1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "NativeProcessLinux.h"
11 
12 // C Includes
13 #include <errno.h>
14 #include <stdint.h>
15 #include <string.h>
16 #include <unistd.h>
17 
18 // C++ Includes
19 #include <fstream>
20 #include <mutex>
21 #include <sstream>
22 #include <string>
23 #include <unordered_map>
24 
25 // Other libraries and framework includes
26 #include "lldb/Core/EmulateInstruction.h"
27 #include "lldb/Core/ModuleSpec.h"
28 #include "lldb/Core/RegisterValue.h"
29 #include "lldb/Core/State.h"
30 #include "lldb/Host/Host.h"
31 #include "lldb/Host/HostProcess.h"
32 #include "lldb/Host/PseudoTerminal.h"
33 #include "lldb/Host/ThreadLauncher.h"
34 #include "lldb/Host/common/NativeBreakpoint.h"
35 #include "lldb/Host/common/NativeRegisterContext.h"
36 #include "lldb/Host/linux/Ptrace.h"
37 #include "lldb/Host/linux/Uio.h"
38 #include "lldb/Host/posix/ProcessLauncherPosixFork.h"
39 #include "lldb/Symbol/ObjectFile.h"
40 #include "lldb/Target/Process.h"
41 #include "lldb/Target/ProcessLaunchInfo.h"
42 #include "lldb/Target/Target.h"
43 #include "lldb/Utility/LLDBAssert.h"
44 #include "lldb/Utility/Status.h"
45 #include "lldb/Utility/StringExtractor.h"
46 #include "llvm/Support/Errno.h"
47 #include "llvm/Support/FileSystem.h"
48 #include "llvm/Support/Threading.h"
49 
50 #include "NativeThreadLinux.h"
51 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
52 #include "Procfs.h"
53 
54 #include <linux/unistd.h>
55 #include <sys/socket.h>
56 #include <sys/syscall.h>
57 #include <sys/types.h>
58 #include <sys/user.h>
59 #include <sys/wait.h>
60 
61 // Support hardware breakpoints in case it has not been defined
62 #ifndef TRAP_HWBKPT
63 #define TRAP_HWBKPT 4
64 #endif
65 
66 using namespace lldb;
67 using namespace lldb_private;
68 using namespace lldb_private::process_linux;
69 using namespace llvm;
70 
71 // Private bits we only need internally.
72 
73 static bool ProcessVmReadvSupported() {
74   static bool is_supported;
75   static llvm::once_flag flag;
76 
77   llvm::call_once(flag, [] {
78     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
79 
80     uint32_t source = 0x47424742;
81     uint32_t dest = 0;
82 
83     struct iovec local, remote;
84     remote.iov_base = &source;
85     local.iov_base = &dest;
86     remote.iov_len = local.iov_len = sizeof source;
87 
88     // We shall try if cross-process-memory reads work by attempting to read a
89     // value from our own process.
90     ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
91     is_supported = (res == sizeof(source) && source == dest);
92     if (is_supported)
93       LLDB_LOG(log,
94                "Detected kernel support for process_vm_readv syscall. "
95                "Fast memory reads enabled.");
96     else
97       LLDB_LOG(log,
98                "syscall process_vm_readv failed (error: {0}). Fast memory "
99                "reads disabled.",
100                llvm::sys::StrError());
101   });
102 
103   return is_supported;
104 }
105 
106 namespace {
107 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) {
108   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
109   if (!log)
110     return;
111 
112   if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO))
113     LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec());
114   else
115     LLDB_LOG(log, "leaving STDIN as is");
116 
117   if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO))
118     LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec());
119   else
120     LLDB_LOG(log, "leaving STDOUT as is");
121 
122   if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO))
123     LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec());
124   else
125     LLDB_LOG(log, "leaving STDERR as is");
126 
127   int i = 0;
128   for (const char **args = info.GetArguments().GetConstArgumentVector(); *args;
129        ++args, ++i)
130     LLDB_LOG(log, "arg {0}: '{1}'", i, *args);
131 }
132 
133 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) {
134   uint8_t *ptr = (uint8_t *)bytes;
135   const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
136   for (uint32_t i = 0; i < loop_count; i++) {
137     s.Printf("[%x]", *ptr);
138     ptr++;
139   }
140 }
141 
142 void PtraceDisplayBytes(int &req, void *data, size_t data_size) {
143   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
144   if (!log)
145     return;
146   StreamString buf;
147 
148   switch (req) {
149   case PTRACE_POKETEXT: {
150     DisplayBytes(buf, &data, 8);
151     LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData());
152     break;
153   }
154   case PTRACE_POKEDATA: {
155     DisplayBytes(buf, &data, 8);
156     LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData());
157     break;
158   }
159   case PTRACE_POKEUSER: {
160     DisplayBytes(buf, &data, 8);
161     LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData());
162     break;
163   }
164   case PTRACE_SETREGS: {
165     DisplayBytes(buf, data, data_size);
166     LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData());
167     break;
168   }
169   case PTRACE_SETFPREGS: {
170     DisplayBytes(buf, data, data_size);
171     LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData());
172     break;
173   }
174   case PTRACE_SETSIGINFO: {
175     DisplayBytes(buf, data, sizeof(siginfo_t));
176     LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData());
177     break;
178   }
179   case PTRACE_SETREGSET: {
180     // Extract iov_base from data, which is a pointer to the struct IOVEC
181     DisplayBytes(buf, *(void **)data, data_size);
182     LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData());
183     break;
184   }
185   default: {}
186   }
187 }
188 
189 static constexpr unsigned k_ptrace_word_size = sizeof(void *);
190 static_assert(sizeof(long) >= k_ptrace_word_size,
191               "Size of long must be larger than ptrace word size");
192 } // end of anonymous namespace
193 
194 // Simple helper function to ensure flags are enabled on the given file
195 // descriptor.
