1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/lldb-python.h" 11 12 #include "NativeProcessLinux.h" 13 14 // C Includes 15 #include <errno.h> 16 #include <poll.h> 17 #include <string.h> 18 #include <stdint.h> 19 #include <unistd.h> 20 21 #if defined (__arm64__) || defined (__aarch64__) 22 // NT_PRSTATUS and NT_FPREGSET definition 23 #include <elf.h> 24 #endif 25 26 // C++ Includes 27 #include <fstream> 28 #include <string> 29 30 // Other libraries and framework includes 31 #include "lldb/Core/Debugger.h" 32 #include "lldb/Core/Error.h" 33 #include "lldb/Core/Module.h" 34 #include "lldb/Core/ModuleSpec.h" 35 #include "lldb/Core/RegisterValue.h" 36 #include "lldb/Core/Scalar.h" 37 #include "lldb/Core/State.h" 38 #include "lldb/Host/Host.h" 39 #include "lldb/Host/HostInfo.h" 40 #include "lldb/Host/ThreadLauncher.h" 41 #include "lldb/Symbol/ObjectFile.h" 42 #include "lldb/Host/common/NativeRegisterContext.h" 43 #include "lldb/Target/Process.h" 44 #include "lldb/Target/ProcessLaunchInfo.h" 45 #include "lldb/Utility/PseudoTerminal.h" 46 47 #include "lldb/Host/common/NativeBreakpoint.h" 48 #include "Utility/StringExtractor.h" 49 50 #include "Plugins/Process/Utility/LinuxSignals.h" 51 #include "NativeThreadLinux.h" 52 #include "ProcFileReader.h" 53 #include "ThreadStateCoordinator.h" 54 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 55 56 // System includes - They have to be included after framework includes because they define some 57 // macros which collide with variable names in other modules 58 #include <linux/unistd.h> 59 #ifndef __ANDROID__ 60 #include <sys/procfs.h> 61 #endif 62 #include <sys/personality.h> 63 #include <sys/ptrace.h> 64 #include <sys/socket.h> 65 #include <sys/syscall.h> 66 #include <sys/types.h> 67 #include <sys/uio.h> 68 #include <sys/user.h> 69 #include <sys/wait.h> 70 71 #ifdef __ANDROID__ 72 #define __ptrace_request int 73 #define PT_DETACH PTRACE_DETACH 74 #endif 75 76 #define DEBUG_PTRACE_MAXBYTES 20 77 78 // Support ptrace extensions even when compiled without required kernel support 79 #ifndef PT_GETREGS 80 #ifndef PTRACE_GETREGS 81 #define PTRACE_GETREGS 12 82 #endif 83 #endif 84 #ifndef PT_SETREGS 85 #ifndef PTRACE_SETREGS 86 #define PTRACE_SETREGS 13 87 #endif 88 #endif 89 #ifndef PT_GETFPREGS 90 #ifndef PTRACE_GETFPREGS 91 #define PTRACE_GETFPREGS 14 92 #endif 93 #endif 94 #ifndef PT_SETFPREGS 95 #ifndef PTRACE_SETFPREGS 96 #define PTRACE_SETFPREGS 15 97 #endif 98 #endif 99 #ifndef PTRACE_GETREGSET 100 #define PTRACE_GETREGSET 0x4204 101 #endif 102 #ifndef PTRACE_SETREGSET 103 #define PTRACE_SETREGSET 0x4205 104 #endif 105 #ifndef PTRACE_GET_THREAD_AREA 106 #define PTRACE_GET_THREAD_AREA 25 107 #endif 108 #ifndef PTRACE_ARCH_PRCTL 109 #define PTRACE_ARCH_PRCTL 30 110 #endif 111 #ifndef ARCH_GET_FS 112 #define ARCH_SET_GS 0x1001 113 #define ARCH_SET_FS 0x1002 114 #define ARCH_GET_FS 0x1003 115 #define ARCH_GET_GS 0x1004 116 #endif 117 118 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS 0xffffffff 119 120 // Support hardware breakpoints in case it has not been defined 121 #ifndef TRAP_HWBKPT 122 #define TRAP_HWBKPT 4 123 #endif 124 125 // Try to define a macro to encapsulate the tgkill syscall 126 // fall back on kill() if tgkill isn't available 127 #define tgkill(pid, tid, sig) \ 128 syscall(SYS_tgkill, static_cast<::pid_t>(pid), static_cast<::pid_t>(tid), sig) 129 130 // We disable the tracing of ptrace calls for integration builds to 131 // avoid the additional indirection and checks. 132 #ifndef LLDB_CONFIGURATION_BUILDANDINTEGRATION 133 #define PTRACE(req, pid, addr, data, data_size, error) \ 134 PtraceWrapper((req), (pid), (addr), (data), (data_size), (error), #req, __FILE__, __LINE__) 135 #else 136 #define PTRACE(req, pid, addr, data, data_size, error) \ 137 PtraceWrapper((req), (pid), (addr), (data), (data_size), (error)) 138 #endif 139 140 // Private bits we only need internally. 141 namespace 142 { 143 using namespace lldb; 144 using namespace lldb_private; 145 146 const UnixSignals& 147 GetUnixSignals () 148 { 149 static process_linux::LinuxSignals signals; 150 return signals; 151 } 152 153 ThreadStateCoordinator::LogFunction 154 GetThreadLoggerFunction () 155 { 156 return [](const char *format, va_list args) 157 { 158 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 159 if (log) 160 log->VAPrintf (format, args); 161 }; 162 } 163 164 void 165 CoordinatorErrorHandler (const std::string &error_message) 166 { 167 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 168 if (log) 169 log->Printf ("NativeProcessLinux::%s %s", __FUNCTION__, error_message.c_str ()); 170 assert (false && "ThreadStateCoordinator error reported"); 171 } 172 173 Error 174 ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch) 175 { 176 // Grab process info for the running process. 177 ProcessInstanceInfo process_info; 178 if (!platform.GetProcessInfo (pid, process_info)) 179 return lldb_private::Error("failed to get process info"); 180 181 // Resolve the executable module. 182 ModuleSP exe_module_sp; 183 ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture()); 184 FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ()); 185 Error error = platform.ResolveExecutable( 186 exe_module_spec, 187 exe_module_sp, 188 executable_search_paths.GetSize () ? &executable_search_paths : NULL); 189 190 if (!error.Success ()) 191 return error; 192 193 // Check if we've got our architecture from the exe_module. 194 arch = exe_module_sp->GetArchitecture (); 195 if (arch.IsValid ()) 196 return Error(); 197 else 198 return Error("failed to retrieve a valid architecture from the exe module"); 199 } 200 201 void 202 DisplayBytes (lldb_private::StreamString &s, void *bytes, uint32_t count) 203 { 204 uint8_t *ptr = (uint8_t *)bytes; 205 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 206 for(uint32_t i=0; i<loop_count; i++) 207 { 208 s.Printf ("[%x]", *ptr); 209 ptr++; 210 } 211 } 212 213 void 214 PtraceDisplayBytes(int &req, void *data, size_t data_size) 215 { 216 StreamString buf; 217 Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet ( 218 POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE)); 219 220 if (verbose_log) 221 { 222 switch(req) 223 { 224 case PTRACE_POKETEXT: 225 { 226 DisplayBytes(buf, &data, 8); 227 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData()); 228 break; 229 } 230 case PTRACE_POKEDATA: 231 { 232 DisplayBytes(buf, &data, 8); 233 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData()); 234 break; 235 } 236 case PTRACE_POKEUSER: 237 { 238 DisplayBytes(buf, &data, 8); 239 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData()); 240 break; 241 } 242 case PTRACE_SETREGS: 243 { 244 DisplayBytes(buf, data, data_size); 245 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData()); 246 break; 247 } 248 case PTRACE_SETFPREGS: 249 { 250 DisplayBytes(buf, data, data_size); 251 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData()); 252 break; 253 } 254 case PTRACE_SETSIGINFO: 255 { 256 DisplayBytes(buf, data, sizeof(siginfo_t)); 257 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData()); 258 break; 259 } 260 case PTRACE_SETREGSET: 261 { 262 // Extract iov_base from data, which is a pointer to the struct IOVEC 263 DisplayBytes(buf, *(void **)data, data_size); 264 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData()); 265 break; 266 } 267 default: 268 { 269 } 270 } 271 } 272 } 273 274 // Wrapper for ptrace to catch errors and log calls. 275 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) 276 long 277 PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error, 278 const char* reqName, const char* file, int line) 279 { 280 long int result; 281 282 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE)); 283 284 PtraceDisplayBytes(req, data, data_size); 285 286 error.Clear(); 287 errno = 0; 288 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 289 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data); 290 else 291 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data); 292 293 if (result == -1) 294 error.SetErrorToErrno(); 295 296 if (log) 297 log->Printf("ptrace(%s, %" PRIu64 ", %p, %p, %zu)=%lX called from file %s line %d", 298 reqName, pid, addr, data, data_size, result, file, line); 299 300 PtraceDisplayBytes(req, data, data_size); 301 302 if (log && error.GetError() != 0) 303 { 304 const char* str; 305 switch (error.GetError()) 306 { 307 case ESRCH: str = "ESRCH"; break; 308 case EINVAL: str = "EINVAL"; break; 309 case EBUSY: str = "EBUSY"; break; 310 case EPERM: str = "EPERM"; break; 311 default: str = error.AsCString(); 312 } 313 log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str); 314 } 315 316 return result; 317 } 318 319 #ifdef LLDB_CONFIGURATION_BUILDANDINTEGRATION 320 // Wrapper for ptrace when logging is not required. 321 // Sets errno to 0 prior to calling ptrace. 322 long 323 PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error) 324 { 325 long result = 0; 326 327 error.Clear(); 328 errno = 0; 329 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 330 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data); 331 else 332 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data); 333 334 if (result == -1) 335 error.SetErrorToErrno(); 336 return result; 337 } 338 #endif 339 340 //------------------------------------------------------------------------------ 341 // Static implementations of NativeProcessLinux::ReadMemory and 342 // NativeProcessLinux::WriteMemory. This enables mutual recursion between these 343 // functions without needed to go thru the thread funnel. 344 345 lldb::addr_t 346 DoReadMemory ( 347 lldb::pid_t pid, 348 lldb::addr_t vm_addr, 349 void *buf, 350 lldb::addr_t size, 351 Error &error) 352 { 353 // ptrace word size is determined by the host, not the child 354 static const unsigned word_size = sizeof(void*); 355 unsigned char *dst = static_cast<unsigned char*>(buf); 356 lldb::addr_t bytes_read; 357 lldb::addr_t remainder; 358 long data; 359 360 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); 361 if (log) 362 ProcessPOSIXLog::IncNestLevel(); 363 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) 364 log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__, 365 pid, word_size, (void*)vm_addr, buf, size); 366 367 assert(sizeof(data) >= word_size); 368 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) 369 { 370 data = PTRACE(PTRACE_PEEKDATA, pid, (void*)vm_addr, nullptr, 0, error); 371 if (error.Fail()) 372 { 373 if (log) 374 ProcessPOSIXLog::DecNestLevel(); 375 return bytes_read; 376 } 377 378 remainder = size - bytes_read; 379 remainder = remainder > word_size ? word_size : remainder; 380 381 // Copy the data into our buffer 382 for (unsigned i = 0; i < remainder; ++i) 383 dst[i] = ((data >> i*8) & 0xFF); 384 385 if (log && ProcessPOSIXLog::AtTopNestLevel() && 386 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 387 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 388 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 389 { 390 uintptr_t print_dst = 0; 391 // Format bytes from data by moving into print_dst for log output 392 for (unsigned i = 0; i < remainder; ++i) 393 print_dst |= (((data >> i*8) & 0xFF) << i*8); 394 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 395 (void*)vm_addr, print_dst, (unsigned long)data); 396 } 397 398 vm_addr += word_size; 399 dst += word_size; 400 } 401 402 if (log) 403 ProcessPOSIXLog::DecNestLevel(); 404 return bytes_read; 405 } 406 407 lldb::addr_t 408 DoWriteMemory( 409 lldb::pid_t pid, 410 lldb::addr_t vm_addr, 411 const void *buf, 412 lldb::addr_t size, 413 Error &error) 414 { 415 // ptrace word size is determined by the host, not the child 416 static const unsigned word_size = sizeof(void*); 417 const unsigned char *src = static_cast<const unsigned char*>(buf); 418 lldb::addr_t bytes_written = 0; 419 lldb::addr_t remainder; 420 421 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); 422 if (log) 423 ProcessPOSIXLog::IncNestLevel(); 424 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) 425 log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__, 426 pid, word_size, (void*)vm_addr, buf, size); 427 428 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) 429 { 430 remainder = size - bytes_written; 431 remainder = remainder > word_size ? word_size : remainder; 432 433 if (remainder == word_size) 434 { 435 unsigned long data = 0; 436 assert(sizeof(data) >= word_size); 437 for (unsigned i = 0; i < word_size; ++i) 438 data |= (unsigned long)src[i] << i*8; 439 440 if (log && ProcessPOSIXLog::AtTopNestLevel() && 441 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 442 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 443 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 444 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 445 (void*)vm_addr, *(unsigned long*)src, data); 446 447 if (PTRACE(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data, 0, error)) 448 { 449 if (log) 450 ProcessPOSIXLog::DecNestLevel(); 451 return bytes_written; 452 } 453 } 454 else 455 { 456 unsigned char buff[8]; 457 if (DoReadMemory(pid, vm_addr, 458 buff, word_size, error) != word_size) 459 { 460 if (log) 461 ProcessPOSIXLog::DecNestLevel(); 462 return bytes_written; 463 } 464 465 memcpy(buff, src, remainder); 466 467 if (DoWriteMemory(pid, vm_addr, 468 buff, word_size, error) != word_size) 469 { 470 if (log) 471 ProcessPOSIXLog::DecNestLevel(); 472 return bytes_written; 473 } 474 475 if (log && ProcessPOSIXLog::AtTopNestLevel() && 476 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 477 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 478 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 479 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 480 (void*)vm_addr, *(unsigned long*)src, *(unsigned long*)buff); 481 } 482 483 vm_addr += word_size; 484 src += word_size; 485 } 486 if (log) 487 ProcessPOSIXLog::DecNestLevel(); 488 return bytes_written; 489 } 490 491 //------------------------------------------------------------------------------ 492 /// @class Operation 493 /// @brief Represents a NativeProcessLinux operation. 494 /// 495 /// Under Linux, it is not possible to ptrace() from any other thread but the 496 /// one that spawned or attached to the process from the start. Therefore, when 497 /// a NativeProcessLinux is asked to deliver or change the state of an inferior 498 /// process the operation must be "funneled" to a specific thread to perform the 499 /// task. The Operation class provides an abstract base for all services the 500 /// NativeProcessLinux must perform via the single virtual function Execute, thus 501 /// encapsulating the code that needs to run in the privileged context. 502 class Operation 503 { 504 public: 505 Operation () : m_error() { } 506 507 virtual 508 ~Operation() {} 509 510 virtual void 511 Execute (NativeProcessLinux *process) = 0; 512 513 const Error & 514 GetError () const { return m_error; } 515 516 protected: 517 Error m_error; 518 }; 519 520 //------------------------------------------------------------------------------ 521 /// @class ReadOperation 522 /// @brief Implements NativeProcessLinux::ReadMemory. 