1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "NativeProcessLinux.h"
11 
12 // C Includes
13 #include <errno.h>
14 #include <stdint.h>
15 #include <string.h>
16 #include <unistd.h>
17 
18 // C++ Includes
19 #include <fstream>
20 #include <mutex>
21 #include <sstream>
22 #include <string>
23 #include <unordered_map>
24 
25 // Other libraries and framework includes
26 #include "lldb/Core/EmulateInstruction.h"
27 #include "lldb/Core/ModuleSpec.h"
28 #include "lldb/Core/RegisterValue.h"
29 #include "lldb/Core/State.h"
30 #include "lldb/Host/Host.h"
31 #include "lldb/Host/HostProcess.h"
32 #include "lldb/Host/PseudoTerminal.h"
33 #include "lldb/Host/ThreadLauncher.h"
34 #include "lldb/Host/common/NativeBreakpoint.h"
35 #include "lldb/Host/common/NativeRegisterContext.h"
36 #include "lldb/Host/linux/Ptrace.h"
37 #include "lldb/Host/linux/Uio.h"
38 #include "lldb/Host/posix/ProcessLauncherPosixFork.h"
39 #include "lldb/Symbol/ObjectFile.h"
40 #include "lldb/Target/Process.h"
41 #include "lldb/Target/ProcessLaunchInfo.h"
42 #include "lldb/Target/Target.h"
43 #include "lldb/Utility/LLDBAssert.h"
44 #include "lldb/Utility/Status.h"
45 #include "lldb/Utility/StringExtractor.h"
46 #include "llvm/Support/Errno.h"
47 #include "llvm/Support/FileSystem.h"
48 #include "llvm/Support/Threading.h"
49 
50 #include "NativeThreadLinux.h"
51 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
52 #include "Procfs.h"
53 
54 #include <linux/unistd.h>
55 #include <sys/socket.h>
56 #include <sys/syscall.h>
57 #include <sys/types.h>
58 #include <sys/user.h>
59 #include <sys/wait.h>
60 
61 // Support hardware breakpoints in case it has not been defined
62 #ifndef TRAP_HWBKPT
63 #define TRAP_HWBKPT 4
64 #endif
65 
66 using namespace lldb;
67 using namespace lldb_private;
68 using namespace lldb_private::process_linux;
69 using namespace llvm;
70 
71 // Private bits we only need internally.
72 
73 static bool ProcessVmReadvSupported() {
74   static bool is_supported;
75   static llvm::once_flag flag;
76 
77   llvm::call_once(flag, [] {
78     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
79 
80     uint32_t source = 0x47424742;
81     uint32_t dest = 0;
82 
83     struct iovec local, remote;
84     remote.iov_base = &source;
85     local.iov_base = &dest;
86     remote.iov_len = local.iov_len = sizeof source;
87 
88     // We shall try if cross-process-memory reads work by attempting to read a
89     // value from our own process.
90     ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
91     is_supported = (res == sizeof(source) && source == dest);
92     if (is_supported)
93       LLDB_LOG(log,
94                "Detected kernel support for process_vm_readv syscall. "
95                "Fast memory reads enabled.");
96     else
97       LLDB_LOG(log,
98                "syscall process_vm_readv failed (error: {0}). Fast memory "
99                "reads disabled.",
100                llvm::sys::StrError());
101   });
102 
103   return is_supported;
104 }
105 
106 namespace {
107 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) {
108   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
109   if (!log)
110     return;
111 
112   if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO))
113     LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec());
114   else
115     LLDB_LOG(log, "leaving STDIN as is");
116 
117   if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO))
118     LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec());
119   else
120     LLDB_LOG(log, "leaving STDOUT as is");
121 
122   if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO))
123     LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec());
124   else
125     LLDB_LOG(log, "leaving STDERR as is");
126 
127   int i = 0;
128   for (const char **args = info.GetArguments().GetConstArgumentVector(); *args;
129        ++args, ++i)
130     LLDB_LOG(log, "arg {0}: '{1}'", i, *args);
131 }
132 
133 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) {
134   uint8_t *ptr = (uint8_t *)bytes;
135   const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
136   for (uint32_t i = 0; i < loop_count; i++) {
137     s.Printf("[%x]", *ptr);
138     ptr++;
139   }
140 }
141 
142 void PtraceDisplayBytes(int &req, void *data, size_t data_size) {
143   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
144   if (!log)
145     return;
146   StreamString buf;
147 
148   switch (req) {
149   case PTRACE_POKETEXT: {
150     DisplayBytes(buf, &data, 8);
151     LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData());
152     break;
153   }
154   case PTRACE_POKEDATA: {
155     DisplayBytes(buf, &data, 8);
156     LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData());
157     break;
158   }
159   case PTRACE_POKEUSER: {
160     DisplayBytes(buf, &data, 8);
161     LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData());
162     break;
163   }
164   case PTRACE_SETREGS: {
165     DisplayBytes(buf, data, data_size);
166     LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData());
167     break;
168   }
169   case PTRACE_SETFPREGS: {
170     DisplayBytes(buf, data, data_size);
171     LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData());
172     break;
173   }
174   case PTRACE_SETSIGINFO: {
175     DisplayBytes(buf, data, sizeof(siginfo_t));
176     LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData());
177     break;
178   }
179   case PTRACE_SETREGSET: {
180     // Extract iov_base from data, which is a pointer to the struct IOVEC
181     DisplayBytes(buf, *(void **)data, data_size);
182     LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData());
183     break;
184   }
185   default: {}
186   }
187 }
188 
189 static constexpr unsigned k_ptrace_word_size = sizeof(void *);
190 static_assert(sizeof(long) >= k_ptrace_word_size,
191               "Size of long must be larger than ptrace word size");
192 } // end of anonymous namespace
193 
194 // Simple helper function to ensure flags are enabled on the given file
195 // descriptor.
196 static Status EnsureFDFlags(int fd, int flags) {
197   Status error;
198 
199   int status = fcntl(fd, F_GETFL);
200   if (status == -1) {
201     error.SetErrorToErrno();
202     return error;
203   }
204 
205   if (fcntl(fd, F_SETFL, status | flags) == -1) {
206     error.SetErrorToErrno();
207     return error;
208   }
209 
210   return error;
211 }
212 
213 // -----------------------------------------------------------------------------
214 // Public Static Methods
215 // -----------------------------------------------------------------------------
216 
217 llvm::Expected<NativeProcessProtocolSP>
218 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info,
219                                     NativeDelegate &native_delegate,
220                                     MainLoop &mainloop) const {
221   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
222 
223   MaybeLogLaunchInfo(launch_info);
224 
225   Status status;
226   ::pid_t pid = ProcessLauncherPosixFork()
227                     .LaunchProcess(launch_info, status)
228                     .GetProcessId();
229   LLDB_LOG(log, "pid = {0:x}", pid);
230   if (status.Fail()) {
231     LLDB_LOG(log, "failed to launch process: {0}", status);
232     return status.ToError();
233   }
234 
235   // Wait for the child process to trap on its call to execve.
236   int wstatus;
237   ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0);
238   assert(wpid == pid);
239   (void)wpid;
240   if (!WIFSTOPPED(wstatus)) {
241     LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}",
242              WaitStatus::Decode(wstatus));
243     return llvm::make_error<StringError>("Could not sync with inferior process",
244                                          llvm::inconvertibleErrorCode());
245   }
246   LLDB_LOG(log, "inferior started, now in stopped state");
247 
248   ArchSpec arch;
249   if ((status = ResolveProcessArchitecture(pid, arch)).Fail())
250     return status.ToError();
251 
252   // Set the architecture to the exe architecture.
253   LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid,
254            arch.GetArchitectureName());
255 
256   status = SetDefaultPtraceOpts(pid);
257   if (status.Fail()) {
258     LLDB_LOG(log, "failed to set default ptrace options: {0}", status);
259     return status.ToError();
260   }
261 
262   std::shared_ptr<NativeProcessLinux> process_sp(new NativeProcessLinux(
263       pid, launch_info.GetPTY().ReleaseMasterFileDescriptor(), native_delegate,
264       arch, mainloop));
265   process_sp->InitializeThreads({pid});
266   return process_sp;
267 }
268 
269 llvm::Expected<NativeProcessProtocolSP> NativeProcessLinux::Factory::Attach(
270     lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate,
271     MainLoop &mainloop) const {
272   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
273   LLDB_LOG(log, "pid = {0:x}", pid);
274 
275   // Retrieve the architecture for the running process.
276   ArchSpec arch;
277   Status status = ResolveProcessArchitecture(pid, arch);
278   if (!status.Success())
279     return status.ToError();
280 
281   auto tids_or = NativeProcessLinux::Attach(pid);
282   if (!tids_or)
283     return tids_or.takeError();
284 
285   std::shared_ptr<NativeProcessLinux> process_sp(
286       new NativeProcessLinux(pid, -1, native_delegate, arch, mainloop));
287   process_sp->InitializeThreads(*tids_or);
288   return process_sp;
289 }
290 
291 // -----------------------------------------------------------------------------
292 // Public Instance Methods
293 // -----------------------------------------------------------------------------
294 
295 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd,
296                                        NativeDelegate &delegate,
297                                        const ArchSpec &arch, MainLoop &mainloop)
298     : NativeProcessProtocol(pid, terminal_fd, delegate), m_arch(arch) {
299   if (m_terminal_fd != -1) {
300     Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
301     assert(status.Success());
302   }
303 
304   Status status;
305   m_sigchld_handle = mainloop.RegisterSignal(
306       SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status);
307   assert(m_sigchld_handle && status.Success());
308 }
309 
310 void NativeProcessLinux::InitializeThreads(llvm::ArrayRef<::pid_t> tids) {
311   for (const auto &tid : tids) {
312     NativeThreadLinuxSP thread_sp = AddThread(tid);
313     assert(thread_sp && "AddThread() returned a nullptr thread");
314     thread_sp->SetStoppedBySignal(SIGSTOP);
315     ThreadWasCreated(*thread_sp);
316   }
317 
318   // Let our process instance know the thread has stopped.
319   SetCurrentThreadID(tids[0]);
320   SetState(StateType::eStateStopped, false);
321 
322   // Proccess any signals we received before installing our handler
323   SigchldHandler();
324 }
325 
326 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) {
327   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
328 
329   Status status;
330   // Use a map to keep track of the threads which we have attached/need to
331   // attach.
332   Host::TidMap tids_to_attach;
333   while (Host::FindProcessThreads(pid, tids_to_attach)) {
334     for (Host::TidMap::iterator it = tids_to_attach.begin();
335          it != tids_to_attach.end();) {
336       if (it->second == false) {
337         lldb::tid_t tid = it->first;
338 
339         // Attach to the requested process.
340         // An attach will cause the thread to stop with a SIGSTOP.
341         if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) {
342           // No such thread. The thread may have exited.
343           // More error handling may be needed.
344           if (status.GetError() == ESRCH) {
345             it = tids_to_attach.erase(it);
346             continue;
347           }
348           return status.ToError();
349         }
350 
351         int wpid =
352             llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL);
353         // Need to use __WALL otherwise we receive an error with errno=ECHLD
354         // At this point we should have a thread stopped if waitpid succeeds.
