1 //===-- NativeProcessLinux.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "NativeProcessLinux.h"
10 
11 #include <errno.h>
12 #include <stdint.h>
13 #include <string.h>
14 #include <unistd.h>
15 
16 #include <fstream>
17 #include <mutex>
18 #include <sstream>
19 #include <string>
20 #include <unordered_map>
21 
22 #include "NativeThreadLinux.h"
23 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
24 #include "Plugins/Process/Utility/LinuxProcMaps.h"
25 #include "Procfs.h"
26 #include "lldb/Core/EmulateInstruction.h"
27 #include "lldb/Core/ModuleSpec.h"
28 #include "lldb/Host/Host.h"
29 #include "lldb/Host/HostProcess.h"
30 #include "lldb/Host/ProcessLaunchInfo.h"
31 #include "lldb/Host/PseudoTerminal.h"
32 #include "lldb/Host/ThreadLauncher.h"
33 #include "lldb/Host/common/NativeRegisterContext.h"
34 #include "lldb/Host/linux/Ptrace.h"
35 #include "lldb/Host/linux/Uio.h"
36 #include "lldb/Host/posix/ProcessLauncherPosixFork.h"
37 #include "lldb/Symbol/ObjectFile.h"
38 #include "lldb/Target/Process.h"
39 #include "lldb/Target/Target.h"
40 #include "lldb/Utility/LLDBAssert.h"
41 #include "lldb/Utility/RegisterValue.h"
42 #include "lldb/Utility/State.h"
43 #include "lldb/Utility/Status.h"
44 #include "lldb/Utility/StringExtractor.h"
45 #include "llvm/ADT/ScopeExit.h"
46 #include "llvm/Support/Errno.h"
47 #include "llvm/Support/FileSystem.h"
48 #include "llvm/Support/Threading.h"
49 
50 #include <linux/unistd.h>
51 #include <sys/socket.h>
52 #include <sys/syscall.h>
53 #include <sys/types.h>
54 #include <sys/user.h>
55 #include <sys/wait.h>
56 
57 // Support hardware breakpoints in case it has not been defined
58 #ifndef TRAP_HWBKPT
59 #define TRAP_HWBKPT 4
60 #endif
61 
62 using namespace lldb;
63 using namespace lldb_private;
64 using namespace lldb_private::process_linux;
65 using namespace llvm;
66 
67 // Private bits we only need internally.
68 
69 static bool ProcessVmReadvSupported() {
70   static bool is_supported;
71   static llvm::once_flag flag;
72 
73   llvm::call_once(flag, [] {
74     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
75 
76     uint32_t source = 0x47424742;
77     uint32_t dest = 0;
78 
79     struct iovec local, remote;
80     remote.iov_base = &source;
81     local.iov_base = &dest;
82     remote.iov_len = local.iov_len = sizeof source;
83 
84     // We shall try if cross-process-memory reads work by attempting to read a
85     // value from our own process.
86     ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
87     is_supported = (res == sizeof(source) && source == dest);
88     if (is_supported)
89       LLDB_LOG(log,
90                "Detected kernel support for process_vm_readv syscall. "
91                "Fast memory reads enabled.");
92     else
93       LLDB_LOG(log,
94                "syscall process_vm_readv failed (error: {0}). Fast memory "
95                "reads disabled.",
96                llvm::sys::StrError());
97   });
98 
99   return is_supported;
100 }
101 
102 namespace {
103 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) {
104   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
105   if (!log)
106     return;
107 
108   if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO))
109     LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec());
110   else
111     LLDB_LOG(log, "leaving STDIN as is");
112 
113   if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO))
114     LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec());
115   else
116     LLDB_LOG(log, "leaving STDOUT as is");
117 
118   if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO))
119     LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec());
120   else
121     LLDB_LOG(log, "leaving STDERR as is");
122 
123   int i = 0;
124   for (const char **args = info.GetArguments().GetConstArgumentVector(); *args;
125        ++args, ++i)
126     LLDB_LOG(log, "arg {0}: '{1}'", i, *args);
127 }
128 
129 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) {
130   uint8_t *ptr = (uint8_t *)bytes;
131   const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
132   for (uint32_t i = 0; i < loop_count; i++) {
133     s.Printf("[%x]", *ptr);
134     ptr++;
135   }
136 }
137 
138 void PtraceDisplayBytes(int &req, void *data, size_t data_size) {
139   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
140   if (!log)
141     return;
142   StreamString buf;
143 
144   switch (req) {
145   case PTRACE_POKETEXT: {
146     DisplayBytes(buf, &data, 8);
147     LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData());
148     break;
149   }
150   case PTRACE_POKEDATA: {
151     DisplayBytes(buf, &data, 8);
152     LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData());
153     break;
154   }
155   case PTRACE_POKEUSER: {
156     DisplayBytes(buf, &data, 8);
157     LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData());
158     break;
159   }
160   case PTRACE_SETREGS: {
161     DisplayBytes(buf, data, data_size);
162     LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData());
163     break;
164   }
165   case PTRACE_SETFPREGS: {
166     DisplayBytes(buf, data, data_size);
167     LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData());
168     break;
169   }
170   case PTRACE_SETSIGINFO: {
171     DisplayBytes(buf, data, sizeof(siginfo_t));
172     LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData());
173     break;
174   }
175   case PTRACE_SETREGSET: {
176     // Extract iov_base from data, which is a pointer to the struct iovec
177     DisplayBytes(buf, *(void **)data, data_size);
178     LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData());
179     break;
180   }
181   default: {}
182   }
183 }
184 
185 static constexpr unsigned k_ptrace_word_size = sizeof(void *);
186 static_assert(sizeof(long) >= k_ptrace_word_size,
187               "Size of long must be larger than ptrace word size");
188 } // end of anonymous namespace
189 
190 // Simple helper function to ensure flags are enabled on the given file
191 // descriptor.
192 static Status EnsureFDFlags(int fd, int flags) {
193   Status error;
194 
195   int status = fcntl(fd, F_GETFL);
196   if (status == -1) {
197     error.SetErrorToErrno();
198     return error;
199   }
200 
201   if (fcntl(fd, F_SETFL, status | flags) == -1) {
202     error.SetErrorToErrno();
203     return error;
204   }
205 
206   return error;
207 }
208 
209 // Public Static Methods
210 
211 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
212 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info,
213                                     NativeDelegate &native_delegate,
214                                     MainLoop &mainloop) const {
215   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
216 
217   MaybeLogLaunchInfo(launch_info);
218 
219   Status status;
220   ::pid_t pid = ProcessLauncherPosixFork()
221                     .LaunchProcess(launch_info, status)
222                     .GetProcessId();
223   LLDB_LOG(log, "pid = {0:x}", pid);
224   if (status.Fail()) {
225     LLDB_LOG(log, "failed to launch process: {0}", status);
226     return status.ToError();
227   }
228 
229   // Wait for the child process to trap on its call to execve.
230   int wstatus;
231   ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0);
232   assert(wpid == pid);
233   (void)wpid;
234   if (!WIFSTOPPED(wstatus)) {
235     LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}",
236              WaitStatus::Decode(wstatus));
237     return llvm::make_error<StringError>("Could not sync with inferior process",
238                                          llvm::inconvertibleErrorCode());
239   }
240   LLDB_LOG(log, "inferior started, now in stopped state");
241 
242   ProcessInstanceInfo Info;
243   if (!Host::GetProcessInfo(pid, Info)) {
244     return llvm::make_error<StringError>("Cannot get process architecture",
245                                          llvm::inconvertibleErrorCode());
246   }
247 
248   // Set the architecture to the exe architecture.
249   LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid,
250            Info.GetArchitecture().GetArchitectureName());
251 
252   status = SetDefaultPtraceOpts(pid);
253   if (status.Fail()) {
254     LLDB_LOG(log, "failed to set default ptrace options: {0}", status);
255     return status.ToError();
256   }
257 
258   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
259       pid, launch_info.GetPTY().ReleasePrimaryFileDescriptor(), native_delegate,
260       Info.GetArchitecture(), mainloop, {pid}));
261 }
262 
263 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
264 NativeProcessLinux::Factory::Attach(
265     lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate,
266     MainLoop &mainloop) const {
267   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
268   LLDB_LOG(log, "pid = {0:x}", pid);
269 
270   // Retrieve the architecture for the running process.
271   ProcessInstanceInfo Info;
272   if (!Host::GetProcessInfo(pid, Info)) {
273     return llvm::make_error<StringError>("Cannot get process architecture",
274                                          llvm::inconvertibleErrorCode());
275   }
276 
277   auto tids_or = NativeProcessLinux::Attach(pid);
278   if (!tids_or)
279     return tids_or.takeError();
280 
281   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
282       pid, -1, native_delegate, Info.GetArchitecture(), mainloop, *tids_or));
283 }
284 
285 // Public Instance Methods
286 
287 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd,
288                                        NativeDelegate &delegate,
289                                        const ArchSpec &arch, MainLoop &mainloop,
290                                        llvm::ArrayRef<::pid_t> tids)
291     : NativeProcessELF(pid, terminal_fd, delegate), m_arch(arch) {
292   if (m_terminal_fd != -1) {
293     Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
294     assert(status.Success());
295   }
296 
297   Status status;
298   m_sigchld_handle = mainloop.RegisterSignal(
299       SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status);
300   assert(m_sigchld_handle && status.Success());
301 
302   for (const auto &tid : tids) {
303     NativeThreadLinux &thread = AddThread(tid);
304     thread.SetStoppedBySignal(SIGSTOP);
305     ThreadWasCreated(thread);
306   }
307 
308   // Let our process instance know the thread has stopped.