523 class ReadOperation : public Operation 524 { 525 public: 526 ReadOperation ( 527 lldb::addr_t addr, 528 void *buff, 529 lldb::addr_t size, 530 lldb::addr_t &result) : 531 Operation (), 532 m_addr (addr), 533 m_buff (buff), 534 m_size (size), 535 m_result (result) 536 { 537 } 538 539 void Execute (NativeProcessLinux *process) override; 540 541 private: 542 lldb::addr_t m_addr; 543 void *m_buff; 544 lldb::addr_t m_size; 545 lldb::addr_t &m_result; 546 }; 547 548 void 549 ReadOperation::Execute (NativeProcessLinux *process) 550 { 551 m_result = DoReadMemory (process->GetID (), m_addr, m_buff, m_size, m_error); 552 } 553 554 //------------------------------------------------------------------------------ 555 /// @class WriteOperation 556 /// @brief Implements NativeProcessLinux::WriteMemory. 557 class WriteOperation : public Operation 558 { 559 public: 560 WriteOperation ( 561 lldb::addr_t addr, 562 const void *buff, 563 lldb::addr_t size, 564 lldb::addr_t &result) : 565 Operation (), 566 m_addr (addr), 567 m_buff (buff), 568 m_size (size), 569 m_result (result) 570 { 571 } 572 573 void Execute (NativeProcessLinux *process) override; 574 575 private: 576 lldb::addr_t m_addr; 577 const void *m_buff; 578 lldb::addr_t m_size; 579 lldb::addr_t &m_result; 580 }; 581 582 void 583 WriteOperation::Execute(NativeProcessLinux *process) 584 { 585 m_result = DoWriteMemory (process->GetID (), m_addr, m_buff, m_size, m_error); 586 } 587 588 //------------------------------------------------------------------------------ 589 /// @class ReadRegOperation 590 /// @brief Implements NativeProcessLinux::ReadRegisterValue. 591 class ReadRegOperation : public Operation 592 { 593 public: 594 ReadRegOperation(lldb::tid_t tid, uint32_t offset, const char *reg_name, 595 RegisterValue &value) 596 : m_tid(tid), 597 m_offset(static_cast<uintptr_t> (offset)), 598 m_reg_name(reg_name), 599 m_value(value) 600 { } 601 602 void Execute(NativeProcessLinux *monitor); 603 604 private: 605 lldb::tid_t m_tid; 606 uintptr_t m_offset; 607 const char *m_reg_name; 608 RegisterValue &m_value; 609 }; 610 611 void 612 ReadRegOperation::Execute(NativeProcessLinux *monitor) 613 { 614 #if defined (__arm64__) || defined (__aarch64__) 615 if (m_offset > sizeof(struct user_pt_regs)) 616 { 617 uintptr_t offset = m_offset - sizeof(struct user_pt_regs); 618 if (offset > sizeof(struct user_fpsimd_state)) 619 { 620 m_error.SetErrorString("invalid offset value"); 621 return; 622 } 623 elf_fpregset_t regs; 624 int regset = NT_FPREGSET; 625 struct iovec ioVec; 626 627 ioVec.iov_base = ®s; 628 ioVec.iov_len = sizeof regs; 629 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 630 if (m_error.Success()) 631 { 632 lldb_private::ArchSpec arch; 633 if (monitor->GetArchitecture(arch)) 634 m_value.SetBytes((void *)(((unsigned char *)(®s)) + offset), 16, arch.GetByteOrder()); 635 else 636 m_error.SetErrorString("failed to get architecture"); 637 } 638 } 639 else 640 { 641 elf_gregset_t regs; 642 int regset = NT_PRSTATUS; 643 struct iovec ioVec; 644 645 ioVec.iov_base = ®s; 646 ioVec.iov_len = sizeof regs; 647 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 648 if (m_error.Success()) 649 { 650 lldb_private::ArchSpec arch; 651 if (monitor->GetArchitecture(arch)) 652 m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, arch.GetByteOrder()); 653 else 654 m_error.SetErrorString("failed to get architecture"); 655 } 656 } 657 #else 658 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS)); 659 660 lldb::addr_t data = PTRACE(PTRACE_PEEKUSER, m_tid, (void*)m_offset, nullptr, 0, m_error); 661 if (m_error.Success()) 662 m_value = data; 663 664 if (log) 665 log->Printf ("NativeProcessLinux::%s() reg %s: 0x%" PRIx64, __FUNCTION__, 666 m_reg_name, data); 667 #endif 668 } 669 670 //------------------------------------------------------------------------------ 671 /// @class WriteRegOperation 672 /// @brief Implements NativeProcessLinux::WriteRegisterValue. 673 class WriteRegOperation : public Operation 674 { 675 public: 676 WriteRegOperation(lldb::tid_t tid, unsigned offset, const char *reg_name, 677 const RegisterValue &value) 678 : m_tid(tid), 679 m_offset(offset), 680 m_reg_name(reg_name), 681 m_value(value) 682 { } 683 684 void Execute(NativeProcessLinux *monitor); 685 686 private: 687 lldb::tid_t m_tid; 688 uintptr_t m_offset; 689 const char *m_reg_name; 690 const RegisterValue &m_value; 691 }; 692 693 void 694 WriteRegOperation::Execute(NativeProcessLinux *monitor) 695 { 696 #if defined (__arm64__) || defined (__aarch64__) 697 if (m_offset > sizeof(struct user_pt_regs)) 698 { 699 uintptr_t offset = m_offset - sizeof(struct user_pt_regs); 700 if (offset > sizeof(struct user_fpsimd_state)) 701 { 702 m_error.SetErrorString("invalid offset value"); 703 return; 704 } 705 elf_fpregset_t regs; 706 int regset = NT_FPREGSET; 707 struct iovec ioVec; 708 709 ioVec.iov_base = ®s; 710 ioVec.iov_len = sizeof regs; 711 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 712 if (m_error.Sucess()) 713 { 714 ::memcpy((void *)(((unsigned char *)(®s)) + offset), m_value.GetBytes(), 16); 715 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 716 } 717 } 718 else 719 { 720 elf_gregset_t regs; 721 int regset = NT_PRSTATUS; 722 struct iovec ioVec; 723 724 ioVec.iov_base = ®s; 725 ioVec.iov_len = sizeof regs; 726 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 727 if (m_error.Sucess()) 728 { 729 ::memcpy((void *)(((unsigned char *)(®s)) + m_offset), m_value.GetBytes(), 8); 730 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 731 } 732 } 733 #else 734 void* buf; 735 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS)); 736 737 buf = (void*) m_value.GetAsUInt64(); 738 739 if (log) 740 log->Printf ("NativeProcessLinux::%s() reg %s: %p", __FUNCTION__, m_reg_name, buf); 741 PTRACE(PTRACE_POKEUSER, m_tid, (void*)m_offset, buf, 0, m_error); 742 #endif 743 } 744 745 //------------------------------------------------------------------------------ 746 /// @class ReadGPROperation 747 /// @brief Implements NativeProcessLinux::ReadGPR. 748 class ReadGPROperation : public Operation 749 { 750 public: 751 ReadGPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 752 : m_tid(tid), m_buf(buf), m_buf_size(buf_size) 753 { } 754 755 void Execute(NativeProcessLinux *monitor); 756 757 private: 758 lldb::tid_t m_tid; 759 void *m_buf; 760 size_t m_buf_size; 761 }; 762 763 void 764 ReadGPROperation::Execute(NativeProcessLinux *monitor) 765 { 766 #if defined (__arm64__) || defined (__aarch64__) 767 int regset = NT_PRSTATUS; 768 struct iovec ioVec; 769 770 ioVec.iov_base = m_buf; 771 ioVec.iov_len = m_buf_size; 772 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); 773 #else 774 PTRACE(PTRACE_GETREGS, m_tid, nullptr, m_buf, m_buf_size, m_error); 775 #endif 776 } 777 778 //------------------------------------------------------------------------------ 779 /// @class ReadFPROperation 780 /// @brief Implements NativeProcessLinux::ReadFPR. 781 class ReadFPROperation : public Operation 782 { 783 public: 784 ReadFPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 785 : m_tid(tid), 786 m_buf(buf), 787 m_buf_size(buf_size) 788 { } 789 790 void Execute(NativeProcessLinux *monitor); 791 792 private: 793 lldb::tid_t m_tid; 794 void *m_buf; 795 size_t m_buf_size; 796 }; 797 798 void 799 ReadFPROperation::Execute(NativeProcessLinux *monitor) 800 { 801 #if defined (__arm64__) || defined (__aarch64__) 802 int regset = NT_FPREGSET; 803 struct iovec ioVec; 804 805 ioVec.iov_base = m_buf; 806 ioVec.iov_len = m_buf_size; 807 if (PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, m_buf_size) < 0) 808 m_result = false; 809 else 810 m_result = true; 811 #else 812 PTRACE(PTRACE_GETFPREGS, m_tid, nullptr, m_buf, m_buf_size, m_error); 813 #endif 814 } 815 816 //------------------------------------------------------------------------------ 817 /// @class ReadRegisterSetOperation 818 /// @brief Implements NativeProcessLinux::ReadRegisterSet. 819 class ReadRegisterSetOperation : public Operation 820 { 821 public: 822 ReadRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 823 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset) 824 { } 825 826 void Execute(NativeProcessLinux *monitor); 827 828 private: 829 lldb::tid_t m_tid; 830 void *m_buf; 831 size_t m_buf_size; 832 const unsigned int m_regset; 833 }; 834 835 void 836 ReadRegisterSetOperation::Execute(NativeProcessLinux *monitor) 837 { 838 PTRACE(PTRACE_GETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error); 839 } 840 841 //------------------------------------------------------------------------------ 842 /// @class WriteGPROperation 843 /// @brief Implements NativeProcessLinux::WriteGPR. 844 class WriteGPROperation : public Operation 845 { 846 public: 847 WriteGPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 848 : m_tid(tid), m_buf(buf), m_buf_size(buf_size) 849 { } 850 851 void Execute(NativeProcessLinux *monitor); 852 853 private: 854 lldb::tid_t m_tid; 855 void *m_buf; 856 size_t m_buf_size; 857 }; 858 859 void 860 WriteGPROperation::Execute(NativeProcessLinux *monitor) 861 { 862 #if defined (__arm64__) || defined (__aarch64__) 863 int regset = NT_PRSTATUS; 864 struct iovec ioVec; 865 866 ioVec.iov_base = m_buf; 867 ioVec.iov_len = m_buf_size; 868 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); 869 #else 870 PTRACE(PTRACE_SETREGS, m_tid, NULL, m_buf, m_buf_size, m_error); 871 #endif 872 } 873 874 //------------------------------------------------------------------------------ 875 /// @class WriteFPROperation 876 /// @brief Implements NativeProcessLinux::WriteFPR. 877 class WriteFPROperation : public Operation 878 { 879 public: 880 WriteFPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 881 : m_tid(tid), m_buf(buf), m_buf_size(buf_size) 882 { } 883 884 void Execute(NativeProcessLinux *monitor); 885 886 private: 887 lldb::tid_t m_tid; 888 void *m_buf; 889 size_t m_buf_size; 890 }; 891 892 void 893 WriteFPROperation::Execute(NativeProcessLinux *monitor) 894 { 895 #if defined (__arm64__) || defined (__aarch64__) 896 int regset = NT_FPREGSET; 897 struct iovec ioVec; 898 899 ioVec.iov_base = m_buf; 900 ioVec.iov_len = m_buf_size; 901 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); 902 #else 903 PTRACE(PTRACE_SETFPREGS, m_tid, NULL, m_buf, m_buf_size, m_error); 904 #endif 905 } 906 907 //------------------------------------------------------------------------------ 908 /// @class WriteRegisterSetOperation 909 /// @brief Implements NativeProcessLinux::WriteRegisterSet. 910 class WriteRegisterSetOperation : public Operation 911 { 912 public: 913 WriteRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 914 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset) 915 { } 916 917 void Execute(NativeProcessLinux *monitor); 918 919 private: 920 lldb::tid_t m_tid; 921 void *m_buf; 922 size_t m_buf_size; 923 const unsigned int m_regset; 924 }; 925 926 void 927 WriteRegisterSetOperation::Execute(NativeProcessLinux *monitor) 928 { 929 PTRACE(PTRACE_SETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error); 930 } 931 932 //------------------------------------------------------------------------------ 933 /// @class ResumeOperation 934 /// @brief Implements NativeProcessLinux::Resume. 935 class ResumeOperation : public Operation 936 { 937 public: 938 ResumeOperation(lldb::tid_t tid, uint32_t signo) : 939 m_tid(tid), m_signo(signo) { } 940 941 void Execute(NativeProcessLinux *monitor); 942 943 private: 944 lldb::tid_t m_tid; 945 uint32_t m_signo; 946 }; 947 948 void 949 ResumeOperation::Execute(NativeProcessLinux *monitor) 950 { 951 intptr_t data = 0; 952 953 if (m_signo != LLDB_INVALID_SIGNAL_NUMBER) 954 data = m_signo; 955 956 PTRACE(PTRACE_CONT, m_tid, nullptr, (void*)data, 0, m_error); 957 if (m_error.Fail()) 958 { 959 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 960 961 if (log) 962 log->Printf ("ResumeOperation (%" PRIu64 ") failed: %s", m_tid, m_error.AsCString()); 963 } 964 } 965 966 //------------------------------------------------------------------------------ 967 /// @class SingleStepOperation 968 /// @brief Implements NativeProcessLinux::SingleStep. 969 class SingleStepOperation : public Operation 970 { 971 public: 972 SingleStepOperation(lldb::tid_t tid, uint32_t signo) 973 : m_tid(tid), m_signo(signo) { } 974 975 void Execute(NativeProcessLinux *monitor); 976 977 private: 978 lldb::tid_t m_tid; 979 uint32_t m_signo; 980 }; 981 982 void 983 SingleStepOperation::Execute(NativeProcessLinux *monitor) 984 { 985 intptr_t data = 0; 986 987 if (m_signo != LLDB_INVALID_SIGNAL_NUMBER) 988 data = m_signo; 989 990 PTRACE(PTRACE_SINGLESTEP, m_tid, nullptr, (void*)data, 0, m_error); 991 } 992 993 //------------------------------------------------------------------------------ 994 /// @class SiginfoOperation 995 /// @brief Implements NativeProcessLinux::GetSignalInfo. 996 class SiginfoOperation : public Operation 997 { 998 public: 999 SiginfoOperation(lldb::tid_t tid, void *info) 1000 : m_tid(tid), m_info(info) { } 1001 1002 void Execute(NativeProcessLinux *monitor); 1003 1004 private: 1005 lldb::tid_t m_tid; 1006 void *m_info; 1007 }; 1008 1009 void 1010 SiginfoOperation::Execute(NativeProcessLinux *monitor) 1011 { 1012 PTRACE(PTRACE_GETSIGINFO, m_tid, nullptr, m_info, 0, m_error); 1013 } 1014 1015 //------------------------------------------------------------------------------ 1016 /// @class EventMessageOperation 1017 /// @brief Implements NativeProcessLinux::GetEventMessage. 1018 class EventMessageOperation : public Operation 1019 { 1020 public: 1021 EventMessageOperation(lldb::tid_t tid, unsigned long *message) 1022 : m_tid(tid), m_message(message) { } 1023 1024 void Execute(NativeProcessLinux *monitor); 1025 1026 private: 1027 lldb::tid_t m_tid; 1028 unsigned long *m_message; 1029 }; 1030 1031 void 1032 EventMessageOperation::Execute(NativeProcessLinux *monitor) 1033 { 1034 PTRACE(PTRACE_GETEVENTMSG, m_tid, nullptr, m_message, 0, m_error); 1035 } 1036 1037 class DetachOperation : public Operation 1038 { 1039 public: 1040 DetachOperation(lldb::tid_t tid) : m_tid(tid) { } 1041 1042 void Execute(NativeProcessLinux *monitor); 1043 1044 private: 1045 lldb::tid_t m_tid; 1046 }; 1047 1048 void 1049 DetachOperation::Execute(NativeProcessLinux *monitor) 1050 { 1051 PTRACE(PTRACE_DETACH, m_tid, nullptr, 0, 0, m_error); 1052 } 1053 1054 } 1055 1056 using namespace lldb_private; 1057 1058 // Simple helper function to ensure flags are enabled on the given file 1059 // descriptor. 