 725 if (GetEventMessage(thread.GetID(), &event_message).Fail()) { 726 LLDB_LOG(log, 727 "pid {0} received thread creation event but " 728 "GetEventMessage failed so we don't know the new tid", 729 thread.GetID()); 730 } else 731 WaitForNewThread(event_message); 732 733 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 734 break; 735 } 736 737 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): { 738 NativeThreadLinuxSP main_thread_sp; 739 LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP); 740 741 // Exec clears any pending notifications. 742 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 743 744 // Remove all but the main thread here. Linux fork creates a new process 745 // which only copies the main thread. 746 LLDB_LOG(log, "exec received, stop tracking all but main thread"); 747 748 for (auto thread_sp : m_threads) { 749 const bool is_main_thread = thread_sp && thread_sp->GetID() == GetID(); 750 if (is_main_thread) { 751 main_thread_sp = std::static_pointer_cast<NativeThreadLinux>(thread_sp); 752 LLDB_LOG(log, "found main thread with tid {0}, keeping", 753 main_thread_sp->GetID()); 754 } else { 755 LLDB_LOG(log, "discarding non-main-thread tid {0} due to exec", 756 thread_sp->GetID()); 757 } 758 } 759 760 m_threads.clear(); 761 762 if (main_thread_sp) { 763 m_threads.push_back(main_thread_sp); 764 SetCurrentThreadID(main_thread_sp->GetID()); 765 main_thread_sp->SetStoppedByExec(); 766 } else { 767 SetCurrentThreadID(LLDB_INVALID_THREAD_ID); 768 LLDB_LOG(log, 769 "pid {0} no main thread found, discarded all threads, " 770 "we're in a no-thread state!", 771 GetID()); 772 } 773 774 // Tell coordinator about about the "new" (since exec) stopped main thread. 775 ThreadWasCreated(*main_thread_sp); 776 777 // Let our delegate know we have just exec'd. 778 NotifyDidExec(); 779 780 // If we have a main thread, indicate we are stopped. 781 assert(main_thread_sp && "exec called during ptraced process but no main " 782 "thread metadata tracked"); 783 784 // Let the process know we're stopped. 785 StopRunningThreads(main_thread_sp->GetID()); 786 787 break; 788 } 789 790 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { 791 // The inferior process or one of its threads is about to exit. 792 // We don't want to do anything with the thread so we just resume it. In 793 // case we 794 // want to implement "break on thread exit" functionality, we would need to 795 // stop 796 // here. 797 798 unsigned long data = 0; 799 if (GetEventMessage(thread.GetID(), &data).Fail()) 800 data = -1; 801 802 LLDB_LOG(log, 803 "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, " 804 "WIFSIGNALED={2}, pid = {3}, main_thread = {4}", 805 data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(), 806 is_main_thread); 807 808 if (is_main_thread) 809 SetExitStatus(WaitStatus::Decode(data), true); 810 811 StateType state = thread.GetState(); 812 if (!StateIsRunningState(state)) { 813 // Due to a kernel bug, we may sometimes get this stop after the inferior 814 // gets a 815 // SIGKILL. This confuses our state tracking logic in ResumeThread(), 816 // since normally, 817 // we should not be receiving any ptrace events while the inferior is 818 // stopped. This 819 // makes sure that the inferior is resumed and exits normally. 820 state = eStateRunning; 821 } 822 ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); 823 824 break; 825 } 826 827 case 0: 828 case TRAP_TRACE: // We receive this on single stepping. 829 case TRAP_HWBKPT: // We receive this on watchpoint hit 830 { 831 // If a watchpoint was hit, report it 832 uint32_t wp_index; 833 Status error = thread.GetRegisterContext()->GetWatchpointHitIndex( 834 wp_index, (uintptr_t)info.si_addr); 835 if (error.Fail()) 836 LLDB_LOG(log, 837 "received error while checking for watchpoint hits, pid = " 838 "{0}, error = {1}", 839 thread.GetID(), error); 840 if (wp_index != LLDB_INVALID_INDEX32) { 841 MonitorWatchpoint(thread, wp_index); 842 break; 843 } 844 845 // If a breakpoint was hit, report it 846 uint32_t bp_index; 847 error = thread.GetRegisterContext()->GetHardwareBreakHitIndex( 848 bp_index, (uintptr_t)info.si_addr); 849 if (error.Fail()) 850 LLDB_LOG(log, "received error while checking for hardware " 851 "breakpoint hits, pid = {0}, error = {1}", 852 thread.GetID(), error); 853 if (bp_index != LLDB_INVALID_INDEX32) { 854 MonitorBreakpoint(thread); 855 break; 856 } 857 858 // Otherwise, report step over 859 MonitorTrace(thread); 860 break; 861 } 862 863 case SI_KERNEL: 864 #if defined __mips__ 865 // For mips there is no special signal for watchpoint 866 // So we check for watchpoint in kernel trap 867 { 868 // If a watchpoint was hit, report it 869 uint32_t wp_index; 870 Status error = thread.GetRegisterContext()->GetWatchpointHitIndex( 871 wp_index, LLDB_INVALID_ADDRESS); 872 if (error.Fail()) 873 LLDB_LOG(log, 874 "received error while checking for watchpoint hits, pid = " 875 "{0}, error = {1}", 876 thread.GetID(), error); 877 if (wp_index != LLDB_INVALID_INDEX32) { 878 MonitorWatchpoint(thread, wp_index); 879 break; 880 } 881 } 882 // NO BREAK 883 #endif 884 case TRAP_BRKPT: 885 MonitorBreakpoint(thread); 886 break; 887 888 case SIGTRAP: 889 case (SIGTRAP | 0x80): 890 LLDB_LOG( 891 log, 892 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 893 info.si_code, GetID(), thread.GetID()); 894 895 // Ignore these signals until we know more about them. 896 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 897 break; 898 899 default: 900 LLDB_LOG( 901 log, 902 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 903 info.si_code, GetID(), thread.GetID()); 904 llvm_unreachable("Unexpected SIGTRAP code!"); 905 break; 906 } 907 } 908 909 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) { 910 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 911 LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID()); 912 913 // This thread is currently stopped. 914 thread.SetStoppedByTrace(); 915 916 StopRunningThreads(thread.GetID()); 917 } 918 919 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) { 920 Log *log( 921 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 922 LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID()); 923 924 // Mark the thread as stopped at breakpoint. 925 thread.SetStoppedByBreakpoint(); 926 Status error = FixupBreakpointPCAsNeeded(thread); 927 if (error.Fail()) 928 LLDB_LOG(log, "pid = {0} fixup: {1}", thread.GetID(), error); 929 930 if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != 931 m_threads_stepping_with_breakpoint.end()) 932 thread.SetStoppedByTrace(); 933 934 StopRunningThreads(thread.GetID()); 935 } 936 937 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, 938 uint32_t wp_index) { 939 Log *log( 940 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); 941 LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}", 942 thread.GetID(), wp_index); 943 944 // Mark the thread as stopped at watchpoint. 945 // The address is at (lldb::addr_t)info->si_addr if we need it. 946 thread.SetStoppedByWatchpoint(wp_index); 947 948 // We need to tell all other running threads before we notify the delegate 949 // about this stop. 950 StopRunningThreads(thread.GetID()); 951 } 952 953 void NativeProcessLinux::MonitorSignal(const siginfo_t &info, 954 NativeThreadLinux &thread, bool exited) { 955 const int signo = info.si_signo; 956 const bool is_from_llgs = info.si_pid == getpid(); 957 958 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 959 960 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 961 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a 962 // kill(2) or raise(3). Similarly for tgkill(2) on Linux. 963 // 964 // IOW, user generated signals never generate what we consider to be a 965 // "crash". 966 // 967 // Similarly, ACK signals generated by this monitor. 968 969 // Handle the signal. 970 LLDB_LOG(log, 971 "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, " 972 "waitpid pid = {4})", 973 Host::GetSignalAsCString(signo), signo, info.si_code, 974 thread.GetID()); 975 976 // Check for thread stop notification. 977 if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) { 978 // This is a tgkill()-based stop. 979 LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID()); 980 981 // Check that we're not already marked with a stop reason. 