1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/lldb-python.h" 11 12 #include "NativeProcessLinux.h" 13 14 // C Includes 15 #include <errno.h> 16 #include <poll.h> 17 #include <string.h> 18 #include <stdint.h> 19 #include <unistd.h> 20 #include <linux/unistd.h> 21 #if defined(__ANDROID_NDK__) && defined (__arm__) 22 #include <linux/personality.h> 23 #include <linux/user.h> 24 #else 25 #include <sys/personality.h> 26 #include <sys/user.h> 27 #endif 28 #ifndef __ANDROID__ 29 #include <sys/procfs.h> 30 #endif 31 #include <sys/ptrace.h> 32 #include <sys/uio.h> 33 #include <sys/socket.h> 34 #include <sys/syscall.h> 35 #include <sys/types.h> 36 #include <sys/wait.h> 37 38 #if defined (__arm64__) || defined (__aarch64__) 39 // NT_PRSTATUS and NT_FPREGSET definition 40 #include <elf.h> 41 #endif 42 43 // C++ Includes 44 #include <fstream> 45 #include <string> 46 47 // Other libraries and framework includes 48 #include "lldb/Core/Debugger.h" 49 #include "lldb/Core/Error.h" 50 #include "lldb/Core/Module.h" 51 #include "lldb/Core/ModuleSpec.h" 52 #include "lldb/Core/RegisterValue.h" 53 #include "lldb/Core/Scalar.h" 54 #include "lldb/Core/State.h" 55 #include "lldb/Host/Host.h" 56 #include "lldb/Host/HostInfo.h" 57 #include "lldb/Host/ThreadLauncher.h" 58 #include "lldb/Symbol/ObjectFile.h" 59 #include "lldb/Target/NativeRegisterContext.h" 60 #include "lldb/Target/ProcessLaunchInfo.h" 61 #include "lldb/Utility/PseudoTerminal.h" 62 63 #include "Host/common/NativeBreakpoint.h" 64 #include "Utility/StringExtractor.h" 65 66 #include "Plugins/Process/Utility/LinuxSignals.h" 67 #include "NativeThreadLinux.h" 68 #include "ProcFileReader.h" 69 #include "ThreadStateCoordinator.h" 70 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 71 72 #ifdef __ANDROID__ 73 #define __ptrace_request int 74 #define PT_DETACH PTRACE_DETACH 75 #endif 76 77 #define DEBUG_PTRACE_MAXBYTES 20 78 79 // Support ptrace extensions even when compiled without required kernel support 80 #ifndef PT_GETREGS 81 #ifndef PTRACE_GETREGS 82 #define PTRACE_GETREGS 12 83 #endif 84 #endif 85 #ifndef PT_SETREGS 86 #ifndef PTRACE_SETREGS 87 #define PTRACE_SETREGS 13 88 #endif 89 #endif 90 #ifndef PT_GETFPREGS 91 #ifndef PTRACE_GETFPREGS 92 #define PTRACE_GETFPREGS 14 93 #endif 94 #endif 95 #ifndef PT_SETFPREGS 96 #ifndef PTRACE_SETFPREGS 97 #define PTRACE_SETFPREGS 15 98 #endif 99 #endif 100 #ifndef PTRACE_GETREGSET 101 #define PTRACE_GETREGSET 0x4204 102 #endif 103 #ifndef PTRACE_SETREGSET 104 #define PTRACE_SETREGSET 0x4205 105 #endif 106 #ifndef PTRACE_GET_THREAD_AREA 107 #define PTRACE_GET_THREAD_AREA 25 108 #endif 109 #ifndef PTRACE_ARCH_PRCTL 110 #define PTRACE_ARCH_PRCTL 30 111 #endif 112 #ifndef ARCH_GET_FS 113 #define ARCH_SET_GS 0x1001 114 #define ARCH_SET_FS 0x1002 115 #define ARCH_GET_FS 0x1003 116 #define ARCH_GET_GS 0x1004 117 #endif 118 119 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS 0xffffffff 120 121 // Support hardware breakpoints in case it has not been defined 122 #ifndef TRAP_HWBKPT 123 #define TRAP_HWBKPT 4 124 #endif 125 126 // Try to define a macro to encapsulate the tgkill syscall 127 // fall back on kill() if tgkill isn't available 128 #define tgkill(pid, tid, sig) syscall(SYS_tgkill, pid, tid, sig) 129 130 // We disable the tracing of ptrace calls for integration builds to 131 // avoid the additional indirection and checks. 132 #ifndef LLDB_CONFIGURATION_BUILDANDINTEGRATION 133 #define PTRACE(req, pid, addr, data, data_size) \ 134 PtraceWrapper((req), (pid), (addr), (data), (data_size), #req, __FILE__, __LINE__) 135 #else 136 #define PTRACE(req, pid, addr, data, data_size) \ 137 PtraceWrapper((req), (pid), (addr), (data), (data_size)) 138 #endif 139 140 // Private bits we only need internally. 141 namespace 142 { 143 using namespace lldb; 144 using namespace lldb_private; 145 146 const UnixSignals& 147 GetUnixSignals () 148 { 149 static process_linux::LinuxSignals signals; 150 return signals; 151 } 152 153 ThreadStateCoordinator::LogFunction 154 GetThreadLoggerFunction () 155 { 156 return [](const char *format, va_list args) 157 { 158 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 159 if (log) 160 log->VAPrintf (format, args); 161 }; 162 } 163 164 void 165 CoordinatorErrorHandler (const std::string &error_message) 166 { 167 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 168 if (log) 169 log->Printf ("NativePlatformLinux::%s %s", __FUNCTION__, error_message.c_str ()); 170 assert (false && "ThreadStateCoordinator error reported"); 171 } 172 173 Error 174 ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch) 175 { 176 // Grab process info for the running process. 177 ProcessInstanceInfo process_info; 178 if (!platform.GetProcessInfo (pid, process_info)) 179 return lldb_private::Error("failed to get process info"); 180 181 // Resolve the executable module. 182 ModuleSP exe_module_sp; 183 ModuleSpec exe_module_spec(process_info.GetExecutableFile(), platform.GetSystemArchitecture ()); 184 FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ()); 185 Error error = platform.ResolveExecutable( 186 exe_module_spec, 187 exe_module_sp, 188 executable_search_paths.GetSize () ? &executable_search_paths : NULL); 189 190 if (!error.Success ()) 191 return error; 192 193 // Check if we've got our architecture from the exe_module. 194 arch = exe_module_sp->GetArchitecture (); 195 if (arch.IsValid ()) 196 return Error(); 197 else 198 return Error("failed to retrieve a valid architecture from the exe module"); 199 } 200 201 void 202 DisplayBytes (lldb_private::StreamString &s, void *bytes, uint32_t count) 203 { 204 uint8_t *ptr = (uint8_t *)bytes; 205 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 206 for(uint32_t i=0; i<loop_count; i++) 207 { 208 s.Printf ("[%x]", *ptr); 209 ptr++; 210 } 211 } 212 213 void 214 PtraceDisplayBytes(int &req, void *data, size_t data_size) 215 { 216 StreamString buf; 217 Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet ( 218 POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE)); 219 220 if (verbose_log) 221 { 222 switch(req) 223 { 224 case PTRACE_POKETEXT: 225 { 226 DisplayBytes(buf, &data, 8); 227 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData()); 228 break; 229 } 230 case PTRACE_POKEDATA: 231 { 232 DisplayBytes(buf, &data, 8); 233 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData()); 234 break; 235 } 236 case PTRACE_POKEUSER: 237 { 238 DisplayBytes(buf, &data, 8); 239 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData()); 240 break; 241 } 242 case PTRACE_SETREGS: 243 { 244 DisplayBytes(buf, data, data_size); 245 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData()); 246 break; 247 } 248 case PTRACE_SETFPREGS: 249 { 250 DisplayBytes(buf, data, data_size); 251 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData()); 252 break; 253 } 254 case PTRACE_SETSIGINFO: 255 { 256 DisplayBytes(buf, data, sizeof(siginfo_t)); 257 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData()); 258 break; 259 } 260 case PTRACE_SETREGSET: 261 { 262 // Extract iov_base from data, which is a pointer to the struct IOVEC 263 DisplayBytes(buf, *(void **)data, data_size); 264 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData()); 265 break; 266 } 267 default: 268 { 269 } 270 } 271 } 272 } 273 274 // Wrapper for ptrace to catch errors and log calls. 275 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) 276 long 277 PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, 278 const char* reqName, const char* file, int line) 279 { 280 long int result; 281 282 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE)); 283 284 PtraceDisplayBytes(req, data, data_size); 285 286 errno = 0; 287 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 288 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data); 289 else 290 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data); 291 292 if (log) 293 log->Printf("ptrace(%s, %" PRIu64 ", %p, %p, %zu)=%lX called from file %s line %d", 294 reqName, pid, addr, data, data_size, result, file, line); 295 296 PtraceDisplayBytes(req, data, data_size); 297 298 if (log && errno != 0) 299 { 300 const char* str; 301 switch (errno) 302 { 303 case ESRCH: str = "ESRCH"; break; 304 case EINVAL: str = "EINVAL"; break; 305 case EBUSY: str = "EBUSY"; break; 306 case EPERM: str = "EPERM"; break; 307 default: str = "<unknown>"; 308 } 309 log->Printf("ptrace() failed; errno=%d (%s)", errno, str); 310 } 311 312 return result; 313 } 314 315 #ifdef LLDB_CONFIGURATION_BUILDANDINTEGRATION 316 // Wrapper for ptrace when logging is not required. 317 // Sets errno to 0 prior to calling ptrace. 318 long 319 PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size) 320 { 321 long result = 0; 322 errno = 0; 323 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 324 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data); 325 else 326 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data); 327 return result; 328 } 329 #endif 330 331 //------------------------------------------------------------------------------ 332 // Static implementations of NativeProcessLinux::ReadMemory and 333 // NativeProcessLinux::WriteMemory. This enables mutual recursion between these 334 // functions without needed to go thru the thread funnel. 335 336 static lldb::addr_t 337 DoReadMemory ( 338 lldb::pid_t pid, 339 lldb::addr_t vm_addr, 340 void *buf, 341 lldb::addr_t size, 342 Error &error) 343 { 344 // ptrace word size is determined by the host, not the child 345 static const unsigned word_size = sizeof(void*); 346 unsigned char *dst = static_cast<unsigned char*>(buf); 347 lldb::addr_t bytes_read; 348 lldb::addr_t remainder; 349 long data; 350 351 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); 352 if (log) 353 ProcessPOSIXLog::IncNestLevel(); 354 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) 355 log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__, 356 pid, word_size, (void*)vm_addr, buf, size); 357 358 assert(sizeof(data) >= word_size); 359 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) 360 { 361 errno = 0; 362 data = PTRACE(PTRACE_PEEKDATA, pid, (void*)vm_addr, NULL, 0); 363 if (errno) 364 { 365 error.SetErrorToErrno(); 366 if (log) 367 ProcessPOSIXLog::DecNestLevel(); 368 return bytes_read; 369 } 370 371 remainder = size - bytes_read; 372 remainder = remainder > word_size ? word_size : remainder; 373 374 // Copy the data into our buffer 375 for (unsigned i = 0; i < remainder; ++i) 376 dst[i] = ((data >> i*8) & 0xFF); 377 378 if (log && ProcessPOSIXLog::AtTopNestLevel() && 379 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 380 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 381 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 382 { 383 uintptr_t print_dst = 0; 384 // Format bytes from data by moving into print_dst for log output 385 for (unsigned i = 0; i < remainder; ++i) 386 print_dst |= (((data >> i*8) & 0xFF) << i*8); 387 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 388 (void*)vm_addr, print_dst, (unsigned long)data); 389 } 390 391 vm_addr += word_size; 392 dst += word_size; 393 } 394 395 if (log) 396 ProcessPOSIXLog::DecNestLevel(); 397 return bytes_read; 398 } 399 400 static lldb::addr_t 401 DoWriteMemory( 402 lldb::pid_t pid, 403 lldb::addr_t vm_addr, 404 const void *buf, 405 lldb::addr_t size, 406 Error &error) 407 { 408 // ptrace word size is determined by the host, not the child 409 static const unsigned word_size = sizeof(void*); 410 const unsigned char *src = static_cast<const unsigned char*>(buf); 411 lldb::addr_t bytes_written = 0; 412 lldb::addr_t remainder; 413 414 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); 415 if (log) 416 ProcessPOSIXLog::IncNestLevel(); 417 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) 418 log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__, 419 pid, word_size, (void*)vm_addr, buf, size); 420 421 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) 422 { 423 remainder = size - bytes_written; 424 remainder = remainder > word_size ? word_size : remainder; 425 426 if (remainder == word_size) 427 { 428 unsigned long data = 0; 429 assert(sizeof(data) >= word_size); 430 for (unsigned i = 0; i < word_size; ++i) 431 data |= (unsigned long)src[i] << i*8; 432 433 if (log && ProcessPOSIXLog::AtTopNestLevel() && 434 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 435 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 436 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 437 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 438 (void*)vm_addr, *(unsigned long*)src, data); 439 440 if (PTRACE(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data, 0)) 441 { 442 error.SetErrorToErrno(); 443 if (log) 444 ProcessPOSIXLog::DecNestLevel(); 445 return bytes_written; 446 } 447 } 448 else 449 { 450 unsigned char buff[8]; 451 if (DoReadMemory(pid, vm_addr, 452 buff, word_size, error) != word_size) 453 { 454 if (log) 455 ProcessPOSIXLog::DecNestLevel(); 456 return bytes_written; 457 } 458 459 memcpy(buff, src, remainder); 460 461 if (DoWriteMemory(pid, vm_addr, 462 buff, word_size, error) != word_size) 463 { 464 if (log) 465 ProcessPOSIXLog::DecNestLevel(); 466 return bytes_written; 467 } 468 469 if (log && ProcessPOSIXLog::AtTopNestLevel() && 470 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 471 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 472 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 473 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 474 (void*)vm_addr, *(unsigned long*)src, *(unsigned long*)buff); 475 } 476 477 vm_addr += word_size; 478 src += word_size; 479 } 480 if (log) 481 ProcessPOSIXLog::DecNestLevel(); 482 return bytes_written; 483 } 484 485 //------------------------------------------------------------------------------ 486 /// @class Operation 487 /// @brief Represents a NativeProcessLinux operation. 488 /// 489 /// Under Linux, it is not possible to ptrace() from any other thread but the 490 /// one that spawned or attached to the process from the start. Therefore, when 491 /// a NativeProcessLinux is asked to deliver or change the state of an inferior 492 /// process the operation must be "funneled" to a specific thread to perform the 493 /// task. The Operation class provides an abstract base for all services the 494 /// NativeProcessLinux must perform via the single virtual function Execute, thus 495 /// encapsulating the code that needs to run in the privileged context. 496 class Operation 497 { 498 public: 499 Operation () : m_error() { } 500 501 virtual 502 ~Operation() {} 503 504 virtual void 505 Execute (NativeProcessLinux *process) = 0; 506 507 const Error & 508 GetError () const { return m_error; } 509 510 protected: 511 Error m_error; 512 }; 513 514 //------------------------------------------------------------------------------ 515 /// @class ReadOperation 516 /// @brief Implements NativeProcessLinux::ReadMemory. 