1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "NativeProcessLinux.h"
11 
12 // C Includes
13 #include <errno.h>
14 #include <stdint.h>
15 #include <string.h>
16 #include <unistd.h>
17 
18 // C++ Includes
19 #include <fstream>
20 #include <mutex>
21 #include <sstream>
22 #include <string>
23 #include <unordered_map>
24 
25 // Other libraries and framework includes
26 #include "lldb/Core/EmulateInstruction.h"
27 #include "lldb/Core/ModuleSpec.h"
28 #include "lldb/Core/RegisterValue.h"
29 #include "lldb/Core/State.h"
30 #include "lldb/Host/Host.h"
31 #include "lldb/Host/HostProcess.h"
32 #include "lldb/Host/PseudoTerminal.h"
33 #include "lldb/Host/ThreadLauncher.h"
34 #include "lldb/Host/common/NativeBreakpoint.h"
35 #include "lldb/Host/common/NativeRegisterContext.h"
36 #include "lldb/Host/linux/Ptrace.h"
37 #include "lldb/Host/linux/Uio.h"
38 #include "lldb/Host/posix/ProcessLauncherPosixFork.h"
39 #include "lldb/Symbol/ObjectFile.h"
40 #include "lldb/Target/Process.h"
41 #include "lldb/Target/ProcessLaunchInfo.h"
42 #include "lldb/Target/Target.h"
43 #include "lldb/Utility/LLDBAssert.h"
44 #include "lldb/Utility/Status.h"
45 #include "lldb/Utility/StringExtractor.h"
46 
47 #include "NativeThreadLinux.h"
48 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
49 #include "Procfs.h"
50 
51 #include "llvm/Support/FileSystem.h"
52 #include "llvm/Support/Threading.h"
53 
54 #include <linux/unistd.h>
55 #include <sys/socket.h>
56 #include <sys/syscall.h>
57 #include <sys/types.h>
58 #include <sys/user.h>
59 #include <sys/wait.h>
60 
61 // Support hardware breakpoints in case it has not been defined
62 #ifndef TRAP_HWBKPT
63 #define TRAP_HWBKPT 4
64 #endif
65 
66 using namespace lldb;
67 using namespace lldb_private;
68 using namespace lldb_private::process_linux;
69 using namespace llvm;
70 
71 // Private bits we only need internally.
72 
73 static bool ProcessVmReadvSupported() {
74   static bool is_supported;
75   static llvm::once_flag flag;
76 
77   llvm::call_once(flag, [] {
78     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
79 
80     uint32_t source = 0x47424742;
81     uint32_t dest = 0;
82 
83     struct iovec local, remote;
84     remote.iov_base = &source;
85     local.iov_base = &dest;
86     remote.iov_len = local.iov_len = sizeof source;
87 
88     // We shall try if cross-process-memory reads work by attempting to read a
89     // value from our own process.
90     ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
91     is_supported = (res == sizeof(source) && source == dest);
92     if (is_supported)
93       LLDB_LOG(log,
94                "Detected kernel support for process_vm_readv syscall. "
95                "Fast memory reads enabled.");
96     else
97       LLDB_LOG(log,
98                "syscall process_vm_readv failed (error: {0}). Fast memory "
99                "reads disabled.",
100                strerror(errno));
101   });
102 
103   return is_supported;
104 }
105 
106 namespace {
107 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) {
108   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
109   if (!log)
110     return;
111 
112   if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO))
113     LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec());
114   else
115     LLDB_LOG(log, "leaving STDIN as is");
116 
117   if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO))
118     LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec());
119   else
120     LLDB_LOG(log, "leaving STDOUT as is");
121 
122   if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO))
123     LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec());
124   else
125     LLDB_LOG(log, "leaving STDERR as is");
126 
127   int i = 0;
128   for (const char **args = info.GetArguments().GetConstArgumentVector(); *args;
129        ++args, ++i)
130     LLDB_LOG(log, "arg {0}: '{1}'", i, *args);
131 }
132 
133 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) {
134   uint8_t *ptr = (uint8_t *)bytes;
135   const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
136   for (uint32_t i = 0; i < loop_count; i++) {
137     s.Printf("[%x]", *ptr);
138     ptr++;
139   }
140 }
141 
142 void PtraceDisplayBytes(int &req, void *data, size_t data_size) {
143   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
144   if (!log)
145     return;
146   StreamString buf;
147 
148   switch (req) {
149   case PTRACE_POKETEXT: {
150     DisplayBytes(buf, &data, 8);
151     LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData());
152     break;
153   }
154   case PTRACE_POKEDATA: {
155     DisplayBytes(buf, &data, 8);
156     LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData());
157     break;
158   }
159   case PTRACE_POKEUSER: {
160     DisplayBytes(buf, &data, 8);
161     LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData());
162     break;
163   }
164   case PTRACE_SETREGS: {
165     DisplayBytes(buf, data, data_size);
166     LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData());
167     break;
168   }
169   case PTRACE_SETFPREGS: {
170     DisplayBytes(buf, data, data_size);
171     LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData());
172     break;
173   }
174   case PTRACE_SETSIGINFO: {
175     DisplayBytes(buf, data, sizeof(siginfo_t));
176     LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData());
177     break;
178   }
179   case PTRACE_SETREGSET: {
180     // Extract iov_base from data, which is a pointer to the struct IOVEC
181     DisplayBytes(buf, *(void **)data, data_size);
182     LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData());
183     break;
184   }
185   default: {}
186   }
187 }
188 
189 static constexpr unsigned k_ptrace_word_size = sizeof(void *);
190 static_assert(sizeof(long) >= k_ptrace_word_size,
191               "Size of long must be larger than ptrace word size");
192 } // end of anonymous namespace
193 
194 // Simple helper function to ensure flags are enabled on the given file
195 // descriptor.
196 static Status EnsureFDFlags(int fd, int flags) {
197   Status error;
198 
199   int status = fcntl(fd, F_GETFL);
200   if (status == -1) {
201     error.SetErrorToErrno();
202     return error;
203   }
204 
205   if (fcntl(fd, F_SETFL, status | flags) == -1) {
206     error.SetErrorToErrno();
207     return error;
208   }
209 
210   return error;
211 }
212 
213 // -----------------------------------------------------------------------------
214 // Public Static Methods
215 // -----------------------------------------------------------------------------
216 
217 Status NativeProcessProtocol::Launch(
218     ProcessLaunchInfo &launch_info,
219     NativeProcessProtocol::NativeDelegate &native_delegate, MainLoop &mainloop,
220     NativeProcessProtocolSP &native_process_sp) {
221   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
222 
223   Status error;
224 
225   // Verify the working directory is valid if one was specified.
226   FileSpec working_dir{launch_info.GetWorkingDirectory()};
227   if (working_dir && (!working_dir.ResolvePath() ||
228                       !llvm::sys::fs::is_directory(working_dir.GetPath()))) {
229     error.SetErrorStringWithFormat("No such file or directory: %s",
230                                    working_dir.GetCString());
231     return error;
232   }
233 
234   // Create the NativeProcessLinux in launch mode.
235   native_process_sp.reset(new NativeProcessLinux());
236 
237   if (!native_process_sp->RegisterNativeDelegate(native_delegate)) {
238     native_process_sp.reset();
239     error.SetErrorStringWithFormat("failed to register the native delegate");
240     return error;
241   }
242 
243   error = std::static_pointer_cast<NativeProcessLinux>(native_process_sp)
244               ->LaunchInferior(mainloop, launch_info);
245 
246   if (error.Fail()) {
247     native_process_sp.reset();
248     LLDB_LOG(log, "failed to launch process: {0}", error);
249     return error;
250   }
251 
252   launch_info.SetProcessID(native_process_sp->GetID());
253 
254   return error;
255 }
256 
257 Status NativeProcessProtocol::Attach(
258     lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate,
259     MainLoop &mainloop, NativeProcessProtocolSP &native_process_sp) {
260   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
261   LLDB_LOG(log, "pid = {0:x}", pid);
262 
263   // Retrieve the architecture for the running process.
264   ArchSpec process_arch;
265   Status error = ResolveProcessArchitecture(pid, process_arch);
266   if (!error.Success())
267     return error;
268 
269   std::shared_ptr<NativeProcessLinux> native_process_linux_sp(
270       new NativeProcessLinux());
271 
272   if (!native_process_linux_sp->RegisterNativeDelegate(native_delegate)) {
273     error.SetErrorStringWithFormat("failed to register the native delegate");
274     return error;
275   }
276 
277   native_process_linux_sp->AttachToInferior(mainloop, pid, error);
278   if (!error.Success())
279     return error;
280 
281   native_process_sp = native_process_linux_sp;
282   return error;
283 }
284 
285 // -----------------------------------------------------------------------------
286 // Public Instance Methods
287 // -----------------------------------------------------------------------------
288 
289 NativeProcessLinux::NativeProcessLinux()
290     : NativeProcessProtocol(LLDB_INVALID_PROCESS_ID), m_arch(),
291       m_supports_mem_region(eLazyBoolCalculate), m_mem_region_cache(),
292       m_pending_notification_tid(LLDB_INVALID_THREAD_ID) {}
293 
294 void NativeProcessLinux::AttachToInferior(MainLoop &mainloop, lldb::pid_t pid,
295                                           Status &error) {
296   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
297   LLDB_LOG(log, "pid = {0:x}", pid);
298 
299   m_sigchld_handle = mainloop.RegisterSignal(
300       SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, error);
301   if (!m_sigchld_handle)
302     return;
303 
304   error = ResolveProcessArchitecture(pid, m_arch);
305   if (!error.Success())
306     return;
307 
308   // Set the architecture to the exe architecture.
309   LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid,
310            m_arch.GetArchitectureName());
311   m_pid = pid;
312   SetState(eStateAttaching);
313 
314   Attach(pid, error);
315 }
316 
317 Status NativeProcessLinux::LaunchInferior(MainLoop &mainloop,
318                                           ProcessLaunchInfo &launch_info) {
319   Status error;
320   m_sigchld_handle = mainloop.RegisterSignal(
321       SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, error);
322   if (!m_sigchld_handle)
323     return error;
324 
325   SetState(eStateLaunching);
326 
327   MaybeLogLaunchInfo(launch_info);
328 
329   ::pid_t pid =
330       ProcessLauncherPosixFork().LaunchProcess(launch_info, error).GetProcessId();
331   if (error.Fail())
332     return error;
333 
334   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
335 
336   // Wait for the child process to trap on its call to execve.