196 static Status EnsureFDFlags(int fd, int flags) {
197   Status error;
198 
199   int status = fcntl(fd, F_GETFL);
200   if (status == -1) {
201     error.SetErrorToErrno();
202     return error;
203   }
204 
205   if (fcntl(fd, F_SETFL, status | flags) == -1) {
206     error.SetErrorToErrno();
207     return error;
208   }
209 
210   return error;
211 }
212 
213 // -----------------------------------------------------------------------------
214 // Public Static Methods
215 // -----------------------------------------------------------------------------
216 
217 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
218 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info,
219                                     NativeDelegate &native_delegate,
220                                     MainLoop &mainloop) const {
221   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
222 
223   MaybeLogLaunchInfo(launch_info);
224 
225   Status status;
226   ::pid_t pid = ProcessLauncherPosixFork()
227                     .LaunchProcess(launch_info, status)
228                     .GetProcessId();
229   LLDB_LOG(log, "pid = {0:x}", pid);
230   if (status.Fail()) {
231     LLDB_LOG(log, "failed to launch process: {0}", status);
232     return status.ToError();
233   }
234 
235   // Wait for the child process to trap on its call to execve.
236   int wstatus;
237   ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0);
238   assert(wpid == pid);
239   (void)wpid;
240   if (!WIFSTOPPED(wstatus)) {
241     LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}",
242              WaitStatus::Decode(wstatus));
243     return llvm::make_error<StringError>("Could not sync with inferior process",
244                                          llvm::inconvertibleErrorCode());
245   }
246   LLDB_LOG(log, "inferior started, now in stopped state");
247 
248   ArchSpec arch;
249   if ((status = ResolveProcessArchitecture(pid, arch)).Fail())
250     return status.ToError();
251 
252   // Set the architecture to the exe architecture.
253   LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid,
254            arch.GetArchitectureName());
255 
256   status = SetDefaultPtraceOpts(pid);
257   if (status.Fail()) {
258     LLDB_LOG(log, "failed to set default ptrace options: {0}", status);
259     return status.ToError();
260   }
261 
262   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
263       pid, launch_info.GetPTY().ReleaseMasterFileDescriptor(), native_delegate,
264       arch, mainloop, {pid}));
265 }
266 
267 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
268 NativeProcessLinux::Factory::Attach(
269     lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate,
270     MainLoop &mainloop) const {
271   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
272   LLDB_LOG(log, "pid = {0:x}", pid);
273 
274   // Retrieve the architecture for the running process.
275   ArchSpec arch;
276   Status status = ResolveProcessArchitecture(pid, arch);
277   if (!status.Success())
278     return status.ToError();
279 
280   auto tids_or = NativeProcessLinux::Attach(pid);
281   if (!tids_or)
282     return tids_or.takeError();
283 
284   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
285       pid, -1, native_delegate, arch, mainloop, *tids_or));
286 }
287 
288 // -----------------------------------------------------------------------------
289 // Public Instance Methods
290 // -----------------------------------------------------------------------------
291 
292 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd,
293                                        NativeDelegate &delegate,
294                                        const ArchSpec &arch, MainLoop &mainloop,
295                                        llvm::ArrayRef<::pid_t> tids)
296     : NativeProcessProtocol(pid, terminal_fd, delegate), m_arch(arch) {
297   if (m_terminal_fd != -1) {
298     Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
299     assert(status.Success());
300   }
301 
302   Status status;
303   m_sigchld_handle = mainloop.RegisterSignal(
304       SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status);
305   assert(m_sigchld_handle && status.Success());
306 
307   for (const auto &tid : tids) {
308     NativeThreadLinux &thread = AddThread(tid);
309     thread.SetStoppedBySignal(SIGSTOP);
310     ThreadWasCreated(thread);
311   }
312 
313   // Let our process instance know the thread has stopped.
314   SetCurrentThreadID(tids[0]);
315   SetState(StateType::eStateStopped, false);
316 
317   // Proccess any signals we received before installing our handler
318   SigchldHandler();
319 }
320 
321 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) {
322   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
323 
324   Status status;
325   // Use a map to keep track of the threads which we have attached/need to
326   // attach.
327   Host::TidMap tids_to_attach;
328   while (Host::FindProcessThreads(pid, tids_to_attach)) {
329     for (Host::TidMap::iterator it = tids_to_attach.begin();
330          it != tids_to_attach.end();) {
331       if (it->second == false) {
332         lldb::tid_t tid = it->first;
333 
334         // Attach to the requested process.
335         // An attach will cause the thread to stop with a SIGSTOP.
336         if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) {
337           // No such thread. The thread may have exited.
338           // More error handling may be needed.
339           if (status.GetError() == ESRCH) {
340             it = tids_to_attach.erase(it);
341             continue;
342           }
343           return status.ToError();
344         }
345 
346         int wpid =
347             llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL);
348         // Need to use __WALL otherwise we receive an error with errno=ECHLD
349         // At this point we should have a thread stopped if waitpid succeeds.
350         if (wpid < 0) {
351           // No such thread. The thread may have exited.
352           // More error handling may be needed.