355         if (wpid < 0) {
356           // No such thread. The thread may have exited.
357           // More error handling may be needed.
358           if (errno == ESRCH) {
359             it = tids_to_attach.erase(it);
360             continue;
361           }
362           return llvm::errorCodeToError(
363               std::error_code(errno, std::generic_category()));
364         }
365 
366         if ((status = SetDefaultPtraceOpts(tid)).Fail())
367           return status.ToError();
368 
369         LLDB_LOG(log, "adding tid = {0}", tid);
370         it->second = true;
371       }
372 
373       // move the loop forward
374       ++it;
375     }
376   }
377 
378   size_t tid_count = tids_to_attach.size();
379   if (tid_count == 0)
380     return llvm::make_error<StringError>("No such process",
381                                          llvm::inconvertibleErrorCode());
382 
383   std::vector<::pid_t> tids;
384   tids.reserve(tid_count);
385   for (const auto &p : tids_to_attach)
386     tids.push_back(p.first);
387   return std::move(tids);
388 }
389 
390 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) {
391   long ptrace_opts = 0;
392 
393   // Have the child raise an event on exit.  This is used to keep the child in
394   // limbo until it is destroyed.
395   ptrace_opts |= PTRACE_O_TRACEEXIT;
396 
397   // Have the tracer trace threads which spawn in the inferior process.
398   // TODO: if we want to support tracing the inferiors' child, add the
399   // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
400   ptrace_opts |= PTRACE_O_TRACECLONE;
401 
402   // Have the tracer notify us before execve returns
403   // (needed to disable legacy SIGTRAP generation)
404   ptrace_opts |= PTRACE_O_TRACEEXEC;
405 
406   return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts);
407 }
408 
409 // Handles all waitpid events from the inferior process.
410 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited,
411                                          WaitStatus status) {
412   Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
413 
414   // Certain activities differ based on whether the pid is the tid of the main
415   // thread.
416   const bool is_main_thread = (pid == GetID());
417 
418   // Handle when the thread exits.
419   if (exited) {
420     LLDB_LOG(log, "got exit signal({0}) , tid = {1} ({2} main thread)", signal,
421              pid, is_main_thread ? "is" : "is not");
422 
423     // This is a thread that exited.  Ensure we're not tracking it anymore.
424     const bool thread_found = StopTrackingThread(pid);
425 
426     if (is_main_thread) {
427       // We only set the exit status and notify the delegate if we haven't
428       // already set the process
429       // state to an exited state.  We normally should have received a SIGTRAP |
430       // (PTRACE_EVENT_EXIT << 8)
431       // for the main thread.
432       const bool already_notified = (GetState() == StateType::eStateExited) ||
433                                     (GetState() == StateType::eStateCrashed);
434       if (!already_notified) {
435         LLDB_LOG(
436             log,
437             "tid = {0} handling main thread exit ({1}), expected exit state "
438             "already set but state was {2} instead, setting exit state now",
439             pid,
440             thread_found ? "stopped tracking thread metadata"
441                          : "thread metadata not found",
442             GetState());
443         // The main thread exited.  We're done monitoring.  Report to delegate.
444         SetExitStatus(status, true);
445 
446         // Notify delegate that our process has exited.
447         SetState(StateType::eStateExited, true);
448       } else
449         LLDB_LOG(log, "tid = {0} main thread now exited (%s)", pid,
450                  thread_found ? "stopped tracking thread metadata"
451                               : "thread metadata not found");
452     } else {
453       // Do we want to report to the delegate in this case?  I think not.  If
454       // this was an orderly thread exit, we would already have received the
455       // SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, and we would have done an
456       // all-stop then.
457       LLDB_LOG(log, "tid = {0} handling non-main thread exit (%s)", pid,
458                thread_found ? "stopped tracking thread metadata"
459                             : "thread metadata not found");
460     }
461     return;
462   }
463 
464   siginfo_t info;
465   const auto info_err = GetSignalInfo(pid, &info);
466   auto thread_sp = GetThreadByID(pid);
467 
468   if (!thread_sp) {
469     // Normally, the only situation when we cannot find the thread is if we have
470     // just received a new thread notification. This is indicated by
471     // GetSignalInfo() returning si_code == SI_USER and si_pid == 0
472     LLDB_LOG(log, "received notification about an unknown tid {0}.", pid);
473 
474     if (info_err.Fail()) {
475       LLDB_LOG(log,
476                "(tid {0}) GetSignalInfo failed ({1}). "
477                "Ingoring this notification.",
478                pid, info_err);
479       return;
480     }
481 
482     LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code,
483              info.si_pid);
484 
485     auto thread_sp = AddThread(pid);
486 
487     // Resume the newly created thread.
488     ResumeThread(*thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
489     ThreadWasCreated(*thread_sp);
490     return;
491   }
492 
493   // Get details on the signal raised.
494   if (info_err.Success()) {
495     // We have retrieved the signal info.  Dispatch appropriately.
496     if (info.si_signo == SIGTRAP)
497       MonitorSIGTRAP(info, *thread_sp);
498     else
499       MonitorSignal(info, *thread_sp, exited);
500   } else {
501     if (info_err.GetError() == EINVAL) {
502       // This is a group stop reception for this tid.
503       // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU
504       // into the tracee, triggering the group-stop mechanism. Normally
505       // receiving these would stop the process, pending a SIGCONT. Simulating
506       // this state in a debugger is hard and is generally not needed (one use
507       // case is debugging background task being managed by a shell). For
508       // general use, it is sufficient to stop the process in a signal-delivery
509       // stop which happens before the group stop. This done by MonitorSignal
510       // and works correctly for all signals.
511       LLDB_LOG(log,
512                "received a group stop for pid {0} tid {1}. Transparent "
513                "handling of group stops not supported, resuming the "
514                "thread.",
515                GetID(), pid);
516       ResumeThread(*thread_sp, thread_sp->GetState(),
517                    LLDB_INVALID_SIGNAL_NUMBER);
518     } else {
519       // ptrace(GETSIGINFO) failed (but not due to group-stop).
520 
521       // A return value of ESRCH means the thread/process is no longer on the
522       // system, so it was killed somehow outside of our control.  Either way,
523       // we can't do anything with it anymore.
524 
525       // Stop tracking the metadata for the thread since it's entirely off the
526       // system now.
527       const bool thread_found = StopTrackingThread(pid);
528 
529       LLDB_LOG(log,
530                "GetSignalInfo failed: {0}, tid = {1}, signal = {2}, "
531                "status = {3}, main_thread = {4}, thread_found: {5}",
532                info_err, pid, signal, status, is_main_thread, thread_found);
533 
534       if (is_main_thread) {
535         // Notify the delegate - our process is not available but appears to
536         // have been killed outside
537         // our control.  Is eStateExited the right exit state in this case?
538         SetExitStatus(status, true);
539         SetState(StateType::eStateExited, true);
540       } else {
541         // This thread was pulled out from underneath us.  Anything to do here?
542         // Do we want to do an all stop?
543         LLDB_LOG(log,
544                  "pid {0} tid {1} non-main thread exit occurred, didn't "
545                  "tell delegate anything since thread disappeared out "
546                  "from underneath us",
547                  GetID(), pid);
548       }
549     }
550   }
551 }
552 
553 void NativeProcessLinux::WaitForNewThread(::pid_t tid) {
554   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
555 
556   NativeThreadLinuxSP new_thread_sp = GetThreadByID(tid);
557 
558   if (new_thread_sp) {
559     // We are already tracking the thread - we got the event on the new thread
560     // (see
561     // MonitorSignal) before this one. We are done.
562     return;
563   }
564 
565   // The thread is not tracked yet, let's wait for it to appear.
566   int status = -1;
567   LLDB_LOG(log,
568            "received thread creation event for tid {0}. tid not tracked "
569            "yet, waiting for thread to appear...",
570            tid);
571   ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, &status, __WALL);
572   // Since we are waiting on a specific tid, this must be the creation event.
573   // But let's do some checks just in case.
574   if (wait_pid != tid) {
575     LLDB_LOG(log,
576              "waiting for tid {0} failed. Assuming the thread has "
577              "disappeared in the meantime",
578              tid);
579     // The only way I know of this could happen is if the whole process was
580     // SIGKILLed in the mean time. In any case, we can't do anything about that
581     // now.
582     return;
583   }
584   if (WIFEXITED(status)) {
585     LLDB_LOG(log,
586              "waiting for tid {0} returned an 'exited' event. Not "
587              "tracking the thread.",
588              tid);
589     // Also a very improbable event.
590     return;
591   }
592 
593   LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid);
594   new_thread_sp = AddThread(tid);
595 
596   ResumeThread(*new_thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
597   ThreadWasCreated(*new_thread_sp);
598 }
599 
600 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info,
601                                         NativeThreadLinux &thread) {
602   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
603   const bool is_main_thread = (thread.GetID() == GetID());
604 
605   assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
606 
607   switch (info.si_code) {
608   // TODO: these two cases are required if we want to support tracing of the
609   // inferiors' children.  We'd need this to debug a monitor.
610   // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
611   // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
612 
613   case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): {
614     // This is the notification on the parent thread which informs us of new
615     // thread
616     // creation.
617     // We don't want to do anything with the parent thread so we just resume it.
618     // In case we
619     // want to implement "break on thread creation" functionality, we would need
620     // to stop
621     // here.
622 
623     unsigned long event_message = 0;
624     if (GetEventMessage(thread.GetID(), &event_message).Fail()) {
625       LLDB_LOG(log,
626                "pid {0} received thread creation event but "
627                "GetEventMessage failed so we don't know the new tid",
628                thread.GetID());
629     } else
630       WaitForNewThread(event_message);
631 
632     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
633     break;
634   }
635 
636   case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): {
637     NativeThreadLinuxSP main_thread_sp;
638     LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP);
639 
640     // Exec clears any pending notifications.
641     m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
642 
643     // Remove all but the main thread here.  Linux fork creates a new process
644     // which only copies the main thread.
645     LLDB_LOG(log, "exec received, stop tracking all but main thread");
646 
647     for (auto thread_sp : m_threads) {
648       const bool is_main_thread = thread_sp && thread_sp->GetID() == GetID();
649       if (is_main_thread) {
650         main_thread_sp = std::static_pointer_cast<NativeThreadLinux>(thread_sp);
651         LLDB_LOG(log, "found main thread with tid {0}, keeping",
652                  main_thread_sp->GetID());
653       } else {
654         LLDB_LOG(log, "discarding non-main-thread tid {0} due to exec",
655                  thread_sp->GetID());
656       }
657     }
658 
659     m_threads.clear();
660 
661     if (main_thread_sp) {
662       m_threads.push_back(main_thread_sp);
663       SetCurrentThreadID(main_thread_sp->GetID());
664       main_thread_sp->SetStoppedByExec();
665     } else {
666       SetCurrentThreadID(LLDB_INVALID_THREAD_ID);
667       LLDB_LOG(log,
668                "pid {0} no main thread found, discarded all threads, "
669                "we're in a no-thread state!",
670                GetID());
671     }
672 
673     // Tell coordinator about about the "new" (since exec) stopped main thread.