337   ::pid_t wpid;
338   int status;
339   if ((wpid = waitpid(pid, &status, 0)) < 0) {
340     error.SetErrorToErrno();
341     LLDB_LOG(log, "waitpid for inferior failed with %s", error);
342 
343     // Mark the inferior as invalid.
344     // FIXME this could really use a new state - eStateLaunchFailure.  For now,
345     // using eStateInvalid.
346     SetState(StateType::eStateInvalid);
347 
348     return error;
349   }
350   assert(WIFSTOPPED(status) && (wpid == static_cast<::pid_t>(pid)) &&
351          "Could not sync with inferior process.");
352 
353   LLDB_LOG(log, "inferior started, now in stopped state");
354   error = SetDefaultPtraceOpts(pid);
355   if (error.Fail()) {
356     LLDB_LOG(log, "failed to set default ptrace options: {0}", error);
357 
358     // Mark the inferior as invalid.
359     // FIXME this could really use a new state - eStateLaunchFailure.  For now,
360     // using eStateInvalid.
361     SetState(StateType::eStateInvalid);
362 
363     return error;
364   }
365 
366   // Release the master terminal descriptor and pass it off to the
367   // NativeProcessLinux instance.  Similarly stash the inferior pid.
368   m_terminal_fd = launch_info.GetPTY().ReleaseMasterFileDescriptor();
369   m_pid = pid;
370   launch_info.SetProcessID(pid);
371 
372   if (m_terminal_fd != -1) {
373     error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
374     if (error.Fail()) {
375       LLDB_LOG(log,
376                "inferior EnsureFDFlags failed for ensuring terminal "
377                "O_NONBLOCK setting: {0}",
378                error);
379 
380       // Mark the inferior as invalid.
381       // FIXME this could really use a new state - eStateLaunchFailure.  For
382       // now, using eStateInvalid.
383       SetState(StateType::eStateInvalid);
384 
385       return error;
386     }
387   }
388 
389   LLDB_LOG(log, "adding pid = {0}", pid);
390   ResolveProcessArchitecture(m_pid, m_arch);
391   NativeThreadLinuxSP thread_sp = AddThread(pid);
392   assert(thread_sp && "AddThread() returned a nullptr thread");
393   thread_sp->SetStoppedBySignal(SIGSTOP);
394   ThreadWasCreated(*thread_sp);
395 
396   // Let our process instance know the thread has stopped.
397   SetCurrentThreadID(thread_sp->GetID());
398   SetState(StateType::eStateStopped);
399 
400   if (error.Fail())
401     LLDB_LOG(log, "inferior launching failed {0}", error);
402   return error;
403 }
404 
405 ::pid_t NativeProcessLinux::Attach(lldb::pid_t pid, Status &error) {
406   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
407 
408   // Use a map to keep track of the threads which we have attached/need to
409   // attach.
410   Host::TidMap tids_to_attach;
411   if (pid <= 1) {
412     error.SetErrorToGenericError();
413     error.SetErrorString("Attaching to process 1 is not allowed.");
414     return -1;
415   }
416 
417   while (Host::FindProcessThreads(pid, tids_to_attach)) {
418     for (Host::TidMap::iterator it = tids_to_attach.begin();
419          it != tids_to_attach.end();) {
420       if (it->second == false) {
421         lldb::tid_t tid = it->first;
422 
423         // Attach to the requested process.
424         // An attach will cause the thread to stop with a SIGSTOP.
425         error = PtraceWrapper(PTRACE_ATTACH, tid);
426         if (error.Fail()) {
427           // No such thread. The thread may have exited.
428           // More error handling may be needed.
429           if (error.GetError() == ESRCH) {
430             it = tids_to_attach.erase(it);
431             continue;
432           } else
433             return -1;
434         }
435 
436         int status;
437         // Need to use __WALL otherwise we receive an error with errno=ECHLD
438         // At this point we should have a thread stopped if waitpid succeeds.
439         if ((status = waitpid(tid, NULL, __WALL)) < 0) {
440           // No such thread. The thread may have exited.
441           // More error handling may be needed.
442           if (errno == ESRCH) {
443             it = tids_to_attach.erase(it);
444             continue;
445           } else {
446             error.SetErrorToErrno();
447             return -1;
448           }
449         }
450 
451         error = SetDefaultPtraceOpts(tid);
452         if (error.Fail())
453           return -1;
454 
455         LLDB_LOG(log, "adding tid = {0}", tid);
456         it->second = true;
457 
458         // Create the thread, mark it as stopped.
459         NativeThreadLinuxSP thread_sp(AddThread(static_cast<lldb::tid_t>(tid)));
460         assert(thread_sp && "AddThread() returned a nullptr");
461 
462         // This will notify this is a new thread and tell the system it is
463         // stopped.
464         thread_sp->SetStoppedBySignal(SIGSTOP);
465         ThreadWasCreated(*thread_sp);
466         SetCurrentThreadID(thread_sp->GetID());
467       }
468 
469       // move the loop forward
470       ++it;
471     }
472   }
473 
474   if (tids_to_attach.size() > 0) {
475     m_pid = pid;
476     // Let our process instance know the thread has stopped.
477     SetState(StateType::eStateStopped);
478   } else {
479     error.SetErrorToGenericError();
480     error.SetErrorString("No such process.");
481     return -1;
482   }
483 
484   return pid;
485 }
486 
487 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) {
488   long ptrace_opts = 0;
489 
490   // Have the child raise an event on exit.  This is used to keep the child in
491   // limbo until it is destroyed.
492   ptrace_opts |= PTRACE_O_TRACEEXIT;
493 
494   // Have the tracer trace threads which spawn in the inferior process.
495   // TODO: if we want to support tracing the inferiors' child, add the
496   // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
497   ptrace_opts |= PTRACE_O_TRACECLONE;
498 
499   // Have the tracer notify us before execve returns
500   // (needed to disable legacy SIGTRAP generation)
501   ptrace_opts |= PTRACE_O_TRACEEXEC;
502 
503   return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts);
504 }
505 
506 static ExitType convert_pid_status_to_exit_type(int status) {
507   if (WIFEXITED(status))
508     return ExitType::eExitTypeExit;
509   else if (WIFSIGNALED(status))
510     return ExitType::eExitTypeSignal;
511   else if (WIFSTOPPED(status))
512     return ExitType::eExitTypeStop;
513   else {
514     // We don't know what this is.
515     return ExitType::eExitTypeInvalid;
516   }
517 }
518 
519 static int convert_pid_status_to_return_code(int status) {
520   if (WIFEXITED(status))
521     return WEXITSTATUS(status);
522   else if (WIFSIGNALED(status))
523     return WTERMSIG(status);
524   else if (WIFSTOPPED(status))
525     return WSTOPSIG(status);
526   else {
527     // We don't know what this is.
528     return ExitType::eExitTypeInvalid;
529   }
530 }
531 
532 // Handles all waitpid events from the inferior process.
533 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited,
534                                          int signal, int status) {
535   Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
536 
537   // Certain activities differ based on whether the pid is the tid of the main
538   // thread.
539   const bool is_main_thread = (pid == GetID());
540 
541   // Handle when the thread exits.
542   if (exited) {
543     LLDB_LOG(log, "got exit signal({0}) , tid = {1} ({2} main thread)", signal,
544              pid, is_main_thread ? "is" : "is not");
545 
546     // This is a thread that exited.  Ensure we're not tracking it anymore.
547     const bool thread_found = StopTrackingThread(pid);
548 
549     if (is_main_thread) {
550       // We only set the exit status and notify the delegate if we haven't
551       // already set the process
552       // state to an exited state.  We normally should have received a SIGTRAP |
553       // (PTRACE_EVENT_EXIT << 8)
554       // for the main thread.
555       const bool already_notified = (GetState() == StateType::eStateExited) ||
556                                     (GetState() == StateType::eStateCrashed);
557       if (!already_notified) {
558         LLDB_LOG(
559             log,
560             "tid = {0} handling main thread exit ({1}), expected exit state "
561             "already set but state was {2} instead, setting exit state now",
562             pid,
563             thread_found ? "stopped tracking thread metadata"
564                          : "thread metadata not found",
565             GetState());
566         // The main thread exited.  We're done monitoring.  Report to delegate.
567         SetExitStatus(convert_pid_status_to_exit_type(status),
568                       convert_pid_status_to_return_code(status), nullptr, true);
569 
570         // Notify delegate that our process has exited.
571         SetState(StateType::eStateExited, true);
572       } else
573         LLDB_LOG(log, "tid = {0} main thread now exited (%s)", pid,
574                  thread_found ? "stopped tracking thread metadata"
575                               : "thread metadata not found");
576     } else {
577       // Do we want to report to the delegate in this case?  I think not.  If
578       // this was an orderly thread exit, we would already have received the
579       // SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, and we would have done an
580       // all-stop then.
581       LLDB_LOG(log, "tid = {0} handling non-main thread exit (%s)", pid,
582                thread_found ? "stopped tracking thread metadata"
583                             : "thread metadata not found");
584     }
585     return;
586   }
587 
588   siginfo_t info;
589   const auto info_err = GetSignalInfo(pid, &info);
590   auto thread_sp = GetThreadByID(pid);
591 
592   if (!thread_sp) {
593     // Normally, the only situation when we cannot find the thread is if we have
594     // just received a new thread notification. This is indicated by
595     // GetSignalInfo() returning si_code == SI_USER and si_pid == 0
596     LLDB_LOG(log, "received notification about an unknown tid {0}.", pid);
597 
598     if (info_err.Fail()) {
599       LLDB_LOG(log,
600                "(tid {0}) GetSignalInfo failed ({1}). "
601                "Ingoring this notification.",
602                pid, info_err);
603       return;
604     }
605 
606     LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code,
607              info.si_pid);
608 
609     auto thread_sp = AddThread(pid);
610     // Resume the newly created thread.
611     ResumeThread(*thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
612     ThreadWasCreated(*thread_sp);
613     return;
614   }
615 
616   // Get details on the signal raised.
617   if (info_err.Success()) {
618     // We have retrieved the signal info.  Dispatch appropriately.
619     if (info.si_signo == SIGTRAP)
620       MonitorSIGTRAP(info, *thread_sp);
621     else
622       MonitorSignal(info, *thread_sp, exited);
623   } else {
624     if (info_err.GetError() == EINVAL) {
625       // This is a group stop reception for this tid.