353           if (errno == ESRCH) {
354             it = tids_to_attach.erase(it);
355             continue;
356           }
357           return llvm::errorCodeToError(
358               std::error_code(errno, std::generic_category()));
359         }
360 
361         if ((status = SetDefaultPtraceOpts(tid)).Fail())
362           return status.ToError();
363 
364         LLDB_LOG(log, "adding tid = {0}", tid);
365         it->second = true;
366       }
367 
368       // move the loop forward
369       ++it;
370     }
371   }
372 
373   size_t tid_count = tids_to_attach.size();
374   if (tid_count == 0)
375     return llvm::make_error<StringError>("No such process",
376                                          llvm::inconvertibleErrorCode());
377 
378   std::vector<::pid_t> tids;
379   tids.reserve(tid_count);
380   for (const auto &p : tids_to_attach)
381     tids.push_back(p.first);
382   return std::move(tids);
383 }
384 
385 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) {
386   long ptrace_opts = 0;
387 
388   // Have the child raise an event on exit.  This is used to keep the child in
389   // limbo until it is destroyed.
390   ptrace_opts |= PTRACE_O_TRACEEXIT;
391 
392   // Have the tracer trace threads which spawn in the inferior process.
393   // TODO: if we want to support tracing the inferiors' child, add the
394   // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
395   ptrace_opts |= PTRACE_O_TRACECLONE;
396 
397   // Have the tracer notify us before execve returns
398   // (needed to disable legacy SIGTRAP generation)
399   ptrace_opts |= PTRACE_O_TRACEEXEC;
400 
401   return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts);
402 }
403 
404 // Handles all waitpid events from the inferior process.
405 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited,
406                                          WaitStatus status) {
407   Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
408 
409   // Certain activities differ based on whether the pid is the tid of the main
410   // thread.
411   const bool is_main_thread = (pid == GetID());
412 
413   // Handle when the thread exits.
414   if (exited) {
415     LLDB_LOG(log, "got exit signal({0}) , tid = {1} ({2} main thread)", signal,
416              pid, is_main_thread ? "is" : "is not");
417 
418     // This is a thread that exited.  Ensure we're not tracking it anymore.
419     const bool thread_found = StopTrackingThread(pid);
420 
421     if (is_main_thread) {
422       // We only set the exit status and notify the delegate if we haven't
423       // already set the process
424       // state to an exited state.  We normally should have received a SIGTRAP |
425       // (PTRACE_EVENT_EXIT << 8)
426       // for the main thread.
427       const bool already_notified = (GetState() == StateType::eStateExited) ||
428                                     (GetState() == StateType::eStateCrashed);
429       if (!already_notified) {
430         LLDB_LOG(
431             log,
432             "tid = {0} handling main thread exit ({1}), expected exit state "
433             "already set but state was {2} instead, setting exit state now",
434             pid,
435             thread_found ? "stopped tracking thread metadata"
436                          : "thread metadata not found",
437             GetState());
438         // The main thread exited.  We're done monitoring.  Report to delegate.
439         SetExitStatus(status, true);
440 
441         // Notify delegate that our process has exited.
442         SetState(StateType::eStateExited, true);
443       } else
444         LLDB_LOG(log, "tid = {0} main thread now exited (%s)", pid,
445                  thread_found ? "stopped tracking thread metadata"
446                               : "thread metadata not found");
447     } else {
448       // Do we want to report to the delegate in this case?  I think not.  If
449       // this was an orderly thread exit, we would already have received the
450       // SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, and we would have done an
451       // all-stop then.
452       LLDB_LOG(log, "tid = {0} handling non-main thread exit (%s)", pid,
453                thread_found ? "stopped tracking thread metadata"
454                             : "thread metadata not found");
455     }
456     return;
457   }
458 
459   siginfo_t info;
460   const auto info_err = GetSignalInfo(pid, &info);
461   auto thread_sp = GetThreadByID(pid);
462 
463   if (!thread_sp) {
464     // Normally, the only situation when we cannot find the thread is if we have
465     // just received a new thread notification. This is indicated by
466     // GetSignalInfo() returning si_code == SI_USER and si_pid == 0
467     LLDB_LOG(log, "received notification about an unknown tid {0}.", pid);
468 
469     if (info_err.Fail()) {
470       LLDB_LOG(log,
471                "(tid {0}) GetSignalInfo failed ({1}). "
472                "Ingoring this notification.",
473                pid, info_err);
474       return;
475     }
476 
477     LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code,
478              info.si_pid);
479 
480     NativeThreadLinux &thread = AddThread(pid);
481 
482     // Resume the newly created thread.
483     ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
484     ThreadWasCreated(thread);
485     return;
486   }
487 
488   // Get details on the signal raised.
489   if (info_err.Success()) {
490     // We have retrieved the signal info.  Dispatch appropriately.
491     if (info.si_signo == SIGTRAP)
492       MonitorSIGTRAP(info, *thread_sp);
493     else
494       MonitorSignal(info, *thread_sp, exited);
495   } else {
496     if (info_err.GetError() == EINVAL) {
497       // This is a group stop reception for this tid.
498       // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU
499       // into the tracee, triggering the group-stop mechanism. Normally
500       // receiving these would stop the process, pending a SIGCONT. Simulating
501       // this state in a debugger is hard and is generally not needed (one use
502       // case is debugging background task being managed by a shell). For
503       // general use, it is sufficient to stop the process in a signal-delivery
504       // stop which happens before the group stop. This done by MonitorSignal
505       // and works correctly for all signals.
506       LLDB_LOG(log,
507                "received a group stop for pid {0} tid {1}. Transparent "
508                "handling of group stops not supported, resuming the "
509                "thread.",
510                GetID(), pid);
511       ResumeThread(*thread_sp, thread_sp->GetState(),
512                    LLDB_INVALID_SIGNAL_NUMBER);
513     } else {
514       // ptrace(GETSIGINFO) failed (but not due to group-stop).