309   SetCurrentThreadID(tids[0]);
310   SetState(StateType::eStateStopped, false);
311 
312   // Proccess any signals we received before installing our handler
313   SigchldHandler();
314 }
315 
316 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) {
317   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
318 
319   Status status;
320   // Use a map to keep track of the threads which we have attached/need to
321   // attach.
322   Host::TidMap tids_to_attach;
323   while (Host::FindProcessThreads(pid, tids_to_attach)) {
324     for (Host::TidMap::iterator it = tids_to_attach.begin();
325          it != tids_to_attach.end();) {
326       if (it->second == false) {
327         lldb::tid_t tid = it->first;
328 
329         // Attach to the requested process.
330         // An attach will cause the thread to stop with a SIGSTOP.
331         if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) {
332           // No such thread. The thread may have exited. More error handling
333           // may be needed.
334           if (status.GetError() == ESRCH) {
335             it = tids_to_attach.erase(it);
336             continue;
337           }
338           return status.ToError();
339         }
340 
341         int wpid =
342             llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL);
343         // Need to use __WALL otherwise we receive an error with errno=ECHLD At
344         // this point we should have a thread stopped if waitpid succeeds.
345         if (wpid < 0) {
346           // No such thread. The thread may have exited. More error handling
347           // may be needed.
348           if (errno == ESRCH) {
349             it = tids_to_attach.erase(it);
350             continue;
351           }
352           return llvm::errorCodeToError(
353               std::error_code(errno, std::generic_category()));
354         }
355 
356         if ((status = SetDefaultPtraceOpts(tid)).Fail())
357           return status.ToError();
358 
359         LLDB_LOG(log, "adding tid = {0}", tid);
360         it->second = true;
361       }
362 
363       // move the loop forward
364       ++it;
365     }
366   }
367 
368   size_t tid_count = tids_to_attach.size();
369   if (tid_count == 0)
370     return llvm::make_error<StringError>("No such process",
371                                          llvm::inconvertibleErrorCode());
372 
373   std::vector<::pid_t> tids;
374   tids.reserve(tid_count);
375   for (const auto &p : tids_to_attach)
376     tids.push_back(p.first);
377   return std::move(tids);
378 }
379 
380 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) {
381   long ptrace_opts = 0;
382 
383   // Have the child raise an event on exit.  This is used to keep the child in
384   // limbo until it is destroyed.
385   ptrace_opts |= PTRACE_O_TRACEEXIT;
386 
387   // Have the tracer trace threads which spawn in the inferior process.
388   // TODO: if we want to support tracing the inferiors' child, add the
389   // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
390   ptrace_opts |= PTRACE_O_TRACECLONE;
391 
392   // Have the tracer notify us before execve returns (needed to disable legacy
393   // SIGTRAP generation)
394   ptrace_opts |= PTRACE_O_TRACEEXEC;
395 
396   return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts);
397 }
398 
399 // Handles all waitpid events from the inferior process.
400 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited,
401                                          WaitStatus status) {
402   Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
403 
404   // Certain activities differ based on whether the pid is the tid of the main
405   // thread.
406   const bool is_main_thread = (pid == GetID());
407 
408   // Handle when the thread exits.
409   if (exited) {
410     LLDB_LOG(log,
411              "got exit status({0}) , tid = {1} ({2} main thread), process "
412              "state = {3}",
413              status, pid, is_main_thread ? "is" : "is not", GetState());
414 
415     // This is a thread that exited.  Ensure we're not tracking it anymore.
416     StopTrackingThread(pid);
417 
418     if (is_main_thread) {
419       // The main thread exited.  We're done monitoring.  Report to delegate.
420       SetExitStatus(status, true);
421 
422       // Notify delegate that our process has exited.
423       SetState(StateType::eStateExited, true);
424     }
425     return;
426   }
427 
428   siginfo_t info;
429   const auto info_err = GetSignalInfo(pid, &info);
430   auto thread_sp = GetThreadByID(pid);
431 
432   if (!thread_sp) {
433     // Normally, the only situation when we cannot find the thread is if we
434     // have just received a new thread notification. This is indicated by
435     // GetSignalInfo() returning si_code == SI_USER and si_pid == 0
436     LLDB_LOG(log, "received notification about an unknown tid {0}.", pid);
437 
438     if (info_err.Fail()) {
439       LLDB_LOG(log,
440                "(tid {0}) GetSignalInfo failed ({1}). "
441                "Ingoring this notification.",
442                pid, info_err);
443       return;
444     }
445 
446     LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code,
447              info.si_pid);
448 
449     NativeThreadLinux &thread = AddThread(pid);
450 
451     // Resume the newly created thread.
452     ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
453     ThreadWasCreated(thread);
454     return;
455   }
456 
457   // Get details on the signal raised.
458   if (info_err.Success()) {
459     // We have retrieved the signal info.  Dispatch appropriately.
460     if (info.si_signo == SIGTRAP)
461       MonitorSIGTRAP(info, *thread_sp);
462     else
463       MonitorSignal(info, *thread_sp, exited);
464   } else {
465     if (info_err.GetError() == EINVAL) {
466       // This is a group stop reception for this tid. We can reach here if we
467       // reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the tracee,
468       // triggering the group-stop mechanism. Normally receiving these would
469       // stop the process, pending a SIGCONT. Simulating this state in a
470       // debugger is hard and is generally not needed (one use case is
471       // debugging background task being managed by a shell). For general use,
472       // it is sufficient to stop the process in a signal-delivery stop which
473       // happens before the group stop. This done by MonitorSignal and works
474       // correctly for all signals.
475       LLDB_LOG(log,
476                "received a group stop for pid {0} tid {1}. Transparent "
477                "handling of group stops not supported, resuming the "
478                "thread.",
479                GetID(), pid);
480       ResumeThread(*thread_sp, thread_sp->GetState(),
481                    LLDB_INVALID_SIGNAL_NUMBER);
482     } else {
483       // ptrace(GETSIGINFO) failed (but not due to group-stop).
484 
485       // A return value of ESRCH means the thread/process is no longer on the
486       // system, so it was killed somehow outside of our control.  Either way,
487       // we can't do anything with it anymore.
488 
489       // Stop tracking the metadata for the thread since it's entirely off the
490       // system now.
491       const bool thread_found = StopTrackingThread(pid);
492 
493       LLDB_LOG(log,
494                "GetSignalInfo failed: {0}, tid = {1}, status = {2}, "
495                "status = {3}, main_thread = {4}, thread_found: {5}",
496                info_err, pid, status, status, is_main_thread, thread_found);
497 
498       if (is_main_thread) {
499         // Notify the delegate - our process is not available but appears to
500         // have been killed outside our control.  Is eStateExited the right
501         // exit state in this case?
502         SetExitStatus(status, true);
503         SetState(StateType::eStateExited, true);
504       } else {
505         // This thread was pulled out from underneath us.  Anything to do here?
506         // Do we want to do an all stop?
507         LLDB_LOG(log,
508                  "pid {0} tid {1} non-main thread exit occurred, didn't "
509                  "tell delegate anything since thread disappeared out "
510                  "from underneath us",
511                  GetID(), pid);
512       }
513     }
514   }
515 }
516 
517 void NativeProcessLinux::WaitForNewThread(::pid_t tid) {
518   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
519 
520   if (GetThreadByID(tid)) {
521     // We are already tracking the thread - we got the event on the new thread
522     // (see MonitorSignal) before this one. We are done.
523     return;
524   }
525 
526   // The thread is not tracked yet, let's wait for it to appear.
527   int status = -1;
528   LLDB_LOG(log,
529            "received thread creation event for tid {0}. tid not tracked "
530            "yet, waiting for thread to appear...",
531            tid);
532   ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, &status, __WALL);
533   // Since we are waiting on a specific tid, this must be the creation event.
534   // But let's do some checks just in case.
535   if (wait_pid != tid) {
536     LLDB_LOG(log,
537              "waiting for tid {0} failed. Assuming the thread has "
538              "disappeared in the meantime",
539              tid);
540     // The only way I know of this could happen is if the whole process was
541     // SIGKILLed in the mean time. In any case, we can't do anything about that
542     // now.
543     return;
544   }
545   if (WIFEXITED(status)) {
546     LLDB_LOG(log,
547              "waiting for tid {0} returned an 'exited' event. Not "
548              "tracking the thread.",
549              tid);
550     // Also a very improbable event.
551     return;
552   }
553 
554   LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid);
555   NativeThreadLinux &new_thread = AddThread(tid);
556 
557   ResumeThread(new_thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
558   ThreadWasCreated(new_thread);
559 }
560 
561 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info,
562                                         NativeThreadLinux &thread) {
563   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
564   const bool is_main_thread = (thread.GetID() == GetID());
565 
566   assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
567 
568   switch (info.si_code) {
569   // TODO: these two cases are required if we want to support tracing of the
570   // inferiors' children.  We'd need this to debug a monitor. case (SIGTRAP |
571   // (PTRACE_EVENT_FORK << 8)): case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
572 
573   case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): {
574     // This is the notification on the parent thread which informs us of new
575     // thread creation. We don't want to do anything with the parent thread so
576     // we just resume it. In case we want to implement "break on thread
577     // creation" functionality, we would need to stop here.
