1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "lldb/lldb-python.h"
11 
12 #include "NativeProcessLinux.h"
13 
14 // C Includes
15 #include <errno.h>
16 #include <poll.h>
17 #include <string.h>
18 #include <stdint.h>
19 #include <unistd.h>
20 
21 #if defined (__arm64__) || defined (__aarch64__)
22 // NT_PRSTATUS and NT_FPREGSET definition
23 #include <elf.h>
24 #endif
25 
26 // C++ Includes
27 #include <fstream>
28 #include <string>
29 
30 // Other libraries and framework includes
31 #include "lldb/Core/Debugger.h"
32 #include "lldb/Core/Error.h"
33 #include "lldb/Core/Module.h"
34 #include "lldb/Core/ModuleSpec.h"
35 #include "lldb/Core/RegisterValue.h"
36 #include "lldb/Core/Scalar.h"
37 #include "lldb/Core/State.h"
38 #include "lldb/Host/Host.h"
39 #include "lldb/Host/HostInfo.h"
40 #include "lldb/Host/ThreadLauncher.h"
41 #include "lldb/Symbol/ObjectFile.h"
42 #include "lldb/Host/common/NativeRegisterContext.h"
43 #include "lldb/Target/Process.h"
44 #include "lldb/Target/ProcessLaunchInfo.h"
45 #include "lldb/Utility/PseudoTerminal.h"
46 
47 #include "lldb/Host/common/NativeBreakpoint.h"
48 #include "Utility/StringExtractor.h"
49 
50 #include "Plugins/Process/Utility/LinuxSignals.h"
51 #include "NativeThreadLinux.h"
52 #include "ProcFileReader.h"
53 #include "ThreadStateCoordinator.h"
54 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
55 
56 // System includes - They have to be included after framework includes because they define some
57 // macros which collide with variable names in other modules
58 #include <linux/unistd.h>
59 #ifndef __ANDROID__
60 #include <sys/procfs.h>
61 #endif
62 #include <sys/personality.h>
63 #include <sys/ptrace.h>
64 #include <sys/socket.h>
65 #include <sys/syscall.h>
66 #include <sys/types.h>
67 #include <sys/uio.h>
68 #include <sys/user.h>
69 #include <sys/wait.h>
70 
71 #ifdef __ANDROID__
72 #define __ptrace_request int
73 #define PT_DETACH PTRACE_DETACH
74 #endif
75 
76 #define DEBUG_PTRACE_MAXBYTES 20
77 
78 // Support ptrace extensions even when compiled without required kernel support
79 #ifndef PT_GETREGS
80 #ifndef PTRACE_GETREGS
81   #define PTRACE_GETREGS 12
82 #endif
83 #endif
84 #ifndef PT_SETREGS
85 #ifndef PTRACE_SETREGS
86   #define PTRACE_SETREGS 13
87 #endif
88 #endif
89 #ifndef PT_GETFPREGS
90 #ifndef PTRACE_GETFPREGS
91   #define PTRACE_GETFPREGS 14
92 #endif
93 #endif
94 #ifndef PT_SETFPREGS
95 #ifndef PTRACE_SETFPREGS
96   #define PTRACE_SETFPREGS 15
97 #endif
98 #endif
99 #ifndef PTRACE_GETREGSET
100   #define PTRACE_GETREGSET 0x4204
101 #endif
102 #ifndef PTRACE_SETREGSET
103   #define PTRACE_SETREGSET 0x4205
104 #endif
105 #ifndef PTRACE_GET_THREAD_AREA
106   #define PTRACE_GET_THREAD_AREA 25
107 #endif
108 #ifndef PTRACE_ARCH_PRCTL
109   #define PTRACE_ARCH_PRCTL      30
110 #endif
111 #ifndef ARCH_GET_FS
112   #define ARCH_SET_GS 0x1001
113   #define ARCH_SET_FS 0x1002
114   #define ARCH_GET_FS 0x1003
115   #define ARCH_GET_GS 0x1004
116 #endif
117 
118 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS  0xffffffff
119 
120 // Support hardware breakpoints in case it has not been defined
121 #ifndef TRAP_HWBKPT
122   #define TRAP_HWBKPT 4
123 #endif
124 
125 // Try to define a macro to encapsulate the tgkill syscall
126 // fall back on kill() if tgkill isn't available
127 #define tgkill(pid, tid, sig) \
128     syscall(SYS_tgkill, static_cast<::pid_t>(pid), static_cast<::pid_t>(tid), sig)
129 
130 // We disable the tracing of ptrace calls for integration builds to
131 // avoid the additional indirection and checks.
132 #ifndef LLDB_CONFIGURATION_BUILDANDINTEGRATION
133 #define PTRACE(req, pid, addr, data, data_size, error) \
134     PtraceWrapper((req), (pid), (addr), (data), (data_size), (error), #req, __FILE__, __LINE__)
135 #else
136 #define PTRACE(req, pid, addr, data, data_size, error) \
137     PtraceWrapper((req), (pid), (addr), (data), (data_size), (error))
138 #endif
139 
140 // Private bits we only need internally.
141 namespace
142 {
143     using namespace lldb;
144     using namespace lldb_private;
145 
146     const UnixSignals&
147     GetUnixSignals ()
148     {
149         static process_linux::LinuxSignals signals;
150         return signals;
151     }
152 
153     ThreadStateCoordinator::LogFunction
154     GetThreadLoggerFunction ()
155     {
156         return [](const char *format, va_list args)
157         {
158             Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
159             if (log)
160                 log->VAPrintf (format, args);
161         };
162     }
163 
164     void
165     CoordinatorErrorHandler (const std::string &error_message)
166     {
167         Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
168         if (log)
169             log->Printf ("NativeProcessLinux::%s %s", __FUNCTION__, error_message.c_str ());
170         assert (false && "ThreadStateCoordinator error reported");
171     }
172 
173     Error
174     ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch)
175     {
176         // Grab process info for the running process.
177         ProcessInstanceInfo process_info;
178         if (!platform.GetProcessInfo (pid, process_info))
179             return lldb_private::Error("failed to get process info");
180 
181         // Resolve the executable module.
182         ModuleSP exe_module_sp;
183         ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
184         FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ());
185         Error error = platform.ResolveExecutable(
186             exe_module_spec,
187             exe_module_sp,
188             executable_search_paths.GetSize () ? &executable_search_paths : NULL);
189 
190         if (!error.Success ())
191             return error;
192 
193         // Check if we've got our architecture from the exe_module.
194         arch = exe_module_sp->GetArchitecture ();
195         if (arch.IsValid ())
196             return Error();
197         else
198             return Error("failed to retrieve a valid architecture from the exe module");
199     }
200 
201     void
202     DisplayBytes (lldb_private::StreamString &s, void *bytes, uint32_t count)
203     {
204         uint8_t *ptr = (uint8_t *)bytes;
205         const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
206         for(uint32_t i=0; i<loop_count; i++)
207         {
208             s.Printf ("[%x]", *ptr);
209             ptr++;
210         }
211     }
212 
213     void
214     PtraceDisplayBytes(int &req, void *data, size_t data_size)
215     {
216         StreamString buf;
217         Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (
218                     POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE));
219 
220         if (verbose_log)
221         {
222             switch(req)
223             {
224             case PTRACE_POKETEXT:
225             {
226                 DisplayBytes(buf, &data, 8);
227                 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData());
228                 break;
229             }
230             case PTRACE_POKEDATA:
231             {
232                 DisplayBytes(buf, &data, 8);
233                 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData());
234                 break;
235             }
236             case PTRACE_POKEUSER:
237             {
238                 DisplayBytes(buf, &data, 8);
239                 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData());
240                 break;
241             }
242             case PTRACE_SETREGS:
243             {
244                 DisplayBytes(buf, data, data_size);
245                 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData());
246                 break;
247             }
248             case PTRACE_SETFPREGS:
249             {
250                 DisplayBytes(buf, data, data_size);
251                 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData());
252                 break;
253             }
254             case PTRACE_SETSIGINFO:
255             {
256                 DisplayBytes(buf, data, sizeof(siginfo_t));
257                 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData());
258                 break;
259             }
260             case PTRACE_SETREGSET:
261             {
262                 // Extract iov_base from data, which is a pointer to the struct IOVEC
263                 DisplayBytes(buf, *(void **)data, data_size);
264                 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData());
265                 break;
266             }
267             default:
268             {
269             }
270             }
271         }
272     }
273 
274     // Wrapper for ptrace to catch errors and log calls.
275     // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
276     long
277     PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error,
278                   const char* reqName, const char* file, int line)
279     {
280         long int result;
281 
282         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE));
283 
284         PtraceDisplayBytes(req, data, data_size);
285 
286         error.Clear();
287         errno = 0;
288         if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
289             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
290         else
291             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
292 
293         if (result == -1)
294             error.SetErrorToErrno();
295 
296         if (log)
297             log->Printf("ptrace(%s, %" PRIu64 ", %p, %p, %zu)=%lX called from file %s line %d",
298                     reqName, pid, addr, data, data_size, result, file, line);
299 
300         PtraceDisplayBytes(req, data, data_size);
301 
302         if (log && error.GetError() != 0)
303         {
304             const char* str;
305             switch (error.GetError())
306             {
307             case ESRCH:  str = "ESRCH"; break;
308             case EINVAL: str = "EINVAL"; break;
309             case EBUSY:  str = "EBUSY"; break;
310             case EPERM:  str = "EPERM"; break;
311             default:     str = error.AsCString();
312             }
313             log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str);
314         }
315 
316         return result;
317     }
318 
319 #ifdef LLDB_CONFIGURATION_BUILDANDINTEGRATION
320     // Wrapper for ptrace when logging is not required.
321     // Sets errno to 0 prior to calling ptrace.
322     long
323     PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error)
324     {
325         long result = 0;
326 
327         error.Clear();
328         errno = 0;
329         if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
330             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
331         else
332             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
333 
334         if (result == -1)
335             error.SetErrorToErrno();
336         return result;
337     }
338 #endif
339 
340     //------------------------------------------------------------------------------
341     // Static implementations of NativeProcessLinux::ReadMemory and
342     // NativeProcessLinux::WriteMemory.  This enables mutual recursion between these
343     // functions without needed to go thru the thread funnel.
344 
345     lldb::addr_t
346     DoReadMemory (
347         lldb::pid_t pid,
348         lldb::addr_t vm_addr,
349         void *buf,
350         lldb::addr_t size,
351         Error &error)
352     {
353         // ptrace word size is determined by the host, not the child
354         static const unsigned word_size = sizeof(void*);
355         unsigned char *dst = static_cast<unsigned char*>(buf);
356         lldb::addr_t bytes_read;
357         lldb::addr_t remainder;
358         long data;
359 
360         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
361         if (log)
362             ProcessPOSIXLog::IncNestLevel();
363         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
364             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__,
365                     pid, word_size, (void*)vm_addr, buf, size);
366 
367         assert(sizeof(data) >= word_size);
368         for (bytes_read = 0; bytes_read < size; bytes_read += remainder)
369         {
370             data = PTRACE(PTRACE_PEEKDATA, pid, (void*)vm_addr, nullptr, 0, error);
371             if (error.Fail())
372             {
373                 if (log)
374                     ProcessPOSIXLog::DecNestLevel();
375                 return bytes_read;
376             }
377 
378             remainder = size - bytes_read;
379             remainder = remainder > word_size ? word_size : remainder;
380 
381             // Copy the data into our buffer
382             for (unsigned i = 0; i < remainder; ++i)
383                 dst[i] = ((data >> i*8) & 0xFF);
384 
385             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
386                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
387                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
388                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
389             {
390                 uintptr_t print_dst = 0;
391                 // Format bytes from data by moving into print_dst for log output
392                 for (unsigned i = 0; i < remainder; ++i)
393                     print_dst |= (((data >> i*8) & 0xFF) << i*8);
394                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
395                         (void*)vm_addr, print_dst, (unsigned long)data);
396             }
397 
398             vm_addr += word_size;
399             dst += word_size;
400         }
401 
402         if (log)
403             ProcessPOSIXLog::DecNestLevel();
404         return bytes_read;
405     }
406 
407     lldb::addr_t
408     DoWriteMemory(
409         lldb::pid_t pid,
410         lldb::addr_t vm_addr,
411         const void *buf,
412         lldb::addr_t size,
413         Error &error)
414     {
415         // ptrace word size is determined by the host, not the child
416         static const unsigned word_size = sizeof(void*);
417         const unsigned char *src = static_cast<const unsigned char*>(buf);
418         lldb::addr_t bytes_written = 0;
419         lldb::addr_t remainder;
420 
421         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
422         if (log)
423             ProcessPOSIXLog::IncNestLevel();
424         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
425             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__,
426                     pid, word_size, (void*)vm_addr, buf, size);
427 
428         for (bytes_written = 0; bytes_written < size; bytes_written += remainder)
429         {
430             remainder = size - bytes_written;
431             remainder = remainder > word_size ? word_size : remainder;
432 
433             if (remainder == word_size)
434             {
435                 unsigned long data = 0;
436                 assert(sizeof(data) >= word_size);
437                 for (unsigned i = 0; i < word_size; ++i)
438                     data |= (unsigned long)src[i] << i*8;
439 
440                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
441                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
442                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
443                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
444                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
445                             (void*)vm_addr, *(unsigned long*)src, data);
446 
447                 if (PTRACE(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data, 0, error))
448                 {
449                     if (log)
450                         ProcessPOSIXLog::DecNestLevel();
451                     return bytes_written;
452                 }
453             }
454             else
455             {
456                 unsigned char buff[8];
457                 if (DoReadMemory(pid, vm_addr,
458                                 buff, word_size, error) != word_size)
459                 {
460                     if (log)
461                         ProcessPOSIXLog::DecNestLevel();
462                     return bytes_written;
463                 }
464 
465                 memcpy(buff, src, remainder);
466 
467                 if (DoWriteMemory(pid, vm_addr,
468                                 buff, word_size, error) != word_size)
469                 {
470                     if (log)
471                         ProcessPOSIXLog::DecNestLevel();
472                     return bytes_written;
473                 }
474 
475                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
476                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
477                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
478                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
479                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
480                             (void*)vm_addr, *(unsigned long*)src, *(unsigned long*)buff);
481             }
482 
483             vm_addr += word_size;
484             src += word_size;
485         }
486         if (log)
487             ProcessPOSIXLog::DecNestLevel();
488         return bytes_written;
489     }
490 
491     //------------------------------------------------------------------------------
492     /// @class Operation
493     /// @brief Represents a NativeProcessLinux operation.
494     ///
495     /// Under Linux, it is not possible to ptrace() from any other thread but the
496     /// one that spawned or attached to the process from the start.  Therefore, when
497     /// a NativeProcessLinux is asked to deliver or change the state of an inferior
498     /// process the operation must be "funneled" to a specific thread to perform the
499     /// task.  The Operation class provides an abstract base for all services the
500     /// NativeProcessLinux must perform via the single virtual function Execute, thus
501     /// encapsulating the code that needs to run in the privileged context.
502     class Operation
503     {
504     public:
505         Operation () : m_error() { }
506 
507         virtual
508         ~Operation() {}
509 
510         virtual void
511         Execute (NativeProcessLinux *process) = 0;
512 
513         const Error &
514         GetError () const { return m_error; }
515 
516     protected:
517         Error m_error;
518     };
519 
520     //------------------------------------------------------------------------------
521     /// @class ReadOperation
522     /// @brief Implements NativeProcessLinux::ReadMemory.