515 
516       // A return value of ESRCH means the thread/process is no longer on the
517       // system, so it was killed somehow outside of our control.  Either way,
518       // we can't do anything with it anymore.
519 
520       // Stop tracking the metadata for the thread since it's entirely off the
521       // system now.
522       const bool thread_found = StopTrackingThread(pid);
523 
524       LLDB_LOG(log,
525                "GetSignalInfo failed: {0}, tid = {1}, signal = {2}, "
526                "status = {3}, main_thread = {4}, thread_found: {5}",
527                info_err, pid, signal, status, is_main_thread, thread_found);
528 
529       if (is_main_thread) {
530         // Notify the delegate - our process is not available but appears to
531         // have been killed outside
532         // our control.  Is eStateExited the right exit state in this case?
533         SetExitStatus(status, true);
534         SetState(StateType::eStateExited, true);
535       } else {
536         // This thread was pulled out from underneath us.  Anything to do here?
537         // Do we want to do an all stop?
538         LLDB_LOG(log,
539                  "pid {0} tid {1} non-main thread exit occurred, didn't "
540                  "tell delegate anything since thread disappeared out "
541                  "from underneath us",
542                  GetID(), pid);
543       }
544     }
545   }
546 }
547 
548 void NativeProcessLinux::WaitForNewThread(::pid_t tid) {
549   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
550 
551   if (GetThreadByID(tid)) {
552     // We are already tracking the thread - we got the event on the new thread
553     // (see MonitorSignal) before this one. We are done.
554     return;
555   }
556 
557   // The thread is not tracked yet, let's wait for it to appear.
558   int status = -1;
559   LLDB_LOG(log,
560            "received thread creation event for tid {0}. tid not tracked "
561            "yet, waiting for thread to appear...",
562            tid);
563   ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, &status, __WALL);
564   // Since we are waiting on a specific tid, this must be the creation event.
565   // But let's do some checks just in case.
566   if (wait_pid != tid) {
567     LLDB_LOG(log,
568              "waiting for tid {0} failed. Assuming the thread has "
569              "disappeared in the meantime",
570              tid);
571     // The only way I know of this could happen is if the whole process was
572     // SIGKILLed in the mean time. In any case, we can't do anything about that
573     // now.
574     return;
575   }
576   if (WIFEXITED(status)) {
577     LLDB_LOG(log,
578              "waiting for tid {0} returned an 'exited' event. Not "
579              "tracking the thread.",
580              tid);
581     // Also a very improbable event.
582     return;
583   }
584 
585   LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid);
586   NativeThreadLinux &new_thread = AddThread(tid);
587 
588   ResumeThread(new_thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
589   ThreadWasCreated(new_thread);
590 }
591 
592 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info,
593                                         NativeThreadLinux &thread) {
594   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
595   const bool is_main_thread = (thread.GetID() == GetID());
596 
597   assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
598 
599   switch (info.si_code) {
600   // TODO: these two cases are required if we want to support tracing of the
601   // inferiors' children.  We'd need this to debug a monitor.
602   // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
603   // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
604 
605   case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): {
606     // This is the notification on the parent thread which informs us of new
607     // thread
608     // creation.
609     // We don't want to do anything with the parent thread so we just resume it.
610     // In case we
611     // want to implement "break on thread creation" functionality, we would need
612     // to stop
613     // here.
614 
615     unsigned long event_message = 0;
616     if (GetEventMessage(thread.GetID(), &event_message).Fail()) {
617       LLDB_LOG(log,
618                "pid {0} received thread creation event but "
619                "GetEventMessage failed so we don't know the new tid",
620                thread.GetID());
621     } else
622       WaitForNewThread(event_message);
623 
624     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
625     break;
626   }
627 
628   case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): {
629     LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP);
630 
631     // Exec clears any pending notifications.
632     m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
633 
634     // Remove all but the main thread here.  Linux fork creates a new process
635     // which only copies the main thread.
636     LLDB_LOG(log, "exec received, stop tracking all but main thread");
637 
638     for (auto i = m_threads.begin(); i != m_threads.end();) {
639       if ((*i)->GetID() == GetID())
640         i = m_threads.erase(i);
641       else
642         ++i;
643     }
644     assert(m_threads.size() == 1);
645     auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get());
646 
647     SetCurrentThreadID(main_thread->GetID());
648     main_thread->SetStoppedByExec();
649 
650     // Tell coordinator about about the "new" (since exec) stopped main thread.
651     ThreadWasCreated(*main_thread);
652 
653     // Let our delegate know we have just exec'd.
654     NotifyDidExec();
655 
656     // Let the process know we're stopped.
657     StopRunningThreads(main_thread->GetID());
658 
659     break;
660   }
661 
662   case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): {
663     // The inferior process or one of its threads is about to exit.
664     // We don't want to do anything with the thread so we just resume it. In
665     // case we
666     // want to implement "break on thread exit" functionality, we would need to
667     // stop
668     // here.
669 
670     unsigned long data = 0;
671     if (GetEventMessage(thread.GetID(), &data).Fail())
672       data = -1;
673 
674     LLDB_LOG(log,
675              "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, "
676              "WIFSIGNALED={2}, pid = {3}, main_thread = {4}",
677              data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(),
678              is_main_thread);
679 
680     if (is_main_thread)
681       SetExitStatus(WaitStatus::Decode(data), true);
682 
683     StateType state = thread.GetState();
684     if (!StateIsRunningState(state)) {
685       // Due to a kernel bug, we may sometimes get this stop after the inferior
686       // gets a
687       // SIGKILL. This confuses our state tracking logic in ResumeThread(),
688       // since normally,
689       // we should not be receiving any ptrace events while the inferior is
690       // stopped. This
691       // makes sure that the inferior is resumed and exits normally.