517 class ReadOperation : public Operation 518 { 519 public: 520 ReadOperation ( 521 lldb::addr_t addr, 522 void *buff, 523 lldb::addr_t size, 524 lldb::addr_t &result) : 525 Operation (), 526 m_addr (addr), 527 m_buff (buff), 528 m_size (size), 529 m_result (result) 530 { 531 } 532 533 void Execute (NativeProcessLinux *process) override; 534 535 private: 536 lldb::addr_t m_addr; 537 void *m_buff; 538 lldb::addr_t m_size; 539 lldb::addr_t &m_result; 540 }; 541 542 void 543 ReadOperation::Execute (NativeProcessLinux *process) 544 { 545 m_result = DoReadMemory (process->GetID (), m_addr, m_buff, m_size, m_error); 546 } 547 548 //------------------------------------------------------------------------------ 549 /// @class WriteOperation 550 /// @brief Implements NativeProcessLinux::WriteMemory. 551 class WriteOperation : public Operation 552 { 553 public: 554 WriteOperation ( 555 lldb::addr_t addr, 556 const void *buff, 557 lldb::addr_t size, 558 lldb::addr_t &result) : 559 Operation (), 560 m_addr (addr), 561 m_buff (buff), 562 m_size (size), 563 m_result (result) 564 { 565 } 566 567 void Execute (NativeProcessLinux *process) override; 568 569 private: 570 lldb::addr_t m_addr; 571 const void *m_buff; 572 lldb::addr_t m_size; 573 lldb::addr_t &m_result; 574 }; 575 576 void 577 WriteOperation::Execute(NativeProcessLinux *process) 578 { 579 m_result = DoWriteMemory (process->GetID (), m_addr, m_buff, m_size, m_error); 580 } 581 582 //------------------------------------------------------------------------------ 583 /// @class ReadRegOperation 584 /// @brief Implements NativeProcessLinux::ReadRegisterValue. 585 class ReadRegOperation : public Operation 586 { 587 public: 588 ReadRegOperation(lldb::tid_t tid, uint32_t offset, const char *reg_name, 589 RegisterValue &value, bool &result) 590 : m_tid(tid), m_offset(static_cast<uintptr_t> (offset)), m_reg_name(reg_name), 591 m_value(value), m_result(result) 592 { } 593 594 void Execute(NativeProcessLinux *monitor); 595 596 private: 597 lldb::tid_t m_tid; 598 uintptr_t m_offset; 599 const char *m_reg_name; 600 RegisterValue &m_value; 601 bool &m_result; 602 }; 603 604 void 605 ReadRegOperation::Execute(NativeProcessLinux *monitor) 606 { 607 #if defined (__arm64__) || defined (__aarch64__) 608 if (m_offset > sizeof(struct user_pt_regs)) 609 { 610 uintptr_t offset = m_offset - sizeof(struct user_pt_regs); 611 if (offset > sizeof(struct user_fpsimd_state)) 612 { 613 m_result = false; 614 } 615 else 616 { 617 elf_fpregset_t regs; 618 int regset = NT_FPREGSET; 619 struct iovec ioVec; 620 621 ioVec.iov_base = ®s; 622 ioVec.iov_len = sizeof regs; 623 if (PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs) < 0) 624 m_result = false; 625 else 626 { 627 lldb_private::ArchSpec arch; 628 if (monitor->GetArchitecture(arch)) 629 { 630 m_result = true; 631 m_value.SetBytes((void *)(((unsigned char *)(®s)) + offset), 16, arch.GetByteOrder()); 632 } 633 else 634 m_result = false; 635 } 636 } 637 } 638 else 639 { 640 elf_gregset_t regs; 641 int regset = NT_PRSTATUS; 642 struct iovec ioVec; 643 644 ioVec.iov_base = ®s; 645 ioVec.iov_len = sizeof regs; 646 if (PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs) < 0) 647 m_result = false; 648 else 649 { 650 lldb_private::ArchSpec arch; 651 if (monitor->GetArchitecture(arch)) 652 { 653 m_result = true; 654 m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, arch.GetByteOrder()); 655 } else 656 m_result = false; 657 } 658 } 659 #else 660 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS)); 661 662 // Set errno to zero so that we can detect a failed peek. 663 errno = 0; 664 lldb::addr_t data = PTRACE(PTRACE_PEEKUSER, m_tid, (void*)m_offset, NULL, 0); 665 if (errno) 666 m_result = false; 667 else 668 { 669 m_value = data; 670 m_result = true; 671 } 672 if (log) 673 log->Printf ("NativeProcessLinux::%s() reg %s: 0x%" PRIx64, __FUNCTION__, 674 m_reg_name, data); 675 #endif 676 } 677 678 //------------------------------------------------------------------------------ 679 /// @class WriteRegOperation 680 /// @brief Implements NativeProcessLinux::WriteRegisterValue. 681 class WriteRegOperation : public Operation 682 { 683 public: 684 WriteRegOperation(lldb::tid_t tid, unsigned offset, const char *reg_name, 685 const RegisterValue &value, bool &result) 686 : m_tid(tid), m_offset(offset), m_reg_name(reg_name), 687 m_value(value), m_result(result) 688 { } 689 690 void Execute(NativeProcessLinux *monitor); 691 692 private: 693 lldb::tid_t m_tid; 694 uintptr_t m_offset; 695 const char *m_reg_name; 696 const RegisterValue &m_value; 697 bool &m_result; 698 }; 699 700 void 701 WriteRegOperation::Execute(NativeProcessLinux *monitor) 702 { 703 #if defined (__arm64__) || defined (__aarch64__) 704 if (m_offset > sizeof(struct user_pt_regs)) 705 { 706 uintptr_t offset = m_offset - sizeof(struct user_pt_regs); 707 if (offset > sizeof(struct user_fpsimd_state)) 708 { 709 m_result = false; 710 } 711 else 712 { 713 elf_fpregset_t regs; 714 int regset = NT_FPREGSET; 715 struct iovec ioVec; 716 717 ioVec.iov_base = ®s; 718 ioVec.iov_len = sizeof regs; 719 if (PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs) < 0) 720 m_result = false; 721 else 722 { 723 ::memcpy((void *)(((unsigned char *)(®s)) + offset), m_value.GetBytes(), 16); 724 if (PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, sizeof regs) < 0) 725 m_result = false; 726 else 727 m_result = true; 728 } 729 } 730 } 731 else 732 { 733 elf_gregset_t regs; 734 int regset = NT_PRSTATUS; 735 struct iovec ioVec; 736 737 ioVec.iov_base = ®s; 738 ioVec.iov_len = sizeof regs; 739 if (PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs) < 0) 740 m_result = false; 741 else 742 { 743 ::memcpy((void *)(((unsigned char *)(®s)) + m_offset), m_value.GetBytes(), 8); 744 if (PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, sizeof regs) < 0) 745 m_result = false; 746 else 747 m_result = true; 748 } 749 } 750 #else 751 void* buf; 752 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS)); 753 754 buf = (void*) m_value.GetAsUInt64(); 755 756 if (log) 757 log->Printf ("NativeProcessLinux::%s() reg %s: %p", __FUNCTION__, m_reg_name, buf); 758 if (PTRACE(PTRACE_POKEUSER, m_tid, (void*)m_offset, buf, 0)) 759 m_result = false; 760 else 761 m_result = true; 762 #endif 763 } 764 765 //------------------------------------------------------------------------------ 766 /// @class ReadGPROperation 767 /// @brief Implements NativeProcessLinux::ReadGPR. 768 class ReadGPROperation : public Operation 769 { 770 public: 771 ReadGPROperation(lldb::tid_t tid, void *buf, size_t buf_size, bool &result) 772 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_result(result) 773 { } 774 775 void Execute(NativeProcessLinux *monitor); 776 777 private: 778 lldb::tid_t m_tid; 779 void *m_buf; 780 size_t m_buf_size; 781 bool &m_result; 782 }; 783 784 void 785 ReadGPROperation::Execute(NativeProcessLinux *monitor) 786 { 787 #if defined (__arm64__) || defined (__aarch64__) 788 int regset = NT_PRSTATUS; 789 struct iovec ioVec; 790 791 ioVec.iov_base = m_buf; 792 ioVec.iov_len = m_buf_size; 793 if (PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, m_buf_size) < 0) 794 m_result = false; 795 else 796 m_result = true; 797 #else 798 if (PTRACE(PTRACE_GETREGS, m_tid, NULL, m_buf, m_buf_size) < 0) 799 m_result = false; 800 else 801 m_result = true; 802 #endif 803 } 804 805 //------------------------------------------------------------------------------ 806 /// @class ReadFPROperation 807 /// @brief Implements NativeProcessLinux::ReadFPR. 808 class ReadFPROperation : public Operation 809 { 810 public: 811 ReadFPROperation(lldb::tid_t tid, void *buf, size_t buf_size, bool &result) 812 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_result(result) 813 { } 814 815 void Execute(NativeProcessLinux *monitor); 816 817 private: 818 lldb::tid_t m_tid; 819 void *m_buf; 820 size_t m_buf_size; 821 bool &m_result; 822 }; 823 824 void 825 ReadFPROperation::Execute(NativeProcessLinux *monitor) 826 { 827 #if defined (__arm64__) || defined (__aarch64__) 828 int regset = NT_FPREGSET; 829 struct iovec ioVec; 830 831 ioVec.iov_base = m_buf; 832 ioVec.iov_len = m_buf_size; 833 if (PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, m_buf_size) < 0) 834 m_result = false; 835 else 836 m_result = true; 837 #else 838 if (PTRACE(PTRACE_GETFPREGS, m_tid, NULL, m_buf, m_buf_size) < 0) 839 m_result = false; 840 else 841 m_result = true; 842 #endif 843 } 844 845 //------------------------------------------------------------------------------ 846 /// @class ReadRegisterSetOperation 847 /// @brief Implements NativeProcessLinux::ReadRegisterSet. 848 class ReadRegisterSetOperation : public Operation 849 { 850 public: 851 ReadRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset, bool &result) 852 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset), m_result(result) 853 { } 854 855 void Execute(NativeProcessLinux *monitor); 856 857 private: 858 lldb::tid_t m_tid; 859 void *m_buf; 860 size_t m_buf_size; 861 const unsigned int m_regset; 862 bool &m_result; 863 }; 864 865 void 866 ReadRegisterSetOperation::Execute(NativeProcessLinux *monitor) 867 { 868 if (PTRACE(PTRACE_GETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size) < 0) 869 m_result = false; 870 else 871 m_result = true; 872 } 873 874 //------------------------------------------------------------------------------ 875 /// @class WriteGPROperation 876 /// @brief Implements NativeProcessLinux::WriteGPR. 877 class WriteGPROperation : public Operation 878 { 879 public: 880 WriteGPROperation(lldb::tid_t tid, void *buf, size_t buf_size, bool &result) 881 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_result(result) 882 { } 883 884 void Execute(NativeProcessLinux *monitor); 885 886 private: 887 lldb::tid_t m_tid; 888 void *m_buf; 889 size_t m_buf_size; 890 bool &m_result; 891 }; 892 893 void 894 WriteGPROperation::Execute(NativeProcessLinux *monitor) 895 { 896 #if defined (__arm64__) || defined (__aarch64__) 897 int regset = NT_PRSTATUS; 898 struct iovec ioVec; 899 900 ioVec.iov_base = m_buf; 901 ioVec.iov_len = m_buf_size; 902 if (PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, m_buf_size) < 0) 903 m_result = false; 904 else 905 m_result = true; 906 #else 907 if (PTRACE(PTRACE_SETREGS, m_tid, NULL, m_buf, m_buf_size) < 0) 908 m_result = false; 909 else 910 m_result = true; 911 #endif 912 } 913 914 //------------------------------------------------------------------------------ 915 /// @class WriteFPROperation 916 /// @brief Implements NativeProcessLinux::WriteFPR. 917 class WriteFPROperation : public Operation 918 { 919 public: 920 WriteFPROperation(lldb::tid_t tid, void *buf, size_t buf_size, bool &result) 921 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_result(result) 922 { } 923 924 void Execute(NativeProcessLinux *monitor); 925 926 private: 927 lldb::tid_t m_tid; 928 void *m_buf; 929 size_t m_buf_size; 930 bool &m_result; 931 }; 932 933 void 934 WriteFPROperation::Execute(NativeProcessLinux *monitor) 935 { 936 #if defined (__arm64__) || defined (__aarch64__) 937 int regset = NT_FPREGSET; 938 struct iovec ioVec; 939 940 ioVec.iov_base = m_buf; 941 ioVec.iov_len = m_buf_size; 942 if (PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, m_buf_size) < 0) 943 m_result = false; 944 else 945 m_result = true; 946 #else 947 if (PTRACE(PTRACE_SETFPREGS, m_tid, NULL, m_buf, m_buf_size) < 0) 948 m_result = false; 949 else 950 m_result = true; 951 #endif 952 } 953 954 //------------------------------------------------------------------------------ 955 /// @class WriteRegisterSetOperation 956 /// @brief Implements NativeProcessLinux::WriteRegisterSet. 957 class WriteRegisterSetOperation : public Operation 958 { 959 public: 960 WriteRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset, bool &result) 961 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset), m_result(result) 962 { } 963 964 void Execute(NativeProcessLinux *monitor); 965 966 private: 967 lldb::tid_t m_tid; 968 void *m_buf; 969 size_t m_buf_size; 970 const unsigned int m_regset; 971 bool &m_result; 972 }; 973 974 void 975 WriteRegisterSetOperation::Execute(NativeProcessLinux *monitor) 976 { 977 if (PTRACE(PTRACE_SETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size) < 0) 978 m_result = false; 979 else 980 m_result = true; 981 } 982 983 //------------------------------------------------------------------------------ 984 /// @class ResumeOperation 985 /// @brief Implements NativeProcessLinux::Resume. 986 class ResumeOperation : public Operation 987 { 988 public: 989 ResumeOperation(lldb::tid_t tid, uint32_t signo, bool &result) : 990 m_tid(tid), m_signo(signo), m_result(result) { } 991 992 void Execute(NativeProcessLinux *monitor); 993 994 private: 995 lldb::tid_t m_tid; 996 uint32_t m_signo; 997 bool &m_result; 998 }; 999 1000 void 1001 ResumeOperation::Execute(NativeProcessLinux *monitor) 1002 { 1003 intptr_t data = 0; 1004 1005 if (m_signo != LLDB_INVALID_SIGNAL_NUMBER) 1006 data = m_signo; 1007 1008 if (PTRACE(PTRACE_CONT, m_tid, NULL, (void*)data, 0)) 1009 { 1010 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1011 1012 if (log) 1013 log->Printf ("ResumeOperation (%" PRIu64 ") failed: %s", m_tid, strerror(errno)); 1014 m_result = false; 1015 } 1016 else 1017 m_result = true; 1018 } 1019 1020 //------------------------------------------------------------------------------ 1021 /// @class SingleStepOperation 1022 /// @brief Implements NativeProcessLinux::SingleStep. 1023 class SingleStepOperation : public Operation 1024 { 1025 public: 1026 SingleStepOperation(lldb::tid_t tid, uint32_t signo, bool &result) 1027 : m_tid(tid), m_signo(signo), m_result(result) { } 1028 1029 void Execute(NativeProcessLinux *monitor); 1030 1031 private: 1032 lldb::tid_t m_tid; 1033 uint32_t m_signo; 1034 bool &m_result; 1035 }; 1036 1037 void 1038 SingleStepOperation::Execute(NativeProcessLinux *monitor) 1039 { 1040 intptr_t data = 0; 1041 1042 if (m_signo != LLDB_INVALID_SIGNAL_NUMBER) 1043 data = m_signo; 1044 1045 if (PTRACE(PTRACE_SINGLESTEP, m_tid, NULL, (void*)data, 0)) 1046 m_result = false; 1047 else 1048 m_result = true; 1049 } 1050 1051 //------------------------------------------------------------------------------ 1052 /// @class SiginfoOperation 1053 /// @brief Implements NativeProcessLinux::GetSignalInfo. 1054 class SiginfoOperation : public Operation 1055 { 1056 public: 1057 SiginfoOperation(lldb::tid_t tid, void *info, bool &result, int &ptrace_err) 1058 : m_tid(tid), m_info(info), m_result(result), m_err(ptrace_err) { } 1059 1060 void Execute(NativeProcessLinux *monitor); 1061 1062 private: 1063 lldb::tid_t m_tid; 1064 void *m_info; 1065 bool &m_result; 1066 int &m_err; 1067 }; 1068 1069 void 1070 SiginfoOperation::Execute(NativeProcessLinux *monitor) 1071 { 1072 if (PTRACE(PTRACE_GETSIGINFO, m_tid, NULL, m_info, 0)) { 1073 m_result = false; 1074 m_err = errno; 1075 } 1076 else 1077 m_result = true; 1078 } 1079 1080 //------------------------------------------------------------------------------ 1081 /// @class EventMessageOperation 1082 /// @brief Implements NativeProcessLinux::GetEventMessage. 