578 
579     unsigned long event_message = 0;
580     if (GetEventMessage(thread.GetID(), &event_message).Fail()) {
581       LLDB_LOG(log,
582                "pid {0} received thread creation event but "
583                "GetEventMessage failed so we don't know the new tid",
584                thread.GetID());
585     } else
586       WaitForNewThread(event_message);
587 
588     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
589     break;
590   }
591 
592   case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): {
593     LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP);
594 
595     // Exec clears any pending notifications.
596     m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
597 
598     // Remove all but the main thread here.  Linux fork creates a new process
599     // which only copies the main thread.
600     LLDB_LOG(log, "exec received, stop tracking all but main thread");
601 
602     llvm::erase_if(m_threads, [&](std::unique_ptr<NativeThreadProtocol> &t) {
603       return t->GetID() != GetID();
604     });
605     assert(m_threads.size() == 1);
606     auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get());
607 
608     SetCurrentThreadID(main_thread->GetID());
609     main_thread->SetStoppedByExec();
610 
611     // Tell coordinator about about the "new" (since exec) stopped main thread.
612     ThreadWasCreated(*main_thread);
613 
614     // Let our delegate know we have just exec'd.
615     NotifyDidExec();
616 
617     // Let the process know we're stopped.
618     StopRunningThreads(main_thread->GetID());
619 
620     break;
621   }
622 
623   case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): {
624     // The inferior process or one of its threads is about to exit. We don't
625     // want to do anything with the thread so we just resume it. In case we
626     // want to implement "break on thread exit" functionality, we would need to
627     // stop here.
628 
629     unsigned long data = 0;
630     if (GetEventMessage(thread.GetID(), &data).Fail())
631       data = -1;
632 
633     LLDB_LOG(log,
634              "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, "
635              "WIFSIGNALED={2}, pid = {3}, main_thread = {4}",
636              data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(),
637              is_main_thread);
638 
639 
640     StateType state = thread.GetState();
641     if (!StateIsRunningState(state)) {
642       // Due to a kernel bug, we may sometimes get this stop after the inferior
643       // gets a SIGKILL. This confuses our state tracking logic in
644       // ResumeThread(), since normally, we should not be receiving any ptrace
645       // events while the inferior is stopped. This makes sure that the
646       // inferior is resumed and exits normally.
647       state = eStateRunning;
648     }
649     ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
650 
651     break;
652   }
653 
654   case 0:
655   case TRAP_TRACE:  // We receive this on single stepping.
656   case TRAP_HWBKPT: // We receive this on watchpoint hit
657   {
658     // If a watchpoint was hit, report it
659     uint32_t wp_index;
660     Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
661         wp_index, (uintptr_t)info.si_addr);
662     if (error.Fail())
663       LLDB_LOG(log,
664                "received error while checking for watchpoint hits, pid = "
665                "{0}, error = {1}",
666                thread.GetID(), error);
667     if (wp_index != LLDB_INVALID_INDEX32) {
668       MonitorWatchpoint(thread, wp_index);
669       break;
670     }
671 
672     // If a breakpoint was hit, report it
673     uint32_t bp_index;
674     error = thread.GetRegisterContext().GetHardwareBreakHitIndex(
675         bp_index, (uintptr_t)info.si_addr);
676     if (error.Fail())
677       LLDB_LOG(log, "received error while checking for hardware "
678                     "breakpoint hits, pid = {0}, error = {1}",
679                thread.GetID(), error);
680     if (bp_index != LLDB_INVALID_INDEX32) {
681       MonitorBreakpoint(thread);
682       break;
683     }
684 
685     // Otherwise, report step over
686     MonitorTrace(thread);
687     break;
688   }
689 
690   case SI_KERNEL:
691 #if defined __mips__
692     // For mips there is no special signal for watchpoint So we check for
693     // watchpoint in kernel trap
694     {
695       // If a watchpoint was hit, report it
696       uint32_t wp_index;
697       Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
698           wp_index, LLDB_INVALID_ADDRESS);
699       if (error.Fail())
700         LLDB_LOG(log,
701                  "received error while checking for watchpoint hits, pid = "
702                  "{0}, error = {1}",
703                  thread.GetID(), error);
704       if (wp_index != LLDB_INVALID_INDEX32) {
705         MonitorWatchpoint(thread, wp_index);
706         break;
707       }
708     }
709 // NO BREAK
710 #endif
711   case TRAP_BRKPT:
712     MonitorBreakpoint(thread);
713     break;
714 
715   case SIGTRAP:
716   case (SIGTRAP | 0x80):
717     LLDB_LOG(
718         log,
719         "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming",
720         info.si_code, GetID(), thread.GetID());
721 
722     // Ignore these signals until we know more about them.
723     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
724     break;
725 
726   default:
727     LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}",
728              info.si_code, GetID(), thread.GetID());
729     MonitorSignal(info, thread, false);
730     break;
731   }
732 }
733 
734 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) {
735   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
736   LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID());
737 
738   // This thread is currently stopped.
739   thread.SetStoppedByTrace();
740 
741   StopRunningThreads(thread.GetID());
742 }
743 
744 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) {
745   Log *log(
746       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
747   LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID());
748 
749   // Mark the thread as stopped at breakpoint.
750   thread.SetStoppedByBreakpoint();
751   FixupBreakpointPCAsNeeded(thread);
752 
753   if (m_threads_stepping_with_breakpoint.find(thread.GetID()) !=
754       m_threads_stepping_with_breakpoint.end())
755     thread.SetStoppedByTrace();
756 
757   StopRunningThreads(thread.GetID());
758 }
759 
760 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread,
761                                            uint32_t wp_index) {
762   Log *log(
763       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
764   LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}",
765            thread.GetID(), wp_index);
766 
767   // Mark the thread as stopped at watchpoint. The address is at
768   // (lldb::addr_t)info->si_addr if we need it.
769   thread.SetStoppedByWatchpoint(wp_index);
770 
771   // We need to tell all other running threads before we notify the delegate
772   // about this stop.
773   StopRunningThreads(thread.GetID());
774 }
775 
776 void NativeProcessLinux::MonitorSignal(const siginfo_t &info,
777                                        NativeThreadLinux &thread, bool exited) {
778   const int signo = info.si_signo;
779   const bool is_from_llgs = info.si_pid == getpid();
780 
781   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
782 
783   // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
784   // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2)
785   // or raise(3).  Similarly for tgkill(2) on Linux.
786   //
787   // IOW, user generated signals never generate what we consider to be a
788   // "crash".
789   //
790   // Similarly, ACK signals generated by this monitor.
791 
792   // Handle the signal.
793   LLDB_LOG(log,
794            "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, "
795            "waitpid pid = {4})",
796            Host::GetSignalAsCString(signo), signo, info.si_code,
797            thread.GetID());
798 
799   // Check for thread stop notification.
800   if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) {
801     // This is a tgkill()-based stop.
802     LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID());
803 
804     // Check that we're not already marked with a stop reason. Note this thread
805     // really shouldn't already be marked as stopped - if we were, that would
806     // imply that the kernel signaled us with the thread stopping which we
807     // handled and marked as stopped, and that, without an intervening resume,
808     // we received another stop.  It is more likely that we are missing the
809     // marking of a run state somewhere if we find that the thread was marked
810     // as stopped.
811     const StateType thread_state = thread.GetState();
812     if (!StateIsStoppedState(thread_state, false)) {
813       // An inferior thread has stopped because of a SIGSTOP we have sent it.
814       // Generally, these are not important stops and we don't want to report
815       // them as they are just used to stop other threads when one thread (the
816       // one with the *real* stop reason) hits a breakpoint (watchpoint,
817       // etc...). However, in the case of an asynchronous Interrupt(), this
818       // *is* the real stop reason, so we leave the signal intact if this is
819       // the thread that was chosen as the triggering thread.
820       if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
821         if (m_pending_notification_tid == thread.GetID())
822           thread.SetStoppedBySignal(SIGSTOP, &info);
823         else
824           thread.SetStoppedWithNoReason();
825 
826         SetCurrentThreadID(thread.GetID());
827         SignalIfAllThreadsStopped();
828       } else {
829         // We can end up here if stop was initiated by LLGS but by this time a
830         // thread stop has occurred - maybe initiated by another event.
831         Status error = ResumeThread(thread, thread.GetState(), 0);
832         if (error.Fail())
833           LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(),
834                    error);
835       }
836     } else {
837       LLDB_LOG(log,
838                "pid {0} tid {1}, thread was already marked as a stopped "
839                "state (state={2}), leaving stop signal as is",
840                GetID(), thread.GetID(), thread_state);
841       SignalIfAllThreadsStopped();
842     }
843 
844     // Done handling.
845     return;
846   }
847 
848   // Check if debugger should stop at this signal or just ignore it and resume
849   // the inferior.
850   if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) {
851      ResumeThread(thread, thread.GetState(), signo);
852      return;
853   }
854 
855   // This thread is stopped.
856   LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo));
857   thread.SetStoppedBySignal(signo, &info);
858 
859   // Send a stop to the debugger after we get all other threads to stop.