674     ThreadWasCreated(*main_thread_sp);
675 
676     // Let our delegate know we have just exec'd.
677     NotifyDidExec();
678 
679     // If we have a main thread, indicate we are stopped.
680     assert(main_thread_sp && "exec called during ptraced process but no main "
681                              "thread metadata tracked");
682 
683     // Let the process know we're stopped.
684     StopRunningThreads(main_thread_sp->GetID());
685 
686     break;
687   }
688 
689   case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): {
690     // The inferior process or one of its threads is about to exit.
691     // We don't want to do anything with the thread so we just resume it. In
692     // case we
693     // want to implement "break on thread exit" functionality, we would need to
694     // stop
695     // here.
696 
697     unsigned long data = 0;
698     if (GetEventMessage(thread.GetID(), &data).Fail())
699       data = -1;
700 
701     LLDB_LOG(log,
702              "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, "
703              "WIFSIGNALED={2}, pid = {3}, main_thread = {4}",
704              data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(),
705              is_main_thread);
706 
707     if (is_main_thread)
708       SetExitStatus(WaitStatus::Decode(data), true);
709 
710     StateType state = thread.GetState();
711     if (!StateIsRunningState(state)) {
712       // Due to a kernel bug, we may sometimes get this stop after the inferior
713       // gets a
714       // SIGKILL. This confuses our state tracking logic in ResumeThread(),
715       // since normally,
716       // we should not be receiving any ptrace events while the inferior is
717       // stopped. This
718       // makes sure that the inferior is resumed and exits normally.
719       state = eStateRunning;
720     }
721     ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
722 
723     break;
724   }
725 
726   case 0:
727   case TRAP_TRACE:  // We receive this on single stepping.
728   case TRAP_HWBKPT: // We receive this on watchpoint hit
729   {
730     // If a watchpoint was hit, report it
731     uint32_t wp_index;
732     Status error = thread.GetRegisterContext()->GetWatchpointHitIndex(
733         wp_index, (uintptr_t)info.si_addr);
734     if (error.Fail())
735       LLDB_LOG(log,
736                "received error while checking for watchpoint hits, pid = "
737                "{0}, error = {1}",
738                thread.GetID(), error);
739     if (wp_index != LLDB_INVALID_INDEX32) {
740       MonitorWatchpoint(thread, wp_index);
741       break;
742     }
743 
744     // If a breakpoint was hit, report it
745     uint32_t bp_index;
746     error = thread.GetRegisterContext()->GetHardwareBreakHitIndex(
747         bp_index, (uintptr_t)info.si_addr);
748     if (error.Fail())
749       LLDB_LOG(log, "received error while checking for hardware "
750                     "breakpoint hits, pid = {0}, error = {1}",
751                thread.GetID(), error);
752     if (bp_index != LLDB_INVALID_INDEX32) {
753       MonitorBreakpoint(thread);
754       break;
755     }
756 
757     // Otherwise, report step over
758     MonitorTrace(thread);
759     break;
760   }
761 
762   case SI_KERNEL:
763 #if defined __mips__
764     // For mips there is no special signal for watchpoint
765     // So we check for watchpoint in kernel trap
766     {
767       // If a watchpoint was hit, report it
768       uint32_t wp_index;
769       Status error = thread.GetRegisterContext()->GetWatchpointHitIndex(
770           wp_index, LLDB_INVALID_ADDRESS);
771       if (error.Fail())
772         LLDB_LOG(log,
773                  "received error while checking for watchpoint hits, pid = "
774                  "{0}, error = {1}",
775                  thread.GetID(), error);
776       if (wp_index != LLDB_INVALID_INDEX32) {
777         MonitorWatchpoint(thread, wp_index);
778         break;
779       }
780     }
781 // NO BREAK
782 #endif
783   case TRAP_BRKPT:
784     MonitorBreakpoint(thread);
785     break;
786 
787   case SIGTRAP:
788   case (SIGTRAP | 0x80):
789     LLDB_LOG(
790         log,
791         "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming",
792         info.si_code, GetID(), thread.GetID());
793 
794     // Ignore these signals until we know more about them.
795     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
796     break;
797 
798   default:
799     LLDB_LOG(
800         log,
801         "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming",
802         info.si_code, GetID(), thread.GetID());
803     llvm_unreachable("Unexpected SIGTRAP code!");
804     break;
805   }
806 }
807 
808 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) {
809   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
810   LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID());
811 
812   // This thread is currently stopped.
813   thread.SetStoppedByTrace();
814 
815   StopRunningThreads(thread.GetID());
816 }
817 
818 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) {
819   Log *log(
820       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
821   LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID());
822 
823   // Mark the thread as stopped at breakpoint.
824   thread.SetStoppedByBreakpoint();
825   Status error = FixupBreakpointPCAsNeeded(thread);
826   if (error.Fail())
827     LLDB_LOG(log, "pid = {0} fixup: {1}", thread.GetID(), error);
828 
829   if (m_threads_stepping_with_breakpoint.find(thread.GetID()) !=
830       m_threads_stepping_with_breakpoint.end())
831     thread.SetStoppedByTrace();
832 
833   StopRunningThreads(thread.GetID());
834 }
835 
836 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread,
837                                            uint32_t wp_index) {
838   Log *log(
839       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
840   LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}",
841            thread.GetID(), wp_index);
842 
843   // Mark the thread as stopped at watchpoint.
844   // The address is at (lldb::addr_t)info->si_addr if we need it.
845   thread.SetStoppedByWatchpoint(wp_index);
846 
847   // We need to tell all other running threads before we notify the delegate
848   // about this stop.
849   StopRunningThreads(thread.GetID());
850 }
851 
852 void NativeProcessLinux::MonitorSignal(const siginfo_t &info,
853                                        NativeThreadLinux &thread, bool exited) {
854   const int signo = info.si_signo;
855   const bool is_from_llgs = info.si_pid == getpid();
856 
857   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
858 
859   // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
860   // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
861   // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
862   //
863   // IOW, user generated signals never generate what we consider to be a
864   // "crash".
865   //
866   // Similarly, ACK signals generated by this monitor.
867 
868   // Handle the signal.
869   LLDB_LOG(log,
870            "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, "
871            "waitpid pid = {4})",
872            Host::GetSignalAsCString(signo), signo, info.si_code,
873            thread.GetID());
874 
875   // Check for thread stop notification.
876   if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) {
877     // This is a tgkill()-based stop.
878     LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID());
879 
880     // Check that we're not already marked with a stop reason.
881     // Note this thread really shouldn't already be marked as stopped - if we
882     // were, that would imply that the kernel signaled us with the thread
883     // stopping which we handled and marked as stopped, and that, without an
884     // intervening resume, we received another stop.  It is more likely that we
885     // are missing the marking of a run state somewhere if we find that the
886     // thread was marked as stopped.
887     const StateType thread_state = thread.GetState();
888     if (!StateIsStoppedState(thread_state, false)) {
889       // An inferior thread has stopped because of a SIGSTOP we have sent it.
890       // Generally, these are not important stops and we don't want to report
891       // them as they are just used to stop other threads when one thread (the
892       // one with the *real* stop reason) hits a breakpoint (watchpoint,
893       // etc...). However, in the case of an asynchronous Interrupt(), this *is*
894       // the real stop reason, so we leave the signal intact if this is the
895       // thread that was chosen as the triggering thread.
896       if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
897         if (m_pending_notification_tid == thread.GetID())
898           thread.SetStoppedBySignal(SIGSTOP, &info);
899         else
900           thread.SetStoppedWithNoReason();
901 
902         SetCurrentThreadID(thread.GetID());
903         SignalIfAllThreadsStopped();
904       } else {
905         // We can end up here if stop was initiated by LLGS but by this time a
906         // thread stop has occurred - maybe initiated by another event.
907         Status error = ResumeThread(thread, thread.GetState(), 0);
908         if (error.Fail())
909           LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(),
910                    error);
911       }
912     } else {
913       LLDB_LOG(log,
914                "pid {0} tid {1}, thread was already marked as a stopped "
915                "state (state={2}), leaving stop signal as is",
916                GetID(), thread.GetID(), thread_state);
917       SignalIfAllThreadsStopped();
918     }
919 
920     // Done handling.
921     return;
922   }
923 
924   // Check if debugger should stop at this signal or just ignore it
925   // and resume the inferior.
926   if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) {
927      ResumeThread(thread, thread.GetState(), signo);
928      return;
929   }
930 
931   // This thread is stopped.
932   LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo));
933   thread.SetStoppedBySignal(signo, &info);
934 
935   // Send a stop to the debugger after we get all other threads to stop.
936   StopRunningThreads(thread.GetID());
937 }
938 
939 namespace {
940 
941 struct EmulatorBaton {
942   NativeProcessLinux *m_process;
943   NativeRegisterContext *m_reg_context;
944 
945   // eRegisterKindDWARF -> RegsiterValue
946   std::unordered_map<uint32_t, RegisterValue> m_register_values;
947 
948   EmulatorBaton(NativeProcessLinux *process, NativeRegisterContext *reg_context)
949       : m_process(process), m_reg_context(reg_context) {}
950 };
951 
952 } // anonymous namespace
953 
954 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton,
955                                  const EmulateInstruction::Context &context,
956                                  lldb::addr_t addr, void *dst, size_t length) {
957   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
958 
959   size_t bytes_read;
960   emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read);
961   return bytes_read;
962 }
963 
964 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton,
965                                  const RegisterInfo *reg_info,
966                                  RegisterValue &reg_value) {
967   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
968 
969   auto it = emulator_baton->m_register_values.find(
970       reg_info->kinds[eRegisterKindDWARF]);
971   if (it != emulator_baton->m_register_values.end()) {
972     reg_value = it->second;
973     return true;
974   }
975 
976   // The emulator only fill in the dwarf regsiter numbers (and in some case
977   // the generic register numbers). Get the full register info from the
978   // register context based on the dwarf register numbers.