982 // Note this thread really shouldn't already be marked as stopped - if we 983 // were, that would imply that the kernel signaled us with the thread 984 // stopping which we handled and marked as stopped, and that, without an 985 // intervening resume, we received another stop. It is more likely that we 986 // are missing the marking of a run state somewhere if we find that the 987 // thread was marked as stopped. 988 const StateType thread_state = thread.GetState(); 989 if (!StateIsStoppedState(thread_state, false)) { 990 // An inferior thread has stopped because of a SIGSTOP we have sent it. 991 // Generally, these are not important stops and we don't want to report 992 // them as they are just used to stop other threads when one thread (the 993 // one with the *real* stop reason) hits a breakpoint (watchpoint, 994 // etc...). However, in the case of an asynchronous Interrupt(), this *is* 995 // the real stop reason, so we leave the signal intact if this is the 996 // thread that was chosen as the triggering thread. 997 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 998 if (m_pending_notification_tid == thread.GetID()) 999 thread.SetStoppedBySignal(SIGSTOP, &info); 1000 else 1001 thread.SetStoppedWithNoReason(); 1002 1003 SetCurrentThreadID(thread.GetID()); 1004 SignalIfAllThreadsStopped(); 1005 } else { 1006 // We can end up here if stop was initiated by LLGS but by this time a 1007 // thread stop has occurred - maybe initiated by another event. 1008 Status error = ResumeThread(thread, thread.GetState(), 0); 1009 if (error.Fail()) 1010 LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(), 1011 error); 1012 } 1013 } else { 1014 LLDB_LOG(log, 1015 "pid {0} tid {1}, thread was already marked as a stopped " 1016 "state (state={2}), leaving stop signal as is", 1017 GetID(), thread.GetID(), thread_state); 1018 SignalIfAllThreadsStopped(); 1019 } 1020 1021 // Done handling. 1022 return; 1023 } 1024 1025 // Check if debugger should stop at this signal or just ignore it 1026 // and resume the inferior. 1027 if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) { 1028 ResumeThread(thread, thread.GetState(), signo); 1029 return; 1030 } 1031 1032 // This thread is stopped. 1033 LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo)); 1034 thread.SetStoppedBySignal(signo, &info); 1035 1036 // Send a stop to the debugger after we get all other threads to stop. 1037 StopRunningThreads(thread.GetID()); 1038 } 1039 1040 namespace { 1041 1042 struct EmulatorBaton { 1043 NativeProcessLinux *m_process; 1044 NativeRegisterContext *m_reg_context; 1045 1046 // eRegisterKindDWARF -> RegsiterValue 1047 std::unordered_map<uint32_t, RegisterValue> m_register_values; 1048 1049 EmulatorBaton(NativeProcessLinux *process, NativeRegisterContext *reg_context) 1050 : m_process(process), m_reg_context(reg_context) {} 1051 }; 1052 1053 } // anonymous namespace 1054 1055 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton, 1056 const EmulateInstruction::Context &context, 1057 lldb::addr_t addr, void *dst, size_t length) { 1058 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 1059 1060 size_t bytes_read; 1061 emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read); 1062 return bytes_read; 1063 } 1064 1065 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton, 1066 const RegisterInfo *reg_info, 1067 RegisterValue ®_value) { 1068 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 1069 1070 auto it = emulator_baton->m_register_values.find( 1071 reg_info->kinds[eRegisterKindDWARF]); 1072 if (it != emulator_baton->m_register_values.end()) { 1073 reg_value = it->second; 1074 return true; 1075 } 1076 1077 // The emulator only fill in the dwarf regsiter numbers (and in some case 1078 // the generic register numbers). Get the full register info from the 1079 // register context based on the dwarf register numbers. 1080 const RegisterInfo *full_reg_info = 1081 emulator_baton->m_reg_context->GetRegisterInfo( 1082 eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]); 1083 1084 Status error = 1085 emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value); 1086 if (error.Success()) 1087 return true; 1088 1089 return false; 1090 } 1091 1092 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton, 1093 const EmulateInstruction::Context &context, 1094 const RegisterInfo *reg_info, 1095 const RegisterValue ®_value) { 1096 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 1097 emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = 1098 reg_value; 1099 return true; 1100 } 1101 1102 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton, 1103 const EmulateInstruction::Context &context, 1104 lldb::addr_t addr, const void *dst, 1105 size_t length) { 1106 return length; 1107 } 1108 1109 static lldb::addr_t ReadFlags(NativeRegisterContext *regsiter_context) { 1110 const RegisterInfo *flags_info = regsiter_context->GetRegisterInfo( 1111 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 1112 return regsiter_context->ReadRegisterAsUnsigned(flags_info, 1113 LLDB_INVALID_ADDRESS); 1114 } 1115 1116 Status 1117 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) { 1118 Status error; 1119 NativeRegisterContextSP register_context_sp = thread.GetRegisterContext(); 1120 1121 std::unique_ptr<EmulateInstruction> emulator_ap( 1122 EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, 1123 nullptr)); 1124 1125 if (emulator_ap == nullptr) 1126 return Status("Instruction emulator not found!"); 1127 1128 EmulatorBaton baton(this, register_context_sp.get()); 1129 emulator_ap->SetBaton(&baton); 1130 emulator_ap->SetReadMemCallback(&ReadMemoryCallback); 1131 emulator_ap->SetReadRegCallback(&ReadRegisterCallback); 1132 emulator_ap->SetWriteMemCallback(&WriteMemoryCallback); 1133 emulator_ap->SetWriteRegCallback(&WriteRegisterCallback); 1134 1135 if (!emulator_ap->ReadInstruction()) 1136 return Status("Read instruction failed!"); 1137 1138 bool emulation_result = 1139 emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC); 1140 1141 const RegisterInfo *reg_info_pc = register_context_sp->GetRegisterInfo( 1142 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); 1143 const RegisterInfo *reg_info_flags = register_context_sp->GetRegisterInfo( 1144 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 1145 1146 auto pc_it = 1147 baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]); 1148 auto flags_it = 1149 baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]); 1150 1151 lldb::addr_t next_pc; 1152 lldb::addr_t next_flags; 1153 if (emulation_result) { 1154 assert(pc_it != baton.m_register_values.end() && 1155 "Emulation was successfull but PC wasn't updated"); 1156 next_pc = pc_it->second.GetAsUInt64(); 1157 1158 if (flags_it != baton.m_register_values.end()) 1159 next_flags = flags_it->second.GetAsUInt64(); 1160 else 1161 next_flags = ReadFlags(register_context_sp.get()); 1162 } else if (pc_it == baton.m_register_values.end()) { 1163 // Emulate instruction failed and it haven't changed PC. Advance PC 1164 // with the size of the current opcode because the emulation of all 1165 // PC modifying instruction should be successful. The failure most 1166 // likely caused by a not supported instruction which don't modify PC. 1167 next_pc = 1168 register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize(); 1169 next_flags = ReadFlags(register_context_sp.get()); 1170 } else { 1171 // The instruction emulation failed after it modified the PC. It is an 1172 // unknown error where we can't continue because the next instruction is 1173 // modifying the PC but we don't know how. 1174 return Status("Instruction emulation failed unexpectedly."); 1175 } 1176 1177 if (m_arch.GetMachine() == llvm::Triple::arm) { 1178 if (next_flags & 0x20) { 1179 // Thumb mode 1180 error = SetSoftwareBreakpoint(next_pc, 2); 1181 } else { 1182 // Arm mode 1183 error = SetSoftwareBreakpoint(next_pc, 4); 1184 } 1185 } else if (m_arch.GetMachine() == llvm::Triple::mips64 || 1186 m_arch.GetMachine() == llvm::Triple::mips64el || 1187 m_arch.GetMachine() == llvm::Triple::mips || 1188 m_arch.GetMachine() == llvm::Triple::mipsel) 1189 error = SetSoftwareBreakpoint(next_pc, 4); 1190 else { 1191 // No size hint is given for the next breakpoint 1192 error = SetSoftwareBreakpoint(next_pc, 0); 1193 } 1194 1195 // If setting the breakpoint fails because next_pc is out of 1196 // the address space, ignore it and let the debugee segfault. 