1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "NativeProcessLinux.h" 11 12 // C Includes 13 #include <errno.h> 14 #include <stdint.h> 15 #include <string.h> 16 #include <unistd.h> 17 18 // C++ Includes 19 #include <fstream> 20 #include <mutex> 21 #include <sstream> 22 #include <string> 23 #include <unordered_map> 24 25 // Other libraries and framework includes 26 #include "lldb/Core/EmulateInstruction.h" 27 #include "lldb/Core/ModuleSpec.h" 28 #include "lldb/Core/RegisterValue.h" 29 #include "lldb/Core/State.h" 30 #include "lldb/Host/Host.h" 31 #include "lldb/Host/HostProcess.h" 32 #include "lldb/Host/PseudoTerminal.h" 33 #include "lldb/Host/ThreadLauncher.h" 34 #include "lldb/Host/common/NativeBreakpoint.h" 35 #include "lldb/Host/common/NativeRegisterContext.h" 36 #include "lldb/Host/linux/Ptrace.h" 37 #include "lldb/Host/linux/Uio.h" 38 #include "lldb/Host/posix/ProcessLauncherPosixFork.h" 39 #include "lldb/Symbol/ObjectFile.h" 40 #include "lldb/Target/Process.h" 41 #include "lldb/Target/ProcessLaunchInfo.h" 42 #include "lldb/Target/Target.h" 43 #include "lldb/Utility/LLDBAssert.h" 44 #include "lldb/Utility/Status.h" 45 #include "lldb/Utility/StringExtractor.h" 46 #include "llvm/Support/Errno.h" 47 #include "llvm/Support/FileSystem.h" 48 #include "llvm/Support/Threading.h" 49 50 #include "NativeThreadLinux.h" 51 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 52 #include "Procfs.h" 53 54 #include <linux/unistd.h> 55 #include <sys/socket.h> 56 #include <sys/syscall.h> 57 #include <sys/types.h> 58 #include <sys/user.h> 59 #include <sys/wait.h> 60 61 // Support hardware breakpoints in case it has not been defined 62 #ifndef TRAP_HWBKPT 63 #define TRAP_HWBKPT 4 64 #endif 65 66 using namespace lldb; 67 using namespace lldb_private; 68 using namespace lldb_private::process_linux; 69 using namespace llvm; 70 71 // Private bits we only need internally. 72 73 static bool ProcessVmReadvSupported() { 74 static bool is_supported; 75 static llvm::once_flag flag; 76 77 llvm::call_once(flag, [] { 78 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 79 80 uint32_t source = 0x47424742; 81 uint32_t dest = 0; 82 83 struct iovec local, remote; 84 remote.iov_base = &source; 85 local.iov_base = &dest; 86 remote.iov_len = local.iov_len = sizeof source; 87 88 // We shall try if cross-process-memory reads work by attempting to read a 89 // value from our own process. 90 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); 91 is_supported = (res == sizeof(source) && source == dest); 92 if (is_supported) 93 LLDB_LOG(log, 94 "Detected kernel support for process_vm_readv syscall. " 95 "Fast memory reads enabled."); 96 else 97 LLDB_LOG(log, 98 "syscall process_vm_readv failed (error: {0}). Fast memory " 99 "reads disabled.", 100 llvm::sys::StrError()); 101 }); 102 103 return is_supported; 104 } 105 106 namespace { 107 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) { 108 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 109 if (!log) 110 return; 111 112 if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO)) 113 LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec()); 114 else 115 LLDB_LOG(log, "leaving STDIN as is"); 116 117 if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO)) 118 LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec()); 119 else 120 LLDB_LOG(log, "leaving STDOUT as is"); 121 122 if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO)) 123 LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec()); 124 else 125 LLDB_LOG(log, "leaving STDERR as is"); 126 127 int i = 0; 128 for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; 129 ++args, ++i) 130 LLDB_LOG(log, "arg {0}: '{1}'", i, *args); 131 } 132 133 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) { 134 uint8_t *ptr = (uint8_t *)bytes; 135 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 136 for (uint32_t i = 0; i < loop_count; i++) { 137 s.Printf("[%x]", *ptr); 138 ptr++; 139 } 140 } 141 142 void PtraceDisplayBytes(int &req, void *data, size_t data_size) { 143 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 144 if (!log) 145 return; 146 StreamString buf; 147 148 switch (req) { 149 case PTRACE_POKETEXT: { 150 DisplayBytes(buf, &data, 8); 151 LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData()); 152 break; 153 } 154 case PTRACE_POKEDATA: { 155 DisplayBytes(buf, &data, 8); 156 LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData()); 157 break; 158 } 159 case PTRACE_POKEUSER: { 160 DisplayBytes(buf, &data, 8); 161 LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData()); 162 break; 163 } 164 case PTRACE_SETREGS: { 165 DisplayBytes(buf, data, data_size); 166 LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData()); 167 break; 168 } 169 case PTRACE_SETFPREGS: { 170 DisplayBytes(buf, data, data_size); 171 LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData()); 172 break; 173 } 174 case PTRACE_SETSIGINFO: { 175 DisplayBytes(buf, data, sizeof(siginfo_t)); 176 LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData()); 177 break; 178 } 179 case PTRACE_SETREGSET: { 180 // Extract iov_base from data, which is a pointer to the struct IOVEC 181 DisplayBytes(buf, *(void **)data, data_size); 182 LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData()); 183 break; 184 } 185 default: {} 186 } 187 } 188 189 static constexpr unsigned k_ptrace_word_size = sizeof(void *); 190 static_assert(sizeof(long) >= k_ptrace_word_size, 191 "Size of long must be larger than ptrace word size"); 192 } // end of anonymous namespace 193 194 // Simple helper function to ensure flags are enabled on the given file 195 // descriptor. 196 static Status EnsureFDFlags(int fd, int flags) { 197 Status error; 198 199 int status = fcntl(fd, F_GETFL); 200 if (status == -1) { 201 error.SetErrorToErrno(); 202 return error; 203 } 204 205 if (fcntl(fd, F_SETFL, status | flags) == -1) { 206 error.SetErrorToErrno(); 207 return error; 208 } 209 210 return error; 211 } 212 213 // ----------------------------------------------------------------------------- 214 // Public Static Methods 215 // ----------------------------------------------------------------------------- 216 217 llvm::Expected<NativeProcessProtocolSP> 218 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info, 219 NativeDelegate &native_delegate, 220 MainLoop &mainloop) const { 221 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 222 223 MaybeLogLaunchInfo(launch_info); 224 225 Status status; 226 ::pid_t pid = ProcessLauncherPosixFork() 227 .LaunchProcess(launch_info, status) 228 .GetProcessId(); 229 LLDB_LOG(log, "pid = {0:x}", pid); 230 if (status.Fail()) { 231 LLDB_LOG(log, "failed to launch process: {0}", status); 232 return status.ToError(); 233 } 234 235 // Wait for the child process to trap on its call to execve. 236 int wstatus; 237 ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0); 238 assert(wpid == pid); 239 (void)wpid; 240 if (!WIFSTOPPED(wstatus)) { 241 LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}", 242 WaitStatus::Decode(wstatus)); 243 return llvm::make_error<StringError>("Could not sync with inferior process", 244 llvm::inconvertibleErrorCode()); 245 } 246 LLDB_LOG(log, "inferior started, now in stopped state"); 247 248 ArchSpec arch; 249 if ((status = ResolveProcessArchitecture(pid, arch)).Fail()) 250 return status.ToError(); 251 252 // Set the architecture to the exe architecture. 253 LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid, 254 arch.GetArchitectureName()); 255 256 status = SetDefaultPtraceOpts(pid); 257 if (status.Fail()) { 258 LLDB_LOG(log, "failed to set default ptrace options: {0}", status); 259 return status.ToError(); 260 } 261 262 std::shared_ptr<NativeProcessLinux> process_sp(new NativeProcessLinux( 263 pid, launch_info.GetPTY().ReleaseMasterFileDescriptor(), native_delegate, 264 arch, mainloop)); 265 process_sp->InitializeThreads({pid}); 266 return process_sp; 267 } 268 269 llvm::Expected<NativeProcessProtocolSP> NativeProcessLinux::Factory::Attach( 270 lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate, 271 MainLoop &mainloop) const { 272 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 273 LLDB_LOG(log, "pid = {0:x}", pid); 274 275 // Retrieve the architecture for the running process. 276 ArchSpec arch; 277 Status status = ResolveProcessArchitecture(pid, arch); 278 if (!status.Success()) 279 return status.ToError(); 280 281 auto tids_or = NativeProcessLinux::Attach(pid); 282 if (!tids_or) 283 return tids_or.takeError(); 284 285 std::shared_ptr<NativeProcessLinux> process_sp( 286 new NativeProcessLinux(pid, -1, native_delegate, arch, mainloop)); 287 process_sp->InitializeThreads(*tids_or); 288 return process_sp; 289 } 290 291 // ----------------------------------------------------------------------------- 292 // Public Instance Methods 293 // ----------------------------------------------------------------------------- 294 295 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd, 296 NativeDelegate &delegate, 297 const ArchSpec &arch, MainLoop &mainloop) 298 : NativeProcessProtocol(pid, terminal_fd, delegate), m_arch(arch) { 299 if (m_terminal_fd != -1) { 300 Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 301 assert(status.Success()); 302 } 303 304 Status status; 305 m_sigchld_handle = mainloop.RegisterSignal( 306 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status); 307 assert(m_sigchld_handle && status.Success()); 308 } 309 310 void NativeProcessLinux::InitializeThreads(llvm::ArrayRef<::pid_t> tids) { 311 for (const auto &tid : tids) { 312 NativeThreadLinuxSP thread_sp = AddThread(tid); 313 assert(thread_sp && "AddThread() returned a nullptr thread"); 314 thread_sp->SetStoppedBySignal(SIGSTOP); 315 ThreadWasCreated(*thread_sp); 316 } 317 318 // Let our process instance know the thread has stopped. 319 SetCurrentThreadID(tids[0]); 320 SetState(StateType::eStateStopped, false); 321 322 // Proccess any signals we received before installing our handler 323 SigchldHandler(); 324 } 325 326 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) { 327 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 328 329 Status status; 330 // Use a map to keep track of the threads which we have attached/need to 331 // attach. 332 Host::TidMap tids_to_attach; 333 while (Host::FindProcessThreads(pid, tids_to_attach)) { 334 for (Host::TidMap::iterator it = tids_to_attach.begin(); 335 it != tids_to_attach.end();) { 336 if (it->second == false) { 337 lldb::tid_t tid = it->first; 338 339 // Attach to the requested process. 340 // An attach will cause the thread to stop with a SIGSTOP. 341 if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) { 342 // No such thread. The thread may have exited. 343 // More error handling may be needed. 