1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "NativeProcessLinux.h"
11 
12 // C Includes
13 #include <errno.h>
14 #include <stdint.h>
15 #include <string.h>
16 #include <unistd.h>
17 
18 // C++ Includes
19 #include <fstream>
20 #include <mutex>
21 #include <sstream>
22 #include <string>
23 #include <unordered_map>
24 
25 // Other libraries and framework includes
26 #include "lldb/Core/EmulateInstruction.h"
27 #include "lldb/Core/ModuleSpec.h"
28 #include "lldb/Core/RegisterValue.h"
29 #include "lldb/Core/State.h"
30 #include "lldb/Host/Host.h"
31 #include "lldb/Host/HostProcess.h"
32 #include "lldb/Host/PseudoTerminal.h"
33 #include "lldb/Host/ThreadLauncher.h"
34 #include "lldb/Host/common/NativeBreakpoint.h"
35 #include "lldb/Host/common/NativeRegisterContext.h"
36 #include "lldb/Host/linux/Ptrace.h"
37 #include "lldb/Host/linux/Uio.h"
38 #include "lldb/Host/posix/ProcessLauncherPosixFork.h"
39 #include "lldb/Symbol/ObjectFile.h"
40 #include "lldb/Target/Process.h"
41 #include "lldb/Target/ProcessLaunchInfo.h"
42 #include "lldb/Target/Target.h"
43 #include "lldb/Utility/LLDBAssert.h"
44 #include "lldb/Utility/Status.h"
45 #include "lldb/Utility/StringExtractor.h"
46 #include "llvm/Support/Errno.h"
47 #include "llvm/Support/FileSystem.h"
48 #include "llvm/Support/Threading.h"
49 
50 #include "NativeThreadLinux.h"
51 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
52 #include "Procfs.h"
53 
54 #include <linux/unistd.h>
55 #include <sys/socket.h>
56 #include <sys/syscall.h>
57 #include <sys/types.h>
58 #include <sys/user.h>
59 #include <sys/wait.h>
60 
61 // Support hardware breakpoints in case it has not been defined
62 #ifndef TRAP_HWBKPT
63 #define TRAP_HWBKPT 4
64 #endif
65 
66 using namespace lldb;
67 using namespace lldb_private;
68 using namespace lldb_private::process_linux;
69 using namespace llvm;
70 
71 // Private bits we only need internally.
72 
73 static bool ProcessVmReadvSupported() {
74   static bool is_supported;
75   static llvm::once_flag flag;
76 
77   llvm::call_once(flag, [] {
78     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
79 
80     uint32_t source = 0x47424742;
81     uint32_t dest = 0;
82 
83     struct iovec local, remote;
84     remote.iov_base = &source;
85     local.iov_base = &dest;
86     remote.iov_len = local.iov_len = sizeof source;
87 
88     // We shall try if cross-process-memory reads work by attempting to read a
89     // value from our own process.
90     ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
91     is_supported = (res == sizeof(source) && source == dest);
92     if (is_supported)
93       LLDB_LOG(log,
94                "Detected kernel support for process_vm_readv syscall. "
95                "Fast memory reads enabled.");
96     else
97       LLDB_LOG(log,
98                "syscall process_vm_readv failed (error: {0}). Fast memory "
99                "reads disabled.",
100                llvm::sys::StrError());
101   });
102 
103   return is_supported;
104 }
105 
106 namespace {
107 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) {
108   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
109   if (!log)
110     return;
111 
112   if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO))
113     LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec());
114   else
115     LLDB_LOG(log, "leaving STDIN as is");
116 
117   if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO))
118     LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec());
119   else
120     LLDB_LOG(log, "leaving STDOUT as is");
121 
122   if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO))
123     LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec());
124   else
125     LLDB_LOG(log, "leaving STDERR as is");
126 
127   int i = 0;
128   for (const char **args = info.GetArguments().GetConstArgumentVector(); *args;
129        ++args, ++i)
130     LLDB_LOG(log, "arg {0}: '{1}'", i, *args);
131 }
132 
133 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) {
134   uint8_t *ptr = (uint8_t *)bytes;
135   const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
136   for (uint32_t i = 0; i < loop_count; i++) {
137     s.Printf("[%x]", *ptr);
138     ptr++;
139   }
140 }
141 
142 void PtraceDisplayBytes(int &req, void *data, size_t data_size) {
143   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
144   if (!log)
145     return;
146   StreamString buf;
147 
148   switch (req) {
149   case PTRACE_POKETEXT: {
150     DisplayBytes(buf, &data, 8);
151     LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData());
152     break;
153   }
154   case PTRACE_POKEDATA: {
155     DisplayBytes(buf, &data, 8);
156     LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData());
157     break;
158   }
159   case PTRACE_POKEUSER: {
160     DisplayBytes(buf, &data, 8);
161     LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData());
162     break;
163   }
164   case PTRACE_SETREGS: {
165     DisplayBytes(buf, data, data_size);
166     LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData());
167     break;
168   }
169   case PTRACE_SETFPREGS: {
170     DisplayBytes(buf, data, data_size);
171     LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData());
172     break;
173   }
174   case PTRACE_SETSIGINFO: {
175     DisplayBytes(buf, data, sizeof(siginfo_t));
176     LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData());
177     break;
178   }
179   case PTRACE_SETREGSET: {
180     // Extract iov_base from data, which is a pointer to the struct iovec
181     DisplayBytes(buf, *(void **)data, data_size);
182     LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData());
183     break;
184   }
185   default: {}
186   }
187 }
188 
189 static constexpr unsigned k_ptrace_word_size = sizeof(void *);
190 static_assert(sizeof(long) >= k_ptrace_word_size,
191               "Size of long must be larger than ptrace word size");
192 } // end of anonymous namespace
193 
194 // Simple helper function to ensure flags are enabled on the given file
195 // descriptor.
196 static Status EnsureFDFlags(int fd, int flags) {
197   Status error;
198 
199   int status = fcntl(fd, F_GETFL);
200   if (status == -1) {
201     error.SetErrorToErrno();
202     return error;
203   }
204 
205   if (fcntl(fd, F_SETFL, status | flags) == -1) {
206     error.SetErrorToErrno();
207     return error;
208   }
209 
210   return error;
211 }
212 
213 // -----------------------------------------------------------------------------
214 // Public Static Methods
215 // -----------------------------------------------------------------------------
216 
217 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
218 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info,
219                                     NativeDelegate &native_delegate,
220                                     MainLoop &mainloop) const {
221   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
222 
223   MaybeLogLaunchInfo(launch_info);
224 
225   Status status;
226   ::pid_t pid = ProcessLauncherPosixFork()
227                     .LaunchProcess(launch_info, status)
228                     .GetProcessId();
229   LLDB_LOG(log, "pid = {0:x}", pid);
230   if (status.Fail()) {
231     LLDB_LOG(log, "failed to launch process: {0}", status);
232     return status.ToError();
233   }
234 
235   // Wait for the child process to trap on its call to execve.
236   int wstatus;
237   ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0);
238   assert(wpid == pid);
239   (void)wpid;
240   if (!WIFSTOPPED(wstatus)) {
241     LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}",
242              WaitStatus::Decode(wstatus));
243     return llvm::make_error<StringError>("Could not sync with inferior process",
244                                          llvm::inconvertibleErrorCode());
245   }
246   LLDB_LOG(log, "inferior started, now in stopped state");
247 
248   ArchSpec arch;
249   if ((status = ResolveProcessArchitecture(pid, arch)).Fail())
250     return status.ToError();
251 
252   // Set the architecture to the exe architecture.
253   LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid,
254            arch.GetArchitectureName());
255 
256   status = SetDefaultPtraceOpts(pid);
257   if (status.Fail()) {
258     LLDB_LOG(log, "failed to set default ptrace options: {0}", status);
259     return status.ToError();
260   }
261 
262   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
263       pid, launch_info.GetPTY().ReleaseMasterFileDescriptor(), native_delegate,
264       arch, mainloop, {pid}));
265 }
266 
267 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
268 NativeProcessLinux::Factory::Attach(
269     lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate,
270     MainLoop &mainloop) const {
271   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
272   LLDB_LOG(log, "pid = {0:x}", pid);
273 
274   // Retrieve the architecture for the running process.
275   ArchSpec arch;
276   Status status = ResolveProcessArchitecture(pid, arch);
277   if (!status.Success())
278     return status.ToError();
279 
280   auto tids_or = NativeProcessLinux::Attach(pid);
281   if (!tids_or)
282     return tids_or.takeError();
283 
284   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
285       pid, -1, native_delegate, arch, mainloop, *tids_or));
286 }
287 
288 // -----------------------------------------------------------------------------
289 // Public Instance Methods
290 // -----------------------------------------------------------------------------
291 
292 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd,
293                                        NativeDelegate &delegate,
294                                        const ArchSpec &arch, MainLoop &mainloop,
295                                        llvm::ArrayRef<::pid_t> tids)
296     : NativeProcessProtocol(pid, terminal_fd, delegate), m_arch(arch) {
297   if (m_terminal_fd != -1) {
298     Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
299     assert(status.Success());
300   }
301 
302   Status status;
303   m_sigchld_handle = mainloop.RegisterSignal(
304       SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status);
305   assert(m_sigchld_handle && status.Success());
306 
307   for (const auto &tid : tids) {
308     NativeThreadLinux &thread = AddThread(tid);
309     thread.SetStoppedBySignal(SIGSTOP);
310     ThreadWasCreated(thread);
311   }
312 
313   // Let our process instance know the thread has stopped.
314   SetCurrentThreadID(tids[0]);
315   SetState(StateType::eStateStopped, false);
316 
317   // Proccess any signals we received before installing our handler
318   SigchldHandler();
319 }
320 
321 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) {
322   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
323 
324   Status status;
325   // Use a map to keep track of the threads which we have attached/need to
326   // attach.
327   Host::TidMap tids_to_attach;
328   while (Host::FindProcessThreads(pid, tids_to_attach)) {
329     for (Host::TidMap::iterator it = tids_to_attach.begin();
330          it != tids_to_attach.end();) {
331       if (it->second == false) {
332         lldb::tid_t tid = it->first;
333 
334         // Attach to the requested process.
335         // An attach will cause the thread to stop with a SIGSTOP.
336         if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) {
337           // No such thread. The thread may have exited.
338           // More error handling may be needed.
339           if (status.GetError() == ESRCH) {
340             it = tids_to_attach.erase(it);
341             continue;
342           }
343           return status.ToError();
344         }
345 
346         int wpid =
347             llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL);
348         // Need to use __WALL otherwise we receive an error with errno=ECHLD
349         // At this point we should have a thread stopped if waitpid succeeds.
350         if (wpid < 0) {
351           // No such thread. The thread may have exited.