1197 if (error.GetError() == EIO || error.GetError() == EFAULT) { 1198 return Status(); 1199 } else if (error.Fail()) 1200 return error; 1201 1202 m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc}); 1203 1204 return Status(); 1205 } 1206 1207 bool NativeProcessLinux::SupportHardwareSingleStepping() const { 1208 if (m_arch.GetMachine() == llvm::Triple::arm || 1209 m_arch.GetMachine() == llvm::Triple::mips64 || 1210 m_arch.GetMachine() == llvm::Triple::mips64el || 1211 m_arch.GetMachine() == llvm::Triple::mips || 1212 m_arch.GetMachine() == llvm::Triple::mipsel) 1213 return false; 1214 return true; 1215 } 1216 1217 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) { 1218 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1219 LLDB_LOG(log, "pid {0}", GetID()); 1220 1221 bool software_single_step = !SupportHardwareSingleStepping(); 1222 1223 if (software_single_step) { 1224 for (auto thread_sp : m_threads) { 1225 assert(thread_sp && "thread list should not contain NULL threads"); 1226 1227 const ResumeAction *const action = 1228 resume_actions.GetActionForThread(thread_sp->GetID(), true); 1229 if (action == nullptr) 1230 continue; 1231 1232 if (action->state == eStateStepping) { 1233 Status error = SetupSoftwareSingleStepping( 1234 static_cast<NativeThreadLinux &>(*thread_sp)); 1235 if (error.Fail()) 1236 return error; 1237 } 1238 } 1239 } 1240 1241 for (auto thread_sp : m_threads) { 1242 assert(thread_sp && "thread list should not contain NULL threads"); 1243 1244 const ResumeAction *const action = 1245 resume_actions.GetActionForThread(thread_sp->GetID(), true); 1246 1247 if (action == nullptr) { 1248 LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(), 1249 thread_sp->GetID()); 1250 continue; 1251 } 1252 1253 LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}", 1254 action->state, GetID(), thread_sp->GetID()); 1255 1256 switch (action->state) { 1257 case eStateRunning: 1258 case eStateStepping: { 1259 // Run the thread, possibly feeding it the signal. 1260 const int signo = action->signal; 1261 ResumeThread(static_cast<NativeThreadLinux &>(*thread_sp), action->state, 1262 signo); 1263 break; 1264 } 1265 1266 case eStateSuspended: 1267 case eStateStopped: 1268 llvm_unreachable("Unexpected state"); 1269 1270 default: 1271 return Status("NativeProcessLinux::%s (): unexpected state %s specified " 1272 "for pid %" PRIu64 ", tid %" PRIu64, 1273 __FUNCTION__, StateAsCString(action->state), GetID(), 1274 thread_sp->GetID()); 1275 } 1276 } 1277 1278 return Status(); 1279 } 1280 1281 Status NativeProcessLinux::Halt() { 1282 Status error; 1283 1284 if (kill(GetID(), SIGSTOP) != 0) 1285 error.SetErrorToErrno(); 1286 1287 return error; 1288 } 1289 1290 Status NativeProcessLinux::Detach() { 1291 Status error; 1292 1293 // Stop monitoring the inferior. 1294 m_sigchld_handle.reset(); 1295 1296 // Tell ptrace to detach from the process. 1297 if (GetID() == LLDB_INVALID_PROCESS_ID) 1298 return error; 1299 1300 for (auto thread_sp : m_threads) { 1301 Status e = Detach(thread_sp->GetID()); 1302 if (e.Fail()) 1303 error = 1304 e; // Save the error, but still attempt to detach from other threads. 1305 } 1306 1307 m_processor_trace_monitor.clear(); 1308 m_pt_proces_trace_id = LLDB_INVALID_UID; 1309 1310 return error; 1311 } 1312 1313 Status NativeProcessLinux::Signal(int signo) { 1314 Status error; 1315 1316 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1317 LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo, 1318 Host::GetSignalAsCString(signo), GetID()); 1319 1320 if (kill(GetID(), signo)) 1321 error.SetErrorToErrno(); 1322 1323 return error; 1324 } 1325 1326 Status NativeProcessLinux::Interrupt() { 1327 // Pick a running thread (or if none, a not-dead stopped thread) as 1328 // the chosen thread that will be the stop-reason thread. 1329 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1330 1331 NativeThreadProtocolSP running_thread_sp; 1332 NativeThreadProtocolSP stopped_thread_sp; 1333 1334 LLDB_LOG(log, "selecting running thread for interrupt target"); 1335 for (auto thread_sp : m_threads) { 1336 // The thread shouldn't be null but lets just cover that here. 1337 if (!thread_sp) 1338 continue; 1339 1340 // If we have a running or stepping thread, we'll call that the 1341 // target of the interrupt. 1342 const auto thread_state = thread_sp->GetState(); 1343 if (thread_state == eStateRunning || thread_state == eStateStepping) { 1344 running_thread_sp = thread_sp; 1345 break; 1346 } else if (!stopped_thread_sp && StateIsStoppedState(thread_state, true)) { 1347 // Remember the first non-dead stopped thread. We'll use that as a backup 1348 // if there are no running threads. 1349 stopped_thread_sp = thread_sp; 1350 } 1351 } 1352 1353 if (!running_thread_sp && !stopped_thread_sp) { 1354 Status error("found no running/stepping or live stopped threads as target " 1355 "for interrupt"); 1356 LLDB_LOG(log, "skipping due to error: {0}", error); 1357 1358 return error; 1359 } 1360 1361 NativeThreadProtocolSP deferred_signal_thread_sp = 1362 running_thread_sp ? running_thread_sp : stopped_thread_sp; 1363 1364 LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(), 1365 running_thread_sp ? "running" : "stopped", 1366 deferred_signal_thread_sp->GetID()); 1367 1368 StopRunningThreads(deferred_signal_thread_sp->GetID()); 1369 1370 return Status(); 1371 } 1372 1373 Status NativeProcessLinux::Kill() { 1374 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1375 LLDB_LOG(log, "pid {0}", GetID()); 1376 1377 Status error; 1378 1379 switch (m_state) { 1380 case StateType::eStateInvalid: 1381 case StateType::eStateExited: 1382 case StateType::eStateCrashed: 1383 case StateType::eStateDetached: 1384 case StateType::eStateUnloaded: 1385 // Nothing to do - the process is already dead. 1386 LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(), 1387 m_state); 1388 return error; 1389 1390 case StateType::eStateConnected: 1391 case StateType::eStateAttaching: 1392 case StateType::eStateLaunching: 1393 case StateType::eStateStopped: 1394 case StateType::eStateRunning: 1395 case StateType::eStateStepping: 1396 case StateType::eStateSuspended: 1397 // We can try to kill a process in these states. 1398 break; 1399 } 1400 1401 if (kill(GetID(), SIGKILL) != 0) { 1402 error.SetErrorToErrno(); 1403 return error; 1404 } 1405 1406 return error; 1407 } 1408 1409 static Status 1410 ParseMemoryRegionInfoFromProcMapsLine(llvm::StringRef &maps_line, 1411 MemoryRegionInfo &memory_region_info) { 1412 memory_region_info.Clear(); 1413 1414 StringExtractor line_extractor(maps_line); 1415 1416 // Format: {address_start_hex}-{address_end_hex} perms offset dev inode 1417 // pathname 1418 // perms: rwxp (letter is present if set, '-' if not, final character is 1419 // p=private, s=shared). 1420 1421 // Parse out the starting address 1422 lldb::addr_t start_address = line_extractor.GetHexMaxU64(false, 0); 1423 1424 // Parse out hyphen separating start and end address from range. 1425 if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != '-')) 1426 return Status( 1427 "malformed /proc/{pid}/maps entry, missing dash between address range"); 1428 1429 // Parse out the ending address 1430 lldb::addr_t end_address = line_extractor.GetHexMaxU64(false, start_address); 1431 1432 // Parse out the space after the address. 1433 if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != ' ')) 1434 return Status( 1435 "malformed /proc/{pid}/maps entry, missing space after range"); 1436 1437 // Save the range. 1438 memory_region_info.GetRange().SetRangeBase(start_address); 1439 memory_region_info.GetRange().SetRangeEnd(end_address); 1440 1441 // Any memory region in /proc/{pid}/maps is by definition mapped into the 1442 // process. 1443 memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes); 1444 1445 // Parse out each permission entry. 1446 if (line_extractor.GetBytesLeft() < 4) 1447 return Status("malformed /proc/{pid}/maps entry, missing some portion of " 1448 "permissions"); 1449 1450 // Handle read permission. 