1083 class EventMessageOperation : public Operation 1084 { 1085 public: 1086 EventMessageOperation(lldb::tid_t tid, unsigned long *message, bool &result) 1087 : m_tid(tid), m_message(message), m_result(result) { } 1088 1089 void Execute(NativeProcessLinux *monitor); 1090 1091 private: 1092 lldb::tid_t m_tid; 1093 unsigned long *m_message; 1094 bool &m_result; 1095 }; 1096 1097 void 1098 EventMessageOperation::Execute(NativeProcessLinux *monitor) 1099 { 1100 if (PTRACE(PTRACE_GETEVENTMSG, m_tid, NULL, m_message, 0)) 1101 m_result = false; 1102 else 1103 m_result = true; 1104 } 1105 1106 class DetachOperation : public Operation 1107 { 1108 public: 1109 DetachOperation(lldb::tid_t tid, Error &result) : m_tid(tid), m_error(result) { } 1110 1111 void Execute(NativeProcessLinux *monitor); 1112 1113 private: 1114 lldb::tid_t m_tid; 1115 Error &m_error; 1116 }; 1117 1118 void 1119 DetachOperation::Execute(NativeProcessLinux *monitor) 1120 { 1121 if (ptrace(PT_DETACH, m_tid, NULL, 0) < 0) 1122 m_error.SetErrorToErrno(); 1123 } 1124 1125 } 1126 1127 using namespace lldb_private; 1128 1129 // Simple helper function to ensure flags are enabled on the given file 1130 // descriptor. 1131 static bool 1132 EnsureFDFlags(int fd, int flags, Error &error) 1133 { 1134 int status; 1135 1136 if ((status = fcntl(fd, F_GETFL)) == -1) 1137 { 1138 error.SetErrorToErrno(); 1139 return false; 1140 } 1141 1142 if (fcntl(fd, F_SETFL, status | flags) == -1) 1143 { 1144 error.SetErrorToErrno(); 1145 return false; 1146 } 1147 1148 return true; 1149 } 1150 1151 NativeProcessLinux::OperationArgs::OperationArgs(NativeProcessLinux *monitor) 1152 : m_monitor(monitor) 1153 { 1154 sem_init(&m_semaphore, 0, 0); 1155 } 1156 1157 NativeProcessLinux::OperationArgs::~OperationArgs() 1158 { 1159 sem_destroy(&m_semaphore); 1160 } 1161 1162 NativeProcessLinux::LaunchArgs::LaunchArgs(NativeProcessLinux *monitor, 1163 lldb_private::Module *module, 1164 char const **argv, 1165 char const **envp, 1166 const std::string &stdin_path, 1167 const std::string &stdout_path, 1168 const std::string &stderr_path, 1169 const char *working_dir, 1170 const lldb_private::ProcessLaunchInfo &launch_info) 1171 : OperationArgs(monitor), 1172 m_module(module), 1173 m_argv(argv), 1174 m_envp(envp), 1175 m_stdin_path(stdin_path), 1176 m_stdout_path(stdout_path), 1177 m_stderr_path(stderr_path), 1178 m_working_dir(working_dir), 1179 m_launch_info(launch_info) 1180 { 1181 } 1182 1183 NativeProcessLinux::LaunchArgs::~LaunchArgs() 1184 { } 1185 1186 NativeProcessLinux::AttachArgs::AttachArgs(NativeProcessLinux *monitor, 1187 lldb::pid_t pid) 1188 : OperationArgs(monitor), m_pid(pid) { } 1189 1190 NativeProcessLinux::AttachArgs::~AttachArgs() 1191 { } 1192 1193 // ----------------------------------------------------------------------------- 1194 // Public Static Methods 1195 // ----------------------------------------------------------------------------- 1196 1197 lldb_private::Error 1198 NativeProcessLinux::LaunchProcess ( 1199 lldb_private::Module *exe_module, 1200 lldb_private::ProcessLaunchInfo &launch_info, 1201 lldb_private::NativeProcessProtocol::NativeDelegate &native_delegate, 1202 NativeProcessProtocolSP &native_process_sp) 1203 { 1204 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1205 1206 Error error; 1207 1208 // Verify the working directory is valid if one was specified. 1209 const char* working_dir = launch_info.GetWorkingDirectory (); 1210 if (working_dir) 1211 { 1212 FileSpec working_dir_fs (working_dir, true); 1213 if (!working_dir_fs || working_dir_fs.GetFileType () != FileSpec::eFileTypeDirectory) 1214 { 1215 error.SetErrorStringWithFormat ("No such file or directory: %s", working_dir); 1216 return error; 1217 } 1218 } 1219 1220 const lldb_private::FileAction *file_action; 1221 1222 // Default of NULL will mean to use existing open file descriptors. 1223 std::string stdin_path; 1224 std::string stdout_path; 1225 std::string stderr_path; 1226 1227 file_action = launch_info.GetFileActionForFD (STDIN_FILENO); 1228 if (file_action) 1229 stdin_path = file_action->GetPath (); 1230 1231 file_action = launch_info.GetFileActionForFD (STDOUT_FILENO); 1232 if (file_action) 1233 stdout_path = file_action->GetPath (); 1234 1235 file_action = launch_info.GetFileActionForFD (STDERR_FILENO); 1236 if (file_action) 1237 stderr_path = file_action->GetPath (); 1238 1239 if (log) 1240 { 1241 if (!stdin_path.empty ()) 1242 log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'", __FUNCTION__, stdin_path.c_str ()); 1243 else 1244 log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__); 1245 1246 if (!stdout_path.empty ()) 1247 log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'", __FUNCTION__, stdout_path.c_str ()); 1248 else 1249 log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__); 1250 1251 if (!stderr_path.empty ()) 1252 log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'", __FUNCTION__, stderr_path.c_str ()); 1253 else 1254 log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__); 1255 } 1256 1257 // Create the NativeProcessLinux in launch mode. 1258 native_process_sp.reset (new NativeProcessLinux ()); 1259 1260 if (log) 1261 { 1262 int i = 0; 1263 for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i) 1264 { 1265 log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr"); 1266 ++i; 1267 } 1268 } 1269 1270 if (!native_process_sp->RegisterNativeDelegate (native_delegate)) 1271 { 1272 native_process_sp.reset (); 1273 error.SetErrorStringWithFormat ("failed to register the native delegate"); 1274 return error; 1275 } 1276 1277 reinterpret_cast<NativeProcessLinux*> (native_process_sp.get ())->LaunchInferior ( 1278 exe_module, 1279 launch_info.GetArguments ().GetConstArgumentVector (), 1280 launch_info.GetEnvironmentEntries ().GetConstArgumentVector (), 1281 stdin_path, 1282 stdout_path, 1283 stderr_path, 1284 working_dir, 1285 launch_info, 1286 error); 1287 1288 if (error.Fail ()) 1289 { 1290 native_process_sp.reset (); 1291 if (log) 1292 log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ()); 1293 return error; 1294 } 1295 1296 launch_info.SetProcessID (native_process_sp->GetID ()); 1297 1298 return error; 1299 } 1300 1301 lldb_private::Error 1302 NativeProcessLinux::AttachToProcess ( 1303 lldb::pid_t pid, 1304 lldb_private::NativeProcessProtocol::NativeDelegate &native_delegate, 1305 NativeProcessProtocolSP &native_process_sp) 1306 { 1307 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1308 if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE)) 1309 log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid); 1310 1311 // Grab the current platform architecture. This should be Linux, 1312 // since this code is only intended to run on a Linux host. 1313 PlatformSP platform_sp (Platform::GetHostPlatform ()); 1314 if (!platform_sp) 1315 return Error("failed to get a valid default platform"); 1316 1317 // Retrieve the architecture for the running process. 1318 ArchSpec process_arch; 1319 Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch); 1320 if (!error.Success ()) 1321 return error; 1322 1323 std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ()); 1324 1325 if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate)) 1326 { 1327 error.SetErrorStringWithFormat ("failed to register the native delegate"); 1328 return error; 1329 } 1330 1331 native_process_linux_sp->AttachToInferior (pid, error); 1332 if (!error.Success ()) 1333 return error; 1334 1335 native_process_sp = native_process_linux_sp; 1336 return error; 1337 } 1338 1339 // ----------------------------------------------------------------------------- 1340 // Public Instance Methods 1341 // ----------------------------------------------------------------------------- 1342 1343 NativeProcessLinux::NativeProcessLinux () : 1344 NativeProcessProtocol (LLDB_INVALID_PROCESS_ID), 1345 m_arch (), 1346 m_operation_thread (), 1347 m_monitor_thread (), 1348 m_operation (nullptr), 1349 m_operation_mutex (), 1350 m_operation_pending (), 1351 m_operation_done (), 1352 m_supports_mem_region (eLazyBoolCalculate), 1353 m_mem_region_cache (), 1354 m_mem_region_cache_mutex (), 1355 m_coordinator_up (new ThreadStateCoordinator (GetThreadLoggerFunction ())), 1356 m_coordinator_thread () 1357 { 1358 } 1359 1360 //------------------------------------------------------------------------------ 1361 /// The basic design of the NativeProcessLinux is built around two threads. 1362 /// 1363 /// One thread (@see SignalThread) simply blocks on a call to waitpid() looking 1364 /// for changes in the debugee state. When a change is detected a 1365 /// ProcessMessage is sent to the associated ProcessLinux instance. This thread 1366 /// "drives" state changes in the debugger. 1367 /// 1368 /// The second thread (@see OperationThread) is responsible for two things 1) 1369 /// launching or attaching to the inferior process, and then 2) servicing 1370 /// operations such as register reads/writes, stepping, etc. See the comments 1371 /// on the Operation class for more info as to why this is needed. 1372 void 1373 NativeProcessLinux::LaunchInferior ( 1374 Module *module, 1375 const char *argv[], 1376 const char *envp[], 1377 const std::string &stdin_path, 1378 const std::string &stdout_path, 1379 const std::string &stderr_path, 1380 const char *working_dir, 1381 const lldb_private::ProcessLaunchInfo &launch_info, 1382 lldb_private::Error &error) 1383 { 1384 if (module) 1385 m_arch = module->GetArchitecture (); 1386 1387 SetState (eStateLaunching); 1388 1389 std::unique_ptr<LaunchArgs> args( 1390 new LaunchArgs( 1391 this, module, argv, envp, 1392 stdin_path, stdout_path, stderr_path, 1393 working_dir, launch_info)); 1394 1395 sem_init (&m_operation_pending, 0, 0); 1396 sem_init (&m_operation_done, 0, 0); 1397 1398 StartLaunchOpThread (args.get(), error); 1399 if (!error.Success ()) 1400 return; 1401 1402 error = StartCoordinatorThread (); 1403 if (!error.Success ()) 1404 return; 1405 1406 WAIT_AGAIN: 1407 // Wait for the operation thread to initialize. 1408 if (sem_wait(&args->m_semaphore)) 1409 { 1410 if (errno == EINTR) 1411 goto WAIT_AGAIN; 1412 else 1413 { 1414 error.SetErrorToErrno(); 1415 return; 1416 } 1417 } 1418 1419 // Check that the launch was a success. 1420 if (!args->m_error.Success()) 1421 { 1422 StopOpThread(); 1423 StopCoordinatorThread (); 1424 error = args->m_error; 1425 return; 1426 } 1427 1428 // Finally, start monitoring the child process for change in state. 1429 m_monitor_thread = Host::StartMonitoringChildProcess( 1430 NativeProcessLinux::MonitorCallback, this, GetID(), true); 1431 if (!m_monitor_thread.IsJoinable()) 1432 { 1433 error.SetErrorToGenericError(); 1434 error.SetErrorString ("Process attach failed to create monitor thread for NativeProcessLinux::MonitorCallback."); 1435 return; 1436 } 1437 } 1438 1439 void 1440 NativeProcessLinux::AttachToInferior (lldb::pid_t pid, lldb_private::Error &error) 1441 { 1442 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1443 if (log) 1444 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid); 1445 1446 // We can use the Host for everything except the ResolveExecutable portion. 1447 PlatformSP platform_sp = Platform::GetHostPlatform (); 1448 if (!platform_sp) 1449 { 1450 if (log) 1451 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid); 1452 error.SetErrorString ("no default platform available"); 1453 return; 1454 } 1455 1456 // Gather info about the process. 1457 ProcessInstanceInfo process_info; 1458 if (!platform_sp->GetProcessInfo (pid, process_info)) 1459 { 1460 if (log) 1461 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid); 1462 error.SetErrorString ("failed to get process info"); 1463 return; 1464 } 1465 1466 // Resolve the executable module 1467 ModuleSP exe_module_sp; 1468 FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths()); 1469 ModuleSpec exe_module_spec(process_info.GetExecutableFile(), HostInfo::GetArchitecture()); 1470 error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp, 1471 executable_search_paths.GetSize() ? &executable_search_paths : NULL); 1472 if (!error.Success()) 1473 return; 1474 1475 // Set the architecture to the exe architecture. 1476 m_arch = exe_module_sp->GetArchitecture(); 1477 if (log) 1478 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ()); 1479 1480 m_pid = pid; 1481 SetState(eStateAttaching); 1482 1483 sem_init (&m_operation_pending, 0, 0); 1484 sem_init (&m_operation_done, 0, 0); 1485 1486 std::unique_ptr<AttachArgs> args (new AttachArgs (this, pid)); 1487 1488 StartAttachOpThread(args.get (), error); 1489 if (!error.Success ()) 1490 return; 1491 1492 error = StartCoordinatorThread (); 1493 if (!error.Success ()) 1494 return; 1495 1496 WAIT_AGAIN: 1497 // Wait for the operation thread to initialize. 1498 if (sem_wait (&args->m_semaphore)) 1499 { 1500 if (errno == EINTR) 1501 goto WAIT_AGAIN; 1502 else 1503 { 1504 error.SetErrorToErrno (); 1505 return; 1506 } 1507 } 1508 1509 // Check that the attach was a success. 1510 if (!args->m_error.Success ()) 1511 { 1512 StopOpThread (); 1513 StopCoordinatorThread (); 1514 error = args->m_error; 1515 return; 1516 } 1517 1518 // Finally, start monitoring the child process for change in state. 1519 m_monitor_thread = Host::StartMonitoringChildProcess ( 1520 NativeProcessLinux::MonitorCallback, this, GetID (), true); 1521 if (!m_monitor_thread.IsJoinable()) 1522 { 1523 error.SetErrorToGenericError (); 1524 error.SetErrorString ("Process attach failed to create monitor thread for NativeProcessLinux::MonitorCallback."); 1525 return; 1526 } 1527 } 1528 1529 NativeProcessLinux::~NativeProcessLinux() 1530 { 1531 StopMonitor(); 1532 } 1533 1534 //------------------------------------------------------------------------------ 1535 // Thread setup and tear down. 1536 1537 void 1538 NativeProcessLinux::StartLaunchOpThread(LaunchArgs *args, Error &error) 1539 { 1540 static const char *g_thread_name = "lldb.process.nativelinux.operation"; 1541 1542 if (m_operation_thread.IsJoinable()) 1543 return; 1544 1545 m_operation_thread = ThreadLauncher::LaunchThread(g_thread_name, LaunchOpThread, args, &error); 1546 } 1547 1548 void * 1549 NativeProcessLinux::LaunchOpThread(void *arg) 1550 { 1551 LaunchArgs *args = static_cast<LaunchArgs*>(arg); 1552 1553 if (!Launch(args)) { 1554 sem_post(&args->m_semaphore); 1555 return NULL; 1556 } 1557 1558 ServeOperation(args); 1559 return NULL; 1560 } 1561 1562 bool 1563 NativeProcessLinux::Launch(LaunchArgs *args) 1564 { 1565 assert (args && "null args"); 1566 if (!args) 1567 return false; 1568 1569 NativeProcessLinux *monitor = args->m_monitor; 1570 assert (monitor && "monitor is NULL"); 1571 if (!monitor) 1572 return false; 1573 1574 const char **argv = args->m_argv; 1575 const char **envp = args->m_envp; 1576 const char *working_dir = args->m_working_dir; 1577 1578 lldb_utility::PseudoTerminal terminal; 1579 const size_t err_len = 1024; 1580 char err_str[err_len]; 1581 lldb::pid_t pid; 1582 NativeThreadProtocolSP thread_sp; 1583 1584 lldb::ThreadSP inferior; 1585 1586 // Propagate the environment if one is not supplied. 