523     class ReadOperation : public Operation
524     {
525     public:
526         ReadOperation (
527             lldb::addr_t addr,
528             void *buff,
529             lldb::addr_t size,
530             lldb::addr_t &result) :
531             Operation (),
532             m_addr (addr),
533             m_buff (buff),
534             m_size (size),
535             m_result (result)
536             {
537             }
538 
539         void Execute (NativeProcessLinux *process) override;
540 
541     private:
542         lldb::addr_t m_addr;
543         void *m_buff;
544         lldb::addr_t m_size;
545         lldb::addr_t &m_result;
546     };
547 
548     void
549     ReadOperation::Execute (NativeProcessLinux *process)
550     {
551         m_result = DoReadMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
552     }
553 
554     //------------------------------------------------------------------------------
555     /// @class WriteOperation
556     /// @brief Implements NativeProcessLinux::WriteMemory.
557     class WriteOperation : public Operation
558     {
559     public:
560         WriteOperation (
561             lldb::addr_t addr,
562             const void *buff,
563             lldb::addr_t size,
564             lldb::addr_t &result) :
565             Operation (),
566             m_addr (addr),
567             m_buff (buff),
568             m_size (size),
569             m_result (result)
570             {
571             }
572 
573         void Execute (NativeProcessLinux *process) override;
574 
575     private:
576         lldb::addr_t m_addr;
577         const void *m_buff;
578         lldb::addr_t m_size;
579         lldb::addr_t &m_result;
580     };
581 
582     void
583     WriteOperation::Execute(NativeProcessLinux *process)
584     {
585         m_result = DoWriteMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
586     }
587 
588     //------------------------------------------------------------------------------
589     /// @class ReadRegOperation
590     /// @brief Implements NativeProcessLinux::ReadRegisterValue.
591     class ReadRegOperation : public Operation
592     {
593     public:
594         ReadRegOperation(lldb::tid_t tid, uint32_t offset, const char *reg_name,
595                 RegisterValue &value)
596             : m_tid(tid),
597               m_offset(static_cast<uintptr_t> (offset)),
598               m_reg_name(reg_name),
599               m_value(value)
600             { }
601 
602         void Execute(NativeProcessLinux *monitor);
603 
604     private:
605         lldb::tid_t m_tid;
606         uintptr_t m_offset;
607         const char *m_reg_name;
608         RegisterValue &m_value;
609     };
610 
611     void
612     ReadRegOperation::Execute(NativeProcessLinux *monitor)
613     {
614 #if defined (__arm64__) || defined (__aarch64__)
615         if (m_offset > sizeof(struct user_pt_regs))
616         {
617             uintptr_t offset = m_offset - sizeof(struct user_pt_regs);
618             if (offset > sizeof(struct user_fpsimd_state))
619             {
620                 m_error.SetErrorString("invalid offset value");
621                 return;
622             }
623             elf_fpregset_t regs;
624             int regset = NT_FPREGSET;
625             struct iovec ioVec;
626 
627             ioVec.iov_base = &regs;
628             ioVec.iov_len = sizeof regs;
629             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
630             if (m_error.Success())
631             {
632                 lldb_private::ArchSpec arch;
633                 if (monitor->GetArchitecture(arch))
634                     m_value.SetBytes((void *)(((unsigned char *)(&regs)) + offset), 16, arch.GetByteOrder());
635                 else
636                     m_error.SetErrorString("failed to get architecture");
637             }
638         }
639         else
640         {
641             elf_gregset_t regs;
642             int regset = NT_PRSTATUS;
643             struct iovec ioVec;
644 
645             ioVec.iov_base = &regs;
646             ioVec.iov_len = sizeof regs;
647             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
648             if (m_error.Success())
649             {
650                 lldb_private::ArchSpec arch;
651                 if (monitor->GetArchitecture(arch))
652                     m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, arch.GetByteOrder());
653                 else
654                     m_error.SetErrorString("failed to get architecture");
655             }
656         }
657 #else
658         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS));
659 
660         lldb::addr_t data = PTRACE(PTRACE_PEEKUSER, m_tid, (void*)m_offset, nullptr, 0, m_error);
661         if (m_error.Success())
662             m_value = data;
663 
664         if (log)
665             log->Printf ("NativeProcessLinux::%s() reg %s: 0x%" PRIx64, __FUNCTION__,
666                     m_reg_name, data);
667 #endif
668     }
669 
670     //------------------------------------------------------------------------------
671     /// @class WriteRegOperation
672     /// @brief Implements NativeProcessLinux::WriteRegisterValue.
673     class WriteRegOperation : public Operation
674     {
675     public:
676         WriteRegOperation(lldb::tid_t tid, unsigned offset, const char *reg_name,
677                 const RegisterValue &value)
678             : m_tid(tid),
679               m_offset(offset),
680               m_reg_name(reg_name),
681               m_value(value)
682             { }
683 
684         void Execute(NativeProcessLinux *monitor);
685 
686     private:
687         lldb::tid_t m_tid;
688         uintptr_t m_offset;
689         const char *m_reg_name;
690         const RegisterValue &m_value;
691     };
692 
693     void
694     WriteRegOperation::Execute(NativeProcessLinux *monitor)
695     {
696 #if defined (__arm64__) || defined (__aarch64__)
697         if (m_offset > sizeof(struct user_pt_regs))
698         {
699             uintptr_t offset = m_offset - sizeof(struct user_pt_regs);
700             if (offset > sizeof(struct user_fpsimd_state))
701             {
702                 m_error.SetErrorString("invalid offset value");
703                 return;
704             }
705             elf_fpregset_t regs;
706             int regset = NT_FPREGSET;
707             struct iovec ioVec;
708 
709             ioVec.iov_base = &regs;
710             ioVec.iov_len = sizeof regs;
711             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
712             if (m_error.Sucess())
713             {
714                 ::memcpy((void *)(((unsigned char *)(&regs)) + offset), m_value.GetBytes(), 16);
715                 PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
716             }
717         }
718         else
719         {
720             elf_gregset_t regs;
721             int regset = NT_PRSTATUS;
722             struct iovec ioVec;
723 
724             ioVec.iov_base = &regs;
725             ioVec.iov_len = sizeof regs;
726             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
727             if (m_error.Sucess())
728             {
729                 ::memcpy((void *)(((unsigned char *)(&regs)) + m_offset), m_value.GetBytes(), 8);
730                 PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
731             }
732         }
733 #else
734         void* buf;
735         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS));
736 
737         buf = (void*) m_value.GetAsUInt64();
738 
739         if (log)
740             log->Printf ("NativeProcessLinux::%s() reg %s: %p", __FUNCTION__, m_reg_name, buf);
741         PTRACE(PTRACE_POKEUSER, m_tid, (void*)m_offset, buf, 0, m_error);
742 #endif
743     }
744 
745     //------------------------------------------------------------------------------
746     /// @class ReadGPROperation
747     /// @brief Implements NativeProcessLinux::ReadGPR.
748     class ReadGPROperation : public Operation
749     {
750     public:
751         ReadGPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
752             : m_tid(tid), m_buf(buf), m_buf_size(buf_size)
753             { }
754 
755         void Execute(NativeProcessLinux *monitor);
756 
757     private:
758         lldb::tid_t m_tid;
759         void *m_buf;
760         size_t m_buf_size;
761     };
762 
763     void
764     ReadGPROperation::Execute(NativeProcessLinux *monitor)
765     {
766 #if defined (__arm64__) || defined (__aarch64__)
767         int regset = NT_PRSTATUS;
768         struct iovec ioVec;
769 
770         ioVec.iov_base = m_buf;
771         ioVec.iov_len = m_buf_size;
772         PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
773 #else
774         PTRACE(PTRACE_GETREGS, m_tid, nullptr, m_buf, m_buf_size, m_error);
775 #endif
776     }
777 
778     //------------------------------------------------------------------------------
779     /// @class ReadFPROperation
780     /// @brief Implements NativeProcessLinux::ReadFPR.
781     class ReadFPROperation : public Operation
782     {
783     public:
784         ReadFPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
785             : m_tid(tid),
786               m_buf(buf),
787               m_buf_size(buf_size)
788             { }
789 
790         void Execute(NativeProcessLinux *monitor);
791 
792     private:
793         lldb::tid_t m_tid;
794         void *m_buf;
795         size_t m_buf_size;
796     };
797 
798     void
799     ReadFPROperation::Execute(NativeProcessLinux *monitor)
800     {
801 #if defined (__arm64__) || defined (__aarch64__)
802         int regset = NT_FPREGSET;
803         struct iovec ioVec;
804 
805         ioVec.iov_base = m_buf;
806         ioVec.iov_len = m_buf_size;
807         if (PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, m_buf_size) < 0)
808             m_result = false;
809         else
810             m_result = true;
811 #else
812         PTRACE(PTRACE_GETFPREGS, m_tid, nullptr, m_buf, m_buf_size, m_error);
813 #endif
814     }
815 
816     //------------------------------------------------------------------------------
817     /// @class ReadRegisterSetOperation
818     /// @brief Implements NativeProcessLinux::ReadRegisterSet.
819     class ReadRegisterSetOperation : public Operation
820     {
821     public:
822         ReadRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
823             : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset)
824             { }
825 
826         void Execute(NativeProcessLinux *monitor);
827 
828     private:
829         lldb::tid_t m_tid;
830         void *m_buf;
831         size_t m_buf_size;
832         const unsigned int m_regset;
833     };
834 
835     void
836     ReadRegisterSetOperation::Execute(NativeProcessLinux *monitor)
837     {
838         PTRACE(PTRACE_GETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error);
839     }
840 
841     //------------------------------------------------------------------------------
842     /// @class WriteGPROperation
843     /// @brief Implements NativeProcessLinux::WriteGPR.
844     class WriteGPROperation : public Operation
845     {
846     public:
847         WriteGPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
848             : m_tid(tid), m_buf(buf), m_buf_size(buf_size)
849             { }
850 
851         void Execute(NativeProcessLinux *monitor);
852 
853     private:
854         lldb::tid_t m_tid;
855         void *m_buf;
856         size_t m_buf_size;
857     };
858 
859     void
860     WriteGPROperation::Execute(NativeProcessLinux *monitor)
861     {
862 #if defined (__arm64__) || defined (__aarch64__)
863         int regset = NT_PRSTATUS;
864         struct iovec ioVec;
865 
866         ioVec.iov_base = m_buf;
867         ioVec.iov_len = m_buf_size;
868         PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
869 #else
870         PTRACE(PTRACE_SETREGS, m_tid, NULL, m_buf, m_buf_size, m_error);
871 #endif
872     }
873 
874     //------------------------------------------------------------------------------
875     /// @class WriteFPROperation
876     /// @brief Implements NativeProcessLinux::WriteFPR.
877     class WriteFPROperation : public Operation
878     {
879     public:
880         WriteFPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
881             : m_tid(tid), m_buf(buf), m_buf_size(buf_size)
882             { }
883 
884         void Execute(NativeProcessLinux *monitor);
885 
886     private:
887         lldb::tid_t m_tid;
888         void *m_buf;
889         size_t m_buf_size;
890     };
891 
892     void
893     WriteFPROperation::Execute(NativeProcessLinux *monitor)
894     {
895 #if defined (__arm64__) || defined (__aarch64__)
896         int regset = NT_FPREGSET;
897         struct iovec ioVec;
898 
899         ioVec.iov_base = m_buf;
900         ioVec.iov_len = m_buf_size;
901         PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
902 #else
903         PTRACE(PTRACE_SETFPREGS, m_tid, NULL, m_buf, m_buf_size, m_error);
904 #endif
905     }
906 
907     //------------------------------------------------------------------------------
908     /// @class WriteRegisterSetOperation
909     /// @brief Implements NativeProcessLinux::WriteRegisterSet.
910     class WriteRegisterSetOperation : public Operation
911     {
912     public:
913         WriteRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
914             : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset)
915             { }
916 
917         void Execute(NativeProcessLinux *monitor);
918 
919     private:
920         lldb::tid_t m_tid;
921         void *m_buf;
922         size_t m_buf_size;
923         const unsigned int m_regset;
924     };
925 
926     void
927     WriteRegisterSetOperation::Execute(NativeProcessLinux *monitor)
928     {
929         PTRACE(PTRACE_SETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error);
930     }
931 
932     //------------------------------------------------------------------------------
933     /// @class ResumeOperation
934     /// @brief Implements NativeProcessLinux::Resume.
935     class ResumeOperation : public Operation
936     {
937     public:
938         ResumeOperation(lldb::tid_t tid, uint32_t signo) :
939             m_tid(tid), m_signo(signo) { }
940 
941         void Execute(NativeProcessLinux *monitor);
942 
943     private:
944         lldb::tid_t m_tid;
945         uint32_t m_signo;
946     };
947 
948     void
949     ResumeOperation::Execute(NativeProcessLinux *monitor)
950     {
951         intptr_t data = 0;
952 
953         if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
954             data = m_signo;
955 
956         PTRACE(PTRACE_CONT, m_tid, nullptr, (void*)data, 0, m_error);
957         if (m_error.Fail())
958         {
959             Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
960 
961             if (log)
962                 log->Printf ("ResumeOperation (%"  PRIu64 ") failed: %s", m_tid, m_error.AsCString());
963         }
964     }
965 
966     //------------------------------------------------------------------------------
967     /// @class SingleStepOperation
968     /// @brief Implements NativeProcessLinux::SingleStep.
969     class SingleStepOperation : public Operation
970     {
971     public:
972         SingleStepOperation(lldb::tid_t tid, uint32_t signo)
973             : m_tid(tid), m_signo(signo) { }
974 
975         void Execute(NativeProcessLinux *monitor);
976 
977     private:
978         lldb::tid_t m_tid;
979         uint32_t m_signo;
980     };
981 
982     void
983     SingleStepOperation::Execute(NativeProcessLinux *monitor)
984     {
985         intptr_t data = 0;
986 
987         if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
988             data = m_signo;
989 
990         PTRACE(PTRACE_SINGLESTEP, m_tid, nullptr, (void*)data, 0, m_error);
991     }
992 
993     //------------------------------------------------------------------------------
994     /// @class SiginfoOperation
995     /// @brief Implements NativeProcessLinux::GetSignalInfo.
996     class SiginfoOperation : public Operation
997     {
998     public:
999         SiginfoOperation(lldb::tid_t tid, void *info)
1000             : m_tid(tid), m_info(info) { }
1001 
1002         void Execute(NativeProcessLinux *monitor);
1003 
1004     private:
1005         lldb::tid_t m_tid;
1006         void *m_info;
1007     };
1008 
1009     void
1010     SiginfoOperation::Execute(NativeProcessLinux *monitor)
1011     {
1012         PTRACE(PTRACE_GETSIGINFO, m_tid, nullptr, m_info, 0, m_error);
1013     }
1014 
1015     //------------------------------------------------------------------------------
1016     /// @class EventMessageOperation
1017     /// @brief Implements NativeProcessLinux::GetEventMessage.
1018     class EventMessageOperation : public Operation
1019     {
1020     public:
1021         EventMessageOperation(lldb::tid_t tid, unsigned long *message)
1022             : m_tid(tid), m_message(message) { }
1023 
1024         void Execute(NativeProcessLinux *monitor);
1025 
1026     private:
1027         lldb::tid_t m_tid;
1028         unsigned long *m_message;
1029     };
1030 
1031     void
1032     EventMessageOperation::Execute(NativeProcessLinux *monitor)
1033     {
1034         PTRACE(PTRACE_GETEVENTMSG, m_tid, nullptr, m_message, 0, m_error);
1035     }
1036 
1037     class DetachOperation : public Operation
1038     {
1039     public:
1040         DetachOperation(lldb::tid_t tid) : m_tid(tid) { }
1041 
1042         void Execute(NativeProcessLinux *monitor);
1043 
1044     private:
1045         lldb::tid_t m_tid;
1046     };
1047 
1048     void
1049     DetachOperation::Execute(NativeProcessLinux *monitor)
1050     {
1051         PTRACE(PTRACE_DETACH, m_tid, nullptr, 0, 0, m_error);
1052     }
1053 
1054 }
1055 
1056 using namespace lldb_private;
1057 
1058 // Simple helper function to ensure flags are enabled on the given file
1059 // descriptor.