1451 const char read_perm_char = line_extractor.GetChar(); 1452 if (read_perm_char == 'r') 1453 memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eYes); 1454 else if (read_perm_char == '-') 1455 memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1456 else 1457 return Status("unexpected /proc/{pid}/maps read permission char"); 1458 1459 // Handle write permission. 1460 const char write_perm_char = line_extractor.GetChar(); 1461 if (write_perm_char == 'w') 1462 memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eYes); 1463 else if (write_perm_char == '-') 1464 memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1465 else 1466 return Status("unexpected /proc/{pid}/maps write permission char"); 1467 1468 // Handle execute permission. 1469 const char exec_perm_char = line_extractor.GetChar(); 1470 if (exec_perm_char == 'x') 1471 memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eYes); 1472 else if (exec_perm_char == '-') 1473 memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1474 else 1475 return Status("unexpected /proc/{pid}/maps exec permission char"); 1476 1477 line_extractor.GetChar(); // Read the private bit 1478 line_extractor.SkipSpaces(); // Skip the separator 1479 line_extractor.GetHexMaxU64(false, 0); // Read the offset 1480 line_extractor.GetHexMaxU64(false, 0); // Read the major device number 1481 line_extractor.GetChar(); // Read the device id separator 1482 line_extractor.GetHexMaxU64(false, 0); // Read the major device number 1483 line_extractor.SkipSpaces(); // Skip the separator 1484 line_extractor.GetU64(0, 10); // Read the inode number 1485 1486 line_extractor.SkipSpaces(); 1487 const char *name = line_extractor.Peek(); 1488 if (name) 1489 memory_region_info.SetName(name); 1490 1491 return Status(); 1492 } 1493 1494 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr, 1495 MemoryRegionInfo &range_info) { 1496 // FIXME review that the final memory region returned extends to the end of 1497 // the virtual address space, 1498 // with no perms if it is not mapped. 1499 1500 // Use an approach that reads memory regions from /proc/{pid}/maps. 1501 // Assume proc maps entries are in ascending order. 1502 // FIXME assert if we find differently. 1503 1504 if (m_supports_mem_region == LazyBool::eLazyBoolNo) { 1505 // We're done. 1506 return Status("unsupported"); 1507 } 1508 1509 Status error = PopulateMemoryRegionCache(); 1510 if (error.Fail()) { 1511 return error; 1512 } 1513 1514 lldb::addr_t prev_base_address = 0; 1515 1516 // FIXME start by finding the last region that is <= target address using 1517 // binary search. Data is sorted. 1518 // There can be a ton of regions on pthreads apps with lots of threads. 1519 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end(); 1520 ++it) { 1521 MemoryRegionInfo &proc_entry_info = it->first; 1522 1523 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 1524 assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) && 1525 "descending /proc/pid/maps entries detected, unexpected"); 1526 prev_base_address = proc_entry_info.GetRange().GetRangeBase(); 1527 UNUSED_IF_ASSERT_DISABLED(prev_base_address); 1528 1529 // If the target address comes before this entry, indicate distance to next 1530 // region. 1531 if (load_addr < proc_entry_info.GetRange().GetRangeBase()) { 1532 range_info.GetRange().SetRangeBase(load_addr); 1533 range_info.GetRange().SetByteSize( 1534 proc_entry_info.GetRange().GetRangeBase() - load_addr); 1535 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1536 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1537 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1538 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1539 1540 return error; 1541 } else if (proc_entry_info.GetRange().Contains(load_addr)) { 1542 // The target address is within the memory region we're processing here. 1543 range_info = proc_entry_info; 1544 return error; 1545 } 1546 1547 // The target memory address comes somewhere after the region we just 1548 // parsed. 1549 } 1550 1551 // If we made it here, we didn't find an entry that contained the given 1552 // address. Return the 1553 // load_addr as start and the amount of bytes betwwen load address and the end 1554 // of the memory as 1555 // size. 1556 range_info.GetRange().SetRangeBase(load_addr); 1557 range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS); 1558 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1559 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1560 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1561 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1562 return error; 1563 } 1564 1565 Status NativeProcessLinux::PopulateMemoryRegionCache() { 1566 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1567 1568 // If our cache is empty, pull the latest. There should always be at least 1569 // one memory region if memory region handling is supported. 1570 if (!m_mem_region_cache.empty()) { 1571 LLDB_LOG(log, "reusing {0} cached memory region entries", 1572 m_mem_region_cache.size()); 1573 return Status(); 1574 } 1575 1576 auto BufferOrError = getProcFile(GetID(), "maps"); 1577 if (!BufferOrError) { 1578 m_supports_mem_region = LazyBool::eLazyBoolNo; 1579 return BufferOrError.getError(); 1580 } 1581 StringRef Rest = BufferOrError.get()->getBuffer(); 1582 while (! Rest.empty()) { 1583 StringRef Line; 1584 std::tie(Line, Rest) = Rest.split('\n'); 1585 MemoryRegionInfo info; 1586 const Status parse_error = 1587 ParseMemoryRegionInfoFromProcMapsLine(Line, info); 1588 if (parse_error.Fail()) { 1589 LLDB_LOG(log, "failed to parse proc maps line '{0}': {1}", Line, 1590 parse_error); 1591 m_supports_mem_region = LazyBool::eLazyBoolNo; 1592 return parse_error; 1593 } 1594 m_mem_region_cache.emplace_back( 1595 info, FileSpec(info.GetName().GetCString(), true)); 1596 } 1597 1598 if (m_mem_region_cache.empty()) { 1599 // No entries after attempting to read them. This shouldn't happen if 1600 // /proc/{pid}/maps is supported. Assume we don't support map entries 1601 // via procfs. 1602 m_supports_mem_region = LazyBool::eLazyBoolNo; 1603 LLDB_LOG(log, 1604 "failed to find any procfs maps entries, assuming no support " 1605 "for memory region metadata retrieval"); 1606 return Status("not supported"); 1607 } 1608 1609 LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps", 1610 m_mem_region_cache.size(), GetID()); 1611 1612 // We support memory retrieval, remember that. 1613 m_supports_mem_region = LazyBool::eLazyBoolYes; 1614 return Status(); 1615 } 1616 1617 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) { 1618 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1619 LLDB_LOG(log, "newBumpId={0}", newBumpId); 1620 LLDB_LOG(log, "clearing {0} entries from memory region cache", 1621 m_mem_region_cache.size()); 1622 m_mem_region_cache.clear(); 1623 } 1624 1625 Status NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, 1626 lldb::addr_t &addr) { 1627 // FIXME implementing this requires the equivalent of 1628 // InferiorCallPOSIX::InferiorCallMmap, which depends on 1629 // functional ThreadPlans working with Native*Protocol. 1630 #if 1 1631 return Status("not implemented yet"); 1632 #else 1633 addr = LLDB_INVALID_ADDRESS; 1634 1635 unsigned prot = 0; 1636 if (permissions & lldb::ePermissionsReadable) 1637 prot |= eMmapProtRead; 1638 if (permissions & lldb::ePermissionsWritable) 1639 prot |= eMmapProtWrite; 1640 if (permissions & lldb::ePermissionsExecutable) 1641 prot |= eMmapProtExec; 1642 1643 // TODO implement this directly in NativeProcessLinux 1644 // (and lift to NativeProcessPOSIX if/when that class is 1645 // refactored out). 1646 if (InferiorCallMmap(this, addr, 0, size, prot, 1647 eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { 1648 m_addr_to_mmap_size[addr] = size; 1649 return Status(); 1650 } else { 1651 addr = LLDB_INVALID_ADDRESS; 1652 return Status("unable to allocate %" PRIu64 1653 " bytes of memory with permissions %s", 1654 size, GetPermissionsAsCString(permissions)); 1655 } 1656 #endif 1657 } 1658 1659 Status NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) { 1660 // FIXME see comments in AllocateMemory - required lower-level 1661 // bits not in place yet (ThreadPlans) 1662 return Status("not implemented"); 1663 } 1664 1665 lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress() { 1666 // punt on this for now 1667 return LLDB_INVALID_ADDRESS; 1668 } 1669 1670 size_t NativeProcessLinux::UpdateThreads() { 1671 // The NativeProcessLinux monitoring threads are always up to date 1672 // with respect to thread state and they keep the thread list 1673 // populated properly. All this method needs to do is return the 1674 // thread count. 