692       state = eStateRunning;
693     }
694     ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
695 
696     break;
697   }
698 
699   case 0:
700   case TRAP_TRACE:  // We receive this on single stepping.
701   case TRAP_HWBKPT: // We receive this on watchpoint hit
702   {
703     // If a watchpoint was hit, report it
704     uint32_t wp_index;
705     Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
706         wp_index, (uintptr_t)info.si_addr);
707     if (error.Fail())
708       LLDB_LOG(log,
709                "received error while checking for watchpoint hits, pid = "
710                "{0}, error = {1}",
711                thread.GetID(), error);
712     if (wp_index != LLDB_INVALID_INDEX32) {
713       MonitorWatchpoint(thread, wp_index);
714       break;
715     }
716 
717     // If a breakpoint was hit, report it
718     uint32_t bp_index;
719     error = thread.GetRegisterContext().GetHardwareBreakHitIndex(
720         bp_index, (uintptr_t)info.si_addr);
721     if (error.Fail())
722       LLDB_LOG(log, "received error while checking for hardware "
723                     "breakpoint hits, pid = {0}, error = {1}",
724                thread.GetID(), error);
725     if (bp_index != LLDB_INVALID_INDEX32) {
726       MonitorBreakpoint(thread);
727       break;
728     }
729 
730     // Otherwise, report step over
731     MonitorTrace(thread);
732     break;
733   }
734 
735   case SI_KERNEL:
736 #if defined __mips__
737     // For mips there is no special signal for watchpoint
738     // So we check for watchpoint in kernel trap
739     {
740       // If a watchpoint was hit, report it
741       uint32_t wp_index;
742       Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
743           wp_index, LLDB_INVALID_ADDRESS);
744       if (error.Fail())
745         LLDB_LOG(log,
746                  "received error while checking for watchpoint hits, pid = "
747                  "{0}, error = {1}",
748                  thread.GetID(), error);
749       if (wp_index != LLDB_INVALID_INDEX32) {
750         MonitorWatchpoint(thread, wp_index);
751         break;
752       }
753     }
754 // NO BREAK
755 #endif
756   case TRAP_BRKPT:
757     MonitorBreakpoint(thread);
758     break;
759 
760   case SIGTRAP:
761   case (SIGTRAP | 0x80):
762     LLDB_LOG(
763         log,
764         "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming",
765         info.si_code, GetID(), thread.GetID());
766 
767     // Ignore these signals until we know more about them.
768     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
769     break;
770 
771   default:
772     LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}",
773              info.si_code, GetID(), thread.GetID());
774     MonitorSignal(info, thread, false);
775     break;
776   }
777 }
778 
779 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) {
780   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
781   LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID());
782 
783   // This thread is currently stopped.
784   thread.SetStoppedByTrace();
785 
786   StopRunningThreads(thread.GetID());
787 }
788 
789 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) {
790   Log *log(
791       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
792   LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID());
793 
794   // Mark the thread as stopped at breakpoint.
795   thread.SetStoppedByBreakpoint();
796   Status error = FixupBreakpointPCAsNeeded(thread);
797   if (error.Fail())
798     LLDB_LOG(log, "pid = {0} fixup: {1}", thread.GetID(), error);
799 
800   if (m_threads_stepping_with_breakpoint.find(thread.GetID()) !=
801       m_threads_stepping_with_breakpoint.end())
802     thread.SetStoppedByTrace();
803 
804   StopRunningThreads(thread.GetID());
805 }
806 
807 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread,
808                                            uint32_t wp_index) {
809   Log *log(
810       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
811   LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}",
812            thread.GetID(), wp_index);
813 
814   // Mark the thread as stopped at watchpoint.
815   // The address is at (lldb::addr_t)info->si_addr if we need it.
816   thread.SetStoppedByWatchpoint(wp_index);
817 
818   // We need to tell all other running threads before we notify the delegate
819   // about this stop.
820   StopRunningThreads(thread.GetID());
821 }
822 
823 void NativeProcessLinux::MonitorSignal(const siginfo_t &info,
824                                        NativeThreadLinux &thread, bool exited) {
825   const int signo = info.si_signo;
826   const bool is_from_llgs = info.si_pid == getpid();
827 
828   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
829 
830   // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
831   // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
832   // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
833   //
834   // IOW, user generated signals never generate what we consider to be a
835   // "crash".
836   //
837   // Similarly, ACK signals generated by this monitor.
838 
839   // Handle the signal.
840   LLDB_LOG(log,
841            "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, "
842            "waitpid pid = {4})",
843            Host::GetSignalAsCString(signo), signo, info.si_code,
844            thread.GetID());
845 
846   // Check for thread stop notification.
847   if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) {
848     // This is a tgkill()-based stop.
849     LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID());
850 
851     // Check that we're not already marked with a stop reason.
852     // Note this thread really shouldn't already be marked as stopped - if we
853     // were, that would imply that the kernel signaled us with the thread
854     // stopping which we handled and marked as stopped, and that, without an
855     // intervening resume, we received another stop.  It is more likely that we
856     // are missing the marking of a run state somewhere if we find that the
857     // thread was marked as stopped.
858     const StateType thread_state = thread.GetState();
859     if (!StateIsStoppedState(thread_state, false)) {
860       // An inferior thread has stopped because of a SIGSTOP we have sent it.