344 if (status.GetError() == ESRCH) { 345 it = tids_to_attach.erase(it); 346 continue; 347 } 348 return status.ToError(); 349 } 350 351 int wpid = 352 llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL); 353 // Need to use __WALL otherwise we receive an error with errno=ECHLD 354 // At this point we should have a thread stopped if waitpid succeeds. 355 if (wpid < 0) { 356 // No such thread. The thread may have exited. 357 // More error handling may be needed. 358 if (errno == ESRCH) { 359 it = tids_to_attach.erase(it); 360 continue; 361 } 362 return llvm::errorCodeToError( 363 std::error_code(errno, std::generic_category())); 364 } 365 366 if ((status = SetDefaultPtraceOpts(tid)).Fail()) 367 return status.ToError(); 368 369 LLDB_LOG(log, "adding tid = {0}", tid); 370 it->second = true; 371 } 372 373 // move the loop forward 374 ++it; 375 } 376 } 377 378 size_t tid_count = tids_to_attach.size(); 379 if (tid_count == 0) 380 return llvm::make_error<StringError>("No such process", 381 llvm::inconvertibleErrorCode()); 382 383 std::vector<::pid_t> tids; 384 tids.reserve(tid_count); 385 for (const auto &p : tids_to_attach) 386 tids.push_back(p.first); 387 return std::move(tids); 388 } 389 390 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) { 391 long ptrace_opts = 0; 392 393 // Have the child raise an event on exit. This is used to keep the child in 394 // limbo until it is destroyed. 395 ptrace_opts |= PTRACE_O_TRACEEXIT; 396 397 // Have the tracer trace threads which spawn in the inferior process. 398 // TODO: if we want to support tracing the inferiors' child, add the 399 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) 400 ptrace_opts |= PTRACE_O_TRACECLONE; 401 402 // Have the tracer notify us before execve returns 403 // (needed to disable legacy SIGTRAP generation) 404 ptrace_opts |= PTRACE_O_TRACEEXEC; 405 406 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts); 407 } 408 409 // Handles all waitpid events from the inferior process. 410 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited, 411 WaitStatus status) { 412 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 413 414 // Certain activities differ based on whether the pid is the tid of the main 415 // thread. 416 const bool is_main_thread = (pid == GetID()); 417 418 // Handle when the thread exits. 419 if (exited) { 420 LLDB_LOG(log, "got exit signal({0}) , tid = {1} ({2} main thread)", signal, 421 pid, is_main_thread ? "is" : "is not"); 422 423 // This is a thread that exited. Ensure we're not tracking it anymore. 424 const bool thread_found = StopTrackingThread(pid); 425 426 if (is_main_thread) { 427 // We only set the exit status and notify the delegate if we haven't 428 // already set the process 429 // state to an exited state. We normally should have received a SIGTRAP | 430 // (PTRACE_EVENT_EXIT << 8) 431 // for the main thread. 432 const bool already_notified = (GetState() == StateType::eStateExited) || 433 (GetState() == StateType::eStateCrashed); 434 if (!already_notified) { 435 LLDB_LOG( 436 log, 437 "tid = {0} handling main thread exit ({1}), expected exit state " 438 "already set but state was {2} instead, setting exit state now", 439 pid, 440 thread_found ? "stopped tracking thread metadata" 441 : "thread metadata not found", 442 GetState()); 443 // The main thread exited. We're done monitoring. Report to delegate. 444 SetExitStatus(status, true); 445 446 // Notify delegate that our process has exited. 447 SetState(StateType::eStateExited, true); 448 } else 449 LLDB_LOG(log, "tid = {0} main thread now exited (%s)", pid, 450 thread_found ? "stopped tracking thread metadata" 451 : "thread metadata not found"); 452 } else { 453 // Do we want to report to the delegate in this case? I think not. If 454 // this was an orderly thread exit, we would already have received the 455 // SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, and we would have done an 456 // all-stop then. 457 LLDB_LOG(log, "tid = {0} handling non-main thread exit (%s)", pid, 458 thread_found ? "stopped tracking thread metadata" 459 : "thread metadata not found"); 460 } 461 return; 462 } 463 464 siginfo_t info; 465 const auto info_err = GetSignalInfo(pid, &info); 466 auto thread_sp = GetThreadByID(pid); 467 468 if (!thread_sp) { 469 // Normally, the only situation when we cannot find the thread is if we have 470 // just received a new thread notification. This is indicated by 471 // GetSignalInfo() returning si_code == SI_USER and si_pid == 0 472 LLDB_LOG(log, "received notification about an unknown tid {0}.", pid); 473 474 if (info_err.Fail()) { 475 LLDB_LOG(log, 476 "(tid {0}) GetSignalInfo failed ({1}). " 477 "Ingoring this notification.", 478 pid, info_err); 479 return; 480 } 481 482 LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code, 483 info.si_pid); 484 485 auto thread_sp = AddThread(pid); 486 487 // Resume the newly created thread. 488 ResumeThread(*thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 489 ThreadWasCreated(*thread_sp); 490 return; 491 } 492 493 // Get details on the signal raised. 494 if (info_err.Success()) { 495 // We have retrieved the signal info. Dispatch appropriately. 496 if (info.si_signo == SIGTRAP) 497 MonitorSIGTRAP(info, *thread_sp); 498 else 499 MonitorSignal(info, *thread_sp, exited); 500 } else { 501 if (info_err.GetError() == EINVAL) { 502 // This is a group stop reception for this tid. 503 // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU 504 // into the tracee, triggering the group-stop mechanism. Normally 505 // receiving these would stop the process, pending a SIGCONT. Simulating 506 // this state in a debugger is hard and is generally not needed (one use 507 // case is debugging background task being managed by a shell). For 508 // general use, it is sufficient to stop the process in a signal-delivery 509 // stop which happens before the group stop. This done by MonitorSignal 510 // and works correctly for all signals. 511 LLDB_LOG(log, 512 "received a group stop for pid {0} tid {1}. Transparent " 513 "handling of group stops not supported, resuming the " 514 "thread.", 515 GetID(), pid); 516 ResumeThread(*thread_sp, thread_sp->GetState(), 517 LLDB_INVALID_SIGNAL_NUMBER); 518 } else { 519 // ptrace(GETSIGINFO) failed (but not due to group-stop). 520 521 // A return value of ESRCH means the thread/process is no longer on the 522 // system, so it was killed somehow outside of our control. Either way, 523 // we can't do anything with it anymore. 524 525 // Stop tracking the metadata for the thread since it's entirely off the 526 // system now. 527 const bool thread_found = StopTrackingThread(pid); 528 529 LLDB_LOG(log, 530 "GetSignalInfo failed: {0}, tid = {1}, signal = {2}, " 531 "status = {3}, main_thread = {4}, thread_found: {5}", 532 info_err, pid, signal, status, is_main_thread, thread_found); 533 534 if (is_main_thread) { 535 // Notify the delegate - our process is not available but appears to 536 // have been killed outside 537 // our control. Is eStateExited the right exit state in this case? 538 SetExitStatus(status, true); 539 SetState(StateType::eStateExited, true); 540 } else { 541 // This thread was pulled out from underneath us. Anything to do here? 542 // Do we want to do an all stop? 543 LLDB_LOG(log, 544 "pid {0} tid {1} non-main thread exit occurred, didn't " 545 "tell delegate anything since thread disappeared out " 546 "from underneath us", 547 GetID(), pid); 548 } 549 } 550 } 551 } 552 553 void NativeProcessLinux::WaitForNewThread(::pid_t tid) { 554 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 555 556 NativeThreadLinuxSP new_thread_sp = GetThreadByID(tid); 557 558 if (new_thread_sp) { 559 // We are already tracking the thread - we got the event on the new thread 560 // (see 561 // MonitorSignal) before this one. We are done. 562 return; 563 } 564 565 // The thread is not tracked yet, let's wait for it to appear. 566 int status = -1; 567 LLDB_LOG(log, 568 "received thread creation event for tid {0}. tid not tracked " 569 "yet, waiting for thread to appear...", 570 tid); 571 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, &status, __WALL); 572 // Since we are waiting on a specific tid, this must be the creation event. 573 // But let's do some checks just in case. 574 if (wait_pid != tid) { 575 LLDB_LOG(log, 576 "waiting for tid {0} failed. Assuming the thread has " 577 "disappeared in the meantime", 578 tid); 579 // The only way I know of this could happen is if the whole process was 580 // SIGKILLed in the mean time. In any case, we can't do anything about that 581 // now. 582 return; 583 } 584 if (WIFEXITED(status)) { 585 LLDB_LOG(log, 586 "waiting for tid {0} returned an 'exited' event. Not " 587 "tracking the thread.", 588 tid); 589 // Also a very improbable event. 590 return; 591 } 592 593 LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid); 594 new_thread_sp = AddThread(tid); 595 596 ResumeThread(*new_thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 597 ThreadWasCreated(*new_thread_sp); 598 } 599 600 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, 601 NativeThreadLinux &thread) { 602 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 603 const bool is_main_thread = (thread.GetID() == GetID()); 604 605 assert(info.si_signo == SIGTRAP && "Unexpected child signal!"); 606 607 switch (info.si_code) { 608 // TODO: these two cases are required if we want to support tracing of the 609 // inferiors' children. We'd need this to debug a monitor. 610 // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 611 // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 612 613 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { 614 // This is the notification on the parent thread which informs us of new 615 // thread 616 // creation. 617 // We don't want to do anything with the parent thread so we just resume it. 618 // In case we 619 // want to implement "break on thread creation" functionality, we would need 620 // to stop 621 // here. 622 623 unsigned long event_message = 0; 624 if (GetEventMessage(thread.GetID(), &event_message).Fail()) { 625 LLDB_LOG(log, 626 "pid {0} received thread creation event but " 627 "GetEventMessage failed so we don't know the new tid", 628 thread.GetID()); 629 } else 630 WaitForNewThread(event_message); 631 632 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 633 break; 634 } 635 636 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): { 637 NativeThreadLinuxSP main_thread_sp; 638 LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP); 639 640 // Exec clears any pending notifications. 641 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 642 643 // Remove all but the main thread here. Linux fork creates a new process 644 // which only copies the main thread. 