1060 static bool 1061 EnsureFDFlags(int fd, int flags, Error &error) 1062 { 1063 int status; 1064 1065 if ((status = fcntl(fd, F_GETFL)) == -1) 1066 { 1067 error.SetErrorToErrno(); 1068 return false; 1069 } 1070 1071 if (fcntl(fd, F_SETFL, status | flags) == -1) 1072 { 1073 error.SetErrorToErrno(); 1074 return false; 1075 } 1076 1077 return true; 1078 } 1079 1080 NativeProcessLinux::OperationArgs::OperationArgs(NativeProcessLinux *monitor) 1081 : m_monitor(monitor) 1082 { 1083 sem_init(&m_semaphore, 0, 0); 1084 } 1085 1086 NativeProcessLinux::OperationArgs::~OperationArgs() 1087 { 1088 sem_destroy(&m_semaphore); 1089 } 1090 1091 NativeProcessLinux::LaunchArgs::LaunchArgs(NativeProcessLinux *monitor, 1092 lldb_private::Module *module, 1093 char const **argv, 1094 char const **envp, 1095 const std::string &stdin_path, 1096 const std::string &stdout_path, 1097 const std::string &stderr_path, 1098 const char *working_dir, 1099 const lldb_private::ProcessLaunchInfo &launch_info) 1100 : OperationArgs(monitor), 1101 m_module(module), 1102 m_argv(argv), 1103 m_envp(envp), 1104 m_stdin_path(stdin_path), 1105 m_stdout_path(stdout_path), 1106 m_stderr_path(stderr_path), 1107 m_working_dir(working_dir), 1108 m_launch_info(launch_info) 1109 { 1110 } 1111 1112 NativeProcessLinux::LaunchArgs::~LaunchArgs() 1113 { } 1114 1115 NativeProcessLinux::AttachArgs::AttachArgs(NativeProcessLinux *monitor, 1116 lldb::pid_t pid) 1117 : OperationArgs(monitor), m_pid(pid) { } 1118 1119 NativeProcessLinux::AttachArgs::~AttachArgs() 1120 { } 1121 1122 // ----------------------------------------------------------------------------- 1123 // Public Static Methods 1124 // ----------------------------------------------------------------------------- 1125 1126 lldb_private::Error 1127 NativeProcessLinux::LaunchProcess ( 1128 lldb_private::Module *exe_module, 1129 lldb_private::ProcessLaunchInfo &launch_info, 1130 lldb_private::NativeProcessProtocol::NativeDelegate &native_delegate, 1131 NativeProcessProtocolSP &native_process_sp) 1132 { 1133 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1134 1135 Error error; 1136 1137 // Verify the working directory is valid if one was specified. 1138 const char* working_dir = launch_info.GetWorkingDirectory (); 1139 if (working_dir) 1140 { 1141 FileSpec working_dir_fs (working_dir, true); 1142 if (!working_dir_fs || working_dir_fs.GetFileType () != FileSpec::eFileTypeDirectory) 1143 { 1144 error.SetErrorStringWithFormat ("No such file or directory: %s", working_dir); 1145 return error; 1146 } 1147 } 1148 1149 const lldb_private::FileAction *file_action; 1150 1151 // Default of NULL will mean to use existing open file descriptors. 1152 std::string stdin_path; 1153 std::string stdout_path; 1154 std::string stderr_path; 1155 1156 file_action = launch_info.GetFileActionForFD (STDIN_FILENO); 1157 if (file_action) 1158 stdin_path = file_action->GetPath (); 1159 1160 file_action = launch_info.GetFileActionForFD (STDOUT_FILENO); 1161 if (file_action) 1162 stdout_path = file_action->GetPath (); 1163 1164 file_action = launch_info.GetFileActionForFD (STDERR_FILENO); 1165 if (file_action) 1166 stderr_path = file_action->GetPath (); 1167 1168 if (log) 1169 { 1170 if (!stdin_path.empty ()) 1171 log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'", __FUNCTION__, stdin_path.c_str ()); 1172 else 1173 log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__); 1174 1175 if (!stdout_path.empty ()) 1176 log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'", __FUNCTION__, stdout_path.c_str ()); 1177 else 1178 log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__); 1179 1180 if (!stderr_path.empty ()) 1181 log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'", __FUNCTION__, stderr_path.c_str ()); 1182 else 1183 log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__); 1184 } 1185 1186 // Create the NativeProcessLinux in launch mode. 1187 native_process_sp.reset (new NativeProcessLinux ()); 1188 1189 if (log) 1190 { 1191 int i = 0; 1192 for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i) 1193 { 1194 log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr"); 1195 ++i; 1196 } 1197 } 1198 1199 if (!native_process_sp->RegisterNativeDelegate (native_delegate)) 1200 { 1201 native_process_sp.reset (); 1202 error.SetErrorStringWithFormat ("failed to register the native delegate"); 1203 return error; 1204 } 1205 1206 reinterpret_cast<NativeProcessLinux*> (native_process_sp.get ())->LaunchInferior ( 1207 exe_module, 1208 launch_info.GetArguments ().GetConstArgumentVector (), 1209 launch_info.GetEnvironmentEntries ().GetConstArgumentVector (), 1210 stdin_path, 1211 stdout_path, 1212 stderr_path, 1213 working_dir, 1214 launch_info, 1215 error); 1216 1217 if (error.Fail ()) 1218 { 1219 native_process_sp.reset (); 1220 if (log) 1221 log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ()); 1222 return error; 1223 } 1224 1225 launch_info.SetProcessID (native_process_sp->GetID ()); 1226 1227 return error; 1228 } 1229 1230 lldb_private::Error 1231 NativeProcessLinux::AttachToProcess ( 1232 lldb::pid_t pid, 1233 lldb_private::NativeProcessProtocol::NativeDelegate &native_delegate, 1234 NativeProcessProtocolSP &native_process_sp) 1235 { 1236 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1237 if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE)) 1238 log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid); 1239 1240 // Grab the current platform architecture. This should be Linux, 1241 // since this code is only intended to run on a Linux host. 1242 PlatformSP platform_sp (Platform::GetHostPlatform ()); 1243 if (!platform_sp) 1244 return Error("failed to get a valid default platform"); 1245 1246 // Retrieve the architecture for the running process. 1247 ArchSpec process_arch; 1248 Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch); 1249 if (!error.Success ()) 1250 return error; 1251 1252 std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ()); 1253 1254 if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate)) 1255 { 1256 error.SetErrorStringWithFormat ("failed to register the native delegate"); 1257 return error; 1258 } 1259 1260 native_process_linux_sp->AttachToInferior (pid, error); 1261 if (!error.Success ()) 1262 return error; 1263 1264 native_process_sp = native_process_linux_sp; 1265 return error; 1266 } 1267 1268 // ----------------------------------------------------------------------------- 1269 // Public Instance Methods 1270 // ----------------------------------------------------------------------------- 1271 1272 NativeProcessLinux::NativeProcessLinux () : 1273 NativeProcessProtocol (LLDB_INVALID_PROCESS_ID), 1274 m_arch (), 1275 m_operation_thread (), 1276 m_monitor_thread (), 1277 m_operation (nullptr), 1278 m_operation_mutex (), 1279 m_operation_pending (), 1280 m_operation_done (), 1281 m_supports_mem_region (eLazyBoolCalculate), 1282 m_mem_region_cache (), 1283 m_mem_region_cache_mutex (), 1284 m_coordinator_up (new ThreadStateCoordinator (GetThreadLoggerFunction ())), 1285 m_coordinator_thread () 1286 { 1287 } 1288 1289 //------------------------------------------------------------------------------ 1290 /// The basic design of the NativeProcessLinux is built around two threads. 1291 /// 1292 /// One thread (@see SignalThread) simply blocks on a call to waitpid() looking 1293 /// for changes in the debugee state. When a change is detected a 1294 /// ProcessMessage is sent to the associated ProcessLinux instance. This thread 1295 /// "drives" state changes in the debugger. 1296 /// 1297 /// The second thread (@see OperationThread) is responsible for two things 1) 1298 /// launching or attaching to the inferior process, and then 2) servicing 1299 /// operations such as register reads/writes, stepping, etc. See the comments 1300 /// on the Operation class for more info as to why this is needed. 1301 void 1302 NativeProcessLinux::LaunchInferior ( 1303 Module *module, 1304 const char *argv[], 1305 const char *envp[], 1306 const std::string &stdin_path, 1307 const std::string &stdout_path, 1308 const std::string &stderr_path, 1309 const char *working_dir, 1310 const lldb_private::ProcessLaunchInfo &launch_info, 1311 lldb_private::Error &error) 1312 { 1313 if (module) 1314 m_arch = module->GetArchitecture (); 1315 1316 SetState (eStateLaunching); 1317 1318 std::unique_ptr<LaunchArgs> args( 1319 new LaunchArgs( 1320 this, module, argv, envp, 1321 stdin_path, stdout_path, stderr_path, 1322 working_dir, launch_info)); 1323 1324 sem_init (&m_operation_pending, 0, 0); 1325 sem_init (&m_operation_done, 0, 0); 1326 1327 StartLaunchOpThread (args.get(), error); 1328 if (!error.Success ()) 1329 return; 1330 1331 error = StartCoordinatorThread (); 1332 if (!error.Success ()) 1333 return; 1334 1335 WAIT_AGAIN: 1336 // Wait for the operation thread to initialize. 1337 if (sem_wait(&args->m_semaphore)) 1338 { 1339 if (errno == EINTR) 1340 goto WAIT_AGAIN; 1341 else 1342 { 1343 error.SetErrorToErrno(); 1344 return; 1345 } 1346 } 1347 1348 // Check that the launch was a success. 1349 if (!args->m_error.Success()) 1350 { 1351 StopOpThread(); 1352 StopCoordinatorThread (); 1353 error = args->m_error; 1354 return; 1355 } 1356 1357 // Finally, start monitoring the child process for change in state. 1358 m_monitor_thread = Host::StartMonitoringChildProcess( 1359 NativeProcessLinux::MonitorCallback, this, GetID(), true); 1360 if (!m_monitor_thread.IsJoinable()) 1361 { 1362 error.SetErrorToGenericError(); 1363 error.SetErrorString ("Process attach failed to create monitor thread for NativeProcessLinux::MonitorCallback."); 1364 return; 1365 } 1366 } 1367 1368 void 1369 NativeProcessLinux::AttachToInferior (lldb::pid_t pid, lldb_private::Error &error) 1370 { 1371 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1372 if (log) 1373 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid); 1374 1375 // We can use the Host for everything except the ResolveExecutable portion. 1376 PlatformSP platform_sp = Platform::GetHostPlatform (); 1377 if (!platform_sp) 1378 { 1379 if (log) 1380 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid); 1381 error.SetErrorString ("no default platform available"); 1382 return; 1383 } 1384 1385 // Gather info about the process. 1386 ProcessInstanceInfo process_info; 1387 if (!platform_sp->GetProcessInfo (pid, process_info)) 1388 { 1389 if (log) 1390 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid); 1391 error.SetErrorString ("failed to get process info"); 1392 return; 1393 } 1394 1395 // Resolve the executable module 1396 ModuleSP exe_module_sp; 1397 FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths()); 1398 ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture()); 1399 error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp, 1400 executable_search_paths.GetSize() ? &executable_search_paths : NULL); 1401 if (!error.Success()) 1402 return; 1403 1404 // Set the architecture to the exe architecture. 1405 m_arch = exe_module_sp->GetArchitecture(); 1406 if (log) 1407 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ()); 1408 1409 m_pid = pid; 1410 SetState(eStateAttaching); 1411 1412 sem_init (&m_operation_pending, 0, 0); 1413 sem_init (&m_operation_done, 0, 0); 1414 1415 std::unique_ptr<AttachArgs> args (new AttachArgs (this, pid)); 1416 1417 StartAttachOpThread(args.get (), error); 1418 if (!error.Success ()) 1419 return; 1420 1421 error = StartCoordinatorThread (); 1422 if (!error.Success ()) 1423 return; 1424 1425 WAIT_AGAIN: 1426 // Wait for the operation thread to initialize. 1427 if (sem_wait (&args->m_semaphore)) 1428 { 1429 if (errno == EINTR) 1430 goto WAIT_AGAIN; 1431 else 1432 { 1433 error.SetErrorToErrno (); 1434 return; 1435 } 1436 } 1437 1438 // Check that the attach was a success. 1439 if (!args->m_error.Success ()) 1440 { 1441 StopOpThread (); 1442 StopCoordinatorThread (); 1443 error = args->m_error; 1444 return; 1445 } 1446 1447 // Finally, start monitoring the child process for change in state. 1448 m_monitor_thread = Host::StartMonitoringChildProcess ( 1449 NativeProcessLinux::MonitorCallback, this, GetID (), true); 1450 if (!m_monitor_thread.IsJoinable()) 1451 { 1452 error.SetErrorToGenericError (); 1453 error.SetErrorString ("Process attach failed to create monitor thread for NativeProcessLinux::MonitorCallback."); 1454 return; 1455 } 1456 } 1457 1458 void 1459 NativeProcessLinux::Terminate () 1460 { 1461 StopMonitor(); 1462 } 1463 1464 //------------------------------------------------------------------------------ 1465 // Thread setup and tear down. 1466 1467 void 1468 NativeProcessLinux::StartLaunchOpThread(LaunchArgs *args, Error &error) 1469 { 1470 static const char *g_thread_name = "lldb.process.nativelinux.operation"; 1471 1472 if (m_operation_thread.IsJoinable()) 1473 return; 1474 1475 m_operation_thread = ThreadLauncher::LaunchThread(g_thread_name, LaunchOpThread, args, &error); 1476 } 1477 1478 void * 1479 NativeProcessLinux::LaunchOpThread(void *arg) 1480 { 1481 LaunchArgs *args = static_cast<LaunchArgs*>(arg); 1482 1483 if (!Launch(args)) { 1484 sem_post(&args->m_semaphore); 1485 return NULL; 1486 } 1487 1488 ServeOperation(args); 1489 return NULL; 1490 } 1491 1492 bool 1493 NativeProcessLinux::Launch(LaunchArgs *args) 1494 { 1495 assert (args && "null args"); 1496 if (!args) 1497 return false; 1498 1499 NativeProcessLinux *monitor = args->m_monitor; 1500 assert (monitor && "monitor is NULL"); 1501 1502 const char **argv = args->m_argv; 1503 const char **envp = args->m_envp; 1504 const char *working_dir = args->m_working_dir; 1505 1506 lldb_utility::PseudoTerminal terminal; 1507 const size_t err_len = 1024; 1508 char err_str[err_len]; 1509 lldb::pid_t pid; 1510 NativeThreadProtocolSP thread_sp; 1511 1512 lldb::ThreadSP inferior; 1513 1514 // Propagate the environment if one is not supplied. 1515 if (envp == NULL || envp[0] == NULL) 1516 envp = const_cast<const char **>(environ); 1517 1518 if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1)) 1519 { 1520 args->m_error.SetErrorToGenericError(); 1521 args->m_error.SetErrorString("Process fork failed."); 1522 return false; 1523 } 1524 1525 // Recognized child exit status codes. 1526 enum { 1527 ePtraceFailed = 1, 1528 eDupStdinFailed, 1529 eDupStdoutFailed, 1530 eDupStderrFailed, 1531 eChdirFailed, 1532 eExecFailed, 1533 eSetGidFailed 1534 }; 1535 1536 // Child process. 1537 if (pid == 0) 1538 { 1539 // FIXME consider opening a pipe between parent/child and have this forked child 1540 // send log info to parent re: launch status, in place of the log lines removed here. 1541 1542 // Start tracing this child that is about to exec. 1543 PTRACE(PTRACE_TRACEME, 0, nullptr, nullptr, 0, args->m_error); 1544 if (args->m_error.Fail()) 1545 exit(ePtraceFailed); 1546 1547 // terminal has already dupped the tty descriptors to stdin/out/err. 1548 // This closes original fd from which they were copied (and avoids 1549 // leaking descriptors to the debugged process. 1550 terminal.CloseSlaveFileDescriptor(); 1551 1552 // Do not inherit setgid powers. 1553 if (setgid(getgid()) != 0) 1554 exit(eSetGidFailed); 1555 1556 // Attempt to have our own process group. 1557 if (setpgid(0, 0) != 0) 1558 { 1559 // FIXME log that this failed. This is common. 