626       // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU
627       // into the tracee, triggering the group-stop mechanism. Normally
628       // receiving these would stop the process, pending a SIGCONT. Simulating
629       // this state in a debugger is hard and is generally not needed (one use
630       // case is debugging background task being managed by a shell). For
631       // general use, it is sufficient to stop the process in a signal-delivery
632       // stop which happens before the group stop. This done by MonitorSignal
633       // and works correctly for all signals.
634       LLDB_LOG(log,
635                "received a group stop for pid {0} tid {1}. Transparent "
636                "handling of group stops not supported, resuming the "
637                "thread.",
638                GetID(), pid);
639       ResumeThread(*thread_sp, thread_sp->GetState(),
640                    LLDB_INVALID_SIGNAL_NUMBER);
641     } else {
642       // ptrace(GETSIGINFO) failed (but not due to group-stop).
643 
644       // A return value of ESRCH means the thread/process is no longer on the
645       // system, so it was killed somehow outside of our control.  Either way,
646       // we can't do anything with it anymore.
647 
648       // Stop tracking the metadata for the thread since it's entirely off the
649       // system now.
650       const bool thread_found = StopTrackingThread(pid);
651 
652       LLDB_LOG(log,
653                "GetSignalInfo failed: {0}, tid = {1}, signal = {2}, "
654                "status = {3}, main_thread = {4}, thread_found: {5}",
655                info_err, pid, signal, status, is_main_thread, thread_found);
656 
657       if (is_main_thread) {
658         // Notify the delegate - our process is not available but appears to
659         // have been killed outside
660         // our control.  Is eStateExited the right exit state in this case?
661         SetExitStatus(convert_pid_status_to_exit_type(status),
662                       convert_pid_status_to_return_code(status), nullptr, true);
663         SetState(StateType::eStateExited, true);
664       } else {
665         // This thread was pulled out from underneath us.  Anything to do here?
666         // Do we want to do an all stop?
667         LLDB_LOG(log,
668                  "pid {0} tid {1} non-main thread exit occurred, didn't "
669                  "tell delegate anything since thread disappeared out "
670                  "from underneath us",
671                  GetID(), pid);
672       }
673     }
674   }
675 }
676 
677 void NativeProcessLinux::WaitForNewThread(::pid_t tid) {
678   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
679 
680   NativeThreadLinuxSP new_thread_sp = GetThreadByID(tid);
681 
682   if (new_thread_sp) {
683     // We are already tracking the thread - we got the event on the new thread
684     // (see
685     // MonitorSignal) before this one. We are done.
686     return;
687   }
688 
689   // The thread is not tracked yet, let's wait for it to appear.
690   int status = -1;
691   ::pid_t wait_pid;
692   do {
693     LLDB_LOG(log,
694              "received thread creation event for tid {0}. tid not tracked "
695              "yet, waiting for thread to appear...",
696              tid);
697     wait_pid = waitpid(tid, &status, __WALL);
698   } while (wait_pid == -1 && errno == EINTR);
699   // Since we are waiting on a specific tid, this must be the creation event.
700   // But let's do some checks just in case.
701   if (wait_pid != tid) {
702     LLDB_LOG(log,
703              "waiting for tid {0} failed. Assuming the thread has "
704              "disappeared in the meantime",
705              tid);
706     // The only way I know of this could happen is if the whole process was
707     // SIGKILLed in the mean time. In any case, we can't do anything about that
708     // now.
709     return;
710   }
711   if (WIFEXITED(status)) {
712     LLDB_LOG(log,
713              "waiting for tid {0} returned an 'exited' event. Not "
714              "tracking the thread.",
715              tid);
716     // Also a very improbable event.
717     return;
718   }
719 
720   LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid);
721   new_thread_sp = AddThread(tid);
722   ResumeThread(*new_thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
723   ThreadWasCreated(*new_thread_sp);
724 }
725 
726 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info,
727                                         NativeThreadLinux &thread) {
728   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
729   const bool is_main_thread = (thread.GetID() == GetID());
730 
731   assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
732 
733   switch (info.si_code) {
734   // TODO: these two cases are required if we want to support tracing of the
735   // inferiors' children.  We'd need this to debug a monitor.
736   // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
737   // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
738 
739   case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): {
740     // This is the notification on the parent thread which informs us of new
741     // thread
742     // creation.
743     // We don't want to do anything with the parent thread so we just resume it.
744     // In case we
745     // want to implement "break on thread creation" functionality, we would need
746     // to stop
747     // here.
748 
749     unsigned long event_message = 0;
750     if (GetEventMessage(thread.GetID(), &event_message).Fail()) {
751       LLDB_LOG(log,
752                "pid {0} received thread creation event but "
753                "GetEventMessage failed so we don't know the new tid",
754                thread.GetID());
755     } else
756       WaitForNewThread(event_message);
757 
758     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
759     break;
760   }
761 
762   case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): {
763     NativeThreadLinuxSP main_thread_sp;
764     LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP);
765 
766     // Exec clears any pending notifications.
767     m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
768 
769     // Remove all but the main thread here.  Linux fork creates a new process
770     // which only copies the main thread.
771     LLDB_LOG(log, "exec received, stop tracking all but main thread");
772 
773     for (auto thread_sp : m_threads) {
774       const bool is_main_thread = thread_sp && thread_sp->GetID() == GetID();
775       if (is_main_thread) {
776         main_thread_sp = std::static_pointer_cast<NativeThreadLinux>(thread_sp);
777         LLDB_LOG(log, "found main thread with tid {0}, keeping",
778                  main_thread_sp->GetID());
779       } else {
780         LLDB_LOG(log, "discarding non-main-thread tid {0} due to exec",
781                  thread_sp->GetID());
782       }
783     }
784 
785     m_threads.clear();
786 
787     if (main_thread_sp) {
788       m_threads.push_back(main_thread_sp);
789       SetCurrentThreadID(main_thread_sp->GetID());
790       main_thread_sp->SetStoppedByExec();
791     } else {
792       SetCurrentThreadID(LLDB_INVALID_THREAD_ID);
793       LLDB_LOG(log,
794                "pid {0} no main thread found, discarded all threads, "
795                "we're in a no-thread state!",
796                GetID());
797     }
798 
799     // Tell coordinator about about the "new" (since exec) stopped main thread.
800     ThreadWasCreated(*main_thread_sp);
801 
802     // Let our delegate know we have just exec'd.
803     NotifyDidExec();
804 
805     // If we have a main thread, indicate we are stopped.
806     assert(main_thread_sp && "exec called during ptraced process but no main "
807                              "thread metadata tracked");
808 
809     // Let the process know we're stopped.
810     StopRunningThreads(main_thread_sp->GetID());
811 
812     break;
813   }
814 
815   case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): {
816     // The inferior process or one of its threads is about to exit.
817     // We don't want to do anything with the thread so we just resume it. In
818     // case we
819     // want to implement "break on thread exit" functionality, we would need to
820     // stop
821     // here.
822 
823     unsigned long data = 0;
824     if (GetEventMessage(thread.GetID(), &data).Fail())
825       data = -1;
826 
827     LLDB_LOG(log,
828              "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, "
829              "WIFSIGNALED={2}, pid = {3}, main_thread = {4}",
830              data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(),
831              is_main_thread);
832 
833     if (is_main_thread) {
834       SetExitStatus(convert_pid_status_to_exit_type(data),
835                     convert_pid_status_to_return_code(data), nullptr, true);
836     }
837 
838     StateType state = thread.GetState();
839     if (!StateIsRunningState(state)) {
840       // Due to a kernel bug, we may sometimes get this stop after the inferior
841       // gets a
842       // SIGKILL. This confuses our state tracking logic in ResumeThread(),
843       // since normally,
844       // we should not be receiving any ptrace events while the inferior is
845       // stopped. This
846       // makes sure that the inferior is resumed and exits normally.
847       state = eStateRunning;
848     }
849     ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
850 
851     break;
852   }
853 
854   case 0:
855   case TRAP_TRACE:  // We receive this on single stepping.
856   case TRAP_HWBKPT: // We receive this on watchpoint hit
857   {
858     // If a watchpoint was hit, report it
859     uint32_t wp_index;
860     Status error = thread.GetRegisterContext()->GetWatchpointHitIndex(
861         wp_index, (uintptr_t)info.si_addr);
862     if (error.Fail())
863       LLDB_LOG(log,
864                "received error while checking for watchpoint hits, pid = "
865                "{0}, error = {1}",
866                thread.GetID(), error);
867     if (wp_index != LLDB_INVALID_INDEX32) {
868       MonitorWatchpoint(thread, wp_index);
869       break;
870     }
871 
872     // If a breakpoint was hit, report it
873     uint32_t bp_index;
874     error = thread.GetRegisterContext()->GetHardwareBreakHitIndex(
875         bp_index, (uintptr_t)info.si_addr);
876     if (error.Fail())
877       LLDB_LOG(log, "received error while checking for hardware "
878                     "breakpoint hits, pid = {0}, error = {1}",
879                thread.GetID(), error);
880     if (bp_index != LLDB_INVALID_INDEX32) {
881       MonitorBreakpoint(thread);
882       break;
883     }
884 
885     // Otherwise, report step over
886     MonitorTrace(thread);
887     break;
888   }
889 
890   case SI_KERNEL:
891 #if defined __mips__
892     // For mips there is no special signal for watchpoint
893     // So we check for watchpoint in kernel trap
894     {
895       // If a watchpoint was hit, report it
896       uint32_t wp_index;
897       Status error = thread.GetRegisterContext()->GetWatchpointHitIndex(
898           wp_index, LLDB_INVALID_ADDRESS);
899       if (error.Fail())
900         LLDB_LOG(log,
901                  "received error while checking for watchpoint hits, pid = "
902                  "{0}, error = {1}",
903                  thread.GetID(), error);
904       if (wp_index != LLDB_INVALID_INDEX32) {
905         MonitorWatchpoint(thread, wp_index);
906         break;
907       }
908     }
909 // NO BREAK
910 #endif
911   case TRAP_BRKPT:
912     MonitorBreakpoint(thread);
913     break;
914 
915   case SIGTRAP:
916   case (SIGTRAP | 0x80):
917     LLDB_LOG(
918         log,
919         "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming",
920         info.si_code, GetID(), thread.GetID());
921 
922     // Ignore these signals until we know more about them.
923     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
924     break;
925 
926   default:
927     LLDB_LOG(
928         log,
929         "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming",
930         info.si_code, GetID(), thread.GetID());
931     llvm_unreachable("Unexpected SIGTRAP code!");
932     break;
933   }
934 }
935 
936 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) {
937   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
938   LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID());
939 
940   // This thread is currently stopped.