1675 return m_threads.size(); 1676 } 1677 1678 bool NativeProcessLinux::GetArchitecture(ArchSpec &arch) const { 1679 arch = m_arch; 1680 return true; 1681 } 1682 1683 Status NativeProcessLinux::GetSoftwareBreakpointPCOffset( 1684 uint32_t &actual_opcode_size) { 1685 // FIXME put this behind a breakpoint protocol class that can be 1686 // set per architecture. Need ARM, MIPS support here. 1687 static const uint8_t g_i386_opcode[] = {0xCC}; 1688 static const uint8_t g_s390x_opcode[] = {0x00, 0x01}; 1689 1690 switch (m_arch.GetMachine()) { 1691 case llvm::Triple::x86: 1692 case llvm::Triple::x86_64: 1693 actual_opcode_size = static_cast<uint32_t>(sizeof(g_i386_opcode)); 1694 return Status(); 1695 1696 case llvm::Triple::systemz: 1697 actual_opcode_size = static_cast<uint32_t>(sizeof(g_s390x_opcode)); 1698 return Status(); 1699 1700 case llvm::Triple::arm: 1701 case llvm::Triple::aarch64: 1702 case llvm::Triple::mips64: 1703 case llvm::Triple::mips64el: 1704 case llvm::Triple::mips: 1705 case llvm::Triple::mipsel: 1706 // On these architectures the PC don't get updated for breakpoint hits 1707 actual_opcode_size = 0; 1708 return Status(); 1709 1710 default: 1711 assert(false && "CPU type not supported!"); 1712 return Status("CPU type not supported"); 1713 } 1714 } 1715 1716 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size, 1717 bool hardware) { 1718 if (hardware) 1719 return SetHardwareBreakpoint(addr, size); 1720 else 1721 return SetSoftwareBreakpoint(addr, size); 1722 } 1723 1724 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) { 1725 if (hardware) 1726 return RemoveHardwareBreakpoint(addr); 1727 else 1728 return NativeProcessProtocol::RemoveBreakpoint(addr); 1729 } 1730 1731 Status NativeProcessLinux::GetSoftwareBreakpointTrapOpcode( 1732 size_t trap_opcode_size_hint, size_t &actual_opcode_size, 1733 const uint8_t *&trap_opcode_bytes) { 1734 // FIXME put this behind a breakpoint protocol class that can be set per 1735 // architecture. Need MIPS support here. 1736 static const uint8_t g_aarch64_opcode[] = {0x00, 0x00, 0x20, 0xd4}; 1737 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 1738 // linux kernel does otherwise. 1739 static const uint8_t g_arm_breakpoint_opcode[] = {0xf0, 0x01, 0xf0, 0xe7}; 1740 static const uint8_t g_i386_opcode[] = {0xCC}; 1741 static const uint8_t g_mips64_opcode[] = {0x00, 0x00, 0x00, 0x0d}; 1742 static const uint8_t g_mips64el_opcode[] = {0x0d, 0x00, 0x00, 0x00}; 1743 static const uint8_t g_s390x_opcode[] = {0x00, 0x01}; 1744 static const uint8_t g_thumb_breakpoint_opcode[] = {0x01, 0xde}; 1745 1746 switch (m_arch.GetMachine()) { 1747 case llvm::Triple::aarch64: 1748 trap_opcode_bytes = g_aarch64_opcode; 1749 actual_opcode_size = sizeof(g_aarch64_opcode); 1750 return Status(); 1751 1752 case llvm::Triple::arm: 1753 switch (trap_opcode_size_hint) { 1754 case 2: 1755 trap_opcode_bytes = g_thumb_breakpoint_opcode; 1756 actual_opcode_size = sizeof(g_thumb_breakpoint_opcode); 1757 return Status(); 1758 case 4: 1759 trap_opcode_bytes = g_arm_breakpoint_opcode; 1760 actual_opcode_size = sizeof(g_arm_breakpoint_opcode); 1761 return Status(); 1762 default: 1763 assert(false && "Unrecognised trap opcode size hint!"); 1764 return Status("Unrecognised trap opcode size hint!"); 1765 } 1766 1767 case llvm::Triple::x86: 1768 case llvm::Triple::x86_64: 1769 trap_opcode_bytes = g_i386_opcode; 1770 actual_opcode_size = sizeof(g_i386_opcode); 1771 return Status(); 1772 1773 case llvm::Triple::mips: 1774 case llvm::Triple::mips64: 1775 trap_opcode_bytes = g_mips64_opcode; 1776 actual_opcode_size = sizeof(g_mips64_opcode); 1777 return Status(); 1778 1779 case llvm::Triple::mipsel: 1780 case llvm::Triple::mips64el: 1781 trap_opcode_bytes = g_mips64el_opcode; 1782 actual_opcode_size = sizeof(g_mips64el_opcode); 1783 return Status(); 1784 1785 case llvm::Triple::systemz: 1786 trap_opcode_bytes = g_s390x_opcode; 1787 actual_opcode_size = sizeof(g_s390x_opcode); 1788 return Status(); 1789 1790 default: 1791 assert(false && "CPU type not supported!"); 1792 return Status("CPU type not supported"); 1793 } 1794 } 1795 1796 #if 0 1797 ProcessMessage::CrashReason 1798 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info) 1799 { 1800 ProcessMessage::CrashReason reason; 1801 assert(info->si_signo == SIGSEGV); 1802 1803 reason = ProcessMessage::eInvalidCrashReason; 1804 1805 switch (info->si_code) 1806 { 1807 default: 1808 assert(false && "unexpected si_code for SIGSEGV"); 1809 break; 1810 case SI_KERNEL: 1811 // Linux will occasionally send spurious SI_KERNEL codes. 1812 // (this is poorly documented in sigaction) 1813 // One way to get this is via unaligned SIMD loads. 1814 reason = ProcessMessage::eInvalidAddress; // for lack of anything better 1815 break; 1816 case SEGV_MAPERR: 1817 reason = ProcessMessage::eInvalidAddress; 1818 break; 1819 case SEGV_ACCERR: 1820 reason = ProcessMessage::ePrivilegedAddress; 1821 break; 1822 } 1823 1824 return reason; 1825 } 1826 #endif 1827 1828 #if 0 1829 ProcessMessage::CrashReason 1830 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info) 1831 { 1832 ProcessMessage::CrashReason reason; 1833 assert(info->si_signo == SIGILL); 1834 1835 reason = ProcessMessage::eInvalidCrashReason; 1836 1837 switch (info->si_code) 1838 { 1839 default: 1840 assert(false && "unexpected si_code for SIGILL"); 1841 break; 1842 case ILL_ILLOPC: 1843 reason = ProcessMessage::eIllegalOpcode; 1844 break; 1845 case ILL_ILLOPN: 1846 reason = ProcessMessage::eIllegalOperand; 1847 break; 1848 case ILL_ILLADR: 1849 reason = ProcessMessage::eIllegalAddressingMode; 1850 break; 1851 case ILL_ILLTRP: 1852 reason = ProcessMessage::eIllegalTrap; 1853 break; 1854 case ILL_PRVOPC: 1855 reason = ProcessMessage::ePrivilegedOpcode; 1856 break; 1857 case ILL_PRVREG: 1858 reason = ProcessMessage::ePrivilegedRegister; 1859 break; 1860 case ILL_COPROC: 1861 reason = ProcessMessage::eCoprocessorError; 1862 break; 1863 case ILL_BADSTK: 1864 reason = ProcessMessage::eInternalStackError; 1865 break; 1866 } 1867 1868 return reason; 1869 } 1870 #endif 1871 1872 #if 0 1873 ProcessMessage::CrashReason 1874 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info) 1875 { 1876 ProcessMessage::CrashReason reason; 1877 assert(info->si_signo == SIGFPE); 1878 1879 reason = ProcessMessage::eInvalidCrashReason; 1880 1881 switch (info->si_code) 1882 { 1883 default: 1884 assert(false && "unexpected si_code for SIGFPE"); 1885 break; 1886 case FPE_INTDIV: 1887 reason = ProcessMessage::eIntegerDivideByZero; 1888 break; 1889 case FPE_INTOVF: 1890 reason = ProcessMessage::eIntegerOverflow; 1891 break; 1892 case FPE_FLTDIV: 1893 reason = ProcessMessage::eFloatDivideByZero; 1894 break; 1895 case FPE_FLTOVF: 1896 reason = ProcessMessage::eFloatOverflow; 1897 break; 1898 case FPE_FLTUND: 1899 reason = ProcessMessage::eFloatUnderflow; 1900 break; 1901 case FPE_FLTRES: 1902 reason = ProcessMessage::eFloatInexactResult; 1903 break; 1904 case FPE_FLTINV: 1905 reason = ProcessMessage::eFloatInvalidOperation; 1906 break; 1907 case FPE_FLTSUB: 1908 reason = ProcessMessage::eFloatSubscriptRange; 1909 break; 1910 } 1911 1912 return reason; 1913 } 1914 #endif 1915 1916 #if 0 1917 ProcessMessage::CrashReason 1918 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info) 1919 { 1920 ProcessMessage::CrashReason reason; 1921 assert(info->si_signo == SIGBUS); 1922 1923 reason = ProcessMessage::eInvalidCrashReason; 1924 1925 switch (info->si_code) 1926 { 1927 default: 1928 assert(false && "unexpected si_code for SIGBUS"); 1929 break; 1930 case BUS_ADRALN: 1931 reason = ProcessMessage::eIllegalAlignment; 1932 break; 1933 case BUS_ADRERR: 1934 reason = ProcessMessage::eIllegalAddress; 1935 break; 1936 case BUS_OBJERR: 1937 reason = ProcessMessage::eHardwareError; 1938 break; 1939 } 1940 1941 return reason; 1942 } 1943 #endif 1944 1945 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size, 1946 size_t &bytes_read) { 1947 if (ProcessVmReadvSupported()) { 1948 // The process_vm_readv path is about 50 times faster than ptrace api. We 1949 // want to use 1950 // this syscall if it is supported. 