1560 // Don't allow this to prevent an inferior exec. 1561 } 1562 1563 // Dup file descriptors if needed. 1564 if (!args->m_stdin_path.empty ()) 1565 if (!DupDescriptor(args->m_stdin_path.c_str (), STDIN_FILENO, O_RDONLY)) 1566 exit(eDupStdinFailed); 1567 1568 if (!args->m_stdout_path.empty ()) 1569 if (!DupDescriptor(args->m_stdout_path.c_str (), STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC)) 1570 exit(eDupStdoutFailed); 1571 1572 if (!args->m_stderr_path.empty ()) 1573 if (!DupDescriptor(args->m_stderr_path.c_str (), STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC)) 1574 exit(eDupStderrFailed); 1575 1576 // Change working directory 1577 if (working_dir != NULL && working_dir[0]) 1578 if (0 != ::chdir(working_dir)) 1579 exit(eChdirFailed); 1580 1581 // Disable ASLR if requested. 1582 if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR)) 1583 { 1584 const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS); 1585 if (old_personality == -1) 1586 { 1587 // Can't retrieve Linux personality. Cannot disable ASLR. 1588 } 1589 else 1590 { 1591 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality); 1592 if (new_personality == -1) 1593 { 1594 // Disabling ASLR failed. 1595 } 1596 else 1597 { 1598 // Disabling ASLR succeeded. 1599 } 1600 } 1601 } 1602 1603 // Execute. We should never return... 1604 execve(argv[0], 1605 const_cast<char *const *>(argv), 1606 const_cast<char *const *>(envp)); 1607 1608 // ...unless exec fails. In which case we definitely need to end the child here. 1609 exit(eExecFailed); 1610 } 1611 1612 // 1613 // This is the parent code here. 1614 // 1615 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1616 1617 // Wait for the child process to trap on its call to execve. 1618 ::pid_t wpid; 1619 int status; 1620 if ((wpid = waitpid(pid, &status, 0)) < 0) 1621 { 1622 args->m_error.SetErrorToErrno(); 1623 1624 if (log) 1625 log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s", __FUNCTION__, args->m_error.AsCString ()); 1626 1627 // Mark the inferior as invalid. 1628 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1629 monitor->SetState (StateType::eStateInvalid); 1630 1631 return false; 1632 } 1633 else if (WIFEXITED(status)) 1634 { 1635 // open, dup or execve likely failed for some reason. 1636 args->m_error.SetErrorToGenericError(); 1637 switch (WEXITSTATUS(status)) 1638 { 1639 case ePtraceFailed: 1640 args->m_error.SetErrorString("Child ptrace failed."); 1641 break; 1642 case eDupStdinFailed: 1643 args->m_error.SetErrorString("Child open stdin failed."); 1644 break; 1645 case eDupStdoutFailed: 1646 args->m_error.SetErrorString("Child open stdout failed."); 1647 break; 1648 case eDupStderrFailed: 1649 args->m_error.SetErrorString("Child open stderr failed."); 1650 break; 1651 case eChdirFailed: 1652 args->m_error.SetErrorString("Child failed to set working directory."); 1653 break; 1654 case eExecFailed: 1655 args->m_error.SetErrorString("Child exec failed."); 1656 break; 1657 case eSetGidFailed: 1658 args->m_error.SetErrorString("Child setgid failed."); 1659 break; 1660 default: 1661 args->m_error.SetErrorString("Child returned unknown exit status."); 1662 break; 1663 } 1664 1665 if (log) 1666 { 1667 log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP", 1668 __FUNCTION__, 1669 WEXITSTATUS(status)); 1670 } 1671 1672 // Mark the inferior as invalid. 1673 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1674 monitor->SetState (StateType::eStateInvalid); 1675 1676 return false; 1677 } 1678 assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) && 1679 "Could not sync with inferior process."); 1680 1681 if (log) 1682 log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__); 1683 1684 args->m_error = SetDefaultPtraceOpts(pid); 1685 if (args->m_error.Fail()) 1686 { 1687 if (log) 1688 log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s", 1689 __FUNCTION__, 1690 args->m_error.AsCString ()); 1691 1692 // Mark the inferior as invalid. 1693 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1694 monitor->SetState (StateType::eStateInvalid); 1695 1696 return false; 1697 } 1698 1699 // Release the master terminal descriptor and pass it off to the 1700 // NativeProcessLinux instance. Similarly stash the inferior pid. 1701 monitor->m_terminal_fd = terminal.ReleaseMasterFileDescriptor(); 1702 monitor->m_pid = pid; 1703 1704 // Set the terminal fd to be in non blocking mode (it simplifies the 1705 // implementation of ProcessLinux::GetSTDOUT to have a non-blocking 1706 // descriptor to read from). 1707 if (!EnsureFDFlags(monitor->m_terminal_fd, O_NONBLOCK, args->m_error)) 1708 { 1709 if (log) 1710 log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s", 1711 __FUNCTION__, 1712 args->m_error.AsCString ()); 1713 1714 // Mark the inferior as invalid. 1715 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1716 monitor->SetState (StateType::eStateInvalid); 1717 1718 return false; 1719 } 1720 1721 if (log) 1722 log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid); 1723 1724 thread_sp = monitor->AddThread (pid); 1725 assert (thread_sp && "AddThread() returned a nullptr thread"); 1726 monitor->NotifyThreadCreateStopped (pid); 1727 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGSTOP); 1728 1729 // Let our process instance know the thread has stopped. 1730 monitor->SetCurrentThreadID (thread_sp->GetID ()); 1731 monitor->SetState (StateType::eStateStopped); 1732 1733 if (log) 1734 { 1735 if (args->m_error.Success ()) 1736 { 1737 log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__); 1738 } 1739 else 1740 { 1741 log->Printf ("NativeProcessLinux::%s inferior launching failed: %s", 1742 __FUNCTION__, 1743 args->m_error.AsCString ()); 1744 } 1745 } 1746 return args->m_error.Success(); 1747 } 1748 1749 void 1750 NativeProcessLinux::StartAttachOpThread(AttachArgs *args, lldb_private::Error &error) 1751 { 1752 static const char *g_thread_name = "lldb.process.linux.operation"; 1753 1754 if (m_operation_thread.IsJoinable()) 1755 return; 1756 1757 m_operation_thread = ThreadLauncher::LaunchThread(g_thread_name, AttachOpThread, args, &error); 1758 } 1759 1760 void * 1761 NativeProcessLinux::AttachOpThread(void *arg) 1762 { 1763 AttachArgs *args = static_cast<AttachArgs*>(arg); 1764 1765 if (!Attach(args)) { 1766 sem_post(&args->m_semaphore); 1767 return nullptr; 1768 } 1769 1770 ServeOperation(args); 1771 return nullptr; 1772 } 1773 1774 bool 1775 NativeProcessLinux::Attach(AttachArgs *args) 1776 { 1777 lldb::pid_t pid = args->m_pid; 1778 1779 NativeProcessLinux *monitor = args->m_monitor; 1780 lldb::ThreadSP inferior; 1781 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1782 1783 // Use a map to keep track of the threads which we have attached/need to attach. 1784 Host::TidMap tids_to_attach; 1785 if (pid <= 1) 1786 { 1787 args->m_error.SetErrorToGenericError(); 1788 args->m_error.SetErrorString("Attaching to process 1 is not allowed."); 1789 goto FINISH; 1790 } 1791 1792 while (Host::FindProcessThreads(pid, tids_to_attach)) 1793 { 1794 for (Host::TidMap::iterator it = tids_to_attach.begin(); 1795 it != tids_to_attach.end();) 1796 { 1797 if (it->second == false) 1798 { 1799 lldb::tid_t tid = it->first; 1800 1801 // Attach to the requested process. 1802 // An attach will cause the thread to stop with a SIGSTOP. 1803 PTRACE(PTRACE_ATTACH, tid, nullptr, nullptr, 0, args->m_error); 1804 if (args->m_error.Fail()) 1805 { 1806 // No such thread. The thread may have exited. 1807 // More error handling may be needed. 1808 if (args->m_error.GetError() == ESRCH) 1809 { 1810 it = tids_to_attach.erase(it); 1811 continue; 1812 } 1813 else 1814 goto FINISH; 1815 } 1816 1817 int status; 1818 // Need to use __WALL otherwise we receive an error with errno=ECHLD 1819 // At this point we should have a thread stopped if waitpid succeeds. 1820 if ((status = waitpid(tid, NULL, __WALL)) < 0) 1821 { 1822 // No such thread. The thread may have exited. 1823 // More error handling may be needed. 1824 if (errno == ESRCH) 1825 { 1826 it = tids_to_attach.erase(it); 1827 continue; 1828 } 1829 else 1830 { 1831 args->m_error.SetErrorToErrno(); 1832 goto FINISH; 1833 } 1834 } 1835 1836 args->m_error = SetDefaultPtraceOpts(tid); 1837 if (args->m_error.Fail()) 1838 goto FINISH; 1839 1840 1841 if (log) 1842 log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid); 1843 1844 it->second = true; 1845 1846 // Create the thread, mark it as stopped. 1847 NativeThreadProtocolSP thread_sp (monitor->AddThread (static_cast<lldb::tid_t> (tid))); 1848 assert (thread_sp && "AddThread() returned a nullptr"); 1849 1850 // This will notify this is a new thread and tell the system it is stopped. 1851 monitor->NotifyThreadCreateStopped (tid); 1852 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGSTOP); 1853 monitor->SetCurrentThreadID (thread_sp->GetID ()); 1854 } 1855 1856 // move the loop forward 1857 ++it; 1858 } 1859 } 1860 1861 if (tids_to_attach.size() > 0) 1862 { 1863 monitor->m_pid = pid; 1864 // Let our process instance know the thread has stopped. 1865 monitor->SetState (StateType::eStateStopped); 1866 } 1867 else 1868 { 1869 args->m_error.SetErrorToGenericError(); 1870 args->m_error.SetErrorString("No such process."); 1871 } 1872 1873 FINISH: 1874 return args->m_error.Success(); 1875 } 1876 1877 Error 1878 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) 1879 { 1880 long ptrace_opts = 0; 1881 1882 // Have the child raise an event on exit. This is used to keep the child in 1883 // limbo until it is destroyed. 1884 ptrace_opts |= PTRACE_O_TRACEEXIT; 1885 1886 // Have the tracer trace threads which spawn in the inferior process. 1887 // TODO: if we want to support tracing the inferiors' child, add the 1888 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) 1889 ptrace_opts |= PTRACE_O_TRACECLONE; 1890 1891 // Have the tracer notify us before execve returns 1892 // (needed to disable legacy SIGTRAP generation) 1893 ptrace_opts |= PTRACE_O_TRACEEXEC; 1894 1895 Error error; 1896 PTRACE(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts, 0, error); 1897 return error; 1898 } 1899 1900 static ExitType convert_pid_status_to_exit_type (int status) 1901 { 1902 if (WIFEXITED (status)) 1903 return ExitType::eExitTypeExit; 1904 else if (WIFSIGNALED (status)) 1905 return ExitType::eExitTypeSignal; 1906 else if (WIFSTOPPED (status)) 1907 return ExitType::eExitTypeStop; 1908 else 1909 { 1910 // We don't know what this is. 1911 return ExitType::eExitTypeInvalid; 1912 } 1913 } 1914 1915 static int convert_pid_status_to_return_code (int status) 1916 { 1917 if (WIFEXITED (status)) 1918 return WEXITSTATUS (status); 1919 else if (WIFSIGNALED (status)) 1920 return WTERMSIG (status); 1921 else if (WIFSTOPPED (status)) 1922 return WSTOPSIG (status); 1923 else 1924 { 1925 // We don't know what this is. 1926 return ExitType::eExitTypeInvalid; 1927 } 1928 } 1929 1930 // Main process monitoring waitpid-loop handler. 1931 bool 1932 NativeProcessLinux::MonitorCallback(void *callback_baton, 1933 lldb::pid_t pid, 1934 bool exited, 1935 int signal, 1936 int status) 1937 { 1938 Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS)); 1939 1940 NativeProcessLinux *const process = static_cast<NativeProcessLinux*>(callback_baton); 1941 assert (process && "process is null"); 1942 if (!process) 1943 { 1944 if (log) 1945 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " callback_baton was null, can't determine process to use", __FUNCTION__, pid); 1946 return true; 1947 } 1948 1949 // Certain activities differ based on whether the pid is the tid of the main thread. 1950 const bool is_main_thread = (pid == process->GetID ()); 1951 1952 // Assume we keep monitoring by default. 1953 bool stop_monitoring = false; 1954 1955 // Handle when the thread exits. 1956 if (exited) 1957 { 1958 if (log) 1959 log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %" PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not"); 1960 1961 // This is a thread that exited. Ensure we're not tracking it anymore. 1962 const bool thread_found = process->StopTrackingThread (pid); 1963 1964 // Make sure the thread state coordinator knows about this. 1965 process->NotifyThreadDeath (pid); 1966 1967 if (is_main_thread) 1968 { 1969 // We only set the exit status and notify the delegate if we haven't already set the process 1970 // state to an exited state. We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8) 1971 // for the main thread. 1972 const bool already_notified = (process->GetState() == StateType::eStateExited) || (process->GetState () == StateType::eStateCrashed); 1973 if (!already_notified) 1974 { 1975 if (log) 1976 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (process->GetState ())); 1977 // The main thread exited. We're done monitoring. Report to delegate. 1978 process->SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); 1979 1980 // Notify delegate that our process has exited. 1981 process->SetState (StateType::eStateExited, true); 1982 } 1983 else 1984 { 1985 if (log) 1986 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); 1987 } 1988 return true; 1989 } 1990 else 1991 { 1992 // Do we want to report to the delegate in this case? I think not. If this was an orderly 1993 // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, 1994 // and we would have done an all-stop then. 1995 if (log) 1996 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); 1997 1998 // Not the main thread, we keep going. 1999 return false; 2000 } 2001 } 2002 2003 // Get details on the signal raised. 2004 siginfo_t info; 2005 const auto err = process->GetSignalInfo(pid, &info); 2006 if (err.Success()) 2007 { 2008 // We have retrieved the signal info. Dispatch appropriately. 2009 if (info.si_signo == SIGTRAP) 2010 process->MonitorSIGTRAP(&info, pid); 2011 else 2012 process->MonitorSignal(&info, pid, exited); 2013 2014 stop_monitoring = false; 2015 } 2016 else 2017 { 2018 if (err.GetError() == EINVAL) 2019 { 2020 // This is a group stop reception for this tid. 2021 if (log) 2022 log->Printf ("NativeThreadLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64, __FUNCTION__, process->GetID (), pid); 2023 process->NotifyThreadStop (pid); 2024 } 2025 else 2026 { 2027 // ptrace(GETSIGINFO) failed (but not due to group-stop). 2028 2029 // A return value of ESRCH means the thread/process is no longer on the system, 2030 // so it was killed somehow outside of our control. Either way, we can't do anything 2031 // with it anymore. 2032 2033 // We stop monitoring if it was the main thread. 