352           // More error handling may be needed.
353           if (errno == ESRCH) {
354             it = tids_to_attach.erase(it);
355             continue;
356           }
357           return llvm::errorCodeToError(
358               std::error_code(errno, std::generic_category()));
359         }
360 
361         if ((status = SetDefaultPtraceOpts(tid)).Fail())
362           return status.ToError();
363 
364         LLDB_LOG(log, "adding tid = {0}", tid);
365         it->second = true;
366       }
367 
368       // move the loop forward
369       ++it;
370     }
371   }
372 
373   size_t tid_count = tids_to_attach.size();
374   if (tid_count == 0)
375     return llvm::make_error<StringError>("No such process",
376                                          llvm::inconvertibleErrorCode());
377 
378   std::vector<::pid_t> tids;
379   tids.reserve(tid_count);
380   for (const auto &p : tids_to_attach)
381     tids.push_back(p.first);
382   return std::move(tids);
383 }
384 
385 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) {
386   long ptrace_opts = 0;
387 
388   // Have the child raise an event on exit.  This is used to keep the child in
389   // limbo until it is destroyed.
390   ptrace_opts |= PTRACE_O_TRACEEXIT;
391 
392   // Have the tracer trace threads which spawn in the inferior process.
393   // TODO: if we want to support tracing the inferiors' child, add the
394   // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
395   ptrace_opts |= PTRACE_O_TRACECLONE;
396 
397   // Have the tracer notify us before execve returns
398   // (needed to disable legacy SIGTRAP generation)
399   ptrace_opts |= PTRACE_O_TRACEEXEC;
400 
401   return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts);
402 }
403 
404 // Handles all waitpid events from the inferior process.
405 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited,
406                                          WaitStatus status) {
407   Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
408 
409   // Certain activities differ based on whether the pid is the tid of the main
410   // thread.
411   const bool is_main_thread = (pid == GetID());
412 
413   // Handle when the thread exits.
414   if (exited) {
415     LLDB_LOG(log,
416              "got exit signal({0}) , tid = {1} ({2} main thread), process "
417              "state = {3}",
418              signal, pid, is_main_thread ? "is" : "is not", GetState());
419 
420     // This is a thread that exited.  Ensure we're not tracking it anymore.
421     StopTrackingThread(pid);
422 
423     if (is_main_thread) {
424       // The main thread exited.  We're done monitoring.  Report to delegate.
425       SetExitStatus(status, true);
426 
427       // Notify delegate that our process has exited.
428       SetState(StateType::eStateExited, true);
429     }
430     return;
431   }
432 
433   siginfo_t info;
434   const auto info_err = GetSignalInfo(pid, &info);
435   auto thread_sp = GetThreadByID(pid);
436 
437   if (!thread_sp) {
438     // Normally, the only situation when we cannot find the thread is if we have
439     // just received a new thread notification. This is indicated by
440     // GetSignalInfo() returning si_code == SI_USER and si_pid == 0
441     LLDB_LOG(log, "received notification about an unknown tid {0}.", pid);
442 
443     if (info_err.Fail()) {
444       LLDB_LOG(log,
445                "(tid {0}) GetSignalInfo failed ({1}). "
446                "Ingoring this notification.",
447                pid, info_err);
448       return;
449     }
450 
451     LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code,
452              info.si_pid);
453 
454     NativeThreadLinux &thread = AddThread(pid);
455 
456     // Resume the newly created thread.
457     ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
458     ThreadWasCreated(thread);
459     return;
460   }
461 
462   // Get details on the signal raised.
463   if (info_err.Success()) {
464     // We have retrieved the signal info.  Dispatch appropriately.
465     if (info.si_signo == SIGTRAP)
466       MonitorSIGTRAP(info, *thread_sp);
467     else
468       MonitorSignal(info, *thread_sp, exited);
469   } else {
470     if (info_err.GetError() == EINVAL) {
471       // This is a group stop reception for this tid.
472       // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU
473       // into the tracee, triggering the group-stop mechanism. Normally
474       // receiving these would stop the process, pending a SIGCONT. Simulating
475       // this state in a debugger is hard and is generally not needed (one use
476       // case is debugging background task being managed by a shell). For
477       // general use, it is sufficient to stop the process in a signal-delivery
478       // stop which happens before the group stop. This done by MonitorSignal
479       // and works correctly for all signals.
480       LLDB_LOG(log,
481                "received a group stop for pid {0} tid {1}. Transparent "
482                "handling of group stops not supported, resuming the "
483                "thread.",
484                GetID(), pid);
485       ResumeThread(*thread_sp, thread_sp->GetState(),
486                    LLDB_INVALID_SIGNAL_NUMBER);
487     } else {
488       // ptrace(GETSIGINFO) failed (but not due to group-stop).
489 
490       // A return value of ESRCH means the thread/process is no longer on the
491       // system, so it was killed somehow outside of our control.  Either way,
492       // we can't do anything with it anymore.
493 
494       // Stop tracking the metadata for the thread since it's entirely off the
495       // system now.
496       const bool thread_found = StopTrackingThread(pid);
497 
498       LLDB_LOG(log,
499                "GetSignalInfo failed: {0}, tid = {1}, signal = {2}, "
500                "status = {3}, main_thread = {4}, thread_found: {5}",
501                info_err, pid, signal, status, is_main_thread, thread_found);
502 
503       if (is_main_thread) {
504         // Notify the delegate - our process is not available but appears to
505         // have been killed outside
506         // our control.  Is eStateExited the right exit state in this case?
507         SetExitStatus(status, true);
508         SetState(StateType::eStateExited, true);
509       } else {
510         // This thread was pulled out from underneath us.  Anything to do here?
511         // Do we want to do an all stop?
512         LLDB_LOG(log,
513                  "pid {0} tid {1} non-main thread exit occurred, didn't "
514                  "tell delegate anything since thread disappeared out "
515                  "from underneath us",
516                  GetID(), pid);
517       }
518     }
519   }
520 }
521 
522 void NativeProcessLinux::WaitForNewThread(::pid_t tid) {
523   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
524 
525   if (GetThreadByID(tid)) {
526     // We are already tracking the thread - we got the event on the new thread
527     // (see MonitorSignal) before this one. We are done.
528     return;
529   }
530 
531   // The thread is not tracked yet, let's wait for it to appear.
532   int status = -1;
533   LLDB_LOG(log,
534            "received thread creation event for tid {0}. tid not tracked "
535            "yet, waiting for thread to appear...",
536            tid);
537   ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, &status, __WALL);
538   // Since we are waiting on a specific tid, this must be the creation event.
539   // But let's do some checks just in case.
540   if (wait_pid != tid) {
541     LLDB_LOG(log,
542              "waiting for tid {0} failed. Assuming the thread has "
543              "disappeared in the meantime",
544              tid);
545     // The only way I know of this could happen is if the whole process was
546     // SIGKILLed in the mean time. In any case, we can't do anything about that
547     // now.
548     return;
549   }
550   if (WIFEXITED(status)) {
551     LLDB_LOG(log,
552              "waiting for tid {0} returned an 'exited' event. Not "
553              "tracking the thread.",
554              tid);
555     // Also a very improbable event.
556     return;
557   }
558 
559   LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid);
560   NativeThreadLinux &new_thread = AddThread(tid);
561 
562   ResumeThread(new_thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
563   ThreadWasCreated(new_thread);
564 }
565 
566 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info,
567                                         NativeThreadLinux &thread) {
568   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
569   const bool is_main_thread = (thread.GetID() == GetID());
570 
571   assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
572 
573   switch (info.si_code) {
574   // TODO: these two cases are required if we want to support tracing of the
575   // inferiors' children.  We'd need this to debug a monitor.
576   // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
577   // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
578 
579   case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): {
580     // This is the notification on the parent thread which informs us of new
581     // thread
582     // creation.
583     // We don't want to do anything with the parent thread so we just resume it.
584     // In case we
585     // want to implement "break on thread creation" functionality, we would need
586     // to stop
587     // here.
588 
589     unsigned long event_message = 0;
590     if (GetEventMessage(thread.GetID(), &event_message).Fail()) {
591       LLDB_LOG(log,
592                "pid {0} received thread creation event but "
593                "GetEventMessage failed so we don't know the new tid",
594                thread.GetID());
595     } else
596       WaitForNewThread(event_message);
597 
598     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
599     break;
600   }
601 
602   case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): {
603     LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP);
604 
605     // Exec clears any pending notifications.
606     m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
607 
608     // Remove all but the main thread here.  Linux fork creates a new process
609     // which only copies the main thread.
610     LLDB_LOG(log, "exec received, stop tracking all but main thread");
611 
612     for (auto i = m_threads.begin(); i != m_threads.end();) {
613       if ((*i)->GetID() == GetID())
614         i = m_threads.erase(i);
615       else
616         ++i;
617     }
618     assert(m_threads.size() == 1);
619     auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get());
620 
621     SetCurrentThreadID(main_thread->GetID());
622     main_thread->SetStoppedByExec();
623 
624     // Tell coordinator about about the "new" (since exec) stopped main thread.
625     ThreadWasCreated(*main_thread);
626 
627     // Let our delegate know we have just exec'd.
628     NotifyDidExec();
629 
630     // Let the process know we're stopped.
631     StopRunningThreads(main_thread->GetID());
632 
633     break;
634   }
635 
636   case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): {
637     // The inferior process or one of its threads is about to exit.
638     // We don't want to do anything with the thread so we just resume it. In
639     // case we want to implement "break on thread exit" functionality, we would
640     // need to stop here.
641 
642     unsigned long data = 0;
643     if (GetEventMessage(thread.GetID(), &data).Fail())
644       data = -1;
645 
646     LLDB_LOG(log,
647              "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, "
648              "WIFSIGNALED={2}, pid = {3}, main_thread = {4}",
649              data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(),
650              is_main_thread);
651 
652 
653     StateType state = thread.GetState();
654     if (!StateIsRunningState(state)) {
655       // Due to a kernel bug, we may sometimes get this stop after the inferior
656       // gets a SIGKILL. This confuses our state tracking logic in
657       // ResumeThread(), since normally, we should not be receiving any ptrace
658       // events while the inferior is stopped. This makes sure that the inferior
659       // is resumed and exits normally.
660       state = eStateRunning;
661     }
662     ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
663 
664     break;
665   }
666 
667   case 0:
668   case TRAP_TRACE:  // We receive this on single stepping.