941   thread.SetStoppedByTrace();
942 
943   StopRunningThreads(thread.GetID());
944 }
945 
946 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) {
947   Log *log(
948       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
949   LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID());
950 
951   // Mark the thread as stopped at breakpoint.
952   thread.SetStoppedByBreakpoint();
953   Status error = FixupBreakpointPCAsNeeded(thread);
954   if (error.Fail())
955     LLDB_LOG(log, "pid = {0} fixup: {1}", thread.GetID(), error);
956 
957   if (m_threads_stepping_with_breakpoint.find(thread.GetID()) !=
958       m_threads_stepping_with_breakpoint.end())
959     thread.SetStoppedByTrace();
960 
961   StopRunningThreads(thread.GetID());
962 }
963 
964 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread,
965                                            uint32_t wp_index) {
966   Log *log(
967       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
968   LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}",
969            thread.GetID(), wp_index);
970 
971   // Mark the thread as stopped at watchpoint.
972   // The address is at (lldb::addr_t)info->si_addr if we need it.
973   thread.SetStoppedByWatchpoint(wp_index);
974 
975   // We need to tell all other running threads before we notify the delegate
976   // about this stop.
977   StopRunningThreads(thread.GetID());
978 }
979 
980 void NativeProcessLinux::MonitorSignal(const siginfo_t &info,
981                                        NativeThreadLinux &thread, bool exited) {
982   const int signo = info.si_signo;
983   const bool is_from_llgs = info.si_pid == getpid();
984 
985   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
986 
987   // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
988   // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
989   // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
990   //
991   // IOW, user generated signals never generate what we consider to be a
992   // "crash".
993   //
994   // Similarly, ACK signals generated by this monitor.
995 
996   // Handle the signal.
997   LLDB_LOG(log,
998            "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, "
999            "waitpid pid = {4})",
1000            Host::GetSignalAsCString(signo), signo, info.si_code,
1001            thread.GetID());
1002 
1003   // Check for thread stop notification.
1004   if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) {
1005     // This is a tgkill()-based stop.
1006     LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID());
1007 
1008     // Check that we're not already marked with a stop reason.
1009     // Note this thread really shouldn't already be marked as stopped - if we
1010     // were, that would imply that the kernel signaled us with the thread
1011     // stopping which we handled and marked as stopped, and that, without an
1012     // intervening resume, we received another stop.  It is more likely that we
1013     // are missing the marking of a run state somewhere if we find that the
1014     // thread was marked as stopped.
1015     const StateType thread_state = thread.GetState();
1016     if (!StateIsStoppedState(thread_state, false)) {
1017       // An inferior thread has stopped because of a SIGSTOP we have sent it.
1018       // Generally, these are not important stops and we don't want to report
1019       // them as they are just used to stop other threads when one thread (the
1020       // one with the *real* stop reason) hits a breakpoint (watchpoint,
1021       // etc...). However, in the case of an asynchronous Interrupt(), this *is*
1022       // the real stop reason, so we leave the signal intact if this is the
1023       // thread that was chosen as the triggering thread.
1024       if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
1025         if (m_pending_notification_tid == thread.GetID())
1026           thread.SetStoppedBySignal(SIGSTOP, &info);
1027         else
1028           thread.SetStoppedWithNoReason();
1029 
1030         SetCurrentThreadID(thread.GetID());
1031         SignalIfAllThreadsStopped();
1032       } else {
1033         // We can end up here if stop was initiated by LLGS but by this time a
1034         // thread stop has occurred - maybe initiated by another event.
1035         Status error = ResumeThread(thread, thread.GetState(), 0);
1036         if (error.Fail())
1037           LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(),
1038                    error);
1039       }
1040     } else {
1041       LLDB_LOG(log,
1042                "pid {0} tid {1}, thread was already marked as a stopped "
1043                "state (state={2}), leaving stop signal as is",
1044                GetID(), thread.GetID(), thread_state);
1045       SignalIfAllThreadsStopped();
1046     }
1047 
1048     // Done handling.
1049     return;
1050   }
1051 
1052   // Check if debugger should stop at this signal or just ignore it
1053   // and resume the inferior.
1054   if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) {
1055      ResumeThread(thread, thread.GetState(), signo);
1056      return;
1057   }
1058 
1059   // This thread is stopped.
1060   LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo));
1061   thread.SetStoppedBySignal(signo, &info);
1062 
1063   // Send a stop to the debugger after we get all other threads to stop.
1064   StopRunningThreads(thread.GetID());
1065 }
1066 
1067 namespace {
1068 
1069 struct EmulatorBaton {
1070   NativeProcessLinux *m_process;
1071   NativeRegisterContext *m_reg_context;
1072 
1073   // eRegisterKindDWARF -> RegsiterValue
1074   std::unordered_map<uint32_t, RegisterValue> m_register_values;
1075 
1076   EmulatorBaton(NativeProcessLinux *process, NativeRegisterContext *reg_context)
1077       : m_process(process), m_reg_context(reg_context) {}
1078 };
1079 
1080 } // anonymous namespace
1081 
1082 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton,
1083                                  const EmulateInstruction::Context &context,
1084                                  lldb::addr_t addr, void *dst, size_t length) {
1085   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
1086 
1087   size_t bytes_read;
1088   emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read);
1089   return bytes_read;
1090 }
1091 
1092 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton,
1093                                  const RegisterInfo *reg_info,
1094                                  RegisterValue &reg_value) {
1095   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
1096 
1097   auto it = emulator_baton->m_register_values.find(
1098       reg_info->kinds[eRegisterKindDWARF]);
1099   if (it != emulator_baton->m_register_values.end()) {
1100     reg_value = it->second;
1101     return true;
1102   }
1103 
1104   // The emulator only fill in the dwarf regsiter numbers (and in some case
1105   // the generic register numbers). Get the full register info from the
1106   // register context based on the dwarf register numbers.
1107   const RegisterInfo *full_reg_info =
1108       emulator_baton->m_reg_context->GetRegisterInfo(
1109           eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
1110 
1111   Status error =
1112       emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value);
1113   if (error.Success())
1114     return true;
1115 
1116   return false;
1117 }
1118 
1119 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton,
1120                                   const EmulateInstruction::Context &context,
1121                                   const RegisterInfo *reg_info,
1122                                   const RegisterValue &reg_value) {
1123   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
1124   emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] =
1125       reg_value;
1126   return true;
1127 }
1128 
1129 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton,
1130                                   const EmulateInstruction::Context &context,
1131                                   lldb::addr_t addr, const void *dst,
1132                                   size_t length) {
1133   return length;
1134 }
1135 
1136 static lldb::addr_t ReadFlags(NativeRegisterContext *regsiter_context) {
1137   const RegisterInfo *flags_info = regsiter_context->GetRegisterInfo(
1138       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1139   return regsiter_context->ReadRegisterAsUnsigned(flags_info,
1140                                                   LLDB_INVALID_ADDRESS);
1141 }
1142 
1143 Status
1144 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) {
1145   Status error;
1146   NativeRegisterContextSP register_context_sp = thread.GetRegisterContext();
1147 
1148   std::unique_ptr<EmulateInstruction> emulator_ap(
1149       EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying,
1150                                      nullptr));
1151 
1152   if (emulator_ap == nullptr)
1153     return Status("Instruction emulator not found!");
1154 
1155   EmulatorBaton baton(this, register_context_sp.get());
1156   emulator_ap->SetBaton(&baton);
1157   emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
1158   emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
1159   emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
1160   emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
1161 
1162   if (!emulator_ap->ReadInstruction())
1163     return Status("Read instruction failed!");
1164 
1165   bool emulation_result =
1166       emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
1167 
1168   const RegisterInfo *reg_info_pc = register_context_sp->GetRegisterInfo(
1169       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
1170   const RegisterInfo *reg_info_flags = register_context_sp->GetRegisterInfo(
1171       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1172 
1173   auto pc_it =
1174       baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
1175   auto flags_it =
1176       baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
1177 
1178   lldb::addr_t next_pc;
1179   lldb::addr_t next_flags;
1180   if (emulation_result) {
1181     assert(pc_it != baton.m_register_values.end() &&
1182            "Emulation was successfull but PC wasn't updated");
1183     next_pc = pc_it->second.GetAsUInt64();
1184 
1185     if (flags_it != baton.m_register_values.end())
1186       next_flags = flags_it->second.GetAsUInt64();
1187     else
1188       next_flags = ReadFlags(register_context_sp.get());
1189   } else if (pc_it == baton.m_register_values.end()) {
1190     // Emulate instruction failed and it haven't changed PC. Advance PC
1191     // with the size of the current opcode because the emulation of all
1192     // PC modifying instruction should be successful. The failure most
1193     // likely caused by a not supported instruction which don't modify PC.
1194     next_pc =
1195         register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize();
1196     next_flags = ReadFlags(register_context_sp.get());
1197   } else {
1198     // The instruction emulation failed after it modified the PC. It is an
1199     // unknown error where we can't continue because the next instruction is
1200     // modifying the PC but we don't  know how.
1201     return Status("Instruction emulation failed unexpectedly.");
1202   }
1203 
1204   if (m_arch.GetMachine() == llvm::Triple::arm) {
1205     if (next_flags & 0x20) {
1206       // Thumb mode
1207       error = SetSoftwareBreakpoint(next_pc, 2);
1208     } else {
1209       // Arm mode
1210       error = SetSoftwareBreakpoint(next_pc, 4);
1211     }
1212   } else if (m_arch.GetMachine() == llvm::Triple::mips64 ||
1213              m_arch.GetMachine() == llvm::Triple::mips64el ||
1214              m_arch.GetMachine() == llvm::Triple::mips ||
1215              m_arch.GetMachine() == llvm::Triple::mipsel)
1216     error = SetSoftwareBreakpoint(next_pc, 4);
1217   else {
1218     // No size hint is given for the next breakpoint
1219     error = SetSoftwareBreakpoint(next_pc, 0);
1220   }
1221 
1222   // If setting the breakpoint fails because next_pc is out of
1223   // the address space, ignore it and let the debugee segfault.