1060 static bool
1061 EnsureFDFlags(int fd, int flags, Error &error)
1062 {
1063     int status;
1064 
1065     if ((status = fcntl(fd, F_GETFL)) == -1)
1066     {
1067         error.SetErrorToErrno();
1068         return false;
1069     }
1070 
1071     if (fcntl(fd, F_SETFL, status | flags) == -1)
1072     {
1073         error.SetErrorToErrno();
1074         return false;
1075     }
1076 
1077     return true;
1078 }
1079 
1080 NativeProcessLinux::OperationArgs::OperationArgs(NativeProcessLinux *monitor)
1081     : m_monitor(monitor)
1082 {
1083     sem_init(&m_semaphore, 0, 0);
1084 }
1085 
1086 NativeProcessLinux::OperationArgs::~OperationArgs()
1087 {
1088     sem_destroy(&m_semaphore);
1089 }
1090 
1091 NativeProcessLinux::LaunchArgs::LaunchArgs(NativeProcessLinux *monitor,
1092                                        lldb_private::Module *module,
1093                                        char const **argv,
1094                                        char const **envp,
1095                                        const std::string &stdin_path,
1096                                        const std::string &stdout_path,
1097                                        const std::string &stderr_path,
1098                                        const char *working_dir,
1099                                        const lldb_private::ProcessLaunchInfo &launch_info)
1100     : OperationArgs(monitor),
1101       m_module(module),
1102       m_argv(argv),
1103       m_envp(envp),
1104       m_stdin_path(stdin_path),
1105       m_stdout_path(stdout_path),
1106       m_stderr_path(stderr_path),
1107       m_working_dir(working_dir),
1108       m_launch_info(launch_info)
1109 {
1110 }
1111 
1112 NativeProcessLinux::LaunchArgs::~LaunchArgs()
1113 { }
1114 
1115 NativeProcessLinux::AttachArgs::AttachArgs(NativeProcessLinux *monitor,
1116                                        lldb::pid_t pid)
1117     : OperationArgs(monitor), m_pid(pid) { }
1118 
1119 NativeProcessLinux::AttachArgs::~AttachArgs()
1120 { }
1121 
1122 // -----------------------------------------------------------------------------
1123 // Public Static Methods
1124 // -----------------------------------------------------------------------------
1125 
1126 lldb_private::Error
1127 NativeProcessLinux::LaunchProcess (
1128     lldb_private::Module *exe_module,
1129     lldb_private::ProcessLaunchInfo &launch_info,
1130     lldb_private::NativeProcessProtocol::NativeDelegate &native_delegate,
1131     NativeProcessProtocolSP &native_process_sp)
1132 {
1133     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1134 
1135     Error error;
1136 
1137     // Verify the working directory is valid if one was specified.
1138     const char* working_dir = launch_info.GetWorkingDirectory ();
1139     if (working_dir)
1140     {
1141       FileSpec working_dir_fs (working_dir, true);
1142       if (!working_dir_fs || working_dir_fs.GetFileType () != FileSpec::eFileTypeDirectory)
1143       {
1144           error.SetErrorStringWithFormat ("No such file or directory: %s", working_dir);
1145           return error;
1146       }
1147     }
1148 
1149     const lldb_private::FileAction *file_action;
1150 
1151     // Default of NULL will mean to use existing open file descriptors.
1152     std::string stdin_path;
1153     std::string stdout_path;
1154     std::string stderr_path;
1155 
1156     file_action = launch_info.GetFileActionForFD (STDIN_FILENO);
1157     if (file_action)
1158         stdin_path = file_action->GetPath ();
1159 
1160     file_action = launch_info.GetFileActionForFD (STDOUT_FILENO);
1161     if (file_action)
1162         stdout_path = file_action->GetPath ();
1163 
1164     file_action = launch_info.GetFileActionForFD (STDERR_FILENO);
1165     if (file_action)
1166         stderr_path = file_action->GetPath ();
1167 
1168     if (log)
1169     {
1170         if (!stdin_path.empty ())
1171             log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'", __FUNCTION__, stdin_path.c_str ());
1172         else
1173             log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__);
1174 
1175         if (!stdout_path.empty ())
1176             log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'", __FUNCTION__, stdout_path.c_str ());
1177         else
1178             log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__);
1179 
1180         if (!stderr_path.empty ())
1181             log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'", __FUNCTION__, stderr_path.c_str ());
1182         else
1183             log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__);
1184     }
1185 
1186     // Create the NativeProcessLinux in launch mode.
1187     native_process_sp.reset (new NativeProcessLinux ());
1188 
1189     if (log)
1190     {
1191         int i = 0;
1192         for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i)
1193         {
1194             log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr");
1195             ++i;
1196         }
1197     }
1198 
1199     if (!native_process_sp->RegisterNativeDelegate (native_delegate))
1200     {
1201         native_process_sp.reset ();
1202         error.SetErrorStringWithFormat ("failed to register the native delegate");
1203         return error;
1204     }
1205 
1206     reinterpret_cast<NativeProcessLinux*> (native_process_sp.get ())->LaunchInferior (
1207             exe_module,
1208             launch_info.GetArguments ().GetConstArgumentVector (),
1209             launch_info.GetEnvironmentEntries ().GetConstArgumentVector (),
1210             stdin_path,
1211             stdout_path,
1212             stderr_path,
1213             working_dir,
1214             launch_info,
1215             error);
1216 
1217     if (error.Fail ())
1218     {
1219         native_process_sp.reset ();
1220         if (log)
1221             log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ());
1222         return error;
1223     }
1224 
1225     launch_info.SetProcessID (native_process_sp->GetID ());
1226 
1227     return error;
1228 }
1229 
1230 lldb_private::Error
1231 NativeProcessLinux::AttachToProcess (
1232     lldb::pid_t pid,
1233     lldb_private::NativeProcessProtocol::NativeDelegate &native_delegate,
1234     NativeProcessProtocolSP &native_process_sp)
1235 {
1236     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1237     if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE))
1238         log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid);
1239 
1240     // Grab the current platform architecture.  This should be Linux,
1241     // since this code is only intended to run on a Linux host.
1242     PlatformSP platform_sp (Platform::GetHostPlatform ());
1243     if (!platform_sp)
1244         return Error("failed to get a valid default platform");
1245 
1246     // Retrieve the architecture for the running process.
1247     ArchSpec process_arch;
1248     Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch);
1249     if (!error.Success ())
1250         return error;
1251 
1252     std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ());
1253 
1254     if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate))
1255     {
1256         error.SetErrorStringWithFormat ("failed to register the native delegate");
1257         return error;
1258     }
1259 
1260     native_process_linux_sp->AttachToInferior (pid, error);
1261     if (!error.Success ())
1262         return error;
1263 
1264     native_process_sp = native_process_linux_sp;
1265     return error;
1266 }
1267 
1268 // -----------------------------------------------------------------------------
1269 // Public Instance Methods
1270 // -----------------------------------------------------------------------------
1271 
1272 NativeProcessLinux::NativeProcessLinux () :
1273     NativeProcessProtocol (LLDB_INVALID_PROCESS_ID),
1274     m_arch (),
1275     m_operation_thread (),
1276     m_monitor_thread (),
1277     m_operation (nullptr),
1278     m_operation_mutex (),
1279     m_operation_pending (),
1280     m_operation_done (),
1281     m_supports_mem_region (eLazyBoolCalculate),
1282     m_mem_region_cache (),
1283     m_mem_region_cache_mutex (),
1284     m_coordinator_up (new ThreadStateCoordinator (GetThreadLoggerFunction ())),
1285     m_coordinator_thread ()
1286 {
1287 }
1288 
1289 //------------------------------------------------------------------------------
1290 /// The basic design of the NativeProcessLinux is built around two threads.
1291 ///
1292 /// One thread (@see SignalThread) simply blocks on a call to waitpid() looking
1293 /// for changes in the debugee state.  When a change is detected a
1294 /// ProcessMessage is sent to the associated ProcessLinux instance.  This thread
1295 /// "drives" state changes in the debugger.
1296 ///
1297 /// The second thread (@see OperationThread) is responsible for two things 1)
1298 /// launching or attaching to the inferior process, and then 2) servicing
1299 /// operations such as register reads/writes, stepping, etc.  See the comments
1300 /// on the Operation class for more info as to why this is needed.
1301 void
1302 NativeProcessLinux::LaunchInferior (
1303     Module *module,
1304     const char *argv[],
1305     const char *envp[],
1306     const std::string &stdin_path,
1307     const std::string &stdout_path,
1308     const std::string &stderr_path,
1309     const char *working_dir,
1310     const lldb_private::ProcessLaunchInfo &launch_info,
1311     lldb_private::Error &error)
1312 {
1313     if (module)
1314         m_arch = module->GetArchitecture ();
1315 
1316     SetState (eStateLaunching);
1317 
1318     std::unique_ptr<LaunchArgs> args(
1319         new LaunchArgs(
1320             this, module, argv, envp,
1321             stdin_path, stdout_path, stderr_path,
1322             working_dir, launch_info));
1323 
1324     sem_init (&m_operation_pending, 0, 0);
1325     sem_init (&m_operation_done, 0, 0);
1326 
1327     StartLaunchOpThread (args.get(), error);
1328     if (!error.Success ())
1329         return;
1330 
1331     error = StartCoordinatorThread ();
1332     if (!error.Success ())
1333         return;
1334 
1335 WAIT_AGAIN:
1336     // Wait for the operation thread to initialize.
1337     if (sem_wait(&args->m_semaphore))
1338     {
1339         if (errno == EINTR)
1340             goto WAIT_AGAIN;
1341         else
1342         {
1343             error.SetErrorToErrno();
1344             return;
1345         }
1346     }
1347 
1348     // Check that the launch was a success.
1349     if (!args->m_error.Success())
1350     {
1351         StopOpThread();
1352         StopCoordinatorThread ();
1353         error = args->m_error;
1354         return;
1355     }
1356 
1357     // Finally, start monitoring the child process for change in state.
1358     m_monitor_thread = Host::StartMonitoringChildProcess(
1359         NativeProcessLinux::MonitorCallback, this, GetID(), true);
1360     if (!m_monitor_thread.IsJoinable())
1361     {
1362         error.SetErrorToGenericError();
1363         error.SetErrorString ("Process attach failed to create monitor thread for NativeProcessLinux::MonitorCallback.");
1364         return;
1365     }
1366 }
1367 
1368 void
1369 NativeProcessLinux::AttachToInferior (lldb::pid_t pid, lldb_private::Error &error)
1370 {
1371     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1372     if (log)
1373         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid);
1374 
1375     // We can use the Host for everything except the ResolveExecutable portion.
1376     PlatformSP platform_sp = Platform::GetHostPlatform ();
1377     if (!platform_sp)
1378     {
1379         if (log)
1380             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid);
1381         error.SetErrorString ("no default platform available");
1382         return;
1383     }
1384 
1385     // Gather info about the process.
1386     ProcessInstanceInfo process_info;
1387     if (!platform_sp->GetProcessInfo (pid, process_info))
1388     {
1389         if (log)
1390             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid);
1391         error.SetErrorString ("failed to get process info");
1392         return;
1393     }
1394 
1395     // Resolve the executable module
1396     ModuleSP exe_module_sp;
1397     FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths());
1398     ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
1399     error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp,
1400                                            executable_search_paths.GetSize() ? &executable_search_paths : NULL);
1401     if (!error.Success())
1402         return;
1403 
1404     // Set the architecture to the exe architecture.
1405     m_arch = exe_module_sp->GetArchitecture();
1406     if (log)
1407         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ());
1408 
1409     m_pid = pid;
1410     SetState(eStateAttaching);
1411 
1412     sem_init (&m_operation_pending, 0, 0);
1413     sem_init (&m_operation_done, 0, 0);
1414 
1415     std::unique_ptr<AttachArgs> args (new AttachArgs (this, pid));
1416 
1417     StartAttachOpThread(args.get (), error);
1418     if (!error.Success ())
1419         return;
1420 
1421     error = StartCoordinatorThread ();
1422     if (!error.Success ())
1423         return;
1424 
1425 WAIT_AGAIN:
1426     // Wait for the operation thread to initialize.
1427     if (sem_wait (&args->m_semaphore))
1428     {
1429         if (errno == EINTR)
1430             goto WAIT_AGAIN;
1431         else
1432         {
1433             error.SetErrorToErrno ();
1434             return;
1435         }
1436     }
1437 
1438     // Check that the attach was a success.
1439     if (!args->m_error.Success ())
1440     {
1441         StopOpThread ();
1442         StopCoordinatorThread ();
1443         error = args->m_error;
1444         return;
1445     }
1446 
1447     // Finally, start monitoring the child process for change in state.
1448     m_monitor_thread = Host::StartMonitoringChildProcess (
1449         NativeProcessLinux::MonitorCallback, this, GetID (), true);
1450     if (!m_monitor_thread.IsJoinable())
1451     {
1452         error.SetErrorToGenericError ();
1453         error.SetErrorString ("Process attach failed to create monitor thread for NativeProcessLinux::MonitorCallback.");
1454         return;
1455     }
1456 }
1457 
1458 void
1459 NativeProcessLinux::Terminate ()
1460 {
1461     StopMonitor();
1462 }
1463 
1464 //------------------------------------------------------------------------------
1465 // Thread setup and tear down.
1466 
1467 void
1468 NativeProcessLinux::StartLaunchOpThread(LaunchArgs *args, Error &error)
1469 {
1470     static const char *g_thread_name = "lldb.process.nativelinux.operation";
1471 
1472     if (m_operation_thread.IsJoinable())
1473         return;
1474 
1475     m_operation_thread = ThreadLauncher::LaunchThread(g_thread_name, LaunchOpThread, args, &error);
1476 }
1477 
1478 void *
1479 NativeProcessLinux::LaunchOpThread(void *arg)
1480 {
1481     LaunchArgs *args = static_cast<LaunchArgs*>(arg);
1482 
1483     if (!Launch(args)) {
1484         sem_post(&args->m_semaphore);
1485         return NULL;
1486     }
1487 
1488     ServeOperation(args);
1489     return NULL;
1490 }
1491 
1492 bool
1493 NativeProcessLinux::Launch(LaunchArgs *args)
1494 {
1495     assert (args && "null args");
1496     if (!args)
1497         return false;
1498 
1499     NativeProcessLinux *monitor = args->m_monitor;
1500     assert (monitor && "monitor is NULL");
1501 
1502     const char **argv = args->m_argv;
1503     const char **envp = args->m_envp;
1504     const char *working_dir = args->m_working_dir;
1505 
1506     lldb_utility::PseudoTerminal terminal;
1507     const size_t err_len = 1024;
1508     char err_str[err_len];
1509     lldb::pid_t pid;
1510     NativeThreadProtocolSP thread_sp;
1511 
1512     lldb::ThreadSP inferior;
1513 
1514     // Propagate the environment if one is not supplied.
1515     if (envp == NULL || envp[0] == NULL)
1516         envp = const_cast<const char **>(environ);
1517 
1518     if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1))
1519     {
1520         args->m_error.SetErrorToGenericError();
1521         args->m_error.SetErrorString("Process fork failed.");
1522         return false;
1523     }
1524 
1525     // Recognized child exit status codes.
1526     enum {
1527         ePtraceFailed = 1,
1528         eDupStdinFailed,
1529         eDupStdoutFailed,
1530         eDupStderrFailed,
1531         eChdirFailed,
1532         eExecFailed,
1533         eSetGidFailed
1534     };
1535 
1536     // Child process.