979   const RegisterInfo *full_reg_info =
980       emulator_baton->m_reg_context->GetRegisterInfo(
981           eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
982 
983   Status error =
984       emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value);
985   if (error.Success())
986     return true;
987 
988   return false;
989 }
990 
991 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton,
992                                   const EmulateInstruction::Context &context,
993                                   const RegisterInfo *reg_info,
994                                   const RegisterValue &reg_value) {
995   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
996   emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] =
997       reg_value;
998   return true;
999 }
1000 
1001 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton,
1002                                   const EmulateInstruction::Context &context,
1003                                   lldb::addr_t addr, const void *dst,
1004                                   size_t length) {
1005   return length;
1006 }
1007 
1008 static lldb::addr_t ReadFlags(NativeRegisterContext *regsiter_context) {
1009   const RegisterInfo *flags_info = regsiter_context->GetRegisterInfo(
1010       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1011   return regsiter_context->ReadRegisterAsUnsigned(flags_info,
1012                                                   LLDB_INVALID_ADDRESS);
1013 }
1014 
1015 Status
1016 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) {
1017   Status error;
1018   NativeRegisterContextSP register_context_sp = thread.GetRegisterContext();
1019 
1020   std::unique_ptr<EmulateInstruction> emulator_ap(
1021       EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying,
1022                                      nullptr));
1023 
1024   if (emulator_ap == nullptr)
1025     return Status("Instruction emulator not found!");
1026 
1027   EmulatorBaton baton(this, register_context_sp.get());
1028   emulator_ap->SetBaton(&baton);
1029   emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
1030   emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
1031   emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
1032   emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
1033 
1034   if (!emulator_ap->ReadInstruction())
1035     return Status("Read instruction failed!");
1036 
1037   bool emulation_result =
1038       emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
1039 
1040   const RegisterInfo *reg_info_pc = register_context_sp->GetRegisterInfo(
1041       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
1042   const RegisterInfo *reg_info_flags = register_context_sp->GetRegisterInfo(
1043       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1044 
1045   auto pc_it =
1046       baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
1047   auto flags_it =
1048       baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
1049 
1050   lldb::addr_t next_pc;
1051   lldb::addr_t next_flags;
1052   if (emulation_result) {
1053     assert(pc_it != baton.m_register_values.end() &&
1054            "Emulation was successfull but PC wasn't updated");
1055     next_pc = pc_it->second.GetAsUInt64();
1056 
1057     if (flags_it != baton.m_register_values.end())
1058       next_flags = flags_it->second.GetAsUInt64();
1059     else
1060       next_flags = ReadFlags(register_context_sp.get());
1061   } else if (pc_it == baton.m_register_values.end()) {
1062     // Emulate instruction failed and it haven't changed PC. Advance PC
1063     // with the size of the current opcode because the emulation of all
1064     // PC modifying instruction should be successful. The failure most
1065     // likely caused by a not supported instruction which don't modify PC.
1066     next_pc =
1067         register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize();
1068     next_flags = ReadFlags(register_context_sp.get());
1069   } else {
1070     // The instruction emulation failed after it modified the PC. It is an
1071     // unknown error where we can't continue because the next instruction is
1072     // modifying the PC but we don't  know how.
1073     return Status("Instruction emulation failed unexpectedly.");
1074   }
1075 
1076   if (m_arch.GetMachine() == llvm::Triple::arm) {
1077     if (next_flags & 0x20) {
1078       // Thumb mode
1079       error = SetSoftwareBreakpoint(next_pc, 2);
1080     } else {
1081       // Arm mode
1082       error = SetSoftwareBreakpoint(next_pc, 4);
1083     }
1084   } else if (m_arch.GetMachine() == llvm::Triple::mips64 ||
1085              m_arch.GetMachine() == llvm::Triple::mips64el ||
1086              m_arch.GetMachine() == llvm::Triple::mips ||
1087              m_arch.GetMachine() == llvm::Triple::mipsel)
1088     error = SetSoftwareBreakpoint(next_pc, 4);
1089   else {
1090     // No size hint is given for the next breakpoint
1091     error = SetSoftwareBreakpoint(next_pc, 0);
1092   }
1093 
1094   // If setting the breakpoint fails because next_pc is out of
1095   // the address space, ignore it and let the debugee segfault.
1096   if (error.GetError() == EIO || error.GetError() == EFAULT) {
1097     return Status();
1098   } else if (error.Fail())
1099     return error;
1100 
1101   m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc});
1102 
1103   return Status();
1104 }
1105 
1106 bool NativeProcessLinux::SupportHardwareSingleStepping() const {
1107   if (m_arch.GetMachine() == llvm::Triple::arm ||
1108       m_arch.GetMachine() == llvm::Triple::mips64 ||
1109       m_arch.GetMachine() == llvm::Triple::mips64el ||
1110       m_arch.GetMachine() == llvm::Triple::mips ||
1111       m_arch.GetMachine() == llvm::Triple::mipsel)
1112     return false;
1113   return true;
1114 }
1115 
1116 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) {
1117   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1118   LLDB_LOG(log, "pid {0}", GetID());
1119 
1120   bool software_single_step = !SupportHardwareSingleStepping();
1121 
1122   if (software_single_step) {
1123     for (auto thread_sp : m_threads) {
1124       assert(thread_sp && "thread list should not contain NULL threads");
1125 
1126       const ResumeAction *const action =
1127           resume_actions.GetActionForThread(thread_sp->GetID(), true);
1128       if (action == nullptr)
1129         continue;
1130 
1131       if (action->state == eStateStepping) {
1132         Status error = SetupSoftwareSingleStepping(
1133             static_cast<NativeThreadLinux &>(*thread_sp));
1134         if (error.Fail())
1135           return error;
1136       }
1137     }
1138   }
1139 
1140   for (auto thread_sp : m_threads) {
1141     assert(thread_sp && "thread list should not contain NULL threads");
1142 
1143     const ResumeAction *const action =
1144         resume_actions.GetActionForThread(thread_sp->GetID(), true);
1145 
1146     if (action == nullptr) {
1147       LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(),
1148                thread_sp->GetID());
1149       continue;
1150     }
1151 
1152     LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}",
1153              action->state, GetID(), thread_sp->GetID());
1154 
1155     switch (action->state) {
1156     case eStateRunning:
1157     case eStateStepping: {
1158       // Run the thread, possibly feeding it the signal.
1159       const int signo = action->signal;
1160       ResumeThread(static_cast<NativeThreadLinux &>(*thread_sp), action->state,
1161                    signo);
1162       break;
1163     }
1164 
1165     case eStateSuspended:
1166     case eStateStopped:
1167       llvm_unreachable("Unexpected state");
1168 
1169     default:
1170       return Status("NativeProcessLinux::%s (): unexpected state %s specified "
1171                     "for pid %" PRIu64 ", tid %" PRIu64,
1172                     __FUNCTION__, StateAsCString(action->state), GetID(),
1173                     thread_sp->GetID());
1174     }
1175   }
1176 
1177   return Status();
1178 }
1179 
1180 Status NativeProcessLinux::Halt() {
1181   Status error;
1182 
1183   if (kill(GetID(), SIGSTOP) != 0)
1184     error.SetErrorToErrno();
1185 
1186   return error;
1187 }
1188 
1189 Status NativeProcessLinux::Detach() {
1190   Status error;
1191 
1192   // Stop monitoring the inferior.
1193   m_sigchld_handle.reset();
1194 
1195   // Tell ptrace to detach from the process.
1196   if (GetID() == LLDB_INVALID_PROCESS_ID)
1197     return error;
1198 
1199   for (auto thread_sp : m_threads) {
1200     Status e = Detach(thread_sp->GetID());
1201     if (e.Fail())
1202       error =
1203           e; // Save the error, but still attempt to detach from other threads.
1204   }
1205 
1206   m_processor_trace_monitor.clear();
1207   m_pt_proces_trace_id = LLDB_INVALID_UID;
1208 
1209   return error;
1210 }
1211 
1212 Status NativeProcessLinux::Signal(int signo) {
1213   Status error;
1214 
1215   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1216   LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo,
1217            Host::GetSignalAsCString(signo), GetID());
1218 
1219   if (kill(GetID(), signo))
1220     error.SetErrorToErrno();
1221 
1222   return error;
1223 }
1224 
1225 Status NativeProcessLinux::Interrupt() {
1226   // Pick a running thread (or if none, a not-dead stopped thread) as
1227   // the chosen thread that will be the stop-reason thread.
1228   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1229 
1230   NativeThreadProtocolSP running_thread_sp;
1231   NativeThreadProtocolSP stopped_thread_sp;
1232 
1233   LLDB_LOG(log, "selecting running thread for interrupt target");
1234   for (auto thread_sp : m_threads) {
1235     // The thread shouldn't be null but lets just cover that here.
1236     if (!thread_sp)
1237       continue;
1238 
1239     // If we have a running or stepping thread, we'll call that the
1240     // target of the interrupt.
1241     const auto thread_state = thread_sp->GetState();
1242     if (thread_state == eStateRunning || thread_state == eStateStepping) {
1243       running_thread_sp = thread_sp;
1244       break;
1245     } else if (!stopped_thread_sp && StateIsStoppedState(thread_state, true)) {
1246       // Remember the first non-dead stopped thread.  We'll use that as a backup
1247       // if there are no running threads.
1248       stopped_thread_sp = thread_sp;
1249     }
1250   }
1251 
1252   if (!running_thread_sp && !stopped_thread_sp) {
1253     Status error("found no running/stepping or live stopped threads as target "
1254                  "for interrupt");
1255     LLDB_LOG(log, "skipping due to error: {0}", error);
1256 
1257     return error;
1258   }
1259 
1260   NativeThreadProtocolSP deferred_signal_thread_sp =
1261       running_thread_sp ? running_thread_sp : stopped_thread_sp;
1262 
1263   LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(),
1264            running_thread_sp ? "running" : "stopped",
1265            deferred_signal_thread_sp->GetID());
1266 
1267   StopRunningThreads(deferred_signal_thread_sp->GetID());
1268 
1269   return Status();
1270 }
1271 
1272 Status NativeProcessLinux::Kill() {
1273   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1274   LLDB_LOG(log, "pid {0}", GetID());
1275 
1276   Status error;
1277 
1278   switch (m_state) {
1279   case StateType::eStateInvalid:
1280   case StateType::eStateExited:
1281   case StateType::eStateCrashed:
1282   case StateType::eStateDetached:
1283   case StateType::eStateUnloaded:
1284     // Nothing to do - the process is already dead.
1285     LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(),
1286              m_state);
1287     return error;
1288 
1289   case StateType::eStateConnected:
1290   case StateType::eStateAttaching:
1291   case StateType::eStateLaunching:
1292   case StateType::eStateStopped:
1293   case StateType::eStateRunning:
1294   case StateType::eStateStepping:
1295   case StateType::eStateSuspended:
1296     // We can try to kill a process in these states.
1297     break;
1298   }
1299 
1300   if (kill(GetID(), SIGKILL) != 0) {
1301     error.SetErrorToErrno();
1302     return error;
1303   }
1304 
1305   return error;
1306 }
1307 
1308 static Status
1309 ParseMemoryRegionInfoFromProcMapsLine(llvm::StringRef &maps_line,
1310                                       MemoryRegionInfo &memory_region_info) {
1311   memory_region_info.Clear();
1312 
1313   StringExtractor line_extractor(maps_line);
1314 
1315   // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode
1316   // pathname
1317   // perms: rwxp   (letter is present if set, '-' if not, final character is
1318   // p=private, s=shared).
1319 
1320   // Parse out the starting address
1321   lldb::addr_t start_address = line_extractor.GetHexMaxU64(false, 0);
1322 
1323   // Parse out hyphen separating start and end address from range.
1324   if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != '-'))
1325     return Status(
1326         "malformed /proc/{pid}/maps entry, missing dash between address range");
1327 
1328   // Parse out the ending address
1329   lldb::addr_t end_address = line_extractor.GetHexMaxU64(false, start_address);
1330 
1331   // Parse out the space after the address.
1332   if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != ' '))
1333     return Status(
1334         "malformed /proc/{pid}/maps entry, missing space after range");
1335 
1336   // Save the range.