645 LLDB_LOG(log, "exec received, stop tracking all but main thread"); 646 647 for (auto thread_sp : m_threads) { 648 const bool is_main_thread = thread_sp && thread_sp->GetID() == GetID(); 649 if (is_main_thread) { 650 main_thread_sp = std::static_pointer_cast<NativeThreadLinux>(thread_sp); 651 LLDB_LOG(log, "found main thread with tid {0}, keeping", 652 main_thread_sp->GetID()); 653 } else { 654 LLDB_LOG(log, "discarding non-main-thread tid {0} due to exec", 655 thread_sp->GetID()); 656 } 657 } 658 659 m_threads.clear(); 660 661 if (main_thread_sp) { 662 m_threads.push_back(main_thread_sp); 663 SetCurrentThreadID(main_thread_sp->GetID()); 664 main_thread_sp->SetStoppedByExec(); 665 } else { 666 SetCurrentThreadID(LLDB_INVALID_THREAD_ID); 667 LLDB_LOG(log, 668 "pid {0} no main thread found, discarded all threads, " 669 "we're in a no-thread state!", 670 GetID()); 671 } 672 673 // Tell coordinator about about the "new" (since exec) stopped main thread. 674 ThreadWasCreated(*main_thread_sp); 675 676 // Let our delegate know we have just exec'd. 677 NotifyDidExec(); 678 679 // If we have a main thread, indicate we are stopped. 680 assert(main_thread_sp && "exec called during ptraced process but no main " 681 "thread metadata tracked"); 682 683 // Let the process know we're stopped. 684 StopRunningThreads(main_thread_sp->GetID()); 685 686 break; 687 } 688 689 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { 690 // The inferior process or one of its threads is about to exit. 691 // We don't want to do anything with the thread so we just resume it. In 692 // case we 693 // want to implement "break on thread exit" functionality, we would need to 694 // stop 695 // here. 696 697 unsigned long data = 0; 698 if (GetEventMessage(thread.GetID(), &data).Fail()) 699 data = -1; 700 701 LLDB_LOG(log, 702 "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, " 703 "WIFSIGNALED={2}, pid = {3}, main_thread = {4}", 704 data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(), 705 is_main_thread); 706 707 if (is_main_thread) 708 SetExitStatus(WaitStatus::Decode(data), true); 709 710 StateType state = thread.GetState(); 711 if (!StateIsRunningState(state)) { 712 // Due to a kernel bug, we may sometimes get this stop after the inferior 713 // gets a 714 // SIGKILL. This confuses our state tracking logic in ResumeThread(), 715 // since normally, 716 // we should not be receiving any ptrace events while the inferior is 717 // stopped. This 718 // makes sure that the inferior is resumed and exits normally. 719 state = eStateRunning; 720 } 721 ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); 722 723 break; 724 } 725 726 case 0: 727 case TRAP_TRACE: // We receive this on single stepping. 728 case TRAP_HWBKPT: // We receive this on watchpoint hit 729 { 730 // If a watchpoint was hit, report it 731 uint32_t wp_index; 732 Status error = thread.GetRegisterContext()->GetWatchpointHitIndex( 733 wp_index, (uintptr_t)info.si_addr); 734 if (error.Fail()) 735 LLDB_LOG(log, 736 "received error while checking for watchpoint hits, pid = " 737 "{0}, error = {1}", 738 thread.GetID(), error); 739 if (wp_index != LLDB_INVALID_INDEX32) { 740 MonitorWatchpoint(thread, wp_index); 741 break; 742 } 743 744 // If a breakpoint was hit, report it 745 uint32_t bp_index; 746 error = thread.GetRegisterContext()->GetHardwareBreakHitIndex( 747 bp_index, (uintptr_t)info.si_addr); 748 if (error.Fail()) 749 LLDB_LOG(log, "received error while checking for hardware " 750 "breakpoint hits, pid = {0}, error = {1}", 751 thread.GetID(), error); 752 if (bp_index != LLDB_INVALID_INDEX32) { 753 MonitorBreakpoint(thread); 754 break; 755 } 756 757 // Otherwise, report step over 758 MonitorTrace(thread); 759 break; 760 } 761 762 case SI_KERNEL: 763 #if defined __mips__ 764 // For mips there is no special signal for watchpoint 765 // So we check for watchpoint in kernel trap 766 { 767 // If a watchpoint was hit, report it 768 uint32_t wp_index; 769 Status error = thread.GetRegisterContext()->GetWatchpointHitIndex( 770 wp_index, LLDB_INVALID_ADDRESS); 771 if (error.Fail()) 772 LLDB_LOG(log, 773 "received error while checking for watchpoint hits, pid = " 774 "{0}, error = {1}", 775 thread.GetID(), error); 776 if (wp_index != LLDB_INVALID_INDEX32) { 777 MonitorWatchpoint(thread, wp_index); 778 break; 779 } 780 } 781 // NO BREAK 782 #endif 783 case TRAP_BRKPT: 784 MonitorBreakpoint(thread); 785 break; 786 787 case SIGTRAP: 788 case (SIGTRAP | 0x80): 789 LLDB_LOG( 790 log, 791 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 792 info.si_code, GetID(), thread.GetID()); 793 794 // Ignore these signals until we know more about them. 795 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 796 break; 797 798 default: 799 LLDB_LOG( 800 log, 801 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 802 info.si_code, GetID(), thread.GetID()); 803 llvm_unreachable("Unexpected SIGTRAP code!"); 804 break; 805 } 806 } 807 808 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) { 809 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 810 LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID()); 811 812 // This thread is currently stopped. 813 thread.SetStoppedByTrace(); 814 815 StopRunningThreads(thread.GetID()); 816 } 817 818 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) { 819 Log *log( 820 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 821 LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID()); 822 823 // Mark the thread as stopped at breakpoint. 824 thread.SetStoppedByBreakpoint(); 825 Status error = FixupBreakpointPCAsNeeded(thread); 826 if (error.Fail()) 827 LLDB_LOG(log, "pid = {0} fixup: {1}", thread.GetID(), error); 828 829 if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != 830 m_threads_stepping_with_breakpoint.end()) 831 thread.SetStoppedByTrace(); 832 833 StopRunningThreads(thread.GetID()); 834 } 835 836 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, 837 uint32_t wp_index) { 838 Log *log( 839 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); 840 LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}", 841 thread.GetID(), wp_index); 842 843 // Mark the thread as stopped at watchpoint. 844 // The address is at (lldb::addr_t)info->si_addr if we need it. 845 thread.SetStoppedByWatchpoint(wp_index); 846 847 // We need to tell all other running threads before we notify the delegate 848 // about this stop. 849 StopRunningThreads(thread.GetID()); 850 } 851 852 void NativeProcessLinux::MonitorSignal(const siginfo_t &info, 853 NativeThreadLinux &thread, bool exited) { 854 const int signo = info.si_signo; 855 const bool is_from_llgs = info.si_pid == getpid(); 856 857 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 858 859 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 860 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a 861 // kill(2) or raise(3). Similarly for tgkill(2) on Linux. 862 // 863 // IOW, user generated signals never generate what we consider to be a 864 // "crash". 865 // 866 // Similarly, ACK signals generated by this monitor. 867 868 // Handle the signal. 869 LLDB_LOG(log, 870 "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, " 871 "waitpid pid = {4})", 872 Host::GetSignalAsCString(signo), signo, info.si_code, 873 thread.GetID()); 874 875 // Check for thread stop notification. 876 if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) { 877 // This is a tgkill()-based stop. 878 LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID()); 879 880 // Check that we're not already marked with a stop reason. 881 // Note this thread really shouldn't already be marked as stopped - if we 882 // were, that would imply that the kernel signaled us with the thread 883 // stopping which we handled and marked as stopped, and that, without an 884 // intervening resume, we received another stop. It is more likely that we 885 // are missing the marking of a run state somewhere if we find that the 886 // thread was marked as stopped. 887 const StateType thread_state = thread.GetState(); 888 if (!StateIsStoppedState(thread_state, false)) { 889 // An inferior thread has stopped because of a SIGSTOP we have sent it. 890 // Generally, these are not important stops and we don't want to report 891 // them as they are just used to stop other threads when one thread (the 892 // one with the *real* stop reason) hits a breakpoint (watchpoint, 893 // etc...). However, in the case of an asynchronous Interrupt(), this *is* 894 // the real stop reason, so we leave the signal intact if this is the 895 // thread that was chosen as the triggering thread. 896 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 897 if (m_pending_notification_tid == thread.GetID()) 898 thread.SetStoppedBySignal(SIGSTOP, &info); 899 else 900 thread.SetStoppedWithNoReason(); 901 902 SetCurrentThreadID(thread.GetID()); 903 SignalIfAllThreadsStopped(); 904 } else { 905 // We can end up here if stop was initiated by LLGS but by this time a 906 // thread stop has occurred - maybe initiated by another event. 907 Status error = ResumeThread(thread, thread.GetState(), 0); 908 if (error.Fail()) 909 LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(), 910 error); 911 } 912 } else { 913 LLDB_LOG(log, 914 "pid {0} tid {1}, thread was already marked as a stopped " 915 "state (state={2}), leaving stop signal as is", 916 GetID(), thread.GetID(), thread_state); 917 SignalIfAllThreadsStopped(); 918 } 919 920 // Done handling. 921 return; 922 } 923 924 // Check if debugger should stop at this signal or just ignore it 925 // and resume the inferior. 926 if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) { 927 ResumeThread(thread, thread.GetState(), signo); 928 return; 929 } 930 931 // This thread is stopped. 932 LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo)); 933 thread.SetStoppedBySignal(signo, &info); 934 935 // Send a stop to the debugger after we get all other threads to stop. 936 StopRunningThreads(thread.GetID()); 937 } 938 939 namespace { 940 941 struct EmulatorBaton { 942 NativeProcessLinux *m_process; 943 NativeRegisterContext *m_reg_context; 944 945 // eRegisterKindDWARF -> RegsiterValue 946 std::unordered_map<uint32_t, RegisterValue> m_register_values; 947 948 EmulatorBaton(NativeProcessLinux *process, NativeRegisterContext *reg_context) 949 : m_process(process), m_reg_context(reg_context) {} 950 }; 951 952 } // anonymous namespace 953 954 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton, 955 const EmulateInstruction::Context &context, 956 lldb::addr_t addr, void *dst, size_t length) { 957 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 958 959 size_t bytes_read; 960 emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read); 961 return bytes_read; 962 } 963 964 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton, 965 const RegisterInfo *reg_info, 966 RegisterValue ®_value) { 967 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 968 969 auto it = emulator_baton->m_register_values.find( 970 reg_info->kinds[eRegisterKindDWARF]); 971 if (it != emulator_baton->m_register_values.end()) { 972 reg_value = it->second; 973 return true; 974 } 975 976 // The emulator only fill in the dwarf regsiter numbers (and in some case 977 // the generic register numbers). Get the full register info from the 978 // register context based on the dwarf register numbers. 