861       // Generally, these are not important stops and we don't want to report
862       // them as they are just used to stop other threads when one thread (the
863       // one with the *real* stop reason) hits a breakpoint (watchpoint,
864       // etc...). However, in the case of an asynchronous Interrupt(), this *is*
865       // the real stop reason, so we leave the signal intact if this is the
866       // thread that was chosen as the triggering thread.
867       if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
868         if (m_pending_notification_tid == thread.GetID())
869           thread.SetStoppedBySignal(SIGSTOP, &info);
870         else
871           thread.SetStoppedWithNoReason();
872 
873         SetCurrentThreadID(thread.GetID());
874         SignalIfAllThreadsStopped();
875       } else {
876         // We can end up here if stop was initiated by LLGS but by this time a
877         // thread stop has occurred - maybe initiated by another event.
878         Status error = ResumeThread(thread, thread.GetState(), 0);
879         if (error.Fail())
880           LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(),
881                    error);
882       }
883     } else {
884       LLDB_LOG(log,
885                "pid {0} tid {1}, thread was already marked as a stopped "
886                "state (state={2}), leaving stop signal as is",
887                GetID(), thread.GetID(), thread_state);
888       SignalIfAllThreadsStopped();
889     }
890 
891     // Done handling.
892     return;
893   }
894 
895   // Check if debugger should stop at this signal or just ignore it
896   // and resume the inferior.
897   if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) {
898      ResumeThread(thread, thread.GetState(), signo);
899      return;
900   }
901 
902   // This thread is stopped.
903   LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo));
904   thread.SetStoppedBySignal(signo, &info);
905 
906   // Send a stop to the debugger after we get all other threads to stop.
907   StopRunningThreads(thread.GetID());
908 }
909 
910 namespace {
911 
912 struct EmulatorBaton {
913   NativeProcessLinux &m_process;
914   NativeRegisterContext &m_reg_context;
915 
916   // eRegisterKindDWARF -> RegsiterValue
917   std::unordered_map<uint32_t, RegisterValue> m_register_values;
918 
919   EmulatorBaton(NativeProcessLinux &process, NativeRegisterContext &reg_context)
920       : m_process(process), m_reg_context(reg_context) {}
921 };
922 
923 } // anonymous namespace
924 
925 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton,
926                                  const EmulateInstruction::Context &context,
927                                  lldb::addr_t addr, void *dst, size_t length) {
928   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
929 
930   size_t bytes_read;
931   emulator_baton->m_process.ReadMemory(addr, dst, length, bytes_read);
932   return bytes_read;
933 }
934 
935 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton,
936                                  const RegisterInfo *reg_info,
937                                  RegisterValue &reg_value) {
938   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
939 
940   auto it = emulator_baton->m_register_values.find(
941       reg_info->kinds[eRegisterKindDWARF]);
942   if (it != emulator_baton->m_register_values.end()) {
943     reg_value = it->second;
944     return true;
945   }
946 
947   // The emulator only fill in the dwarf regsiter numbers (and in some case
948   // the generic register numbers). Get the full register info from the
949   // register context based on the dwarf register numbers.
950   const RegisterInfo *full_reg_info =
951       emulator_baton->m_reg_context.GetRegisterInfo(
952           eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
953 
954   Status error =
955       emulator_baton->m_reg_context.ReadRegister(full_reg_info, reg_value);
956   if (error.Success())
957     return true;
958 
959   return false;
960 }
961 
962 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton,
963                                   const EmulateInstruction::Context &context,
964                                   const RegisterInfo *reg_info,
965                                   const RegisterValue &reg_value) {
966   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
967   emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] =
968       reg_value;
969   return true;
970 }
971 
972 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton,
973                                   const EmulateInstruction::Context &context,
974                                   lldb::addr_t addr, const void *dst,
975                                   size_t length) {
976   return length;
977 }
978 
979 static lldb::addr_t ReadFlags(NativeRegisterContext &regsiter_context) {
980   const RegisterInfo *flags_info = regsiter_context.GetRegisterInfo(
981       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
982   return regsiter_context.ReadRegisterAsUnsigned(flags_info,
983                                                  LLDB_INVALID_ADDRESS);
984 }
985 
986 Status
987 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) {
988   Status error;
989   NativeRegisterContext& register_context = thread.GetRegisterContext();
990 
991   std::unique_ptr<EmulateInstruction> emulator_ap(
992       EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying,
993                                      nullptr));
994 
995   if (emulator_ap == nullptr)
996     return Status("Instruction emulator not found!");
997 
998   EmulatorBaton baton(*this, register_context);
999   emulator_ap->SetBaton(&baton);
1000   emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
1001   emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
1002   emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
1003   emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
1004 
1005   if (!emulator_ap->ReadInstruction())
1006     return Status("Read instruction failed!");
1007 
1008   bool emulation_result =
1009       emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
1010 
1011   const RegisterInfo *reg_info_pc = register_context.GetRegisterInfo(
1012       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
1013   const RegisterInfo *reg_info_flags = register_context.GetRegisterInfo(
1014       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1015 
1016   auto pc_it =
1017       baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
1018   auto flags_it =
1019       baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
1020 
1021   lldb::addr_t next_pc;
1022   lldb::addr_t next_flags;
1023   if (emulation_result) {
1024     assert(pc_it != baton.m_register_values.end() &&
1025            "Emulation was successfull but PC wasn't updated");
1026     next_pc = pc_it->second.GetAsUInt64();
1027 
1028     if (flags_it != baton.m_register_values.end())
1029       next_flags = flags_it->second.GetAsUInt64();
1030     else
1031       next_flags = ReadFlags(register_context);
1032   } else if (pc_it == baton.m_register_values.end()) {
1033     // Emulate instruction failed and it haven't changed PC. Advance PC
1034     // with the size of the current opcode because the emulation of all
1035     // PC modifying instruction should be successful. The failure most
1036     // likely caused by a not supported instruction which don't modify PC.