1537     if (pid == 0)
1538     {
1539         // FIXME consider opening a pipe between parent/child and have this forked child
1540         // send log info to parent re: launch status, in place of the log lines removed here.
1541 
1542         // Start tracing this child that is about to exec.
1543         PTRACE(PTRACE_TRACEME, 0, nullptr, nullptr, 0, args->m_error);
1544         if (args->m_error.Fail())
1545             exit(ePtraceFailed);
1546 
1547         // terminal has already dupped the tty descriptors to stdin/out/err.
1548         // This closes original fd from which they were copied (and avoids
1549         // leaking descriptors to the debugged process.
1550         terminal.CloseSlaveFileDescriptor();
1551 
1552         // Do not inherit setgid powers.
1553         if (setgid(getgid()) != 0)
1554             exit(eSetGidFailed);
1555 
1556         // Attempt to have our own process group.
1557         if (setpgid(0, 0) != 0)
1558         {
1559             // FIXME log that this failed. This is common.
1560             // Don't allow this to prevent an inferior exec.
1561         }
1562 
1563         // Dup file descriptors if needed.
1564         if (!args->m_stdin_path.empty ())
1565             if (!DupDescriptor(args->m_stdin_path.c_str (), STDIN_FILENO, O_RDONLY))
1566                 exit(eDupStdinFailed);
1567 
1568         if (!args->m_stdout_path.empty ())
1569             if (!DupDescriptor(args->m_stdout_path.c_str (), STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
1570                 exit(eDupStdoutFailed);
1571 
1572         if (!args->m_stderr_path.empty ())
1573             if (!DupDescriptor(args->m_stderr_path.c_str (), STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
1574                 exit(eDupStderrFailed);
1575 
1576         // Change working directory
1577         if (working_dir != NULL && working_dir[0])
1578           if (0 != ::chdir(working_dir))
1579               exit(eChdirFailed);
1580 
1581         // Disable ASLR if requested.
1582         if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR))
1583         {
1584             const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS);
1585             if (old_personality == -1)
1586             {
1587                 // Can't retrieve Linux personality.  Cannot disable ASLR.
1588             }
1589             else
1590             {
1591                 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality);
1592                 if (new_personality == -1)
1593                 {
1594                     // Disabling ASLR failed.
1595                 }
1596                 else
1597                 {
1598                     // Disabling ASLR succeeded.
1599                 }
1600             }
1601         }
1602 
1603         // Execute.  We should never return...
1604         execve(argv[0],
1605                const_cast<char *const *>(argv),
1606                const_cast<char *const *>(envp));
1607 
1608         // ...unless exec fails.  In which case we definitely need to end the child here.
1609         exit(eExecFailed);
1610     }
1611 
1612     //
1613     // This is the parent code here.
1614     //
1615     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1616 
1617     // Wait for the child process to trap on its call to execve.
1618     ::pid_t wpid;
1619     int status;
1620     if ((wpid = waitpid(pid, &status, 0)) < 0)
1621     {
1622         args->m_error.SetErrorToErrno();
1623 
1624         if (log)
1625             log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s", __FUNCTION__, args->m_error.AsCString ());
1626 
1627         // Mark the inferior as invalid.
1628         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1629         monitor->SetState (StateType::eStateInvalid);
1630 
1631         return false;
1632     }
1633     else if (WIFEXITED(status))
1634     {
1635         // open, dup or execve likely failed for some reason.
1636         args->m_error.SetErrorToGenericError();
1637         switch (WEXITSTATUS(status))
1638         {
1639             case ePtraceFailed:
1640                 args->m_error.SetErrorString("Child ptrace failed.");
1641                 break;
1642             case eDupStdinFailed:
1643                 args->m_error.SetErrorString("Child open stdin failed.");
1644                 break;
1645             case eDupStdoutFailed:
1646                 args->m_error.SetErrorString("Child open stdout failed.");
1647                 break;
1648             case eDupStderrFailed:
1649                 args->m_error.SetErrorString("Child open stderr failed.");
1650                 break;
1651             case eChdirFailed:
1652                 args->m_error.SetErrorString("Child failed to set working directory.");
1653                 break;
1654             case eExecFailed:
1655                 args->m_error.SetErrorString("Child exec failed.");
1656                 break;
1657             case eSetGidFailed:
1658                 args->m_error.SetErrorString("Child setgid failed.");
1659                 break;
1660             default:
1661                 args->m_error.SetErrorString("Child returned unknown exit status.");
1662                 break;
1663         }
1664 
1665         if (log)
1666         {
1667             log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP",
1668                     __FUNCTION__,
1669                     WEXITSTATUS(status));
1670         }
1671 
1672         // Mark the inferior as invalid.
1673         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1674         monitor->SetState (StateType::eStateInvalid);
1675 
1676         return false;
1677     }
1678     assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) &&
1679            "Could not sync with inferior process.");
1680 
1681     if (log)
1682         log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__);
1683 
1684     args->m_error = SetDefaultPtraceOpts(pid);
1685     if (args->m_error.Fail())
1686     {
1687         if (log)
1688             log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s",
1689                     __FUNCTION__,
1690                     args->m_error.AsCString ());
1691 
1692         // Mark the inferior as invalid.
1693         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1694         monitor->SetState (StateType::eStateInvalid);
1695 
1696         return false;
1697     }
1698 
1699     // Release the master terminal descriptor and pass it off to the
1700     // NativeProcessLinux instance.  Similarly stash the inferior pid.
1701     monitor->m_terminal_fd = terminal.ReleaseMasterFileDescriptor();
1702     monitor->m_pid = pid;
1703 
1704     // Set the terminal fd to be in non blocking mode (it simplifies the
1705     // implementation of ProcessLinux::GetSTDOUT to have a non-blocking
1706     // descriptor to read from).
1707     if (!EnsureFDFlags(monitor->m_terminal_fd, O_NONBLOCK, args->m_error))
1708     {
1709         if (log)
1710             log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s",
1711                     __FUNCTION__,
1712                     args->m_error.AsCString ());
1713 
1714         // Mark the inferior as invalid.
1715         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1716         monitor->SetState (StateType::eStateInvalid);
1717 
1718         return false;
1719     }
1720 
1721     if (log)
1722         log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid);
1723 
1724     thread_sp = monitor->AddThread (pid);
1725     assert (thread_sp && "AddThread() returned a nullptr thread");
1726     monitor->NotifyThreadCreateStopped (pid);
1727     reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGSTOP);
1728 
1729     // Let our process instance know the thread has stopped.
1730     monitor->SetCurrentThreadID (thread_sp->GetID ());
1731     monitor->SetState (StateType::eStateStopped);
1732 
1733     if (log)
1734     {
1735         if (args->m_error.Success ())
1736         {
1737             log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__);
1738         }
1739         else
1740         {
1741             log->Printf ("NativeProcessLinux::%s inferior launching failed: %s",
1742                 __FUNCTION__,
1743                 args->m_error.AsCString ());
1744         }
1745     }
1746     return args->m_error.Success();
1747 }
1748 
1749 void
1750 NativeProcessLinux::StartAttachOpThread(AttachArgs *args, lldb_private::Error &error)
1751 {
1752     static const char *g_thread_name = "lldb.process.linux.operation";
1753 
1754     if (m_operation_thread.IsJoinable())
1755         return;
1756 
1757     m_operation_thread = ThreadLauncher::LaunchThread(g_thread_name, AttachOpThread, args, &error);
1758 }
1759 
1760 void *
1761 NativeProcessLinux::AttachOpThread(void *arg)
1762 {
1763     AttachArgs *args = static_cast<AttachArgs*>(arg);
1764 
1765     if (!Attach(args)) {
1766         sem_post(&args->m_semaphore);
1767         return nullptr;
1768     }
1769 
1770     ServeOperation(args);
1771     return nullptr;
1772 }
1773 
1774 bool
1775 NativeProcessLinux::Attach(AttachArgs *args)
1776 {
1777     lldb::pid_t pid = args->m_pid;
1778 
1779     NativeProcessLinux *monitor = args->m_monitor;
1780     lldb::ThreadSP inferior;
1781     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1782 
1783     // Use a map to keep track of the threads which we have attached/need to attach.
1784     Host::TidMap tids_to_attach;
1785     if (pid <= 1)
1786     {
1787         args->m_error.SetErrorToGenericError();
1788         args->m_error.SetErrorString("Attaching to process 1 is not allowed.");
1789         goto FINISH;
1790     }
1791 
1792     while (Host::FindProcessThreads(pid, tids_to_attach))
1793     {
1794         for (Host::TidMap::iterator it = tids_to_attach.begin();
1795              it != tids_to_attach.end();)
1796         {
1797             if (it->second == false)
1798             {
1799                 lldb::tid_t tid = it->first;
1800 
1801                 // Attach to the requested process.
1802                 // An attach will cause the thread to stop with a SIGSTOP.
1803                 PTRACE(PTRACE_ATTACH, tid, nullptr, nullptr, 0, args->m_error);
1804                 if (args->m_error.Fail())
1805                 {
1806                     // No such thread. The thread may have exited.
1807                     // More error handling may be needed.
1808                     if (args->m_error.GetError() == ESRCH)
1809                     {
1810                         it = tids_to_attach.erase(it);
1811                         continue;
1812                     }
1813                     else
1814                         goto FINISH;
1815                 }
1816 
1817                 int status;
1818                 // Need to use __WALL otherwise we receive an error with errno=ECHLD
1819                 // At this point we should have a thread stopped if waitpid succeeds.
1820                 if ((status = waitpid(tid, NULL, __WALL)) < 0)
1821                 {
1822                     // No such thread. The thread may have exited.
1823                     // More error handling may be needed.
1824                     if (errno == ESRCH)
1825                     {
1826                         it = tids_to_attach.erase(it);
1827                         continue;
1828                     }
1829                     else
1830                     {
1831                         args->m_error.SetErrorToErrno();
1832                         goto FINISH;
1833                     }
1834                 }
1835 
1836                 args->m_error = SetDefaultPtraceOpts(tid);
1837                 if (args->m_error.Fail())
1838                     goto FINISH;
1839 
1840 
1841                 if (log)
1842                     log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid);
1843 
1844                 it->second = true;
1845 
1846                 // Create the thread, mark it as stopped.
1847                 NativeThreadProtocolSP thread_sp (monitor->AddThread (static_cast<lldb::tid_t> (tid)));
1848                 assert (thread_sp && "AddThread() returned a nullptr");
1849 
1850                 // This will notify this is a new thread and tell the system it is stopped.
1851                 monitor->NotifyThreadCreateStopped (tid);
1852                 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGSTOP);
1853                 monitor->SetCurrentThreadID (thread_sp->GetID ());
1854             }
1855 
1856             // move the loop forward
1857             ++it;
1858         }
1859     }
1860 
1861     if (tids_to_attach.size() > 0)
1862     {
1863         monitor->m_pid = pid;
1864         // Let our process instance know the thread has stopped.
1865         monitor->SetState (StateType::eStateStopped);
1866     }
1867     else
1868     {
1869         args->m_error.SetErrorToGenericError();
1870         args->m_error.SetErrorString("No such process.");
1871     }
1872 
1873  FINISH:
1874     return args->m_error.Success();
1875 }
1876 
1877 Error
1878 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid)
1879 {
1880     long ptrace_opts = 0;
1881 
1882     // Have the child raise an event on exit.  This is used to keep the child in
1883     // limbo until it is destroyed.
1884     ptrace_opts |= PTRACE_O_TRACEEXIT;
1885 
1886     // Have the tracer trace threads which spawn in the inferior process.
1887     // TODO: if we want to support tracing the inferiors' child, add the
1888     // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
1889     ptrace_opts |= PTRACE_O_TRACECLONE;
1890 
1891     // Have the tracer notify us before execve returns
1892     // (needed to disable legacy SIGTRAP generation)
1893     ptrace_opts |= PTRACE_O_TRACEEXEC;
1894 
1895     Error error;
1896     PTRACE(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts, 0, error);
1897     return error;
1898 }
1899 
1900 static ExitType convert_pid_status_to_exit_type (int status)
1901 {
1902     if (WIFEXITED (status))
1903         return ExitType::eExitTypeExit;
1904     else if (WIFSIGNALED (status))
1905         return ExitType::eExitTypeSignal;
1906     else if (WIFSTOPPED (status))
1907         return ExitType::eExitTypeStop;
1908     else
1909     {
1910         // We don't know what this is.
1911         return ExitType::eExitTypeInvalid;
1912     }
1913 }
1914 
1915 static int convert_pid_status_to_return_code (int status)
1916 {
1917     if (WIFEXITED (status))
1918         return WEXITSTATUS (status);
1919     else if (WIFSIGNALED (status))
1920         return WTERMSIG (status);
1921     else if (WIFSTOPPED (status))
1922         return WSTOPSIG (status);
1923     else
1924     {
1925         // We don't know what this is.
1926         return ExitType::eExitTypeInvalid;
1927     }
1928 }
1929 
1930 // Main process monitoring waitpid-loop handler.
1931 bool
1932 NativeProcessLinux::MonitorCallback(void *callback_baton,
1933                                 lldb::pid_t pid,
1934                                 bool exited,
1935                                 int signal,
1936                                 int status)
1937 {
1938     Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS));
1939 
1940     NativeProcessLinux *const process = static_cast<NativeProcessLinux*>(callback_baton);
1941     assert (process && "process is null");
1942     if (!process)
1943     {
1944         if (log)
1945             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " callback_baton was null, can't determine process to use", __FUNCTION__, pid);
1946         return true;
1947     }
1948 
1949     // Certain activities differ based on whether the pid is the tid of the main thread.
1950     const bool is_main_thread = (pid == process->GetID ());
1951 
1952     // Assume we keep monitoring by default.
1953     bool stop_monitoring = false;
1954 
1955     // Handle when the thread exits.
1956     if (exited)
1957     {
1958         if (log)
1959             log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %"  PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not");
1960 
1961         // This is a thread that exited.  Ensure we're not tracking it anymore.
1962         const bool thread_found = process->StopTrackingThread (pid);
1963 
1964         // Make sure the thread state coordinator knows about this.
1965         process->NotifyThreadDeath (pid);
1966 
1967         if (is_main_thread)
1968         {
1969             // We only set the exit status and notify the delegate if we haven't already set the process
1970             // state to an exited state.  We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8)
1971             // for the main thread.
1972             const bool already_notified = (process->GetState() == StateType::eStateExited) || (process->GetState () == StateType::eStateCrashed);
1973             if (!already_notified)
1974             {
1975                 if (log)
1976                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (process->GetState ()));
1977                 // The main thread exited.  We're done monitoring.  Report to delegate.
1978                 process->SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
1979 
1980                 // Notify delegate that our process has exited.
1981                 process->SetState (StateType::eStateExited, true);
1982             }
1983             else
1984             {
1985                 if (log)
1986                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
1987             }
1988             return true;
1989         }
1990         else
1991         {
1992             // Do we want to report to the delegate in this case?  I think not.  If this was an orderly
1993             // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal,
1994             // and we would have done an all-stop then.
1995             if (log)
1996                 log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
1997 
1998             // Not the main thread, we keep going.
1999             return false;
2000         }
2001     }
2002 
2003     // Get details on the signal raised.
2004     siginfo_t info;
2005     const auto err = process->GetSignalInfo(pid, &info);
2006     if (err.Success())
2007     {
2008         // We have retrieved the signal info.  Dispatch appropriately.
2009         if (info.si_signo == SIGTRAP)
2010             process->MonitorSIGTRAP(&info, pid);
2011         else
2012             process->MonitorSignal(&info, pid, exited);
2013 
2014         stop_monitoring = false;
2015     }
2016     else
2017     {
2018         if (err.GetError() == EINVAL)
2019         {
2020             // This is a group stop reception for this tid.