1951 1952 const ::pid_t pid = GetID(); 1953 1954 struct iovec local_iov, remote_iov; 1955 local_iov.iov_base = buf; 1956 local_iov.iov_len = size; 1957 remote_iov.iov_base = reinterpret_cast<void *>(addr); 1958 remote_iov.iov_len = size; 1959 1960 bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0); 1961 const bool success = bytes_read == size; 1962 1963 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1964 LLDB_LOG(log, 1965 "using process_vm_readv to read {0} bytes from inferior " 1966 "address {1:x}: {2}", 1967 size, addr, success ? "Success" : llvm::sys::StrError(errno)); 1968 1969 if (success) 1970 return Status(); 1971 // else the call failed for some reason, let's retry the read using ptrace 1972 // api. 1973 } 1974 1975 unsigned char *dst = static_cast<unsigned char *>(buf); 1976 size_t remainder; 1977 long data; 1978 1979 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1980 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1981 1982 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { 1983 Status error = NativeProcessLinux::PtraceWrapper( 1984 PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data); 1985 if (error.Fail()) 1986 return error; 1987 1988 remainder = size - bytes_read; 1989 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1990 1991 // Copy the data into our buffer 1992 memcpy(dst, &data, remainder); 1993 1994 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1995 addr += k_ptrace_word_size; 1996 dst += k_ptrace_word_size; 1997 } 1998 return Status(); 1999 } 2000 2001 Status NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, 2002 size_t size, 2003 size_t &bytes_read) { 2004 Status error = ReadMemory(addr, buf, size, bytes_read); 2005 if (error.Fail()) 2006 return error; 2007 return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size); 2008 } 2009 2010 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, 2011 size_t size, size_t &bytes_written) { 2012 const unsigned char *src = static_cast<const unsigned char *>(buf); 2013 size_t remainder; 2014 Status error; 2015 2016 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 2017 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 2018 2019 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { 2020 remainder = size - bytes_written; 2021 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 2022 2023 if (remainder == k_ptrace_word_size) { 2024 unsigned long data = 0; 2025 memcpy(&data, src, k_ptrace_word_size); 2026 2027 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 2028 error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), 2029 (void *)addr, (void *)data); 2030 if (error.Fail()) 2031 return error; 2032 } else { 2033 unsigned char buff[8]; 2034 size_t bytes_read; 2035 error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read); 2036 if (error.Fail()) 2037 return error; 2038 2039 memcpy(buff, src, remainder); 2040 2041 size_t bytes_written_rec; 2042 error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec); 2043 if (error.Fail()) 2044 return error; 2045 2046 LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src, 2047 *(unsigned long *)buff); 2048 } 2049 2050 addr += k_ptrace_word_size; 2051 src += k_ptrace_word_size; 2052 } 2053 return error; 2054 } 2055 2056 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) { 2057 return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); 2058 } 2059 2060 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid, 2061 unsigned long *message) { 2062 return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); 2063 } 2064 2065 Status NativeProcessLinux::Detach(lldb::tid_t tid) { 2066 if (tid == LLDB_INVALID_THREAD_ID) 2067 return Status(); 2068 2069 return PtraceWrapper(PTRACE_DETACH, tid); 2070 } 2071 2072 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) { 2073 for (auto thread_sp : m_threads) { 2074 assert(thread_sp && "thread list should not contain NULL threads"); 2075 if (thread_sp->GetID() == thread_id) { 2076 // We have this thread. 2077 return true; 2078 } 2079 } 2080 2081 // We don't have this thread. 2082 return false; 2083 } 2084 2085 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) { 2086 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2087 LLDB_LOG(log, "tid: {0})", thread_id); 2088 2089 bool found = false; 2090 for (auto it = m_threads.begin(); it != m_threads.end(); ++it) { 2091 if (*it && ((*it)->GetID() == thread_id)) { 2092 m_threads.erase(it); 2093 found = true; 2094 break; 2095 } 2096 } 2097 2098 if (found) 2099 StopTracingForThread(thread_id); 2100 SignalIfAllThreadsStopped(); 2101 return found; 2102 } 2103 2104 NativeThreadLinuxSP NativeProcessLinux::AddThread(lldb::tid_t thread_id) { 2105 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD)); 2106 LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id); 2107 2108 assert(!HasThreadNoLock(thread_id) && 2109 "attempted to add a thread by id that already exists"); 2110 2111 // If this is the first thread, save it as the current thread 2112 if (m_threads.empty()) 2113 SetCurrentThreadID(thread_id); 2114 2115 auto thread_sp = std::make_shared<NativeThreadLinux>(this, thread_id); 2116 m_threads.push_back(thread_sp); 2117 2118 if (m_pt_proces_trace_id != LLDB_INVALID_UID) { 2119 auto traceMonitor = ProcessorTraceMonitor::Create( 2120 GetID(), thread_id, m_pt_process_trace_config, true); 2121 if (traceMonitor) { 2122 m_pt_traced_thread_group.insert(thread_id); 2123 m_processor_trace_monitor.insert( 2124 std::make_pair(thread_id, std::move(*traceMonitor))); 2125 } else { 2126 LLDB_LOG(log, "failed to start trace on thread {0}", thread_id); 2127 Status error(traceMonitor.takeError()); 2128 LLDB_LOG(log, "error {0}", error); 2129 } 2130 } 2131 2132 return thread_sp; 2133 } 2134 2135 Status 2136 NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread) { 2137 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 2138 2139 Status error; 2140 2141 // Find out the size of a breakpoint (might depend on where we are in the 2142 // code). 2143 NativeRegisterContextSP context_sp = thread.GetRegisterContext(); 2144 if (!context_sp) { 2145 error.SetErrorString("cannot get a NativeRegisterContext for the thread"); 2146 LLDB_LOG(log, "failed: {0}", error); 2147 return error; 2148 } 2149 2150 uint32_t breakpoint_size = 0; 2151 error = GetSoftwareBreakpointPCOffset(breakpoint_size); 2152 if (error.Fail()) { 2153 LLDB_LOG(log, "GetBreakpointSize() failed: {0}", error); 2154 return error; 2155 } else 2156 LLDB_LOG(log, "breakpoint size: {0}", breakpoint_size); 2157 2158 // First try probing for a breakpoint at a software breakpoint location: PC - 2159 // breakpoint size. 2160 const lldb::addr_t initial_pc_addr = 2161 context_sp->GetPCfromBreakpointLocation(); 2162 lldb::addr_t breakpoint_addr = initial_pc_addr; 2163 if (breakpoint_size > 0) { 2164 // Do not allow breakpoint probe to wrap around. 2165 if (breakpoint_addr >= breakpoint_size) 2166 breakpoint_addr -= breakpoint_size; 2167 } 2168 2169 // Check if we stopped because of a breakpoint. 2170 NativeBreakpointSP breakpoint_sp; 2171 error = m_breakpoint_list.GetBreakpoint(breakpoint_addr, breakpoint_sp); 2172 if (!error.Success() || !breakpoint_sp) { 2173 // We didn't find one at a software probe location. Nothing to do. 2174 LLDB_LOG(log, 2175 "pid {0} no lldb breakpoint found at current pc with " 2176 "adjustment: {1}", 2177 GetID(), breakpoint_addr); 2178 return Status(); 2179 } 2180 2181 // If the breakpoint is not a software breakpoint, nothing to do. 2182 if (!breakpoint_sp->IsSoftwareBreakpoint()) { 2183 LLDB_LOG( 2184 log, 2185 "pid {0} breakpoint found at {1:x}, not software, nothing to adjust", 2186 GetID(), breakpoint_addr); 2187 return Status(); 2188 } 2189 2190 // 2191 // We have a software breakpoint and need to adjust the PC. 2192 // 2193 2194 // Sanity check. 