860   StopRunningThreads(thread.GetID());
861 }
862 
863 namespace {
864 
865 struct EmulatorBaton {
866   NativeProcessLinux &m_process;
867   NativeRegisterContext &m_reg_context;
868 
869   // eRegisterKindDWARF -> RegsiterValue
870   std::unordered_map<uint32_t, RegisterValue> m_register_values;
871 
872   EmulatorBaton(NativeProcessLinux &process, NativeRegisterContext &reg_context)
873       : m_process(process), m_reg_context(reg_context) {}
874 };
875 
876 } // anonymous namespace
877 
878 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton,
879                                  const EmulateInstruction::Context &context,
880                                  lldb::addr_t addr, void *dst, size_t length) {
881   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
882 
883   size_t bytes_read;
884   emulator_baton->m_process.ReadMemory(addr, dst, length, bytes_read);
885   return bytes_read;
886 }
887 
888 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton,
889                                  const RegisterInfo *reg_info,
890                                  RegisterValue &reg_value) {
891   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
892 
893   auto it = emulator_baton->m_register_values.find(
894       reg_info->kinds[eRegisterKindDWARF]);
895   if (it != emulator_baton->m_register_values.end()) {
896     reg_value = it->second;
897     return true;
898   }
899 
900   // The emulator only fill in the dwarf regsiter numbers (and in some case the
901   // generic register numbers). Get the full register info from the register
902   // context based on the dwarf register numbers.
903   const RegisterInfo *full_reg_info =
904       emulator_baton->m_reg_context.GetRegisterInfo(
905           eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
906 
907   Status error =
908       emulator_baton->m_reg_context.ReadRegister(full_reg_info, reg_value);
909   if (error.Success())
910     return true;
911 
912   return false;
913 }
914 
915 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton,
916                                   const EmulateInstruction::Context &context,
917                                   const RegisterInfo *reg_info,
918                                   const RegisterValue &reg_value) {
919   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
920   emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] =
921       reg_value;
922   return true;
923 }
924 
925 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton,
926                                   const EmulateInstruction::Context &context,
927                                   lldb::addr_t addr, const void *dst,
928                                   size_t length) {
929   return length;
930 }
931 
932 static lldb::addr_t ReadFlags(NativeRegisterContext &regsiter_context) {
933   const RegisterInfo *flags_info = regsiter_context.GetRegisterInfo(
934       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
935   return regsiter_context.ReadRegisterAsUnsigned(flags_info,
936                                                  LLDB_INVALID_ADDRESS);
937 }
938 
939 Status
940 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) {
941   Status error;
942   NativeRegisterContext& register_context = thread.GetRegisterContext();
943 
944   std::unique_ptr<EmulateInstruction> emulator_up(
945       EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying,
946                                      nullptr));
947 
948   if (emulator_up == nullptr)
949     return Status("Instruction emulator not found!");
950 
951   EmulatorBaton baton(*this, register_context);
952   emulator_up->SetBaton(&baton);
953   emulator_up->SetReadMemCallback(&ReadMemoryCallback);
954   emulator_up->SetReadRegCallback(&ReadRegisterCallback);
955   emulator_up->SetWriteMemCallback(&WriteMemoryCallback);
956   emulator_up->SetWriteRegCallback(&WriteRegisterCallback);
957 
958   if (!emulator_up->ReadInstruction())
959     return Status("Read instruction failed!");
960 
961   bool emulation_result =
962       emulator_up->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
963 
964   const RegisterInfo *reg_info_pc = register_context.GetRegisterInfo(
965       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
966   const RegisterInfo *reg_info_flags = register_context.GetRegisterInfo(
967       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
968 
969   auto pc_it =
970       baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
971   auto flags_it =
972       baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
973 
974   lldb::addr_t next_pc;
975   lldb::addr_t next_flags;
976   if (emulation_result) {
977     assert(pc_it != baton.m_register_values.end() &&
978            "Emulation was successfull but PC wasn't updated");
979     next_pc = pc_it->second.GetAsUInt64();
980 
981     if (flags_it != baton.m_register_values.end())
982       next_flags = flags_it->second.GetAsUInt64();
983     else
984       next_flags = ReadFlags(register_context);
985   } else if (pc_it == baton.m_register_values.end()) {
986     // Emulate instruction failed and it haven't changed PC. Advance PC with
987     // the size of the current opcode because the emulation of all
988     // PC modifying instruction should be successful. The failure most
989     // likely caused by a not supported instruction which don't modify PC.
990     next_pc = register_context.GetPC() + emulator_up->GetOpcode().GetByteSize();
991     next_flags = ReadFlags(register_context);
992   } else {
993     // The instruction emulation failed after it modified the PC. It is an
994     // unknown error where we can't continue because the next instruction is
995     // modifying the PC but we don't  know how.
996     return Status("Instruction emulation failed unexpectedly.");
997   }
998 
999   if (m_arch.GetMachine() == llvm::Triple::arm) {
1000     if (next_flags & 0x20) {
1001       // Thumb mode
1002       error = SetSoftwareBreakpoint(next_pc, 2);
1003     } else {
1004       // Arm mode
1005       error = SetSoftwareBreakpoint(next_pc, 4);
1006     }
1007   } else if (m_arch.IsMIPS() || m_arch.GetTriple().isPPC64())
1008     error = SetSoftwareBreakpoint(next_pc, 4);
1009   else {
1010     // No size hint is given for the next breakpoint
1011     error = SetSoftwareBreakpoint(next_pc, 0);
1012   }
1013 
1014   // If setting the breakpoint fails because next_pc is out of the address
1015   // space, ignore it and let the debugee segfault.
1016   if (error.GetError() == EIO || error.GetError() == EFAULT) {
1017     return Status();
1018   } else if (error.Fail())
1019     return error;
1020 
1021   m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc});
1022 
1023   return Status();
1024 }
1025 
1026 bool NativeProcessLinux::SupportHardwareSingleStepping() const {
1027   if (m_arch.GetMachine() == llvm::Triple::arm || m_arch.IsMIPS())
1028     return false;
1029   return true;
1030 }
1031 
1032 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) {
1033   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1034   LLDB_LOG(log, "pid {0}", GetID());
1035 
1036   bool software_single_step = !SupportHardwareSingleStepping();
1037 
1038   if (software_single_step) {
1039     for (const auto &thread : m_threads) {
1040       assert(thread && "thread list should not contain NULL threads");
1041 
1042       const ResumeAction *const action =
1043           resume_actions.GetActionForThread(thread->GetID(), true);
1044       if (action == nullptr)
1045         continue;
1046 
1047       if (action->state == eStateStepping) {
1048         Status error = SetupSoftwareSingleStepping(
1049             static_cast<NativeThreadLinux &>(*thread));
1050         if (error.Fail())
1051           return error;
1052       }
1053     }
1054   }
1055 
1056   for (const auto &thread : m_threads) {
1057     assert(thread && "thread list should not contain NULL threads");
1058 
1059     const ResumeAction *const action =
1060         resume_actions.GetActionForThread(thread->GetID(), true);
1061 
1062     if (action == nullptr) {
1063       LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(),
1064                thread->GetID());
1065       continue;
1066     }
1067 
1068     LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}",
1069              action->state, GetID(), thread->GetID());
1070 
1071     switch (action->state) {
1072     case eStateRunning:
1073     case eStateStepping: {
1074       // Run the thread, possibly feeding it the signal.
1075       const int signo = action->signal;
1076       ResumeThread(static_cast<NativeThreadLinux &>(*thread), action->state,
1077                    signo);
1078       break;
1079     }
1080 
1081     case eStateSuspended:
1082     case eStateStopped:
1083       llvm_unreachable("Unexpected state");
1084 
1085     default:
1086       return Status("NativeProcessLinux::%s (): unexpected state %s specified "
1087                     "for pid %" PRIu64 ", tid %" PRIu64,
1088                     __FUNCTION__, StateAsCString(action->state), GetID(),
1089                     thread->GetID());
1090     }
1091   }
1092 
1093   return Status();
1094 }
1095 
1096 Status NativeProcessLinux::Halt() {
1097   Status error;
1098 
1099   if (kill(GetID(), SIGSTOP) != 0)
1100     error.SetErrorToErrno();
1101 
1102   return error;
1103 }
1104 
1105 Status NativeProcessLinux::Detach() {
1106   Status error;
1107 
1108   // Stop monitoring the inferior.
1109   m_sigchld_handle.reset();
1110 
1111   // Tell ptrace to detach from the process.
1112   if (GetID() == LLDB_INVALID_PROCESS_ID)
1113     return error;
1114 
1115   for (const auto &thread : m_threads) {
1116     Status e = Detach(thread->GetID());
1117     if (e.Fail())
1118       error =
1119           e; // Save the error, but still attempt to detach from other threads.
1120   }
1121 
1122   m_processor_trace_monitor.clear();
1123   m_pt_proces_trace_id = LLDB_INVALID_UID;
1124 
1125   return error;
1126 }
1127 
1128 Status NativeProcessLinux::Signal(int signo) {
1129   Status error;
1130 
1131   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1132   LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo,
1133            Host::GetSignalAsCString(signo), GetID());
1134 
1135   if (kill(GetID(), signo))
1136     error.SetErrorToErrno();
1137 
1138   return error;
1139 }
1140 
1141 Status NativeProcessLinux::Interrupt() {
1142   // Pick a running thread (or if none, a not-dead stopped thread) as the
1143   // chosen thread that will be the stop-reason thread.