1587 if (envp == NULL || envp[0] == NULL) 1588 envp = const_cast<const char **>(environ); 1589 1590 if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1)) 1591 { 1592 args->m_error.SetErrorToGenericError(); 1593 args->m_error.SetErrorString("Process fork failed."); 1594 return false; 1595 } 1596 1597 // Recognized child exit status codes. 1598 enum { 1599 ePtraceFailed = 1, 1600 eDupStdinFailed, 1601 eDupStdoutFailed, 1602 eDupStderrFailed, 1603 eChdirFailed, 1604 eExecFailed, 1605 eSetGidFailed 1606 }; 1607 1608 // Child process. 1609 if (pid == 0) 1610 { 1611 // FIXME consider opening a pipe between parent/child and have this forked child 1612 // send log info to parent re: launch status, in place of the log lines removed here. 1613 1614 // Start tracing this child that is about to exec. 1615 if (PTRACE(PTRACE_TRACEME, 0, NULL, NULL, 0) < 0) 1616 exit(ePtraceFailed); 1617 1618 // Do not inherit setgid powers. 1619 if (setgid(getgid()) != 0) 1620 exit(eSetGidFailed); 1621 1622 // Attempt to have our own process group. 1623 if (setpgid(0, 0) != 0) 1624 { 1625 // FIXME log that this failed. This is common. 1626 // Don't allow this to prevent an inferior exec. 1627 } 1628 1629 // Dup file descriptors if needed. 1630 if (!args->m_stdin_path.empty ()) 1631 if (!DupDescriptor(args->m_stdin_path.c_str (), STDIN_FILENO, O_RDONLY)) 1632 exit(eDupStdinFailed); 1633 1634 if (!args->m_stdout_path.empty ()) 1635 if (!DupDescriptor(args->m_stdout_path.c_str (), STDOUT_FILENO, O_WRONLY | O_CREAT)) 1636 exit(eDupStdoutFailed); 1637 1638 if (!args->m_stderr_path.empty ()) 1639 if (!DupDescriptor(args->m_stderr_path.c_str (), STDERR_FILENO, O_WRONLY | O_CREAT)) 1640 exit(eDupStderrFailed); 1641 1642 // Change working directory 1643 if (working_dir != NULL && working_dir[0]) 1644 if (0 != ::chdir(working_dir)) 1645 exit(eChdirFailed); 1646 1647 // Disable ASLR if requested. 1648 if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR)) 1649 { 1650 const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS); 1651 if (old_personality == -1) 1652 { 1653 // Can't retrieve Linux personality. Cannot disable ASLR. 1654 } 1655 else 1656 { 1657 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality); 1658 if (new_personality == -1) 1659 { 1660 // Disabling ASLR failed. 1661 } 1662 else 1663 { 1664 // Disabling ASLR succeeded. 1665 } 1666 } 1667 } 1668 1669 // Execute. We should never return... 1670 execve(argv[0], 1671 const_cast<char *const *>(argv), 1672 const_cast<char *const *>(envp)); 1673 1674 // ...unless exec fails. In which case we definitely need to end the child here. 1675 exit(eExecFailed); 1676 } 1677 1678 // 1679 // This is the parent code here. 1680 // 1681 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1682 1683 // Wait for the child process to trap on its call to execve. 1684 ::pid_t wpid; 1685 int status; 1686 if ((wpid = waitpid(pid, &status, 0)) < 0) 1687 { 1688 args->m_error.SetErrorToErrno(); 1689 1690 if (log) 1691 log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s", __FUNCTION__, args->m_error.AsCString ()); 1692 1693 // Mark the inferior as invalid. 1694 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1695 monitor->SetState (StateType::eStateInvalid); 1696 1697 return false; 1698 } 1699 else if (WIFEXITED(status)) 1700 { 1701 // open, dup or execve likely failed for some reason. 1702 args->m_error.SetErrorToGenericError(); 1703 switch (WEXITSTATUS(status)) 1704 { 1705 case ePtraceFailed: 1706 args->m_error.SetErrorString("Child ptrace failed."); 1707 break; 1708 case eDupStdinFailed: 1709 args->m_error.SetErrorString("Child open stdin failed."); 1710 break; 1711 case eDupStdoutFailed: 1712 args->m_error.SetErrorString("Child open stdout failed."); 1713 break; 1714 case eDupStderrFailed: 1715 args->m_error.SetErrorString("Child open stderr failed."); 1716 break; 1717 case eChdirFailed: 1718 args->m_error.SetErrorString("Child failed to set working directory."); 1719 break; 1720 case eExecFailed: 1721 args->m_error.SetErrorString("Child exec failed."); 1722 break; 1723 case eSetGidFailed: 1724 args->m_error.SetErrorString("Child setgid failed."); 1725 break; 1726 default: 1727 args->m_error.SetErrorString("Child returned unknown exit status."); 1728 break; 1729 } 1730 1731 if (log) 1732 { 1733 log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP", 1734 __FUNCTION__, 1735 WEXITSTATUS(status)); 1736 } 1737 1738 // Mark the inferior as invalid. 1739 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1740 monitor->SetState (StateType::eStateInvalid); 1741 1742 return false; 1743 } 1744 assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) && 1745 "Could not sync with inferior process."); 1746 1747 if (log) 1748 log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__); 1749 1750 if (!SetDefaultPtraceOpts(pid)) 1751 { 1752 args->m_error.SetErrorToErrno(); 1753 if (log) 1754 log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s", 1755 __FUNCTION__, 1756 args->m_error.AsCString ()); 1757 1758 // Mark the inferior as invalid. 1759 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1760 monitor->SetState (StateType::eStateInvalid); 1761 1762 return false; 1763 } 1764 1765 // Release the master terminal descriptor and pass it off to the 1766 // NativeProcessLinux instance. Similarly stash the inferior pid. 1767 monitor->m_terminal_fd = terminal.ReleaseMasterFileDescriptor(); 1768 monitor->m_pid = pid; 1769 1770 // Set the terminal fd to be in non blocking mode (it simplifies the 1771 // implementation of ProcessLinux::GetSTDOUT to have a non-blocking 1772 // descriptor to read from). 1773 if (!EnsureFDFlags(monitor->m_terminal_fd, O_NONBLOCK, args->m_error)) 1774 { 1775 if (log) 1776 log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s", 1777 __FUNCTION__, 1778 args->m_error.AsCString ()); 1779 1780 // Mark the inferior as invalid. 1781 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1782 monitor->SetState (StateType::eStateInvalid); 1783 1784 return false; 1785 } 1786 1787 if (log) 1788 log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid); 1789 1790 thread_sp = monitor->AddThread (pid); 1791 assert (thread_sp && "AddThread() returned a nullptr thread"); 1792 monitor->NotifyThreadCreateStopped (pid); 1793 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGSTOP); 1794 1795 // Let our process instance know the thread has stopped. 1796 monitor->SetCurrentThreadID (thread_sp->GetID ()); 1797 monitor->SetState (StateType::eStateStopped); 1798 1799 if (log) 1800 { 1801 if (args->m_error.Success ()) 1802 { 1803 log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__); 1804 } 1805 else 1806 { 1807 log->Printf ("NativeProcessLinux::%s inferior launching failed: %s", 1808 __FUNCTION__, 1809 args->m_error.AsCString ()); 1810 } 1811 } 1812 return args->m_error.Success(); 1813 } 1814 1815 void 1816 NativeProcessLinux::StartAttachOpThread(AttachArgs *args, lldb_private::Error &error) 1817 { 1818 static const char *g_thread_name = "lldb.process.linux.operation"; 1819 1820 if (m_operation_thread.IsJoinable()) 1821 return; 1822 1823 m_operation_thread = ThreadLauncher::LaunchThread(g_thread_name, AttachOpThread, args, &error); 1824 } 1825 1826 void * 1827 NativeProcessLinux::AttachOpThread(void *arg) 1828 { 1829 AttachArgs *args = static_cast<AttachArgs*>(arg); 1830 1831 if (!Attach(args)) { 1832 sem_post(&args->m_semaphore); 1833 return nullptr; 1834 } 1835 1836 ServeOperation(args); 1837 return nullptr; 1838 } 1839 1840 bool 1841 NativeProcessLinux::Attach(AttachArgs *args) 1842 { 1843 lldb::pid_t pid = args->m_pid; 1844 1845 NativeProcessLinux *monitor = args->m_monitor; 1846 lldb::ThreadSP inferior; 1847 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1848 1849 // Use a map to keep track of the threads which we have attached/need to attach. 1850 Host::TidMap tids_to_attach; 1851 if (pid <= 1) 1852 { 1853 args->m_error.SetErrorToGenericError(); 1854 args->m_error.SetErrorString("Attaching to process 1 is not allowed."); 1855 goto FINISH; 1856 } 1857 1858 while (Host::FindProcessThreads(pid, tids_to_attach)) 1859 { 1860 for (Host::TidMap::iterator it = tids_to_attach.begin(); 1861 it != tids_to_attach.end();) 1862 { 1863 if (it->second == false) 1864 { 1865 lldb::tid_t tid = it->first; 1866 1867 // Attach to the requested process. 1868 // An attach will cause the thread to stop with a SIGSTOP. 1869 if (PTRACE(PTRACE_ATTACH, tid, NULL, NULL, 0) < 0) 1870 { 1871 // No such thread. The thread may have exited. 1872 // More error handling may be needed. 1873 if (errno == ESRCH) 1874 { 1875 it = tids_to_attach.erase(it); 1876 continue; 1877 } 1878 else 1879 { 1880 args->m_error.SetErrorToErrno(); 1881 goto FINISH; 1882 } 1883 } 1884 1885 int status; 1886 // Need to use __WALL otherwise we receive an error with errno=ECHLD 1887 // At this point we should have a thread stopped if waitpid succeeds. 1888 if ((status = waitpid(tid, NULL, __WALL)) < 0) 1889 { 1890 // No such thread. The thread may have exited. 1891 // More error handling may be needed. 1892 if (errno == ESRCH) 1893 { 1894 it = tids_to_attach.erase(it); 1895 continue; 1896 } 1897 else 1898 { 1899 args->m_error.SetErrorToErrno(); 1900 goto FINISH; 1901 } 1902 } 1903 1904 if (!SetDefaultPtraceOpts(tid)) 1905 { 1906 args->m_error.SetErrorToErrno(); 1907 goto FINISH; 1908 } 1909 1910 1911 if (log) 1912 log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid); 1913 1914 it->second = true; 1915 1916 // Create the thread, mark it as stopped. 1917 NativeThreadProtocolSP thread_sp (monitor->AddThread (static_cast<lldb::tid_t> (tid))); 1918 assert (thread_sp && "AddThread() returned a nullptr"); 1919 1920 // This will notify this is a new thread and tell the system it is stopped. 1921 monitor->NotifyThreadCreateStopped (tid); 1922 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGSTOP); 1923 monitor->SetCurrentThreadID (thread_sp->GetID ()); 1924 } 1925 1926 // move the loop forward 1927 ++it; 1928 } 1929 } 1930 1931 if (tids_to_attach.size() > 0) 1932 { 1933 monitor->m_pid = pid; 1934 // Let our process instance know the thread has stopped. 1935 monitor->SetState (StateType::eStateStopped); 1936 } 1937 else 1938 { 1939 args->m_error.SetErrorToGenericError(); 1940 args->m_error.SetErrorString("No such process."); 1941 } 1942 1943 FINISH: 1944 return args->m_error.Success(); 1945 } 1946 1947 bool 1948 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) 1949 { 1950 long ptrace_opts = 0; 1951 1952 // Have the child raise an event on exit. This is used to keep the child in 1953 // limbo until it is destroyed. 1954 ptrace_opts |= PTRACE_O_TRACEEXIT; 1955 1956 // Have the tracer trace threads which spawn in the inferior process. 1957 // TODO: if we want to support tracing the inferiors' child, add the 1958 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) 1959 ptrace_opts |= PTRACE_O_TRACECLONE; 1960 1961 // Have the tracer notify us before execve returns 1962 // (needed to disable legacy SIGTRAP generation) 1963 ptrace_opts |= PTRACE_O_TRACEEXEC; 1964 1965 return PTRACE(PTRACE_SETOPTIONS, pid, NULL, (void*)ptrace_opts, 0) >= 0; 1966 } 1967 1968 static ExitType convert_pid_status_to_exit_type (int status) 1969 { 1970 if (WIFEXITED (status)) 1971 return ExitType::eExitTypeExit; 1972 else if (WIFSIGNALED (status)) 1973 return ExitType::eExitTypeSignal; 1974 else if (WIFSTOPPED (status)) 1975 return ExitType::eExitTypeStop; 1976 else 1977 { 1978 // We don't know what this is. 1979 return ExitType::eExitTypeInvalid; 1980 } 1981 } 1982 1983 static int convert_pid_status_to_return_code (int status) 1984 { 1985 if (WIFEXITED (status)) 1986 return WEXITSTATUS (status); 1987 else if (WIFSIGNALED (status)) 1988 return WTERMSIG (status); 1989 else if (WIFSTOPPED (status)) 1990 return WSTOPSIG (status); 1991 else 1992 { 1993 // We don't know what this is. 1994 return ExitType::eExitTypeInvalid; 1995 } 1996 } 1997 1998 // Main process monitoring waitpid-loop handler. 1999 bool 2000 NativeProcessLinux::MonitorCallback(void *callback_baton, 2001 lldb::pid_t pid, 2002 bool exited, 2003 int signal, 2004 int status) 2005 { 2006 Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS)); 2007 2008 NativeProcessLinux *const process = static_cast<NativeProcessLinux*>(callback_baton); 2009 assert (process && "process is null"); 2010 if (!process) 2011 { 2012 if (log) 2013 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " callback_baton was null, can't determine process to use", __FUNCTION__, pid); 2014 return true; 2015 } 2016 2017 // Certain activities differ based on whether the pid is the tid of the main thread. 2018 const bool is_main_thread = (pid == process->GetID ()); 2019 2020 // Assume we keep monitoring by default. 2021 bool stop_monitoring = false; 2022 2023 // Handle when the thread exits. 2024 if (exited) 2025 { 2026 if (log) 2027 log->Printf ("NativeProcessLinux::%s() got exit signal, tid = %" PRIu64 " (%s main thread)", __FUNCTION__, pid, is_main_thread ? "is" : "is not"); 2028 2029 // This is a thread that exited. Ensure we're not tracking it anymore. 2030 const bool thread_found = process->StopTrackingThread (pid); 2031 2032 // Make sure the thread state coordinator knows about this. 2033 process->NotifyThreadDeath (pid); 2034 2035 if (is_main_thread) 2036 { 2037 // We only set the exit status and notify the delegate if we haven't already set the process 2038 // state to an exited state. We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8) 2039 // for the main thread. 2040 const bool already_notified = (process->GetState() == StateType::eStateExited) || (process->GetState () == StateType::eStateCrashed); 2041 if (!already_notified) 2042 { 2043 if (log) 2044 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (process->GetState ())); 2045 // The main thread exited. We're done monitoring. Report to delegate. 2046 process->SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); 2047 2048 // Notify delegate that our process has exited. 2049 process->SetState (StateType::eStateExited, true); 2050 } 2051 else 2052 { 2053 if (log) 2054 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); 2055 } 2056 return true; 2057 } 2058 else 2059 { 2060 // Do we want to report to the delegate in this case? I think not. If this was an orderly 2061 // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, 2062 // and we would have done an all-stop then. 2063 if (log) 2064 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); 2065 2066 // Not the main thread, we keep going. 2067 return false; 2068 } 2069 } 2070 2071 // Get details on the signal raised. 2072 siginfo_t info; 2073 int ptrace_err = 0; 2074 2075 if (process->GetSignalInfo (pid, &info, ptrace_err)) 2076 { 2077 // We have retrieved the signal info. Dispatch appropriately. 2078 if (info.si_signo == SIGTRAP) 2079 process->MonitorSIGTRAP(&info, pid); 2080 else 2081 process->MonitorSignal(&info, pid, exited); 2082 2083 stop_monitoring = false; 2084 } 2085 else 2086 { 2087 if (ptrace_err == EINVAL) 2088 { 2089 // This is a group stop reception for this tid. 2090 if (log) 2091 log->Printf ("NativeThreadLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64, __FUNCTION__, process->GetID (), pid); 2092 process->NotifyThreadStop (pid); 2093 } 2094 else 2095 { 2096 // ptrace(GETSIGINFO) failed (but not due to group-stop). 