1037     next_pc = register_context.GetPC() + emulator_ap->GetOpcode().GetByteSize();
1038     next_flags = ReadFlags(register_context);
1039   } else {
1040     // The instruction emulation failed after it modified the PC. It is an
1041     // unknown error where we can't continue because the next instruction is
1042     // modifying the PC but we don't  know how.
1043     return Status("Instruction emulation failed unexpectedly.");
1044   }
1045 
1046   if (m_arch.GetMachine() == llvm::Triple::arm) {
1047     if (next_flags & 0x20) {
1048       // Thumb mode
1049       error = SetSoftwareBreakpoint(next_pc, 2);
1050     } else {
1051       // Arm mode
1052       error = SetSoftwareBreakpoint(next_pc, 4);
1053     }
1054   } else if (m_arch.GetMachine() == llvm::Triple::mips64 ||
1055              m_arch.GetMachine() == llvm::Triple::mips64el ||
1056              m_arch.GetMachine() == llvm::Triple::mips ||
1057              m_arch.GetMachine() == llvm::Triple::mipsel ||
1058              m_arch.GetMachine() == llvm::Triple::ppc64le)
1059     error = SetSoftwareBreakpoint(next_pc, 4);
1060   else {
1061     // No size hint is given for the next breakpoint
1062     error = SetSoftwareBreakpoint(next_pc, 0);
1063   }
1064 
1065   // If setting the breakpoint fails because next_pc is out of
1066   // the address space, ignore it and let the debugee segfault.
1067   if (error.GetError() == EIO || error.GetError() == EFAULT) {
1068     return Status();
1069   } else if (error.Fail())
1070     return error;
1071 
1072   m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc});
1073 
1074   return Status();
1075 }
1076 
1077 bool NativeProcessLinux::SupportHardwareSingleStepping() const {
1078   if (m_arch.GetMachine() == llvm::Triple::arm ||
1079       m_arch.GetMachine() == llvm::Triple::mips64 ||
1080       m_arch.GetMachine() == llvm::Triple::mips64el ||
1081       m_arch.GetMachine() == llvm::Triple::mips ||
1082       m_arch.GetMachine() == llvm::Triple::mipsel)
1083     return false;
1084   return true;
1085 }
1086 
1087 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) {
1088   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1089   LLDB_LOG(log, "pid {0}", GetID());
1090 
1091   bool software_single_step = !SupportHardwareSingleStepping();
1092 
1093   if (software_single_step) {
1094     for (const auto &thread : m_threads) {
1095       assert(thread && "thread list should not contain NULL threads");
1096 
1097       const ResumeAction *const action =
1098           resume_actions.GetActionForThread(thread->GetID(), true);
1099       if (action == nullptr)
1100         continue;
1101 
1102       if (action->state == eStateStepping) {
1103         Status error = SetupSoftwareSingleStepping(
1104             static_cast<NativeThreadLinux &>(*thread));
1105         if (error.Fail())
1106           return error;
1107       }
1108     }
1109   }
1110 
1111   for (const auto &thread : m_threads) {
1112     assert(thread && "thread list should not contain NULL threads");
1113 
1114     const ResumeAction *const action =
1115         resume_actions.GetActionForThread(thread->GetID(), true);
1116 
1117     if (action == nullptr) {
1118       LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(),
1119                thread->GetID());
1120       continue;
1121     }
1122 
1123     LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}",
1124              action->state, GetID(), thread->GetID());
1125 
1126     switch (action->state) {
1127     case eStateRunning:
1128     case eStateStepping: {
1129       // Run the thread, possibly feeding it the signal.
1130       const int signo = action->signal;
1131       ResumeThread(static_cast<NativeThreadLinux &>(*thread), action->state,
1132                    signo);
1133       break;
1134     }
1135 
1136     case eStateSuspended:
1137     case eStateStopped:
1138       llvm_unreachable("Unexpected state");
1139 
1140     default:
1141       return Status("NativeProcessLinux::%s (): unexpected state %s specified "
1142                     "for pid %" PRIu64 ", tid %" PRIu64,
1143                     __FUNCTION__, StateAsCString(action->state), GetID(),
1144                     thread->GetID());
1145     }
1146   }
1147 
1148   return Status();
1149 }
1150 
1151 Status NativeProcessLinux::Halt() {
1152   Status error;
1153 
1154   if (kill(GetID(), SIGSTOP) != 0)
1155     error.SetErrorToErrno();
1156 
1157   return error;
1158 }
1159 
1160 Status NativeProcessLinux::Detach() {
1161   Status error;
1162 
1163   // Stop monitoring the inferior.
1164   m_sigchld_handle.reset();
1165 
1166   // Tell ptrace to detach from the process.
1167   if (GetID() == LLDB_INVALID_PROCESS_ID)
1168     return error;
1169 
1170   for (const auto &thread : m_threads) {
1171     Status e = Detach(thread->GetID());
1172     if (e.Fail())
1173       error =
1174           e; // Save the error, but still attempt to detach from other threads.
1175   }
1176 
1177   m_processor_trace_monitor.clear();
1178   m_pt_proces_trace_id = LLDB_INVALID_UID;
1179 
1180   return error;
1181 }
1182 
1183 Status NativeProcessLinux::Signal(int signo) {
1184   Status error;
1185 
1186   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1187   LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo,
1188            Host::GetSignalAsCString(signo), GetID());
1189 
1190   if (kill(GetID(), signo))
1191     error.SetErrorToErrno();
1192 
1193   return error;
1194 }
1195 
1196 Status NativeProcessLinux::Interrupt() {
1197   // Pick a running thread (or if none, a not-dead stopped thread) as
1198   // the chosen thread that will be the stop-reason thread.