1144   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1145 
1146   NativeThreadProtocol *running_thread = nullptr;
1147   NativeThreadProtocol *stopped_thread = nullptr;
1148 
1149   LLDB_LOG(log, "selecting running thread for interrupt target");
1150   for (const auto &thread : m_threads) {
1151     // If we have a running or stepping thread, we'll call that the target of
1152     // the interrupt.
1153     const auto thread_state = thread->GetState();
1154     if (thread_state == eStateRunning || thread_state == eStateStepping) {
1155       running_thread = thread.get();
1156       break;
1157     } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) {
1158       // Remember the first non-dead stopped thread.  We'll use that as a
1159       // backup if there are no running threads.
1160       stopped_thread = thread.get();
1161     }
1162   }
1163 
1164   if (!running_thread && !stopped_thread) {
1165     Status error("found no running/stepping or live stopped threads as target "
1166                  "for interrupt");
1167     LLDB_LOG(log, "skipping due to error: {0}", error);
1168 
1169     return error;
1170   }
1171 
1172   NativeThreadProtocol *deferred_signal_thread =
1173       running_thread ? running_thread : stopped_thread;
1174 
1175   LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(),
1176            running_thread ? "running" : "stopped",
1177            deferred_signal_thread->GetID());
1178 
1179   StopRunningThreads(deferred_signal_thread->GetID());
1180 
1181   return Status();
1182 }
1183 
1184 Status NativeProcessLinux::Kill() {
1185   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1186   LLDB_LOG(log, "pid {0}", GetID());
1187 
1188   Status error;
1189 
1190   switch (m_state) {
1191   case StateType::eStateInvalid:
1192   case StateType::eStateExited:
1193   case StateType::eStateCrashed:
1194   case StateType::eStateDetached:
1195   case StateType::eStateUnloaded:
1196     // Nothing to do - the process is already dead.
1197     LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(),
1198              m_state);
1199     return error;
1200 
1201   case StateType::eStateConnected:
1202   case StateType::eStateAttaching:
1203   case StateType::eStateLaunching:
1204   case StateType::eStateStopped:
1205   case StateType::eStateRunning:
1206   case StateType::eStateStepping:
1207   case StateType::eStateSuspended:
1208     // We can try to kill a process in these states.
1209     break;
1210   }
1211 
1212   if (kill(GetID(), SIGKILL) != 0) {
1213     error.SetErrorToErrno();
1214     return error;
1215   }
1216 
1217   return error;
1218 }
1219 
1220 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr,
1221                                                MemoryRegionInfo &range_info) {
1222   // FIXME review that the final memory region returned extends to the end of
1223   // the virtual address space,
1224   // with no perms if it is not mapped.
1225 
1226   // Use an approach that reads memory regions from /proc/{pid}/maps. Assume
1227   // proc maps entries are in ascending order.
1228   // FIXME assert if we find differently.
1229 
1230   if (m_supports_mem_region == LazyBool::eLazyBoolNo) {
1231     // We're done.
1232     return Status("unsupported");
1233   }
1234 
1235   Status error = PopulateMemoryRegionCache();
1236   if (error.Fail()) {
1237     return error;
1238   }
1239 
1240   lldb::addr_t prev_base_address = 0;
1241 
1242   // FIXME start by finding the last region that is <= target address using
1243   // binary search.  Data is sorted.
1244   // There can be a ton of regions on pthreads apps with lots of threads.
1245   for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end();
1246        ++it) {
1247     MemoryRegionInfo &proc_entry_info = it->first;
1248 
1249     // Sanity check assumption that /proc/{pid}/maps entries are ascending.
1250     assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) &&
1251            "descending /proc/pid/maps entries detected, unexpected");
1252     prev_base_address = proc_entry_info.GetRange().GetRangeBase();
1253     UNUSED_IF_ASSERT_DISABLED(prev_base_address);
1254 
1255     // If the target address comes before this entry, indicate distance to next
1256     // region.
1257     if (load_addr < proc_entry_info.GetRange().GetRangeBase()) {
1258       range_info.GetRange().SetRangeBase(load_addr);
1259       range_info.GetRange().SetByteSize(
1260           proc_entry_info.GetRange().GetRangeBase() - load_addr);
1261       range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1262       range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1263       range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1264       range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1265 
1266       return error;
1267     } else if (proc_entry_info.GetRange().Contains(load_addr)) {
1268       // The target address is within the memory region we're processing here.
1269       range_info = proc_entry_info;
1270       return error;
1271     }
1272 
1273     // The target memory address comes somewhere after the region we just
1274     // parsed.
1275   }
1276 
1277   // If we made it here, we didn't find an entry that contained the given
1278   // address. Return the load_addr as start and the amount of bytes betwwen
1279   // load address and the end of the memory as size.
1280   range_info.GetRange().SetRangeBase(load_addr);
1281   range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS);
1282   range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1283   range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1284   range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1285   range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1286   return error;
1287 }
1288 
1289 Status NativeProcessLinux::PopulateMemoryRegionCache() {
1290   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1291 
1292   // If our cache is empty, pull the latest.  There should always be at least
1293   // one memory region if memory region handling is supported.
1294   if (!m_mem_region_cache.empty()) {
1295     LLDB_LOG(log, "reusing {0} cached memory region entries",
1296              m_mem_region_cache.size());
1297     return Status();
1298   }
1299 
1300   auto BufferOrError = getProcFile(GetID(), "maps");
1301   if (!BufferOrError) {
1302     m_supports_mem_region = LazyBool::eLazyBoolNo;
1303     return BufferOrError.getError();
1304   }
1305   Status Result;
1306   ParseLinuxMapRegions(BufferOrError.get()->getBuffer(),
1307                        [&](const MemoryRegionInfo &Info, const Status &ST) {
1308                          if (ST.Success()) {
1309                            FileSpec file_spec(Info.GetName().GetCString());
1310                            FileSystem::Instance().Resolve(file_spec);
1311                            m_mem_region_cache.emplace_back(Info, file_spec);
1312                            return true;
1313                          } else {
1314                            m_supports_mem_region = LazyBool::eLazyBoolNo;
1315                            LLDB_LOG(log, "failed to parse proc maps: {0}", ST);
1316                            Result = ST;
1317                            return false;
1318                          }
1319                        });
1320   if (Result.Fail())
1321     return Result;
1322 
1323   if (m_mem_region_cache.empty()) {
1324     // No entries after attempting to read them.  This shouldn't happen if
1325     // /proc/{pid}/maps is supported. Assume we don't support map entries via
1326     // procfs.
1327     m_supports_mem_region = LazyBool::eLazyBoolNo;
1328     LLDB_LOG(log,
1329              "failed to find any procfs maps entries, assuming no support "
1330              "for memory region metadata retrieval");
1331     return Status("not supported");
1332   }
1333 
1334   LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps",
1335            m_mem_region_cache.size(), GetID());
1336 
1337   // We support memory retrieval, remember that.
1338   m_supports_mem_region = LazyBool::eLazyBoolYes;
1339   return Status();
1340 }
1341 
1342 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) {
1343   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1344   LLDB_LOG(log, "newBumpId={0}", newBumpId);
1345   LLDB_LOG(log, "clearing {0} entries from memory region cache",
1346            m_mem_region_cache.size());
1347   m_mem_region_cache.clear();
1348 }
1349 
1350 llvm::Expected<uint64_t>
1351 NativeProcessLinux::Syscall(llvm::ArrayRef<uint64_t> args) {
1352   PopulateMemoryRegionCache();
1353   auto region_it = llvm::find_if(m_mem_region_cache, [](const auto &pair) {
1354     return pair.first.GetExecutable() == MemoryRegionInfo::eYes;
1355   });
1356   if (region_it == m_mem_region_cache.end())
1357     return llvm::createStringError(llvm::inconvertibleErrorCode(),
1358                                    "No executable memory region found!");
1359 
1360   addr_t exe_addr = region_it->first.GetRange().GetRangeBase();
1361 
1362   NativeThreadLinux &thread = *GetThreadByID(GetID());
1363   assert(thread.GetState() == eStateStopped);
1364   NativeRegisterContextLinux &reg_ctx = thread.GetRegisterContext();
1365 
1366   NativeRegisterContextLinux::SyscallData syscall_data =
1367       *reg_ctx.GetSyscallData();
1368 
1369   DataBufferSP registers_sp;
1370   if (llvm::Error Err = reg_ctx.ReadAllRegisterValues(registers_sp).ToError())
1371     return std::move(Err);
1372   auto restore_regs = llvm::make_scope_exit(
1373       [&] { reg_ctx.WriteAllRegisterValues(registers_sp); });
1374 
1375   llvm::SmallVector<uint8_t, 8> memory(syscall_data.Insn.size());
1376   size_t bytes_read;
1377   if (llvm::Error Err =
1378           ReadMemory(exe_addr, memory.data(), memory.size(), bytes_read)
1379               .ToError()) {
1380     return std::move(Err);
1381   }
1382 
1383   auto restore_mem = llvm::make_scope_exit(
1384       [&] { WriteMemory(exe_addr, memory.data(), memory.size(), bytes_read); });
1385 
1386   if (llvm::Error Err = reg_ctx.SetPC(exe_addr).ToError())
1387     return std::move(Err);
1388 
1389   for (const auto &zip : llvm::zip_first(args, syscall_data.Args)) {
1390     if (llvm::Error Err =
1391             reg_ctx
1392                 .WriteRegisterFromUnsigned(std::get<1>(zip), std::get<0>(zip))
1393                 .ToError()) {
1394       return std::move(Err);
1395     }
1396   }
1397   if (llvm::Error Err = WriteMemory(exe_addr, syscall_data.Insn.data(),
1398                                     syscall_data.Insn.size(), bytes_read)
1399                             .ToError())
1400     return std::move(Err);
1401 
1402   m_mem_region_cache.clear();
1403 
1404   // With software single stepping the syscall insn buffer must also include a
1405   // trap instruction to stop the process.