2097 2098 // A return value of ESRCH means the thread/process is no longer on the system, 2099 // so it was killed somehow outside of our control. Either way, we can't do anything 2100 // with it anymore. 2101 2102 // We stop monitoring if it was the main thread. 2103 stop_monitoring = is_main_thread; 2104 2105 // Stop tracking the metadata for the thread since it's entirely off the system now. 2106 const bool thread_found = process->StopTrackingThread (pid); 2107 2108 // Make sure the thread state coordinator knows about this. 2109 process->NotifyThreadDeath (pid); 2110 2111 if (log) 2112 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)", 2113 __FUNCTION__, strerror(ptrace_err), pid, signal, status, ptrace_err == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found"); 2114 2115 if (is_main_thread) 2116 { 2117 // Notify the delegate - our process is not available but appears to have been killed outside 2118 // our control. Is eStateExited the right exit state in this case? 2119 process->SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); 2120 process->SetState (StateType::eStateExited, true); 2121 } 2122 else 2123 { 2124 // This thread was pulled out from underneath us. Anything to do here? Do we want to do an all stop? 2125 if (log) 2126 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, process->GetID (), pid); 2127 } 2128 } 2129 } 2130 2131 return stop_monitoring; 2132 } 2133 2134 void 2135 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid) 2136 { 2137 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2138 const bool is_main_thread = (pid == GetID ()); 2139 2140 assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!"); 2141 if (!info) 2142 return; 2143 2144 // See if we can find a thread for this signal. 2145 NativeThreadProtocolSP thread_sp = GetThreadByID (pid); 2146 if (!thread_sp) 2147 { 2148 if (log) 2149 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid); 2150 } 2151 2152 switch (info->si_code) 2153 { 2154 // TODO: these two cases are required if we want to support tracing of the inferiors' children. We'd need this to debug a monitor. 2155 // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 2156 // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 2157 2158 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): 2159 { 2160 lldb::tid_t tid = LLDB_INVALID_THREAD_ID; 2161 2162 // The main thread is stopped here. 2163 if (thread_sp) 2164 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGTRAP); 2165 NotifyThreadStop (pid); 2166 2167 unsigned long event_message = 0; 2168 if (GetEventMessage (pid, &event_message)) 2169 { 2170 tid = static_cast<lldb::tid_t> (event_message); 2171 if (log) 2172 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event for tid %" PRIu64, __FUNCTION__, pid, tid); 2173 2174 // If we don't track the thread yet: create it, mark as stopped. 2175 // If we do track it, this is the wait we needed. Now resume the new thread. 2176 // In all cases, resume the current (i.e. main process) thread. 2177 bool created_now = false; 2178 NativeThreadProtocolSP new_thread_sp = GetOrCreateThread (tid, created_now); 2179 assert (new_thread_sp.get() && "failed to get or create the tracking data for newly created inferior thread"); 2180 2181 // If the thread was already tracked, it means the created thread already received its SI_USER notification of creation. 2182 if (!created_now) 2183 { 2184 // We can now resume the newly created thread since it is fully created. 2185 NotifyThreadCreateStopped (tid); 2186 m_coordinator_up->RequestThreadResume (tid, 2187 [=](lldb::tid_t tid_to_resume) 2188 { 2189 reinterpret_cast<NativeThreadLinux*> (new_thread_sp.get ())->SetRunning (); 2190 Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER); 2191 }, 2192 CoordinatorErrorHandler); 2193 } 2194 else 2195 { 2196 // Mark the thread as currently launching. Need to wait for SIGTRAP clone on the main thread before 2197 // this thread is ready to go. 2198 reinterpret_cast<NativeThreadLinux*> (new_thread_sp.get ())->SetLaunching (); 2199 } 2200 } 2201 else 2202 { 2203 if (log) 2204 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, pid); 2205 } 2206 2207 // In all cases, we can resume the main thread here. 2208 m_coordinator_up->RequestThreadResume (pid, 2209 [=](lldb::tid_t tid_to_resume) 2210 { 2211 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning (); 2212 Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER); 2213 }, 2214 CoordinatorErrorHandler); 2215 2216 break; 2217 } 2218 2219 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): 2220 { 2221 NativeThreadProtocolSP main_thread_sp; 2222 if (log) 2223 log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP); 2224 2225 // The thread state coordinator needs to reset due to the exec. 2226 m_coordinator_up->ResetForExec (); 2227 2228 // Remove all but the main thread here. Linux fork creates a new process which only copies the main thread. Mutexes are in undefined state. 2229 { 2230 Mutex::Locker locker (m_threads_mutex); 2231 2232 if (log) 2233 log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__); 2234 2235 for (auto thread_sp : m_threads) 2236 { 2237 const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID (); 2238 if (is_main_thread) 2239 { 2240 main_thread_sp = thread_sp; 2241 if (log) 2242 log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ()); 2243 } 2244 else 2245 { 2246 // Tell thread coordinator this thread is dead. 2247 if (log) 2248 log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ()); 2249 } 2250 } 2251 2252 m_threads.clear (); 2253 2254 if (main_thread_sp) 2255 { 2256 m_threads.push_back (main_thread_sp); 2257 SetCurrentThreadID (main_thread_sp->GetID ()); 2258 reinterpret_cast<NativeThreadLinux*>(main_thread_sp.get())->SetStoppedByExec (); 2259 } 2260 else 2261 { 2262 SetCurrentThreadID (LLDB_INVALID_THREAD_ID); 2263 if (log) 2264 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ()); 2265 } 2266 } 2267 2268 // Tell coordinator about about the "new" (since exec) stopped main thread. 2269 const lldb::tid_t main_thread_tid = GetID (); 2270 NotifyThreadCreateStopped (main_thread_tid); 2271 2272 // NOTE: ideally these next statements would execute at the same time as the coordinator thread create was executed. 2273 // Consider a handler that can execute when that happens. 2274 // Let our delegate know we have just exec'd. 2275 NotifyDidExec (); 2276 2277 // If we have a main thread, indicate we are stopped. 2278 assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked"); 2279 2280 // Let the process know we're stopped. 2281 SetState (StateType::eStateStopped); 2282 2283 break; 2284 } 2285 2286 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): 2287 { 2288 // The inferior process or one of its threads is about to exit. 2289 2290 // This thread is currently stopped. It's not actually dead yet, just about to be. 2291 NotifyThreadStop (pid); 2292 2293 unsigned long data = 0; 2294 if (!GetEventMessage(pid, &data)) 2295 data = -1; 2296 2297 if (log) 2298 { 2299 log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)", 2300 __FUNCTION__, 2301 data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false", 2302 pid, 2303 is_main_thread ? "is main thread" : "not main thread"); 2304 } 2305 2306 if (is_main_thread) 2307 { 2308 SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true); 2309 } 2310 2311 const int signo = static_cast<int> (data); 2312 m_coordinator_up->RequestThreadResume (pid, 2313 [=](lldb::tid_t tid_to_resume) 2314 { 2315 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning (); 2316 Resume (tid_to_resume, signo); 2317 }, 2318 CoordinatorErrorHandler); 2319 2320 break; 2321 } 2322 2323 case 0: 2324 case TRAP_TRACE: 2325 // We receive this on single stepping. 2326 if (log) 2327 log->Printf ("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)", __FUNCTION__, pid); 2328 2329 // This thread is currently stopped. 2330 NotifyThreadStop (pid); 2331 2332 // Here we don't have to request the rest of the threads to stop or request a deferred stop. 2333 // This would have already happened at the time the Resume() with step operation was signaled. 2334 // At this point, we just need to say we stopped, and the deferred notifcation will fire off 2335 // once all running threads have checked in as stopped. 2336 break; 2337 2338 case SI_KERNEL: 2339 case TRAP_BRKPT: 2340 if (log) 2341 log->Printf ("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64, __FUNCTION__, pid); 2342 2343 // This thread is currently stopped. 2344 NotifyThreadStop (pid); 2345 2346 // Mark the thread as stopped at breakpoint. 2347 if (thread_sp) 2348 { 2349 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGTRAP); 2350 Error error = FixupBreakpointPCAsNeeded (thread_sp); 2351 if (error.Fail ()) 2352 { 2353 if (log) 2354 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s", __FUNCTION__, pid, error.AsCString ()); 2355 } 2356 } 2357 else 2358 { 2359 if (log) 2360 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": warning, cannot process software breakpoint since no thread metadata", __FUNCTION__, pid); 2361 } 2362 2363 2364 // We need to tell all other running threads before we notify the delegate about this stop. 2365 CallAfterRunningThreadsStop (pid, 2366 [=](lldb::tid_t deferred_notification_tid) 2367 { 2368 SetCurrentThreadID (deferred_notification_tid); 2369 // Tell the process we have a stop (from software breakpoint). 2370 SetState (StateType::eStateStopped, true); 2371 }); 2372 break; 2373 2374 case TRAP_HWBKPT: 2375 if (log) 2376 log->Printf ("NativeProcessLinux::%s() received watchpoint event, pid = %" PRIu64, __FUNCTION__, pid); 2377 2378 // This thread is currently stopped. 2379 NotifyThreadStop (pid); 2380 2381 // Mark the thread as stopped at watchpoint. 2382 // The address is at (lldb::addr_t)info->si_addr if we need it. 2383 if (thread_sp) 2384 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGTRAP); 2385 else 2386 { 2387 if (log) 2388 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ": warning, cannot process hardware breakpoint since no thread metadata", __FUNCTION__, GetID (), pid); 2389 } 2390 2391 // We need to tell all other running threads before we notify the delegate about this stop. 2392 CallAfterRunningThreadsStop (pid, 2393 [=](lldb::tid_t deferred_notification_tid) 2394 { 2395 SetCurrentThreadID (deferred_notification_tid); 2396 // Tell the process we have a stop (from hardware breakpoint). 2397 SetState (StateType::eStateStopped, true); 2398 }); 2399 break; 2400 2401 case SIGTRAP: 2402 case (SIGTRAP | 0x80): 2403 if (log) 2404 log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), pid); 2405 2406 // This thread is currently stopped. 2407 NotifyThreadStop (pid); 2408 if (thread_sp) 2409 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGTRAP); 2410 2411 2412 // Ignore these signals until we know more about them. 2413 m_coordinator_up->RequestThreadResume (pid, 2414 [=](lldb::tid_t tid_to_resume) 2415 { 2416 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning (); 2417 Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER); 2418 }, 2419 CoordinatorErrorHandler); 2420 break; 2421 2422 default: 2423 assert(false && "Unexpected SIGTRAP code!"); 2424 if (log) 2425 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%" PRIx64, __FUNCTION__, GetID (), pid, static_cast<uint64_t> (SIGTRAP | (PTRACE_EVENT_CLONE << 8))); 2426 break; 2427 2428 } 2429 } 2430 2431 void 2432 NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited) 2433 { 2434 assert (info && "null info"); 2435 if (!info) 2436 return; 2437 2438 const int signo = info->si_signo; 2439 const bool is_from_llgs = info->si_pid == getpid (); 2440 2441 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2442 2443 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 2444 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a 2445 // kill(2) or raise(3). Similarly for tgkill(2) on Linux. 2446 // 2447 // IOW, user generated signals never generate what we consider to be a 2448 // "crash". 2449 // 2450 // Similarly, ACK signals generated by this monitor. 2451 2452 // See if we can find a thread for this signal. 2453 NativeThreadProtocolSP thread_sp = GetThreadByID (pid); 2454 if (!thread_sp) 2455 { 2456 if (log) 2457 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid); 2458 } 2459 2460 // Handle the signal. 2461 if (info->si_code == SI_TKILL || info->si_code == SI_USER) 2462 { 2463 if (log) 2464 log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")", 2465 __FUNCTION__, 2466 GetUnixSignals ().GetSignalAsCString (signo), 2467 signo, 2468 (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"), 2469 info->si_pid, 2470 is_from_llgs ? "from llgs" : "not from llgs", 2471 pid); 2472 } 2473 2474 // Check for new thread notification. 2475 if ((info->si_pid == 0) && (info->si_code == SI_USER)) 2476 { 2477 // A new thread creation is being signaled. This is one of two parts that come in 2478 // a non-deterministic order. pid is the thread id. 2479 if (log) 2480 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification", 2481 __FUNCTION__, GetID (), pid); 2482 2483 // Did we already create the thread? 2484 bool created_now = false; 2485 thread_sp = GetOrCreateThread (pid, created_now); 2486 assert (thread_sp.get() && "failed to get or create the tracking data for newly created inferior thread"); 2487 2488 // If the thread was already tracked, it means the main thread already received its SIGTRAP for the create. 2489 if (!created_now) 2490 { 2491 // We can now resume the newly created thread since it is fully created. 2492 NotifyThreadCreateStopped (pid); 2493 m_coordinator_up->RequestThreadResume (pid, 2494 [=](lldb::tid_t tid_to_resume) 2495 { 2496 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning (); 2497 Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER); 2498 }, 2499 CoordinatorErrorHandler); 2500 } 2501 else 2502 { 2503 // Mark the thread as currently launching. Need to wait for SIGTRAP clone on the main thread before 2504 // this thread is ready to go. 2505 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetLaunching (); 2506 } 2507 2508 // Done handling. 2509 return; 2510 } 2511 2512 // Check for thread stop notification. 2513 if (is_from_llgs && (info->si_code == SI_TKILL) && (signo == SIGSTOP)) 2514 { 2515 // This is a tgkill()-based stop. 2516 if (thread_sp) 2517 { 2518 if (log) 2519 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped", 2520 __FUNCTION__, 2521 GetID (), 2522 pid); 2523 2524 // Check that we're not already marked with a stop reason. 2525 // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that 2526 // the kernel signaled us with the thread stopping which we handled and marked as stopped, 2527 // and that, without an intervening resume, we received another stop. It is more likely 2528 // that we are missing the marking of a run state somewhere if we find that the thread was 2529 // marked as stopped. 