2034 stop_monitoring = is_main_thread; 2035 2036 // Stop tracking the metadata for the thread since it's entirely off the system now. 2037 const bool thread_found = process->StopTrackingThread (pid); 2038 2039 // Make sure the thread state coordinator knows about this. 2040 process->NotifyThreadDeath (pid); 2041 2042 if (log) 2043 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)", 2044 __FUNCTION__, err.AsCString(), pid, signal, status, err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found"); 2045 2046 if (is_main_thread) 2047 { 2048 // Notify the delegate - our process is not available but appears to have been killed outside 2049 // our control. Is eStateExited the right exit state in this case? 2050 process->SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); 2051 process->SetState (StateType::eStateExited, true); 2052 } 2053 else 2054 { 2055 // This thread was pulled out from underneath us. Anything to do here? Do we want to do an all stop? 2056 if (log) 2057 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, process->GetID (), pid); 2058 } 2059 } 2060 } 2061 2062 return stop_monitoring; 2063 } 2064 2065 void 2066 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid) 2067 { 2068 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2069 const bool is_main_thread = (pid == GetID ()); 2070 2071 assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!"); 2072 if (!info) 2073 return; 2074 2075 Mutex::Locker locker (m_threads_mutex); 2076 2077 // See if we can find a thread for this signal. 2078 NativeThreadProtocolSP thread_sp = GetThreadByID (pid); 2079 if (!thread_sp) 2080 { 2081 if (log) 2082 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid); 2083 } 2084 2085 switch (info->si_code) 2086 { 2087 // TODO: these two cases are required if we want to support tracing of the inferiors' children. We'd need this to debug a monitor. 2088 // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 2089 // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 2090 2091 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): 2092 { 2093 lldb::tid_t tid = LLDB_INVALID_THREAD_ID; 2094 2095 // The main thread is stopped here. 2096 if (thread_sp) 2097 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGTRAP); 2098 NotifyThreadStop (pid); 2099 2100 unsigned long event_message = 0; 2101 if (GetEventMessage (pid, &event_message).Success()) 2102 { 2103 tid = static_cast<lldb::tid_t> (event_message); 2104 if (log) 2105 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event for tid %" PRIu64, __FUNCTION__, pid, tid); 2106 2107 // If we don't track the thread yet: create it, mark as stopped. 2108 // If we do track it, this is the wait we needed. Now resume the new thread. 2109 // In all cases, resume the current (i.e. main process) thread. 2110 bool created_now = false; 2111 NativeThreadProtocolSP new_thread_sp = GetOrCreateThread (tid, created_now); 2112 assert (new_thread_sp.get() && "failed to get or create the tracking data for newly created inferior thread"); 2113 2114 // If the thread was already tracked, it means the created thread already received its SI_USER notification of creation. 2115 if (!created_now) 2116 { 2117 // We can now resume the newly created thread since it is fully created. 2118 NotifyThreadCreateStopped (tid); 2119 m_coordinator_up->RequestThreadResume (tid, 2120 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2121 { 2122 reinterpret_cast<NativeThreadLinux*> (new_thread_sp.get ())->SetRunning (); 2123 return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER); 2124 }, 2125 CoordinatorErrorHandler); 2126 } 2127 else 2128 { 2129 // Mark the thread as currently launching. Need to wait for SIGTRAP clone on the main thread before 2130 // this thread is ready to go. 2131 reinterpret_cast<NativeThreadLinux*> (new_thread_sp.get ())->SetLaunching (); 2132 } 2133 } 2134 else 2135 { 2136 if (log) 2137 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, pid); 2138 } 2139 2140 // In all cases, we can resume the main thread here. 2141 m_coordinator_up->RequestThreadResume (pid, 2142 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2143 { 2144 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning (); 2145 return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER); 2146 }, 2147 CoordinatorErrorHandler); 2148 2149 break; 2150 } 2151 2152 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): 2153 { 2154 NativeThreadProtocolSP main_thread_sp; 2155 if (log) 2156 log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP); 2157 2158 // The thread state coordinator needs to reset due to the exec. 2159 m_coordinator_up->ResetForExec (); 2160 2161 // Remove all but the main thread here. Linux fork creates a new process which only copies the main thread. Mutexes are in undefined state. 2162 if (log) 2163 log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__); 2164 2165 for (auto thread_sp : m_threads) 2166 { 2167 const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID (); 2168 if (is_main_thread) 2169 { 2170 main_thread_sp = thread_sp; 2171 if (log) 2172 log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ()); 2173 } 2174 else 2175 { 2176 // Tell thread coordinator this thread is dead. 2177 if (log) 2178 log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ()); 2179 } 2180 } 2181 2182 m_threads.clear (); 2183 2184 if (main_thread_sp) 2185 { 2186 m_threads.push_back (main_thread_sp); 2187 SetCurrentThreadID (main_thread_sp->GetID ()); 2188 reinterpret_cast<NativeThreadLinux*>(main_thread_sp.get())->SetStoppedByExec (); 2189 } 2190 else 2191 { 2192 SetCurrentThreadID (LLDB_INVALID_THREAD_ID); 2193 if (log) 2194 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ()); 2195 } 2196 2197 // Tell coordinator about about the "new" (since exec) stopped main thread. 2198 const lldb::tid_t main_thread_tid = GetID (); 2199 NotifyThreadCreateStopped (main_thread_tid); 2200 2201 // NOTE: ideally these next statements would execute at the same time as the coordinator thread create was executed. 2202 // Consider a handler that can execute when that happens. 2203 // Let our delegate know we have just exec'd. 2204 NotifyDidExec (); 2205 2206 // If we have a main thread, indicate we are stopped. 2207 assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked"); 2208 2209 // Let the process know we're stopped. 2210 CallAfterRunningThreadsStop (pid, 2211 [=] (lldb::tid_t signaling_tid) 2212 { 2213 SetState (StateType::eStateStopped, true); 2214 }); 2215 2216 break; 2217 } 2218 2219 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): 2220 { 2221 // The inferior process or one of its threads is about to exit. 2222 2223 // This thread is currently stopped. It's not actually dead yet, just about to be. 2224 NotifyThreadStop (pid); 2225 2226 unsigned long data = 0; 2227 if (GetEventMessage(pid, &data).Fail()) 2228 data = -1; 2229 2230 if (log) 2231 { 2232 log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)", 2233 __FUNCTION__, 2234 data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false", 2235 pid, 2236 is_main_thread ? "is main thread" : "not main thread"); 2237 } 2238 2239 if (is_main_thread) 2240 { 2241 SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true); 2242 } 2243 2244 const int signo = static_cast<int> (data); 2245 m_coordinator_up->RequestThreadResume (pid, 2246 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2247 { 2248 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning (); 2249 return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo); 2250 }, 2251 CoordinatorErrorHandler); 2252 2253 break; 2254 } 2255 2256 case 0: 2257 case TRAP_TRACE: 2258 // We receive this on single stepping. 2259 if (log) 2260 log->Printf ("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)", __FUNCTION__, pid); 2261 2262 if (thread_sp) 2263 { 2264 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedByTrace (); 2265 } 2266 2267 // This thread is currently stopped. 2268 NotifyThreadStop (pid); 2269 2270 // Here we don't have to request the rest of the threads to stop or request a deferred stop. 2271 // This would have already happened at the time the Resume() with step operation was signaled. 2272 // At this point, we just need to say we stopped, and the deferred notifcation will fire off 2273 // once all running threads have checked in as stopped. 2274 SetCurrentThreadID (pid); 2275 // Tell the process we have a stop (from software breakpoint). 2276 CallAfterRunningThreadsStop (pid, 2277 [=] (lldb::tid_t signaling_tid) 2278 { 2279 SetState (StateType::eStateStopped, true); 2280 }); 2281 break; 2282 2283 case SI_KERNEL: 2284 case TRAP_BRKPT: 2285 if (log) 2286 log->Printf ("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64, __FUNCTION__, pid); 2287 2288 // This thread is currently stopped. 2289 NotifyThreadStop (pid); 2290 2291 // Mark the thread as stopped at breakpoint. 2292 if (thread_sp) 2293 { 2294 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedByBreakpoint (); 2295 Error error = FixupBreakpointPCAsNeeded (thread_sp); 2296 if (error.Fail ()) 2297 { 2298 if (log) 2299 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s", __FUNCTION__, pid, error.AsCString ()); 2300 } 2301 } 2302 else 2303 { 2304 if (log) 2305 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": warning, cannot process software breakpoint since no thread metadata", __FUNCTION__, pid); 2306 } 2307 2308 2309 // We need to tell all other running threads before we notify the delegate about this stop. 2310 CallAfterRunningThreadsStop (pid, 2311 [=](lldb::tid_t deferred_notification_tid) 2312 { 2313 SetCurrentThreadID (deferred_notification_tid); 2314 // Tell the process we have a stop (from software breakpoint). 2315 SetState (StateType::eStateStopped, true); 2316 }); 2317 break; 2318 2319 case TRAP_HWBKPT: 2320 if (log) 2321 log->Printf ("NativeProcessLinux::%s() received watchpoint event, pid = %" PRIu64, __FUNCTION__, pid); 2322 2323 // This thread is currently stopped. 2324 NotifyThreadStop (pid); 2325 2326 // Mark the thread as stopped at watchpoint. 2327 // The address is at (lldb::addr_t)info->si_addr if we need it. 2328 if (thread_sp) 2329 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedByWatchpoint (); 2330 else 2331 { 2332 if (log) 2333 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ": warning, cannot process hardware breakpoint since no thread metadata", __FUNCTION__, GetID (), pid); 2334 } 2335 2336 // We need to tell all other running threads before we notify the delegate about this stop. 2337 CallAfterRunningThreadsStop (pid, 2338 [=](lldb::tid_t deferred_notification_tid) 2339 { 2340 SetCurrentThreadID (deferred_notification_tid); 2341 // Tell the process we have a stop (from hardware breakpoint). 2342 SetState (StateType::eStateStopped, true); 2343 }); 2344 break; 2345 2346 case SIGTRAP: 2347 case (SIGTRAP | 0x80): 2348 if (log) 2349 log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), pid); 2350 2351 // This thread is currently stopped. 2352 NotifyThreadStop (pid); 2353 if (thread_sp) 2354 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGTRAP); 2355 2356 2357 // Ignore these signals until we know more about them. 2358 m_coordinator_up->RequestThreadResume (pid, 2359 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2360 { 2361 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning (); 2362 return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER); 2363 }, 2364 CoordinatorErrorHandler); 2365 break; 2366 2367 default: 2368 assert(false && "Unexpected SIGTRAP code!"); 2369 if (log) 2370 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%" PRIx64, __FUNCTION__, GetID (), pid, static_cast<uint64_t> (SIGTRAP | (PTRACE_EVENT_CLONE << 8))); 2371 break; 2372 2373 } 2374 } 2375 2376 void 2377 NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited) 2378 { 2379 assert (info && "null info"); 2380 if (!info) 2381 return; 2382 2383 const int signo = info->si_signo; 2384 const bool is_from_llgs = info->si_pid == getpid (); 2385 2386 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2387 2388 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 2389 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a 2390 // kill(2) or raise(3). Similarly for tgkill(2) on Linux. 2391 // 2392 // IOW, user generated signals never generate what we consider to be a 2393 // "crash". 2394 // 2395 // Similarly, ACK signals generated by this monitor. 2396 2397 Mutex::Locker locker (m_threads_mutex); 2398 2399 // See if we can find a thread for this signal. 2400 NativeThreadProtocolSP thread_sp = GetThreadByID (pid); 2401 if (!thread_sp) 2402 { 2403 if (log) 2404 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid); 2405 } 2406 2407 // Handle the signal. 2408 if (info->si_code == SI_TKILL || info->si_code == SI_USER) 2409 { 2410 if (log) 2411 log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")", 2412 __FUNCTION__, 2413 GetUnixSignals ().GetSignalAsCString (signo), 2414 signo, 2415 (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"), 2416 info->si_pid, 2417 is_from_llgs ? "from llgs" : "not from llgs", 2418 pid); 2419 } 2420 2421 // Check for new thread notification. 2422 if ((info->si_pid == 0) && (info->si_code == SI_USER)) 2423 { 2424 // A new thread creation is being signaled. This is one of two parts that come in 2425 // a non-deterministic order. pid is the thread id. 2426 if (log) 2427 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification", 2428 __FUNCTION__, GetID (), pid); 2429 2430 // Did we already create the thread? 2431 bool created_now = false; 2432 thread_sp = GetOrCreateThread (pid, created_now); 2433 assert (thread_sp.get() && "failed to get or create the tracking data for newly created inferior thread"); 2434 2435 // If the thread was already tracked, it means the main thread already received its SIGTRAP for the create. 2436 if (!created_now) 2437 { 2438 // We can now resume the newly created thread since it is fully created. 2439 NotifyThreadCreateStopped (pid); 2440 m_coordinator_up->RequestThreadResume (pid, 2441 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2442 { 2443 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning (); 2444 return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER); 2445 }, 2446 CoordinatorErrorHandler); 2447 } 2448 else 2449 { 2450 // Mark the thread as currently launching. Need to wait for SIGTRAP clone on the main thread before 2451 // this thread is ready to go. 2452 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetLaunching (); 2453 } 2454 2455 // Done handling. 2456 return; 2457 } 2458 2459 // Check for thread stop notification. 2460 if (is_from_llgs && (info->si_code == SI_TKILL) && (signo == SIGSTOP)) 2461 { 2462 // This is a tgkill()-based stop. 2463 if (thread_sp) 2464 { 2465 if (log) 2466 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped", 2467 __FUNCTION__, 2468 GetID (), 2469 pid); 2470 2471 // Check that we're not already marked with a stop reason. 2472 // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that 2473 // the kernel signaled us with the thread stopping which we handled and marked as stopped, 2474 // and that, without an intervening resume, we received another stop. It is more likely 2475 // that we are missing the marking of a run state somewhere if we find that the thread was 2476 // marked as stopped. 