1406   int req = SupportHardwareSingleStepping() ? PTRACE_SINGLESTEP : PTRACE_CONT;
1407   if (llvm::Error Err =
1408           PtraceWrapper(req, thread.GetID(), nullptr, nullptr).ToError())
1409     return std::move(Err);
1410 
1411   int status;
1412   ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, thread.GetID(),
1413                                                  &status, __WALL);
1414   if (wait_pid == -1) {
1415     return llvm::errorCodeToError(
1416         std::error_code(errno, std::generic_category()));
1417   }
1418   assert((unsigned)wait_pid == thread.GetID());
1419 
1420   uint64_t result = reg_ctx.ReadRegisterAsUnsigned(syscall_data.Result, -ESRCH);
1421 
1422   // Values larger than this are actually negative errno numbers.
1423   uint64_t errno_threshold =
1424       (uint64_t(-1) >> (64 - 8 * m_arch.GetAddressByteSize())) - 0x1000;
1425   if (result > errno_threshold) {
1426     return llvm::errorCodeToError(
1427         std::error_code(-result & 0xfff, std::generic_category()));
1428   }
1429 
1430   return result;
1431 }
1432 
1433 llvm::Expected<addr_t>
1434 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions) {
1435 
1436   llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data =
1437       GetCurrentThread()->GetRegisterContext().GetMmapData();
1438   if (!mmap_data)
1439     return llvm::make_error<UnimplementedError>();
1440 
1441   unsigned prot = PROT_NONE;
1442   assert((permissions & (ePermissionsReadable | ePermissionsWritable |
1443                          ePermissionsExecutable)) == permissions &&
1444          "Unknown permission!");
1445   if (permissions & ePermissionsReadable)
1446     prot |= PROT_READ;
1447   if (permissions & ePermissionsWritable)
1448     prot |= PROT_WRITE;
1449   if (permissions & ePermissionsExecutable)
1450     prot |= PROT_EXEC;
1451 
1452   llvm::Expected<uint64_t> Result =
1453       Syscall({mmap_data->SysMmap, 0, size, prot, MAP_ANONYMOUS | MAP_PRIVATE,
1454                uint64_t(-1), 0});
1455   if (Result)
1456     m_allocated_memory.try_emplace(*Result, size);
1457   return Result;
1458 }
1459 
1460 llvm::Error NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) {
1461   llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data =
1462       GetCurrentThread()->GetRegisterContext().GetMmapData();
1463   if (!mmap_data)
1464     return llvm::make_error<UnimplementedError>();
1465 
1466   auto it = m_allocated_memory.find(addr);
1467   if (it == m_allocated_memory.end())
1468     return llvm::createStringError(llvm::errc::invalid_argument,
1469                                    "Memory not allocated by the debugger.");
1470 
1471   llvm::Expected<uint64_t> Result =
1472       Syscall({mmap_data->SysMunmap, addr, it->second});
1473   if (!Result)
1474     return Result.takeError();
1475 
1476   m_allocated_memory.erase(it);
1477   return llvm::Error::success();
1478 }
1479 
1480 size_t NativeProcessLinux::UpdateThreads() {
1481   // The NativeProcessLinux monitoring threads are always up to date with
1482   // respect to thread state and they keep the thread list populated properly.
1483   // All this method needs to do is return the thread count.
1484   return m_threads.size();
1485 }
1486 
1487 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size,
1488                                          bool hardware) {
1489   if (hardware)
1490     return SetHardwareBreakpoint(addr, size);
1491   else
1492     return SetSoftwareBreakpoint(addr, size);
1493 }
1494 
1495 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) {
1496   if (hardware)
1497     return RemoveHardwareBreakpoint(addr);
1498   else
1499     return NativeProcessProtocol::RemoveBreakpoint(addr);
1500 }
1501 
1502 llvm::Expected<llvm::ArrayRef<uint8_t>>
1503 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(size_t size_hint) {
1504   // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
1505   // linux kernel does otherwise.
1506   static const uint8_t g_arm_opcode[] = {0xf0, 0x01, 0xf0, 0xe7};
1507   static const uint8_t g_thumb_opcode[] = {0x01, 0xde};
1508 
1509   switch (GetArchitecture().GetMachine()) {
1510   case llvm::Triple::arm:
1511     switch (size_hint) {
1512     case 2:
1513       return llvm::makeArrayRef(g_thumb_opcode);
1514     case 4:
1515       return llvm::makeArrayRef(g_arm_opcode);
1516     default:
1517       return llvm::createStringError(llvm::inconvertibleErrorCode(),
1518                                      "Unrecognised trap opcode size hint!");
1519     }
1520   default:
1521     return NativeProcessProtocol::GetSoftwareBreakpointTrapOpcode(size_hint);
1522   }
1523 }
1524 
1525 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size,
1526                                       size_t &bytes_read) {
1527   if (ProcessVmReadvSupported()) {
1528     // The process_vm_readv path is about 50 times faster than ptrace api. We
1529     // want to use this syscall if it is supported.
1530 
1531     const ::pid_t pid = GetID();
1532 
1533     struct iovec local_iov, remote_iov;
1534     local_iov.iov_base = buf;
1535     local_iov.iov_len = size;
1536     remote_iov.iov_base = reinterpret_cast<void *>(addr);
1537     remote_iov.iov_len = size;
1538 
1539     bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
1540     const bool success = bytes_read == size;
1541 
1542     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1543     LLDB_LOG(log,
1544              "using process_vm_readv to read {0} bytes from inferior "
1545              "address {1:x}: {2}",
1546              size, addr, success ? "Success" : llvm::sys::StrError(errno));
1547 
1548     if (success)
1549       return Status();
1550     // else the call failed for some reason, let's retry the read using ptrace
1551     // api.
1552   }
1553 
1554   unsigned char *dst = static_cast<unsigned char *>(buf);
1555   size_t remainder;
1556   long data;
1557 
1558   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1559   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1560 
1561   for (bytes_read = 0; bytes_read < size; bytes_read += remainder) {
1562     Status error = NativeProcessLinux::PtraceWrapper(
1563         PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data);
1564     if (error.Fail())
1565       return error;
1566 
1567     remainder = size - bytes_read;
1568     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1569 
1570     // Copy the data into our buffer
1571     memcpy(dst, &data, remainder);
1572 
1573     LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1574     addr += k_ptrace_word_size;
1575     dst += k_ptrace_word_size;
1576   }
1577   return Status();
1578 }
1579 
1580 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf,
1581                                        size_t size, size_t &bytes_written) {
1582   const unsigned char *src = static_cast<const unsigned char *>(buf);
1583   size_t remainder;
1584   Status error;
1585 
1586   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1587   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1588 
1589   for (bytes_written = 0; bytes_written < size; bytes_written += remainder) {
1590     remainder = size - bytes_written;
1591     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1592 
1593     if (remainder == k_ptrace_word_size) {
1594       unsigned long data = 0;
1595       memcpy(&data, src, k_ptrace_word_size);
1596 
1597       LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1598       error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(),
1599                                                 (void *)addr, (void *)data);
1600       if (error.Fail())
1601         return error;
1602     } else {
1603       unsigned char buff[8];
1604       size_t bytes_read;
1605       error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
1606       if (error.Fail())
1607         return error;
1608 
1609       memcpy(buff, src, remainder);
1610 
1611       size_t bytes_written_rec;
1612       error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
1613       if (error.Fail())
1614         return error;
1615 
1616       LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src,
1617                *(unsigned long *)buff);
1618     }
1619 
1620     addr += k_ptrace_word_size;
1621     src += k_ptrace_word_size;
1622   }
1623   return error;
1624 }
1625 
1626 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) {
1627   return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
1628 }
1629 
1630 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid,
1631                                            unsigned long *message) {
1632   return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
1633 }
1634 
1635 Status NativeProcessLinux::Detach(lldb::tid_t tid) {
1636   if (tid == LLDB_INVALID_THREAD_ID)
1637     return Status();
1638 
1639   return PtraceWrapper(PTRACE_DETACH, tid);
1640 }
1641 
1642 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) {
1643   for (const auto &thread : m_threads) {
1644     assert(thread && "thread list should not contain NULL threads");
1645     if (thread->GetID() == thread_id) {
1646       // We have this thread.
1647       return true;
1648     }
1649   }
1650 
1651   // We don't have this thread.