979 const RegisterInfo *full_reg_info = 980 emulator_baton->m_reg_context->GetRegisterInfo( 981 eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]); 982 983 Status error = 984 emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value); 985 if (error.Success()) 986 return true; 987 988 return false; 989 } 990 991 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton, 992 const EmulateInstruction::Context &context, 993 const RegisterInfo *reg_info, 994 const RegisterValue ®_value) { 995 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 996 emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = 997 reg_value; 998 return true; 999 } 1000 1001 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton, 1002 const EmulateInstruction::Context &context, 1003 lldb::addr_t addr, const void *dst, 1004 size_t length) { 1005 return length; 1006 } 1007 1008 static lldb::addr_t ReadFlags(NativeRegisterContext *regsiter_context) { 1009 const RegisterInfo *flags_info = regsiter_context->GetRegisterInfo( 1010 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 1011 return regsiter_context->ReadRegisterAsUnsigned(flags_info, 1012 LLDB_INVALID_ADDRESS); 1013 } 1014 1015 Status 1016 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) { 1017 Status error; 1018 NativeRegisterContextSP register_context_sp = thread.GetRegisterContext(); 1019 1020 std::unique_ptr<EmulateInstruction> emulator_ap( 1021 EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, 1022 nullptr)); 1023 1024 if (emulator_ap == nullptr) 1025 return Status("Instruction emulator not found!"); 1026 1027 EmulatorBaton baton(this, register_context_sp.get()); 1028 emulator_ap->SetBaton(&baton); 1029 emulator_ap->SetReadMemCallback(&ReadMemoryCallback); 1030 emulator_ap->SetReadRegCallback(&ReadRegisterCallback); 1031 emulator_ap->SetWriteMemCallback(&WriteMemoryCallback); 1032 emulator_ap->SetWriteRegCallback(&WriteRegisterCallback); 1033 1034 if (!emulator_ap->ReadInstruction()) 1035 return Status("Read instruction failed!"); 1036 1037 bool emulation_result = 1038 emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC); 1039 1040 const RegisterInfo *reg_info_pc = register_context_sp->GetRegisterInfo( 1041 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); 1042 const RegisterInfo *reg_info_flags = register_context_sp->GetRegisterInfo( 1043 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 1044 1045 auto pc_it = 1046 baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]); 1047 auto flags_it = 1048 baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]); 1049 1050 lldb::addr_t next_pc; 1051 lldb::addr_t next_flags; 1052 if (emulation_result) { 1053 assert(pc_it != baton.m_register_values.end() && 1054 "Emulation was successfull but PC wasn't updated"); 1055 next_pc = pc_it->second.GetAsUInt64(); 1056 1057 if (flags_it != baton.m_register_values.end()) 1058 next_flags = flags_it->second.GetAsUInt64(); 1059 else 1060 next_flags = ReadFlags(register_context_sp.get()); 1061 } else if (pc_it == baton.m_register_values.end()) { 1062 // Emulate instruction failed and it haven't changed PC. Advance PC 1063 // with the size of the current opcode because the emulation of all 1064 // PC modifying instruction should be successful. The failure most 1065 // likely caused by a not supported instruction which don't modify PC. 1066 next_pc = 1067 register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize(); 1068 next_flags = ReadFlags(register_context_sp.get()); 1069 } else { 1070 // The instruction emulation failed after it modified the PC. It is an 1071 // unknown error where we can't continue because the next instruction is 1072 // modifying the PC but we don't know how. 1073 return Status("Instruction emulation failed unexpectedly."); 1074 } 1075 1076 if (m_arch.GetMachine() == llvm::Triple::arm) { 1077 if (next_flags & 0x20) { 1078 // Thumb mode 1079 error = SetSoftwareBreakpoint(next_pc, 2); 1080 } else { 1081 // Arm mode 1082 error = SetSoftwareBreakpoint(next_pc, 4); 1083 } 1084 } else if (m_arch.GetMachine() == llvm::Triple::mips64 || 1085 m_arch.GetMachine() == llvm::Triple::mips64el || 1086 m_arch.GetMachine() == llvm::Triple::mips || 1087 m_arch.GetMachine() == llvm::Triple::mipsel) 1088 error = SetSoftwareBreakpoint(next_pc, 4); 1089 else { 1090 // No size hint is given for the next breakpoint 1091 error = SetSoftwareBreakpoint(next_pc, 0); 1092 } 1093 1094 // If setting the breakpoint fails because next_pc is out of 1095 // the address space, ignore it and let the debugee segfault. 1096 if (error.GetError() == EIO || error.GetError() == EFAULT) { 1097 return Status(); 1098 } else if (error.Fail()) 1099 return error; 1100 1101 m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc}); 1102 1103 return Status(); 1104 } 1105 1106 bool NativeProcessLinux::SupportHardwareSingleStepping() const { 1107 if (m_arch.GetMachine() == llvm::Triple::arm || 1108 m_arch.GetMachine() == llvm::Triple::mips64 || 1109 m_arch.GetMachine() == llvm::Triple::mips64el || 1110 m_arch.GetMachine() == llvm::Triple::mips || 1111 m_arch.GetMachine() == llvm::Triple::mipsel) 1112 return false; 1113 return true; 1114 } 1115 1116 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) { 1117 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1118 LLDB_LOG(log, "pid {0}", GetID()); 1119 1120 bool software_single_step = !SupportHardwareSingleStepping(); 1121 1122 if (software_single_step) { 1123 for (auto thread_sp : m_threads) { 1124 assert(thread_sp && "thread list should not contain NULL threads"); 1125 1126 const ResumeAction *const action = 1127 resume_actions.GetActionForThread(thread_sp->GetID(), true); 1128 if (action == nullptr) 1129 continue; 1130 1131 if (action->state == eStateStepping) { 1132 Status error = SetupSoftwareSingleStepping( 1133 static_cast<NativeThreadLinux &>(*thread_sp)); 1134 if (error.Fail()) 1135 return error; 1136 } 1137 } 1138 } 1139 1140 for (auto thread_sp : m_threads) { 1141 assert(thread_sp && "thread list should not contain NULL threads"); 1142 1143 const ResumeAction *const action = 1144 resume_actions.GetActionForThread(thread_sp->GetID(), true); 1145 1146 if (action == nullptr) { 1147 LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(), 1148 thread_sp->GetID()); 1149 continue; 1150 } 1151 1152 LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}", 1153 action->state, GetID(), thread_sp->GetID()); 1154 1155 switch (action->state) { 1156 case eStateRunning: 1157 case eStateStepping: { 1158 // Run the thread, possibly feeding it the signal. 1159 const int signo = action->signal; 1160 ResumeThread(static_cast<NativeThreadLinux &>(*thread_sp), action->state, 1161 signo); 1162 break; 1163 } 1164 1165 case eStateSuspended: 1166 case eStateStopped: 1167 llvm_unreachable("Unexpected state"); 1168 1169 default: 1170 return Status("NativeProcessLinux::%s (): unexpected state %s specified " 1171 "for pid %" PRIu64 ", tid %" PRIu64, 1172 __FUNCTION__, StateAsCString(action->state), GetID(), 1173 thread_sp->GetID()); 1174 } 1175 } 1176 1177 return Status(); 1178 } 1179 1180 Status NativeProcessLinux::Halt() { 1181 Status error; 1182 1183 if (kill(GetID(), SIGSTOP) != 0) 1184 error.SetErrorToErrno(); 1185 1186 return error; 1187 } 1188 1189 Status NativeProcessLinux::Detach() { 1190 Status error; 1191 1192 // Stop monitoring the inferior. 1193 m_sigchld_handle.reset(); 1194 1195 // Tell ptrace to detach from the process. 1196 if (GetID() == LLDB_INVALID_PROCESS_ID) 1197 return error; 1198 1199 for (auto thread_sp : m_threads) { 1200 Status e = Detach(thread_sp->GetID()); 1201 if (e.Fail()) 1202 error = 1203 e; // Save the error, but still attempt to detach from other threads. 1204 } 1205 1206 m_processor_trace_monitor.clear(); 1207 m_pt_proces_trace_id = LLDB_INVALID_UID; 1208 1209 return error; 1210 } 1211 1212 Status NativeProcessLinux::Signal(int signo) { 1213 Status error; 1214 1215 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1216 LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo, 1217 Host::GetSignalAsCString(signo), GetID()); 1218 1219 if (kill(GetID(), signo)) 1220 error.SetErrorToErrno(); 1221 1222 return error; 1223 } 1224 1225 Status NativeProcessLinux::Interrupt() { 1226 // Pick a running thread (or if none, a not-dead stopped thread) as 1227 // the chosen thread that will be the stop-reason thread. 1228 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1229 1230 NativeThreadProtocolSP running_thread_sp; 1231 NativeThreadProtocolSP stopped_thread_sp; 1232 1233 LLDB_LOG(log, "selecting running thread for interrupt target"); 1234 for (auto thread_sp : m_threads) { 1235 // The thread shouldn't be null but lets just cover that here. 1236 if (!thread_sp) 1237 continue; 1238 1239 // If we have a running or stepping thread, we'll call that the 1240 // target of the interrupt. 1241 const auto thread_state = thread_sp->GetState(); 1242 if (thread_state == eStateRunning || thread_state == eStateStepping) { 1243 running_thread_sp = thread_sp; 1244 break; 1245 } else if (!stopped_thread_sp && StateIsStoppedState(thread_state, true)) { 1246 // Remember the first non-dead stopped thread. We'll use that as a backup 1247 // if there are no running threads. 1248 stopped_thread_sp = thread_sp; 1249 } 1250 } 1251 1252 if (!running_thread_sp && !stopped_thread_sp) { 1253 Status error("found no running/stepping or live stopped threads as target " 1254 "for interrupt"); 1255 LLDB_LOG(log, "skipping due to error: {0}", error); 1256 1257 return error; 1258 } 1259 1260 NativeThreadProtocolSP deferred_signal_thread_sp = 1261 running_thread_sp ? running_thread_sp : stopped_thread_sp; 1262 1263 LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(), 1264 running_thread_sp ? "running" : "stopped", 1265 deferred_signal_thread_sp->GetID()); 1266 1267 StopRunningThreads(deferred_signal_thread_sp->GetID()); 1268 1269 return Status(); 1270 } 1271 1272 Status NativeProcessLinux::Kill() { 1273 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1274 LLDB_LOG(log, "pid {0}", GetID()); 1275 1276 Status error; 1277 1278 switch (m_state) { 1279 case StateType::eStateInvalid: 1280 case StateType::eStateExited: 1281 case StateType::eStateCrashed: 1282 case StateType::eStateDetached: 1283 case StateType::eStateUnloaded: 1284 // Nothing to do - the process is already dead. 1285 LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(), 1286 m_state); 1287 return error; 1288 1289 case StateType::eStateConnected: 1290 case StateType::eStateAttaching: 1291 case StateType::eStateLaunching: 1292 case StateType::eStateStopped: 1293 case StateType::eStateRunning: 1294 case StateType::eStateStepping: 1295 case StateType::eStateSuspended: 1296 // We can try to kill a process in these states. 