1337   memory_region_info.GetRange().SetRangeBase(start_address);
1338   memory_region_info.GetRange().SetRangeEnd(end_address);
1339 
1340   // Any memory region in /proc/{pid}/maps is by definition mapped into the
1341   // process.
1342   memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes);
1343 
1344   // Parse out each permission entry.
1345   if (line_extractor.GetBytesLeft() < 4)
1346     return Status("malformed /proc/{pid}/maps entry, missing some portion of "
1347                   "permissions");
1348 
1349   // Handle read permission.
1350   const char read_perm_char = line_extractor.GetChar();
1351   if (read_perm_char == 'r')
1352     memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eYes);
1353   else if (read_perm_char == '-')
1354     memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1355   else
1356     return Status("unexpected /proc/{pid}/maps read permission char");
1357 
1358   // Handle write permission.
1359   const char write_perm_char = line_extractor.GetChar();
1360   if (write_perm_char == 'w')
1361     memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eYes);
1362   else if (write_perm_char == '-')
1363     memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1364   else
1365     return Status("unexpected /proc/{pid}/maps write permission char");
1366 
1367   // Handle execute permission.
1368   const char exec_perm_char = line_extractor.GetChar();
1369   if (exec_perm_char == 'x')
1370     memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eYes);
1371   else if (exec_perm_char == '-')
1372     memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1373   else
1374     return Status("unexpected /proc/{pid}/maps exec permission char");
1375 
1376   line_extractor.GetChar();              // Read the private bit
1377   line_extractor.SkipSpaces();           // Skip the separator
1378   line_extractor.GetHexMaxU64(false, 0); // Read the offset
1379   line_extractor.GetHexMaxU64(false, 0); // Read the major device number
1380   line_extractor.GetChar();              // Read the device id separator
1381   line_extractor.GetHexMaxU64(false, 0); // Read the major device number
1382   line_extractor.SkipSpaces();           // Skip the separator
1383   line_extractor.GetU64(0, 10);          // Read the inode number
1384 
1385   line_extractor.SkipSpaces();
1386   const char *name = line_extractor.Peek();
1387   if (name)
1388     memory_region_info.SetName(name);
1389 
1390   return Status();
1391 }
1392 
1393 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr,
1394                                                MemoryRegionInfo &range_info) {
1395   // FIXME review that the final memory region returned extends to the end of
1396   // the virtual address space,
1397   // with no perms if it is not mapped.
1398 
1399   // Use an approach that reads memory regions from /proc/{pid}/maps.
1400   // Assume proc maps entries are in ascending order.
1401   // FIXME assert if we find differently.
1402 
1403   if (m_supports_mem_region == LazyBool::eLazyBoolNo) {
1404     // We're done.
1405     return Status("unsupported");
1406   }
1407 
1408   Status error = PopulateMemoryRegionCache();
1409   if (error.Fail()) {
1410     return error;
1411   }
1412 
1413   lldb::addr_t prev_base_address = 0;
1414 
1415   // FIXME start by finding the last region that is <= target address using
1416   // binary search.  Data is sorted.
1417   // There can be a ton of regions on pthreads apps with lots of threads.
1418   for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end();
1419        ++it) {
1420     MemoryRegionInfo &proc_entry_info = it->first;
1421 
1422     // Sanity check assumption that /proc/{pid}/maps entries are ascending.
1423     assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) &&
1424            "descending /proc/pid/maps entries detected, unexpected");
1425     prev_base_address = proc_entry_info.GetRange().GetRangeBase();
1426     UNUSED_IF_ASSERT_DISABLED(prev_base_address);
1427 
1428     // If the target address comes before this entry, indicate distance to next
1429     // region.
1430     if (load_addr < proc_entry_info.GetRange().GetRangeBase()) {
1431       range_info.GetRange().SetRangeBase(load_addr);
1432       range_info.GetRange().SetByteSize(
1433           proc_entry_info.GetRange().GetRangeBase() - load_addr);
1434       range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1435       range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1436       range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1437       range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1438 
1439       return error;
1440     } else if (proc_entry_info.GetRange().Contains(load_addr)) {
1441       // The target address is within the memory region we're processing here.
1442       range_info = proc_entry_info;
1443       return error;
1444     }
1445 
1446     // The target memory address comes somewhere after the region we just
1447     // parsed.
1448   }
1449 
1450   // If we made it here, we didn't find an entry that contained the given
1451   // address. Return the
1452   // load_addr as start and the amount of bytes betwwen load address and the end
1453   // of the memory as
1454   // size.
1455   range_info.GetRange().SetRangeBase(load_addr);
1456   range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS);
1457   range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1458   range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1459   range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1460   range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1461   return error;
1462 }
1463 
1464 Status NativeProcessLinux::PopulateMemoryRegionCache() {
1465   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1466 
1467   // If our cache is empty, pull the latest.  There should always be at least
1468   // one memory region if memory region handling is supported.
1469   if (!m_mem_region_cache.empty()) {
1470     LLDB_LOG(log, "reusing {0} cached memory region entries",
1471              m_mem_region_cache.size());
1472     return Status();
1473   }
1474 
1475   auto BufferOrError = getProcFile(GetID(), "maps");
1476   if (!BufferOrError) {
1477     m_supports_mem_region = LazyBool::eLazyBoolNo;
1478     return BufferOrError.getError();
1479   }
1480   StringRef Rest = BufferOrError.get()->getBuffer();
1481   while (! Rest.empty()) {
1482     StringRef Line;
1483     std::tie(Line, Rest) = Rest.split('\n');
1484     MemoryRegionInfo info;
1485     const Status parse_error =
1486         ParseMemoryRegionInfoFromProcMapsLine(Line, info);
1487     if (parse_error.Fail()) {
1488       LLDB_LOG(log, "failed to parse proc maps line '{0}': {1}", Line,
1489                parse_error);
1490       m_supports_mem_region = LazyBool::eLazyBoolNo;
1491       return parse_error;
1492     }
1493     m_mem_region_cache.emplace_back(
1494         info, FileSpec(info.GetName().GetCString(), true));
1495   }
1496 
1497   if (m_mem_region_cache.empty()) {
1498     // No entries after attempting to read them.  This shouldn't happen if
1499     // /proc/{pid}/maps is supported. Assume we don't support map entries
1500     // via procfs.
1501     m_supports_mem_region = LazyBool::eLazyBoolNo;
1502     LLDB_LOG(log,
1503              "failed to find any procfs maps entries, assuming no support "
1504              "for memory region metadata retrieval");
1505     return Status("not supported");
1506   }
1507 
1508   LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps",
1509            m_mem_region_cache.size(), GetID());
1510 
1511   // We support memory retrieval, remember that.
1512   m_supports_mem_region = LazyBool::eLazyBoolYes;
1513   return Status();
1514 }
1515 
1516 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) {
1517   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1518   LLDB_LOG(log, "newBumpId={0}", newBumpId);
1519   LLDB_LOG(log, "clearing {0} entries from memory region cache",
1520            m_mem_region_cache.size());
1521   m_mem_region_cache.clear();
1522 }
1523 
1524 Status NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions,
1525                                           lldb::addr_t &addr) {
1526 // FIXME implementing this requires the equivalent of
1527 // InferiorCallPOSIX::InferiorCallMmap, which depends on
1528 // functional ThreadPlans working with Native*Protocol.
1529 #if 1
1530   return Status("not implemented yet");
1531 #else
1532   addr = LLDB_INVALID_ADDRESS;
1533 
1534   unsigned prot = 0;
1535   if (permissions & lldb::ePermissionsReadable)
1536     prot |= eMmapProtRead;
1537   if (permissions & lldb::ePermissionsWritable)
1538     prot |= eMmapProtWrite;
1539   if (permissions & lldb::ePermissionsExecutable)
1540     prot |= eMmapProtExec;
1541 
1542   // TODO implement this directly in NativeProcessLinux
1543   // (and lift to NativeProcessPOSIX if/when that class is
1544   // refactored out).
1545   if (InferiorCallMmap(this, addr, 0, size, prot,
1546                        eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
1547     m_addr_to_mmap_size[addr] = size;
1548     return Status();
1549   } else {
1550     addr = LLDB_INVALID_ADDRESS;
1551     return Status("unable to allocate %" PRIu64
1552                   " bytes of memory with permissions %s",
1553                   size, GetPermissionsAsCString(permissions));
1554   }
1555 #endif
1556 }
1557 
1558 Status NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) {
1559   // FIXME see comments in AllocateMemory - required lower-level
1560   // bits not in place yet (ThreadPlans)
1561   return Status("not implemented");
1562 }
1563 
1564 lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress() {
1565   // punt on this for now
1566   return LLDB_INVALID_ADDRESS;
1567 }
1568 
1569 size_t NativeProcessLinux::UpdateThreads() {
1570   // The NativeProcessLinux monitoring threads are always up to date
1571   // with respect to thread state and they keep the thread list
1572   // populated properly. All this method needs to do is return the
1573   // thread count.
1574   return m_threads.size();
1575 }
1576 
1577 bool NativeProcessLinux::GetArchitecture(ArchSpec &arch) const {
1578   arch = m_arch;
1579   return true;
1580 }
1581 
1582 Status NativeProcessLinux::GetSoftwareBreakpointPCOffset(
1583     uint32_t &actual_opcode_size) {
1584   // FIXME put this behind a breakpoint protocol class that can be
1585   // set per architecture.  Need ARM, MIPS support here.
1586   static const uint8_t g_i386_opcode[] = {0xCC};
1587   static const uint8_t g_s390x_opcode[] = {0x00, 0x01};
1588 
1589   switch (m_arch.GetMachine()) {
1590   case llvm::Triple::x86:
1591   case llvm::Triple::x86_64:
1592     actual_opcode_size = static_cast<uint32_t>(sizeof(g_i386_opcode));
1593     return Status();
1594 
1595   case llvm::Triple::systemz:
1596     actual_opcode_size = static_cast<uint32_t>(sizeof(g_s390x_opcode));
1597     return Status();
1598 
1599   case llvm::Triple::arm:
1600   case llvm::Triple::aarch64:
1601   case llvm::Triple::mips64:
1602   case llvm::Triple::mips64el:
1603   case llvm::Triple::mips:
1604   case llvm::Triple::mipsel:
1605     // On these architectures the PC don't get updated for breakpoint hits
1606     actual_opcode_size = 0;
1607     return Status();
1608 
1609   default:
1610     assert(false && "CPU type not supported!");
1611     return Status("CPU type not supported");
1612   }
1613 }
1614 
1615 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size,
1616                                          bool hardware) {
1617   if (hardware)
1618     return SetHardwareBreakpoint(addr, size);
1619   else
1620     return SetSoftwareBreakpoint(addr, size);
1621 }
1622 
1623 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) {
1624   if (hardware)
1625     return RemoveHardwareBreakpoint(addr);
1626   else
1627     return NativeProcessProtocol::RemoveBreakpoint(addr);
1628 }
1629 
1630 Status NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(
1631     size_t trap_opcode_size_hint, size_t &actual_opcode_size,
1632     const uint8_t *&trap_opcode_bytes) {
1633   // FIXME put this behind a breakpoint protocol class that can be set per
1634   // architecture.  Need MIPS support here.