2021             if (log)
2022                 log->Printf ("NativeThreadLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64, __FUNCTION__, process->GetID (), pid);
2023             process->NotifyThreadStop (pid);
2024         }
2025         else
2026         {
2027             // ptrace(GETSIGINFO) failed (but not due to group-stop).
2028 
2029             // A return value of ESRCH means the thread/process is no longer on the system,
2030             // so it was killed somehow outside of our control.  Either way, we can't do anything
2031             // with it anymore.
2032 
2033             // We stop monitoring if it was the main thread.
2034             stop_monitoring = is_main_thread;
2035 
2036             // Stop tracking the metadata for the thread since it's entirely off the system now.
2037             const bool thread_found = process->StopTrackingThread (pid);
2038 
2039             // Make sure the thread state coordinator knows about this.
2040             process->NotifyThreadDeath (pid);
2041 
2042             if (log)
2043                 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)",
2044                              __FUNCTION__, err.AsCString(), pid, signal, status, err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found");
2045 
2046             if (is_main_thread)
2047             {
2048                 // Notify the delegate - our process is not available but appears to have been killed outside
2049                 // our control.  Is eStateExited the right exit state in this case?
2050                 process->SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
2051                 process->SetState (StateType::eStateExited, true);
2052             }
2053             else
2054             {
2055                 // This thread was pulled out from underneath us.  Anything to do here? Do we want to do an all stop?
2056                 if (log)
2057                     log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, process->GetID (), pid);
2058             }
2059         }
2060     }
2061 
2062     return stop_monitoring;
2063 }
2064 
2065 void
2066 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid)
2067 {
2068     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2069     const bool is_main_thread = (pid == GetID ());
2070 
2071     assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!");
2072     if (!info)
2073         return;
2074 
2075     Mutex::Locker locker (m_threads_mutex);
2076 
2077     // See if we can find a thread for this signal.
2078     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
2079     if (!thread_sp)
2080     {
2081         if (log)
2082             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
2083     }
2084 
2085     switch (info->si_code)
2086     {
2087     // TODO: these two cases are required if we want to support tracing of the inferiors' children.  We'd need this to debug a monitor.
2088     // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
2089     // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
2090 
2091     case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)):
2092     {
2093         lldb::tid_t tid = LLDB_INVALID_THREAD_ID;
2094 
2095         // The main thread is stopped here.
2096         if (thread_sp)
2097             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGTRAP);
2098         NotifyThreadStop (pid);
2099 
2100         unsigned long event_message = 0;
2101         if (GetEventMessage (pid, &event_message).Success())
2102         {
2103             tid = static_cast<lldb::tid_t> (event_message);
2104             if (log)
2105                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event for tid %" PRIu64, __FUNCTION__, pid, tid);
2106 
2107             // If we don't track the thread yet: create it, mark as stopped.
2108             // If we do track it, this is the wait we needed.  Now resume the new thread.
2109             // In all cases, resume the current (i.e. main process) thread.
2110             bool created_now = false;
2111             NativeThreadProtocolSP new_thread_sp = GetOrCreateThread (tid, created_now);
2112             assert (new_thread_sp.get() && "failed to get or create the tracking data for newly created inferior thread");
2113 
2114             // If the thread was already tracked, it means the created thread already received its SI_USER notification of creation.
2115             if (!created_now)
2116             {
2117                 // We can now resume the newly created thread since it is fully created.
2118                 NotifyThreadCreateStopped (tid);
2119                 m_coordinator_up->RequestThreadResume (tid,
2120                                                        [=](lldb::tid_t tid_to_resume, bool supress_signal)
2121                                                        {
2122                                                            reinterpret_cast<NativeThreadLinux*> (new_thread_sp.get ())->SetRunning ();
2123                                                            return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER);
2124                                                        },
2125                                                        CoordinatorErrorHandler);
2126             }
2127             else
2128             {
2129                 // Mark the thread as currently launching.  Need to wait for SIGTRAP clone on the main thread before
2130                 // this thread is ready to go.
2131                 reinterpret_cast<NativeThreadLinux*> (new_thread_sp.get ())->SetLaunching ();
2132             }
2133         }
2134         else
2135         {
2136             if (log)
2137                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, pid);
2138         }
2139 
2140         // In all cases, we can resume the main thread here.
2141         m_coordinator_up->RequestThreadResume (pid,
2142                                                [=](lldb::tid_t tid_to_resume, bool supress_signal)
2143                                                {
2144                                                    reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning ();
2145                                                    return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER);
2146                                                },
2147                                                CoordinatorErrorHandler);
2148 
2149         break;
2150     }
2151 
2152     case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)):
2153     {
2154         NativeThreadProtocolSP main_thread_sp;
2155         if (log)
2156             log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP);
2157 
2158         // The thread state coordinator needs to reset due to the exec.
2159         m_coordinator_up->ResetForExec ();
2160 
2161         // Remove all but the main thread here.  Linux fork creates a new process which only copies the main thread.  Mutexes are in undefined state.
2162         if (log)
2163             log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__);
2164 
2165         for (auto thread_sp : m_threads)
2166         {
2167             const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID ();
2168             if (is_main_thread)
2169             {
2170                 main_thread_sp = thread_sp;
2171                 if (log)
2172                     log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ());
2173             }
2174             else
2175             {
2176                 // Tell thread coordinator this thread is dead.
2177                 if (log)
2178                     log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ());
2179             }
2180         }
2181 
2182         m_threads.clear ();
2183 
2184         if (main_thread_sp)
2185         {
2186             m_threads.push_back (main_thread_sp);
2187             SetCurrentThreadID (main_thread_sp->GetID ());
2188             reinterpret_cast<NativeThreadLinux*>(main_thread_sp.get())->SetStoppedByExec ();
2189         }
2190         else
2191         {
2192             SetCurrentThreadID (LLDB_INVALID_THREAD_ID);
2193             if (log)
2194                 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ());
2195         }
2196 
2197         // Tell coordinator about about the "new" (since exec) stopped main thread.
2198         const lldb::tid_t main_thread_tid = GetID ();
2199         NotifyThreadCreateStopped (main_thread_tid);
2200 
2201         // NOTE: ideally these next statements would execute at the same time as the coordinator thread create was executed.
2202         // Consider a handler that can execute when that happens.
2203         // Let our delegate know we have just exec'd.
2204         NotifyDidExec ();
2205 
2206         // If we have a main thread, indicate we are stopped.
2207         assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked");
2208 
2209         // Let the process know we're stopped.
2210         CallAfterRunningThreadsStop (pid,
2211                                      [=] (lldb::tid_t signaling_tid)
2212                                      {
2213                                          SetState (StateType::eStateStopped, true);
2214                                      });
2215 
2216         break;
2217     }
2218 
2219     case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)):
2220     {
2221         // The inferior process or one of its threads is about to exit.
2222 
2223         // This thread is currently stopped.  It's not actually dead yet, just about to be.
2224         NotifyThreadStop (pid);
2225 
2226         unsigned long data = 0;
2227         if (GetEventMessage(pid, &data).Fail())
2228             data = -1;
2229 
2230         if (log)
2231         {
2232             log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)",
2233                          __FUNCTION__,
2234                          data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false",
2235                          pid,
2236                     is_main_thread ? "is main thread" : "not main thread");
2237         }
2238 
2239         if (is_main_thread)
2240         {
2241             SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true);
2242         }
2243 
2244         const int signo = static_cast<int> (data);
2245         m_coordinator_up->RequestThreadResume (pid,
2246                                                [=](lldb::tid_t tid_to_resume, bool supress_signal)
2247                                                {
2248                                                    reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning ();
2249                                                    return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo);
2250                                                },
2251                                                CoordinatorErrorHandler);
2252 
2253         break;
2254     }
2255 
2256     case 0:
2257     case TRAP_TRACE:
2258         // We receive this on single stepping.
2259         if (log)
2260             log->Printf ("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)", __FUNCTION__, pid);
2261 
2262         if (thread_sp)
2263         {
2264             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedByTrace ();
2265         }
2266 
2267         // This thread is currently stopped.
2268         NotifyThreadStop (pid);
2269 
2270         // Here we don't have to request the rest of the threads to stop or request a deferred stop.
2271         // This would have already happened at the time the Resume() with step operation was signaled.
2272         // At this point, we just need to say we stopped, and the deferred notifcation will fire off
2273         // once all running threads have checked in as stopped.
2274         SetCurrentThreadID (pid);
2275         // Tell the process we have a stop (from software breakpoint).
2276         CallAfterRunningThreadsStop (pid,
2277                                      [=] (lldb::tid_t signaling_tid)
2278                                      {
2279                                          SetState (StateType::eStateStopped, true);
2280                                      });
2281         break;
2282 
2283     case SI_KERNEL:
2284     case TRAP_BRKPT:
2285         if (log)
2286             log->Printf ("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64, __FUNCTION__, pid);
2287 
2288         // This thread is currently stopped.
2289         NotifyThreadStop (pid);
2290 
2291         // Mark the thread as stopped at breakpoint.
2292         if (thread_sp)
2293         {
2294             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedByBreakpoint ();
2295             Error error = FixupBreakpointPCAsNeeded (thread_sp);
2296             if (error.Fail ())
2297             {
2298                 if (log)
2299                     log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s", __FUNCTION__, pid, error.AsCString ());
2300             }
2301         }
2302         else
2303         {
2304             if (log)
2305                 log->Printf ("NativeProcessLinux::%s()  pid = %" PRIu64 ": warning, cannot process software breakpoint since no thread metadata", __FUNCTION__, pid);
2306         }
2307 
2308 
2309         // We need to tell all other running threads before we notify the delegate about this stop.
2310         CallAfterRunningThreadsStop (pid,
2311                                      [=](lldb::tid_t deferred_notification_tid)
2312                                      {
2313                                          SetCurrentThreadID (deferred_notification_tid);
2314                                          // Tell the process we have a stop (from software breakpoint).
2315                                          SetState (StateType::eStateStopped, true);
2316                                      });
2317         break;
2318 
2319     case TRAP_HWBKPT:
2320         if (log)
2321             log->Printf ("NativeProcessLinux::%s() received watchpoint event, pid = %" PRIu64, __FUNCTION__, pid);
2322 
2323         // This thread is currently stopped.
2324         NotifyThreadStop (pid);
2325 
2326         // Mark the thread as stopped at watchpoint.
2327         // The address is at (lldb::addr_t)info->si_addr if we need it.
2328         if (thread_sp)
2329             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedByWatchpoint ();
2330         else
2331         {
2332             if (log)
2333                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ": warning, cannot process hardware breakpoint since no thread metadata", __FUNCTION__, GetID (), pid);
2334         }
2335 
2336         // We need to tell all other running threads before we notify the delegate about this stop.
2337         CallAfterRunningThreadsStop (pid,
2338                                      [=](lldb::tid_t deferred_notification_tid)
2339                                      {
2340                                          SetCurrentThreadID (deferred_notification_tid);
2341                                          // Tell the process we have a stop (from hardware breakpoint).
2342                                          SetState (StateType::eStateStopped, true);
2343                                      });
2344         break;
2345 
2346     case SIGTRAP:
2347     case (SIGTRAP | 0x80):
2348         if (log)
2349             log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), pid);
2350 
2351         // This thread is currently stopped.
2352         NotifyThreadStop (pid);
2353         if (thread_sp)
2354             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGTRAP);
2355 
2356 
2357         // Ignore these signals until we know more about them.
2358         m_coordinator_up->RequestThreadResume (pid,
2359                                                [=](lldb::tid_t tid_to_resume, bool supress_signal)
2360                                                {
2361                                                    reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning ();
2362                                                    return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER);
2363                                                },
2364                                                CoordinatorErrorHandler);
2365         break;
2366 
2367     default:
2368         assert(false && "Unexpected SIGTRAP code!");
2369         if (log)
2370             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%" PRIx64, __FUNCTION__, GetID (), pid, static_cast<uint64_t> (SIGTRAP | (PTRACE_EVENT_CLONE << 8)));
2371         break;
2372 
2373     }
2374 }
2375 
2376 void
2377 NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited)
2378 {
2379     assert (info && "null info");
2380     if (!info)
2381         return;
2382 
2383     const int signo = info->si_signo;
2384     const bool is_from_llgs = info->si_pid == getpid ();
2385 
2386     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2387 
2388     // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
2389     // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
2390     // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
2391     //
2392     // IOW, user generated signals never generate what we consider to be a
2393     // "crash".
2394     //
2395     // Similarly, ACK signals generated by this monitor.
2396 
2397     Mutex::Locker locker (m_threads_mutex);
2398 
2399     // See if we can find a thread for this signal.
2400     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
2401     if (!thread_sp)
2402     {
2403         if (log)
2404             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
2405     }
2406 
2407     // Handle the signal.
2408     if (info->si_code == SI_TKILL || info->si_code == SI_USER)
2409     {
2410         if (log)
2411             log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")",
2412                             __FUNCTION__,
2413                             GetUnixSignals ().GetSignalAsCString (signo),
2414                             signo,
2415                             (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"),
2416                             info->si_pid,
2417                             is_from_llgs ? "from llgs" : "not from llgs",
2418                             pid);
2419     }
2420 
2421     // Check for new thread notification.
2422     if ((info->si_pid == 0) && (info->si_code == SI_USER))
2423     {
2424         // A new thread creation is being signaled.  This is one of two parts that come in
2425         // a non-deterministic order.  pid is the thread id.
2426         if (log)
2427             log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification",
2428                      __FUNCTION__, GetID (), pid);
2429 
2430         // Did we already create the thread?
2431         bool created_now = false;
2432         thread_sp = GetOrCreateThread (pid, created_now);
2433         assert (thread_sp.get() && "failed to get or create the tracking data for newly created inferior thread");
2434 
2435         // If the thread was already tracked, it means the main thread already received its SIGTRAP for the create.
2436         if (!created_now)
2437         {
2438             // We can now resume the newly created thread since it is fully created.
2439             NotifyThreadCreateStopped (pid);
2440             m_coordinator_up->RequestThreadResume (pid,
2441                                                    [=](lldb::tid_t tid_to_resume, bool supress_signal)
2442                                                    {
2443                                                        reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning ();
2444                                                        return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER);
2445                                                    },
2446                                                    CoordinatorErrorHandler);
2447         }
2448         else
2449         {
2450             // Mark the thread as currently launching.  Need to wait for SIGTRAP clone on the main thread before
2451             // this thread is ready to go.
2452             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetLaunching ();
2453         }
2454 
2455         // Done handling.
2456         return;
2457     }
2458 
2459     // Check for thread stop notification.
2460     if (is_from_llgs && (info->si_code == SI_TKILL) && (signo == SIGSTOP))
2461     {
2462         // This is a tgkill()-based stop.
2463         if (thread_sp)
2464         {
2465             if (log)
2466                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped",
2467                              __FUNCTION__,
2468                              GetID (),
2469                              pid);
2470 
2471             // Check that we're not already marked with a stop reason.
2472             // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that
2473             // the kernel signaled us with the thread stopping which we handled and marked as stopped,
2474             // and that, without an intervening resume, we received another stop.  It is more likely
2475             // that we are missing the marking of a run state somewhere if we find that the thread was
2476             // marked as stopped.
2477             NativeThreadLinux *const linux_thread_p = reinterpret_cast<NativeThreadLinux*> (thread_sp.get ());
2478             assert (linux_thread_p && "linux_thread_p is null!");
2479 
2480             const StateType thread_state = linux_thread_p->GetState ();
2481             if (!StateIsStoppedState (thread_state, false))
2482             {
2483                 // An inferior thread just stopped, but was not the primary cause of the process stop.