1652   return false;
1653 }
1654 
1655 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) {
1656   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1657   LLDB_LOG(log, "tid: {0})", thread_id);
1658 
1659   bool found = false;
1660   for (auto it = m_threads.begin(); it != m_threads.end(); ++it) {
1661     if (*it && ((*it)->GetID() == thread_id)) {
1662       m_threads.erase(it);
1663       found = true;
1664       break;
1665     }
1666   }
1667 
1668   if (found)
1669     StopTracingForThread(thread_id);
1670   SignalIfAllThreadsStopped();
1671   return found;
1672 }
1673 
1674 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id) {
1675   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD));
1676   LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id);
1677 
1678   assert(!HasThreadNoLock(thread_id) &&
1679          "attempted to add a thread by id that already exists");
1680 
1681   // If this is the first thread, save it as the current thread
1682   if (m_threads.empty())
1683     SetCurrentThreadID(thread_id);
1684 
1685   m_threads.push_back(std::make_unique<NativeThreadLinux>(*this, thread_id));
1686 
1687   if (m_pt_proces_trace_id != LLDB_INVALID_UID) {
1688     auto traceMonitor = ProcessorTraceMonitor::Create(
1689         GetID(), thread_id, m_pt_process_trace_config, true);
1690     if (traceMonitor) {
1691       m_pt_traced_thread_group.insert(thread_id);
1692       m_processor_trace_monitor.insert(
1693           std::make_pair(thread_id, std::move(*traceMonitor)));
1694     } else {
1695       LLDB_LOG(log, "failed to start trace on thread {0}", thread_id);
1696       Status error(traceMonitor.takeError());
1697       LLDB_LOG(log, "error {0}", error);
1698     }
1699   }
1700 
1701   return static_cast<NativeThreadLinux &>(*m_threads.back());
1702 }
1703 
1704 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path,
1705                                                    FileSpec &file_spec) {
1706   Status error = PopulateMemoryRegionCache();
1707   if (error.Fail())
1708     return error;
1709 
1710   FileSpec module_file_spec(module_path);
1711   FileSystem::Instance().Resolve(module_file_spec);
1712 
1713   file_spec.Clear();
1714   for (const auto &it : m_mem_region_cache) {
1715     if (it.second.GetFilename() == module_file_spec.GetFilename()) {
1716       file_spec = it.second;
1717       return Status();
1718     }
1719   }
1720   return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
1721                 module_file_spec.GetFilename().AsCString(), GetID());
1722 }
1723 
1724 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name,
1725                                               lldb::addr_t &load_addr) {
1726   load_addr = LLDB_INVALID_ADDRESS;
1727   Status error = PopulateMemoryRegionCache();
1728   if (error.Fail())
1729     return error;
1730 
1731   FileSpec file(file_name);
1732   for (const auto &it : m_mem_region_cache) {
1733     if (it.second == file) {
1734       load_addr = it.first.GetRange().GetRangeBase();
1735       return Status();
1736     }
1737   }
1738   return Status("No load address found for specified file.");
1739 }
1740 
1741 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) {
1742   return static_cast<NativeThreadLinux *>(
1743       NativeProcessProtocol::GetThreadByID(tid));
1744 }
1745 
1746 NativeThreadLinux *NativeProcessLinux::GetCurrentThread() {
1747   return static_cast<NativeThreadLinux *>(
1748       NativeProcessProtocol::GetCurrentThread());
1749 }
1750 
1751 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread,
1752                                         lldb::StateType state, int signo) {
1753   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1754   LLDB_LOG(log, "tid: {0}", thread.GetID());
1755 
1756   // Before we do the resume below, first check if we have a pending stop
1757   // notification that is currently waiting for all threads to stop.  This is
1758   // potentially a buggy situation since we're ostensibly waiting for threads
1759   // to stop before we send out the pending notification, and here we are
1760   // resuming one before we send out the pending stop notification.
1761   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
1762     LLDB_LOG(log,
1763              "about to resume tid {0} per explicit request but we have a "
1764              "pending stop notification (tid {1}) that is actively "
1765              "waiting for this thread to stop. Valid sequence of events?",
1766              thread.GetID(), m_pending_notification_tid);
1767   }
1768 
1769   // Request a resume.  We expect this to be synchronous and the system to
1770   // reflect it is running after this completes.
1771   switch (state) {
1772   case eStateRunning: {
1773     const auto resume_result = thread.Resume(signo);
1774     if (resume_result.Success())
1775       SetState(eStateRunning, true);
1776     return resume_result;
1777   }
1778   case eStateStepping: {
1779     const auto step_result = thread.SingleStep(signo);
1780     if (step_result.Success())
1781       SetState(eStateRunning, true);
1782     return step_result;
1783   }
1784   default:
1785     LLDB_LOG(log, "Unhandled state {0}.", state);
1786     llvm_unreachable("Unhandled state for resume");
1787   }
1788 }
1789 
1790 //===----------------------------------------------------------------------===//
1791 
1792 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) {
1793   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1794   LLDB_LOG(log, "about to process event: (triggering_tid: {0})",
1795            triggering_tid);
1796 
1797   m_pending_notification_tid = triggering_tid;
1798 
1799   // Request a stop for all the thread stops that need to be stopped and are
1800   // not already known to be stopped.
1801   for (const auto &thread : m_threads) {
1802     if (StateIsRunningState(thread->GetState()))
1803       static_cast<NativeThreadLinux *>(thread.get())->RequestStop();
1804   }
1805 
1806   SignalIfAllThreadsStopped();
1807   LLDB_LOG(log, "event processing done");
1808 }
1809 
1810 void NativeProcessLinux::SignalIfAllThreadsStopped() {
1811   if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
1812     return; // No pending notification. Nothing to do.
1813 
1814   for (const auto &thread_sp : m_threads) {
1815     if (StateIsRunningState(thread_sp->GetState()))
1816       return; // Some threads are still running. Don't signal yet.
1817   }
1818 
1819   // We have a pending notification and all threads have stopped.
1820   Log *log(
1821       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
1822 
1823   // Clear any temporary breakpoints we used to implement software single
1824   // stepping.
1825   for (const auto &thread_info : m_threads_stepping_with_breakpoint) {
1826     Status error = RemoveBreakpoint(thread_info.second);
1827     if (error.Fail())
1828       LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}",
1829                thread_info.first, error);
1830   }
1831   m_threads_stepping_with_breakpoint.clear();
1832 
1833   // Notify the delegate about the stop
1834   SetCurrentThreadID(m_pending_notification_tid);
1835   SetState(StateType::eStateStopped, true);
1836   m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
1837 }
1838 
1839 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) {
1840   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1841   LLDB_LOG(log, "tid: {0}", thread.GetID());
1842 
1843   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID &&
1844       StateIsRunningState(thread.GetState())) {
1845     // We will need to wait for this new thread to stop as well before firing
1846     // the notification.
1847     thread.RequestStop();
1848   }
1849 }
1850 
1851 void NativeProcessLinux::SigchldHandler() {
1852   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1853   // Process all pending waitpid notifications.
1854   while (true) {
1855     int status = -1;
1856     ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, -1, &status,
1857                                           __WALL | __WNOTHREAD | WNOHANG);
1858 
1859     if (wait_pid == 0)
1860       break; // We are done.