2477 NativeThreadLinux *const linux_thread_p = reinterpret_cast<NativeThreadLinux*> (thread_sp.get ()); 2478 assert (linux_thread_p && "linux_thread_p is null!"); 2479 2480 const StateType thread_state = linux_thread_p->GetState (); 2481 if (!StateIsStoppedState (thread_state, false)) 2482 { 2483 // An inferior thread just stopped, but was not the primary cause of the process stop. 2484 // Instead, something else (like a breakpoint or step) caused the stop. Mark the 2485 // stop signal as 0 to let lldb know this isn't the important stop. 2486 linux_thread_p->SetStoppedBySignal (0); 2487 SetCurrentThreadID (thread_sp->GetID ()); 2488 m_coordinator_up->NotifyThreadStop (thread_sp->GetID (), true, CoordinatorErrorHandler); 2489 } 2490 else 2491 { 2492 if (log) 2493 { 2494 // Retrieve the signal name if the thread was stopped by a signal. 2495 int stop_signo = 0; 2496 const bool stopped_by_signal = linux_thread_p->IsStopped (&stop_signo); 2497 const char *signal_name = stopped_by_signal ? GetUnixSignals ().GetSignalAsCString (stop_signo) : "<not stopped by signal>"; 2498 if (!signal_name) 2499 signal_name = "<no-signal-name>"; 2500 2501 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is", 2502 __FUNCTION__, 2503 GetID (), 2504 linux_thread_p->GetID (), 2505 StateAsCString (thread_state), 2506 stop_signo, 2507 signal_name); 2508 } 2509 // Tell the thread state coordinator about the stop. 2510 NotifyThreadStop (thread_sp->GetID ()); 2511 } 2512 } 2513 2514 // Done handling. 2515 return; 2516 } 2517 2518 if (log) 2519 log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo)); 2520 2521 // This thread is stopped. 2522 NotifyThreadStop (pid); 2523 2524 switch (signo) 2525 { 2526 case SIGSTOP: 2527 { 2528 if (log) 2529 { 2530 if (is_from_llgs) 2531 log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from llgs, most likely an interrupt", __FUNCTION__, GetID (), pid); 2532 else 2533 log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from outside of debugger", __FUNCTION__, GetID (), pid); 2534 } 2535 2536 // Resume this thread to get the group-stop mechanism to fire off the true group stops. 2537 // This thread will get stopped again as part of the group-stop completion. 2538 m_coordinator_up->RequestThreadResume (pid, 2539 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2540 { 2541 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning (); 2542 // Pass this signal number on to the inferior to handle. 2543 return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo); 2544 }, 2545 CoordinatorErrorHandler); 2546 } 2547 break; 2548 case SIGSEGV: 2549 case SIGILL: 2550 case SIGFPE: 2551 case SIGBUS: 2552 if (thread_sp) 2553 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetCrashedWithException (*info); 2554 break; 2555 default: 2556 // This is just a pre-signal-delivery notification of the incoming signal. 2557 if (thread_sp) 2558 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (signo); 2559 2560 break; 2561 } 2562 2563 // Send a stop to the debugger after we get all other threads to stop. 2564 CallAfterRunningThreadsStop (pid, 2565 [=] (lldb::tid_t signaling_tid) 2566 { 2567 SetCurrentThreadID (signaling_tid); 2568 SetState (StateType::eStateStopped, true); 2569 }); 2570 } 2571 2572 Error 2573 NativeProcessLinux::Resume (const ResumeActionList &resume_actions) 2574 { 2575 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD)); 2576 if (log) 2577 log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ()); 2578 2579 lldb::tid_t deferred_signal_tid = LLDB_INVALID_THREAD_ID; 2580 lldb::tid_t deferred_signal_skip_tid = LLDB_INVALID_THREAD_ID; 2581 int deferred_signo = 0; 2582 NativeThreadProtocolSP deferred_signal_thread_sp; 2583 bool stepping = false; 2584 2585 Mutex::Locker locker (m_threads_mutex); 2586 2587 for (auto thread_sp : m_threads) 2588 { 2589 assert (thread_sp && "thread list should not contain NULL threads"); 2590 2591 const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true); 2592 2593 if (action == nullptr) 2594 { 2595 if (log) 2596 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64, 2597 __FUNCTION__, GetID (), thread_sp->GetID ()); 2598 continue; 2599 } 2600 2601 if (log) 2602 { 2603 log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64, 2604 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); 2605 } 2606 2607 switch (action->state) 2608 { 2609 case eStateRunning: 2610 { 2611 // Run the thread, possibly feeding it the signal. 2612 const int signo = action->signal; 2613 m_coordinator_up->RequestThreadResumeAsNeeded (thread_sp->GetID (), 2614 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2615 { 2616 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning (); 2617 // Pass this signal number on to the inferior to handle. 2618 const auto resume_result = Resume (tid_to_resume, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER); 2619 if (resume_result.Success()) 2620 SetState(eStateRunning, true); 2621 return resume_result; 2622 }, 2623 CoordinatorErrorHandler); 2624 break; 2625 } 2626 2627 case eStateStepping: 2628 { 2629 // Request the step. 2630 const int signo = action->signal; 2631 m_coordinator_up->RequestThreadResume (thread_sp->GetID (), 2632 [=](lldb::tid_t tid_to_step, bool supress_signal) 2633 { 2634 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStepping (); 2635 const auto step_result = SingleStep (tid_to_step,(signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER); 2636 assert (step_result.Success() && "SingleStep() failed"); 2637 if (step_result.Success()) 2638 SetState(eStateStepping, true); 2639 return step_result; 2640 }, 2641 CoordinatorErrorHandler); 2642 stepping = true; 2643 break; 2644 } 2645 2646 case eStateSuspended: 2647 case eStateStopped: 2648 // if we haven't chosen a deferred signal tid yet, use this one. 2649 if (deferred_signal_tid == LLDB_INVALID_THREAD_ID) 2650 { 2651 deferred_signal_tid = thread_sp->GetID (); 2652 deferred_signal_thread_sp = thread_sp; 2653 deferred_signo = SIGSTOP; 2654 } 2655 break; 2656 2657 default: 2658 return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64, 2659 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); 2660 } 2661 } 2662 2663 // If we had any thread stopping, then do a deferred notification of the chosen stop thread id and signal 2664 // after all other running threads have stopped. 2665 // If there is a stepping thread involved we'll be eventually stopped by SIGTRAP trace signal. 2666 if (deferred_signal_tid != LLDB_INVALID_THREAD_ID && !stepping) 2667 { 2668 CallAfterRunningThreadsStopWithSkipTID (deferred_signal_tid, 2669 deferred_signal_skip_tid, 2670 [=](lldb::tid_t deferred_notification_tid) 2671 { 2672 // Set the signal thread to the current thread. 2673 SetCurrentThreadID (deferred_notification_tid); 2674 2675 // Set the thread state as stopped by the deferred signo. 2676 reinterpret_cast<NativeThreadLinux*> (deferred_signal_thread_sp.get ())->SetStoppedBySignal (deferred_signo); 2677 2678 // Tell the process delegate that the process is in a stopped state. 2679 SetState (StateType::eStateStopped, true); 2680 }); 2681 } 2682 2683 return Error(); 2684 } 2685 2686 Error 2687 NativeProcessLinux::Halt () 2688 { 2689 Error error; 2690 2691 if (kill (GetID (), SIGSTOP) != 0) 2692 error.SetErrorToErrno (); 2693 2694 return error; 2695 } 2696 2697 Error 2698 NativeProcessLinux::Detach () 2699 { 2700 Error error; 2701 2702 // Tell ptrace to detach from the process. 2703 if (GetID () != LLDB_INVALID_PROCESS_ID) 2704 error = Detach (GetID ()); 2705 2706 // Stop monitoring the inferior. 2707 StopMonitor (); 2708 2709 // No error. 2710 return error; 2711 } 2712 2713 Error 2714 NativeProcessLinux::Signal (int signo) 2715 { 2716 Error error; 2717 2718 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2719 if (log) 2720 log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64, 2721 __FUNCTION__, signo, GetUnixSignals ().GetSignalAsCString (signo), GetID ()); 2722 2723 if (kill(GetID(), signo)) 2724 error.SetErrorToErrno(); 2725 2726 return error; 2727 } 2728 2729 Error 2730 NativeProcessLinux::Interrupt () 2731 { 2732 // Pick a running thread (or if none, a not-dead stopped thread) as 2733 // the chosen thread that will be the stop-reason thread. 2734 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2735 2736 NativeThreadProtocolSP running_thread_sp; 2737 NativeThreadProtocolSP stopped_thread_sp; 2738 2739 if (log) 2740 log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__); 2741 2742 Mutex::Locker locker (m_threads_mutex); 2743 2744 for (auto thread_sp : m_threads) 2745 { 2746 // The thread shouldn't be null but lets just cover that here. 2747 if (!thread_sp) 2748 continue; 2749 2750 // If we have a running or stepping thread, we'll call that the 2751 // target of the interrupt. 2752 const auto thread_state = thread_sp->GetState (); 2753 if (thread_state == eStateRunning || 2754 thread_state == eStateStepping) 2755 { 2756 running_thread_sp = thread_sp; 2757 break; 2758 } 2759 else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true)) 2760 { 2761 // Remember the first non-dead stopped thread. We'll use that as a backup if there are no running threads. 2762 stopped_thread_sp = thread_sp; 2763 } 2764 } 2765 2766 if (!running_thread_sp && !stopped_thread_sp) 2767 { 2768 Error error("found no running/stepping or live stopped threads as target for interrupt"); 2769 if (log) 2770 log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ()); 2771 2772 return error; 2773 } 2774 2775 NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp; 2776 2777 if (log) 2778 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target", 2779 __FUNCTION__, 2780 GetID (), 2781 running_thread_sp ? "running" : "stopped", 2782 deferred_signal_thread_sp->GetID ()); 2783 2784 CallAfterRunningThreadsStop (deferred_signal_thread_sp->GetID (), 2785 [=](lldb::tid_t deferred_notification_tid) 2786 { 2787 // Set the signal thread to the current thread. 2788 SetCurrentThreadID (deferred_notification_tid); 2789 2790 // Set the thread state as stopped by the deferred signo. 2791 reinterpret_cast<NativeThreadLinux*> (deferred_signal_thread_sp.get ())->SetStoppedBySignal (SIGSTOP); 2792 2793 // Tell the process delegate that the process is in a stopped state. 2794 SetState (StateType::eStateStopped, true); 2795 }); 2796 return Error(); 2797 } 2798 2799 Error 2800 NativeProcessLinux::Kill () 2801 { 2802 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2803 if (log) 2804 log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ()); 2805 2806 Error error; 2807 2808 switch (m_state) 2809 { 2810 case StateType::eStateInvalid: 2811 case StateType::eStateExited: 2812 case StateType::eStateCrashed: 2813 case StateType::eStateDetached: 2814 case StateType::eStateUnloaded: 2815 // Nothing to do - the process is already dead. 2816 if (log) 2817 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state)); 2818 return error; 2819 2820 case StateType::eStateConnected: 2821 case StateType::eStateAttaching: 2822 case StateType::eStateLaunching: 2823 case StateType::eStateStopped: 2824 case StateType::eStateRunning: 2825 case StateType::eStateStepping: 2826 case StateType::eStateSuspended: 2827 // We can try to kill a process in these states. 2828 break; 2829 } 2830 2831 if (kill (GetID (), SIGKILL) != 0) 2832 { 2833 error.SetErrorToErrno (); 2834 return error; 2835 } 2836 2837 return error; 2838 } 2839 2840 static Error 2841 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info) 2842 { 2843 memory_region_info.Clear(); 2844 2845 StringExtractor line_extractor (maps_line.c_str ()); 2846 2847 // Format: {address_start_hex}-{address_end_hex} perms offset dev inode pathname 2848 // perms: rwxp (letter is present if set, '-' if not, final character is p=private, s=shared). 2849 2850 // Parse out the starting address 2851 lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0); 2852 2853 // Parse out hyphen separating start and end address from range. 2854 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-')) 2855 return Error ("malformed /proc/{pid}/maps entry, missing dash between address range"); 2856 2857 // Parse out the ending address 2858 lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address); 2859 2860 // Parse out the space after the address. 2861 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' ')) 2862 return Error ("malformed /proc/{pid}/maps entry, missing space after range"); 2863 2864 // Save the range. 2865 memory_region_info.GetRange ().SetRangeBase (start_address); 2866 memory_region_info.GetRange ().SetRangeEnd (end_address); 2867 2868 // Parse out each permission entry. 2869 if (line_extractor.GetBytesLeft () < 4) 2870 return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions"); 2871 2872 // Handle read permission. 2873 const char read_perm_char = line_extractor.GetChar (); 2874 if (read_perm_char == 'r') 2875 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes); 2876 else 2877 { 2878 assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" ); 2879 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 2880 } 2881 2882 // Handle write permission. 2883 const char write_perm_char = line_extractor.GetChar (); 2884 if (write_perm_char == 'w') 2885 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes); 2886 else 2887 { 2888 assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" ); 2889 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 2890 } 2891 2892 // Handle execute permission. 2893 const char exec_perm_char = line_extractor.GetChar (); 2894 if (exec_perm_char == 'x') 2895 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes); 2896 else 2897 { 2898 assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" ); 2899 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 2900 } 2901 2902 return Error (); 2903 } 2904 2905 Error 2906 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info) 2907 { 2908 // FIXME review that the final memory region returned extends to the end of the virtual address space, 2909 // with no perms if it is not mapped. 2910 2911 // Use an approach that reads memory regions from /proc/{pid}/maps. 2912 // Assume proc maps entries are in ascending order. 2913 // FIXME assert if we find differently. 2914 Mutex::Locker locker (m_mem_region_cache_mutex); 2915 2916 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2917 Error error; 2918 2919 if (m_supports_mem_region == LazyBool::eLazyBoolNo) 2920 { 2921 // We're done. 2922 error.SetErrorString ("unsupported"); 2923 return error; 2924 } 2925 2926 // If our cache is empty, pull the latest. There should always be at least one memory region 2927 // if memory region handling is supported. 2928 if (m_mem_region_cache.empty ()) 2929 { 2930 error = ProcFileReader::ProcessLineByLine (GetID (), "maps", 2931 [&] (const std::string &line) -> bool 2932 { 2933 MemoryRegionInfo info; 2934 const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info); 2935 if (parse_error.Success ()) 2936 { 2937 m_mem_region_cache.push_back (info); 2938 return true; 2939 } 2940 else 2941 { 2942 if (log) 2943 log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ()); 2944 return false; 2945 } 2946 }); 2947 2948 // If we had an error, we'll mark unsupported. 