1635   static const uint8_t g_aarch64_opcode[] = {0x00, 0x00, 0x20, 0xd4};
1636   // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
1637   // linux kernel does otherwise.
1638   static const uint8_t g_arm_breakpoint_opcode[] = {0xf0, 0x01, 0xf0, 0xe7};
1639   static const uint8_t g_i386_opcode[] = {0xCC};
1640   static const uint8_t g_mips64_opcode[] = {0x00, 0x00, 0x00, 0x0d};
1641   static const uint8_t g_mips64el_opcode[] = {0x0d, 0x00, 0x00, 0x00};
1642   static const uint8_t g_s390x_opcode[] = {0x00, 0x01};
1643   static const uint8_t g_thumb_breakpoint_opcode[] = {0x01, 0xde};
1644 
1645   switch (m_arch.GetMachine()) {
1646   case llvm::Triple::aarch64:
1647     trap_opcode_bytes = g_aarch64_opcode;
1648     actual_opcode_size = sizeof(g_aarch64_opcode);
1649     return Status();
1650 
1651   case llvm::Triple::arm:
1652     switch (trap_opcode_size_hint) {
1653     case 2:
1654       trap_opcode_bytes = g_thumb_breakpoint_opcode;
1655       actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
1656       return Status();
1657     case 4:
1658       trap_opcode_bytes = g_arm_breakpoint_opcode;
1659       actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
1660       return Status();
1661     default:
1662       assert(false && "Unrecognised trap opcode size hint!");
1663       return Status("Unrecognised trap opcode size hint!");
1664     }
1665 
1666   case llvm::Triple::x86:
1667   case llvm::Triple::x86_64:
1668     trap_opcode_bytes = g_i386_opcode;
1669     actual_opcode_size = sizeof(g_i386_opcode);
1670     return Status();
1671 
1672   case llvm::Triple::mips:
1673   case llvm::Triple::mips64:
1674     trap_opcode_bytes = g_mips64_opcode;
1675     actual_opcode_size = sizeof(g_mips64_opcode);
1676     return Status();
1677 
1678   case llvm::Triple::mipsel:
1679   case llvm::Triple::mips64el:
1680     trap_opcode_bytes = g_mips64el_opcode;
1681     actual_opcode_size = sizeof(g_mips64el_opcode);
1682     return Status();
1683 
1684   case llvm::Triple::systemz:
1685     trap_opcode_bytes = g_s390x_opcode;
1686     actual_opcode_size = sizeof(g_s390x_opcode);
1687     return Status();
1688 
1689   default:
1690     assert(false && "CPU type not supported!");
1691     return Status("CPU type not supported");
1692   }
1693 }
1694 
1695 #if 0
1696 ProcessMessage::CrashReason
1697 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
1698 {
1699     ProcessMessage::CrashReason reason;
1700     assert(info->si_signo == SIGSEGV);
1701 
1702     reason = ProcessMessage::eInvalidCrashReason;
1703 
1704     switch (info->si_code)
1705     {
1706     default:
1707         assert(false && "unexpected si_code for SIGSEGV");
1708         break;
1709     case SI_KERNEL:
1710         // Linux will occasionally send spurious SI_KERNEL codes.
1711         // (this is poorly documented in sigaction)
1712         // One way to get this is via unaligned SIMD loads.
1713         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
1714         break;
1715     case SEGV_MAPERR:
1716         reason = ProcessMessage::eInvalidAddress;
1717         break;
1718     case SEGV_ACCERR:
1719         reason = ProcessMessage::ePrivilegedAddress;
1720         break;
1721     }
1722 
1723     return reason;
1724 }
1725 #endif
1726 
1727 #if 0
1728 ProcessMessage::CrashReason
1729 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
1730 {
1731     ProcessMessage::CrashReason reason;
1732     assert(info->si_signo == SIGILL);
1733 
1734     reason = ProcessMessage::eInvalidCrashReason;
1735 
1736     switch (info->si_code)
1737     {
1738     default:
1739         assert(false && "unexpected si_code for SIGILL");
1740         break;
1741     case ILL_ILLOPC:
1742         reason = ProcessMessage::eIllegalOpcode;
1743         break;
1744     case ILL_ILLOPN:
1745         reason = ProcessMessage::eIllegalOperand;
1746         break;
1747     case ILL_ILLADR:
1748         reason = ProcessMessage::eIllegalAddressingMode;
1749         break;
1750     case ILL_ILLTRP:
1751         reason = ProcessMessage::eIllegalTrap;
1752         break;
1753     case ILL_PRVOPC:
1754         reason = ProcessMessage::ePrivilegedOpcode;
1755         break;
1756     case ILL_PRVREG:
1757         reason = ProcessMessage::ePrivilegedRegister;
1758         break;
1759     case ILL_COPROC:
1760         reason = ProcessMessage::eCoprocessorError;
1761         break;
1762     case ILL_BADSTK:
1763         reason = ProcessMessage::eInternalStackError;
1764         break;
1765     }
1766 
1767     return reason;
1768 }
1769 #endif
1770 
1771 #if 0
1772 ProcessMessage::CrashReason
1773 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
1774 {
1775     ProcessMessage::CrashReason reason;
1776     assert(info->si_signo == SIGFPE);
1777 
1778     reason = ProcessMessage::eInvalidCrashReason;
1779 
1780     switch (info->si_code)
1781     {
1782     default:
1783         assert(false && "unexpected si_code for SIGFPE");
1784         break;
1785     case FPE_INTDIV:
1786         reason = ProcessMessage::eIntegerDivideByZero;
1787         break;
1788     case FPE_INTOVF:
1789         reason = ProcessMessage::eIntegerOverflow;
1790         break;
1791     case FPE_FLTDIV:
1792         reason = ProcessMessage::eFloatDivideByZero;
1793         break;
1794     case FPE_FLTOVF:
1795         reason = ProcessMessage::eFloatOverflow;
1796         break;
1797     case FPE_FLTUND:
1798         reason = ProcessMessage::eFloatUnderflow;
1799         break;
1800     case FPE_FLTRES:
1801         reason = ProcessMessage::eFloatInexactResult;
1802         break;
1803     case FPE_FLTINV:
1804         reason = ProcessMessage::eFloatInvalidOperation;
1805         break;
1806     case FPE_FLTSUB:
1807         reason = ProcessMessage::eFloatSubscriptRange;
1808         break;
1809     }
1810 
1811     return reason;
1812 }
1813 #endif
1814 
1815 #if 0
1816 ProcessMessage::CrashReason
1817 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
1818 {
1819     ProcessMessage::CrashReason reason;
1820     assert(info->si_signo == SIGBUS);
1821 
1822     reason = ProcessMessage::eInvalidCrashReason;
1823 
1824     switch (info->si_code)
1825     {
1826     default:
1827         assert(false && "unexpected si_code for SIGBUS");
1828         break;
1829     case BUS_ADRALN:
1830         reason = ProcessMessage::eIllegalAlignment;
1831         break;
1832     case BUS_ADRERR:
1833         reason = ProcessMessage::eIllegalAddress;
1834         break;
1835     case BUS_OBJERR:
1836         reason = ProcessMessage::eHardwareError;
1837         break;
1838     }
1839 
1840     return reason;
1841 }
1842 #endif
1843 
1844 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size,
1845                                       size_t &bytes_read) {
1846   if (ProcessVmReadvSupported()) {
1847     // The process_vm_readv path is about 50 times faster than ptrace api. We
1848     // want to use
1849     // this syscall if it is supported.
1850 
1851     const ::pid_t pid = GetID();
1852 
1853     struct iovec local_iov, remote_iov;
1854     local_iov.iov_base = buf;
1855     local_iov.iov_len = size;
1856     remote_iov.iov_base = reinterpret_cast<void *>(addr);
1857     remote_iov.iov_len = size;
1858 
1859     bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
1860     const bool success = bytes_read == size;
1861 
1862     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1863     LLDB_LOG(log,
1864              "using process_vm_readv to read {0} bytes from inferior "
1865              "address {1:x}: {2}",
1866              size, addr, success ? "Success" : llvm::sys::StrError(errno));
1867 
1868     if (success)
1869       return Status();
1870     // else the call failed for some reason, let's retry the read using ptrace
1871     // api.
1872   }
1873 
1874   unsigned char *dst = static_cast<unsigned char *>(buf);
1875   size_t remainder;
1876   long data;
1877 
1878   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1879   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1880 
1881   for (bytes_read = 0; bytes_read < size; bytes_read += remainder) {
1882     Status error = NativeProcessLinux::PtraceWrapper(
1883         PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data);
1884     if (error.Fail())
1885       return error;
1886 
1887     remainder = size - bytes_read;
1888     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1889 
1890     // Copy the data into our buffer
1891     memcpy(dst, &data, remainder);
1892 
1893     LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1894     addr += k_ptrace_word_size;
1895     dst += k_ptrace_word_size;
1896   }
1897   return Status();
1898 }
1899 
1900 Status NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf,
1901                                                  size_t size,
1902                                                  size_t &bytes_read) {
1903   Status error = ReadMemory(addr, buf, size, bytes_read);
1904   if (error.Fail())
1905     return error;
1906   return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size);
1907 }
1908 
1909 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf,
1910                                        size_t size, size_t &bytes_written) {
1911   const unsigned char *src = static_cast<const unsigned char *>(buf);
1912   size_t remainder;
1913   Status error;
1914 
1915   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1916   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1917 
1918   for (bytes_written = 0; bytes_written < size; bytes_written += remainder) {
1919     remainder = size - bytes_written;
1920     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1921 
1922     if (remainder == k_ptrace_word_size) {
1923       unsigned long data = 0;
1924       memcpy(&data, src, k_ptrace_word_size);
1925 
1926       LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1927       error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(),
1928                                                 (void *)addr, (void *)data);
1929       if (error.Fail())
1930         return error;
1931     } else {
1932       unsigned char buff[8];
1933       size_t bytes_read;
1934       error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
1935       if (error.Fail())
1936         return error;
1937 
1938       memcpy(buff, src, remainder);
1939 
1940       size_t bytes_written_rec;
1941       error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
1942       if (error.Fail())
1943         return error;
1944 
1945       LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src,
1946                *(unsigned long *)buff);
1947     }
1948 
1949     addr += k_ptrace_word_size;
1950     src += k_ptrace_word_size;
1951   }
1952   return error;
1953 }
1954 
1955 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) {
1956   return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
1957 }
1958 
1959 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid,
1960                                            unsigned long *message) {
1961   return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
1962 }
1963 
1964 Status NativeProcessLinux::Detach(lldb::tid_t tid) {
1965   if (tid == LLDB_INVALID_THREAD_ID)
1966     return Status();
1967 
1968   return PtraceWrapper(PTRACE_DETACH, tid);
1969 }
1970 
1971 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) {
1972   for (auto thread_sp : m_threads) {
1973     assert(thread_sp && "thread list should not contain NULL threads");
1974     if (thread_sp->GetID() == thread_id) {
1975       // We have this thread.
1976       return true;
1977     }
1978   }
1979 
1980   // We don't have this thread.