669   case TRAP_HWBKPT: // We receive this on watchpoint hit
670   {
671     // If a watchpoint was hit, report it
672     uint32_t wp_index;
673     Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
674         wp_index, (uintptr_t)info.si_addr);
675     if (error.Fail())
676       LLDB_LOG(log,
677                "received error while checking for watchpoint hits, pid = "
678                "{0}, error = {1}",
679                thread.GetID(), error);
680     if (wp_index != LLDB_INVALID_INDEX32) {
681       MonitorWatchpoint(thread, wp_index);
682       break;
683     }
684 
685     // If a breakpoint was hit, report it
686     uint32_t bp_index;
687     error = thread.GetRegisterContext().GetHardwareBreakHitIndex(
688         bp_index, (uintptr_t)info.si_addr);
689     if (error.Fail())
690       LLDB_LOG(log, "received error while checking for hardware "
691                     "breakpoint hits, pid = {0}, error = {1}",
692                thread.GetID(), error);
693     if (bp_index != LLDB_INVALID_INDEX32) {
694       MonitorBreakpoint(thread);
695       break;
696     }
697 
698     // Otherwise, report step over
699     MonitorTrace(thread);
700     break;
701   }
702 
703   case SI_KERNEL:
704 #if defined __mips__
705     // For mips there is no special signal for watchpoint
706     // So we check for watchpoint in kernel trap
707     {
708       // If a watchpoint was hit, report it
709       uint32_t wp_index;
710       Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
711           wp_index, LLDB_INVALID_ADDRESS);
712       if (error.Fail())
713         LLDB_LOG(log,
714                  "received error while checking for watchpoint hits, pid = "
715                  "{0}, error = {1}",
716                  thread.GetID(), error);
717       if (wp_index != LLDB_INVALID_INDEX32) {
718         MonitorWatchpoint(thread, wp_index);
719         break;
720       }
721     }
722 // NO BREAK
723 #endif
724   case TRAP_BRKPT:
725     MonitorBreakpoint(thread);
726     break;
727 
728   case SIGTRAP:
729   case (SIGTRAP | 0x80):
730     LLDB_LOG(
731         log,
732         "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming",
733         info.si_code, GetID(), thread.GetID());
734 
735     // Ignore these signals until we know more about them.
736     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
737     break;
738 
739   default:
740     LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}",
741              info.si_code, GetID(), thread.GetID());
742     MonitorSignal(info, thread, false);
743     break;
744   }
745 }
746 
747 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) {
748   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
749   LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID());
750 
751   // This thread is currently stopped.
752   thread.SetStoppedByTrace();
753 
754   StopRunningThreads(thread.GetID());
755 }
756 
757 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) {
758   Log *log(
759       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
760   LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID());
761 
762   // Mark the thread as stopped at breakpoint.
763   thread.SetStoppedByBreakpoint();
764   Status error = FixupBreakpointPCAsNeeded(thread);
765   if (error.Fail())
766     LLDB_LOG(log, "pid = {0} fixup: {1}", thread.GetID(), error);
767 
768   if (m_threads_stepping_with_breakpoint.find(thread.GetID()) !=
769       m_threads_stepping_with_breakpoint.end())
770     thread.SetStoppedByTrace();
771 
772   StopRunningThreads(thread.GetID());
773 }
774 
775 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread,
776                                            uint32_t wp_index) {
777   Log *log(
778       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
779   LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}",
780            thread.GetID(), wp_index);
781 
782   // Mark the thread as stopped at watchpoint.
783   // The address is at (lldb::addr_t)info->si_addr if we need it.
784   thread.SetStoppedByWatchpoint(wp_index);
785 
786   // We need to tell all other running threads before we notify the delegate
787   // about this stop.
788   StopRunningThreads(thread.GetID());
789 }
790 
791 void NativeProcessLinux::MonitorSignal(const siginfo_t &info,
792                                        NativeThreadLinux &thread, bool exited) {
793   const int signo = info.si_signo;
794   const bool is_from_llgs = info.si_pid == getpid();
795 
796   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
797 
798   // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
799   // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
800   // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
801   //
802   // IOW, user generated signals never generate what we consider to be a
803   // "crash".
804   //
805   // Similarly, ACK signals generated by this monitor.
806 
807   // Handle the signal.
808   LLDB_LOG(log,
809            "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, "
810            "waitpid pid = {4})",
811            Host::GetSignalAsCString(signo), signo, info.si_code,
812            thread.GetID());
813 
814   // Check for thread stop notification.
815   if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) {
816     // This is a tgkill()-based stop.
817     LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID());
818 
819     // Check that we're not already marked with a stop reason.
820     // Note this thread really shouldn't already be marked as stopped - if we
821     // were, that would imply that the kernel signaled us with the thread
822     // stopping which we handled and marked as stopped, and that, without an
823     // intervening resume, we received another stop.  It is more likely that we
824     // are missing the marking of a run state somewhere if we find that the
825     // thread was marked as stopped.
826     const StateType thread_state = thread.GetState();
827     if (!StateIsStoppedState(thread_state, false)) {
828       // An inferior thread has stopped because of a SIGSTOP we have sent it.
829       // Generally, these are not important stops and we don't want to report
830       // them as they are just used to stop other threads when one thread (the
831       // one with the *real* stop reason) hits a breakpoint (watchpoint,
832       // etc...). However, in the case of an asynchronous Interrupt(), this *is*
833       // the real stop reason, so we leave the signal intact if this is the
834       // thread that was chosen as the triggering thread.
835       if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
836         if (m_pending_notification_tid == thread.GetID())
837           thread.SetStoppedBySignal(SIGSTOP, &info);
838         else
839           thread.SetStoppedWithNoReason();
840 
841         SetCurrentThreadID(thread.GetID());
842         SignalIfAllThreadsStopped();
843       } else {
844         // We can end up here if stop was initiated by LLGS but by this time a
845         // thread stop has occurred - maybe initiated by another event.
846         Status error = ResumeThread(thread, thread.GetState(), 0);
847         if (error.Fail())
848           LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(),
849                    error);
850       }
851     } else {
852       LLDB_LOG(log,
853                "pid {0} tid {1}, thread was already marked as a stopped "
854                "state (state={2}), leaving stop signal as is",
855                GetID(), thread.GetID(), thread_state);
856       SignalIfAllThreadsStopped();
857     }
858 
859     // Done handling.
860     return;
861   }
862 
863   // Check if debugger should stop at this signal or just ignore it
864   // and resume the inferior.
865   if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) {
866      ResumeThread(thread, thread.GetState(), signo);
867      return;
868   }
869 
870   // This thread is stopped.
871   LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo));
872   thread.SetStoppedBySignal(signo, &info);
873 
874   // Send a stop to the debugger after we get all other threads to stop.
875   StopRunningThreads(thread.GetID());
876 }
877 
878 namespace {
879 
880 struct EmulatorBaton {
881   NativeProcessLinux &m_process;
882   NativeRegisterContext &m_reg_context;
883 
884   // eRegisterKindDWARF -> RegsiterValue
885   std::unordered_map<uint32_t, RegisterValue> m_register_values;
886 
887   EmulatorBaton(NativeProcessLinux &process, NativeRegisterContext &reg_context)
888       : m_process(process), m_reg_context(reg_context) {}
889 };
890 
891 } // anonymous namespace
892 
893 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton,
894                                  const EmulateInstruction::Context &context,
895                                  lldb::addr_t addr, void *dst, size_t length) {
896   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
897 
898   size_t bytes_read;
899   emulator_baton->m_process.ReadMemory(addr, dst, length, bytes_read);
900   return bytes_read;
901 }
902 
903 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton,
904                                  const RegisterInfo *reg_info,
905                                  RegisterValue &reg_value) {
906   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
907 
908   auto it = emulator_baton->m_register_values.find(
909       reg_info->kinds[eRegisterKindDWARF]);
910   if (it != emulator_baton->m_register_values.end()) {
911     reg_value = it->second;
912     return true;
913   }
914 
915   // The emulator only fill in the dwarf regsiter numbers (and in some case
916   // the generic register numbers). Get the full register info from the
917   // register context based on the dwarf register numbers.
918   const RegisterInfo *full_reg_info =
919       emulator_baton->m_reg_context.GetRegisterInfo(
920           eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
921 
922   Status error =
923       emulator_baton->m_reg_context.ReadRegister(full_reg_info, reg_value);
924   if (error.Success())
925     return true;
926 
927   return false;
928 }
929 
930 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton,
931                                   const EmulateInstruction::Context &context,
932                                   const RegisterInfo *reg_info,
933                                   const RegisterValue &reg_value) {
934   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
935   emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] =
936       reg_value;
937   return true;
938 }
939 
940 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton,
941                                   const EmulateInstruction::Context &context,
942                                   lldb::addr_t addr, const void *dst,
943                                   size_t length) {
944   return length;
945 }
946 
947 static lldb::addr_t ReadFlags(NativeRegisterContext &regsiter_context) {
948   const RegisterInfo *flags_info = regsiter_context.GetRegisterInfo(
949       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
950   return regsiter_context.ReadRegisterAsUnsigned(flags_info,
951                                                  LLDB_INVALID_ADDRESS);
952 }
953 
954 Status
955 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) {
956   Status error;
957   NativeRegisterContext& register_context = thread.GetRegisterContext();
958 
959   std::unique_ptr<EmulateInstruction> emulator_ap(
960       EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying,
961                                      nullptr));
962 
963   if (emulator_ap == nullptr)
964     return Status("Instruction emulator not found!");
965 
966   EmulatorBaton baton(*this, register_context);
967   emulator_ap->SetBaton(&baton);
968   emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
969   emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
970   emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
971   emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
972 
973   if (!emulator_ap->ReadInstruction())
974     return Status("Read instruction failed!");
975 
976   bool emulation_result =
977       emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
978 
979   const RegisterInfo *reg_info_pc = register_context.GetRegisterInfo(
980       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
981   const RegisterInfo *reg_info_flags = register_context.GetRegisterInfo(
982       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
983 
984   auto pc_it =
985       baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
986   auto flags_it =
987       baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
988 
989   lldb::addr_t next_pc;
990   lldb::addr_t next_flags;
991   if (emulation_result) {
992     assert(pc_it != baton.m_register_values.end() &&
993            "Emulation was successfull but PC wasn't updated");
994     next_pc = pc_it->second.GetAsUInt64();
995 
996     if (flags_it != baton.m_register_values.end())
997       next_flags = flags_it->second.GetAsUInt64();
998     else
999       next_flags = ReadFlags(register_context);
1000   } else if (pc_it == baton.m_register_values.end()) {
1001     // Emulate instruction failed and it haven't changed PC. Advance PC
1002     // with the size of the current opcode because the emulation of all
1003     // PC modifying instruction should be successful. The failure most
1004     // likely caused by a not supported instruction which don't modify PC.
1005     next_pc = register_context.GetPC() + emulator_ap->GetOpcode().GetByteSize();
1006     next_flags = ReadFlags(register_context);
1007   } else {
1008     // The instruction emulation failed after it modified the PC. It is an
1009     // unknown error where we can't continue because the next instruction is
1010     // modifying the PC but we don't  know how.