2949 if (error.Fail ()) 2950 { 2951 m_supports_mem_region = LazyBool::eLazyBoolNo; 2952 return error; 2953 } 2954 else if (m_mem_region_cache.empty ()) 2955 { 2956 // No entries after attempting to read them. This shouldn't happen if /proc/{pid}/maps 2957 // is supported. Assume we don't support map entries via procfs. 2958 if (log) 2959 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__); 2960 m_supports_mem_region = LazyBool::eLazyBoolNo; 2961 error.SetErrorString ("not supported"); 2962 return error; 2963 } 2964 2965 if (log) 2966 log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ()); 2967 2968 // We support memory retrieval, remember that. 2969 m_supports_mem_region = LazyBool::eLazyBoolYes; 2970 } 2971 else 2972 { 2973 if (log) 2974 log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ())); 2975 } 2976 2977 lldb::addr_t prev_base_address = 0; 2978 2979 // FIXME start by finding the last region that is <= target address using binary search. Data is sorted. 2980 // There can be a ton of regions on pthreads apps with lots of threads. 2981 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it) 2982 { 2983 MemoryRegionInfo &proc_entry_info = *it; 2984 2985 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 2986 assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected"); 2987 prev_base_address = proc_entry_info.GetRange ().GetRangeBase (); 2988 2989 // If the target address comes before this entry, indicate distance to next region. 2990 if (load_addr < proc_entry_info.GetRange ().GetRangeBase ()) 2991 { 2992 range_info.GetRange ().SetRangeBase (load_addr); 2993 range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr); 2994 range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 2995 range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 2996 range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 2997 2998 return error; 2999 } 3000 else if (proc_entry_info.GetRange ().Contains (load_addr)) 3001 { 3002 // The target address is within the memory region we're processing here. 3003 range_info = proc_entry_info; 3004 return error; 3005 } 3006 3007 // The target memory address comes somewhere after the region we just parsed. 3008 } 3009 3010 // If we made it here, we didn't find an entry that contained the given address. 3011 error.SetErrorString ("address comes after final region"); 3012 3013 if (log) 3014 log->Printf ("NativeProcessLinux::%s failed to find map entry for address 0x%" PRIx64 ": %s", __FUNCTION__, load_addr, error.AsCString ()); 3015 3016 return error; 3017 } 3018 3019 void 3020 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId) 3021 { 3022 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3023 if (log) 3024 log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId); 3025 3026 { 3027 Mutex::Locker locker (m_mem_region_cache_mutex); 3028 if (log) 3029 log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ())); 3030 m_mem_region_cache.clear (); 3031 } 3032 } 3033 3034 Error 3035 NativeProcessLinux::AllocateMemory ( 3036 lldb::addr_t size, 3037 uint32_t permissions, 3038 lldb::addr_t &addr) 3039 { 3040 // FIXME implementing this requires the equivalent of 3041 // InferiorCallPOSIX::InferiorCallMmap, which depends on 3042 // functional ThreadPlans working with Native*Protocol. 3043 #if 1 3044 return Error ("not implemented yet"); 3045 #else 3046 addr = LLDB_INVALID_ADDRESS; 3047 3048 unsigned prot = 0; 3049 if (permissions & lldb::ePermissionsReadable) 3050 prot |= eMmapProtRead; 3051 if (permissions & lldb::ePermissionsWritable) 3052 prot |= eMmapProtWrite; 3053 if (permissions & lldb::ePermissionsExecutable) 3054 prot |= eMmapProtExec; 3055 3056 // TODO implement this directly in NativeProcessLinux 3057 // (and lift to NativeProcessPOSIX if/when that class is 3058 // refactored out). 3059 if (InferiorCallMmap(this, addr, 0, size, prot, 3060 eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { 3061 m_addr_to_mmap_size[addr] = size; 3062 return Error (); 3063 } else { 3064 addr = LLDB_INVALID_ADDRESS; 3065 return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions)); 3066 } 3067 #endif 3068 } 3069 3070 Error 3071 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr) 3072 { 3073 // FIXME see comments in AllocateMemory - required lower-level 3074 // bits not in place yet (ThreadPlans) 3075 return Error ("not implemented"); 3076 } 3077 3078 lldb::addr_t 3079 NativeProcessLinux::GetSharedLibraryInfoAddress () 3080 { 3081 #if 1 3082 // punt on this for now 3083 return LLDB_INVALID_ADDRESS; 3084 #else 3085 // Return the image info address for the exe module 3086 #if 1 3087 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3088 3089 ModuleSP module_sp; 3090 Error error = GetExeModuleSP (module_sp); 3091 if (error.Fail ()) 3092 { 3093 if (log) 3094 log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ()); 3095 return LLDB_INVALID_ADDRESS; 3096 } 3097 3098 if (module_sp == nullptr) 3099 { 3100 if (log) 3101 log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__); 3102 return LLDB_INVALID_ADDRESS; 3103 } 3104 3105 ObjectFileSP object_file_sp = module_sp->GetObjectFile (); 3106 if (object_file_sp == nullptr) 3107 { 3108 if (log) 3109 log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__); 3110 return LLDB_INVALID_ADDRESS; 3111 } 3112 3113 return obj_file_sp->GetImageInfoAddress(); 3114 #else 3115 Target *target = &GetTarget(); 3116 ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile(); 3117 Address addr = obj_file->GetImageInfoAddress(target); 3118 3119 if (addr.IsValid()) 3120 return addr.GetLoadAddress(target); 3121 return LLDB_INVALID_ADDRESS; 3122 #endif 3123 #endif // punt on this for now 3124 } 3125 3126 size_t 3127 NativeProcessLinux::UpdateThreads () 3128 { 3129 // The NativeProcessLinux monitoring threads are always up to date 3130 // with respect to thread state and they keep the thread list 3131 // populated properly. All this method needs to do is return the 3132 // thread count. 3133 Mutex::Locker locker (m_threads_mutex); 3134 return m_threads.size (); 3135 } 3136 3137 bool 3138 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const 3139 { 3140 arch = m_arch; 3141 return true; 3142 } 3143 3144 Error 3145 NativeProcessLinux::GetSoftwareBreakpointSize (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size) 3146 { 3147 // FIXME put this behind a breakpoint protocol class that can be 3148 // set per architecture. Need ARM, MIPS support here. 3149 static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 }; 3150 static const uint8_t g_i386_opcode [] = { 0xCC }; 3151 3152 switch (m_arch.GetMachine ()) 3153 { 3154 case llvm::Triple::aarch64: 3155 actual_opcode_size = static_cast<uint32_t> (sizeof(g_aarch64_opcode)); 3156 return Error (); 3157 3158 case llvm::Triple::x86: 3159 case llvm::Triple::x86_64: 3160 actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode)); 3161 return Error (); 3162 3163 default: 3164 assert(false && "CPU type not supported!"); 3165 return Error ("CPU type not supported"); 3166 } 3167 } 3168 3169 Error 3170 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware) 3171 { 3172 if (hardware) 3173 return Error ("NativeProcessLinux does not support hardware breakpoints"); 3174 else 3175 return SetSoftwareBreakpoint (addr, size); 3176 } 3177 3178 Error 3179 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint, size_t &actual_opcode_size, const uint8_t *&trap_opcode_bytes) 3180 { 3181 // FIXME put this behind a breakpoint protocol class that can be 3182 // set per architecture. Need ARM, MIPS support here. 3183 static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 }; 3184 static const uint8_t g_i386_opcode [] = { 0xCC }; 3185 3186 switch (m_arch.GetMachine ()) 3187 { 3188 case llvm::Triple::aarch64: 3189 trap_opcode_bytes = g_aarch64_opcode; 3190 actual_opcode_size = sizeof(g_aarch64_opcode); 3191 return Error (); 3192 3193 case llvm::Triple::x86: 3194 case llvm::Triple::x86_64: 3195 trap_opcode_bytes = g_i386_opcode; 3196 actual_opcode_size = sizeof(g_i386_opcode); 3197 return Error (); 3198 3199 default: 3200 assert(false && "CPU type not supported!"); 3201 return Error ("CPU type not supported"); 3202 } 3203 } 3204 3205 #if 0 3206 ProcessMessage::CrashReason 3207 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info) 3208 { 3209 ProcessMessage::CrashReason reason; 3210 assert(info->si_signo == SIGSEGV); 3211 3212 reason = ProcessMessage::eInvalidCrashReason; 3213 3214 switch (info->si_code) 3215 { 3216 default: 3217 assert(false && "unexpected si_code for SIGSEGV"); 3218 break; 3219 case SI_KERNEL: 3220 // Linux will occasionally send spurious SI_KERNEL codes. 3221 // (this is poorly documented in sigaction) 3222 // One way to get this is via unaligned SIMD loads. 3223 reason = ProcessMessage::eInvalidAddress; // for lack of anything better 3224 break; 3225 case SEGV_MAPERR: 3226 reason = ProcessMessage::eInvalidAddress; 3227 break; 3228 case SEGV_ACCERR: 3229 reason = ProcessMessage::ePrivilegedAddress; 3230 break; 3231 } 3232 3233 return reason; 3234 } 3235 #endif 3236 3237 3238 #if 0 3239 ProcessMessage::CrashReason 3240 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info) 3241 { 3242 ProcessMessage::CrashReason reason; 3243 assert(info->si_signo == SIGILL); 3244 3245 reason = ProcessMessage::eInvalidCrashReason; 3246 3247 switch (info->si_code) 3248 { 3249 default: 3250 assert(false && "unexpected si_code for SIGILL"); 3251 break; 3252 case ILL_ILLOPC: 3253 reason = ProcessMessage::eIllegalOpcode; 3254 break; 3255 case ILL_ILLOPN: 3256 reason = ProcessMessage::eIllegalOperand; 3257 break; 3258 case ILL_ILLADR: 3259 reason = ProcessMessage::eIllegalAddressingMode; 3260 break; 3261 case ILL_ILLTRP: 3262 reason = ProcessMessage::eIllegalTrap; 3263 break; 3264 case ILL_PRVOPC: 3265 reason = ProcessMessage::ePrivilegedOpcode; 3266 break; 3267 case ILL_PRVREG: 3268 reason = ProcessMessage::ePrivilegedRegister; 3269 break; 3270 case ILL_COPROC: 3271 reason = ProcessMessage::eCoprocessorError; 3272 break; 3273 case ILL_BADSTK: 3274 reason = ProcessMessage::eInternalStackError; 3275 break; 3276 } 3277 3278 return reason; 3279 } 3280 #endif 3281 3282 #if 0 3283 ProcessMessage::CrashReason 3284 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info) 3285 { 3286 ProcessMessage::CrashReason reason; 3287 assert(info->si_signo == SIGFPE); 3288 3289 reason = ProcessMessage::eInvalidCrashReason; 3290 3291 switch (info->si_code) 3292 { 3293 default: 3294 assert(false && "unexpected si_code for SIGFPE"); 3295 break; 3296 case FPE_INTDIV: 3297 reason = ProcessMessage::eIntegerDivideByZero; 3298 break; 3299 case FPE_INTOVF: 3300 reason = ProcessMessage::eIntegerOverflow; 3301 break; 3302 case FPE_FLTDIV: 3303 reason = ProcessMessage::eFloatDivideByZero; 3304 break; 3305 case FPE_FLTOVF: 3306 reason = ProcessMessage::eFloatOverflow; 3307 break; 3308 case FPE_FLTUND: 3309 reason = ProcessMessage::eFloatUnderflow; 3310 break; 3311 case FPE_FLTRES: 3312 reason = ProcessMessage::eFloatInexactResult; 3313 break; 3314 case FPE_FLTINV: 3315 reason = ProcessMessage::eFloatInvalidOperation; 3316 break; 3317 case FPE_FLTSUB: 3318 reason = ProcessMessage::eFloatSubscriptRange; 3319 break; 3320 } 3321 3322 return reason; 3323 } 3324 #endif 3325 3326 #if 0 3327 ProcessMessage::CrashReason 3328 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info) 3329 { 3330 ProcessMessage::CrashReason reason; 3331 assert(info->si_signo == SIGBUS); 3332 3333 reason = ProcessMessage::eInvalidCrashReason; 3334 3335 switch (info->si_code) 3336 { 3337 default: 3338 assert(false && "unexpected si_code for SIGBUS"); 3339 break; 3340 case BUS_ADRALN: 3341 reason = ProcessMessage::eIllegalAlignment; 3342 break; 3343 case BUS_ADRERR: 3344 reason = ProcessMessage::eIllegalAddress; 3345 break; 3346 case BUS_OBJERR: 3347 reason = ProcessMessage::eHardwareError; 3348 break; 3349 } 3350 3351 return reason; 3352 } 3353 #endif 3354 3355 void 3356 NativeProcessLinux::ServeOperation(OperationArgs *args) 3357 { 3358 NativeProcessLinux *monitor = args->m_monitor; 3359 3360 // We are finised with the arguments and are ready to go. Sync with the 3361 // parent thread and start serving operations on the inferior. 3362 sem_post(&args->m_semaphore); 3363 3364 for(;;) 3365 { 3366 // wait for next pending operation 3367 if (sem_wait(&monitor->m_operation_pending)) 3368 { 3369 if (errno == EINTR) 3370 continue; 3371 assert(false && "Unexpected errno from sem_wait"); 3372 } 3373 3374 // nullptr as operation means the operation thread should exit. Cancel() can't be used 3375 // because it is not supported on android. 