1224   if (error.GetError() == EIO || error.GetError() == EFAULT) {
1225     return Status();
1226   } else if (error.Fail())
1227     return error;
1228 
1229   m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc});
1230 
1231   return Status();
1232 }
1233 
1234 bool NativeProcessLinux::SupportHardwareSingleStepping() const {
1235   if (m_arch.GetMachine() == llvm::Triple::arm ||
1236       m_arch.GetMachine() == llvm::Triple::mips64 ||
1237       m_arch.GetMachine() == llvm::Triple::mips64el ||
1238       m_arch.GetMachine() == llvm::Triple::mips ||
1239       m_arch.GetMachine() == llvm::Triple::mipsel)
1240     return false;
1241   return true;
1242 }
1243 
1244 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) {
1245   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1246   LLDB_LOG(log, "pid {0}", GetID());
1247 
1248   bool software_single_step = !SupportHardwareSingleStepping();
1249 
1250   if (software_single_step) {
1251     for (auto thread_sp : m_threads) {
1252       assert(thread_sp && "thread list should not contain NULL threads");
1253 
1254       const ResumeAction *const action =
1255           resume_actions.GetActionForThread(thread_sp->GetID(), true);
1256       if (action == nullptr)
1257         continue;
1258 
1259       if (action->state == eStateStepping) {
1260         Status error = SetupSoftwareSingleStepping(
1261             static_cast<NativeThreadLinux &>(*thread_sp));
1262         if (error.Fail())
1263           return error;
1264       }
1265     }
1266   }
1267 
1268   for (auto thread_sp : m_threads) {
1269     assert(thread_sp && "thread list should not contain NULL threads");
1270 
1271     const ResumeAction *const action =
1272         resume_actions.GetActionForThread(thread_sp->GetID(), true);
1273 
1274     if (action == nullptr) {
1275       LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(),
1276                thread_sp->GetID());
1277       continue;
1278     }
1279 
1280     LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}",
1281              action->state, GetID(), thread_sp->GetID());
1282 
1283     switch (action->state) {
1284     case eStateRunning:
1285     case eStateStepping: {
1286       // Run the thread, possibly feeding it the signal.
1287       const int signo = action->signal;
1288       ResumeThread(static_cast<NativeThreadLinux &>(*thread_sp), action->state,
1289                    signo);
1290       break;
1291     }
1292 
1293     case eStateSuspended:
1294     case eStateStopped:
1295       llvm_unreachable("Unexpected state");
1296 
1297     default:
1298       return Status("NativeProcessLinux::%s (): unexpected state %s specified "
1299                     "for pid %" PRIu64 ", tid %" PRIu64,
1300                     __FUNCTION__, StateAsCString(action->state), GetID(),
1301                     thread_sp->GetID());
1302     }
1303   }
1304 
1305   return Status();
1306 }
1307 
1308 Status NativeProcessLinux::Halt() {
1309   Status error;
1310 
1311   if (kill(GetID(), SIGSTOP) != 0)
1312     error.SetErrorToErrno();
1313 
1314   return error;
1315 }
1316 
1317 Status NativeProcessLinux::Detach() {
1318   Status error;
1319 
1320   // Stop monitoring the inferior.
1321   m_sigchld_handle.reset();
1322 
1323   // Tell ptrace to detach from the process.
1324   if (GetID() == LLDB_INVALID_PROCESS_ID)
1325     return error;
1326 
1327   for (auto thread_sp : m_threads) {
1328     Status e = Detach(thread_sp->GetID());
1329     if (e.Fail())
1330       error =
1331           e; // Save the error, but still attempt to detach from other threads.
1332   }
1333 
1334   return error;
1335 }
1336 
1337 Status NativeProcessLinux::Signal(int signo) {
1338   Status error;
1339 
1340   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1341   LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo,
1342            Host::GetSignalAsCString(signo), GetID());
1343 
1344   if (kill(GetID(), signo))
1345     error.SetErrorToErrno();
1346 
1347   return error;
1348 }
1349 
1350 Status NativeProcessLinux::Interrupt() {
1351   // Pick a running thread (or if none, a not-dead stopped thread) as
1352   // the chosen thread that will be the stop-reason thread.
1353   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1354 
1355   NativeThreadProtocolSP running_thread_sp;
1356   NativeThreadProtocolSP stopped_thread_sp;
1357 
1358   LLDB_LOG(log, "selecting running thread for interrupt target");
1359   for (auto thread_sp : m_threads) {
1360     // The thread shouldn't be null but lets just cover that here.
1361     if (!thread_sp)
1362       continue;
1363 
1364     // If we have a running or stepping thread, we'll call that the
1365     // target of the interrupt.
1366     const auto thread_state = thread_sp->GetState();
1367     if (thread_state == eStateRunning || thread_state == eStateStepping) {
1368       running_thread_sp = thread_sp;
1369       break;
1370     } else if (!stopped_thread_sp && StateIsStoppedState(thread_state, true)) {
1371       // Remember the first non-dead stopped thread.  We'll use that as a backup
1372       // if there are no running threads.
1373       stopped_thread_sp = thread_sp;
1374     }
1375   }
1376 
1377   if (!running_thread_sp && !stopped_thread_sp) {
1378     Status error("found no running/stepping or live stopped threads as target "
1379                  "for interrupt");
1380     LLDB_LOG(log, "skipping due to error: {0}", error);
1381 
1382     return error;
1383   }
1384 
1385   NativeThreadProtocolSP deferred_signal_thread_sp =
1386       running_thread_sp ? running_thread_sp : stopped_thread_sp;
1387 
1388   LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(),
1389            running_thread_sp ? "running" : "stopped",
1390            deferred_signal_thread_sp->GetID());
1391 
1392   StopRunningThreads(deferred_signal_thread_sp->GetID());
1393 
1394   return Status();
1395 }
1396 
1397 Status NativeProcessLinux::Kill() {
1398   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1399   LLDB_LOG(log, "pid {0}", GetID());
1400 
1401   Status error;
1402 
1403   switch (m_state) {
1404   case StateType::eStateInvalid:
1405   case StateType::eStateExited:
1406   case StateType::eStateCrashed:
1407   case StateType::eStateDetached:
1408   case StateType::eStateUnloaded:
1409     // Nothing to do - the process is already dead.
1410     LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(),
1411              m_state);
1412     return error;
1413 
1414   case StateType::eStateConnected:
1415   case StateType::eStateAttaching:
1416   case StateType::eStateLaunching:
1417   case StateType::eStateStopped:
1418   case StateType::eStateRunning:
1419   case StateType::eStateStepping:
1420   case StateType::eStateSuspended:
1421     // We can try to kill a process in these states.
1422     break;
1423   }
1424 
1425   if (kill(GetID(), SIGKILL) != 0) {
1426     error.SetErrorToErrno();
1427     return error;
1428   }
1429 
1430   return error;
1431 }
1432 
1433 static Status
1434 ParseMemoryRegionInfoFromProcMapsLine(llvm::StringRef &maps_line,
1435                                       MemoryRegionInfo &memory_region_info) {
1436   memory_region_info.Clear();
1437 
1438   StringExtractor line_extractor(maps_line);
1439 
1440   // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode
1441   // pathname
1442   // perms: rwxp   (letter is present if set, '-' if not, final character is
1443   // p=private, s=shared).
1444 
1445   // Parse out the starting address
1446   lldb::addr_t start_address = line_extractor.GetHexMaxU64(false, 0);
1447 
1448   // Parse out hyphen separating start and end address from range.
1449   if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != '-'))
1450     return Status(
1451         "malformed /proc/{pid}/maps entry, missing dash between address range");
1452 
1453   // Parse out the ending address
1454   lldb::addr_t end_address = line_extractor.GetHexMaxU64(false, start_address);
1455 
1456   // Parse out the space after the address.
1457   if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != ' '))
1458     return Status(
1459         "malformed /proc/{pid}/maps entry, missing space after range");
1460 
1461   // Save the range.
1462   memory_region_info.GetRange().SetRangeBase(start_address);
1463   memory_region_info.GetRange().SetRangeEnd(end_address);
1464 
1465   // Any memory region in /proc/{pid}/maps is by definition mapped into the
1466   // process.
1467   memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes);
1468 
1469   // Parse out each permission entry.
1470   if (line_extractor.GetBytesLeft() < 4)
1471     return Status("malformed /proc/{pid}/maps entry, missing some portion of "
1472                   "permissions");
1473 
1474   // Handle read permission.
1475   const char read_perm_char = line_extractor.GetChar();
1476   if (read_perm_char == 'r')
1477     memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eYes);
1478   else if (read_perm_char == '-')
1479     memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1480   else
1481     return Status("unexpected /proc/{pid}/maps read permission char");
1482 
1483   // Handle write permission.
1484   const char write_perm_char = line_extractor.GetChar();
1485   if (write_perm_char == 'w')
1486     memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eYes);
1487   else if (write_perm_char == '-')
1488     memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1489   else
1490     return Status("unexpected /proc/{pid}/maps write permission char");
1491 
1492   // Handle execute permission.
1493   const char exec_perm_char = line_extractor.GetChar();
1494   if (exec_perm_char == 'x')
1495     memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eYes);
1496   else if (exec_perm_char == '-')
1497     memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1498   else
1499     return Status("unexpected /proc/{pid}/maps exec permission char");
1500 
1501   line_extractor.GetChar();              // Read the private bit
1502   line_extractor.SkipSpaces();           // Skip the separator
1503   line_extractor.GetHexMaxU64(false, 0); // Read the offset
1504   line_extractor.GetHexMaxU64(false, 0); // Read the major device number
1505   line_extractor.GetChar();              // Read the device id separator
1506   line_extractor.GetHexMaxU64(false, 0); // Read the major device number
1507   line_extractor.SkipSpaces();           // Skip the separator
1508   line_extractor.GetU64(0, 10);          // Read the inode number
1509 
1510   line_extractor.SkipSpaces();
1511   const char *name = line_extractor.Peek();
1512   if (name)
1513     memory_region_info.SetName(name);
1514 
1515   return Status();
1516 }
1517 
1518 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr,
1519                                                MemoryRegionInfo &range_info) {
1520   // FIXME review that the final memory region returned extends to the end of
1521   // the virtual address space,
1522   // with no perms if it is not mapped.
1523 
1524   // Use an approach that reads memory regions from /proc/{pid}/maps.
1525   // Assume proc maps entries are in ascending order.
1526   // FIXME assert if we find differently.
1527 
1528   if (m_supports_mem_region == LazyBool::eLazyBoolNo) {
1529     // We're done.
1530     return Status("unsupported");
1531   }
1532 
1533   Status error = PopulateMemoryRegionCache();
1534   if (error.Fail()) {
1535     return error;
1536   }
1537 
1538   lldb::addr_t prev_base_address = 0;
1539 
1540   // FIXME start by finding the last region that is <= target address using
1541   // binary search.  Data is sorted.