2484                 // Instead, something else (like a breakpoint or step) caused the stop.  Mark the
2485                 // stop signal as 0 to let lldb know this isn't the important stop.
2486                 linux_thread_p->SetStoppedBySignal (0);
2487                 SetCurrentThreadID (thread_sp->GetID ());
2488                 m_coordinator_up->NotifyThreadStop (thread_sp->GetID (), true, CoordinatorErrorHandler);
2489             }
2490             else
2491             {
2492                 if (log)
2493                 {
2494                     // Retrieve the signal name if the thread was stopped by a signal.
2495                     int stop_signo = 0;
2496                     const bool stopped_by_signal = linux_thread_p->IsStopped (&stop_signo);
2497                     const char *signal_name = stopped_by_signal ? GetUnixSignals ().GetSignalAsCString (stop_signo) : "<not stopped by signal>";
2498                     if (!signal_name)
2499                         signal_name = "<no-signal-name>";
2500 
2501                     log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is",
2502                                  __FUNCTION__,
2503                                  GetID (),
2504                                  linux_thread_p->GetID (),
2505                                  StateAsCString (thread_state),
2506                                  stop_signo,
2507                                  signal_name);
2508                 }
2509                 // Tell the thread state coordinator about the stop.
2510                 NotifyThreadStop (thread_sp->GetID ());
2511             }
2512         }
2513 
2514         // Done handling.
2515         return;
2516     }
2517 
2518     if (log)
2519         log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo));
2520 
2521     // This thread is stopped.
2522     NotifyThreadStop (pid);
2523 
2524     switch (signo)
2525     {
2526     case SIGSTOP:
2527         {
2528             if (log)
2529             {
2530                 if (is_from_llgs)
2531                     log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from llgs, most likely an interrupt", __FUNCTION__, GetID (), pid);
2532                 else
2533                     log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from outside of debugger", __FUNCTION__, GetID (), pid);
2534             }
2535 
2536             // Resume this thread to get the group-stop mechanism to fire off the true group stops.
2537             // This thread will get stopped again as part of the group-stop completion.
2538             m_coordinator_up->RequestThreadResume (pid,
2539                                                    [=](lldb::tid_t tid_to_resume, bool supress_signal)
2540                                                    {
2541                                                        reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning ();
2542                                                        // Pass this signal number on to the inferior to handle.
2543                                                        return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo);
2544                                                    },
2545                                                    CoordinatorErrorHandler);
2546         }
2547         break;
2548     case SIGSEGV:
2549     case SIGILL:
2550     case SIGFPE:
2551     case SIGBUS:
2552         if (thread_sp)
2553             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetCrashedWithException (*info);
2554         break;
2555     default:
2556         // This is just a pre-signal-delivery notification of the incoming signal.
2557         if (thread_sp)
2558             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (signo);
2559 
2560         break;
2561     }
2562 
2563     // Send a stop to the debugger after we get all other threads to stop.
2564     CallAfterRunningThreadsStop (pid,
2565                                  [=] (lldb::tid_t signaling_tid)
2566                                  {
2567                                      SetCurrentThreadID (signaling_tid);
2568                                      SetState (StateType::eStateStopped, true);
2569                                  });
2570 }
2571 
2572 Error
2573 NativeProcessLinux::Resume (const ResumeActionList &resume_actions)
2574 {
2575     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD));
2576     if (log)
2577         log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ());
2578 
2579     lldb::tid_t deferred_signal_tid = LLDB_INVALID_THREAD_ID;
2580     lldb::tid_t deferred_signal_skip_tid = LLDB_INVALID_THREAD_ID;
2581     int deferred_signo = 0;
2582     NativeThreadProtocolSP deferred_signal_thread_sp;
2583     bool stepping = false;
2584 
2585     Mutex::Locker locker (m_threads_mutex);
2586 
2587     for (auto thread_sp : m_threads)
2588     {
2589         assert (thread_sp && "thread list should not contain NULL threads");
2590 
2591         const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
2592 
2593         if (action == nullptr)
2594         {
2595             if (log)
2596                 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64,
2597                     __FUNCTION__, GetID (), thread_sp->GetID ());
2598             continue;
2599         }
2600 
2601         if (log)
2602         {
2603             log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64,
2604                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
2605         }
2606 
2607         switch (action->state)
2608         {
2609         case eStateRunning:
2610         {
2611             // Run the thread, possibly feeding it the signal.
2612             const int signo = action->signal;
2613             m_coordinator_up->RequestThreadResumeAsNeeded (thread_sp->GetID (),
2614                                                            [=](lldb::tid_t tid_to_resume, bool supress_signal)
2615                                                            {
2616                                                                reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning ();
2617                                                                // Pass this signal number on to the inferior to handle.
2618                                                                const auto resume_result = Resume (tid_to_resume, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
2619                                                                if (resume_result.Success())
2620                                                                    SetState(eStateRunning, true);
2621                                                                return resume_result;
2622                                                            },
2623                                                            CoordinatorErrorHandler);
2624             break;
2625         }
2626 
2627         case eStateStepping:
2628         {
2629             // Request the step.
2630             const int signo = action->signal;
2631             m_coordinator_up->RequestThreadResume (thread_sp->GetID (),
2632                                                    [=](lldb::tid_t tid_to_step, bool supress_signal)
2633                                                    {
2634                                                        reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStepping ();
2635                                                        const auto step_result = SingleStep (tid_to_step,(signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
2636                                                        assert (step_result.Success() && "SingleStep() failed");
2637                                                        if (step_result.Success())
2638                                                            SetState(eStateStepping, true);
2639                                                        return step_result;
2640                                                    },
2641                                                    CoordinatorErrorHandler);
2642             stepping = true;
2643             break;
2644         }
2645 
2646         case eStateSuspended:
2647         case eStateStopped:
2648             // if we haven't chosen a deferred signal tid yet, use this one.
2649             if (deferred_signal_tid == LLDB_INVALID_THREAD_ID)
2650             {
2651                 deferred_signal_tid = thread_sp->GetID ();
2652                 deferred_signal_thread_sp = thread_sp;
2653                 deferred_signo = SIGSTOP;
2654             }
2655             break;
2656 
2657         default:
2658             return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64,
2659                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
2660         }
2661     }
2662 
2663     // If we had any thread stopping, then do a deferred notification of the chosen stop thread id and signal
2664     // after all other running threads have stopped.
2665     // If there is a stepping thread involved we'll be eventually stopped by SIGTRAP trace signal.
2666     if (deferred_signal_tid != LLDB_INVALID_THREAD_ID && !stepping)
2667     {
2668         CallAfterRunningThreadsStopWithSkipTID (deferred_signal_tid,
2669                                                 deferred_signal_skip_tid,
2670                                      [=](lldb::tid_t deferred_notification_tid)
2671                                      {
2672                                          // Set the signal thread to the current thread.
2673                                          SetCurrentThreadID (deferred_notification_tid);
2674 
2675                                          // Set the thread state as stopped by the deferred signo.
2676                                          reinterpret_cast<NativeThreadLinux*> (deferred_signal_thread_sp.get ())->SetStoppedBySignal (deferred_signo);
2677 
2678                                          // Tell the process delegate that the process is in a stopped state.
2679                                          SetState (StateType::eStateStopped, true);
2680                                      });
2681     }
2682 
2683     return Error();
2684 }
2685 
2686 Error
2687 NativeProcessLinux::Halt ()
2688 {
2689     Error error;
2690 
2691     if (kill (GetID (), SIGSTOP) != 0)
2692         error.SetErrorToErrno ();
2693 
2694     return error;
2695 }
2696 
2697 Error
2698 NativeProcessLinux::Detach ()
2699 {
2700     Error error;
2701 
2702     // Tell ptrace to detach from the process.
2703     if (GetID () != LLDB_INVALID_PROCESS_ID)
2704         error = Detach (GetID ());
2705 
2706     // Stop monitoring the inferior.
2707     StopMonitor ();
2708 
2709     // No error.
2710     return error;
2711 }
2712 
2713 Error
2714 NativeProcessLinux::Signal (int signo)
2715 {
2716     Error error;
2717 
2718     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2719     if (log)
2720         log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64,
2721                 __FUNCTION__, signo,  GetUnixSignals ().GetSignalAsCString (signo), GetID ());
2722 
2723     if (kill(GetID(), signo))
2724         error.SetErrorToErrno();
2725 
2726     return error;
2727 }
2728 
2729 Error
2730 NativeProcessLinux::Interrupt ()
2731 {
2732     // Pick a running thread (or if none, a not-dead stopped thread) as
2733     // the chosen thread that will be the stop-reason thread.
2734     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2735 
2736     NativeThreadProtocolSP running_thread_sp;
2737     NativeThreadProtocolSP stopped_thread_sp;
2738 
2739     if (log)
2740         log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__);
2741 
2742     Mutex::Locker locker (m_threads_mutex);
2743 
2744     for (auto thread_sp : m_threads)
2745     {
2746         // The thread shouldn't be null but lets just cover that here.
2747         if (!thread_sp)
2748             continue;
2749 
2750         // If we have a running or stepping thread, we'll call that the
2751         // target of the interrupt.
2752         const auto thread_state = thread_sp->GetState ();
2753         if (thread_state == eStateRunning ||
2754             thread_state == eStateStepping)
2755         {
2756             running_thread_sp = thread_sp;
2757             break;
2758         }
2759         else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true))
2760         {
2761             // Remember the first non-dead stopped thread.  We'll use that as a backup if there are no running threads.
2762             stopped_thread_sp = thread_sp;
2763         }
2764     }
2765 
2766     if (!running_thread_sp && !stopped_thread_sp)
2767     {
2768         Error error("found no running/stepping or live stopped threads as target for interrupt");
2769         if (log)
2770             log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ());
2771 
2772         return error;
2773     }
2774 
2775     NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp;
2776 
2777     if (log)
2778         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target",
2779                      __FUNCTION__,
2780                      GetID (),
2781                      running_thread_sp ? "running" : "stopped",
2782                      deferred_signal_thread_sp->GetID ());
2783 
2784     CallAfterRunningThreadsStop (deferred_signal_thread_sp->GetID (),
2785                                  [=](lldb::tid_t deferred_notification_tid)
2786                                  {
2787                                      // Set the signal thread to the current thread.
2788                                      SetCurrentThreadID (deferred_notification_tid);
2789 
2790                                      // Set the thread state as stopped by the deferred signo.
2791                                      reinterpret_cast<NativeThreadLinux*> (deferred_signal_thread_sp.get ())->SetStoppedBySignal (SIGSTOP);
2792 
2793                                      // Tell the process delegate that the process is in a stopped state.
2794                                      SetState (StateType::eStateStopped, true);
2795                                  });
2796     return Error();
2797 }
2798 
2799 Error
2800 NativeProcessLinux::Kill ()
2801 {
2802     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2803     if (log)
2804         log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ());
2805 
2806     Error error;
2807 
2808     switch (m_state)
2809     {
2810         case StateType::eStateInvalid:
2811         case StateType::eStateExited:
2812         case StateType::eStateCrashed:
2813         case StateType::eStateDetached:
2814         case StateType::eStateUnloaded:
2815             // Nothing to do - the process is already dead.
2816             if (log)
2817                 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state));
2818             return error;
2819 
2820         case StateType::eStateConnected:
2821         case StateType::eStateAttaching:
2822         case StateType::eStateLaunching:
2823         case StateType::eStateStopped:
2824         case StateType::eStateRunning:
2825         case StateType::eStateStepping:
2826         case StateType::eStateSuspended:
2827             // We can try to kill a process in these states.
2828             break;
2829     }
2830 
2831     if (kill (GetID (), SIGKILL) != 0)
2832     {
2833         error.SetErrorToErrno ();
2834         return error;
2835     }
2836 
2837     return error;
2838 }
2839 
2840 static Error
2841 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info)
2842 {
2843     memory_region_info.Clear();
2844 
2845     StringExtractor line_extractor (maps_line.c_str ());
2846 
2847     // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode   pathname
2848     // perms: rwxp   (letter is present if set, '-' if not, final character is p=private, s=shared).
2849 
2850     // Parse out the starting address
2851     lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0);
2852 
2853     // Parse out hyphen separating start and end address from range.
2854     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-'))
2855         return Error ("malformed /proc/{pid}/maps entry, missing dash between address range");
2856 
2857     // Parse out the ending address
2858     lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address);
2859 
2860     // Parse out the space after the address.
2861     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' '))
2862         return Error ("malformed /proc/{pid}/maps entry, missing space after range");
2863 
2864     // Save the range.
2865     memory_region_info.GetRange ().SetRangeBase (start_address);
2866     memory_region_info.GetRange ().SetRangeEnd (end_address);
2867 
2868     // Parse out each permission entry.
2869     if (line_extractor.GetBytesLeft () < 4)
2870         return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions");
2871 
2872     // Handle read permission.
2873     const char read_perm_char = line_extractor.GetChar ();
2874     if (read_perm_char == 'r')
2875         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes);
2876     else
2877     {
2878         assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" );
2879         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2880     }
2881 
2882     // Handle write permission.
2883     const char write_perm_char = line_extractor.GetChar ();
2884     if (write_perm_char == 'w')
2885         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes);
2886     else
2887     {
2888         assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" );
2889         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2890     }
2891 
2892     // Handle execute permission.
2893     const char exec_perm_char = line_extractor.GetChar ();
2894     if (exec_perm_char == 'x')
2895         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes);
2896     else
2897     {
2898         assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" );
2899         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2900     }
2901 
2902     return Error ();
2903 }
2904 
2905 Error
2906 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info)
2907 {
2908     // FIXME review that the final memory region returned extends to the end of the virtual address space,
2909     // with no perms if it is not mapped.
2910 
2911     // Use an approach that reads memory regions from /proc/{pid}/maps.
2912     // Assume proc maps entries are in ascending order.
2913     // FIXME assert if we find differently.
2914     Mutex::Locker locker (m_mem_region_cache_mutex);
2915 
2916     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2917     Error error;
2918 
2919     if (m_supports_mem_region == LazyBool::eLazyBoolNo)
2920     {
2921         // We're done.
2922         error.SetErrorString ("unsupported");
2923         return error;
2924     }
2925 
2926     // If our cache is empty, pull the latest.  There should always be at least one memory region
2927     // if memory region handling is supported.
2928     if (m_mem_region_cache.empty ())
2929     {
2930         error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
2931              [&] (const std::string &line) -> bool
2932              {
2933                  MemoryRegionInfo info;
2934                  const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info);
2935                  if (parse_error.Success ())
2936                  {
2937                      m_mem_region_cache.push_back (info);
2938                      return true;
2939                  }
2940                  else
2941                  {
2942                      if (log)
2943                          log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ());
2944                      return false;
2945                  }
2946              });
2947 
2948         // If we had an error, we'll mark unsupported.
2949         if (error.Fail ())
2950         {
2951             m_supports_mem_region = LazyBool::eLazyBoolNo;
2952             return error;
2953         }
2954         else if (m_mem_region_cache.empty ())
2955         {
2956             // No entries after attempting to read them.  This shouldn't happen if /proc/{pid}/maps
2957             // is supported.  Assume we don't support map entries via procfs.
2958             if (log)
2959                 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__);
2960             m_supports_mem_region = LazyBool::eLazyBoolNo;
2961             error.SetErrorString ("not supported");
2962             return error;
2963         }
2964 
2965         if (log)
2966             log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ());
2967 
2968         // We support memory retrieval, remember that.
2969         m_supports_mem_region = LazyBool::eLazyBoolYes;
2970     }
2971     else
2972     {
2973         if (log)
2974             log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
2975     }
2976 
2977     lldb::addr_t prev_base_address = 0;
2978 
2979     // FIXME start by finding the last region that is <= target address using binary search.  Data is sorted.