1297 break; 1298 } 1299 1300 if (kill(GetID(), SIGKILL) != 0) { 1301 error.SetErrorToErrno(); 1302 return error; 1303 } 1304 1305 return error; 1306 } 1307 1308 static Status 1309 ParseMemoryRegionInfoFromProcMapsLine(llvm::StringRef &maps_line, 1310 MemoryRegionInfo &memory_region_info) { 1311 memory_region_info.Clear(); 1312 1313 StringExtractor line_extractor(maps_line); 1314 1315 // Format: {address_start_hex}-{address_end_hex} perms offset dev inode 1316 // pathname 1317 // perms: rwxp (letter is present if set, '-' if not, final character is 1318 // p=private, s=shared). 1319 1320 // Parse out the starting address 1321 lldb::addr_t start_address = line_extractor.GetHexMaxU64(false, 0); 1322 1323 // Parse out hyphen separating start and end address from range. 1324 if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != '-')) 1325 return Status( 1326 "malformed /proc/{pid}/maps entry, missing dash between address range"); 1327 1328 // Parse out the ending address 1329 lldb::addr_t end_address = line_extractor.GetHexMaxU64(false, start_address); 1330 1331 // Parse out the space after the address. 1332 if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != ' ')) 1333 return Status( 1334 "malformed /proc/{pid}/maps entry, missing space after range"); 1335 1336 // Save the range. 1337 memory_region_info.GetRange().SetRangeBase(start_address); 1338 memory_region_info.GetRange().SetRangeEnd(end_address); 1339 1340 // Any memory region in /proc/{pid}/maps is by definition mapped into the 1341 // process. 1342 memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes); 1343 1344 // Parse out each permission entry. 1345 if (line_extractor.GetBytesLeft() < 4) 1346 return Status("malformed /proc/{pid}/maps entry, missing some portion of " 1347 "permissions"); 1348 1349 // Handle read permission. 1350 const char read_perm_char = line_extractor.GetChar(); 1351 if (read_perm_char == 'r') 1352 memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eYes); 1353 else if (read_perm_char == '-') 1354 memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1355 else 1356 return Status("unexpected /proc/{pid}/maps read permission char"); 1357 1358 // Handle write permission. 1359 const char write_perm_char = line_extractor.GetChar(); 1360 if (write_perm_char == 'w') 1361 memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eYes); 1362 else if (write_perm_char == '-') 1363 memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1364 else 1365 return Status("unexpected /proc/{pid}/maps write permission char"); 1366 1367 // Handle execute permission. 1368 const char exec_perm_char = line_extractor.GetChar(); 1369 if (exec_perm_char == 'x') 1370 memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eYes); 1371 else if (exec_perm_char == '-') 1372 memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1373 else 1374 return Status("unexpected /proc/{pid}/maps exec permission char"); 1375 1376 line_extractor.GetChar(); // Read the private bit 1377 line_extractor.SkipSpaces(); // Skip the separator 1378 line_extractor.GetHexMaxU64(false, 0); // Read the offset 1379 line_extractor.GetHexMaxU64(false, 0); // Read the major device number 1380 line_extractor.GetChar(); // Read the device id separator 1381 line_extractor.GetHexMaxU64(false, 0); // Read the major device number 1382 line_extractor.SkipSpaces(); // Skip the separator 1383 line_extractor.GetU64(0, 10); // Read the inode number 1384 1385 line_extractor.SkipSpaces(); 1386 const char *name = line_extractor.Peek(); 1387 if (name) 1388 memory_region_info.SetName(name); 1389 1390 return Status(); 1391 } 1392 1393 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr, 1394 MemoryRegionInfo &range_info) { 1395 // FIXME review that the final memory region returned extends to the end of 1396 // the virtual address space, 1397 // with no perms if it is not mapped. 1398 1399 // Use an approach that reads memory regions from /proc/{pid}/maps. 1400 // Assume proc maps entries are in ascending order. 1401 // FIXME assert if we find differently. 1402 1403 if (m_supports_mem_region == LazyBool::eLazyBoolNo) { 1404 // We're done. 1405 return Status("unsupported"); 1406 } 1407 1408 Status error = PopulateMemoryRegionCache(); 1409 if (error.Fail()) { 1410 return error; 1411 } 1412 1413 lldb::addr_t prev_base_address = 0; 1414 1415 // FIXME start by finding the last region that is <= target address using 1416 // binary search. Data is sorted. 1417 // There can be a ton of regions on pthreads apps with lots of threads. 1418 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end(); 1419 ++it) { 1420 MemoryRegionInfo &proc_entry_info = it->first; 1421 1422 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 1423 assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) && 1424 "descending /proc/pid/maps entries detected, unexpected"); 1425 prev_base_address = proc_entry_info.GetRange().GetRangeBase(); 1426 UNUSED_IF_ASSERT_DISABLED(prev_base_address); 1427 1428 // If the target address comes before this entry, indicate distance to next 1429 // region. 1430 if (load_addr < proc_entry_info.GetRange().GetRangeBase()) { 1431 range_info.GetRange().SetRangeBase(load_addr); 1432 range_info.GetRange().SetByteSize( 1433 proc_entry_info.GetRange().GetRangeBase() - load_addr); 1434 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1435 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1436 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1437 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1438 1439 return error; 1440 } else if (proc_entry_info.GetRange().Contains(load_addr)) { 1441 // The target address is within the memory region we're processing here. 1442 range_info = proc_entry_info; 1443 return error; 1444 } 1445 1446 // The target memory address comes somewhere after the region we just 1447 // parsed. 1448 } 1449 1450 // If we made it here, we didn't find an entry that contained the given 1451 // address. Return the 1452 // load_addr as start and the amount of bytes betwwen load address and the end 1453 // of the memory as 1454 // size. 1455 range_info.GetRange().SetRangeBase(load_addr); 1456 range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS); 1457 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1458 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1459 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1460 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1461 return error; 1462 } 1463 1464 Status NativeProcessLinux::PopulateMemoryRegionCache() { 1465 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1466 1467 // If our cache is empty, pull the latest. There should always be at least 1468 // one memory region if memory region handling is supported. 1469 if (!m_mem_region_cache.empty()) { 1470 LLDB_LOG(log, "reusing {0} cached memory region entries", 1471 m_mem_region_cache.size()); 1472 return Status(); 1473 } 1474 1475 auto BufferOrError = getProcFile(GetID(), "maps"); 1476 if (!BufferOrError) { 1477 m_supports_mem_region = LazyBool::eLazyBoolNo; 1478 return BufferOrError.getError(); 1479 } 1480 StringRef Rest = BufferOrError.get()->getBuffer(); 1481 while (! Rest.empty()) { 1482 StringRef Line; 1483 std::tie(Line, Rest) = Rest.split('\n'); 1484 MemoryRegionInfo info; 1485 const Status parse_error = 1486 ParseMemoryRegionInfoFromProcMapsLine(Line, info); 1487 if (parse_error.Fail()) { 1488 LLDB_LOG(log, "failed to parse proc maps line '{0}': {1}", Line, 1489 parse_error); 1490 m_supports_mem_region = LazyBool::eLazyBoolNo; 1491 return parse_error; 1492 } 1493 m_mem_region_cache.emplace_back( 1494 info, FileSpec(info.GetName().GetCString(), true)); 1495 } 1496 1497 if (m_mem_region_cache.empty()) { 1498 // No entries after attempting to read them. This shouldn't happen if 1499 // /proc/{pid}/maps is supported. Assume we don't support map entries 1500 // via procfs. 1501 m_supports_mem_region = LazyBool::eLazyBoolNo; 1502 LLDB_LOG(log, 1503 "failed to find any procfs maps entries, assuming no support " 1504 "for memory region metadata retrieval"); 1505 return Status("not supported"); 1506 } 1507 1508 LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps", 1509 m_mem_region_cache.size(), GetID()); 1510 1511 // We support memory retrieval, remember that. 1512 m_supports_mem_region = LazyBool::eLazyBoolYes; 1513 return Status(); 1514 } 1515 1516 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) { 1517 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1518 LLDB_LOG(log, "newBumpId={0}", newBumpId); 1519 LLDB_LOG(log, "clearing {0} entries from memory region cache", 1520 m_mem_region_cache.size()); 1521 m_mem_region_cache.clear(); 1522 } 1523 1524 Status NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, 1525 lldb::addr_t &addr) { 1526 // FIXME implementing this requires the equivalent of 1527 // InferiorCallPOSIX::InferiorCallMmap, which depends on 1528 // functional ThreadPlans working with Native*Protocol. 1529 #if 1 1530 return Status("not implemented yet"); 1531 #else 1532 addr = LLDB_INVALID_ADDRESS; 1533 1534 unsigned prot = 0; 1535 if (permissions & lldb::ePermissionsReadable) 1536 prot |= eMmapProtRead; 1537 if (permissions & lldb::ePermissionsWritable) 1538 prot |= eMmapProtWrite; 1539 if (permissions & lldb::ePermissionsExecutable) 1540 prot |= eMmapProtExec; 1541 1542 // TODO implement this directly in NativeProcessLinux 1543 // (and lift to NativeProcessPOSIX if/when that class is 1544 // refactored out). 1545 if (InferiorCallMmap(this, addr, 0, size, prot, 1546 eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { 1547 m_addr_to_mmap_size[addr] = size; 1548 return Status(); 1549 } else { 1550 addr = LLDB_INVALID_ADDRESS; 1551 return Status("unable to allocate %" PRIu64 1552 " bytes of memory with permissions %s", 1553 size, GetPermissionsAsCString(permissions)); 1554 } 1555 #endif 1556 } 1557 1558 Status NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) { 1559 // FIXME see comments in AllocateMemory - required lower-level 1560 // bits not in place yet (ThreadPlans) 1561 return Status("not implemented"); 1562 } 1563 1564 lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress() { 1565 // punt on this for now 1566 return LLDB_INVALID_ADDRESS; 1567 } 1568 1569 size_t NativeProcessLinux::UpdateThreads() { 1570 // The NativeProcessLinux monitoring threads are always up to date 1571 // with respect to thread state and they keep the thread list 1572 // populated properly. All this method needs to do is return the 1573 // thread count. 