1542   // There can be a ton of regions on pthreads apps with lots of threads.
1543   for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end();
1544        ++it) {
1545     MemoryRegionInfo &proc_entry_info = it->first;
1546 
1547     // Sanity check assumption that /proc/{pid}/maps entries are ascending.
1548     assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) &&
1549            "descending /proc/pid/maps entries detected, unexpected");
1550     prev_base_address = proc_entry_info.GetRange().GetRangeBase();
1551     UNUSED_IF_ASSERT_DISABLED(prev_base_address);
1552 
1553     // If the target address comes before this entry, indicate distance to next
1554     // region.
1555     if (load_addr < proc_entry_info.GetRange().GetRangeBase()) {
1556       range_info.GetRange().SetRangeBase(load_addr);
1557       range_info.GetRange().SetByteSize(
1558           proc_entry_info.GetRange().GetRangeBase() - load_addr);
1559       range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1560       range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1561       range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1562       range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1563 
1564       return error;
1565     } else if (proc_entry_info.GetRange().Contains(load_addr)) {
1566       // The target address is within the memory region we're processing here.
1567       range_info = proc_entry_info;
1568       return error;
1569     }
1570 
1571     // The target memory address comes somewhere after the region we just
1572     // parsed.
1573   }
1574 
1575   // If we made it here, we didn't find an entry that contained the given
1576   // address. Return the
1577   // load_addr as start and the amount of bytes betwwen load address and the end
1578   // of the memory as
1579   // size.
1580   range_info.GetRange().SetRangeBase(load_addr);
1581   range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS);
1582   range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1583   range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1584   range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1585   range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1586   return error;
1587 }
1588 
1589 Status NativeProcessLinux::PopulateMemoryRegionCache() {
1590   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1591 
1592   // If our cache is empty, pull the latest.  There should always be at least
1593   // one memory region if memory region handling is supported.
1594   if (!m_mem_region_cache.empty()) {
1595     LLDB_LOG(log, "reusing {0} cached memory region entries",
1596              m_mem_region_cache.size());
1597     return Status();
1598   }
1599 
1600   auto BufferOrError = getProcFile(GetID(), "maps");
1601   if (!BufferOrError) {
1602     m_supports_mem_region = LazyBool::eLazyBoolNo;
1603     return BufferOrError.getError();
1604   }
1605   StringRef Rest = BufferOrError.get()->getBuffer();
1606   while (! Rest.empty()) {
1607     StringRef Line;
1608     std::tie(Line, Rest) = Rest.split('\n');
1609     MemoryRegionInfo info;
1610     const Status parse_error =
1611         ParseMemoryRegionInfoFromProcMapsLine(Line, info);
1612     if (parse_error.Fail()) {
1613       LLDB_LOG(log, "failed to parse proc maps line '{0}': {1}", Line,
1614                parse_error);
1615       m_supports_mem_region = LazyBool::eLazyBoolNo;
1616       return parse_error;
1617     }
1618     m_mem_region_cache.emplace_back(
1619         info, FileSpec(info.GetName().GetCString(), true));
1620   }
1621 
1622   if (m_mem_region_cache.empty()) {
1623     // No entries after attempting to read them.  This shouldn't happen if
1624     // /proc/{pid}/maps is supported. Assume we don't support map entries
1625     // via procfs.
1626     m_supports_mem_region = LazyBool::eLazyBoolNo;
1627     LLDB_LOG(log,
1628              "failed to find any procfs maps entries, assuming no support "
1629              "for memory region metadata retrieval");
1630     return Status("not supported");
1631   }
1632 
1633   LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps",
1634            m_mem_region_cache.size(), GetID());
1635 
1636   // We support memory retrieval, remember that.
1637   m_supports_mem_region = LazyBool::eLazyBoolYes;
1638   return Status();
1639 }
1640 
1641 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) {
1642   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1643   LLDB_LOG(log, "newBumpId={0}", newBumpId);
1644   LLDB_LOG(log, "clearing {0} entries from memory region cache",
1645            m_mem_region_cache.size());
1646   m_mem_region_cache.clear();
1647 }
1648 
1649 Status NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions,
1650                                           lldb::addr_t &addr) {
1651 // FIXME implementing this requires the equivalent of
1652 // InferiorCallPOSIX::InferiorCallMmap, which depends on
1653 // functional ThreadPlans working with Native*Protocol.
1654 #if 1
1655   return Status("not implemented yet");
1656 #else
1657   addr = LLDB_INVALID_ADDRESS;
1658 
1659   unsigned prot = 0;
1660   if (permissions & lldb::ePermissionsReadable)
1661     prot |= eMmapProtRead;
1662   if (permissions & lldb::ePermissionsWritable)
1663     prot |= eMmapProtWrite;
1664   if (permissions & lldb::ePermissionsExecutable)
1665     prot |= eMmapProtExec;
1666 
1667   // TODO implement this directly in NativeProcessLinux
1668   // (and lift to NativeProcessPOSIX if/when that class is
1669   // refactored out).
1670   if (InferiorCallMmap(this, addr, 0, size, prot,
1671                        eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
1672     m_addr_to_mmap_size[addr] = size;
1673     return Status();
1674   } else {
1675     addr = LLDB_INVALID_ADDRESS;
1676     return Status("unable to allocate %" PRIu64
1677                   " bytes of memory with permissions %s",
1678                   size, GetPermissionsAsCString(permissions));
1679   }
1680 #endif
1681 }
1682 
1683 Status NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) {
1684   // FIXME see comments in AllocateMemory - required lower-level
1685   // bits not in place yet (ThreadPlans)
1686   return Status("not implemented");
1687 }
1688 
1689 lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress() {
1690   // punt on this for now
1691   return LLDB_INVALID_ADDRESS;
1692 }
1693 
1694 size_t NativeProcessLinux::UpdateThreads() {
1695   // The NativeProcessLinux monitoring threads are always up to date
1696   // with respect to thread state and they keep the thread list
1697   // populated properly. All this method needs to do is return the
1698   // thread count.
1699   return m_threads.size();
1700 }
1701 
1702 bool NativeProcessLinux::GetArchitecture(ArchSpec &arch) const {
1703   arch = m_arch;
1704   return true;
1705 }
1706 
1707 Status NativeProcessLinux::GetSoftwareBreakpointPCOffset(
1708     uint32_t &actual_opcode_size) {
1709   // FIXME put this behind a breakpoint protocol class that can be
1710   // set per architecture.  Need ARM, MIPS support here.
1711   static const uint8_t g_i386_opcode[] = {0xCC};
1712   static const uint8_t g_s390x_opcode[] = {0x00, 0x01};
1713 
1714   switch (m_arch.GetMachine()) {
1715   case llvm::Triple::x86:
1716   case llvm::Triple::x86_64:
1717     actual_opcode_size = static_cast<uint32_t>(sizeof(g_i386_opcode));
1718     return Status();
1719 
1720   case llvm::Triple::systemz:
1721     actual_opcode_size = static_cast<uint32_t>(sizeof(g_s390x_opcode));
1722     return Status();
1723 
1724   case llvm::Triple::arm:
1725   case llvm::Triple::aarch64:
1726   case llvm::Triple::mips64:
1727   case llvm::Triple::mips64el:
1728   case llvm::Triple::mips:
1729   case llvm::Triple::mipsel:
1730     // On these architectures the PC don't get updated for breakpoint hits
1731     actual_opcode_size = 0;
1732     return Status();
1733 
1734   default:
1735     assert(false && "CPU type not supported!");
1736     return Status("CPU type not supported");
1737   }
1738 }
1739 
1740 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size,
1741                                          bool hardware) {
1742   if (hardware)
1743     return SetHardwareBreakpoint(addr, size);
1744   else
1745     return SetSoftwareBreakpoint(addr, size);
1746 }
1747 
1748 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) {
1749   if (hardware)
1750     return RemoveHardwareBreakpoint(addr);
1751   else
1752     return NativeProcessProtocol::RemoveBreakpoint(addr);
1753 }
1754 
1755 Status NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(
1756     size_t trap_opcode_size_hint, size_t &actual_opcode_size,
1757     const uint8_t *&trap_opcode_bytes) {
1758   // FIXME put this behind a breakpoint protocol class that can be set per
1759   // architecture.  Need MIPS support here.
1760   static const uint8_t g_aarch64_opcode[] = {0x00, 0x00, 0x20, 0xd4};
1761   // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
1762   // linux kernel does otherwise.
1763   static const uint8_t g_arm_breakpoint_opcode[] = {0xf0, 0x01, 0xf0, 0xe7};
1764   static const uint8_t g_i386_opcode[] = {0xCC};
1765   static const uint8_t g_mips64_opcode[] = {0x00, 0x00, 0x00, 0x0d};
1766   static const uint8_t g_mips64el_opcode[] = {0x0d, 0x00, 0x00, 0x00};
1767   static const uint8_t g_s390x_opcode[] = {0x00, 0x01};
1768   static const uint8_t g_thumb_breakpoint_opcode[] = {0x01, 0xde};
1769 
1770   switch (m_arch.GetMachine()) {
1771   case llvm::Triple::aarch64:
1772     trap_opcode_bytes = g_aarch64_opcode;
1773     actual_opcode_size = sizeof(g_aarch64_opcode);
1774     return Status();
1775 
1776   case llvm::Triple::arm:
1777     switch (trap_opcode_size_hint) {
1778     case 2:
1779       trap_opcode_bytes = g_thumb_breakpoint_opcode;
1780       actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
1781       return Status();
1782     case 4:
1783       trap_opcode_bytes = g_arm_breakpoint_opcode;
1784       actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
1785       return Status();
1786     default:
1787       assert(false && "Unrecognised trap opcode size hint!");
1788       return Status("Unrecognised trap opcode size hint!");
1789     }
1790 
1791   case llvm::Triple::x86:
1792   case llvm::Triple::x86_64:
1793     trap_opcode_bytes = g_i386_opcode;
1794     actual_opcode_size = sizeof(g_i386_opcode);
1795     return Status();
1796 
1797   case llvm::Triple::mips:
1798   case llvm::Triple::mips64:
1799     trap_opcode_bytes = g_mips64_opcode;
1800     actual_opcode_size = sizeof(g_mips64_opcode);
1801     return Status();
1802 
1803   case llvm::Triple::mipsel:
1804   case llvm::Triple::mips64el:
1805     trap_opcode_bytes = g_mips64el_opcode;
1806     actual_opcode_size = sizeof(g_mips64el_opcode);
1807     return Status();
1808 
1809   case llvm::Triple::systemz:
1810     trap_opcode_bytes = g_s390x_opcode;
1811     actual_opcode_size = sizeof(g_s390x_opcode);
1812     return Status();
1813 
1814   default:
1815     assert(false && "CPU type not supported!");
1816     return Status("CPU type not supported");
1817   }
1818 }
1819 
1820 #if 0
1821 ProcessMessage::CrashReason
1822 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
1823 {
1824     ProcessMessage::CrashReason reason;
1825     assert(info->si_signo == SIGSEGV);
1826 
1827     reason = ProcessMessage::eInvalidCrashReason;
1828 
1829     switch (info->si_code)
1830     {
1831     default:
1832         assert(false && "unexpected si_code for SIGSEGV");
1833         break;
1834     case SI_KERNEL:
1835         // Linux will occasionally send spurious SI_KERNEL codes.