1011     return Status("Instruction emulation failed unexpectedly.");
1012   }
1013 
1014   if (m_arch.GetMachine() == llvm::Triple::arm) {
1015     if (next_flags & 0x20) {
1016       // Thumb mode
1017       error = SetSoftwareBreakpoint(next_pc, 2);
1018     } else {
1019       // Arm mode
1020       error = SetSoftwareBreakpoint(next_pc, 4);
1021     }
1022   } else if (m_arch.GetMachine() == llvm::Triple::mips64 ||
1023              m_arch.GetMachine() == llvm::Triple::mips64el ||
1024              m_arch.GetMachine() == llvm::Triple::mips ||
1025              m_arch.GetMachine() == llvm::Triple::mipsel ||
1026              m_arch.GetMachine() == llvm::Triple::ppc64le)
1027     error = SetSoftwareBreakpoint(next_pc, 4);
1028   else {
1029     // No size hint is given for the next breakpoint
1030     error = SetSoftwareBreakpoint(next_pc, 0);
1031   }
1032 
1033   // If setting the breakpoint fails because next_pc is out of
1034   // the address space, ignore it and let the debugee segfault.
1035   if (error.GetError() == EIO || error.GetError() == EFAULT) {
1036     return Status();
1037   } else if (error.Fail())
1038     return error;
1039 
1040   m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc});
1041 
1042   return Status();
1043 }
1044 
1045 bool NativeProcessLinux::SupportHardwareSingleStepping() const {
1046   if (m_arch.GetMachine() == llvm::Triple::arm ||
1047       m_arch.GetMachine() == llvm::Triple::mips64 ||
1048       m_arch.GetMachine() == llvm::Triple::mips64el ||
1049       m_arch.GetMachine() == llvm::Triple::mips ||
1050       m_arch.GetMachine() == llvm::Triple::mipsel)
1051     return false;
1052   return true;
1053 }
1054 
1055 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) {
1056   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1057   LLDB_LOG(log, "pid {0}", GetID());
1058 
1059   bool software_single_step = !SupportHardwareSingleStepping();
1060 
1061   if (software_single_step) {
1062     for (const auto &thread : m_threads) {
1063       assert(thread && "thread list should not contain NULL threads");
1064 
1065       const ResumeAction *const action =
1066           resume_actions.GetActionForThread(thread->GetID(), true);
1067       if (action == nullptr)
1068         continue;
1069 
1070       if (action->state == eStateStepping) {
1071         Status error = SetupSoftwareSingleStepping(
1072             static_cast<NativeThreadLinux &>(*thread));
1073         if (error.Fail())
1074           return error;
1075       }
1076     }
1077   }
1078 
1079   for (const auto &thread : m_threads) {
1080     assert(thread && "thread list should not contain NULL threads");
1081 
1082     const ResumeAction *const action =
1083         resume_actions.GetActionForThread(thread->GetID(), true);
1084 
1085     if (action == nullptr) {
1086       LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(),
1087                thread->GetID());
1088       continue;
1089     }
1090 
1091     LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}",
1092              action->state, GetID(), thread->GetID());
1093 
1094     switch (action->state) {
1095     case eStateRunning:
1096     case eStateStepping: {
1097       // Run the thread, possibly feeding it the signal.
1098       const int signo = action->signal;
1099       ResumeThread(static_cast<NativeThreadLinux &>(*thread), action->state,
1100                    signo);
1101       break;
1102     }
1103 
1104     case eStateSuspended:
1105     case eStateStopped:
1106       llvm_unreachable("Unexpected state");
1107 
1108     default:
1109       return Status("NativeProcessLinux::%s (): unexpected state %s specified "
1110                     "for pid %" PRIu64 ", tid %" PRIu64,
1111                     __FUNCTION__, StateAsCString(action->state), GetID(),
1112                     thread->GetID());
1113     }
1114   }
1115 
1116   return Status();
1117 }
1118 
1119 Status NativeProcessLinux::Halt() {
1120   Status error;
1121 
1122   if (kill(GetID(), SIGSTOP) != 0)
1123     error.SetErrorToErrno();
1124 
1125   return error;
1126 }
1127 
1128 Status NativeProcessLinux::Detach() {
1129   Status error;
1130 
1131   // Stop monitoring the inferior.
1132   m_sigchld_handle.reset();
1133 
1134   // Tell ptrace to detach from the process.
1135   if (GetID() == LLDB_INVALID_PROCESS_ID)
1136     return error;
1137 
1138   for (const auto &thread : m_threads) {
1139     Status e = Detach(thread->GetID());
1140     if (e.Fail())
1141       error =
1142           e; // Save the error, but still attempt to detach from other threads.
1143   }
1144 
1145   m_processor_trace_monitor.clear();
1146   m_pt_proces_trace_id = LLDB_INVALID_UID;
1147 
1148   return error;
1149 }
1150 
1151 Status NativeProcessLinux::Signal(int signo) {
1152   Status error;
1153 
1154   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1155   LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo,
1156            Host::GetSignalAsCString(signo), GetID());
1157 
1158   if (kill(GetID(), signo))
1159     error.SetErrorToErrno();
1160 
1161   return error;
1162 }
1163 
1164 Status NativeProcessLinux::Interrupt() {
1165   // Pick a running thread (or if none, a not-dead stopped thread) as
1166   // the chosen thread that will be the stop-reason thread.
1167   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1168 
1169   NativeThreadProtocol *running_thread = nullptr;
1170   NativeThreadProtocol *stopped_thread = nullptr;
1171 
1172   LLDB_LOG(log, "selecting running thread for interrupt target");
1173   for (const auto &thread : m_threads) {
1174     // If we have a running or stepping thread, we'll call that the
1175     // target of the interrupt.
1176     const auto thread_state = thread->GetState();
1177     if (thread_state == eStateRunning || thread_state == eStateStepping) {
1178       running_thread = thread.get();
1179       break;
1180     } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) {
1181       // Remember the first non-dead stopped thread.  We'll use that as a backup
1182       // if there are no running threads.
1183       stopped_thread = thread.get();
1184     }
1185   }
1186 
1187   if (!running_thread && !stopped_thread) {
1188     Status error("found no running/stepping or live stopped threads as target "
1189                  "for interrupt");
1190     LLDB_LOG(log, "skipping due to error: {0}", error);
1191 
1192     return error;
1193   }
1194 
1195   NativeThreadProtocol *deferred_signal_thread =
1196       running_thread ? running_thread : stopped_thread;
1197 
1198   LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(),
1199            running_thread ? "running" : "stopped",
1200            deferred_signal_thread->GetID());
1201 
1202   StopRunningThreads(deferred_signal_thread->GetID());
1203 
1204   return Status();
1205 }
1206 
1207 Status NativeProcessLinux::Kill() {
1208   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1209   LLDB_LOG(log, "pid {0}", GetID());
1210 
1211   Status error;
1212 
1213   switch (m_state) {
1214   case StateType::eStateInvalid:
1215   case StateType::eStateExited:
1216   case StateType::eStateCrashed:
1217   case StateType::eStateDetached:
1218   case StateType::eStateUnloaded:
1219     // Nothing to do - the process is already dead.
1220     LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(),
1221              m_state);
1222     return error;
1223 
1224   case StateType::eStateConnected:
1225   case StateType::eStateAttaching:
1226   case StateType::eStateLaunching:
1227   case StateType::eStateStopped:
1228   case StateType::eStateRunning:
1229   case StateType::eStateStepping:
1230   case StateType::eStateSuspended:
1231     // We can try to kill a process in these states.
1232     break;
1233   }
1234 
1235   if (kill(GetID(), SIGKILL) != 0) {
1236     error.SetErrorToErrno();
1237     return error;
1238   }
1239 
1240   return error;
1241 }
1242 
1243 static Status
1244 ParseMemoryRegionInfoFromProcMapsLine(llvm::StringRef &maps_line,
1245                                       MemoryRegionInfo &memory_region_info) {
1246   memory_region_info.Clear();
1247 
1248   StringExtractor line_extractor(maps_line);
1249 
1250   // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode
1251   // pathname
1252   // perms: rwxp   (letter is present if set, '-' if not, final character is
1253   // p=private, s=shared).
1254 
1255   // Parse out the starting address
1256   lldb::addr_t start_address = line_extractor.GetHexMaxU64(false, 0);
1257 
1258   // Parse out hyphen separating start and end address from range.
1259   if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != '-'))
1260     return Status(
1261         "malformed /proc/{pid}/maps entry, missing dash between address range");
1262 
1263   // Parse out the ending address
1264   lldb::addr_t end_address = line_extractor.GetHexMaxU64(false, start_address);
1265 
1266   // Parse out the space after the address.
1267   if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != ' '))
1268     return Status(
1269         "malformed /proc/{pid}/maps entry, missing space after range");
1270 
1271   // Save the range.
1272   memory_region_info.GetRange().SetRangeBase(start_address);
1273   memory_region_info.GetRange().SetRangeEnd(end_address);
1274 
1275   // Any memory region in /proc/{pid}/maps is by definition mapped into the
1276   // process.
1277   memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes);
1278 
1279   // Parse out each permission entry.
1280   if (line_extractor.GetBytesLeft() < 4)
1281     return Status("malformed /proc/{pid}/maps entry, missing some portion of "
1282                   "permissions");
1283 
1284   // Handle read permission.
1285   const char read_perm_char = line_extractor.GetChar();
1286   if (read_perm_char == 'r')
1287     memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eYes);
1288   else if (read_perm_char == '-')
1289     memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1290   else
1291     return Status("unexpected /proc/{pid}/maps read permission char");
1292 
1293   // Handle write permission.
1294   const char write_perm_char = line_extractor.GetChar();
1295   if (write_perm_char == 'w')
1296     memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eYes);
1297   else if (write_perm_char == '-')
1298     memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1299   else
1300     return Status("unexpected /proc/{pid}/maps write permission char");
1301 
1302   // Handle execute permission.
1303   const char exec_perm_char = line_extractor.GetChar();
1304   if (exec_perm_char == 'x')
1305     memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eYes);
1306   else if (exec_perm_char == '-')
1307     memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1308   else
1309     return Status("unexpected /proc/{pid}/maps exec permission char");
1310 
1311   line_extractor.GetChar();              // Read the private bit
1312   line_extractor.SkipSpaces();           // Skip the separator
1313   line_extractor.GetHexMaxU64(false, 0); // Read the offset
1314   line_extractor.GetHexMaxU64(false, 0); // Read the major device number
1315   line_extractor.GetChar();              // Read the device id separator
1316   line_extractor.GetHexMaxU64(false, 0); // Read the major device number
1317   line_extractor.SkipSpaces();           // Skip the separator
1318   line_extractor.GetU64(0, 10);          // Read the inode number
1319 
1320   line_extractor.SkipSpaces();
1321   const char *name = line_extractor.Peek();
1322   if (name)
1323     memory_region_info.SetName(name);
1324 
1325   return Status();
1326 }
1327 
1328 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr,
1329                                                MemoryRegionInfo &range_info) {
1330   // FIXME review that the final memory region returned extends to the end of
1331   // the virtual address space,
1332   // with no perms if it is not mapped.