1574 return m_threads.size(); 1575 } 1576 1577 bool NativeProcessLinux::GetArchitecture(ArchSpec &arch) const { 1578 arch = m_arch; 1579 return true; 1580 } 1581 1582 Status NativeProcessLinux::GetSoftwareBreakpointPCOffset( 1583 uint32_t &actual_opcode_size) { 1584 // FIXME put this behind a breakpoint protocol class that can be 1585 // set per architecture. Need ARM, MIPS support here. 1586 static const uint8_t g_i386_opcode[] = {0xCC}; 1587 static const uint8_t g_s390x_opcode[] = {0x00, 0x01}; 1588 1589 switch (m_arch.GetMachine()) { 1590 case llvm::Triple::x86: 1591 case llvm::Triple::x86_64: 1592 actual_opcode_size = static_cast<uint32_t>(sizeof(g_i386_opcode)); 1593 return Status(); 1594 1595 case llvm::Triple::systemz: 1596 actual_opcode_size = static_cast<uint32_t>(sizeof(g_s390x_opcode)); 1597 return Status(); 1598 1599 case llvm::Triple::arm: 1600 case llvm::Triple::aarch64: 1601 case llvm::Triple::mips64: 1602 case llvm::Triple::mips64el: 1603 case llvm::Triple::mips: 1604 case llvm::Triple::mipsel: 1605 // On these architectures the PC don't get updated for breakpoint hits 1606 actual_opcode_size = 0; 1607 return Status(); 1608 1609 default: 1610 assert(false && "CPU type not supported!"); 1611 return Status("CPU type not supported"); 1612 } 1613 } 1614 1615 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size, 1616 bool hardware) { 1617 if (hardware) 1618 return SetHardwareBreakpoint(addr, size); 1619 else 1620 return SetSoftwareBreakpoint(addr, size); 1621 } 1622 1623 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) { 1624 if (hardware) 1625 return RemoveHardwareBreakpoint(addr); 1626 else 1627 return NativeProcessProtocol::RemoveBreakpoint(addr); 1628 } 1629 1630 Status NativeProcessLinux::GetSoftwareBreakpointTrapOpcode( 1631 size_t trap_opcode_size_hint, size_t &actual_opcode_size, 1632 const uint8_t *&trap_opcode_bytes) { 1633 // FIXME put this behind a breakpoint protocol class that can be set per 1634 // architecture. Need MIPS support here. 1635 static const uint8_t g_aarch64_opcode[] = {0x00, 0x00, 0x20, 0xd4}; 1636 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 1637 // linux kernel does otherwise. 1638 static const uint8_t g_arm_breakpoint_opcode[] = {0xf0, 0x01, 0xf0, 0xe7}; 1639 static const uint8_t g_i386_opcode[] = {0xCC}; 1640 static const uint8_t g_mips64_opcode[] = {0x00, 0x00, 0x00, 0x0d}; 1641 static const uint8_t g_mips64el_opcode[] = {0x0d, 0x00, 0x00, 0x00}; 1642 static const uint8_t g_s390x_opcode[] = {0x00, 0x01}; 1643 static const uint8_t g_thumb_breakpoint_opcode[] = {0x01, 0xde}; 1644 1645 switch (m_arch.GetMachine()) { 1646 case llvm::Triple::aarch64: 1647 trap_opcode_bytes = g_aarch64_opcode; 1648 actual_opcode_size = sizeof(g_aarch64_opcode); 1649 return Status(); 1650 1651 case llvm::Triple::arm: 1652 switch (trap_opcode_size_hint) { 1653 case 2: 1654 trap_opcode_bytes = g_thumb_breakpoint_opcode; 1655 actual_opcode_size = sizeof(g_thumb_breakpoint_opcode); 1656 return Status(); 1657 case 4: 1658 trap_opcode_bytes = g_arm_breakpoint_opcode; 1659 actual_opcode_size = sizeof(g_arm_breakpoint_opcode); 1660 return Status(); 1661 default: 1662 assert(false && "Unrecognised trap opcode size hint!"); 1663 return Status("Unrecognised trap opcode size hint!"); 1664 } 1665 1666 case llvm::Triple::x86: 1667 case llvm::Triple::x86_64: 1668 trap_opcode_bytes = g_i386_opcode; 1669 actual_opcode_size = sizeof(g_i386_opcode); 1670 return Status(); 1671 1672 case llvm::Triple::mips: 1673 case llvm::Triple::mips64: 1674 trap_opcode_bytes = g_mips64_opcode; 1675 actual_opcode_size = sizeof(g_mips64_opcode); 1676 return Status(); 1677 1678 case llvm::Triple::mipsel: 1679 case llvm::Triple::mips64el: 1680 trap_opcode_bytes = g_mips64el_opcode; 1681 actual_opcode_size = sizeof(g_mips64el_opcode); 1682 return Status(); 1683 1684 case llvm::Triple::systemz: 1685 trap_opcode_bytes = g_s390x_opcode; 1686 actual_opcode_size = sizeof(g_s390x_opcode); 1687 return Status(); 1688 1689 default: 1690 assert(false && "CPU type not supported!"); 1691 return Status("CPU type not supported"); 1692 } 1693 } 1694 1695 #if 0 1696 ProcessMessage::CrashReason 1697 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info) 1698 { 1699 ProcessMessage::CrashReason reason; 1700 assert(info->si_signo == SIGSEGV); 1701 1702 reason = ProcessMessage::eInvalidCrashReason; 1703 1704 switch (info->si_code) 1705 { 1706 default: 1707 assert(false && "unexpected si_code for SIGSEGV"); 1708 break; 1709 case SI_KERNEL: 1710 // Linux will occasionally send spurious SI_KERNEL codes. 1711 // (this is poorly documented in sigaction) 1712 // One way to get this is via unaligned SIMD loads. 1713 reason = ProcessMessage::eInvalidAddress; // for lack of anything better 1714 break; 1715 case SEGV_MAPERR: 1716 reason = ProcessMessage::eInvalidAddress; 1717 break; 1718 case SEGV_ACCERR: 1719 reason = ProcessMessage::ePrivilegedAddress; 1720 break; 1721 } 1722 1723 return reason; 1724 } 1725 #endif 1726 1727 #if 0 1728 ProcessMessage::CrashReason 1729 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info) 1730 { 1731 ProcessMessage::CrashReason reason; 1732 assert(info->si_signo == SIGILL); 1733 1734 reason = ProcessMessage::eInvalidCrashReason; 1735 1736 switch (info->si_code) 1737 { 1738 default: 1739 assert(false && "unexpected si_code for SIGILL"); 1740 break; 1741 case ILL_ILLOPC: 1742 reason = ProcessMessage::eIllegalOpcode; 1743 break; 1744 case ILL_ILLOPN: 1745 reason = ProcessMessage::eIllegalOperand; 1746 break; 1747 case ILL_ILLADR: 1748 reason = ProcessMessage::eIllegalAddressingMode; 1749 break; 1750 case ILL_ILLTRP: 1751 reason = ProcessMessage::eIllegalTrap; 1752 break; 1753 case ILL_PRVOPC: 1754 reason = ProcessMessage::ePrivilegedOpcode; 1755 break; 1756 case ILL_PRVREG: 1757 reason = ProcessMessage::ePrivilegedRegister; 1758 break; 1759 case ILL_COPROC: 1760 reason = ProcessMessage::eCoprocessorError; 1761 break; 1762 case ILL_BADSTK: 1763 reason = ProcessMessage::eInternalStackError; 1764 break; 1765 } 1766 1767 return reason; 1768 } 1769 #endif 1770 1771 #if 0 1772 ProcessMessage::CrashReason 1773 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info) 1774 { 1775 ProcessMessage::CrashReason reason; 1776 assert(info->si_signo == SIGFPE); 1777 1778 reason = ProcessMessage::eInvalidCrashReason; 1779 1780 switch (info->si_code) 1781 { 1782 default: 1783 assert(false && "unexpected si_code for SIGFPE"); 1784 break; 1785 case FPE_INTDIV: 1786 reason = ProcessMessage::eIntegerDivideByZero; 1787 break; 1788 case FPE_INTOVF: 1789 reason = ProcessMessage::eIntegerOverflow; 1790 break; 1791 case FPE_FLTDIV: 1792 reason = ProcessMessage::eFloatDivideByZero; 1793 break; 1794 case FPE_FLTOVF: 1795 reason = ProcessMessage::eFloatOverflow; 1796 break; 1797 case FPE_FLTUND: 1798 reason = ProcessMessage::eFloatUnderflow; 1799 break; 1800 case FPE_FLTRES: 1801 reason = ProcessMessage::eFloatInexactResult; 1802 break; 1803 case FPE_FLTINV: 1804 reason = ProcessMessage::eFloatInvalidOperation; 1805 break; 1806 case FPE_FLTSUB: 1807 reason = ProcessMessage::eFloatSubscriptRange; 1808 break; 1809 } 1810 1811 return reason; 1812 } 1813 #endif 1814 1815 #if 0 1816 ProcessMessage::CrashReason 1817 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info) 1818 { 1819 ProcessMessage::CrashReason reason; 1820 assert(info->si_signo == SIGBUS); 1821 1822 reason = ProcessMessage::eInvalidCrashReason; 1823 1824 switch (info->si_code) 1825 { 1826 default: 1827 assert(false && "unexpected si_code for SIGBUS"); 1828 break; 1829 case BUS_ADRALN: 1830 reason = ProcessMessage::eIllegalAlignment; 1831 break; 1832 case BUS_ADRERR: 1833 reason = ProcessMessage::eIllegalAddress; 1834 break; 1835 case BUS_OBJERR: 1836 reason = ProcessMessage::eHardwareError; 1837 break; 1838 } 1839 1840 return reason; 1841 } 1842 #endif 1843 1844 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size, 1845 size_t &bytes_read) { 1846 if (ProcessVmReadvSupported()) { 1847 // The process_vm_readv path is about 50 times faster than ptrace api. We 1848 // want to use 1849 // this syscall if it is supported. 1850 1851 const ::pid_t pid = GetID(); 1852 1853 struct iovec local_iov, remote_iov; 1854 local_iov.iov_base = buf; 1855 local_iov.iov_len = size; 1856 remote_iov.iov_base = reinterpret_cast<void *>(addr); 1857 remote_iov.iov_len = size; 1858 1859 bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0); 1860 const bool success = bytes_read == size; 1861 1862 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1863 LLDB_LOG(log, 1864 "using process_vm_readv to read {0} bytes from inferior " 1865 "address {1:x}: {2}", 1866 size, addr, success ? "Success" : llvm::sys::StrError(errno)); 1867 1868 if (success) 1869 return Status(); 1870 // else the call failed for some reason, let's retry the read using ptrace 1871 // api. 1872 } 1873 1874 unsigned char *dst = static_cast<unsigned char *>(buf); 1875 size_t remainder; 1876 long data; 1877 1878 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1879 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1880 1881 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { 1882 Status error = NativeProcessLinux::PtraceWrapper( 1883 PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data); 1884 if (error.Fail()) 1885 return error; 1886 1887 remainder = size - bytes_read; 1888 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1889 1890 // Copy the data into our buffer 1891 memcpy(dst, &data, remainder); 1892 1893 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1894 addr += k_ptrace_word_size; 1895 dst += k_ptrace_word_size; 1896 } 1897 return Status(); 1898 } 1899 1900 Status NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, 1901 size_t size, 1902 size_t &bytes_read) { 1903 Status error = ReadMemory(addr, buf, size, bytes_read); 1904 if (error.Fail()) 1905 return error; 1906 return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size); 1907 } 1908 1909 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, 1910 size_t size, size_t &bytes_written) { 1911 const unsigned char *src = static_cast<const unsigned char *>(buf); 1912 size_t remainder; 1913 Status error; 1914 1915 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1916 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1917 1918 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { 1919 remainder = size - bytes_written; 1920 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1921 1922 if (remainder == k_ptrace_word_size) { 1923 unsigned long data = 0; 1924 memcpy(&data, src, k_ptrace_word_size); 1925 1926 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1927 error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), 1928 (void *)addr, (void *)data); 1929 if (error.Fail()) 1930 return error; 1931 } else { 1932 unsigned char buff[8]; 1933 size_t bytes_read; 1934 error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read); 1935 if (error.Fail()) 1936 return error; 1937 1938 memcpy(buff, src, remainder); 1939 1940 size_t bytes_written_rec; 1941 error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec); 1942 if (error.Fail()) 1943 return error; 1944 1945 LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src, 1946 *(unsigned long *)buff); 1947 } 1948 1949 addr += k_ptrace_word_size; 1950 src += k_ptrace_word_size; 1951 } 1952 return error; 1953 } 1954 1955 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) { 1956 return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); 1957 } 1958 1959 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid, 1960 unsigned long *message) { 1961 return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); 1962 } 1963 1964 Status NativeProcessLinux::Detach(lldb::tid_t tid) { 1965 if (tid == LLDB_INVALID_THREAD_ID) 1966 return Status(); 1967 1968 return PtraceWrapper(PTRACE_DETACH, tid); 1969 } 1970 1971 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) { 1972 for (auto thread_sp : m_threads) { 1973 assert(thread_sp && "thread list should not contain NULL threads"); 1974 if (thread_sp->GetID() == thread_id) { 1975 // We have this thread. 