2530 NativeThreadLinux *const linux_thread_p = reinterpret_cast<NativeThreadLinux*> (thread_sp.get ()); 2531 assert (linux_thread_p && "linux_thread_p is null!"); 2532 2533 const StateType thread_state = linux_thread_p->GetState (); 2534 if (!StateIsStoppedState (thread_state, false)) 2535 { 2536 // An inferior thread just stopped, but was not the primary cause of the process stop. 2537 // Instead, something else (like a breakpoint or step) caused the stop. Mark the 2538 // stop signal as 0 to let lldb know this isn't the important stop. 2539 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (0); 2540 SetCurrentThreadID (thread_sp->GetID ()); 2541 } 2542 else 2543 { 2544 if (log) 2545 { 2546 // Retrieve the signal name if the thread was stopped by a signal. 2547 int stop_signo = 0; 2548 const bool stopped_by_signal = linux_thread_p->IsStopped (&stop_signo); 2549 const char *signal_name = stopped_by_signal ? GetUnixSignals ().GetSignalAsCString (stop_signo) : "<not stopped by signal>"; 2550 if (!signal_name) 2551 signal_name = "<no-signal-name>"; 2552 2553 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is", 2554 __FUNCTION__, 2555 GetID (), 2556 linux_thread_p->GetID (), 2557 StateAsCString (thread_state), 2558 stop_signo, 2559 signal_name); 2560 } 2561 } 2562 2563 // Tell the thread state coordinator about the stop. 2564 NotifyThreadStop (thread_sp->GetID ()); 2565 } 2566 2567 // Done handling. 2568 return; 2569 } 2570 2571 if (log) 2572 log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo)); 2573 2574 switch (signo) 2575 { 2576 case SIGSEGV: 2577 case SIGABRT: 2578 case SIGILL: 2579 case SIGFPE: 2580 case SIGBUS: 2581 default: 2582 { 2583 // This thread is stopped. 2584 NotifyThreadStop (pid); 2585 2586 // lldb::addr_t fault_addr = reinterpret_cast<lldb::addr_t>(info->si_addr); 2587 2588 // This is just a pre-signal-delivery notification of the incoming signal. 2589 if (thread_sp) 2590 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (signo); 2591 2592 // We can get more details on the exact nature of the crash here. 2593 // ProcessMessage::CrashReason reason = GetCrashReasonForSIGSEGV(info); 2594 if (!exited) 2595 { 2596 // Send a stop to the debugger after we get all other threads to stop. 2597 CallAfterRunningThreadsStop (pid, 2598 [=] (lldb::tid_t signaling_tid) 2599 { 2600 SetCurrentThreadID (signaling_tid); 2601 SetState (StateType::eStateStopped, true); 2602 }); 2603 } 2604 else 2605 { 2606 // FIXME the process might die right after this - might not ever get stops on any other threads. 2607 // Send a stop to the debugger after we get all other threads to stop. 2608 CallAfterRunningThreadsStop (pid, 2609 [=] (lldb::tid_t signaling_tid) 2610 { 2611 SetCurrentThreadID (signaling_tid); 2612 SetState (StateType::eStateCrashed, true); 2613 }); 2614 } 2615 } 2616 break; 2617 2618 case SIGSTOP: 2619 { 2620 // This thread is stopped. 2621 NotifyThreadStop (pid); 2622 2623 if (log) 2624 { 2625 if (is_from_llgs) 2626 log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from llgs, most likely an interrupt", __FUNCTION__, GetID (), pid); 2627 else 2628 log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from outside of debugger", __FUNCTION__, GetID (), pid); 2629 } 2630 2631 // Resume this thread to get the group-stop mechanism to fire off the true group stops. 2632 // This thread will get stopped again as part of the group-stop completion. 2633 m_coordinator_up->RequestThreadResume (pid, 2634 [=](lldb::tid_t tid_to_resume) 2635 { 2636 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning (); 2637 // Pass this signal number on to the inferior to handle. 2638 Resume (tid_to_resume, signo); 2639 }, 2640 CoordinatorErrorHandler); 2641 2642 // And now we want to signal that we received a SIGSTOP on this thread 2643 // as soon as all running threads stop (i.e. the group stop sequence completes). 2644 CallAfterRunningThreadsStop (pid, 2645 [=] (lldb::tid_t signaling_tid) 2646 { 2647 SetCurrentThreadID (signaling_tid); 2648 SetState (StateType::eStateStopped, true); 2649 }); 2650 } 2651 break; 2652 } 2653 } 2654 2655 Error 2656 NativeProcessLinux::Resume (const ResumeActionList &resume_actions) 2657 { 2658 Error error; 2659 2660 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD)); 2661 if (log) 2662 log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ()); 2663 2664 lldb::tid_t deferred_signal_tid = LLDB_INVALID_THREAD_ID; 2665 lldb::tid_t deferred_signal_skip_tid = LLDB_INVALID_THREAD_ID; 2666 int deferred_signo = 0; 2667 NativeThreadProtocolSP deferred_signal_thread_sp; 2668 int resume_count = 0; 2669 2670 2671 // std::vector<NativeThreadProtocolSP> new_stop_threads; 2672 2673 // Scope for threads mutex. 2674 { 2675 Mutex::Locker locker (m_threads_mutex); 2676 for (auto thread_sp : m_threads) 2677 { 2678 assert (thread_sp && "thread list should not contain NULL threads"); 2679 2680 const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true); 2681 assert (action && "NULL ResumeAction returned for thread during Resume ()"); 2682 2683 if (log) 2684 { 2685 log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64, 2686 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); 2687 } 2688 2689 switch (action->state) 2690 { 2691 case eStateRunning: 2692 { 2693 // Run the thread, possibly feeding it the signal. 2694 const int signo = action->signal; 2695 m_coordinator_up->RequestThreadResumeAsNeeded (thread_sp->GetID (), 2696 [=](lldb::tid_t tid_to_resume) 2697 { 2698 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning (); 2699 // Pass this signal number on to the inferior to handle. 2700 Resume (tid_to_resume, (signo > 0) ? signo : LLDB_INVALID_SIGNAL_NUMBER); 2701 }, 2702 CoordinatorErrorHandler); 2703 ++resume_count; 2704 break; 2705 } 2706 2707 case eStateStepping: 2708 { 2709 // Request the step. 2710 const int signo = action->signal; 2711 m_coordinator_up->RequestThreadResume (thread_sp->GetID (), 2712 [=](lldb::tid_t tid_to_step) 2713 { 2714 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStepping (); 2715 auto step_result = SingleStep (tid_to_step,(signo > 0) ? signo : LLDB_INVALID_SIGNAL_NUMBER); 2716 assert (step_result && "SingleStep() failed"); 2717 }, 2718 CoordinatorErrorHandler); 2719 2720 // The deferred signal tid is the stepping tid. 2721 // This assumes there is only one stepping tid, or the last stepping tid is a fine choice. 2722 deferred_signal_tid = thread_sp->GetID (); 2723 deferred_signal_thread_sp = thread_sp; 2724 2725 // Don't send a stop request to this thread. The thread resume request 2726 // above will actually run the step thread, and it will finish the step 2727 // by sending a SIGTRAP with the appropriate bits set. So, the deferred 2728 // signal call that happens at the end of the loop below needs to let 2729 // the pending signal handling to *not* send a stop for this thread here 2730 // since the start/stop step functionality will end up with a stop state. 2731 // Otherwise, this stepping thread will get sent an erroneous tgkill for 2732 // with a SIGSTOP signal. 2733 deferred_signal_skip_tid = thread_sp->GetID (); 2734 2735 // And the stop signal we should apply for it is a SIGTRAP. 2736 deferred_signo = SIGTRAP; 2737 break; 2738 } 2739 2740 case eStateSuspended: 2741 case eStateStopped: 2742 // if we haven't chosen a deferred signal tid yet, use this one. 2743 if (deferred_signal_tid == LLDB_INVALID_THREAD_ID) 2744 { 2745 deferred_signal_tid = thread_sp->GetID (); 2746 deferred_signal_thread_sp = thread_sp; 2747 deferred_signo = SIGSTOP; 2748 } 2749 break; 2750 2751 default: 2752 return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64, 2753 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); 2754 } 2755 } 2756 } 2757 2758 // If we had any thread stopping, then do a deferred notification of the chosen stop thread id and signal 2759 // after all other running threads have stopped. 2760 if (deferred_signal_tid != LLDB_INVALID_THREAD_ID) 2761 { 2762 CallAfterRunningThreadsStopWithSkipTID (deferred_signal_tid, 2763 deferred_signal_skip_tid, 2764 [=](lldb::tid_t deferred_notification_tid) 2765 { 2766 // Set the signal thread to the current thread. 2767 SetCurrentThreadID (deferred_notification_tid); 2768 2769 // Set the thread state as stopped by the deferred signo. 2770 reinterpret_cast<NativeThreadLinux*> (deferred_signal_thread_sp.get ())->SetStoppedBySignal (deferred_signo); 2771 2772 // Tell the process delegate that the process is in a stopped state. 2773 SetState (StateType::eStateStopped, true); 2774 }); 2775 } 2776 2777 return error; 2778 } 2779 2780 Error 2781 NativeProcessLinux::Halt () 2782 { 2783 Error error; 2784 2785 if (kill (GetID (), SIGSTOP) != 0) 2786 error.SetErrorToErrno (); 2787 2788 return error; 2789 } 2790 2791 Error 2792 NativeProcessLinux::Detach () 2793 { 2794 Error error; 2795 2796 // Tell ptrace to detach from the process. 2797 if (GetID () != LLDB_INVALID_PROCESS_ID) 2798 error = Detach (GetID ()); 2799 2800 // Stop monitoring the inferior. 2801 StopMonitor (); 2802 2803 // No error. 2804 return error; 2805 } 2806 2807 Error 2808 NativeProcessLinux::Signal (int signo) 2809 { 2810 Error error; 2811 2812 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2813 if (log) 2814 log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64, 2815 __FUNCTION__, signo, GetUnixSignals ().GetSignalAsCString (signo), GetID ()); 2816 2817 if (kill(GetID(), signo)) 2818 error.SetErrorToErrno(); 2819 2820 return error; 2821 } 2822 2823 Error 2824 NativeProcessLinux::Interrupt () 2825 { 2826 // Pick a running thread (or if none, a not-dead stopped thread) as 2827 // the chosen thread that will be the stop-reason thread. 2828 Error error; 2829 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2830 2831 NativeThreadProtocolSP running_thread_sp; 2832 NativeThreadProtocolSP stopped_thread_sp; 2833 { 2834 Mutex::Locker locker (m_threads_mutex); 2835 2836 if (log) 2837 log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__); 2838 2839 for (auto thread_sp : m_threads) 2840 { 2841 // The thread shouldn't be null but lets just cover that here. 2842 if (!thread_sp) 2843 continue; 2844 2845 // If we have a running or stepping thread, we'll call that the 2846 // target of the interrupt. 2847 const auto thread_state = thread_sp->GetState (); 2848 if (thread_state == eStateRunning || 2849 thread_state == eStateStepping) 2850 { 2851 running_thread_sp = thread_sp; 2852 break; 2853 } 2854 else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true)) 2855 { 2856 // Remember the first non-dead stopped thread. We'll use that as a backup if there are no running threads. 2857 stopped_thread_sp = thread_sp; 2858 } 2859 } 2860 } 2861 2862 if (!running_thread_sp && !stopped_thread_sp) 2863 { 2864 error.SetErrorString ("found no running/stepping or live stopped threads as target for interrupt"); 2865 if (log) 2866 { 2867 log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ()); 2868 } 2869 return error; 2870 } 2871 2872 NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp; 2873 2874 if (log) 2875 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target", 2876 __FUNCTION__, 2877 GetID (), 2878 running_thread_sp ? "running" : "stopped", 2879 deferred_signal_thread_sp->GetID ()); 2880 2881 CallAfterRunningThreadsStop (deferred_signal_thread_sp->GetID (), 2882 [=](lldb::tid_t deferred_notification_tid) 2883 { 2884 // Set the signal thread to the current thread. 2885 SetCurrentThreadID (deferred_notification_tid); 2886 2887 // Set the thread state as stopped by the deferred signo. 2888 reinterpret_cast<NativeThreadLinux*> (deferred_signal_thread_sp.get ())->SetStoppedBySignal (SIGSTOP); 2889 2890 // Tell the process delegate that the process is in a stopped state. 2891 SetState (StateType::eStateStopped, true); 2892 }); 2893 return error; 2894 } 2895 2896 Error 2897 NativeProcessLinux::Kill () 2898 { 2899 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2900 if (log) 2901 log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ()); 2902 2903 Error error; 2904 2905 switch (m_state) 2906 { 2907 case StateType::eStateInvalid: 2908 case StateType::eStateExited: 2909 case StateType::eStateCrashed: 2910 case StateType::eStateDetached: 2911 case StateType::eStateUnloaded: 2912 // Nothing to do - the process is already dead. 2913 if (log) 2914 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state)); 2915 return error; 2916 2917 case StateType::eStateConnected: 2918 case StateType::eStateAttaching: 2919 case StateType::eStateLaunching: 2920 case StateType::eStateStopped: 2921 case StateType::eStateRunning: 2922 case StateType::eStateStepping: 2923 case StateType::eStateSuspended: 2924 // We can try to kill a process in these states. 2925 break; 2926 } 2927 2928 if (kill (GetID (), SIGKILL) != 0) 2929 { 2930 error.SetErrorToErrno (); 2931 return error; 2932 } 2933 2934 return error; 2935 } 2936 2937 static Error 2938 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info) 2939 { 2940 memory_region_info.Clear(); 2941 2942 StringExtractor line_extractor (maps_line.c_str ()); 2943 2944 // Format: {address_start_hex}-{address_end_hex} perms offset dev inode pathname 2945 // perms: rwxp (letter is present if set, '-' if not, final character is p=private, s=shared). 2946 2947 // Parse out the starting address 2948 lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0); 2949 2950 // Parse out hyphen separating start and end address from range. 2951 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-')) 2952 return Error ("malformed /proc/{pid}/maps entry, missing dash between address range"); 2953 2954 // Parse out the ending address 2955 lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address); 2956 2957 // Parse out the space after the address. 2958 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' ')) 2959 return Error ("malformed /proc/{pid}/maps entry, missing space after range"); 2960 2961 // Save the range. 2962 memory_region_info.GetRange ().SetRangeBase (start_address); 2963 memory_region_info.GetRange ().SetRangeEnd (end_address); 2964 2965 // Parse out each permission entry. 2966 if (line_extractor.GetBytesLeft () < 4) 2967 return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions"); 2968 2969 // Handle read permission. 2970 const char read_perm_char = line_extractor.GetChar (); 2971 if (read_perm_char == 'r') 2972 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes); 2973 else 2974 { 2975 assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" ); 2976 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 2977 } 2978 2979 // Handle write permission. 2980 const char write_perm_char = line_extractor.GetChar (); 2981 if (write_perm_char == 'w') 2982 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes); 2983 else 2984 { 2985 assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" ); 2986 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 2987 } 2988 2989 // Handle execute permission. 