1836         // (this is poorly documented in sigaction)
1837         // One way to get this is via unaligned SIMD loads.
1838         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
1839         break;
1840     case SEGV_MAPERR:
1841         reason = ProcessMessage::eInvalidAddress;
1842         break;
1843     case SEGV_ACCERR:
1844         reason = ProcessMessage::ePrivilegedAddress;
1845         break;
1846     }
1847 
1848     return reason;
1849 }
1850 #endif
1851 
1852 #if 0
1853 ProcessMessage::CrashReason
1854 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
1855 {
1856     ProcessMessage::CrashReason reason;
1857     assert(info->si_signo == SIGILL);
1858 
1859     reason = ProcessMessage::eInvalidCrashReason;
1860 
1861     switch (info->si_code)
1862     {
1863     default:
1864         assert(false && "unexpected si_code for SIGILL");
1865         break;
1866     case ILL_ILLOPC:
1867         reason = ProcessMessage::eIllegalOpcode;
1868         break;
1869     case ILL_ILLOPN:
1870         reason = ProcessMessage::eIllegalOperand;
1871         break;
1872     case ILL_ILLADR:
1873         reason = ProcessMessage::eIllegalAddressingMode;
1874         break;
1875     case ILL_ILLTRP:
1876         reason = ProcessMessage::eIllegalTrap;
1877         break;
1878     case ILL_PRVOPC:
1879         reason = ProcessMessage::ePrivilegedOpcode;
1880         break;
1881     case ILL_PRVREG:
1882         reason = ProcessMessage::ePrivilegedRegister;
1883         break;
1884     case ILL_COPROC:
1885         reason = ProcessMessage::eCoprocessorError;
1886         break;
1887     case ILL_BADSTK:
1888         reason = ProcessMessage::eInternalStackError;
1889         break;
1890     }
1891 
1892     return reason;
1893 }
1894 #endif
1895 
1896 #if 0
1897 ProcessMessage::CrashReason
1898 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
1899 {
1900     ProcessMessage::CrashReason reason;
1901     assert(info->si_signo == SIGFPE);
1902 
1903     reason = ProcessMessage::eInvalidCrashReason;
1904 
1905     switch (info->si_code)
1906     {
1907     default:
1908         assert(false && "unexpected si_code for SIGFPE");
1909         break;
1910     case FPE_INTDIV:
1911         reason = ProcessMessage::eIntegerDivideByZero;
1912         break;
1913     case FPE_INTOVF:
1914         reason = ProcessMessage::eIntegerOverflow;
1915         break;
1916     case FPE_FLTDIV:
1917         reason = ProcessMessage::eFloatDivideByZero;
1918         break;
1919     case FPE_FLTOVF:
1920         reason = ProcessMessage::eFloatOverflow;
1921         break;
1922     case FPE_FLTUND:
1923         reason = ProcessMessage::eFloatUnderflow;
1924         break;
1925     case FPE_FLTRES:
1926         reason = ProcessMessage::eFloatInexactResult;
1927         break;
1928     case FPE_FLTINV:
1929         reason = ProcessMessage::eFloatInvalidOperation;
1930         break;
1931     case FPE_FLTSUB:
1932         reason = ProcessMessage::eFloatSubscriptRange;
1933         break;
1934     }
1935 
1936     return reason;
1937 }
1938 #endif
1939 
1940 #if 0
1941 ProcessMessage::CrashReason
1942 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
1943 {
1944     ProcessMessage::CrashReason reason;
1945     assert(info->si_signo == SIGBUS);
1946 
1947     reason = ProcessMessage::eInvalidCrashReason;
1948 
1949     switch (info->si_code)
1950     {
1951     default:
1952         assert(false && "unexpected si_code for SIGBUS");
1953         break;
1954     case BUS_ADRALN:
1955         reason = ProcessMessage::eIllegalAlignment;
1956         break;
1957     case BUS_ADRERR:
1958         reason = ProcessMessage::eIllegalAddress;
1959         break;
1960     case BUS_OBJERR:
1961         reason = ProcessMessage::eHardwareError;
1962         break;
1963     }
1964 
1965     return reason;
1966 }
1967 #endif
1968 
1969 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size,
1970                                       size_t &bytes_read) {
1971   if (ProcessVmReadvSupported()) {
1972     // The process_vm_readv path is about 50 times faster than ptrace api. We
1973     // want to use
1974     // this syscall if it is supported.
1975 
1976     const ::pid_t pid = GetID();
1977 
1978     struct iovec local_iov, remote_iov;
1979     local_iov.iov_base = buf;
1980     local_iov.iov_len = size;
1981     remote_iov.iov_base = reinterpret_cast<void *>(addr);
1982     remote_iov.iov_len = size;
1983 
1984     bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
1985     const bool success = bytes_read == size;
1986 
1987     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1988     LLDB_LOG(log,
1989              "using process_vm_readv to read {0} bytes from inferior "
1990              "address {1:x}: {2}",
1991              size, addr, success ? "Success" : strerror(errno));
1992 
1993     if (success)
1994       return Status();
1995     // else the call failed for some reason, let's retry the read using ptrace
1996     // api.
1997   }
1998 
1999   unsigned char *dst = static_cast<unsigned char *>(buf);
2000   size_t remainder;
2001   long data;
2002 
2003   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
2004   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
2005 
2006   for (bytes_read = 0; bytes_read < size; bytes_read += remainder) {
2007     Status error = NativeProcessLinux::PtraceWrapper(
2008         PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data);
2009     if (error.Fail())
2010       return error;
2011 
2012     remainder = size - bytes_read;
2013     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
2014 
2015     // Copy the data into our buffer
2016     memcpy(dst, &data, remainder);
2017 
2018     LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
2019     addr += k_ptrace_word_size;
2020     dst += k_ptrace_word_size;
2021   }
2022   return Status();
2023 }
2024 
2025 Status NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf,
2026                                                  size_t size,
2027                                                  size_t &bytes_read) {
2028   Status error = ReadMemory(addr, buf, size, bytes_read);
2029   if (error.Fail())
2030     return error;
2031   return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size);
2032 }
2033 
2034 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf,
2035                                        size_t size, size_t &bytes_written) {
2036   const unsigned char *src = static_cast<const unsigned char *>(buf);
2037   size_t remainder;
2038   Status error;
2039 
2040   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
2041   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
2042 
2043   for (bytes_written = 0; bytes_written < size; bytes_written += remainder) {
2044     remainder = size - bytes_written;
2045     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
2046 
2047     if (remainder == k_ptrace_word_size) {
2048       unsigned long data = 0;
2049       memcpy(&data, src, k_ptrace_word_size);
2050 
2051       LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
2052       error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(),
2053                                                 (void *)addr, (void *)data);
2054       if (error.Fail())
2055         return error;
2056     } else {
2057       unsigned char buff[8];
2058       size_t bytes_read;
2059       error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
2060       if (error.Fail())
2061         return error;
2062 
2063       memcpy(buff, src, remainder);
2064 
2065       size_t bytes_written_rec;
2066       error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
2067       if (error.Fail())
2068         return error;
2069 
2070       LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src,
2071                *(unsigned long *)buff);
2072     }
2073 
2074     addr += k_ptrace_word_size;
2075     src += k_ptrace_word_size;
2076   }
2077   return error;
2078 }
2079 
2080 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) {
2081   return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
2082 }
2083 
2084 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid,
2085                                            unsigned long *message) {
2086   return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
2087 }
2088 
2089 Status NativeProcessLinux::Detach(lldb::tid_t tid) {
2090   if (tid == LLDB_INVALID_THREAD_ID)
2091     return Status();
2092 
2093   return PtraceWrapper(PTRACE_DETACH, tid);
2094 }
2095 
2096 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) {
2097   for (auto thread_sp : m_threads) {
2098     assert(thread_sp && "thread list should not contain NULL threads");
2099     if (thread_sp->GetID() == thread_id) {
2100       // We have this thread.
2101       return true;
2102     }
2103   }
2104 
2105   // We don't have this thread.
2106   return false;
2107 }
2108 
2109 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) {
2110   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2111   LLDB_LOG(log, "tid: {0})", thread_id);
2112 
2113   bool found = false;
2114   for (auto it = m_threads.begin(); it != m_threads.end(); ++it) {
2115     if (*it && ((*it)->GetID() == thread_id)) {
2116       m_threads.erase(it);
2117       found = true;
2118       break;
2119     }
2120   }
2121 
2122   SignalIfAllThreadsStopped();
2123   return found;
2124 }
2125 
2126 NativeThreadLinuxSP NativeProcessLinux::AddThread(lldb::tid_t thread_id) {
2127   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD));
2128   LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id);
2129 
2130   assert(!HasThreadNoLock(thread_id) &&
2131          "attempted to add a thread by id that already exists");
2132 
2133   // If this is the first thread, save it as the current thread
2134   if (m_threads.empty())
2135     SetCurrentThreadID(thread_id);
2136 
2137   auto thread_sp = std::make_shared<NativeThreadLinux>(this, thread_id);
2138   m_threads.push_back(thread_sp);
2139   return thread_sp;
2140 }
2141 
2142 Status
2143 NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread) {
2144   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
2145 
2146   Status error;
2147 
2148   // Find out the size of a breakpoint (might depend on where we are in the
2149   // code).