1976 return true; 1977 } 1978 } 1979 1980 // We don't have this thread. 1981 return false; 1982 } 1983 1984 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) { 1985 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1986 LLDB_LOG(log, "tid: {0})", thread_id); 1987 1988 bool found = false; 1989 for (auto it = m_threads.begin(); it != m_threads.end(); ++it) { 1990 if (*it && ((*it)->GetID() == thread_id)) { 1991 m_threads.erase(it); 1992 found = true; 1993 break; 1994 } 1995 } 1996 1997 if (found) 1998 StopTracingForThread(thread_id); 1999 SignalIfAllThreadsStopped(); 2000 return found; 2001 } 2002 2003 NativeThreadLinuxSP NativeProcessLinux::AddThread(lldb::tid_t thread_id) { 2004 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD)); 2005 LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id); 2006 2007 assert(!HasThreadNoLock(thread_id) && 2008 "attempted to add a thread by id that already exists"); 2009 2010 // If this is the first thread, save it as the current thread 2011 if (m_threads.empty()) 2012 SetCurrentThreadID(thread_id); 2013 2014 auto thread_sp = std::make_shared<NativeThreadLinux>(this, thread_id); 2015 m_threads.push_back(thread_sp); 2016 2017 if (m_pt_proces_trace_id != LLDB_INVALID_UID) { 2018 auto traceMonitor = ProcessorTraceMonitor::Create( 2019 GetID(), thread_id, m_pt_process_trace_config, true); 2020 if (traceMonitor) { 2021 m_pt_traced_thread_group.insert(thread_id); 2022 m_processor_trace_monitor.insert( 2023 std::make_pair(thread_id, std::move(*traceMonitor))); 2024 } else { 2025 LLDB_LOG(log, "failed to start trace on thread {0}", thread_id); 2026 Status error(traceMonitor.takeError()); 2027 LLDB_LOG(log, "error {0}", error); 2028 } 2029 } 2030 2031 return thread_sp; 2032 } 2033 2034 Status 2035 NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread) { 2036 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 2037 2038 Status error; 2039 2040 // Find out the size of a breakpoint (might depend on where we are in the 2041 // code). 2042 NativeRegisterContextSP context_sp = thread.GetRegisterContext(); 2043 if (!context_sp) { 2044 error.SetErrorString("cannot get a NativeRegisterContext for the thread"); 2045 LLDB_LOG(log, "failed: {0}", error); 2046 return error; 2047 } 2048 2049 uint32_t breakpoint_size = 0; 2050 error = GetSoftwareBreakpointPCOffset(breakpoint_size); 2051 if (error.Fail()) { 2052 LLDB_LOG(log, "GetBreakpointSize() failed: {0}", error); 2053 return error; 2054 } else 2055 LLDB_LOG(log, "breakpoint size: {0}", breakpoint_size); 2056 2057 // First try probing for a breakpoint at a software breakpoint location: PC - 2058 // breakpoint size. 2059 const lldb::addr_t initial_pc_addr = 2060 context_sp->GetPCfromBreakpointLocation(); 2061 lldb::addr_t breakpoint_addr = initial_pc_addr; 2062 if (breakpoint_size > 0) { 2063 // Do not allow breakpoint probe to wrap around. 2064 if (breakpoint_addr >= breakpoint_size) 2065 breakpoint_addr -= breakpoint_size; 2066 } 2067 2068 // Check if we stopped because of a breakpoint. 2069 NativeBreakpointSP breakpoint_sp; 2070 error = m_breakpoint_list.GetBreakpoint(breakpoint_addr, breakpoint_sp); 2071 if (!error.Success() || !breakpoint_sp) { 2072 // We didn't find one at a software probe location. Nothing to do. 2073 LLDB_LOG(log, 2074 "pid {0} no lldb breakpoint found at current pc with " 2075 "adjustment: {1}", 2076 GetID(), breakpoint_addr); 2077 return Status(); 2078 } 2079 2080 // If the breakpoint is not a software breakpoint, nothing to do. 2081 if (!breakpoint_sp->IsSoftwareBreakpoint()) { 2082 LLDB_LOG( 2083 log, 2084 "pid {0} breakpoint found at {1:x}, not software, nothing to adjust", 2085 GetID(), breakpoint_addr); 2086 return Status(); 2087 } 2088 2089 // 2090 // We have a software breakpoint and need to adjust the PC. 2091 // 2092 2093 // Sanity check. 2094 if (breakpoint_size == 0) { 2095 // Nothing to do! How did we get here? 2096 LLDB_LOG(log, 2097 "pid {0} breakpoint found at {1:x}, it is software, but the " 2098 "size is zero, nothing to do (unexpected)", 2099 GetID(), breakpoint_addr); 2100 return Status(); 2101 } 2102 2103 // Change the program counter. 2104 LLDB_LOG(log, "pid {0} tid {1}: changing PC from {2:x} to {3:x}", GetID(), 2105 thread.GetID(), initial_pc_addr, breakpoint_addr); 2106 2107 error = context_sp->SetPC(breakpoint_addr); 2108 if (error.Fail()) { 2109 LLDB_LOG(log, "pid {0} tid {1}: failed to set PC: {2}", GetID(), 2110 thread.GetID(), error); 2111 return error; 2112 } 2113 2114 return error; 2115 } 2116 2117 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path, 2118 FileSpec &file_spec) { 2119 Status error = PopulateMemoryRegionCache(); 2120 if (error.Fail()) 2121 return error; 2122 2123 FileSpec module_file_spec(module_path, true); 2124 2125 file_spec.Clear(); 2126 for (const auto &it : m_mem_region_cache) { 2127 if (it.second.GetFilename() == module_file_spec.GetFilename()) { 2128 file_spec = it.second; 2129 return Status(); 2130 } 2131 } 2132 return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 2133 module_file_spec.GetFilename().AsCString(), GetID()); 2134 } 2135 2136 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name, 2137 lldb::addr_t &load_addr) { 2138 load_addr = LLDB_INVALID_ADDRESS; 2139 Status error = PopulateMemoryRegionCache(); 2140 if (error.Fail()) 2141 return error; 2142 2143 FileSpec file(file_name, false); 2144 for (const auto &it : m_mem_region_cache) { 2145 if (it.second == file) { 2146 load_addr = it.first.GetRange().GetRangeBase(); 2147 return Status(); 2148 } 2149 } 2150 return Status("No load address found for specified file."); 2151 } 2152 2153 NativeThreadLinuxSP NativeProcessLinux::GetThreadByID(lldb::tid_t tid) { 2154 return std::static_pointer_cast<NativeThreadLinux>( 2155 NativeProcessProtocol::GetThreadByID(tid)); 2156 } 2157 2158 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, 2159 lldb::StateType state, int signo) { 2160 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2161 LLDB_LOG(log, "tid: {0}", thread.GetID()); 2162 2163 // Before we do the resume below, first check if we have a pending 2164 // stop notification that is currently waiting for 2165 // all threads to stop. This is potentially a buggy situation since 2166 // we're ostensibly waiting for threads to stop before we send out the 2167 // pending notification, and here we are resuming one before we send 2168 // out the pending stop notification. 2169 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 2170 LLDB_LOG(log, 2171 "about to resume tid {0} per explicit request but we have a " 2172 "pending stop notification (tid {1}) that is actively " 2173 "waiting for this thread to stop. Valid sequence of events?", 2174 thread.GetID(), m_pending_notification_tid); 2175 } 2176 2177 // Request a resume. We expect this to be synchronous and the system 2178 // to reflect it is running after this completes. 2179 switch (state) { 2180 case eStateRunning: { 2181 const auto resume_result = thread.Resume(signo); 2182 if (resume_result.Success()) 2183 SetState(eStateRunning, true); 2184 return resume_result; 2185 } 2186 case eStateStepping: { 2187 const auto step_result = thread.SingleStep(signo); 2188 if (step_result.Success()) 2189 SetState(eStateRunning, true); 2190 return step_result; 2191 } 2192 default: 2193 LLDB_LOG(log, "Unhandled state {0}.", state); 2194 llvm_unreachable("Unhandled state for resume"); 2195 } 2196 } 2197 2198 //===----------------------------------------------------------------------===// 2199 2200 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) { 2201 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2202 LLDB_LOG(log, "about to process event: (triggering_tid: {0})", 2203 triggering_tid); 2204 2205 m_pending_notification_tid = triggering_tid; 2206 2207 // Request a stop for all the thread stops that need to be stopped 2208 // and are not already known to be stopped. 2209 for (const auto &thread_sp : m_threads) { 2210 if (StateIsRunningState(thread_sp->GetState())) 2211 static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop(); 2212 } 2213 2214 SignalIfAllThreadsStopped(); 2215 LLDB_LOG(log, "event processing done"); 2216 } 2217 2218 void NativeProcessLinux::SignalIfAllThreadsStopped() { 2219 if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) 2220 return; // No pending notification. Nothing to do. 2221 2222 for (const auto &thread_sp : m_threads) { 2223 if (StateIsRunningState(thread_sp->GetState())) 2224 return; // Some threads are still running. Don't signal yet. 2225 } 2226 2227 // We have a pending notification and all threads have stopped. 2228 Log *log( 2229 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 2230 2231 // Clear any temporary breakpoints we used to implement software single 2232 // stepping. 2233 for (const auto &thread_info : m_threads_stepping_with_breakpoint) { 2234 Status error = RemoveBreakpoint(thread_info.second); 2235 if (error.Fail()) 2236 LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}", 2237 thread_info.first, error); 2238 } 2239 m_threads_stepping_with_breakpoint.clear(); 2240 2241 // Notify the delegate about the stop 2242 SetCurrentThreadID(m_pending_notification_tid); 2243 SetState(StateType::eStateStopped, true); 2244 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 2245 } 2246 2247 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) { 2248 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2249 LLDB_LOG(log, "tid: {0}", thread.GetID()); 2250 2251 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && 2252 StateIsRunningState(thread.GetState())) { 2253 // We will need to wait for this new thread to stop as well before firing 2254 // the 2255 // notification. 