2990 const char exec_perm_char = line_extractor.GetChar (); 2991 if (exec_perm_char == 'x') 2992 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes); 2993 else 2994 { 2995 assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" ); 2996 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 2997 } 2998 2999 return Error (); 3000 } 3001 3002 Error 3003 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info) 3004 { 3005 // FIXME review that the final memory region returned extends to the end of the virtual address space, 3006 // with no perms if it is not mapped. 3007 3008 // Use an approach that reads memory regions from /proc/{pid}/maps. 3009 // Assume proc maps entries are in ascending order. 3010 // FIXME assert if we find differently. 3011 Mutex::Locker locker (m_mem_region_cache_mutex); 3012 3013 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3014 Error error; 3015 3016 if (m_supports_mem_region == LazyBool::eLazyBoolNo) 3017 { 3018 // We're done. 3019 error.SetErrorString ("unsupported"); 3020 return error; 3021 } 3022 3023 // If our cache is empty, pull the latest. There should always be at least one memory region 3024 // if memory region handling is supported. 3025 if (m_mem_region_cache.empty ()) 3026 { 3027 error = ProcFileReader::ProcessLineByLine (GetID (), "maps", 3028 [&] (const std::string &line) -> bool 3029 { 3030 MemoryRegionInfo info; 3031 const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info); 3032 if (parse_error.Success ()) 3033 { 3034 m_mem_region_cache.push_back (info); 3035 return true; 3036 } 3037 else 3038 { 3039 if (log) 3040 log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ()); 3041 return false; 3042 } 3043 }); 3044 3045 // If we had an error, we'll mark unsupported. 3046 if (error.Fail ()) 3047 { 3048 m_supports_mem_region = LazyBool::eLazyBoolNo; 3049 return error; 3050 } 3051 else if (m_mem_region_cache.empty ()) 3052 { 3053 // No entries after attempting to read them. This shouldn't happen if /proc/{pid}/maps 3054 // is supported. Assume we don't support map entries via procfs. 3055 if (log) 3056 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__); 3057 m_supports_mem_region = LazyBool::eLazyBoolNo; 3058 error.SetErrorString ("not supported"); 3059 return error; 3060 } 3061 3062 if (log) 3063 log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ()); 3064 3065 // We support memory retrieval, remember that. 3066 m_supports_mem_region = LazyBool::eLazyBoolYes; 3067 } 3068 else 3069 { 3070 if (log) 3071 log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ())); 3072 } 3073 3074 lldb::addr_t prev_base_address = 0; 3075 3076 // FIXME start by finding the last region that is <= target address using binary search. Data is sorted. 3077 // There can be a ton of regions on pthreads apps with lots of threads. 3078 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it) 3079 { 3080 MemoryRegionInfo &proc_entry_info = *it; 3081 3082 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 3083 assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected"); 3084 prev_base_address = proc_entry_info.GetRange ().GetRangeBase (); 3085 3086 // If the target address comes before this entry, indicate distance to next region. 3087 if (load_addr < proc_entry_info.GetRange ().GetRangeBase ()) 3088 { 3089 range_info.GetRange ().SetRangeBase (load_addr); 3090 range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr); 3091 range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 3092 range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 3093 range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 3094 3095 return error; 3096 } 3097 else if (proc_entry_info.GetRange ().Contains (load_addr)) 3098 { 3099 // The target address is within the memory region we're processing here. 3100 range_info = proc_entry_info; 3101 return error; 3102 } 3103 3104 // The target memory address comes somewhere after the region we just parsed. 3105 } 3106 3107 // If we made it here, we didn't find an entry that contained the given address. 3108 error.SetErrorString ("address comes after final region"); 3109 3110 if (log) 3111 log->Printf ("NativeProcessLinux::%s failed to find map entry for address 0x%" PRIx64 ": %s", __FUNCTION__, load_addr, error.AsCString ()); 3112 3113 return error; 3114 } 3115 3116 void 3117 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId) 3118 { 3119 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3120 if (log) 3121 log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId); 3122 3123 { 3124 Mutex::Locker locker (m_mem_region_cache_mutex); 3125 if (log) 3126 log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ())); 3127 m_mem_region_cache.clear (); 3128 } 3129 } 3130 3131 Error 3132 NativeProcessLinux::AllocateMemory ( 3133 lldb::addr_t size, 3134 uint32_t permissions, 3135 lldb::addr_t &addr) 3136 { 3137 // FIXME implementing this requires the equivalent of 3138 // InferiorCallPOSIX::InferiorCallMmap, which depends on 3139 // functional ThreadPlans working with Native*Protocol. 3140 #if 1 3141 return Error ("not implemented yet"); 3142 #else 3143 addr = LLDB_INVALID_ADDRESS; 3144 3145 unsigned prot = 0; 3146 if (permissions & lldb::ePermissionsReadable) 3147 prot |= eMmapProtRead; 3148 if (permissions & lldb::ePermissionsWritable) 3149 prot |= eMmapProtWrite; 3150 if (permissions & lldb::ePermissionsExecutable) 3151 prot |= eMmapProtExec; 3152 3153 // TODO implement this directly in NativeProcessLinux 3154 // (and lift to NativeProcessPOSIX if/when that class is 3155 // refactored out). 3156 if (InferiorCallMmap(this, addr, 0, size, prot, 3157 eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { 3158 m_addr_to_mmap_size[addr] = size; 3159 return Error (); 3160 } else { 3161 addr = LLDB_INVALID_ADDRESS; 3162 return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions)); 3163 } 3164 #endif 3165 } 3166 3167 Error 3168 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr) 3169 { 3170 // FIXME see comments in AllocateMemory - required lower-level 3171 // bits not in place yet (ThreadPlans) 3172 return Error ("not implemented"); 3173 } 3174 3175 lldb::addr_t 3176 NativeProcessLinux::GetSharedLibraryInfoAddress () 3177 { 3178 #if 1 3179 // punt on this for now 3180 return LLDB_INVALID_ADDRESS; 3181 #else 3182 // Return the image info address for the exe module 3183 #if 1 3184 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3185 3186 ModuleSP module_sp; 3187 Error error = GetExeModuleSP (module_sp); 3188 if (error.Fail ()) 3189 { 3190 if (log) 3191 log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ()); 3192 return LLDB_INVALID_ADDRESS; 3193 } 3194 3195 if (module_sp == nullptr) 3196 { 3197 if (log) 3198 log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__); 3199 return LLDB_INVALID_ADDRESS; 3200 } 3201 3202 ObjectFileSP object_file_sp = module_sp->GetObjectFile (); 3203 if (object_file_sp == nullptr) 3204 { 3205 if (log) 3206 log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__); 3207 return LLDB_INVALID_ADDRESS; 3208 } 3209 3210 return obj_file_sp->GetImageInfoAddress(); 3211 #else 3212 Target *target = &GetTarget(); 3213 ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile(); 3214 Address addr = obj_file->GetImageInfoAddress(target); 3215 3216 if (addr.IsValid()) 3217 return addr.GetLoadAddress(target); 3218 return LLDB_INVALID_ADDRESS; 3219 #endif 3220 #endif // punt on this for now 3221 } 3222 3223 size_t 3224 NativeProcessLinux::UpdateThreads () 3225 { 3226 // The NativeProcessLinux monitoring threads are always up to date 3227 // with respect to thread state and they keep the thread list 3228 // populated properly. All this method needs to do is return the 3229 // thread count. 3230 Mutex::Locker locker (m_threads_mutex); 3231 return m_threads.size (); 3232 } 3233 3234 bool 3235 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const 3236 { 3237 arch = m_arch; 3238 return true; 3239 } 3240 3241 Error 3242 NativeProcessLinux::GetSoftwareBreakpointSize (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size) 3243 { 3244 // FIXME put this behind a breakpoint protocol class that can be 3245 // set per architecture. Need ARM, MIPS support here. 3246 static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 }; 3247 static const uint8_t g_i386_opcode [] = { 0xCC }; 3248 3249 switch (m_arch.GetMachine ()) 3250 { 3251 case llvm::Triple::aarch64: 3252 actual_opcode_size = static_cast<uint32_t> (sizeof(g_aarch64_opcode)); 3253 return Error (); 3254 3255 case llvm::Triple::x86: 3256 case llvm::Triple::x86_64: 3257 actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode)); 3258 return Error (); 3259 3260 default: 3261 assert(false && "CPU type not supported!"); 3262 return Error ("CPU type not supported"); 3263 } 3264 } 3265 3266 Error 3267 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware) 3268 { 3269 if (hardware) 3270 return Error ("NativeProcessLinux does not support hardware breakpoints"); 3271 else 3272 return SetSoftwareBreakpoint (addr, size); 3273 } 3274 3275 Error 3276 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint, size_t &actual_opcode_size, const uint8_t *&trap_opcode_bytes) 3277 { 3278 // FIXME put this behind a breakpoint protocol class that can be 3279 // set per architecture. Need ARM, MIPS support here. 3280 static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 }; 3281 static const uint8_t g_i386_opcode [] = { 0xCC }; 3282 3283 switch (m_arch.GetMachine ()) 3284 { 3285 case llvm::Triple::aarch64: 3286 trap_opcode_bytes = g_aarch64_opcode; 3287 actual_opcode_size = sizeof(g_aarch64_opcode); 3288 return Error (); 3289 3290 case llvm::Triple::x86: 3291 case llvm::Triple::x86_64: 3292 trap_opcode_bytes = g_i386_opcode; 3293 actual_opcode_size = sizeof(g_i386_opcode); 3294 return Error (); 3295 3296 default: 3297 assert(false && "CPU type not supported!"); 3298 return Error ("CPU type not supported"); 3299 } 3300 } 3301 3302 #if 0 3303 ProcessMessage::CrashReason 3304 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info) 3305 { 3306 ProcessMessage::CrashReason reason; 3307 assert(info->si_signo == SIGSEGV); 3308 3309 reason = ProcessMessage::eInvalidCrashReason; 3310 3311 switch (info->si_code) 3312 { 3313 default: 3314 assert(false && "unexpected si_code for SIGSEGV"); 3315 break; 3316 case SI_KERNEL: 3317 // Linux will occasionally send spurious SI_KERNEL codes. 3318 // (this is poorly documented in sigaction) 3319 // One way to get this is via unaligned SIMD loads. 3320 reason = ProcessMessage::eInvalidAddress; // for lack of anything better 3321 break; 3322 case SEGV_MAPERR: 3323 reason = ProcessMessage::eInvalidAddress; 3324 break; 3325 case SEGV_ACCERR: 3326 reason = ProcessMessage::ePrivilegedAddress; 3327 break; 3328 } 3329 3330 return reason; 3331 } 3332 #endif 3333 3334 3335 #if 0 3336 ProcessMessage::CrashReason 3337 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info) 3338 { 3339 ProcessMessage::CrashReason reason; 3340 assert(info->si_signo == SIGILL); 3341 3342 reason = ProcessMessage::eInvalidCrashReason; 3343 3344 switch (info->si_code) 3345 { 3346 default: 3347 assert(false && "unexpected si_code for SIGILL"); 3348 break; 3349 case ILL_ILLOPC: 3350 reason = ProcessMessage::eIllegalOpcode; 3351 break; 3352 case ILL_ILLOPN: 3353 reason = ProcessMessage::eIllegalOperand; 3354 break; 3355 case ILL_ILLADR: 3356 reason = ProcessMessage::eIllegalAddressingMode; 3357 break; 3358 case ILL_ILLTRP: 3359 reason = ProcessMessage::eIllegalTrap; 3360 break; 3361 case ILL_PRVOPC: 3362 reason = ProcessMessage::ePrivilegedOpcode; 3363 break; 3364 case ILL_PRVREG: 3365 reason = ProcessMessage::ePrivilegedRegister; 3366 break; 3367 case ILL_COPROC: 3368 reason = ProcessMessage::eCoprocessorError; 3369 break; 3370 case ILL_BADSTK: 3371 reason = ProcessMessage::eInternalStackError; 3372 break; 3373 } 3374 3375 return reason; 3376 } 3377 #endif 3378 3379 #if 0 3380 ProcessMessage::CrashReason 3381 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info) 3382 { 3383 ProcessMessage::CrashReason reason; 3384 assert(info->si_signo == SIGFPE); 3385 3386 reason = ProcessMessage::eInvalidCrashReason; 3387 3388 switch (info->si_code) 3389 { 3390 default: 3391 assert(false && "unexpected si_code for SIGFPE"); 3392 break; 3393 case FPE_INTDIV: 3394 reason = ProcessMessage::eIntegerDivideByZero; 3395 break; 3396 case FPE_INTOVF: 3397 reason = ProcessMessage::eIntegerOverflow; 3398 break; 3399 case FPE_FLTDIV: 3400 reason = ProcessMessage::eFloatDivideByZero; 3401 break; 3402 case FPE_FLTOVF: 3403 reason = ProcessMessage::eFloatOverflow; 3404 break; 3405 case FPE_FLTUND: 3406 reason = ProcessMessage::eFloatUnderflow; 3407 break; 3408 case FPE_FLTRES: 3409 reason = ProcessMessage::eFloatInexactResult; 3410 break; 3411 case FPE_FLTINV: 3412 reason = ProcessMessage::eFloatInvalidOperation; 3413 break; 3414 case FPE_FLTSUB: 3415 reason = ProcessMessage::eFloatSubscriptRange; 3416 break; 3417 } 3418 3419 return reason; 3420 } 3421 #endif 3422 3423 #if 0 3424 ProcessMessage::CrashReason 3425 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info) 3426 { 3427 ProcessMessage::CrashReason reason; 3428 assert(info->si_signo == SIGBUS); 3429 3430 reason = ProcessMessage::eInvalidCrashReason; 3431 3432 switch (info->si_code) 3433 { 3434 default: 3435 assert(false && "unexpected si_code for SIGBUS"); 3436 break; 3437 case BUS_ADRALN: 3438 reason = ProcessMessage::eIllegalAlignment; 3439 break; 3440 case BUS_ADRERR: 3441 reason = ProcessMessage::eIllegalAddress; 3442 break; 3443 case BUS_OBJERR: 3444 reason = ProcessMessage::eHardwareError; 3445 break; 3446 } 3447 3448 return reason; 3449 } 3450 #endif 3451 3452 void 3453 NativeProcessLinux::ServeOperation(OperationArgs *args) 3454 { 3455 NativeProcessLinux *monitor = args->m_monitor; 3456 3457 // We are finised with the arguments and are ready to go. Sync with the 3458 // parent thread and start serving operations on the inferior. 