2150   NativeRegisterContextSP context_sp = thread.GetRegisterContext();
2151   if (!context_sp) {
2152     error.SetErrorString("cannot get a NativeRegisterContext for the thread");
2153     LLDB_LOG(log, "failed: {0}", error);
2154     return error;
2155   }
2156 
2157   uint32_t breakpoint_size = 0;
2158   error = GetSoftwareBreakpointPCOffset(breakpoint_size);
2159   if (error.Fail()) {
2160     LLDB_LOG(log, "GetBreakpointSize() failed: {0}", error);
2161     return error;
2162   } else
2163     LLDB_LOG(log, "breakpoint size: {0}", breakpoint_size);
2164 
2165   // First try probing for a breakpoint at a software breakpoint location: PC -
2166   // breakpoint size.
2167   const lldb::addr_t initial_pc_addr =
2168       context_sp->GetPCfromBreakpointLocation();
2169   lldb::addr_t breakpoint_addr = initial_pc_addr;
2170   if (breakpoint_size > 0) {
2171     // Do not allow breakpoint probe to wrap around.
2172     if (breakpoint_addr >= breakpoint_size)
2173       breakpoint_addr -= breakpoint_size;
2174   }
2175 
2176   // Check if we stopped because of a breakpoint.
2177   NativeBreakpointSP breakpoint_sp;
2178   error = m_breakpoint_list.GetBreakpoint(breakpoint_addr, breakpoint_sp);
2179   if (!error.Success() || !breakpoint_sp) {
2180     // We didn't find one at a software probe location.  Nothing to do.
2181     LLDB_LOG(log,
2182              "pid {0} no lldb breakpoint found at current pc with "
2183              "adjustment: {1}",
2184              GetID(), breakpoint_addr);
2185     return Status();
2186   }
2187 
2188   // If the breakpoint is not a software breakpoint, nothing to do.
2189   if (!breakpoint_sp->IsSoftwareBreakpoint()) {
2190     LLDB_LOG(
2191         log,
2192         "pid {0} breakpoint found at {1:x}, not software, nothing to adjust",
2193         GetID(), breakpoint_addr);
2194     return Status();
2195   }
2196 
2197   //
2198   // We have a software breakpoint and need to adjust the PC.
2199   //
2200 
2201   // Sanity check.
2202   if (breakpoint_size == 0) {
2203     // Nothing to do!  How did we get here?
2204     LLDB_LOG(log,
2205              "pid {0} breakpoint found at {1:x}, it is software, but the "
2206              "size is zero, nothing to do (unexpected)",
2207              GetID(), breakpoint_addr);
2208     return Status();
2209   }
2210 
2211   // Change the program counter.
2212   LLDB_LOG(log, "pid {0} tid {1}: changing PC from {2:x} to {3:x}", GetID(),
2213            thread.GetID(), initial_pc_addr, breakpoint_addr);
2214 
2215   error = context_sp->SetPC(breakpoint_addr);
2216   if (error.Fail()) {
2217     LLDB_LOG(log, "pid {0} tid {1}: failed to set PC: {2}", GetID(),
2218              thread.GetID(), error);
2219     return error;
2220   }
2221 
2222   return error;
2223 }
2224 
2225 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path,
2226                                                    FileSpec &file_spec) {
2227   Status error = PopulateMemoryRegionCache();
2228   if (error.Fail())
2229     return error;
2230 
2231   FileSpec module_file_spec(module_path, true);
2232 
2233   file_spec.Clear();
2234   for (const auto &it : m_mem_region_cache) {
2235     if (it.second.GetFilename() == module_file_spec.GetFilename()) {
2236       file_spec = it.second;
2237       return Status();
2238     }
2239   }
2240   return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
2241                 module_file_spec.GetFilename().AsCString(), GetID());
2242 }
2243 
2244 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name,
2245                                               lldb::addr_t &load_addr) {
2246   load_addr = LLDB_INVALID_ADDRESS;
2247   Status error = PopulateMemoryRegionCache();
2248   if (error.Fail())
2249     return error;
2250 
2251   FileSpec file(file_name, false);
2252   for (const auto &it : m_mem_region_cache) {
2253     if (it.second == file) {
2254       load_addr = it.first.GetRange().GetRangeBase();
2255       return Status();
2256     }
2257   }
2258   return Status("No load address found for specified file.");
2259 }
2260 
2261 NativeThreadLinuxSP NativeProcessLinux::GetThreadByID(lldb::tid_t tid) {
2262   return std::static_pointer_cast<NativeThreadLinux>(
2263       NativeProcessProtocol::GetThreadByID(tid));
2264 }
2265 
2266 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread,
2267                                         lldb::StateType state, int signo) {
2268   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2269   LLDB_LOG(log, "tid: {0}", thread.GetID());
2270 
2271   // Before we do the resume below, first check if we have a pending
2272   // stop notification that is currently waiting for
2273   // all threads to stop.  This is potentially a buggy situation since
2274   // we're ostensibly waiting for threads to stop before we send out the
2275   // pending notification, and here we are resuming one before we send
2276   // out the pending stop notification.
2277   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
2278     LLDB_LOG(log,
2279              "about to resume tid {0} per explicit request but we have a "
2280              "pending stop notification (tid {1}) that is actively "
2281              "waiting for this thread to stop. Valid sequence of events?",
2282              thread.GetID(), m_pending_notification_tid);
2283   }
2284 
2285   // Request a resume.  We expect this to be synchronous and the system
2286   // to reflect it is running after this completes.
2287   switch (state) {
2288   case eStateRunning: {
2289     const auto resume_result = thread.Resume(signo);
2290     if (resume_result.Success())
2291       SetState(eStateRunning, true);
2292     return resume_result;
2293   }
2294   case eStateStepping: {
2295     const auto step_result = thread.SingleStep(signo);
2296     if (step_result.Success())
2297       SetState(eStateRunning, true);
2298     return step_result;
2299   }
2300   default:
2301     LLDB_LOG(log, "Unhandled state {0}.", state);
2302     llvm_unreachable("Unhandled state for resume");
2303   }
2304 }
2305 
2306 //===----------------------------------------------------------------------===//
2307 
2308 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) {
2309   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2310   LLDB_LOG(log, "about to process event: (triggering_tid: {0})",
2311            triggering_tid);
2312 
2313   m_pending_notification_tid = triggering_tid;
2314 
2315   // Request a stop for all the thread stops that need to be stopped
2316   // and are not already known to be stopped.
2317   for (const auto &thread_sp : m_threads) {
2318     if (StateIsRunningState(thread_sp->GetState()))
2319       static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop();
2320   }
2321 
2322   SignalIfAllThreadsStopped();
2323   LLDB_LOG(log, "event processing done");
2324 }
2325 
2326 void NativeProcessLinux::SignalIfAllThreadsStopped() {
2327   if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
2328     return; // No pending notification. Nothing to do.
2329 
2330   for (const auto &thread_sp : m_threads) {
2331     if (StateIsRunningState(thread_sp->GetState()))
2332       return; // Some threads are still running. Don't signal yet.
2333   }
2334 
2335   // We have a pending notification and all threads have stopped.
2336   Log *log(
2337       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
2338 
2339   // Clear any temporary breakpoints we used to implement software single
2340   // stepping.
2341   for (const auto &thread_info : m_threads_stepping_with_breakpoint) {
2342     Status error = RemoveBreakpoint(thread_info.second);
2343     if (error.Fail())
2344       LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}",
2345                thread_info.first, error);
2346   }
2347   m_threads_stepping_with_breakpoint.clear();
2348 
2349   // Notify the delegate about the stop
2350   SetCurrentThreadID(m_pending_notification_tid);
2351   SetState(StateType::eStateStopped, true);
2352   m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
2353 }
2354 
2355 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) {
2356   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2357   LLDB_LOG(log, "tid: {0}", thread.GetID());
2358 
2359   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID &&
2360       StateIsRunningState(thread.GetState())) {
2361     // We will need to wait for this new thread to stop as well before firing
2362     // the
2363     // notification.
2364     thread.RequestStop();
2365   }
2366 }
2367 
2368 void NativeProcessLinux::SigchldHandler() {
2369   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
2370   // Process all pending waitpid notifications.
2371   while (true) {
2372     int status = -1;
2373     ::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG);
2374 
2375     if (wait_pid == 0)
2376       break; // We are done.
2377 
2378     if (wait_pid == -1) {
2379       if (errno == EINTR)
2380         continue;
2381 
2382       Status error(errno, eErrorTypePOSIX);
2383       LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error);
2384       break;
2385     }
2386 
2387     bool exited = false;
2388     int signal = 0;
2389     int exit_status = 0;
2390     const char *status_cstr = nullptr;
2391     if (WIFSTOPPED(status)) {
2392       signal = WSTOPSIG(status);
2393       status_cstr = "STOPPED";
2394     } else if (WIFEXITED(status)) {
2395       exit_status = WEXITSTATUS(status);
2396       status_cstr = "EXITED";
2397       exited = true;
2398     } else if (WIFSIGNALED(status)) {
2399       signal = WTERMSIG(status);
2400       status_cstr = "SIGNALED";
2401       if (wait_pid == static_cast<::pid_t>(GetID())) {
2402         exited = true;
2403         exit_status = -1;
2404       }
2405     } else
2406       status_cstr = "(\?\?\?)";
2407 
2408     LLDB_LOG(log,
2409              "waitpid (-1, &status, _) => pid = {0}, status = {1:x} "
2410              "({2}), signal = {3}, exit_state = {4}",
2411              wait_pid, status, status_cstr, signal, exit_status);
2412 
2413     MonitorCallback(wait_pid, exited, signal, exit_status);
2414   }
2415 }
2416 
2417 // Wrapper for ptrace to catch errors and log calls.
2418 // Note that ptrace sets errno on error because -1 can be a valid result (i.e.
2419 // for PTRACE_PEEK*)
2420 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr,
2421                                          void *data, size_t data_size,
2422                                          long *result) {
2423   Status error;
2424   long int ret;
2425 
2426   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2427 
2428   PtraceDisplayBytes(req, data, data_size);
2429 
2430   errno = 0;
2431   if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
2432     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
2433                  *(unsigned int *)addr, data);
2434   else
2435     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
2436                  addr, data);
2437 
2438   if (ret == -1)
2439     error.SetErrorToErrno();
2440 
2441   if (result)
2442     *result = ret;
2443 
2444   LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data,
2445            data_size, ret);
2446 
2447   PtraceDisplayBytes(req, data, data_size);
2448 
2449   if (error.Fail())
2450     LLDB_LOG(log, "ptrace() failed: {0}", error);
2451 
2452   return error;
2453 }
2454