2980     // There can be a ton of regions on pthreads apps with lots of threads.
2981     for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it)
2982     {
2983         MemoryRegionInfo &proc_entry_info = *it;
2984 
2985         // Sanity check assumption that /proc/{pid}/maps entries are ascending.
2986         assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected");
2987         prev_base_address = proc_entry_info.GetRange ().GetRangeBase ();
2988 
2989         // If the target address comes before this entry, indicate distance to next region.
2990         if (load_addr < proc_entry_info.GetRange ().GetRangeBase ())
2991         {
2992             range_info.GetRange ().SetRangeBase (load_addr);
2993             range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr);
2994             range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2995             range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2996             range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2997 
2998             return error;
2999         }
3000         else if (proc_entry_info.GetRange ().Contains (load_addr))
3001         {
3002             // The target address is within the memory region we're processing here.
3003             range_info = proc_entry_info;
3004             return error;
3005         }
3006 
3007         // The target memory address comes somewhere after the region we just parsed.
3008     }
3009 
3010     // If we made it here, we didn't find an entry that contained the given address.
3011     error.SetErrorString ("address comes after final region");
3012 
3013     if (log)
3014         log->Printf ("NativeProcessLinux::%s failed to find map entry for address 0x%" PRIx64 ": %s", __FUNCTION__, load_addr, error.AsCString ());
3015 
3016     return error;
3017 }
3018 
3019 void
3020 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId)
3021 {
3022     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3023     if (log)
3024         log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId);
3025 
3026     {
3027         Mutex::Locker locker (m_mem_region_cache_mutex);
3028         if (log)
3029             log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
3030         m_mem_region_cache.clear ();
3031     }
3032 }
3033 
3034 Error
3035 NativeProcessLinux::AllocateMemory (
3036     lldb::addr_t size,
3037     uint32_t permissions,
3038     lldb::addr_t &addr)
3039 {
3040     // FIXME implementing this requires the equivalent of
3041     // InferiorCallPOSIX::InferiorCallMmap, which depends on
3042     // functional ThreadPlans working with Native*Protocol.
3043 #if 1
3044     return Error ("not implemented yet");
3045 #else
3046     addr = LLDB_INVALID_ADDRESS;
3047 
3048     unsigned prot = 0;
3049     if (permissions & lldb::ePermissionsReadable)
3050         prot |= eMmapProtRead;
3051     if (permissions & lldb::ePermissionsWritable)
3052         prot |= eMmapProtWrite;
3053     if (permissions & lldb::ePermissionsExecutable)
3054         prot |= eMmapProtExec;
3055 
3056     // TODO implement this directly in NativeProcessLinux
3057     // (and lift to NativeProcessPOSIX if/when that class is
3058     // refactored out).
3059     if (InferiorCallMmap(this, addr, 0, size, prot,
3060                          eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
3061         m_addr_to_mmap_size[addr] = size;
3062         return Error ();
3063     } else {
3064         addr = LLDB_INVALID_ADDRESS;
3065         return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions));
3066     }
3067 #endif
3068 }
3069 
3070 Error
3071 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr)
3072 {
3073     // FIXME see comments in AllocateMemory - required lower-level
3074     // bits not in place yet (ThreadPlans)
3075     return Error ("not implemented");
3076 }
3077 
3078 lldb::addr_t
3079 NativeProcessLinux::GetSharedLibraryInfoAddress ()
3080 {
3081 #if 1
3082     // punt on this for now
3083     return LLDB_INVALID_ADDRESS;
3084 #else
3085     // Return the image info address for the exe module
3086 #if 1
3087     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3088 
3089     ModuleSP module_sp;
3090     Error error = GetExeModuleSP (module_sp);
3091     if (error.Fail ())
3092     {
3093          if (log)
3094             log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ());
3095         return LLDB_INVALID_ADDRESS;
3096     }
3097 
3098     if (module_sp == nullptr)
3099     {
3100          if (log)
3101             log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__);
3102          return LLDB_INVALID_ADDRESS;
3103     }
3104 
3105     ObjectFileSP object_file_sp = module_sp->GetObjectFile ();
3106     if (object_file_sp == nullptr)
3107     {
3108          if (log)
3109             log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__);
3110          return LLDB_INVALID_ADDRESS;
3111     }
3112 
3113     return obj_file_sp->GetImageInfoAddress();
3114 #else
3115     Target *target = &GetTarget();
3116     ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile();
3117     Address addr = obj_file->GetImageInfoAddress(target);
3118 
3119     if (addr.IsValid())
3120         return addr.GetLoadAddress(target);
3121     return LLDB_INVALID_ADDRESS;
3122 #endif
3123 #endif // punt on this for now
3124 }
3125 
3126 size_t
3127 NativeProcessLinux::UpdateThreads ()
3128 {
3129     // The NativeProcessLinux monitoring threads are always up to date
3130     // with respect to thread state and they keep the thread list
3131     // populated properly. All this method needs to do is return the
3132     // thread count.
3133     Mutex::Locker locker (m_threads_mutex);
3134     return m_threads.size ();
3135 }
3136 
3137 bool
3138 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const
3139 {
3140     arch = m_arch;
3141     return true;
3142 }
3143 
3144 Error
3145 NativeProcessLinux::GetSoftwareBreakpointSize (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size)
3146 {
3147     // FIXME put this behind a breakpoint protocol class that can be
3148     // set per architecture.  Need ARM, MIPS support here.
3149     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
3150     static const uint8_t g_i386_opcode [] = { 0xCC };
3151 
3152     switch (m_arch.GetMachine ())
3153     {
3154         case llvm::Triple::aarch64:
3155             actual_opcode_size = static_cast<uint32_t> (sizeof(g_aarch64_opcode));
3156             return Error ();
3157 
3158         case llvm::Triple::x86:
3159         case llvm::Triple::x86_64:
3160             actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode));
3161             return Error ();
3162 
3163         default:
3164             assert(false && "CPU type not supported!");
3165             return Error ("CPU type not supported");
3166     }
3167 }
3168 
3169 Error
3170 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware)
3171 {
3172     if (hardware)
3173         return Error ("NativeProcessLinux does not support hardware breakpoints");
3174     else
3175         return SetSoftwareBreakpoint (addr, size);
3176 }
3177 
3178 Error
3179 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint, size_t &actual_opcode_size, const uint8_t *&trap_opcode_bytes)
3180 {
3181     // FIXME put this behind a breakpoint protocol class that can be
3182     // set per architecture.  Need ARM, MIPS support here.
3183     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
3184     static const uint8_t g_i386_opcode [] = { 0xCC };
3185 
3186     switch (m_arch.GetMachine ())
3187     {
3188     case llvm::Triple::aarch64:
3189         trap_opcode_bytes = g_aarch64_opcode;
3190         actual_opcode_size = sizeof(g_aarch64_opcode);
3191         return Error ();
3192 
3193     case llvm::Triple::x86:
3194     case llvm::Triple::x86_64:
3195         trap_opcode_bytes = g_i386_opcode;
3196         actual_opcode_size = sizeof(g_i386_opcode);
3197         return Error ();
3198 
3199     default:
3200         assert(false && "CPU type not supported!");
3201         return Error ("CPU type not supported");
3202     }
3203 }
3204 
3205 #if 0
3206 ProcessMessage::CrashReason
3207 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
3208 {
3209     ProcessMessage::CrashReason reason;
3210     assert(info->si_signo == SIGSEGV);
3211 
3212     reason = ProcessMessage::eInvalidCrashReason;
3213 
3214     switch (info->si_code)
3215     {
3216     default:
3217         assert(false && "unexpected si_code for SIGSEGV");
3218         break;
3219     case SI_KERNEL:
3220         // Linux will occasionally send spurious SI_KERNEL codes.
3221         // (this is poorly documented in sigaction)
3222         // One way to get this is via unaligned SIMD loads.
3223         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
3224         break;
3225     case SEGV_MAPERR:
3226         reason = ProcessMessage::eInvalidAddress;
3227         break;
3228     case SEGV_ACCERR:
3229         reason = ProcessMessage::ePrivilegedAddress;
3230         break;
3231     }
3232 
3233     return reason;
3234 }
3235 #endif
3236 
3237 
3238 #if 0
3239 ProcessMessage::CrashReason
3240 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
3241 {
3242     ProcessMessage::CrashReason reason;
3243     assert(info->si_signo == SIGILL);
3244 
3245     reason = ProcessMessage::eInvalidCrashReason;
3246 
3247     switch (info->si_code)
3248     {
3249     default:
3250         assert(false && "unexpected si_code for SIGILL");
3251         break;
3252     case ILL_ILLOPC:
3253         reason = ProcessMessage::eIllegalOpcode;
3254         break;
3255     case ILL_ILLOPN:
3256         reason = ProcessMessage::eIllegalOperand;
3257         break;
3258     case ILL_ILLADR:
3259         reason = ProcessMessage::eIllegalAddressingMode;
3260         break;
3261     case ILL_ILLTRP:
3262         reason = ProcessMessage::eIllegalTrap;
3263         break;
3264     case ILL_PRVOPC:
3265         reason = ProcessMessage::ePrivilegedOpcode;
3266         break;
3267     case ILL_PRVREG:
3268         reason = ProcessMessage::ePrivilegedRegister;
3269         break;
3270     case ILL_COPROC:
3271         reason = ProcessMessage::eCoprocessorError;
3272         break;
3273     case ILL_BADSTK:
3274         reason = ProcessMessage::eInternalStackError;
3275         break;
3276     }
3277 
3278     return reason;
3279 }
3280 #endif
3281 
3282 #if 0
3283 ProcessMessage::CrashReason
3284 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
3285 {
3286     ProcessMessage::CrashReason reason;
3287     assert(info->si_signo == SIGFPE);
3288 
3289     reason = ProcessMessage::eInvalidCrashReason;
3290 
3291     switch (info->si_code)
3292     {
3293     default:
3294         assert(false && "unexpected si_code for SIGFPE");
3295         break;
3296     case FPE_INTDIV:
3297         reason = ProcessMessage::eIntegerDivideByZero;
3298         break;
3299     case FPE_INTOVF:
3300         reason = ProcessMessage::eIntegerOverflow;
3301         break;
3302     case FPE_FLTDIV:
3303         reason = ProcessMessage::eFloatDivideByZero;
3304         break;
3305     case FPE_FLTOVF:
3306         reason = ProcessMessage::eFloatOverflow;
3307         break;
3308     case FPE_FLTUND:
3309         reason = ProcessMessage::eFloatUnderflow;
3310         break;
3311     case FPE_FLTRES:
3312         reason = ProcessMessage::eFloatInexactResult;
3313         break;
3314     case FPE_FLTINV:
3315         reason = ProcessMessage::eFloatInvalidOperation;
3316         break;
3317     case FPE_FLTSUB:
3318         reason = ProcessMessage::eFloatSubscriptRange;
3319         break;
3320     }
3321 
3322     return reason;
3323 }
3324 #endif
3325 
3326 #if 0
3327 ProcessMessage::CrashReason
3328 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
3329 {
3330     ProcessMessage::CrashReason reason;
3331     assert(info->si_signo == SIGBUS);
3332 
3333     reason = ProcessMessage::eInvalidCrashReason;
3334 
3335     switch (info->si_code)
3336     {
3337     default:
3338         assert(false && "unexpected si_code for SIGBUS");
3339         break;
3340     case BUS_ADRALN:
3341         reason = ProcessMessage::eIllegalAlignment;
3342         break;
3343     case BUS_ADRERR:
3344         reason = ProcessMessage::eIllegalAddress;
3345         break;
3346     case BUS_OBJERR:
3347         reason = ProcessMessage::eHardwareError;
3348         break;
3349     }
3350 
3351     return reason;
3352 }
3353 #endif
3354 
3355 void
3356 NativeProcessLinux::ServeOperation(OperationArgs *args)
3357 {
3358     NativeProcessLinux *monitor = args->m_monitor;
3359 
3360     // We are finised with the arguments and are ready to go.  Sync with the
3361     // parent thread and start serving operations on the inferior.
3362     sem_post(&args->m_semaphore);
3363 
3364     for(;;)
3365     {
3366         // wait for next pending operation
3367         if (sem_wait(&monitor->m_operation_pending))
3368         {
3369             if (errno == EINTR)
3370                 continue;
3371             assert(false && "Unexpected errno from sem_wait");
3372         }
3373 
3374         // nullptr as operation means the operation thread should exit. Cancel() can't be used
3375         // because it is not supported on android.
3376         if (!monitor->m_operation)
3377         {
3378             // notify calling thread that operation is complete
3379             sem_post(&monitor->m_operation_done);
3380             break;
3381         }
3382 
3383         reinterpret_cast<Operation*>(monitor->m_operation)->Execute(monitor);
3384 
3385         // notify calling thread that operation is complete
3386         sem_post(&monitor->m_operation_done);
3387     }
3388 }
3389 
3390 void
3391 NativeProcessLinux::DoOperation(void *op)
3392 {
3393     Mutex::Locker lock(m_operation_mutex);
3394 
3395     m_operation = op;
3396 
3397     // notify operation thread that an operation is ready to be processed
3398     sem_post(&m_operation_pending);
3399 
3400     // wait for operation to complete
3401     while (sem_wait(&m_operation_done))
3402     {
3403         if (errno == EINTR)
3404             continue;
3405         assert(false && "Unexpected errno from sem_wait");
3406     }
3407 }
3408 
3409 Error
3410 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, lldb::addr_t size, lldb::addr_t &bytes_read)
3411 {
3412     ReadOperation op(addr, buf, size, bytes_read);
3413     DoOperation(&op);
3414     return op.GetError ();
3415 }
3416 
3417 Error
3418 NativeProcessLinux::WriteMemory (lldb::addr_t addr, const void *buf, lldb::addr_t size, lldb::addr_t &bytes_written)
3419 {
3420     WriteOperation op(addr, buf, size, bytes_written);
3421     DoOperation(&op);
3422     return op.GetError ();
3423 }
3424 
3425 Error
3426 NativeProcessLinux::ReadRegisterValue(lldb::tid_t tid, uint32_t offset, const char* reg_name,
3427                                   uint32_t size, RegisterValue &value)
3428 {
3429     ReadRegOperation op(tid, offset, reg_name, value);
3430     DoOperation(&op);
3431     return op.GetError();
3432 }
3433 
3434 Error
3435 NativeProcessLinux::WriteRegisterValue(lldb::tid_t tid, unsigned offset,
3436                                    const char* reg_name, const RegisterValue &value)
3437 {
3438     WriteRegOperation op(tid, offset, reg_name, value);
3439     DoOperation(&op);
3440     return op.GetError();
3441 }
3442 
3443 Error
3444 NativeProcessLinux::ReadGPR(lldb::tid_t tid, void *buf, size_t buf_size)
3445 {
3446     ReadGPROperation op(tid, buf, buf_size);
3447     DoOperation(&op);
3448     return op.GetError();
3449 }
3450 
3451 Error
3452 NativeProcessLinux::ReadFPR(lldb::tid_t tid, void *buf, size_t buf_size)
3453 {
3454     ReadFPROperation op(tid, buf, buf_size);
3455     DoOperation(&op);
3456     return op.GetError();
3457 }
3458 
3459 Error
3460 NativeProcessLinux::ReadRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
3461 {
3462     ReadRegisterSetOperation op(tid, buf, buf_size, regset);
3463     DoOperation(&op);
3464     return op.GetError();
3465 }
3466 
3467 Error
3468 NativeProcessLinux::WriteGPR(lldb::tid_t tid, void *buf, size_t buf_size)
3469 {
3470     WriteGPROperation op(tid, buf, buf_size);
3471     DoOperation(&op);
3472     return op.GetError();
3473 }
3474 
3475 Error
3476 NativeProcessLinux::WriteFPR(lldb::tid_t tid, void *buf, size_t buf_size)
3477 {
3478     WriteFPROperation op(tid, buf, buf_size);
3479     DoOperation(&op);
3480     return op.GetError();
3481 }
3482 
3483 Error
3484 NativeProcessLinux::WriteRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
3485 {
3486     WriteRegisterSetOperation op(tid, buf, buf_size, regset);
3487     DoOperation(&op);
3488     return op.GetError();
3489 }
3490 
3491 Error
3492 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo)
3493 {
3494     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3495 
3496     if (log)
3497         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " with signal %s", __FUNCTION__, tid,
3498                                  GetUnixSignals().GetSignalAsCString (signo));
3499     ResumeOperation op (tid, signo);
3500     DoOperation (&op);
3501     if (log)
3502         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " result = %s", __FUNCTION__, tid, op.GetError().Success() ? "true" : "false");
3503     return op.GetError();
3504 }
3505 
3506 Error
3507 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo)
3508 {
3509     SingleStepOperation op(tid, signo);
3510     DoOperation(&op);
3511     return op.GetError();
3512 }
3513 
3514 Error
3515 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo)
3516 {
3517     SiginfoOperation op(tid, siginfo);
3518     DoOperation(&op);
3519     return op.GetError();
3520 }
3521 
3522 Error
3523 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message)
3524 {
3525     EventMessageOperation op(tid, message);
3526     DoOperation(&op);
3527     return op.GetError();
3528 }
3529 
3530 lldb_private::Error
3531 NativeProcessLinux::Detach(lldb::tid_t tid)
3532 {
3533     if (tid == LLDB_INVALID_THREAD_ID)
3534         return Error();
3535 
3536     DetachOperation op(tid);
3537     DoOperation(&op);
3538     return op.GetError();
3539 }
3540 
3541 bool
3542 NativeProcessLinux::DupDescriptor(const char *path, int fd, int flags)
3543 {
3544     int target_fd = open(path, flags, 0666);
3545 
3546     if (target_fd == -1)
3547         return false;
3548 
3549     if (dup2(target_fd, fd) == -1)
3550         return false;
3551 
3552     return (close(target_fd) == -1) ? false : true;
3553 }
3554 
3555 void
3556 NativeProcessLinux::StopMonitoringChildProcess()
3557 {
3558     if (m_monitor_thread.IsJoinable())
3559     {
3560         m_monitor_thread.Cancel();
3561         m_monitor_thread.Join(nullptr);
3562     }
3563 }
3564 
3565 void
3566 NativeProcessLinux::StopMonitor()
3567 {
3568     StopOpThread();
3569     StopMonitoringChildProcess();
3570     StopCoordinatorThread ();
3571     sem_destroy(&m_operation_pending);
3572     sem_destroy(&m_operation_done);
3573 
3574     // TODO: validate whether this still holds, fix up comment.