3459 sem_post(&args->m_semaphore); 3460 3461 for(;;) 3462 { 3463 // wait for next pending operation 3464 if (sem_wait(&monitor->m_operation_pending)) 3465 { 3466 if (errno == EINTR) 3467 continue; 3468 assert(false && "Unexpected errno from sem_wait"); 3469 } 3470 3471 reinterpret_cast<Operation*>(monitor->m_operation)->Execute(monitor); 3472 3473 // notify calling thread that operation is complete 3474 sem_post(&monitor->m_operation_done); 3475 } 3476 } 3477 3478 void 3479 NativeProcessLinux::DoOperation(void *op) 3480 { 3481 Mutex::Locker lock(m_operation_mutex); 3482 3483 m_operation = op; 3484 3485 // notify operation thread that an operation is ready to be processed 3486 sem_post(&m_operation_pending); 3487 3488 // wait for operation to complete 3489 while (sem_wait(&m_operation_done)) 3490 { 3491 if (errno == EINTR) 3492 continue; 3493 assert(false && "Unexpected errno from sem_wait"); 3494 } 3495 } 3496 3497 Error 3498 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, lldb::addr_t size, lldb::addr_t &bytes_read) 3499 { 3500 ReadOperation op(addr, buf, size, bytes_read); 3501 DoOperation(&op); 3502 return op.GetError (); 3503 } 3504 3505 Error 3506 NativeProcessLinux::WriteMemory (lldb::addr_t addr, const void *buf, lldb::addr_t size, lldb::addr_t &bytes_written) 3507 { 3508 WriteOperation op(addr, buf, size, bytes_written); 3509 DoOperation(&op); 3510 return op.GetError (); 3511 } 3512 3513 bool 3514 NativeProcessLinux::ReadRegisterValue(lldb::tid_t tid, uint32_t offset, const char* reg_name, 3515 uint32_t size, RegisterValue &value) 3516 { 3517 bool result; 3518 ReadRegOperation op(tid, offset, reg_name, value, result); 3519 DoOperation(&op); 3520 return result; 3521 } 3522 3523 bool 3524 NativeProcessLinux::WriteRegisterValue(lldb::tid_t tid, unsigned offset, 3525 const char* reg_name, const RegisterValue &value) 3526 { 3527 bool result; 3528 WriteRegOperation op(tid, offset, reg_name, value, result); 3529 DoOperation(&op); 3530 return result; 3531 } 3532 3533 bool 3534 NativeProcessLinux::ReadGPR(lldb::tid_t tid, void *buf, size_t buf_size) 3535 { 3536 bool result; 3537 ReadGPROperation op(tid, buf, buf_size, result); 3538 DoOperation(&op); 3539 return result; 3540 } 3541 3542 bool 3543 NativeProcessLinux::ReadFPR(lldb::tid_t tid, void *buf, size_t buf_size) 3544 { 3545 bool result; 3546 ReadFPROperation op(tid, buf, buf_size, result); 3547 DoOperation(&op); 3548 return result; 3549 } 3550 3551 bool 3552 NativeProcessLinux::ReadRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 3553 { 3554 bool result; 3555 ReadRegisterSetOperation op(tid, buf, buf_size, regset, result); 3556 DoOperation(&op); 3557 return result; 3558 } 3559 3560 bool 3561 NativeProcessLinux::WriteGPR(lldb::tid_t tid, void *buf, size_t buf_size) 3562 { 3563 bool result; 3564 WriteGPROperation op(tid, buf, buf_size, result); 3565 DoOperation(&op); 3566 return result; 3567 } 3568 3569 bool 3570 NativeProcessLinux::WriteFPR(lldb::tid_t tid, void *buf, size_t buf_size) 3571 { 3572 bool result; 3573 WriteFPROperation op(tid, buf, buf_size, result); 3574 DoOperation(&op); 3575 return result; 3576 } 3577 3578 bool 3579 NativeProcessLinux::WriteRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 3580 { 3581 bool result; 3582 WriteRegisterSetOperation op(tid, buf, buf_size, regset, result); 3583 DoOperation(&op); 3584 return result; 3585 } 3586 3587 bool 3588 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo) 3589 { 3590 bool result; 3591 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3592 3593 if (log) 3594 log->Printf ("NativeProcessLinux::%s() resuming thread = %" PRIu64 " with signal %s", __FUNCTION__, tid, 3595 GetUnixSignals().GetSignalAsCString (signo)); 3596 ResumeOperation op (tid, signo, result); 3597 DoOperation (&op); 3598 if (log) 3599 log->Printf ("NativeProcessLinux::%s() resuming result = %s", __FUNCTION__, result ? "true" : "false"); 3600 return result; 3601 } 3602 3603 bool 3604 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo) 3605 { 3606 bool result; 3607 SingleStepOperation op(tid, signo, result); 3608 DoOperation(&op); 3609 return result; 3610 } 3611 3612 bool 3613 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo, int &ptrace_err) 3614 { 3615 bool result; 3616 SiginfoOperation op(tid, siginfo, result, ptrace_err); 3617 DoOperation(&op); 3618 return result; 3619 } 3620 3621 bool 3622 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message) 3623 { 3624 bool result; 3625 EventMessageOperation op(tid, message, result); 3626 DoOperation(&op); 3627 return result; 3628 } 3629 3630 lldb_private::Error 3631 NativeProcessLinux::Detach(lldb::tid_t tid) 3632 { 3633 lldb_private::Error error; 3634 if (tid != LLDB_INVALID_THREAD_ID) 3635 { 3636 DetachOperation op(tid, error); 3637 DoOperation(&op); 3638 } 3639 return error; 3640 } 3641 3642 bool 3643 NativeProcessLinux::DupDescriptor(const char *path, int fd, int flags) 3644 { 3645 int target_fd = open(path, flags, 0666); 3646 3647 if (target_fd == -1) 3648 return false; 3649 3650 return (dup2(target_fd, fd) == -1) ? false : true; 3651 } 3652 3653 void 3654 NativeProcessLinux::StopMonitoringChildProcess() 3655 { 3656 if (m_monitor_thread.IsJoinable()) 3657 { 3658 m_monitor_thread.Cancel(); 3659 m_monitor_thread.Join(nullptr); 3660 } 3661 } 3662 3663 void 3664 NativeProcessLinux::StopMonitor() 3665 { 3666 StopMonitoringChildProcess(); 3667 StopOpThread(); 3668 StopCoordinatorThread (); 3669 sem_destroy(&m_operation_pending); 3670 sem_destroy(&m_operation_done); 3671 3672 // TODO: validate whether this still holds, fix up comment. 3673 // Note: ProcessPOSIX passes the m_terminal_fd file descriptor to 3674 // Process::SetSTDIOFileDescriptor, which in turn transfers ownership of 3675 // the descriptor to a ConnectionFileDescriptor object. Consequently 3676 // even though still has the file descriptor, we shouldn't close it here. 3677 } 3678 3679 void 3680 NativeProcessLinux::StopOpThread() 3681 { 3682 if (!m_operation_thread.IsJoinable()) 3683 return; 3684 3685 m_operation_thread.Cancel(); 3686 m_operation_thread.Join(nullptr); 3687 } 3688 3689 Error 3690 NativeProcessLinux::StartCoordinatorThread () 3691 { 3692 Error error; 3693 static const char *g_thread_name = "lldb.process.linux.ts_coordinator"; 3694 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3695 3696 // Skip if thread is already running 3697 if (m_coordinator_thread.IsJoinable()) 3698 { 3699 error.SetErrorString ("ThreadStateCoordinator's run loop is already running"); 3700 if (log) 3701 log->Printf ("NativeProcessLinux::%s %s", __FUNCTION__, error.AsCString ()); 3702 return error; 3703 } 3704 3705 // Enable verbose logging if lldb thread logging is enabled. 3706 m_coordinator_up->LogEnableEventProcessing (log != nullptr); 3707 3708 if (log) 3709 log->Printf ("NativeProcessLinux::%s launching ThreadStateCoordinator thread for pid %" PRIu64, __FUNCTION__, GetID ()); 3710 m_coordinator_thread = ThreadLauncher::LaunchThread(g_thread_name, CoordinatorThread, this, &error); 3711 return error; 3712 } 3713 3714 void * 3715 NativeProcessLinux::CoordinatorThread (void *arg) 3716 { 3717 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3718 3719 NativeProcessLinux *const process = static_cast<NativeProcessLinux*> (arg); 3720 assert (process && "null process passed to CoordinatorThread"); 3721 if (!process) 3722 { 3723 if (log) 3724 log->Printf ("NativeProcessLinux::%s null process, exiting ThreadStateCoordinator processing loop", __FUNCTION__); 3725 return nullptr; 3726 } 3727 3728 // Run the thread state coordinator loop until it is done. This call uses 3729 // efficient waiting for an event to be ready. 3730 while (process->m_coordinator_up->ProcessNextEvent () == ThreadStateCoordinator::eventLoopResultContinue) 3731 { 3732 } 3733 3734 if (log) 3735 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " exiting ThreadStateCoordinator processing loop due to coordinator indicating completion", __FUNCTION__, process->GetID ()); 3736 3737 return nullptr; 3738 } 3739 3740 void 3741 NativeProcessLinux::StopCoordinatorThread() 3742 { 3743 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3744 if (log) 3745 log->Printf ("NativeProcessLinux::%s requesting ThreadStateCoordinator stop for pid %" PRIu64, __FUNCTION__, GetID ()); 3746 3747 // Tell the coordinator we're done. This will cause the coordinator 3748 // run loop thread to exit when the processing queue hits this message. 3749 m_coordinator_up->StopCoordinator (); 3750 } 3751 3752 bool 3753 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id) 3754 { 3755 for (auto thread_sp : m_threads) 3756 { 3757 assert (thread_sp && "thread list should not contain NULL threads"); 3758 if (thread_sp->GetID () == thread_id) 3759 { 3760 // We have this thread. 3761 return true; 3762 } 3763 } 3764 3765 // We don't have this thread. 3766 return false; 3767 } 3768 3769 NativeThreadProtocolSP 3770 NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id) 3771 { 3772 // CONSIDER organize threads by map - we can do better than linear. 3773 for (auto thread_sp : m_threads) 3774 { 3775 if (thread_sp->GetID () == thread_id) 3776 return thread_sp; 3777 } 3778 3779 // We don't have this thread. 3780 return NativeThreadProtocolSP (); 3781 } 3782 3783 bool 3784 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id) 3785 { 3786 Mutex::Locker locker (m_threads_mutex); 3787 for (auto it = m_threads.begin (); it != m_threads.end (); ++it) 3788 { 3789 if (*it && ((*it)->GetID () == thread_id)) 3790 { 3791 m_threads.erase (it); 3792 return true; 3793 } 3794 } 3795 3796 // Didn't find it. 3797 return false; 3798 } 3799 3800 NativeThreadProtocolSP 3801 NativeProcessLinux::AddThread (lldb::tid_t thread_id) 3802 { 3803 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3804 3805 Mutex::Locker locker (m_threads_mutex); 3806 3807 if (log) 3808 { 3809 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64, 3810 __FUNCTION__, 3811 GetID (), 3812 thread_id); 3813 } 3814 3815 assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists"); 3816 3817 // If this is the first thread, save it as the current thread 3818 if (m_threads.empty ()) 3819 SetCurrentThreadID (thread_id); 3820 3821 NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id)); 3822 m_threads.push_back (thread_sp); 3823 3824 return thread_sp; 3825 } 3826 3827 NativeThreadProtocolSP 3828 NativeProcessLinux::GetOrCreateThread (lldb::tid_t thread_id, bool &created) 3829 { 3830 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3831 3832 Mutex::Locker locker (m_threads_mutex); 3833 if (log) 3834 { 3835 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " get/create thread with tid %" PRIu64, 3836 __FUNCTION__, 3837 GetID (), 3838 thread_id); 3839 } 3840 3841 // Retrieve the thread if it is already getting tracked. 3842 NativeThreadProtocolSP thread_sp = MaybeGetThreadNoLock (thread_id); 3843 if (thread_sp) 3844 { 3845 if (log) 3846 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": thread already tracked, returning", 3847 __FUNCTION__, 3848 GetID (), 3849 thread_id); 3850 created = false; 3851 return thread_sp; 3852 3853 } 3854 3855 // Create the thread metadata since it isn't being tracked. 3856 if (log) 3857 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": thread didn't exist, tracking now", 3858 __FUNCTION__, 3859 GetID (), 3860 thread_id); 3861 3862 thread_sp.reset (new NativeThreadLinux (this, thread_id)); 3863 m_threads.push_back (thread_sp); 3864 created = true; 3865 3866 return thread_sp; 3867 } 3868 3869 Error 3870 NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp) 3871 { 3872 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS)); 3873 3874 Error error; 3875 3876 // Get a linux thread pointer. 3877 if (!thread_sp) 3878 { 3879 error.SetErrorString ("null thread_sp"); 3880 if (log) 3881 log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); 3882 return error; 3883 } 3884 NativeThreadLinux *const linux_thread_p = reinterpret_cast<NativeThreadLinux*> (thread_sp.get()); 3885 3886 // Find out the size of a breakpoint (might depend on where we are in the code). 3887 NativeRegisterContextSP context_sp = linux_thread_p->GetRegisterContext (); 3888 if (!context_sp) 3889 { 3890 error.SetErrorString ("cannot get a NativeRegisterContext for the thread"); 3891 if (log) 3892 log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); 3893 return error; 3894 } 3895 3896 uint32_t breakpoint_size = 0; 3897 error = GetSoftwareBreakpointSize (context_sp, breakpoint_size); 3898 if (error.Fail ()) 3899 { 3900 if (log) 3901 log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ()); 3902 return error; 3903 } 3904 else 3905 { 3906 if (log) 3907 log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size); 3908 } 3909 3910 // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size. 3911 const lldb::addr_t initial_pc_addr = context_sp->GetPC (); 3912 lldb::addr_t breakpoint_addr = initial_pc_addr; 3913 if (breakpoint_size > static_cast<lldb::addr_t> (0)) 3914 { 3915 // Do not allow breakpoint probe to wrap around. 3916 if (breakpoint_addr >= static_cast<lldb::addr_t> (breakpoint_size)) 3917 breakpoint_addr -= static_cast<lldb::addr_t> (breakpoint_size); 3918 } 3919 3920 // Check if we stopped because of a breakpoint. 3921 NativeBreakpointSP breakpoint_sp; 3922 error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp); 3923 if (!error.Success () || !breakpoint_sp) 3924 { 3925 // We didn't find one at a software probe location. Nothing to do. 3926 if (log) 3927 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr); 3928 return Error (); 3929 } 3930 3931 // If the breakpoint is not a software breakpoint, nothing to do. 3932 if (!breakpoint_sp->IsSoftwareBreakpoint ()) 3933 { 3934 if (log) 3935 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr); 3936 return Error (); 3937 } 3938 3939 // 3940 // We have a software breakpoint and need to adjust the PC. 3941 // 3942 3943 // Sanity check. 3944 if (breakpoint_size == 0) 3945 { 3946 // Nothing to do! How did we get here? 3947 if (log) 3948 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr); 3949 return Error (); 3950 } 3951 3952 // Change the program counter. 3953 if (log) 3954 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_p->GetID (), initial_pc_addr, breakpoint_addr); 3955 3956 error = context_sp->SetPC (breakpoint_addr); 3957 if (error.Fail ()) 3958 { 3959 if (log) 3960 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_p->GetID (), error.AsCString ()); 3961 return error; 3962 } 3963 3964 return error; 3965 } 3966 3967 void 3968 NativeProcessLinux::NotifyThreadCreateStopped (lldb::tid_t tid) 3969 { 3970 const bool is_stopped = true; 3971 m_coordinator_up->NotifyThreadCreate (tid, is_stopped, CoordinatorErrorHandler); 3972 } 3973 3974 void 3975 NativeProcessLinux::NotifyThreadDeath (lldb::tid_t tid) 3976 { 3977 m_coordinator_up->NotifyThreadDeath (tid, CoordinatorErrorHandler); 3978 } 3979 3980 void 3981 NativeProcessLinux::NotifyThreadStop (lldb::tid_t tid) 3982 { 3983 m_coordinator_up->NotifyThreadStop (tid, CoordinatorErrorHandler); 3984 } 3985 3986 void 3987 NativeProcessLinux::CallAfterRunningThreadsStop (lldb::tid_t tid, 3988 const std::function<void (lldb::tid_t tid)> &call_after_function) 3989 { 3990 const lldb::pid_t pid = GetID (); 3991 m_coordinator_up->CallAfterRunningThreadsStop (tid, 3992 [=](lldb::tid_t request_stop_tid) 3993 { 3994 tgkill (pid, request_stop_tid, SIGSTOP); 3995 }, 3996 call_after_function, 3997 CoordinatorErrorHandler); 3998 } 3999 4000 void 4001 NativeProcessLinux::CallAfterRunningThreadsStopWithSkipTID (lldb::tid_t deferred_signal_tid, 4002 lldb::tid_t skip_stop_request_tid, 4003 const std::function<void (lldb::tid_t tid)> &call_after_function) 4004 { 4005 const lldb::pid_t pid = GetID (); 4006 m_coordinator_up->CallAfterRunningThreadsStopWithSkipTIDs (deferred_signal_tid, 4007 skip_stop_request_tid != LLDB_INVALID_THREAD_ID ? ThreadStateCoordinator::ThreadIDSet {skip_stop_request_tid} : ThreadStateCoordinator::ThreadIDSet (), 4008 [=](lldb::tid_t request_stop_tid) 4009 { 4010 tgkill (pid, request_stop_tid, SIGSTOP); 4011 }, 4012 call_after_function, 4013 CoordinatorErrorHandler); 4014 } 4015