1333 
1334   // Use an approach that reads memory regions from /proc/{pid}/maps.
1335   // Assume proc maps entries are in ascending order.
1336   // FIXME assert if we find differently.
1337 
1338   if (m_supports_mem_region == LazyBool::eLazyBoolNo) {
1339     // We're done.
1340     return Status("unsupported");
1341   }
1342 
1343   Status error = PopulateMemoryRegionCache();
1344   if (error.Fail()) {
1345     return error;
1346   }
1347 
1348   lldb::addr_t prev_base_address = 0;
1349 
1350   // FIXME start by finding the last region that is <= target address using
1351   // binary search.  Data is sorted.
1352   // There can be a ton of regions on pthreads apps with lots of threads.
1353   for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end();
1354        ++it) {
1355     MemoryRegionInfo &proc_entry_info = it->first;
1356 
1357     // Sanity check assumption that /proc/{pid}/maps entries are ascending.
1358     assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) &&
1359            "descending /proc/pid/maps entries detected, unexpected");
1360     prev_base_address = proc_entry_info.GetRange().GetRangeBase();
1361     UNUSED_IF_ASSERT_DISABLED(prev_base_address);
1362 
1363     // If the target address comes before this entry, indicate distance to next
1364     // region.
1365     if (load_addr < proc_entry_info.GetRange().GetRangeBase()) {
1366       range_info.GetRange().SetRangeBase(load_addr);
1367       range_info.GetRange().SetByteSize(
1368           proc_entry_info.GetRange().GetRangeBase() - load_addr);
1369       range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1370       range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1371       range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1372       range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1373 
1374       return error;
1375     } else if (proc_entry_info.GetRange().Contains(load_addr)) {
1376       // The target address is within the memory region we're processing here.
1377       range_info = proc_entry_info;
1378       return error;
1379     }
1380 
1381     // The target memory address comes somewhere after the region we just
1382     // parsed.
1383   }
1384 
1385   // If we made it here, we didn't find an entry that contained the given
1386   // address. Return the
1387   // load_addr as start and the amount of bytes betwwen load address and the end
1388   // of the memory as
1389   // size.
1390   range_info.GetRange().SetRangeBase(load_addr);
1391   range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS);
1392   range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1393   range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1394   range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1395   range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1396   return error;
1397 }
1398 
1399 Status NativeProcessLinux::PopulateMemoryRegionCache() {
1400   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1401 
1402   // If our cache is empty, pull the latest.  There should always be at least
1403   // one memory region if memory region handling is supported.
1404   if (!m_mem_region_cache.empty()) {
1405     LLDB_LOG(log, "reusing {0} cached memory region entries",
1406              m_mem_region_cache.size());
1407     return Status();
1408   }
1409 
1410   auto BufferOrError = getProcFile(GetID(), "maps");
1411   if (!BufferOrError) {
1412     m_supports_mem_region = LazyBool::eLazyBoolNo;
1413     return BufferOrError.getError();
1414   }
1415   StringRef Rest = BufferOrError.get()->getBuffer();
1416   while (! Rest.empty()) {
1417     StringRef Line;
1418     std::tie(Line, Rest) = Rest.split('\n');
1419     MemoryRegionInfo info;
1420     const Status parse_error =
1421         ParseMemoryRegionInfoFromProcMapsLine(Line, info);
1422     if (parse_error.Fail()) {
1423       LLDB_LOG(log, "failed to parse proc maps line '{0}': {1}", Line,
1424                parse_error);
1425       m_supports_mem_region = LazyBool::eLazyBoolNo;
1426       return parse_error;
1427     }
1428     m_mem_region_cache.emplace_back(
1429         info, FileSpec(info.GetName().GetCString(), true));
1430   }
1431 
1432   if (m_mem_region_cache.empty()) {
1433     // No entries after attempting to read them.  This shouldn't happen if
1434     // /proc/{pid}/maps is supported. Assume we don't support map entries
1435     // via procfs.
1436     m_supports_mem_region = LazyBool::eLazyBoolNo;
1437     LLDB_LOG(log,
1438              "failed to find any procfs maps entries, assuming no support "
1439              "for memory region metadata retrieval");
1440     return Status("not supported");
1441   }
1442 
1443   LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps",
1444            m_mem_region_cache.size(), GetID());
1445 
1446   // We support memory retrieval, remember that.
1447   m_supports_mem_region = LazyBool::eLazyBoolYes;
1448   return Status();
1449 }
1450 
1451 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) {
1452   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1453   LLDB_LOG(log, "newBumpId={0}", newBumpId);
1454   LLDB_LOG(log, "clearing {0} entries from memory region cache",
1455            m_mem_region_cache.size());
1456   m_mem_region_cache.clear();
1457 }
1458 
1459 Status NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions,
1460                                           lldb::addr_t &addr) {
1461 // FIXME implementing this requires the equivalent of
1462 // InferiorCallPOSIX::InferiorCallMmap, which depends on
1463 // functional ThreadPlans working with Native*Protocol.
1464 #if 1
1465   return Status("not implemented yet");
1466 #else
1467   addr = LLDB_INVALID_ADDRESS;
1468 
1469   unsigned prot = 0;
1470   if (permissions & lldb::ePermissionsReadable)
1471     prot |= eMmapProtRead;
1472   if (permissions & lldb::ePermissionsWritable)
1473     prot |= eMmapProtWrite;
1474   if (permissions & lldb::ePermissionsExecutable)
1475     prot |= eMmapProtExec;
1476 
1477   // TODO implement this directly in NativeProcessLinux
1478   // (and lift to NativeProcessPOSIX if/when that class is
1479   // refactored out).
1480   if (InferiorCallMmap(this, addr, 0, size, prot,
1481                        eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
1482     m_addr_to_mmap_size[addr] = size;
1483     return Status();
1484   } else {
1485     addr = LLDB_INVALID_ADDRESS;
1486     return Status("unable to allocate %" PRIu64
1487                   " bytes of memory with permissions %s",
1488                   size, GetPermissionsAsCString(permissions));
1489   }
1490 #endif
1491 }
1492 
1493 Status NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) {
1494   // FIXME see comments in AllocateMemory - required lower-level
1495   // bits not in place yet (ThreadPlans)
1496   return Status("not implemented");
1497 }
1498 
1499 lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress() {
1500   // punt on this for now
1501   return LLDB_INVALID_ADDRESS;
1502 }
1503 
1504 size_t NativeProcessLinux::UpdateThreads() {
1505   // The NativeProcessLinux monitoring threads are always up to date
1506   // with respect to thread state and they keep the thread list
1507   // populated properly. All this method needs to do is return the
1508   // thread count.
1509   return m_threads.size();
1510 }
1511 
1512 Status NativeProcessLinux::GetSoftwareBreakpointPCOffset(
1513     uint32_t &actual_opcode_size) {
1514   // FIXME put this behind a breakpoint protocol class that can be
1515   // set per architecture.  Need ARM, MIPS support here.
1516   static const uint8_t g_i386_opcode[] = {0xCC};
1517   static const uint8_t g_s390x_opcode[] = {0x00, 0x01};
1518   static const uint8_t g_ppc64le_opcode[] = {0x08, 0x00, 0xe0, 0x7f}; // trap
1519 
1520   switch (m_arch.GetMachine()) {
1521   case llvm::Triple::x86:
1522   case llvm::Triple::x86_64:
1523     actual_opcode_size = static_cast<uint32_t>(sizeof(g_i386_opcode));
1524     return Status();
1525 
1526   case llvm::Triple::systemz:
1527     actual_opcode_size = static_cast<uint32_t>(sizeof(g_s390x_opcode));
1528     return Status();
1529 
1530   case llvm::Triple::ppc64le:
1531     actual_opcode_size = static_cast<uint32_t>(sizeof(g_ppc64le_opcode));
1532     return Status();
1533 
1534   case llvm::Triple::arm:
1535   case llvm::Triple::aarch64:
1536   case llvm::Triple::mips64:
1537   case llvm::Triple::mips64el:
1538   case llvm::Triple::mips:
1539   case llvm::Triple::mipsel:
1540     // On these architectures the PC don't get updated for breakpoint hits
1541     actual_opcode_size = 0;
1542     return Status();
1543 
1544   default:
1545     assert(false && "CPU type not supported!");
1546     return Status("CPU type not supported");
1547   }
1548 }
1549 
1550 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size,
1551                                          bool hardware) {
1552   if (hardware)
1553     return SetHardwareBreakpoint(addr, size);
1554   else
1555     return SetSoftwareBreakpoint(addr, size);
1556 }
1557 
1558 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) {
1559   if (hardware)
1560     return RemoveHardwareBreakpoint(addr);
1561   else
1562     return NativeProcessProtocol::RemoveBreakpoint(addr);
1563 }
1564 
1565 Status NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(
1566     size_t trap_opcode_size_hint, size_t &actual_opcode_size,
1567     const uint8_t *&trap_opcode_bytes) {
1568   // FIXME put this behind a breakpoint protocol class that can be set per
1569   // architecture.  Need MIPS support here.
1570   static const uint8_t g_aarch64_opcode[] = {0x00, 0x00, 0x20, 0xd4};
1571   // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
1572   // linux kernel does otherwise.