3575     // Note: ProcessPOSIX passes the m_terminal_fd file descriptor to
3576     // Process::SetSTDIOFileDescriptor, which in turn transfers ownership of
3577     // the descriptor to a ConnectionFileDescriptor object.  Consequently
3578     // even though still has the file descriptor, we shouldn't close it here.
3579 }
3580 
3581 void
3582 NativeProcessLinux::StopOpThread()
3583 {
3584     if (!m_operation_thread.IsJoinable())
3585         return;
3586 
3587     DoOperation(nullptr); // nullptr as operation ask the operation thread to exit
3588     m_operation_thread.Join(nullptr);
3589 }
3590 
3591 Error
3592 NativeProcessLinux::StartCoordinatorThread ()
3593 {
3594     Error error;
3595     static const char *g_thread_name = "lldb.process.linux.ts_coordinator";
3596     Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3597 
3598     // Skip if thread is already running
3599     if (m_coordinator_thread.IsJoinable())
3600     {
3601         error.SetErrorString ("ThreadStateCoordinator's run loop is already running");
3602         if (log)
3603             log->Printf ("NativeProcessLinux::%s %s", __FUNCTION__, error.AsCString ());
3604         return error;
3605     }
3606 
3607     // Enable verbose logging if lldb thread logging is enabled.
3608     m_coordinator_up->LogEnableEventProcessing (log != nullptr);
3609 
3610     if (log)
3611         log->Printf ("NativeProcessLinux::%s launching ThreadStateCoordinator thread for pid %" PRIu64, __FUNCTION__, GetID ());
3612     m_coordinator_thread = ThreadLauncher::LaunchThread(g_thread_name, CoordinatorThread, this, &error);
3613     return error;
3614 }
3615 
3616 void *
3617 NativeProcessLinux::CoordinatorThread (void *arg)
3618 {
3619     Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3620 
3621     NativeProcessLinux *const process = static_cast<NativeProcessLinux*> (arg);
3622     assert (process && "null process passed to CoordinatorThread");
3623     if (!process)
3624     {
3625         if (log)
3626             log->Printf ("NativeProcessLinux::%s null process, exiting ThreadStateCoordinator processing loop", __FUNCTION__);
3627         return nullptr;
3628     }
3629 
3630     // Run the thread state coordinator loop until it is done.  This call uses
3631     // efficient waiting for an event to be ready.
3632     while (process->m_coordinator_up->ProcessNextEvent () == ThreadStateCoordinator::eventLoopResultContinue)
3633     {
3634     }
3635 
3636     if (log)
3637         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " exiting ThreadStateCoordinator processing loop due to coordinator indicating completion", __FUNCTION__, process->GetID ());
3638 
3639     return nullptr;
3640 }
3641 
3642 void
3643 NativeProcessLinux::StopCoordinatorThread()
3644 {
3645     Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3646     if (log)
3647         log->Printf ("NativeProcessLinux::%s requesting ThreadStateCoordinator stop for pid %" PRIu64, __FUNCTION__, GetID ());
3648 
3649     // Tell the coordinator we're done.  This will cause the coordinator
3650     // run loop thread to exit when the processing queue hits this message.
3651     m_coordinator_up->StopCoordinator ();
3652     m_coordinator_thread.Join (nullptr);
3653 }
3654 
3655 bool
3656 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id)
3657 {
3658     for (auto thread_sp : m_threads)
3659     {
3660         assert (thread_sp && "thread list should not contain NULL threads");
3661         if (thread_sp->GetID () == thread_id)
3662         {
3663             // We have this thread.
3664             return true;
3665         }
3666     }
3667 
3668     // We don't have this thread.
3669     return false;
3670 }
3671 
3672 NativeThreadProtocolSP
3673 NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id)
3674 {
3675     // CONSIDER organize threads by map - we can do better than linear.
3676     for (auto thread_sp : m_threads)
3677     {
3678         if (thread_sp->GetID () == thread_id)
3679             return thread_sp;
3680     }
3681 
3682     // We don't have this thread.
3683     return NativeThreadProtocolSP ();
3684 }
3685 
3686 bool
3687 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id)
3688 {
3689     Mutex::Locker locker (m_threads_mutex);
3690     for (auto it = m_threads.begin (); it != m_threads.end (); ++it)
3691     {
3692         if (*it && ((*it)->GetID () == thread_id))
3693         {
3694             m_threads.erase (it);
3695             return true;
3696         }
3697     }
3698 
3699     // Didn't find it.
3700     return false;
3701 }
3702 
3703 NativeThreadProtocolSP
3704 NativeProcessLinux::AddThread (lldb::tid_t thread_id)
3705 {
3706     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3707 
3708     Mutex::Locker locker (m_threads_mutex);
3709 
3710     if (log)
3711     {
3712         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64,
3713                 __FUNCTION__,
3714                 GetID (),
3715                 thread_id);
3716     }
3717 
3718     assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists");
3719 
3720     // If this is the first thread, save it as the current thread
3721     if (m_threads.empty ())
3722         SetCurrentThreadID (thread_id);
3723 
3724     NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id));
3725     m_threads.push_back (thread_sp);
3726 
3727     return thread_sp;
3728 }
3729 
3730 NativeThreadProtocolSP
3731 NativeProcessLinux::GetOrCreateThread (lldb::tid_t thread_id, bool &created)
3732 {
3733     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3734 
3735     Mutex::Locker locker (m_threads_mutex);
3736     if (log)
3737     {
3738         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " get/create thread with tid %" PRIu64,
3739                      __FUNCTION__,
3740                      GetID (),
3741                      thread_id);
3742     }
3743 
3744     // Retrieve the thread if it is already getting tracked.
3745     NativeThreadProtocolSP thread_sp = MaybeGetThreadNoLock (thread_id);
3746     if (thread_sp)
3747     {
3748         if (log)
3749             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": thread already tracked, returning",
3750                          __FUNCTION__,
3751                          GetID (),
3752                          thread_id);
3753         created = false;
3754         return thread_sp;
3755 
3756     }
3757 
3758     // Create the thread metadata since it isn't being tracked.
3759     if (log)
3760         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": thread didn't exist, tracking now",
3761                      __FUNCTION__,
3762                      GetID (),
3763                      thread_id);
3764 
3765     thread_sp.reset (new NativeThreadLinux (this, thread_id));
3766     m_threads.push_back (thread_sp);
3767     created = true;
3768 
3769     return thread_sp;
3770 }
3771 
3772 Error
3773 NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp)
3774 {
3775     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS));
3776 
3777     Error error;
3778 
3779     // Get a linux thread pointer.
3780     if (!thread_sp)
3781     {
3782         error.SetErrorString ("null thread_sp");
3783         if (log)
3784             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
3785         return error;
3786     }
3787     NativeThreadLinux *const linux_thread_p = reinterpret_cast<NativeThreadLinux*> (thread_sp.get());
3788 
3789     // Find out the size of a breakpoint (might depend on where we are in the code).
3790     NativeRegisterContextSP context_sp = linux_thread_p->GetRegisterContext ();
3791     if (!context_sp)
3792     {
3793         error.SetErrorString ("cannot get a NativeRegisterContext for the thread");
3794         if (log)
3795             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
3796         return error;
3797     }
3798 
3799     uint32_t breakpoint_size = 0;
3800     error = GetSoftwareBreakpointSize (context_sp, breakpoint_size);
3801     if (error.Fail ())
3802     {
3803         if (log)
3804             log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ());
3805         return error;
3806     }
3807     else
3808     {
3809         if (log)
3810             log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size);
3811     }
3812 
3813     // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size.
3814     const lldb::addr_t initial_pc_addr = context_sp->GetPC ();
3815     lldb::addr_t breakpoint_addr = initial_pc_addr;
3816     if (breakpoint_size > static_cast<lldb::addr_t> (0))
3817     {
3818         // Do not allow breakpoint probe to wrap around.
3819         if (breakpoint_addr >= static_cast<lldb::addr_t> (breakpoint_size))
3820             breakpoint_addr -= static_cast<lldb::addr_t> (breakpoint_size);
3821     }
3822 
3823     // Check if we stopped because of a breakpoint.
3824     NativeBreakpointSP breakpoint_sp;
3825     error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp);
3826     if (!error.Success () || !breakpoint_sp)
3827     {
3828         // We didn't find one at a software probe location.  Nothing to do.
3829         if (log)
3830             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr);
3831         return Error ();
3832     }
3833 
3834     // If the breakpoint is not a software breakpoint, nothing to do.
3835     if (!breakpoint_sp->IsSoftwareBreakpoint ())
3836     {
3837         if (log)
3838             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr);
3839         return Error ();
3840     }
3841 
3842     //
3843     // We have a software breakpoint and need to adjust the PC.
3844     //
3845 
3846     // Sanity check.
3847     if (breakpoint_size == 0)
3848     {
3849         // Nothing to do!  How did we get here?
3850         if (log)
3851             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr);
3852         return Error ();
3853     }
3854 
3855     // Change the program counter.
3856     if (log)
3857         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_p->GetID (), initial_pc_addr, breakpoint_addr);
3858 
3859     error = context_sp->SetPC (breakpoint_addr);
3860     if (error.Fail ())
3861     {
3862         if (log)
3863             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_p->GetID (), error.AsCString ());
3864         return error;
3865     }
3866 
3867     return error;
3868 }
3869 
3870 void
3871 NativeProcessLinux::NotifyThreadCreateStopped (lldb::tid_t tid)
3872 {
3873     const bool is_stopped = true;
3874     m_coordinator_up->NotifyThreadCreate (tid, is_stopped, CoordinatorErrorHandler);
3875 }
3876 
3877 void
3878 NativeProcessLinux::NotifyThreadDeath (lldb::tid_t tid)
3879 {
3880     m_coordinator_up->NotifyThreadDeath (tid, CoordinatorErrorHandler);
3881 }
3882 
3883 void
3884 NativeProcessLinux::NotifyThreadStop (lldb::tid_t tid)
3885 {
3886     m_coordinator_up->NotifyThreadStop (tid, false, CoordinatorErrorHandler);
3887 }
3888 
3889 void
3890 NativeProcessLinux::CallAfterRunningThreadsStop (lldb::tid_t tid,
3891                                                  const std::function<void (lldb::tid_t tid)> &call_after_function)
3892 {
3893     Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3894     if (log)
3895         log->Printf("NativeProcessLinux::%s tid %" PRIu64, __FUNCTION__, tid);
3896 
3897     const lldb::pid_t pid = GetID ();
3898     m_coordinator_up->CallAfterRunningThreadsStop (tid,
3899                                                    [=](lldb::tid_t request_stop_tid)
3900                                                    {
3901                                                        return RequestThreadStop(pid, request_stop_tid);
3902                                                    },
3903                                                    call_after_function,
3904                                                    CoordinatorErrorHandler);
3905 }
3906 
3907 void
3908 NativeProcessLinux::CallAfterRunningThreadsStopWithSkipTID (lldb::tid_t deferred_signal_tid,
3909                                                             lldb::tid_t skip_stop_request_tid,
3910                                                             const std::function<void (lldb::tid_t tid)> &call_after_function)
3911 {
3912     Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3913     if (log)
3914         log->Printf("NativeProcessLinux::%s deferred_signal_tid %" PRIu64 ", skip_stop_request_tid %" PRIu64, __FUNCTION__, deferred_signal_tid, skip_stop_request_tid);
3915 
3916     const lldb::pid_t pid = GetID ();
3917     m_coordinator_up->CallAfterRunningThreadsStopWithSkipTIDs (deferred_signal_tid,
3918                                                                skip_stop_request_tid != LLDB_INVALID_THREAD_ID ? ThreadStateCoordinator::ThreadIDSet {skip_stop_request_tid} : ThreadStateCoordinator::ThreadIDSet (),
3919                                                                [=](lldb::tid_t request_stop_tid)
3920                                                                {
3921                                                                    return RequestThreadStop(pid, request_stop_tid);
3922                                                                },
3923                                                                call_after_function,
3924                                                                CoordinatorErrorHandler);
3925 }
3926 
3927 lldb_private::Error
3928 NativeProcessLinux::RequestThreadStop (const lldb::pid_t pid, const lldb::tid_t tid)
3929 {
3930     Log* log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3931     if (log)
3932         log->Printf ("NativeProcessLinux::%s requesting thread stop(pid: %" PRIu64 ", tid: %" PRIu64 ")", __FUNCTION__, pid, tid);
3933 
3934     Error err;
3935     errno = 0;
3936     if (::tgkill (pid, tid, SIGSTOP) != 0)
3937     {
3938         err.SetErrorToErrno ();
3939         if (log)
3940             log->Printf ("NativeProcessLinux::%s tgkill(%" PRIu64 ", %" PRIu64 ", SIGSTOP) failed: %s", __FUNCTION__, pid, tid, err.AsCString ());
3941     }
3942 
3943     return err;
3944 }
3945