1861 
1862     if (wait_pid == -1) {
1863       Status error(errno, eErrorTypePOSIX);
1864       LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error);
1865       break;
1866     }
1867 
1868     WaitStatus wait_status = WaitStatus::Decode(status);
1869     bool exited = wait_status.type == WaitStatus::Exit ||
1870                   (wait_status.type == WaitStatus::Signal &&
1871                    wait_pid == static_cast<::pid_t>(GetID()));
1872 
1873     LLDB_LOG(
1874         log,
1875         "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}",
1876         wait_pid, wait_status, exited);
1877 
1878     MonitorCallback(wait_pid, exited, wait_status);
1879   }
1880 }
1881 
1882 // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets
1883 // errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
1884 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr,
1885                                          void *data, size_t data_size,
1886                                          long *result) {
1887   Status error;
1888   long int ret;
1889 
1890   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1891 
1892   PtraceDisplayBytes(req, data, data_size);
1893 
1894   errno = 0;
1895   if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
1896     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
1897                  *(unsigned int *)addr, data);
1898   else
1899     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
1900                  addr, data);
1901 
1902   if (ret == -1)
1903     error.SetErrorToErrno();
1904 
1905   if (result)
1906     *result = ret;
1907 
1908   LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data,
1909            data_size, ret);
1910 
1911   PtraceDisplayBytes(req, data, data_size);
1912 
1913   if (error.Fail())
1914     LLDB_LOG(log, "ptrace() failed: {0}", error);
1915 
1916   return error;
1917 }
1918 
1919 llvm::Expected<ProcessorTraceMonitor &>
1920 NativeProcessLinux::LookupProcessorTraceInstance(lldb::user_id_t traceid,
1921                                                  lldb::tid_t thread) {
1922   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1923   if (thread == LLDB_INVALID_THREAD_ID && traceid == m_pt_proces_trace_id) {
1924     LLDB_LOG(log, "thread not specified: {0}", traceid);
1925     return Status("tracing not active thread not specified").ToError();
1926   }
1927 
1928   for (auto& iter : m_processor_trace_monitor) {
1929     if (traceid == iter.second->GetTraceID() &&
1930         (thread == iter.first || thread == LLDB_INVALID_THREAD_ID))
1931       return *(iter.second);
1932   }
1933 
1934   LLDB_LOG(log, "traceid not being traced: {0}", traceid);
1935   return Status("tracing not active for this thread").ToError();
1936 }
1937 
1938 Status NativeProcessLinux::GetMetaData(lldb::user_id_t traceid,
1939                                        lldb::tid_t thread,
1940                                        llvm::MutableArrayRef<uint8_t> &buffer,
1941                                        size_t offset) {
1942   TraceOptions trace_options;
1943   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1944   Status error;
1945 
1946   LLDB_LOG(log, "traceid {0}", traceid);
1947 
1948   auto perf_monitor = LookupProcessorTraceInstance(traceid, thread);
1949   if (!perf_monitor) {
1950     LLDB_LOG(log, "traceid not being traced: {0}", traceid);
1951     buffer = buffer.slice(buffer.size());
1952     error = perf_monitor.takeError();
1953     return error;
1954   }
1955   return (*perf_monitor).ReadPerfTraceData(buffer, offset);
1956 }
1957 
1958 Status NativeProcessLinux::GetData(lldb::user_id_t traceid, lldb::tid_t thread,
1959                                    llvm::MutableArrayRef<uint8_t> &buffer,
1960                                    size_t offset) {
1961   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1962   Status error;
1963 
1964   LLDB_LOG(log, "traceid {0}", traceid);
1965 
1966   auto perf_monitor = LookupProcessorTraceInstance(traceid, thread);
1967   if (!perf_monitor) {
1968     LLDB_LOG(log, "traceid not being traced: {0}", traceid);
1969     buffer = buffer.slice(buffer.size());
1970     error = perf_monitor.takeError();
1971     return error;
1972   }
1973   return (*perf_monitor).ReadPerfTraceAux(buffer, offset);
1974 }
1975 
1976 Status NativeProcessLinux::GetTraceConfig(lldb::user_id_t traceid,
1977                                           TraceOptions &config) {
1978   Status error;
1979   if (config.getThreadID() == LLDB_INVALID_THREAD_ID &&
1980       m_pt_proces_trace_id == traceid) {
1981     if (m_pt_proces_trace_id == LLDB_INVALID_UID) {
1982       error.SetErrorString("tracing not active for this process");
1983       return error;
1984     }
1985     config = m_pt_process_trace_config;
1986   } else {
1987     auto perf_monitor =
1988         LookupProcessorTraceInstance(traceid, config.getThreadID());
1989     if (!perf_monitor) {
1990       error = perf_monitor.takeError();
1991       return error;
1992     }
1993     error = (*perf_monitor).GetTraceConfig(config);
1994   }
1995   return error;
1996 }
1997 
1998 llvm::Expected<TraceTypeInfo> NativeProcessLinux::GetSupportedTraceType() {
1999   if (ProcessorTraceMonitor::IsSupported())
2000     return TraceTypeInfo{"intel-pt", "Intel Processor Trace"};
2001   return NativeProcessProtocol::GetSupportedTraceType();
2002 }
2003 
2004 lldb::user_id_t
2005 NativeProcessLinux::StartTraceGroup(const TraceOptions &config,
2006                                            Status &error) {
2007 
2008   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2009   if (config.getType() != TraceType::eTraceTypeProcessorTrace)
2010     return LLDB_INVALID_UID;
2011 
2012   if (m_pt_proces_trace_id != LLDB_INVALID_UID) {
2013     error.SetErrorString("tracing already active on this process");
2014     return m_pt_proces_trace_id;
2015   }
2016 
2017   for (const auto &thread_sp : m_threads) {
2018     if (auto traceInstance = ProcessorTraceMonitor::Create(
2019             GetID(), thread_sp->GetID(), config, true)) {
2020       m_pt_traced_thread_group.insert(thread_sp->GetID());
2021       m_processor_trace_monitor.insert(
2022           std::make_pair(thread_sp->GetID(), std::move(*traceInstance)));
2023     }
2024   }
2025 
2026   m_pt_process_trace_config = config;
2027   error = ProcessorTraceMonitor::GetCPUType(m_pt_process_trace_config);
2028 
2029   // Trace on Complete process will have traceid of 0
2030   m_pt_proces_trace_id = 0;
2031 
2032   LLDB_LOG(log, "Process Trace ID {0}", m_pt_proces_trace_id);
2033   return m_pt_proces_trace_id;
2034 }
2035 
2036 lldb::user_id_t NativeProcessLinux::StartTrace(const TraceOptions &config,
2037                                                Status &error) {
2038   if (config.getType() != TraceType::eTraceTypeProcessorTrace)
2039     return NativeProcessProtocol::StartTrace(config, error);
2040 
2041   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2042 
2043   lldb::tid_t threadid = config.getThreadID();
2044 
2045   if (threadid == LLDB_INVALID_THREAD_ID)
2046     return StartTraceGroup(config, error);
2047 
2048   auto thread_sp = GetThreadByID(threadid);
2049   if (!thread_sp) {
2050     // Thread not tracked by lldb so don't trace.
2051     error.SetErrorString("invalid thread id");
2052     return LLDB_INVALID_UID;
2053   }
2054 
2055   const auto &iter = m_processor_trace_monitor.find(threadid);
2056   if (iter != m_processor_trace_monitor.end()) {
2057     LLDB_LOG(log, "Thread already being traced");
2058     error.SetErrorString("tracing already active on this thread");
2059     return LLDB_INVALID_UID;
2060   }
2061 
2062   auto traceMonitor =
2063       ProcessorTraceMonitor::Create(GetID(), threadid, config, false);
2064   if (!traceMonitor) {
2065     error = traceMonitor.takeError();
2066     LLDB_LOG(log, "error {0}", error);
2067     return LLDB_INVALID_UID;
2068   }
2069   lldb::user_id_t ret_trace_id = (*traceMonitor)->GetTraceID();
2070   m_processor_trace_monitor.insert(
2071       std::make_pair(threadid, std::move(*traceMonitor)));
2072   return ret_trace_id;
2073 }
2074 
2075 Status NativeProcessLinux::StopTracingForThread(lldb::tid_t thread) {
2076   Status error;
2077   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2078   LLDB_LOG(log, "Thread {0}", thread);
2079 
2080   const auto& iter = m_processor_trace_monitor.find(thread);
2081   if (iter == m_processor_trace_monitor.end()) {
2082     error.SetErrorString("tracing not active for this thread");
2083     return error;
2084   }
2085 
2086   if (iter->second->GetTraceID() == m_pt_proces_trace_id) {
2087     // traceid maps to the whole process so we have to erase it from the thread
2088     // group.
2089     LLDB_LOG(log, "traceid maps to process");
2090     m_pt_traced_thread_group.erase(thread);
2091   }
2092   m_processor_trace_monitor.erase(iter);
2093 
2094   return error;
2095 }
2096 
2097 Status NativeProcessLinux::StopTrace(lldb::user_id_t traceid,
2098                                      lldb::tid_t thread) {
2099   Status error;
2100 
2101   TraceOptions trace_options;
2102   trace_options.setThreadID(thread);
2103   error = NativeProcessLinux::GetTraceConfig(traceid, trace_options);
2104 
2105   if (error.Fail())
2106     return error;
2107 
2108   switch (trace_options.getType()) {
2109   case lldb::TraceType::eTraceTypeProcessorTrace:
2110     if (traceid == m_pt_proces_trace_id &&
2111         thread == LLDB_INVALID_THREAD_ID)
2112       StopProcessorTracingOnProcess();
2113     else
2114       error = StopProcessorTracingOnThread(traceid, thread);
2115     break;
2116   default:
2117     error.SetErrorString("trace not supported");
2118     break;
2119   }
2120 
2121   return error;
2122 }
2123 
2124 void NativeProcessLinux::StopProcessorTracingOnProcess() {
2125   for (auto thread_id_iter : m_pt_traced_thread_group)
2126     m_processor_trace_monitor.erase(thread_id_iter);
2127   m_pt_traced_thread_group.clear();
2128   m_pt_proces_trace_id = LLDB_INVALID_UID;
2129 }
2130 
2131 Status NativeProcessLinux::StopProcessorTracingOnThread(lldb::user_id_t traceid,
2132                                                         lldb::tid_t thread) {
2133   Status error;
2134   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2135 
2136   if (thread == LLDB_INVALID_THREAD_ID) {
2137     for (auto& iter : m_processor_trace_monitor) {
2138       if (iter.second->GetTraceID() == traceid) {
2139         // Stopping a trace instance for an individual thread hence there will
2140         // only be one traceid that can match.
2141         m_processor_trace_monitor.erase(iter.first);
2142         return error;
2143       }
2144       LLDB_LOG(log, "Trace ID {0}", iter.second->GetTraceID());
2145     }
2146 
2147     LLDB_LOG(log, "Invalid TraceID");
2148     error.SetErrorString("invalid trace id");
2149     return error;
2150   }
2151 
2152   // thread is specified so we can use find function on the map.
2153   const auto& iter = m_processor_trace_monitor.find(thread);
2154   if (iter == m_processor_trace_monitor.end()) {
2155     // thread not found in our map.
2156     LLDB_LOG(log, "thread not being traced");
2157     error.SetErrorString("tracing not active for this thread");
2158     return error;
2159   }
2160   if (iter->second->GetTraceID() != traceid) {
2161     // traceid did not match so it has to be invalid.
2162     LLDB_LOG(log, "Invalid TraceID");
2163     error.SetErrorString("invalid trace id");
2164     return error;
2165   }
2166 
2167   LLDB_LOG(log, "UID - {0} , Thread -{1}", traceid, thread);
2168 
2169   if (traceid == m_pt_proces_trace_id) {
2170     // traceid maps to the whole process so we have to erase it from the thread
2171     // group.
2172     LLDB_LOG(log, "traceid maps to process");
2173     m_pt_traced_thread_group.erase(thread);
2174   }
2175   m_processor_trace_monitor.erase(iter);
2176 
2177   return error;
2178 }
2179