1573   static const uint8_t g_arm_breakpoint_opcode[] = {0xf0, 0x01, 0xf0, 0xe7};
1574   static const uint8_t g_i386_opcode[] = {0xCC};
1575   static const uint8_t g_mips64_opcode[] = {0x00, 0x00, 0x00, 0x0d};
1576   static const uint8_t g_mips64el_opcode[] = {0x0d, 0x00, 0x00, 0x00};
1577   static const uint8_t g_s390x_opcode[] = {0x00, 0x01};
1578   static const uint8_t g_thumb_breakpoint_opcode[] = {0x01, 0xde};
1579   static const uint8_t g_ppc64le_opcode[] = {0x08, 0x00, 0xe0, 0x7f}; // trap
1580 
1581   switch (m_arch.GetMachine()) {
1582   case llvm::Triple::aarch64:
1583     trap_opcode_bytes = g_aarch64_opcode;
1584     actual_opcode_size = sizeof(g_aarch64_opcode);
1585     return Status();
1586 
1587   case llvm::Triple::arm:
1588     switch (trap_opcode_size_hint) {
1589     case 2:
1590       trap_opcode_bytes = g_thumb_breakpoint_opcode;
1591       actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
1592       return Status();
1593     case 4:
1594       trap_opcode_bytes = g_arm_breakpoint_opcode;
1595       actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
1596       return Status();
1597     default:
1598       assert(false && "Unrecognised trap opcode size hint!");
1599       return Status("Unrecognised trap opcode size hint!");
1600     }
1601 
1602   case llvm::Triple::x86:
1603   case llvm::Triple::x86_64:
1604     trap_opcode_bytes = g_i386_opcode;
1605     actual_opcode_size = sizeof(g_i386_opcode);
1606     return Status();
1607 
1608   case llvm::Triple::mips:
1609   case llvm::Triple::mips64:
1610     trap_opcode_bytes = g_mips64_opcode;
1611     actual_opcode_size = sizeof(g_mips64_opcode);
1612     return Status();
1613 
1614   case llvm::Triple::mipsel:
1615   case llvm::Triple::mips64el:
1616     trap_opcode_bytes = g_mips64el_opcode;
1617     actual_opcode_size = sizeof(g_mips64el_opcode);
1618     return Status();
1619 
1620   case llvm::Triple::systemz:
1621     trap_opcode_bytes = g_s390x_opcode;
1622     actual_opcode_size = sizeof(g_s390x_opcode);
1623     return Status();
1624 
1625   case llvm::Triple::ppc64le:
1626     trap_opcode_bytes = g_ppc64le_opcode;
1627     actual_opcode_size = sizeof(g_ppc64le_opcode);
1628     return Status();
1629 
1630   default:
1631     assert(false && "CPU type not supported!");
1632     return Status("CPU type not supported");
1633   }
1634 }
1635 
1636 #if 0
1637 ProcessMessage::CrashReason
1638 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
1639 {
1640     ProcessMessage::CrashReason reason;
1641     assert(info->si_signo == SIGSEGV);
1642 
1643     reason = ProcessMessage::eInvalidCrashReason;
1644 
1645     switch (info->si_code)
1646     {
1647     default:
1648         assert(false && "unexpected si_code for SIGSEGV");
1649         break;
1650     case SI_KERNEL:
1651         // Linux will occasionally send spurious SI_KERNEL codes.
1652         // (this is poorly documented in sigaction)
1653         // One way to get this is via unaligned SIMD loads.
1654         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
1655         break;
1656     case SEGV_MAPERR:
1657         reason = ProcessMessage::eInvalidAddress;
1658         break;
1659     case SEGV_ACCERR:
1660         reason = ProcessMessage::ePrivilegedAddress;
1661         break;
1662     }
1663 
1664     return reason;
1665 }
1666 #endif
1667 
1668 #if 0
1669 ProcessMessage::CrashReason
1670 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
1671 {
1672     ProcessMessage::CrashReason reason;
1673     assert(info->si_signo == SIGILL);
1674 
1675     reason = ProcessMessage::eInvalidCrashReason;
1676 
1677     switch (info->si_code)
1678     {
1679     default:
1680         assert(false && "unexpected si_code for SIGILL");
1681         break;
1682     case ILL_ILLOPC:
1683         reason = ProcessMessage::eIllegalOpcode;
1684         break;
1685     case ILL_ILLOPN:
1686         reason = ProcessMessage::eIllegalOperand;
1687         break;
1688     case ILL_ILLADR:
1689         reason = ProcessMessage::eIllegalAddressingMode;
1690         break;
1691     case ILL_ILLTRP:
1692         reason = ProcessMessage::eIllegalTrap;
1693         break;
1694     case ILL_PRVOPC:
1695         reason = ProcessMessage::ePrivilegedOpcode;
1696         break;
1697     case ILL_PRVREG:
1698         reason = ProcessMessage::ePrivilegedRegister;
1699         break;
1700     case ILL_COPROC:
1701         reason = ProcessMessage::eCoprocessorError;
1702         break;
1703     case ILL_BADSTK:
1704         reason = ProcessMessage::eInternalStackError;
1705         break;
1706     }
1707 
1708     return reason;
1709 }
1710 #endif
1711 
1712 #if 0
1713 ProcessMessage::CrashReason
1714 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
1715 {
1716     ProcessMessage::CrashReason reason;
1717     assert(info->si_signo == SIGFPE);
1718 
1719     reason = ProcessMessage::eInvalidCrashReason;
1720 
1721     switch (info->si_code)
1722     {
1723     default:
1724         assert(false && "unexpected si_code for SIGFPE");
1725         break;
1726     case FPE_INTDIV:
1727         reason = ProcessMessage::eIntegerDivideByZero;
1728         break;
1729     case FPE_INTOVF:
1730         reason = ProcessMessage::eIntegerOverflow;
1731         break;
1732     case FPE_FLTDIV:
1733         reason = ProcessMessage::eFloatDivideByZero;
1734         break;
1735     case FPE_FLTOVF:
1736         reason = ProcessMessage::eFloatOverflow;
1737         break;
1738     case FPE_FLTUND:
1739         reason = ProcessMessage::eFloatUnderflow;
1740         break;
1741     case FPE_FLTRES:
1742         reason = ProcessMessage::eFloatInexactResult;
1743         break;
1744     case FPE_FLTINV:
1745         reason = ProcessMessage::eFloatInvalidOperation;
1746         break;
1747     case FPE_FLTSUB:
1748         reason = ProcessMessage::eFloatSubscriptRange;
1749         break;
1750     }
1751 
1752     return reason;
1753 }
1754 #endif
1755 
1756 #if 0
1757 ProcessMessage::CrashReason
1758 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
1759 {
1760     ProcessMessage::CrashReason reason;
1761     assert(info->si_signo == SIGBUS);
1762 
1763     reason = ProcessMessage::eInvalidCrashReason;
1764 
1765     switch (info->si_code)
1766     {
1767     default:
1768         assert(false && "unexpected si_code for SIGBUS");
1769         break;
1770     case BUS_ADRALN:
1771         reason = ProcessMessage::eIllegalAlignment;
1772         break;
1773     case BUS_ADRERR:
1774         reason = ProcessMessage::eIllegalAddress;
1775         break;
1776     case BUS_OBJERR:
1777         reason = ProcessMessage::eHardwareError;
1778         break;
1779     }
1780 
1781     return reason;
1782 }
1783 #endif
1784 
1785 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size,
1786                                       size_t &bytes_read) {
1787   if (ProcessVmReadvSupported()) {
1788     // The process_vm_readv path is about 50 times faster than ptrace api. We
1789     // want to use
1790     // this syscall if it is supported.
1791 
1792     const ::pid_t pid = GetID();
1793 
1794     struct iovec local_iov, remote_iov;
1795     local_iov.iov_base = buf;
1796     local_iov.iov_len = size;
1797     remote_iov.iov_base = reinterpret_cast<void *>(addr);
1798     remote_iov.iov_len = size;
1799 
1800     bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
1801     const bool success = bytes_read == size;
1802 
1803     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1804     LLDB_LOG(log,
1805              "using process_vm_readv to read {0} bytes from inferior "
1806              "address {1:x}: {2}",
1807              size, addr, success ? "Success" : llvm::sys::StrError(errno));
1808 
1809     if (success)
1810       return Status();
1811     // else the call failed for some reason, let's retry the read using ptrace
1812     // api.
1813   }
1814 
1815   unsigned char *dst = static_cast<unsigned char *>(buf);
1816   size_t remainder;
1817   long data;
1818 
1819   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1820   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1821 
1822   for (bytes_read = 0; bytes_read < size; bytes_read += remainder) {
1823     Status error = NativeProcessLinux::PtraceWrapper(
1824         PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data);
1825     if (error.Fail())
1826       return error;
1827 
1828     remainder = size - bytes_read;
1829     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1830 
1831     // Copy the data into our buffer
1832     memcpy(dst, &data, remainder);
1833 
1834     LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1835     addr += k_ptrace_word_size;
1836     dst += k_ptrace_word_size;
1837   }
1838   return Status();
1839 }
1840 
1841 Status NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf,
1842                                                  size_t size,
1843                                                  size_t &bytes_read) {
1844   Status error = ReadMemory(addr, buf, size, bytes_read);
1845   if (error.Fail())
1846     return error;
1847   return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size);
1848 }
1849 
1850 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf,
1851                                        size_t size, size_t &bytes_written) {
1852   const unsigned char *src = static_cast<const unsigned char *>(buf);
1853   size_t remainder;
1854   Status error;
1855 
1856   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1857   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1858 
1859   for (bytes_written = 0; bytes_written < size; bytes_written += remainder) {
1860     remainder = size - bytes_written;
1861     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1862 
1863     if (remainder == k_ptrace_word_size) {
1864       unsigned long data = 0;
1865       memcpy(&data, src, k_ptrace_word_size);
1866 
1867       LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1868       error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(),
1869                                                 (void *)addr, (void *)data);
1870       if (error.Fail())
1871         return error;
1872     } else {
1873       unsigned char buff[8];
1874       size_t bytes_read;
1875       error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
1876       if (error.Fail())
1877         return error;
1878 
1879       memcpy(buff, src, remainder);
1880 
1881       size_t bytes_written_rec;
1882       error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
1883       if (error.Fail())
1884         return error;
1885 
1886       LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src,
1887                *(unsigned long *)buff);
1888     }
1889 
1890     addr += k_ptrace_word_size;
1891     src += k_ptrace_word_size;
1892   }
1893   return error;
1894 }
1895 
1896 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) {
1897   return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
1898 }
1899 
1900 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid,
1901                                            unsigned long *message) {
1902   return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
1903 }
1904 
1905 Status NativeProcessLinux::Detach(lldb::tid_t tid) {
1906   if (tid == LLDB_INVALID_THREAD_ID)
1907     return Status();
1908 
1909   return PtraceWrapper(PTRACE_DETACH, tid);
1910 }
1911 
1912 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) {
1913   for (const auto &thread : m_threads) {
1914     assert(thread && "thread list should not contain NULL threads");
1915     if (thread->GetID() == thread_id) {
1916       // We have this thread.
1917       return true;
1918     }
1919   }
1920 
1921   // We don't have this thread.