1981   return false;
1982 }
1983 
1984 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) {
1985   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1986   LLDB_LOG(log, "tid: {0})", thread_id);
1987 
1988   bool found = false;
1989   for (auto it = m_threads.begin(); it != m_threads.end(); ++it) {
1990     if (*it && ((*it)->GetID() == thread_id)) {
1991       m_threads.erase(it);
1992       found = true;
1993       break;
1994     }
1995   }
1996 
1997   if (found)
1998     StopTracingForThread(thread_id);
1999   SignalIfAllThreadsStopped();
2000   return found;
2001 }
2002 
2003 NativeThreadLinuxSP NativeProcessLinux::AddThread(lldb::tid_t thread_id) {
2004   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD));
2005   LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id);
2006 
2007   assert(!HasThreadNoLock(thread_id) &&
2008          "attempted to add a thread by id that already exists");
2009 
2010   // If this is the first thread, save it as the current thread
2011   if (m_threads.empty())
2012     SetCurrentThreadID(thread_id);
2013 
2014   auto thread_sp = std::make_shared<NativeThreadLinux>(this, thread_id);
2015   m_threads.push_back(thread_sp);
2016 
2017   if (m_pt_proces_trace_id != LLDB_INVALID_UID) {
2018     auto traceMonitor = ProcessorTraceMonitor::Create(
2019         GetID(), thread_id, m_pt_process_trace_config, true);
2020     if (traceMonitor) {
2021       m_pt_traced_thread_group.insert(thread_id);
2022       m_processor_trace_monitor.insert(
2023           std::make_pair(thread_id, std::move(*traceMonitor)));
2024     } else {
2025       LLDB_LOG(log, "failed to start trace on thread {0}", thread_id);
2026       Status error(traceMonitor.takeError());
2027       LLDB_LOG(log, "error {0}", error);
2028     }
2029   }
2030 
2031   return thread_sp;
2032 }
2033 
2034 Status
2035 NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread) {
2036   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
2037 
2038   Status error;
2039 
2040   // Find out the size of a breakpoint (might depend on where we are in the
2041   // code).
2042   NativeRegisterContextSP context_sp = thread.GetRegisterContext();
2043   if (!context_sp) {
2044     error.SetErrorString("cannot get a NativeRegisterContext for the thread");
2045     LLDB_LOG(log, "failed: {0}", error);
2046     return error;
2047   }
2048 
2049   uint32_t breakpoint_size = 0;
2050   error = GetSoftwareBreakpointPCOffset(breakpoint_size);
2051   if (error.Fail()) {
2052     LLDB_LOG(log, "GetBreakpointSize() failed: {0}", error);
2053     return error;
2054   } else
2055     LLDB_LOG(log, "breakpoint size: {0}", breakpoint_size);
2056 
2057   // First try probing for a breakpoint at a software breakpoint location: PC -
2058   // breakpoint size.
2059   const lldb::addr_t initial_pc_addr =
2060       context_sp->GetPCfromBreakpointLocation();
2061   lldb::addr_t breakpoint_addr = initial_pc_addr;
2062   if (breakpoint_size > 0) {
2063     // Do not allow breakpoint probe to wrap around.
2064     if (breakpoint_addr >= breakpoint_size)
2065       breakpoint_addr -= breakpoint_size;
2066   }
2067 
2068   // Check if we stopped because of a breakpoint.
2069   NativeBreakpointSP breakpoint_sp;
2070   error = m_breakpoint_list.GetBreakpoint(breakpoint_addr, breakpoint_sp);
2071   if (!error.Success() || !breakpoint_sp) {
2072     // We didn't find one at a software probe location.  Nothing to do.
2073     LLDB_LOG(log,
2074              "pid {0} no lldb breakpoint found at current pc with "
2075              "adjustment: {1}",
2076              GetID(), breakpoint_addr);
2077     return Status();
2078   }
2079 
2080   // If the breakpoint is not a software breakpoint, nothing to do.
2081   if (!breakpoint_sp->IsSoftwareBreakpoint()) {
2082     LLDB_LOG(
2083         log,
2084         "pid {0} breakpoint found at {1:x}, not software, nothing to adjust",
2085         GetID(), breakpoint_addr);
2086     return Status();
2087   }
2088 
2089   //
2090   // We have a software breakpoint and need to adjust the PC.
2091   //
2092 
2093   // Sanity check.
2094   if (breakpoint_size == 0) {
2095     // Nothing to do!  How did we get here?
2096     LLDB_LOG(log,
2097              "pid {0} breakpoint found at {1:x}, it is software, but the "
2098              "size is zero, nothing to do (unexpected)",
2099              GetID(), breakpoint_addr);
2100     return Status();
2101   }
2102 
2103   // Change the program counter.
2104   LLDB_LOG(log, "pid {0} tid {1}: changing PC from {2:x} to {3:x}", GetID(),
2105            thread.GetID(), initial_pc_addr, breakpoint_addr);
2106 
2107   error = context_sp->SetPC(breakpoint_addr);
2108   if (error.Fail()) {
2109     LLDB_LOG(log, "pid {0} tid {1}: failed to set PC: {2}", GetID(),
2110              thread.GetID(), error);
2111     return error;
2112   }
2113 
2114   return error;
2115 }
2116 
2117 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path,
2118                                                    FileSpec &file_spec) {
2119   Status error = PopulateMemoryRegionCache();
2120   if (error.Fail())
2121     return error;
2122 
2123   FileSpec module_file_spec(module_path, true);
2124 
2125   file_spec.Clear();
2126   for (const auto &it : m_mem_region_cache) {
2127     if (it.second.GetFilename() == module_file_spec.GetFilename()) {
2128       file_spec = it.second;
2129       return Status();
2130     }
2131   }
2132   return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
2133                 module_file_spec.GetFilename().AsCString(), GetID());
2134 }
2135 
2136 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name,
2137                                               lldb::addr_t &load_addr) {
2138   load_addr = LLDB_INVALID_ADDRESS;
2139   Status error = PopulateMemoryRegionCache();
2140   if (error.Fail())
2141     return error;
2142 
2143   FileSpec file(file_name, false);
2144   for (const auto &it : m_mem_region_cache) {
2145     if (it.second == file) {
2146       load_addr = it.first.GetRange().GetRangeBase();
2147       return Status();
2148     }
2149   }
2150   return Status("No load address found for specified file.");
2151 }
2152 
2153 NativeThreadLinuxSP NativeProcessLinux::GetThreadByID(lldb::tid_t tid) {
2154   return std::static_pointer_cast<NativeThreadLinux>(
2155       NativeProcessProtocol::GetThreadByID(tid));
2156 }
2157 
2158 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread,
2159                                         lldb::StateType state, int signo) {
2160   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2161   LLDB_LOG(log, "tid: {0}", thread.GetID());
2162 
2163   // Before we do the resume below, first check if we have a pending
2164   // stop notification that is currently waiting for
2165   // all threads to stop.  This is potentially a buggy situation since
2166   // we're ostensibly waiting for threads to stop before we send out the
2167   // pending notification, and here we are resuming one before we send
2168   // out the pending stop notification.
2169   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
2170     LLDB_LOG(log,
2171              "about to resume tid {0} per explicit request but we have a "
2172              "pending stop notification (tid {1}) that is actively "
2173              "waiting for this thread to stop. Valid sequence of events?",
2174              thread.GetID(), m_pending_notification_tid);
2175   }
2176 
2177   // Request a resume.  We expect this to be synchronous and the system
2178   // to reflect it is running after this completes.
2179   switch (state) {
2180   case eStateRunning: {
2181     const auto resume_result = thread.Resume(signo);
2182     if (resume_result.Success())
2183       SetState(eStateRunning, true);
2184     return resume_result;
2185   }
2186   case eStateStepping: {
2187     const auto step_result = thread.SingleStep(signo);
2188     if (step_result.Success())
2189       SetState(eStateRunning, true);
2190     return step_result;
2191   }
2192   default:
2193     LLDB_LOG(log, "Unhandled state {0}.", state);
2194     llvm_unreachable("Unhandled state for resume");
2195   }
2196 }
2197 
2198 //===----------------------------------------------------------------------===//
2199 
2200 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) {
2201   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2202   LLDB_LOG(log, "about to process event: (triggering_tid: {0})",
2203            triggering_tid);
2204 
2205   m_pending_notification_tid = triggering_tid;
2206 
2207   // Request a stop for all the thread stops that need to be stopped
2208   // and are not already known to be stopped.
2209   for (const auto &thread_sp : m_threads) {
2210     if (StateIsRunningState(thread_sp->GetState()))
2211       static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop();
2212   }
2213 
2214   SignalIfAllThreadsStopped();
2215   LLDB_LOG(log, "event processing done");
2216 }
2217 
2218 void NativeProcessLinux::SignalIfAllThreadsStopped() {
2219   if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
2220     return; // No pending notification. Nothing to do.
2221 
2222   for (const auto &thread_sp : m_threads) {
2223     if (StateIsRunningState(thread_sp->GetState()))
2224       return; // Some threads are still running. Don't signal yet.
2225   }
2226 
2227   // We have a pending notification and all threads have stopped.
2228   Log *log(
2229       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
2230 
2231   // Clear any temporary breakpoints we used to implement software single
2232   // stepping.
2233   for (const auto &thread_info : m_threads_stepping_with_breakpoint) {
2234     Status error = RemoveBreakpoint(thread_info.second);
2235     if (error.Fail())
2236       LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}",
2237                thread_info.first, error);
2238   }
2239   m_threads_stepping_with_breakpoint.clear();
2240 
2241   // Notify the delegate about the stop
2242   SetCurrentThreadID(m_pending_notification_tid);
2243   SetState(StateType::eStateStopped, true);
2244   m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
2245 }
2246 
2247 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) {
2248   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2249   LLDB_LOG(log, "tid: {0}", thread.GetID());
2250 
2251   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID &&
2252       StateIsRunningState(thread.GetState())) {
2253     // We will need to wait for this new thread to stop as well before firing
2254     // the
2255     // notification.
2256     thread.RequestStop();
2257   }
2258 }
2259 
2260 void NativeProcessLinux::SigchldHandler() {
2261   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
2262   // Process all pending waitpid notifications.
2263   while (true) {
2264     int status = -1;
2265     ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, -1, &status,
2266                                           __WALL | __WNOTHREAD | WNOHANG);
2267 
2268     if (wait_pid == 0)
2269       break; // We are done.
2270 
2271     if (wait_pid == -1) {
2272       Status error(errno, eErrorTypePOSIX);
2273       LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error);
2274       break;
2275     }
2276 
2277     WaitStatus wait_status = WaitStatus::Decode(status);
2278     bool exited = wait_status.type == WaitStatus::Exit ||
2279                   (wait_status.type == WaitStatus::Signal &&
2280                    wait_pid == static_cast<::pid_t>(GetID()));
2281 
2282     LLDB_LOG(
2283         log,
2284         "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}",
2285         wait_pid, wait_status, exited);
2286 
2287     MonitorCallback(wait_pid, exited, wait_status);
2288   }
2289 }
2290 
2291 // Wrapper for ptrace to catch errors and log calls.
2292 // Note that ptrace sets errno on error because -1 can be a valid result (i.e.