2256 thread.RequestStop(); 2257 } 2258 } 2259 2260 void NativeProcessLinux::SigchldHandler() { 2261 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 2262 // Process all pending waitpid notifications. 2263 while (true) { 2264 int status = -1; 2265 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, -1, &status, 2266 __WALL | __WNOTHREAD | WNOHANG); 2267 2268 if (wait_pid == 0) 2269 break; // We are done. 2270 2271 if (wait_pid == -1) { 2272 Status error(errno, eErrorTypePOSIX); 2273 LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error); 2274 break; 2275 } 2276 2277 WaitStatus wait_status = WaitStatus::Decode(status); 2278 bool exited = wait_status.type == WaitStatus::Exit || 2279 (wait_status.type == WaitStatus::Signal && 2280 wait_pid == static_cast<::pid_t>(GetID())); 2281 2282 LLDB_LOG( 2283 log, 2284 "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}", 2285 wait_pid, wait_status, exited); 2286 2287 MonitorCallback(wait_pid, exited, wait_status); 2288 } 2289 } 2290 2291 // Wrapper for ptrace to catch errors and log calls. 2292 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. 2293 // for PTRACE_PEEK*) 2294 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, 2295 void *data, size_t data_size, 2296 long *result) { 2297 Status error; 2298 long int ret; 2299 2300 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2301 2302 PtraceDisplayBytes(req, data, data_size); 2303 2304 errno = 0; 2305 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 2306 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 2307 *(unsigned int *)addr, data); 2308 else 2309 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 2310 addr, data); 2311 2312 if (ret == -1) 2313 error.SetErrorToErrno(); 2314 2315 if (result) 2316 *result = ret; 2317 2318 LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data, 2319 data_size, ret); 2320 2321 PtraceDisplayBytes(req, data, data_size); 2322 2323 if (error.Fail()) 2324 LLDB_LOG(log, "ptrace() failed: {0}", error); 2325 2326 return error; 2327 } 2328 2329 llvm::Expected<ProcessorTraceMonitor &> 2330 NativeProcessLinux::LookupProcessorTraceInstance(lldb::user_id_t traceid, 2331 lldb::tid_t thread) { 2332 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2333 if (thread == LLDB_INVALID_THREAD_ID && traceid == m_pt_proces_trace_id) { 2334 LLDB_LOG(log, "thread not specified: {0}", traceid); 2335 return Status("tracing not active thread not specified").ToError(); 2336 } 2337 2338 for (auto& iter : m_processor_trace_monitor) { 2339 if (traceid == iter.second->GetTraceID() && 2340 (thread == iter.first || thread == LLDB_INVALID_THREAD_ID)) 2341 return *(iter.second); 2342 } 2343 2344 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 2345 return Status("tracing not active for this thread").ToError(); 2346 } 2347 2348 Status NativeProcessLinux::GetMetaData(lldb::user_id_t traceid, 2349 lldb::tid_t thread, 2350 llvm::MutableArrayRef<uint8_t> &buffer, 2351 size_t offset) { 2352 TraceOptions trace_options; 2353 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2354 Status error; 2355 2356 LLDB_LOG(log, "traceid {0}", traceid); 2357 2358 auto perf_monitor = LookupProcessorTraceInstance(traceid, thread); 2359 if (!perf_monitor) { 2360 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 2361 buffer = buffer.slice(buffer.size()); 2362 error = perf_monitor.takeError(); 2363 return error; 2364 } 2365 return (*perf_monitor).ReadPerfTraceData(buffer, offset); 2366 } 2367 2368 Status NativeProcessLinux::GetData(lldb::user_id_t traceid, lldb::tid_t thread, 2369 llvm::MutableArrayRef<uint8_t> &buffer, 2370 size_t offset) { 2371 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2372 Status error; 2373 2374 LLDB_LOG(log, "traceid {0}", traceid); 2375 2376 auto perf_monitor = LookupProcessorTraceInstance(traceid, thread); 2377 if (!perf_monitor) { 2378 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 2379 buffer = buffer.slice(buffer.size()); 2380 error = perf_monitor.takeError(); 2381 return error; 2382 } 2383 return (*perf_monitor).ReadPerfTraceAux(buffer, offset); 2384 } 2385 2386 Status NativeProcessLinux::GetTraceConfig(lldb::user_id_t traceid, 2387 TraceOptions &config) { 2388 Status error; 2389 if (config.getThreadID() == LLDB_INVALID_THREAD_ID && 2390 m_pt_proces_trace_id == traceid) { 2391 if (m_pt_proces_trace_id == LLDB_INVALID_UID) { 2392 error.SetErrorString("tracing not active for this process"); 2393 return error; 2394 } 2395 config = m_pt_process_trace_config; 2396 } else { 2397 auto perf_monitor = 2398 LookupProcessorTraceInstance(traceid, config.getThreadID()); 2399 if (!perf_monitor) { 2400 error = perf_monitor.takeError(); 2401 return error; 2402 } 2403 error = (*perf_monitor).GetTraceConfig(config); 2404 } 2405 return error; 2406 } 2407 2408 lldb::user_id_t 2409 NativeProcessLinux::StartTraceGroup(const TraceOptions &config, 2410 Status &error) { 2411 2412 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2413 if (config.getType() != TraceType::eTraceTypeProcessorTrace) 2414 return LLDB_INVALID_UID; 2415 2416 if (m_pt_proces_trace_id != LLDB_INVALID_UID) { 2417 error.SetErrorString("tracing already active on this process"); 2418 return m_pt_proces_trace_id; 2419 } 2420 2421 for (const auto &thread_sp : m_threads) { 2422 if (auto traceInstance = ProcessorTraceMonitor::Create( 2423 GetID(), thread_sp->GetID(), config, true)) { 2424 m_pt_traced_thread_group.insert(thread_sp->GetID()); 2425 m_processor_trace_monitor.insert( 2426 std::make_pair(thread_sp->GetID(), std::move(*traceInstance))); 2427 } 2428 } 2429 2430 m_pt_process_trace_config = config; 2431 error = ProcessorTraceMonitor::GetCPUType(m_pt_process_trace_config); 2432 2433 // Trace on Complete process will have traceid of 0 2434 m_pt_proces_trace_id = 0; 2435 2436 LLDB_LOG(log, "Process Trace ID {0}", m_pt_proces_trace_id); 2437 return m_pt_proces_trace_id; 2438 } 2439 2440 lldb::user_id_t NativeProcessLinux::StartTrace(const TraceOptions &config, 2441 Status &error) { 2442 if (config.getType() != TraceType::eTraceTypeProcessorTrace) 2443 return NativeProcessProtocol::StartTrace(config, error); 2444 2445 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2446 2447 lldb::tid_t threadid = config.getThreadID(); 2448 2449 if (threadid == LLDB_INVALID_THREAD_ID) 2450 return StartTraceGroup(config, error); 2451 2452 auto thread_sp = GetThreadByID(threadid); 2453 if (!thread_sp) { 2454 // Thread not tracked by lldb so don't trace. 2455 error.SetErrorString("invalid thread id"); 2456 return LLDB_INVALID_UID; 2457 } 2458 2459 const auto &iter = m_processor_trace_monitor.find(threadid); 2460 if (iter != m_processor_trace_monitor.end()) { 2461 LLDB_LOG(log, "Thread already being traced"); 2462 error.SetErrorString("tracing already active on this thread"); 2463 return LLDB_INVALID_UID; 2464 } 2465 2466 auto traceMonitor = 2467 ProcessorTraceMonitor::Create(GetID(), threadid, config, false); 2468 if (!traceMonitor) { 2469 error = traceMonitor.takeError(); 2470 LLDB_LOG(log, "error {0}", error); 2471 return LLDB_INVALID_UID; 2472 } 2473 lldb::user_id_t ret_trace_id = (*traceMonitor)->GetTraceID(); 2474 m_processor_trace_monitor.insert( 2475 std::make_pair(threadid, std::move(*traceMonitor))); 2476 return ret_trace_id; 2477 } 2478 2479 Status NativeProcessLinux::StopTracingForThread(lldb::tid_t thread) { 2480 Status error; 2481 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2482 LLDB_LOG(log, "Thread {0}", thread); 2483 2484 const auto& iter = m_processor_trace_monitor.find(thread); 2485 if (iter == m_processor_trace_monitor.end()) { 2486 error.SetErrorString("tracing not active for this thread"); 2487 return error; 2488 } 2489 2490 if (iter->second->GetTraceID() == m_pt_proces_trace_id) { 2491 // traceid maps to the whole process so we have to erase it from the 2492 // thread group. 2493 LLDB_LOG(log, "traceid maps to process"); 2494 m_pt_traced_thread_group.erase(thread); 2495 } 2496 m_processor_trace_monitor.erase(iter); 2497 2498 return error; 2499 } 2500 2501 Status NativeProcessLinux::StopTrace(lldb::user_id_t traceid, 2502 lldb::tid_t thread) { 2503 Status error; 2504 2505 TraceOptions trace_options; 2506 trace_options.setThreadID(thread); 2507 error = NativeProcessLinux::GetTraceConfig(traceid, trace_options); 2508 2509 if (error.Fail()) 2510 return error; 2511 2512 switch (trace_options.getType()) { 2513 case lldb::TraceType::eTraceTypeProcessorTrace: 2514 if (traceid == m_pt_proces_trace_id && 2515 thread == LLDB_INVALID_THREAD_ID) 2516 StopProcessorTracingOnProcess(); 2517 else 2518 error = StopProcessorTracingOnThread(traceid, thread); 2519 break; 2520 default: 2521 error.SetErrorString("trace not supported"); 2522 break; 2523 } 2524 2525 return error; 2526 } 2527 2528 void NativeProcessLinux::StopProcessorTracingOnProcess() { 2529 for (auto thread_id_iter : m_pt_traced_thread_group) 2530 m_processor_trace_monitor.erase(thread_id_iter); 2531 m_pt_traced_thread_group.clear(); 2532 m_pt_proces_trace_id = LLDB_INVALID_UID; 2533 } 2534 2535 Status NativeProcessLinux::StopProcessorTracingOnThread(lldb::user_id_t traceid, 2536 lldb::tid_t thread) { 2537 Status error; 2538 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2539 2540 if (thread == LLDB_INVALID_THREAD_ID) { 2541 for (auto& iter : m_processor_trace_monitor) { 2542 if (iter.second->GetTraceID() == traceid) { 2543 // Stopping a trace instance for an individual thread 2544 // hence there will only be one traceid that can match. 2545 m_processor_trace_monitor.erase(iter.first); 2546 return error; 2547 } 2548 LLDB_LOG(log, "Trace ID {0}", iter.second->GetTraceID()); 2549 } 2550 2551 LLDB_LOG(log, "Invalid TraceID"); 2552 error.SetErrorString("invalid trace id"); 2553 return error; 2554 } 2555 2556 // thread is specified so we can use find function on the map. 2557 const auto& iter = m_processor_trace_monitor.find(thread); 2558 if (iter == m_processor_trace_monitor.end()) { 2559 // thread not found in our map. 2560 LLDB_LOG(log, "thread not being traced"); 2561 error.SetErrorString("tracing not active for this thread"); 2562 return error; 2563 } 2564 if (iter->second->GetTraceID() != traceid) { 2565 // traceid did not match so it has to be invalid. 2566 LLDB_LOG(log, "Invalid TraceID"); 2567 error.SetErrorString("invalid trace id"); 2568 return error; 2569 } 2570 2571 LLDB_LOG(log, "UID - {0} , Thread -{1}", traceid, thread); 2572 2573 if (traceid == m_pt_proces_trace_id) { 2574 // traceid maps to the whole process so we have to erase it from the 2575 // thread group. 2576 LLDB_LOG(log, "traceid maps to process"); 2577 m_pt_traced_thread_group.erase(thread); 2578 } 2579 m_processor_trace_monitor.erase(iter); 2580 2581 return error; 2582 } 2583