2195 if (breakpoint_size == 0) { 2196 // Nothing to do! How did we get here? 2197 LLDB_LOG(log, 2198 "pid {0} breakpoint found at {1:x}, it is software, but the " 2199 "size is zero, nothing to do (unexpected)", 2200 GetID(), breakpoint_addr); 2201 return Status(); 2202 } 2203 2204 // Change the program counter. 2205 LLDB_LOG(log, "pid {0} tid {1}: changing PC from {2:x} to {3:x}", GetID(), 2206 thread.GetID(), initial_pc_addr, breakpoint_addr); 2207 2208 error = context_sp->SetPC(breakpoint_addr); 2209 if (error.Fail()) { 2210 LLDB_LOG(log, "pid {0} tid {1}: failed to set PC: {2}", GetID(), 2211 thread.GetID(), error); 2212 return error; 2213 } 2214 2215 return error; 2216 } 2217 2218 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path, 2219 FileSpec &file_spec) { 2220 Status error = PopulateMemoryRegionCache(); 2221 if (error.Fail()) 2222 return error; 2223 2224 FileSpec module_file_spec(module_path, true); 2225 2226 file_spec.Clear(); 2227 for (const auto &it : m_mem_region_cache) { 2228 if (it.second.GetFilename() == module_file_spec.GetFilename()) { 2229 file_spec = it.second; 2230 return Status(); 2231 } 2232 } 2233 return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 2234 module_file_spec.GetFilename().AsCString(), GetID()); 2235 } 2236 2237 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name, 2238 lldb::addr_t &load_addr) { 2239 load_addr = LLDB_INVALID_ADDRESS; 2240 Status error = PopulateMemoryRegionCache(); 2241 if (error.Fail()) 2242 return error; 2243 2244 FileSpec file(file_name, false); 2245 for (const auto &it : m_mem_region_cache) { 2246 if (it.second == file) { 2247 load_addr = it.first.GetRange().GetRangeBase(); 2248 return Status(); 2249 } 2250 } 2251 return Status("No load address found for specified file."); 2252 } 2253 2254 NativeThreadLinuxSP NativeProcessLinux::GetThreadByID(lldb::tid_t tid) { 2255 return std::static_pointer_cast<NativeThreadLinux>( 2256 NativeProcessProtocol::GetThreadByID(tid)); 2257 } 2258 2259 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, 2260 lldb::StateType state, int signo) { 2261 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2262 LLDB_LOG(log, "tid: {0}", thread.GetID()); 2263 2264 // Before we do the resume below, first check if we have a pending 2265 // stop notification that is currently waiting for 2266 // all threads to stop. This is potentially a buggy situation since 2267 // we're ostensibly waiting for threads to stop before we send out the 2268 // pending notification, and here we are resuming one before we send 2269 // out the pending stop notification. 2270 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 2271 LLDB_LOG(log, 2272 "about to resume tid {0} per explicit request but we have a " 2273 "pending stop notification (tid {1}) that is actively " 2274 "waiting for this thread to stop. Valid sequence of events?", 2275 thread.GetID(), m_pending_notification_tid); 2276 } 2277 2278 // Request a resume. We expect this to be synchronous and the system 2279 // to reflect it is running after this completes. 2280 switch (state) { 2281 case eStateRunning: { 2282 const auto resume_result = thread.Resume(signo); 2283 if (resume_result.Success()) 2284 SetState(eStateRunning, true); 2285 return resume_result; 2286 } 2287 case eStateStepping: { 2288 const auto step_result = thread.SingleStep(signo); 2289 if (step_result.Success()) 2290 SetState(eStateRunning, true); 2291 return step_result; 2292 } 2293 default: 2294 LLDB_LOG(log, "Unhandled state {0}.", state); 2295 llvm_unreachable("Unhandled state for resume"); 2296 } 2297 } 2298 2299 //===----------------------------------------------------------------------===// 2300 2301 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) { 2302 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2303 LLDB_LOG(log, "about to process event: (triggering_tid: {0})", 2304 triggering_tid); 2305 2306 m_pending_notification_tid = triggering_tid; 2307 2308 // Request a stop for all the thread stops that need to be stopped 2309 // and are not already known to be stopped. 2310 for (const auto &thread_sp : m_threads) { 2311 if (StateIsRunningState(thread_sp->GetState())) 2312 static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop(); 2313 } 2314 2315 SignalIfAllThreadsStopped(); 2316 LLDB_LOG(log, "event processing done"); 2317 } 2318 2319 void NativeProcessLinux::SignalIfAllThreadsStopped() { 2320 if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) 2321 return; // No pending notification. Nothing to do. 2322 2323 for (const auto &thread_sp : m_threads) { 2324 if (StateIsRunningState(thread_sp->GetState())) 2325 return; // Some threads are still running. Don't signal yet. 2326 } 2327 2328 // We have a pending notification and all threads have stopped. 2329 Log *log( 2330 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 2331 2332 // Clear any temporary breakpoints we used to implement software single 2333 // stepping. 2334 for (const auto &thread_info : m_threads_stepping_with_breakpoint) { 2335 Status error = RemoveBreakpoint(thread_info.second); 2336 if (error.Fail()) 2337 LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}", 2338 thread_info.first, error); 2339 } 2340 m_threads_stepping_with_breakpoint.clear(); 2341 2342 // Notify the delegate about the stop 2343 SetCurrentThreadID(m_pending_notification_tid); 2344 SetState(StateType::eStateStopped, true); 2345 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 2346 } 2347 2348 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) { 2349 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2350 LLDB_LOG(log, "tid: {0}", thread.GetID()); 2351 2352 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && 2353 StateIsRunningState(thread.GetState())) { 2354 // We will need to wait for this new thread to stop as well before firing 2355 // the 2356 // notification. 2357 thread.RequestStop(); 2358 } 2359 } 2360 2361 void NativeProcessLinux::SigchldHandler() { 2362 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 2363 // Process all pending waitpid notifications. 2364 while (true) { 2365 int status = -1; 2366 ::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG); 2367 2368 if (wait_pid == 0) 2369 break; // We are done. 2370 2371 if (wait_pid == -1) { 2372 if (errno == EINTR) 2373 continue; 2374 2375 Status error(errno, eErrorTypePOSIX); 2376 LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error); 2377 break; 2378 } 2379 2380 WaitStatus wait_status = WaitStatus::Decode(status); 2381 bool exited = wait_status.type == WaitStatus::Exit || 2382 (wait_status.type == WaitStatus::Signal && 2383 wait_pid == static_cast<::pid_t>(GetID())); 2384 2385 LLDB_LOG( 2386 log, 2387 "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}", 2388 wait_pid, wait_status, exited); 2389 2390 MonitorCallback(wait_pid, exited, wait_status); 2391 } 2392 } 2393 2394 // Wrapper for ptrace to catch errors and log calls. 2395 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. 2396 // for PTRACE_PEEK*) 2397 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, 2398 void *data, size_t data_size, 2399 long *result) { 2400 Status error; 2401 long int ret; 2402 2403 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2404 2405 PtraceDisplayBytes(req, data, data_size); 2406 2407 errno = 0; 2408 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 2409 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 2410 *(unsigned int *)addr, data); 2411 else 2412 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 2413 addr, data); 2414 2415 if (ret == -1) 2416 error.SetErrorToErrno(); 2417 2418 if (result) 2419 *result = ret; 2420 2421 LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data, 2422 data_size, ret); 2423 2424 PtraceDisplayBytes(req, data, data_size); 2425 2426 if (error.Fail()) 2427 LLDB_LOG(log, "ptrace() failed: {0}", error); 2428 2429 return error; 2430 } 2431 2432 llvm::Expected<ProcessorTraceMonitor &> 2433 NativeProcessLinux::LookupProcessorTraceInstance(lldb::user_id_t traceid, 2434 lldb::tid_t thread) { 2435 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2436 if (thread == LLDB_INVALID_THREAD_ID && traceid == m_pt_proces_trace_id) { 2437 LLDB_LOG(log, "thread not specified: {0}", traceid); 2438 return Status("tracing not active thread not specified").ToError(); 2439 } 2440 2441 for (auto& iter : m_processor_trace_monitor) { 2442 if (traceid == iter.second->GetTraceID() && 2443 (thread == iter.first || thread == LLDB_INVALID_THREAD_ID)) 2444 return *(iter.second); 2445 } 2446 2447 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 2448 return Status("tracing not active for this thread").ToError(); 2449 } 2450 2451 Status NativeProcessLinux::GetMetaData(lldb::user_id_t traceid, 2452 lldb::tid_t thread, 2453 llvm::MutableArrayRef<uint8_t> &buffer, 2454 size_t offset) { 2455 TraceOptions trace_options; 2456 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2457 Status error; 2458 2459 LLDB_LOG(log, "traceid {0}", traceid); 2460 2461 auto perf_monitor = LookupProcessorTraceInstance(traceid, thread); 2462 if (!perf_monitor) { 2463 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 2464 buffer = buffer.slice(buffer.size()); 2465 error = perf_monitor.takeError(); 2466 return error; 2467 } 2468 return (*perf_monitor).ReadPerfTraceData(buffer, offset); 2469 } 2470 2471 Status NativeProcessLinux::GetData(lldb::user_id_t traceid, lldb::tid_t thread, 2472 llvm::MutableArrayRef<uint8_t> &buffer, 2473 size_t offset) { 2474 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2475 Status error; 2476 2477 LLDB_LOG(log, "traceid {0}", traceid); 2478 2479 auto perf_monitor = LookupProcessorTraceInstance(traceid, thread); 2480 if (!perf_monitor) { 2481 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 2482 buffer = buffer.slice(buffer.size()); 2483 error = perf_monitor.takeError(); 2484 return error; 2485 } 2486 return (*perf_monitor).ReadPerfTraceAux(buffer, offset); 2487 } 2488 2489 Status NativeProcessLinux::GetTraceConfig(lldb::user_id_t traceid, 2490 TraceOptions &config) { 2491 Status error; 2492 if (config.getThreadID() == LLDB_INVALID_THREAD_ID && 2493 m_pt_proces_trace_id == traceid) { 2494 if (m_pt_proces_trace_id == LLDB_INVALID_UID) { 2495 error.SetErrorString("tracing not active for this process"); 2496 return error; 2497 } 2498 config = m_pt_process_trace_config; 2499 } else { 2500 auto perf_monitor = 2501 LookupProcessorTraceInstance(traceid, config.getThreadID()); 2502 if (!perf_monitor) { 2503 error = perf_monitor.takeError(); 2504 return error; 2505 } 2506 error = (*perf_monitor).GetTraceConfig(config); 2507 } 2508 return error; 2509 } 2510 2511 lldb::user_id_t 2512 NativeProcessLinux::StartTraceGroup(const TraceOptions &config, 2513 Status &error) { 2514 2515 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2516 if (config.getType() != TraceType::eTraceTypeProcessorTrace) 2517 return LLDB_INVALID_UID; 2518 2519 if (m_pt_proces_trace_id != LLDB_INVALID_UID) { 2520 error.SetErrorString("tracing already active on this process"); 2521 return m_pt_proces_trace_id; 2522 } 2523 2524 for (const auto &thread_sp : m_threads) { 2525 if (auto traceInstance = ProcessorTraceMonitor::Create( 2526 GetID(), thread_sp->GetID(), config, true)) { 2527 m_pt_traced_thread_group.insert(thread_sp->GetID()); 2528 m_processor_trace_monitor.insert( 2529 std::make_pair(thread_sp->GetID(), std::move(*traceInstance))); 2530 } 2531 } 2532 2533 m_pt_process_trace_config = config; 2534 error = ProcessorTraceMonitor::GetCPUType(m_pt_process_trace_config); 2535 2536 // Trace on Complete process will have traceid of 0 2537 m_pt_proces_trace_id = 0; 2538 2539 LLDB_LOG(log, "Process Trace ID {0}", m_pt_proces_trace_id); 2540 return m_pt_proces_trace_id; 2541 } 2542 2543 lldb::user_id_t NativeProcessLinux::StartTrace(const TraceOptions &config, 2544 Status &error) { 2545 if (config.getType() != TraceType::eTraceTypeProcessorTrace) 2546 return NativeProcessProtocol::StartTrace(config, error); 2547 2548 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2549 2550 lldb::tid_t threadid = config.getThreadID(); 2551 2552 if (threadid == LLDB_INVALID_THREAD_ID) 2553 return StartTraceGroup(config, error); 2554 2555 auto thread_sp = GetThreadByID(threadid); 2556 if (!thread_sp) { 2557 // Thread not tracked by lldb so don't trace. 2558 error.SetErrorString("invalid thread id"); 2559 return LLDB_INVALID_UID; 2560 } 2561 2562 const auto &iter = m_processor_trace_monitor.find(threadid); 2563 if (iter != m_processor_trace_monitor.end()) { 2564 LLDB_LOG(log, "Thread already being traced"); 2565 error.SetErrorString("tracing already active on this thread"); 2566 return LLDB_INVALID_UID; 2567 } 2568 2569 auto traceMonitor = 2570 ProcessorTraceMonitor::Create(GetID(), threadid, config, false); 2571 if (!traceMonitor) { 2572 error = traceMonitor.takeError(); 2573 LLDB_LOG(log, "error {0}", error); 2574 return LLDB_INVALID_UID; 2575 } 2576 lldb::user_id_t ret_trace_id = (*traceMonitor)->GetTraceID(); 2577 m_processor_trace_monitor.insert( 2578 std::make_pair(threadid, std::move(*traceMonitor))); 2579 return ret_trace_id; 2580 } 2581 2582 Status NativeProcessLinux::StopTracingForThread(lldb::tid_t thread) { 2583 Status error; 2584 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2585 LLDB_LOG(log, "Thread {0}", thread); 2586 2587 const auto& iter = m_processor_trace_monitor.find(thread); 2588 if (iter == m_processor_trace_monitor.end()) { 2589 error.SetErrorString("tracing not active for this thread"); 2590 return error; 2591 } 2592 2593 if (iter->second->GetTraceID() == m_pt_proces_trace_id) { 2594 // traceid maps to the whole process so we have to erase it from the 2595 // thread group. 2596 LLDB_LOG(log, "traceid maps to process"); 2597 m_pt_traced_thread_group.erase(thread); 2598 } 2599 m_processor_trace_monitor.erase(iter); 2600 2601 return error; 2602 } 2603 2604 Status NativeProcessLinux::StopTrace(lldb::user_id_t traceid, 2605 lldb::tid_t thread) { 2606 Status error; 2607 2608 TraceOptions trace_options; 2609 trace_options.setThreadID(thread); 2610 error = NativeProcessLinux::GetTraceConfig(traceid, trace_options); 2611 2612 if (error.Fail()) 2613 return error; 2614 2615 switch (trace_options.getType()) { 2616 case lldb::TraceType::eTraceTypeProcessorTrace: 2617 if (traceid == m_pt_proces_trace_id && 2618 thread == LLDB_INVALID_THREAD_ID) 2619 StopProcessorTracingOnProcess(); 2620 else 2621 error = StopProcessorTracingOnThread(traceid, thread); 2622 break; 2623 default: 2624 error.SetErrorString("trace not supported"); 2625 break; 2626 } 2627 2628 return error; 2629 } 2630 2631 void NativeProcessLinux::StopProcessorTracingOnProcess() { 2632 for (auto thread_id_iter : m_pt_traced_thread_group) 2633 m_processor_trace_monitor.erase(thread_id_iter); 2634 m_pt_traced_thread_group.clear(); 2635 m_pt_proces_trace_id = LLDB_INVALID_UID; 2636 } 2637 2638 Status NativeProcessLinux::StopProcessorTracingOnThread(lldb::user_id_t traceid, 2639 lldb::tid_t thread) { 2640 Status error; 2641 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2642 2643 if (thread == LLDB_INVALID_THREAD_ID) { 2644 for (auto& iter : m_processor_trace_monitor) { 2645 if (iter.second->GetTraceID() == traceid) { 2646 // Stopping a trace instance for an individual thread 2647 // hence there will only be one traceid that can match. 2648 m_processor_trace_monitor.erase(iter.first); 2649 return error; 2650 } 2651 LLDB_LOG(log, "Trace ID {0}", iter.second->GetTraceID()); 2652 } 2653 2654 LLDB_LOG(log, "Invalid TraceID"); 2655 error.SetErrorString("invalid trace id"); 2656 return error; 2657 } 2658 2659 // thread is specified so we can use find function on the map. 2660 const auto& iter = m_processor_trace_monitor.find(thread); 2661 if (iter == m_processor_trace_monitor.end()) { 2662 // thread not found in our map. 2663 LLDB_LOG(log, "thread not being traced"); 2664 error.SetErrorString("tracing not active for this thread"); 2665 return error; 2666 } 2667 if (iter->second->GetTraceID() != traceid) { 2668 // traceid did not match so it has to be invalid. 2669 LLDB_LOG(log, "Invalid TraceID"); 2670 error.SetErrorString("invalid trace id"); 2671 return error; 2672 } 2673 2674 LLDB_LOG(log, "UID - {0} , Thread -{1}", traceid, thread); 2675 2676 if (traceid == m_pt_proces_trace_id) { 2677 // traceid maps to the whole process so we have to erase it from the 2678 // thread group. 2679 LLDB_LOG(log, "traceid maps to process"); 2680 m_pt_traced_thread_group.erase(thread); 2681 } 2682 m_processor_trace_monitor.erase(iter); 2683 2684 return error; 2685 } 2686