2293 // for PTRACE_PEEK*)
2294 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr,
2295                                          void *data, size_t data_size,
2296                                          long *result) {
2297   Status error;
2298   long int ret;
2299 
2300   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2301 
2302   PtraceDisplayBytes(req, data, data_size);
2303 
2304   errno = 0;
2305   if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
2306     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
2307                  *(unsigned int *)addr, data);
2308   else
2309     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
2310                  addr, data);
2311 
2312   if (ret == -1)
2313     error.SetErrorToErrno();
2314 
2315   if (result)
2316     *result = ret;
2317 
2318   LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data,
2319            data_size, ret);
2320 
2321   PtraceDisplayBytes(req, data, data_size);
2322 
2323   if (error.Fail())
2324     LLDB_LOG(log, "ptrace() failed: {0}", error);
2325 
2326   return error;
2327 }
2328 
2329 llvm::Expected<ProcessorTraceMonitor &>
2330 NativeProcessLinux::LookupProcessorTraceInstance(lldb::user_id_t traceid,
2331                                                  lldb::tid_t thread) {
2332   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2333   if (thread == LLDB_INVALID_THREAD_ID && traceid == m_pt_proces_trace_id) {
2334     LLDB_LOG(log, "thread not specified: {0}", traceid);
2335     return Status("tracing not active thread not specified").ToError();
2336   }
2337 
2338   for (auto& iter : m_processor_trace_monitor) {
2339     if (traceid == iter.second->GetTraceID() &&
2340         (thread == iter.first || thread == LLDB_INVALID_THREAD_ID))
2341       return *(iter.second);
2342   }
2343 
2344   LLDB_LOG(log, "traceid not being traced: {0}", traceid);
2345   return Status("tracing not active for this thread").ToError();
2346 }
2347 
2348 Status NativeProcessLinux::GetMetaData(lldb::user_id_t traceid,
2349                                        lldb::tid_t thread,
2350                                        llvm::MutableArrayRef<uint8_t> &buffer,
2351                                        size_t offset) {
2352   TraceOptions trace_options;
2353   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2354   Status error;
2355 
2356   LLDB_LOG(log, "traceid {0}", traceid);
2357 
2358   auto perf_monitor = LookupProcessorTraceInstance(traceid, thread);
2359   if (!perf_monitor) {
2360     LLDB_LOG(log, "traceid not being traced: {0}", traceid);
2361     buffer = buffer.slice(buffer.size());
2362     error = perf_monitor.takeError();
2363     return error;
2364   }
2365   return (*perf_monitor).ReadPerfTraceData(buffer, offset);
2366 }
2367 
2368 Status NativeProcessLinux::GetData(lldb::user_id_t traceid, lldb::tid_t thread,
2369                                    llvm::MutableArrayRef<uint8_t> &buffer,
2370                                    size_t offset) {
2371   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2372   Status error;
2373 
2374   LLDB_LOG(log, "traceid {0}", traceid);
2375 
2376   auto perf_monitor = LookupProcessorTraceInstance(traceid, thread);
2377   if (!perf_monitor) {
2378     LLDB_LOG(log, "traceid not being traced: {0}", traceid);
2379     buffer = buffer.slice(buffer.size());
2380     error = perf_monitor.takeError();
2381     return error;
2382   }
2383   return (*perf_monitor).ReadPerfTraceAux(buffer, offset);
2384 }
2385 
2386 Status NativeProcessLinux::GetTraceConfig(lldb::user_id_t traceid,
2387                                           TraceOptions &config) {
2388   Status error;
2389   if (config.getThreadID() == LLDB_INVALID_THREAD_ID &&
2390       m_pt_proces_trace_id == traceid) {
2391     if (m_pt_proces_trace_id == LLDB_INVALID_UID) {
2392       error.SetErrorString("tracing not active for this process");
2393       return error;
2394     }
2395     config = m_pt_process_trace_config;
2396   } else {
2397     auto perf_monitor =
2398         LookupProcessorTraceInstance(traceid, config.getThreadID());
2399     if (!perf_monitor) {
2400       error = perf_monitor.takeError();
2401       return error;
2402     }
2403     error = (*perf_monitor).GetTraceConfig(config);
2404   }
2405   return error;
2406 }
2407 
2408 lldb::user_id_t
2409 NativeProcessLinux::StartTraceGroup(const TraceOptions &config,
2410                                            Status &error) {
2411 
2412   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2413   if (config.getType() != TraceType::eTraceTypeProcessorTrace)
2414     return LLDB_INVALID_UID;
2415 
2416   if (m_pt_proces_trace_id != LLDB_INVALID_UID) {
2417     error.SetErrorString("tracing already active on this process");
2418     return m_pt_proces_trace_id;
2419   }
2420 
2421   for (const auto &thread_sp : m_threads) {
2422     if (auto traceInstance = ProcessorTraceMonitor::Create(
2423             GetID(), thread_sp->GetID(), config, true)) {
2424       m_pt_traced_thread_group.insert(thread_sp->GetID());
2425       m_processor_trace_monitor.insert(
2426           std::make_pair(thread_sp->GetID(), std::move(*traceInstance)));
2427     }
2428   }
2429 
2430   m_pt_process_trace_config = config;
2431   error = ProcessorTraceMonitor::GetCPUType(m_pt_process_trace_config);
2432 
2433   // Trace on Complete process will have traceid of 0
2434   m_pt_proces_trace_id = 0;
2435 
2436   LLDB_LOG(log, "Process Trace ID {0}", m_pt_proces_trace_id);
2437   return m_pt_proces_trace_id;
2438 }
2439 
2440 lldb::user_id_t NativeProcessLinux::StartTrace(const TraceOptions &config,
2441                                                Status &error) {
2442   if (config.getType() != TraceType::eTraceTypeProcessorTrace)
2443     return NativeProcessProtocol::StartTrace(config, error);
2444 
2445   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2446 
2447   lldb::tid_t threadid = config.getThreadID();
2448 
2449   if (threadid == LLDB_INVALID_THREAD_ID)
2450     return StartTraceGroup(config, error);
2451 
2452   auto thread_sp = GetThreadByID(threadid);
2453   if (!thread_sp) {
2454     // Thread not tracked by lldb so don't trace.
2455     error.SetErrorString("invalid thread id");
2456     return LLDB_INVALID_UID;
2457   }
2458 
2459   const auto &iter = m_processor_trace_monitor.find(threadid);
2460   if (iter != m_processor_trace_monitor.end()) {
2461     LLDB_LOG(log, "Thread already being traced");
2462     error.SetErrorString("tracing already active on this thread");
2463     return LLDB_INVALID_UID;
2464   }
2465 
2466   auto traceMonitor =
2467       ProcessorTraceMonitor::Create(GetID(), threadid, config, false);
2468   if (!traceMonitor) {
2469     error = traceMonitor.takeError();
2470     LLDB_LOG(log, "error {0}", error);
2471     return LLDB_INVALID_UID;
2472   }
2473   lldb::user_id_t ret_trace_id = (*traceMonitor)->GetTraceID();
2474   m_processor_trace_monitor.insert(
2475       std::make_pair(threadid, std::move(*traceMonitor)));
2476   return ret_trace_id;
2477 }
2478 
2479 Status NativeProcessLinux::StopTracingForThread(lldb::tid_t thread) {
2480   Status error;
2481   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2482   LLDB_LOG(log, "Thread {0}", thread);
2483 
2484   const auto& iter = m_processor_trace_monitor.find(thread);
2485   if (iter == m_processor_trace_monitor.end()) {
2486     error.SetErrorString("tracing not active for this thread");
2487     return error;
2488   }
2489 
2490   if (iter->second->GetTraceID() == m_pt_proces_trace_id) {
2491     // traceid maps to the whole process so we have to erase it from the
2492     // thread group.
2493     LLDB_LOG(log, "traceid maps to process");
2494     m_pt_traced_thread_group.erase(thread);
2495   }
2496   m_processor_trace_monitor.erase(iter);
2497 
2498   return error;
2499 }
2500 
2501 Status NativeProcessLinux::StopTrace(lldb::user_id_t traceid,
2502                                      lldb::tid_t thread) {
2503   Status error;
2504 
2505   TraceOptions trace_options;
2506   trace_options.setThreadID(thread);
2507   error = NativeProcessLinux::GetTraceConfig(traceid, trace_options);
2508 
2509   if (error.Fail())
2510     return error;
2511 
2512   switch (trace_options.getType()) {
2513   case lldb::TraceType::eTraceTypeProcessorTrace:
2514     if (traceid == m_pt_proces_trace_id &&
2515         thread == LLDB_INVALID_THREAD_ID)
2516       StopProcessorTracingOnProcess();
2517     else
2518       error = StopProcessorTracingOnThread(traceid, thread);
2519     break;
2520   default:
2521     error.SetErrorString("trace not supported");
2522     break;
2523   }
2524 
2525   return error;
2526 }
2527 
2528 void NativeProcessLinux::StopProcessorTracingOnProcess() {
2529   for (auto thread_id_iter : m_pt_traced_thread_group)
2530     m_processor_trace_monitor.erase(thread_id_iter);
2531   m_pt_traced_thread_group.clear();
2532   m_pt_proces_trace_id = LLDB_INVALID_UID;
2533 }
2534 
2535 Status NativeProcessLinux::StopProcessorTracingOnThread(lldb::user_id_t traceid,
2536                                                         lldb::tid_t thread) {
2537   Status error;
2538   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2539 
2540   if (thread == LLDB_INVALID_THREAD_ID) {
2541     for (auto& iter : m_processor_trace_monitor) {
2542       if (iter.second->GetTraceID() == traceid) {
2543         // Stopping a trace instance for an individual thread
2544         // hence there will only be one traceid that can match.
2545         m_processor_trace_monitor.erase(iter.first);
2546         return error;
2547       }
2548       LLDB_LOG(log, "Trace ID {0}", iter.second->GetTraceID());
2549     }
2550 
2551     LLDB_LOG(log, "Invalid TraceID");
2552     error.SetErrorString("invalid trace id");
2553     return error;
2554   }
2555 
2556   // thread is specified so we can use find function on the map.
2557   const auto& iter = m_processor_trace_monitor.find(thread);
2558   if (iter == m_processor_trace_monitor.end()) {
2559     // thread not found in our map.
2560     LLDB_LOG(log, "thread not being traced");
2561     error.SetErrorString("tracing not active for this thread");
2562     return error;
2563   }
2564   if (iter->second->GetTraceID() != traceid) {
2565     // traceid did not match so it has to be invalid.
2566     LLDB_LOG(log, "Invalid TraceID");
2567     error.SetErrorString("invalid trace id");
2568     return error;
2569   }
2570 
2571   LLDB_LOG(log, "UID - {0} , Thread -{1}", traceid, thread);
2572 
2573   if (traceid == m_pt_proces_trace_id) {
2574     // traceid maps to the whole process so we have to erase it from the
2575     // thread group.
2576     LLDB_LOG(log, "traceid maps to process");
2577     m_pt_traced_thread_group.erase(thread);
2578   }
2579   m_processor_trace_monitor.erase(iter);
2580 
2581   return error;
2582 }
2583