1922   return false;
1923 }
1924 
1925 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) {
1926   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1927   LLDB_LOG(log, "tid: {0})", thread_id);
1928 
1929   bool found = false;
1930   for (auto it = m_threads.begin(); it != m_threads.end(); ++it) {
1931     if (*it && ((*it)->GetID() == thread_id)) {
1932       m_threads.erase(it);
1933       found = true;
1934       break;
1935     }
1936   }
1937 
1938   if (found)
1939     StopTracingForThread(thread_id);
1940   SignalIfAllThreadsStopped();
1941   return found;
1942 }
1943 
1944 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id) {
1945   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD));
1946   LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id);
1947 
1948   assert(!HasThreadNoLock(thread_id) &&
1949          "attempted to add a thread by id that already exists");
1950 
1951   // If this is the first thread, save it as the current thread
1952   if (m_threads.empty())
1953     SetCurrentThreadID(thread_id);
1954 
1955   m_threads.push_back(llvm::make_unique<NativeThreadLinux>(*this, thread_id));
1956 
1957   if (m_pt_proces_trace_id != LLDB_INVALID_UID) {
1958     auto traceMonitor = ProcessorTraceMonitor::Create(
1959         GetID(), thread_id, m_pt_process_trace_config, true);
1960     if (traceMonitor) {
1961       m_pt_traced_thread_group.insert(thread_id);
1962       m_processor_trace_monitor.insert(
1963           std::make_pair(thread_id, std::move(*traceMonitor)));
1964     } else {
1965       LLDB_LOG(log, "failed to start trace on thread {0}", thread_id);
1966       Status error(traceMonitor.takeError());
1967       LLDB_LOG(log, "error {0}", error);
1968     }
1969   }
1970 
1971   return static_cast<NativeThreadLinux &>(*m_threads.back());
1972 }
1973 
1974 Status
1975 NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread) {
1976   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
1977 
1978   Status error;
1979 
1980   // Find out the size of a breakpoint (might depend on where we are in the
1981   // code).
1982   NativeRegisterContext &context = thread.GetRegisterContext();
1983 
1984   uint32_t breakpoint_size = 0;
1985   error = GetSoftwareBreakpointPCOffset(breakpoint_size);
1986   if (error.Fail()) {
1987     LLDB_LOG(log, "GetBreakpointSize() failed: {0}", error);
1988     return error;
1989   } else
1990     LLDB_LOG(log, "breakpoint size: {0}", breakpoint_size);
1991 
1992   // First try probing for a breakpoint at a software breakpoint location: PC -
1993   // breakpoint size.
1994   const lldb::addr_t initial_pc_addr = context.GetPCfromBreakpointLocation();
1995   lldb::addr_t breakpoint_addr = initial_pc_addr;
1996   if (breakpoint_size > 0) {
1997     // Do not allow breakpoint probe to wrap around.
1998     if (breakpoint_addr >= breakpoint_size)
1999       breakpoint_addr -= breakpoint_size;
2000   }
2001 
2002   // Check if we stopped because of a breakpoint.
2003   NativeBreakpointSP breakpoint_sp;
2004   error = m_breakpoint_list.GetBreakpoint(breakpoint_addr, breakpoint_sp);
2005   if (!error.Success() || !breakpoint_sp) {
2006     // We didn't find one at a software probe location.  Nothing to do.
2007     LLDB_LOG(log,
2008              "pid {0} no lldb breakpoint found at current pc with "
2009              "adjustment: {1}",
2010              GetID(), breakpoint_addr);
2011     return Status();
2012   }
2013 
2014   // If the breakpoint is not a software breakpoint, nothing to do.
2015   if (!breakpoint_sp->IsSoftwareBreakpoint()) {
2016     LLDB_LOG(
2017         log,
2018         "pid {0} breakpoint found at {1:x}, not software, nothing to adjust",
2019         GetID(), breakpoint_addr);
2020     return Status();
2021   }
2022 
2023   //
2024   // We have a software breakpoint and need to adjust the PC.
2025   //
2026 
2027   // Sanity check.
2028   if (breakpoint_size == 0) {
2029     // Nothing to do!  How did we get here?
2030     LLDB_LOG(log,
2031              "pid {0} breakpoint found at {1:x}, it is software, but the "
2032              "size is zero, nothing to do (unexpected)",
2033              GetID(), breakpoint_addr);
2034     return Status();
2035   }
2036 
2037   // Change the program counter.
2038   LLDB_LOG(log, "pid {0} tid {1}: changing PC from {2:x} to {3:x}", GetID(),
2039            thread.GetID(), initial_pc_addr, breakpoint_addr);
2040 
2041   error = context.SetPC(breakpoint_addr);
2042   if (error.Fail()) {
2043     LLDB_LOG(log, "pid {0} tid {1}: failed to set PC: {2}", GetID(),
2044              thread.GetID(), error);
2045     return error;
2046   }
2047 
2048   return error;
2049 }
2050 
2051 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path,
2052                                                    FileSpec &file_spec) {
2053   Status error = PopulateMemoryRegionCache();
2054   if (error.Fail())
2055     return error;
2056 
2057   FileSpec module_file_spec(module_path, true);
2058 
2059   file_spec.Clear();
2060   for (const auto &it : m_mem_region_cache) {
2061     if (it.second.GetFilename() == module_file_spec.GetFilename()) {
2062       file_spec = it.second;
2063       return Status();
2064     }
2065   }
2066   return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
2067                 module_file_spec.GetFilename().AsCString(), GetID());
2068 }
2069 
2070 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name,
2071                                               lldb::addr_t &load_addr) {
2072   load_addr = LLDB_INVALID_ADDRESS;
2073   Status error = PopulateMemoryRegionCache();
2074   if (error.Fail())
2075     return error;
2076 
2077   FileSpec file(file_name, false);
2078   for (const auto &it : m_mem_region_cache) {
2079     if (it.second == file) {
2080       load_addr = it.first.GetRange().GetRangeBase();
2081       return Status();
2082     }
2083   }
2084   return Status("No load address found for specified file.");
2085 }
2086 
2087 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) {
2088   return static_cast<NativeThreadLinux *>(
2089       NativeProcessProtocol::GetThreadByID(tid));
2090 }
2091 
2092 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread,
2093                                         lldb::StateType state, int signo) {
2094   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2095   LLDB_LOG(log, "tid: {0}", thread.GetID());
2096 
2097   // Before we do the resume below, first check if we have a pending
2098   // stop notification that is currently waiting for
2099   // all threads to stop.  This is potentially a buggy situation since
2100   // we're ostensibly waiting for threads to stop before we send out the
2101   // pending notification, and here we are resuming one before we send
2102   // out the pending stop notification.
2103   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
2104     LLDB_LOG(log,
2105              "about to resume tid {0} per explicit request but we have a "
2106              "pending stop notification (tid {1}) that is actively "
2107              "waiting for this thread to stop. Valid sequence of events?",
2108              thread.GetID(), m_pending_notification_tid);
2109   }
2110 
2111   // Request a resume.  We expect this to be synchronous and the system
2112   // to reflect it is running after this completes.
2113   switch (state) {
2114   case eStateRunning: {
2115     const auto resume_result = thread.Resume(signo);
2116     if (resume_result.Success())
2117       SetState(eStateRunning, true);
2118     return resume_result;
2119   }
2120   case eStateStepping: {
2121     const auto step_result = thread.SingleStep(signo);
2122     if (step_result.Success())
2123       SetState(eStateRunning, true);
2124     return step_result;
2125   }
2126   default:
2127     LLDB_LOG(log, "Unhandled state {0}.", state);
2128     llvm_unreachable("Unhandled state for resume");
2129   }
2130 }
2131 
2132 //===----------------------------------------------------------------------===//
2133 
2134 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) {
2135   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2136   LLDB_LOG(log, "about to process event: (triggering_tid: {0})",
2137            triggering_tid);
2138 
2139   m_pending_notification_tid = triggering_tid;
2140 
2141   // Request a stop for all the thread stops that need to be stopped
2142   // and are not already known to be stopped.
2143   for (const auto &thread : m_threads) {
2144     if (StateIsRunningState(thread->GetState()))
2145       static_cast<NativeThreadLinux *>(thread.get())->RequestStop();
2146   }
2147 
2148   SignalIfAllThreadsStopped();
2149   LLDB_LOG(log, "event processing done");
2150 }
2151 
2152 void NativeProcessLinux::SignalIfAllThreadsStopped() {
2153   if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
2154     return; // No pending notification. Nothing to do.
2155 
2156   for (const auto &thread_sp : m_threads) {
2157     if (StateIsRunningState(thread_sp->GetState()))
2158       return; // Some threads are still running. Don't signal yet.
2159   }
2160 
2161   // We have a pending notification and all threads have stopped.
2162   Log *log(
2163       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
2164 
2165   // Clear any temporary breakpoints we used to implement software single
2166   // stepping.
2167   for (const auto &thread_info : m_threads_stepping_with_breakpoint) {
2168     Status error = RemoveBreakpoint(thread_info.second);
2169     if (error.Fail())
2170       LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}",
2171                thread_info.first, error);
2172   }
2173   m_threads_stepping_with_breakpoint.clear();
2174 
2175   // Notify the delegate about the stop
2176   SetCurrentThreadID(m_pending_notification_tid);
2177   SetState(StateType::eStateStopped, true);
2178   m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
2179 }
2180 
2181 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) {
2182   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2183   LLDB_LOG(log, "tid: {0}", thread.GetID());
2184 
2185   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID &&
2186       StateIsRunningState(thread.GetState())) {
2187     // We will need to wait for this new thread to stop as well before firing
2188     // the
2189     // notification.
2190     thread.RequestStop();
2191   }
2192 }
2193 
2194 void NativeProcessLinux::SigchldHandler() {
2195   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
2196   // Process all pending waitpid notifications.
2197   while (true) {
2198     int status = -1;
2199     ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, -1, &status,
2200                                           __WALL | __WNOTHREAD | WNOHANG);
2201 
2202     if (wait_pid == 0)
2203       break; // We are done.
2204 
2205     if (wait_pid == -1) {
2206       Status error(errno, eErrorTypePOSIX);
2207       LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error);
2208       break;
2209     }
2210 
2211     WaitStatus wait_status = WaitStatus::Decode(status);
2212     bool exited = wait_status.type == WaitStatus::Exit ||
2213                   (wait_status.type == WaitStatus::Signal &&
2214                    wait_pid == static_cast<::pid_t>(GetID()));
2215 
2216     LLDB_LOG(
2217         log,
2218         "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}",
2219         wait_pid, wait_status, exited);
2220 
2221     MonitorCallback(wait_pid, exited, wait_status);
2222   }
2223 }
2224 
2225 // Wrapper for ptrace to catch errors and log calls.
2226 // Note that ptrace sets errno on error because -1 can be a valid result (i.e.