3376 if (!monitor->m_operation) 3377 { 3378 // notify calling thread that operation is complete 3379 sem_post(&monitor->m_operation_done); 3380 break; 3381 } 3382 3383 reinterpret_cast<Operation*>(monitor->m_operation)->Execute(monitor); 3384 3385 // notify calling thread that operation is complete 3386 sem_post(&monitor->m_operation_done); 3387 } 3388 } 3389 3390 void 3391 NativeProcessLinux::DoOperation(void *op) 3392 { 3393 Mutex::Locker lock(m_operation_mutex); 3394 3395 m_operation = op; 3396 3397 // notify operation thread that an operation is ready to be processed 3398 sem_post(&m_operation_pending); 3399 3400 // wait for operation to complete 3401 while (sem_wait(&m_operation_done)) 3402 { 3403 if (errno == EINTR) 3404 continue; 3405 assert(false && "Unexpected errno from sem_wait"); 3406 } 3407 } 3408 3409 Error 3410 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, lldb::addr_t size, lldb::addr_t &bytes_read) 3411 { 3412 ReadOperation op(addr, buf, size, bytes_read); 3413 DoOperation(&op); 3414 return op.GetError (); 3415 } 3416 3417 Error 3418 NativeProcessLinux::WriteMemory (lldb::addr_t addr, const void *buf, lldb::addr_t size, lldb::addr_t &bytes_written) 3419 { 3420 WriteOperation op(addr, buf, size, bytes_written); 3421 DoOperation(&op); 3422 return op.GetError (); 3423 } 3424 3425 Error 3426 NativeProcessLinux::ReadRegisterValue(lldb::tid_t tid, uint32_t offset, const char* reg_name, 3427 uint32_t size, RegisterValue &value) 3428 { 3429 ReadRegOperation op(tid, offset, reg_name, value); 3430 DoOperation(&op); 3431 return op.GetError(); 3432 } 3433 3434 Error 3435 NativeProcessLinux::WriteRegisterValue(lldb::tid_t tid, unsigned offset, 3436 const char* reg_name, const RegisterValue &value) 3437 { 3438 WriteRegOperation op(tid, offset, reg_name, value); 3439 DoOperation(&op); 3440 return op.GetError(); 3441 } 3442 3443 Error 3444 NativeProcessLinux::ReadGPR(lldb::tid_t tid, void *buf, size_t buf_size) 3445 { 3446 ReadGPROperation op(tid, buf, buf_size); 3447 DoOperation(&op); 3448 return op.GetError(); 3449 } 3450 3451 Error 3452 NativeProcessLinux::ReadFPR(lldb::tid_t tid, void *buf, size_t buf_size) 3453 { 3454 ReadFPROperation op(tid, buf, buf_size); 3455 DoOperation(&op); 3456 return op.GetError(); 3457 } 3458 3459 Error 3460 NativeProcessLinux::ReadRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 3461 { 3462 ReadRegisterSetOperation op(tid, buf, buf_size, regset); 3463 DoOperation(&op); 3464 return op.GetError(); 3465 } 3466 3467 Error 3468 NativeProcessLinux::WriteGPR(lldb::tid_t tid, void *buf, size_t buf_size) 3469 { 3470 WriteGPROperation op(tid, buf, buf_size); 3471 DoOperation(&op); 3472 return op.GetError(); 3473 } 3474 3475 Error 3476 NativeProcessLinux::WriteFPR(lldb::tid_t tid, void *buf, size_t buf_size) 3477 { 3478 WriteFPROperation op(tid, buf, buf_size); 3479 DoOperation(&op); 3480 return op.GetError(); 3481 } 3482 3483 Error 3484 NativeProcessLinux::WriteRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 3485 { 3486 WriteRegisterSetOperation op(tid, buf, buf_size, regset); 3487 DoOperation(&op); 3488 return op.GetError(); 3489 } 3490 3491 Error 3492 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo) 3493 { 3494 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3495 3496 if (log) 3497 log->Printf ("NativeProcessLinux::%s() resuming thread = %" PRIu64 " with signal %s", __FUNCTION__, tid, 3498 GetUnixSignals().GetSignalAsCString (signo)); 3499 ResumeOperation op (tid, signo); 3500 DoOperation (&op); 3501 if (log) 3502 log->Printf ("NativeProcessLinux::%s() resuming thread = %" PRIu64 " result = %s", __FUNCTION__, tid, op.GetError().Success() ? "true" : "false"); 3503 return op.GetError(); 3504 } 3505 3506 Error 3507 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo) 3508 { 3509 SingleStepOperation op(tid, signo); 3510 DoOperation(&op); 3511 return op.GetError(); 3512 } 3513 3514 Error 3515 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) 3516 { 3517 SiginfoOperation op(tid, siginfo); 3518 DoOperation(&op); 3519 return op.GetError(); 3520 } 3521 3522 Error 3523 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message) 3524 { 3525 EventMessageOperation op(tid, message); 3526 DoOperation(&op); 3527 return op.GetError(); 3528 } 3529 3530 lldb_private::Error 3531 NativeProcessLinux::Detach(lldb::tid_t tid) 3532 { 3533 if (tid == LLDB_INVALID_THREAD_ID) 3534 return Error(); 3535 3536 DetachOperation op(tid); 3537 DoOperation(&op); 3538 return op.GetError(); 3539 } 3540 3541 bool 3542 NativeProcessLinux::DupDescriptor(const char *path, int fd, int flags) 3543 { 3544 int target_fd = open(path, flags, 0666); 3545 3546 if (target_fd == -1) 3547 return false; 3548 3549 if (dup2(target_fd, fd) == -1) 3550 return false; 3551 3552 return (close(target_fd) == -1) ? false : true; 3553 } 3554 3555 void 3556 NativeProcessLinux::StopMonitoringChildProcess() 3557 { 3558 if (m_monitor_thread.IsJoinable()) 3559 { 3560 m_monitor_thread.Cancel(); 3561 m_monitor_thread.Join(nullptr); 3562 } 3563 } 3564 3565 void 3566 NativeProcessLinux::StopMonitor() 3567 { 3568 StopOpThread(); 3569 StopMonitoringChildProcess(); 3570 StopCoordinatorThread (); 3571 sem_destroy(&m_operation_pending); 3572 sem_destroy(&m_operation_done); 3573 3574 // TODO: validate whether this still holds, fix up comment. 3575 // Note: ProcessPOSIX passes the m_terminal_fd file descriptor to 3576 // Process::SetSTDIOFileDescriptor, which in turn transfers ownership of 3577 // the descriptor to a ConnectionFileDescriptor object. Consequently 3578 // even though still has the file descriptor, we shouldn't close it here. 3579 } 3580 3581 void 3582 NativeProcessLinux::StopOpThread() 3583 { 3584 if (!m_operation_thread.IsJoinable()) 3585 return; 3586 3587 DoOperation(nullptr); // nullptr as operation ask the operation thread to exit 3588 m_operation_thread.Join(nullptr); 3589 } 3590 3591 Error 3592 NativeProcessLinux::StartCoordinatorThread () 3593 { 3594 Error error; 3595 static const char *g_thread_name = "lldb.process.linux.ts_coordinator"; 3596 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3597 3598 // Skip if thread is already running 3599 if (m_coordinator_thread.IsJoinable()) 3600 { 3601 error.SetErrorString ("ThreadStateCoordinator's run loop is already running"); 3602 if (log) 3603 log->Printf ("NativeProcessLinux::%s %s", __FUNCTION__, error.AsCString ()); 3604 return error; 3605 } 3606 3607 // Enable verbose logging if lldb thread logging is enabled. 3608 m_coordinator_up->LogEnableEventProcessing (log != nullptr); 3609 3610 if (log) 3611 log->Printf ("NativeProcessLinux::%s launching ThreadStateCoordinator thread for pid %" PRIu64, __FUNCTION__, GetID ()); 3612 m_coordinator_thread = ThreadLauncher::LaunchThread(g_thread_name, CoordinatorThread, this, &error); 3613 return error; 3614 } 3615 3616 void * 3617 NativeProcessLinux::CoordinatorThread (void *arg) 3618 { 3619 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3620 3621 NativeProcessLinux *const process = static_cast<NativeProcessLinux*> (arg); 3622 assert (process && "null process passed to CoordinatorThread"); 3623 if (!process) 3624 { 3625 if (log) 3626 log->Printf ("NativeProcessLinux::%s null process, exiting ThreadStateCoordinator processing loop", __FUNCTION__); 3627 return nullptr; 3628 } 3629 3630 // Run the thread state coordinator loop until it is done. This call uses 3631 // efficient waiting for an event to be ready. 3632 while (process->m_coordinator_up->ProcessNextEvent () == ThreadStateCoordinator::eventLoopResultContinue) 3633 { 3634 } 3635 3636 if (log) 3637 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " exiting ThreadStateCoordinator processing loop due to coordinator indicating completion", __FUNCTION__, process->GetID ()); 3638 3639 return nullptr; 3640 } 3641 3642 void 3643 NativeProcessLinux::StopCoordinatorThread() 3644 { 3645 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3646 if (log) 3647 log->Printf ("NativeProcessLinux::%s requesting ThreadStateCoordinator stop for pid %" PRIu64, __FUNCTION__, GetID ()); 3648 3649 // Tell the coordinator we're done. This will cause the coordinator 3650 // run loop thread to exit when the processing queue hits this message. 3651 m_coordinator_up->StopCoordinator (); 3652 m_coordinator_thread.Join (nullptr); 3653 } 3654 3655 bool 3656 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id) 3657 { 3658 for (auto thread_sp : m_threads) 3659 { 3660 assert (thread_sp && "thread list should not contain NULL threads"); 3661 if (thread_sp->GetID () == thread_id) 3662 { 3663 // We have this thread. 3664 return true; 3665 } 3666 } 3667 3668 // We don't have this thread. 3669 return false; 3670 } 3671 3672 NativeThreadProtocolSP 3673 NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id) 3674 { 3675 // CONSIDER organize threads by map - we can do better than linear. 3676 for (auto thread_sp : m_threads) 3677 { 3678 if (thread_sp->GetID () == thread_id) 3679 return thread_sp; 3680 } 3681 3682 // We don't have this thread. 3683 return NativeThreadProtocolSP (); 3684 } 3685 3686 bool 3687 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id) 3688 { 3689 Mutex::Locker locker (m_threads_mutex); 3690 for (auto it = m_threads.begin (); it != m_threads.end (); ++it) 3691 { 3692 if (*it && ((*it)->GetID () == thread_id)) 3693 { 3694 m_threads.erase (it); 3695 return true; 3696 } 3697 } 3698 3699 // Didn't find it. 3700 return false; 3701 } 3702 3703 NativeThreadProtocolSP 3704 NativeProcessLinux::AddThread (lldb::tid_t thread_id) 3705 { 3706 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3707 3708 Mutex::Locker locker (m_threads_mutex); 3709 3710 if (log) 3711 { 3712 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64, 3713 __FUNCTION__, 3714 GetID (), 3715 thread_id); 3716 } 3717 3718 assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists"); 3719 3720 // If this is the first thread, save it as the current thread 3721 if (m_threads.empty ()) 3722 SetCurrentThreadID (thread_id); 3723 3724 NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id)); 3725 m_threads.push_back (thread_sp); 3726 3727 return thread_sp; 3728 } 3729 3730 NativeThreadProtocolSP 3731 NativeProcessLinux::GetOrCreateThread (lldb::tid_t thread_id, bool &created) 3732 { 3733 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3734 3735 Mutex::Locker locker (m_threads_mutex); 3736 if (log) 3737 { 3738 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " get/create thread with tid %" PRIu64, 3739 __FUNCTION__, 3740 GetID (), 3741 thread_id); 3742 } 3743 3744 // Retrieve the thread if it is already getting tracked. 3745 NativeThreadProtocolSP thread_sp = MaybeGetThreadNoLock (thread_id); 3746 if (thread_sp) 3747 { 3748 if (log) 3749 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": thread already tracked, returning", 3750 __FUNCTION__, 3751 GetID (), 3752 thread_id); 3753 created = false; 3754 return thread_sp; 3755 3756 } 3757 3758 // Create the thread metadata since it isn't being tracked. 3759 if (log) 3760 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": thread didn't exist, tracking now", 3761 __FUNCTION__, 3762 GetID (), 3763 thread_id); 3764 3765 thread_sp.reset (new NativeThreadLinux (this, thread_id)); 3766 m_threads.push_back (thread_sp); 3767 created = true; 3768 3769 return thread_sp; 3770 } 3771 3772 Error 3773 NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp) 3774 { 3775 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS)); 3776 3777 Error error; 3778 3779 // Get a linux thread pointer. 3780 if (!thread_sp) 3781 { 3782 error.SetErrorString ("null thread_sp"); 3783 if (log) 3784 log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); 3785 return error; 3786 } 3787 NativeThreadLinux *const linux_thread_p = reinterpret_cast<NativeThreadLinux*> (thread_sp.get()); 3788 3789 // Find out the size of a breakpoint (might depend on where we are in the code). 3790 NativeRegisterContextSP context_sp = linux_thread_p->GetRegisterContext (); 3791 if (!context_sp) 3792 { 3793 error.SetErrorString ("cannot get a NativeRegisterContext for the thread"); 3794 if (log) 3795 log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); 3796 return error; 3797 } 3798 3799 uint32_t breakpoint_size = 0; 3800 error = GetSoftwareBreakpointSize (context_sp, breakpoint_size); 3801 if (error.Fail ()) 3802 { 3803 if (log) 3804 log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ()); 3805 return error; 3806 } 3807 else 3808 { 3809 if (log) 3810 log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size); 3811 } 3812 3813 // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size. 3814 const lldb::addr_t initial_pc_addr = context_sp->GetPC (); 3815 lldb::addr_t breakpoint_addr = initial_pc_addr; 3816 if (breakpoint_size > static_cast<lldb::addr_t> (0)) 3817 { 3818 // Do not allow breakpoint probe to wrap around. 3819 if (breakpoint_addr >= static_cast<lldb::addr_t> (breakpoint_size)) 3820 breakpoint_addr -= static_cast<lldb::addr_t> (breakpoint_size); 3821 } 3822 3823 // Check if we stopped because of a breakpoint. 3824 NativeBreakpointSP breakpoint_sp; 3825 error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp); 3826 if (!error.Success () || !breakpoint_sp) 3827 { 3828 // We didn't find one at a software probe location. Nothing to do. 3829 if (log) 3830 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr); 3831 return Error (); 3832 } 3833 3834 // If the breakpoint is not a software breakpoint, nothing to do. 3835 if (!breakpoint_sp->IsSoftwareBreakpoint ()) 3836 { 3837 if (log) 3838 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr); 3839 return Error (); 3840 } 3841 3842 // 3843 // We have a software breakpoint and need to adjust the PC. 3844 // 3845 3846 // Sanity check. 3847 if (breakpoint_size == 0) 3848 { 3849 // Nothing to do! How did we get here? 3850 if (log) 3851 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr); 3852 return Error (); 3853 } 3854 3855 // Change the program counter. 3856 if (log) 3857 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_p->GetID (), initial_pc_addr, breakpoint_addr); 3858 3859 error = context_sp->SetPC (breakpoint_addr); 3860 if (error.Fail ()) 3861 { 3862 if (log) 3863 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_p->GetID (), error.AsCString ()); 3864 return error; 3865 } 3866 3867 return error; 3868 } 3869 3870 void 3871 NativeProcessLinux::NotifyThreadCreateStopped (lldb::tid_t tid) 3872 { 3873 const bool is_stopped = true; 3874 m_coordinator_up->NotifyThreadCreate (tid, is_stopped, CoordinatorErrorHandler); 3875 } 3876 3877 void 3878 NativeProcessLinux::NotifyThreadDeath (lldb::tid_t tid) 3879 { 3880 m_coordinator_up->NotifyThreadDeath (tid, CoordinatorErrorHandler); 3881 } 3882 3883 void 3884 NativeProcessLinux::NotifyThreadStop (lldb::tid_t tid) 3885 { 3886 m_coordinator_up->NotifyThreadStop (tid, false, CoordinatorErrorHandler); 3887 } 3888 3889 void 3890 NativeProcessLinux::CallAfterRunningThreadsStop (lldb::tid_t tid, 3891 const std::function<void (lldb::tid_t tid)> &call_after_function) 3892 { 3893 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3894 if (log) 3895 log->Printf("NativeProcessLinux::%s tid %" PRIu64, __FUNCTION__, tid); 3896 3897 const lldb::pid_t pid = GetID (); 3898 m_coordinator_up->CallAfterRunningThreadsStop (tid, 3899 [=](lldb::tid_t request_stop_tid) 3900 { 3901 return RequestThreadStop(pid, request_stop_tid); 3902 }, 3903 call_after_function, 3904 CoordinatorErrorHandler); 3905 } 3906 3907 void 3908 NativeProcessLinux::CallAfterRunningThreadsStopWithSkipTID (lldb::tid_t deferred_signal_tid, 3909 lldb::tid_t skip_stop_request_tid, 3910 const std::function<void (lldb::tid_t tid)> &call_after_function) 3911 { 3912 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3913 if (log) 3914 log->Printf("NativeProcessLinux::%s deferred_signal_tid %" PRIu64 ", skip_stop_request_tid %" PRIu64, __FUNCTION__, deferred_signal_tid, skip_stop_request_tid); 3915 3916 const lldb::pid_t pid = GetID (); 3917 m_coordinator_up->CallAfterRunningThreadsStopWithSkipTIDs (deferred_signal_tid, 3918 skip_stop_request_tid != LLDB_INVALID_THREAD_ID ? ThreadStateCoordinator::ThreadIDSet {skip_stop_request_tid} : ThreadStateCoordinator::ThreadIDSet (), 3919 [=](lldb::tid_t request_stop_tid) 3920 { 3921 return RequestThreadStop(pid, request_stop_tid); 3922 }, 3923 call_after_function, 3924 CoordinatorErrorHandler); 3925 } 3926 3927 lldb_private::Error 3928 NativeProcessLinux::RequestThreadStop (const lldb::pid_t pid, const lldb::tid_t tid) 3929 { 3930 Log* log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3931 if (log) 3932 log->Printf ("NativeProcessLinux::%s requesting thread stop(pid: %" PRIu64 ", tid: %" PRIu64 ")", __FUNCTION__, pid, tid); 3933 3934 Error err; 3935 errno = 0; 3936 if (::tgkill (pid, tid, SIGSTOP) != 0) 3937 { 3938 err.SetErrorToErrno (); 3939 if (log) 3940 log->Printf ("NativeProcessLinux::%s tgkill(%" PRIu64 ", %" PRIu64 ", SIGSTOP) failed: %s", __FUNCTION__, pid, tid, err.AsCString ()); 3941 } 3942 3943 return err; 3944 } 3945