2227 // for PTRACE_PEEK*)
2228 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr,
2229                                          void *data, size_t data_size,
2230                                          long *result) {
2231   Status error;
2232   long int ret;
2233 
2234   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2235 
2236   PtraceDisplayBytes(req, data, data_size);
2237 
2238   errno = 0;
2239   if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
2240     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
2241                  *(unsigned int *)addr, data);
2242   else
2243     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
2244                  addr, data);
2245 
2246   if (ret == -1)
2247     error.SetErrorToErrno();
2248 
2249   if (result)
2250     *result = ret;
2251 
2252   LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data,
2253            data_size, ret);
2254 
2255   PtraceDisplayBytes(req, data, data_size);
2256 
2257   if (error.Fail())
2258     LLDB_LOG(log, "ptrace() failed: {0}", error);
2259 
2260   return error;
2261 }
2262 
2263 llvm::Expected<ProcessorTraceMonitor &>
2264 NativeProcessLinux::LookupProcessorTraceInstance(lldb::user_id_t traceid,
2265                                                  lldb::tid_t thread) {
2266   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2267   if (thread == LLDB_INVALID_THREAD_ID && traceid == m_pt_proces_trace_id) {
2268     LLDB_LOG(log, "thread not specified: {0}", traceid);
2269     return Status("tracing not active thread not specified").ToError();
2270   }
2271 
2272   for (auto& iter : m_processor_trace_monitor) {
2273     if (traceid == iter.second->GetTraceID() &&
2274         (thread == iter.first || thread == LLDB_INVALID_THREAD_ID))
2275       return *(iter.second);
2276   }
2277 
2278   LLDB_LOG(log, "traceid not being traced: {0}", traceid);
2279   return Status("tracing not active for this thread").ToError();
2280 }
2281 
2282 Status NativeProcessLinux::GetMetaData(lldb::user_id_t traceid,
2283                                        lldb::tid_t thread,
2284                                        llvm::MutableArrayRef<uint8_t> &buffer,
2285                                        size_t offset) {
2286   TraceOptions trace_options;
2287   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2288   Status error;
2289 
2290   LLDB_LOG(log, "traceid {0}", traceid);
2291 
2292   auto perf_monitor = LookupProcessorTraceInstance(traceid, thread);
2293   if (!perf_monitor) {
2294     LLDB_LOG(log, "traceid not being traced: {0}", traceid);
2295     buffer = buffer.slice(buffer.size());
2296     error = perf_monitor.takeError();
2297     return error;
2298   }
2299   return (*perf_monitor).ReadPerfTraceData(buffer, offset);
2300 }
2301 
2302 Status NativeProcessLinux::GetData(lldb::user_id_t traceid, lldb::tid_t thread,
2303                                    llvm::MutableArrayRef<uint8_t> &buffer,
2304                                    size_t offset) {
2305   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2306   Status error;
2307 
2308   LLDB_LOG(log, "traceid {0}", traceid);
2309 
2310   auto perf_monitor = LookupProcessorTraceInstance(traceid, thread);
2311   if (!perf_monitor) {
2312     LLDB_LOG(log, "traceid not being traced: {0}", traceid);
2313     buffer = buffer.slice(buffer.size());
2314     error = perf_monitor.takeError();
2315     return error;
2316   }
2317   return (*perf_monitor).ReadPerfTraceAux(buffer, offset);
2318 }
2319 
2320 Status NativeProcessLinux::GetTraceConfig(lldb::user_id_t traceid,
2321                                           TraceOptions &config) {
2322   Status error;
2323   if (config.getThreadID() == LLDB_INVALID_THREAD_ID &&
2324       m_pt_proces_trace_id == traceid) {
2325     if (m_pt_proces_trace_id == LLDB_INVALID_UID) {
2326       error.SetErrorString("tracing not active for this process");
2327       return error;
2328     }
2329     config = m_pt_process_trace_config;
2330   } else {
2331     auto perf_monitor =
2332         LookupProcessorTraceInstance(traceid, config.getThreadID());
2333     if (!perf_monitor) {
2334       error = perf_monitor.takeError();
2335       return error;
2336     }
2337     error = (*perf_monitor).GetTraceConfig(config);
2338   }
2339   return error;
2340 }
2341 
2342 lldb::user_id_t
2343 NativeProcessLinux::StartTraceGroup(const TraceOptions &config,
2344                                            Status &error) {
2345 
2346   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2347   if (config.getType() != TraceType::eTraceTypeProcessorTrace)
2348     return LLDB_INVALID_UID;
2349 
2350   if (m_pt_proces_trace_id != LLDB_INVALID_UID) {
2351     error.SetErrorString("tracing already active on this process");
2352     return m_pt_proces_trace_id;
2353   }
2354 
2355   for (const auto &thread_sp : m_threads) {
2356     if (auto traceInstance = ProcessorTraceMonitor::Create(
2357             GetID(), thread_sp->GetID(), config, true)) {
2358       m_pt_traced_thread_group.insert(thread_sp->GetID());
2359       m_processor_trace_monitor.insert(
2360           std::make_pair(thread_sp->GetID(), std::move(*traceInstance)));
2361     }
2362   }
2363 
2364   m_pt_process_trace_config = config;
2365   error = ProcessorTraceMonitor::GetCPUType(m_pt_process_trace_config);
2366 
2367   // Trace on Complete process will have traceid of 0
2368   m_pt_proces_trace_id = 0;
2369 
2370   LLDB_LOG(log, "Process Trace ID {0}", m_pt_proces_trace_id);
2371   return m_pt_proces_trace_id;
2372 }
2373 
2374 lldb::user_id_t NativeProcessLinux::StartTrace(const TraceOptions &config,
2375                                                Status &error) {
2376   if (config.getType() != TraceType::eTraceTypeProcessorTrace)
2377     return NativeProcessProtocol::StartTrace(config, error);
2378 
2379   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2380 
2381   lldb::tid_t threadid = config.getThreadID();
2382 
2383   if (threadid == LLDB_INVALID_THREAD_ID)
2384     return StartTraceGroup(config, error);
2385 
2386   auto thread_sp = GetThreadByID(threadid);
2387   if (!thread_sp) {
2388     // Thread not tracked by lldb so don't trace.
2389     error.SetErrorString("invalid thread id");
2390     return LLDB_INVALID_UID;
2391   }
2392 
2393   const auto &iter = m_processor_trace_monitor.find(threadid);
2394   if (iter != m_processor_trace_monitor.end()) {
2395     LLDB_LOG(log, "Thread already being traced");
2396     error.SetErrorString("tracing already active on this thread");
2397     return LLDB_INVALID_UID;
2398   }
2399 
2400   auto traceMonitor =
2401       ProcessorTraceMonitor::Create(GetID(), threadid, config, false);
2402   if (!traceMonitor) {
2403     error = traceMonitor.takeError();
2404     LLDB_LOG(log, "error {0}", error);
2405     return LLDB_INVALID_UID;
2406   }
2407   lldb::user_id_t ret_trace_id = (*traceMonitor)->GetTraceID();
2408   m_processor_trace_monitor.insert(
2409       std::make_pair(threadid, std::move(*traceMonitor)));
2410   return ret_trace_id;
2411 }
2412 
2413 Status NativeProcessLinux::StopTracingForThread(lldb::tid_t thread) {
2414   Status error;
2415   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2416   LLDB_LOG(log, "Thread {0}", thread);
2417 
2418   const auto& iter = m_processor_trace_monitor.find(thread);
2419   if (iter == m_processor_trace_monitor.end()) {
2420     error.SetErrorString("tracing not active for this thread");
2421     return error;
2422   }
2423 
2424   if (iter->second->GetTraceID() == m_pt_proces_trace_id) {
2425     // traceid maps to the whole process so we have to erase it from the
2426     // thread group.
2427     LLDB_LOG(log, "traceid maps to process");
2428     m_pt_traced_thread_group.erase(thread);
2429   }
2430   m_processor_trace_monitor.erase(iter);
2431 
2432   return error;
2433 }
2434 
2435 Status NativeProcessLinux::StopTrace(lldb::user_id_t traceid,
2436                                      lldb::tid_t thread) {
2437   Status error;
2438 
2439   TraceOptions trace_options;
2440   trace_options.setThreadID(thread);
2441   error = NativeProcessLinux::GetTraceConfig(traceid, trace_options);
2442 
2443   if (error.Fail())
2444     return error;
2445 
2446   switch (trace_options.getType()) {
2447   case lldb::TraceType::eTraceTypeProcessorTrace:
2448     if (traceid == m_pt_proces_trace_id &&
2449         thread == LLDB_INVALID_THREAD_ID)
2450       StopProcessorTracingOnProcess();
2451     else
2452       error = StopProcessorTracingOnThread(traceid, thread);
2453     break;
2454   default:
2455     error.SetErrorString("trace not supported");
2456     break;
2457   }
2458 
2459   return error;
2460 }
2461 
2462 void NativeProcessLinux::StopProcessorTracingOnProcess() {
2463   for (auto thread_id_iter : m_pt_traced_thread_group)
2464     m_processor_trace_monitor.erase(thread_id_iter);
2465   m_pt_traced_thread_group.clear();
2466   m_pt_proces_trace_id = LLDB_INVALID_UID;
2467 }
2468 
2469 Status NativeProcessLinux::StopProcessorTracingOnThread(lldb::user_id_t traceid,
2470                                                         lldb::tid_t thread) {
2471   Status error;
2472   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2473 
2474   if (thread == LLDB_INVALID_THREAD_ID) {
2475     for (auto& iter : m_processor_trace_monitor) {
2476       if (iter.second->GetTraceID() == traceid) {
2477         // Stopping a trace instance for an individual thread
2478         // hence there will only be one traceid that can match.
2479         m_processor_trace_monitor.erase(iter.first);
2480         return error;
2481       }
2482       LLDB_LOG(log, "Trace ID {0}", iter.second->GetTraceID());
2483     }
2484 
2485     LLDB_LOG(log, "Invalid TraceID");
2486     error.SetErrorString("invalid trace id");
2487     return error;
2488   }
2489 
2490   // thread is specified so we can use find function on the map.
2491   const auto& iter = m_processor_trace_monitor.find(thread);
2492   if (iter == m_processor_trace_monitor.end()) {
2493     // thread not found in our map.
2494     LLDB_LOG(log, "thread not being traced");
2495     error.SetErrorString("tracing not active for this thread");
2496     return error;
2497   }
2498   if (iter->second->GetTraceID() != traceid) {
2499     // traceid did not match so it has to be invalid.
2500     LLDB_LOG(log, "Invalid TraceID");
2501     error.SetErrorString("invalid trace id");
2502     return error;
2503   }
2504 
2505   LLDB_LOG(log, "UID - {0} , Thread -{1}", traceid, thread);
2506 
2507   if (traceid == m_pt_proces_trace_id) {
2508     // traceid maps to the whole process so we have to erase it from the
2509     // thread group.
2510     LLDB_LOG(log, "traceid maps to process");
2511     m_pt_traced_thread_group.erase(thread);
2512   }
2513   m_processor_trace_monitor.erase(iter);
2514 
2515   return error;
2516 }
2517