1199   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1200 
1201   NativeThreadProtocol *running_thread = nullptr;
1202   NativeThreadProtocol *stopped_thread = nullptr;
1203 
1204   LLDB_LOG(log, "selecting running thread for interrupt target");
1205   for (const auto &thread : m_threads) {
1206     // If we have a running or stepping thread, we'll call that the
1207     // target of the interrupt.
1208     const auto thread_state = thread->GetState();
1209     if (thread_state == eStateRunning || thread_state == eStateStepping) {
1210       running_thread = thread.get();
1211       break;
1212     } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) {
1213       // Remember the first non-dead stopped thread.  We'll use that as a backup
1214       // if there are no running threads.
1215       stopped_thread = thread.get();
1216     }
1217   }
1218 
1219   if (!running_thread && !stopped_thread) {
1220     Status error("found no running/stepping or live stopped threads as target "
1221                  "for interrupt");
1222     LLDB_LOG(log, "skipping due to error: {0}", error);
1223 
1224     return error;
1225   }
1226 
1227   NativeThreadProtocol *deferred_signal_thread =
1228       running_thread ? running_thread : stopped_thread;
1229 
1230   LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(),
1231            running_thread ? "running" : "stopped",
1232            deferred_signal_thread->GetID());
1233 
1234   StopRunningThreads(deferred_signal_thread->GetID());
1235 
1236   return Status();
1237 }
1238 
1239 Status NativeProcessLinux::Kill() {
1240   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1241   LLDB_LOG(log, "pid {0}", GetID());
1242 
1243   Status error;
1244 
1245   switch (m_state) {
1246   case StateType::eStateInvalid:
1247   case StateType::eStateExited:
1248   case StateType::eStateCrashed:
1249   case StateType::eStateDetached:
1250   case StateType::eStateUnloaded:
1251     // Nothing to do - the process is already dead.
1252     LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(),
1253              m_state);
1254     return error;
1255 
1256   case StateType::eStateConnected:
1257   case StateType::eStateAttaching:
1258   case StateType::eStateLaunching:
1259   case StateType::eStateStopped:
1260   case StateType::eStateRunning:
1261   case StateType::eStateStepping:
1262   case StateType::eStateSuspended:
1263     // We can try to kill a process in these states.
1264     break;
1265   }
1266 
1267   if (kill(GetID(), SIGKILL) != 0) {
1268     error.SetErrorToErrno();
1269     return error;
1270   }
1271 
1272   return error;
1273 }
1274 
1275 static Status
1276 ParseMemoryRegionInfoFromProcMapsLine(llvm::StringRef &maps_line,
1277                                       MemoryRegionInfo &memory_region_info) {
1278   memory_region_info.Clear();
1279 
1280   StringExtractor line_extractor(maps_line);
1281 
1282   // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode
1283   // pathname
1284   // perms: rwxp   (letter is present if set, '-' if not, final character is
1285   // p=private, s=shared).
1286 
1287   // Parse out the starting address
1288   lldb::addr_t start_address = line_extractor.GetHexMaxU64(false, 0);
1289 
1290   // Parse out hyphen separating start and end address from range.
1291   if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != '-'))
1292     return Status(
1293         "malformed /proc/{pid}/maps entry, missing dash between address range");
1294 
1295   // Parse out the ending address
1296   lldb::addr_t end_address = line_extractor.GetHexMaxU64(false, start_address);
1297 
1298   // Parse out the space after the address.
1299   if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != ' '))
1300     return Status(
1301         "malformed /proc/{pid}/maps entry, missing space after range");
1302 
1303   // Save the range.
1304   memory_region_info.GetRange().SetRangeBase(start_address);
1305   memory_region_info.GetRange().SetRangeEnd(end_address);
1306 
1307   // Any memory region in /proc/{pid}/maps is by definition mapped into the
1308   // process.
1309   memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes);
1310 
1311   // Parse out each permission entry.
1312   if (line_extractor.GetBytesLeft() < 4)
1313     return Status("malformed /proc/{pid}/maps entry, missing some portion of "
1314                   "permissions");
1315 
1316   // Handle read permission.
1317   const char read_perm_char = line_extractor.GetChar();
1318   if (read_perm_char == 'r')
1319     memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eYes);
1320   else if (read_perm_char == '-')
1321     memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1322   else
1323     return Status("unexpected /proc/{pid}/maps read permission char");
1324 
1325   // Handle write permission.
1326   const char write_perm_char = line_extractor.GetChar();
1327   if (write_perm_char == 'w')
1328     memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eYes);
1329   else if (write_perm_char == '-')
1330     memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1331   else
1332     return Status("unexpected /proc/{pid}/maps write permission char");
1333 
1334   // Handle execute permission.
1335   const char exec_perm_char = line_extractor.GetChar();
1336   if (exec_perm_char == 'x')
1337     memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eYes);
1338   else if (exec_perm_char == '-')
1339     memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1340   else
1341     return Status("unexpected /proc/{pid}/maps exec permission char");
1342 
1343   line_extractor.GetChar();              // Read the private bit
1344   line_extractor.SkipSpaces();           // Skip the separator
1345   line_extractor.GetHexMaxU64(false, 0); // Read the offset
1346   line_extractor.GetHexMaxU64(false, 0); // Read the major device number
1347   line_extractor.GetChar();              // Read the device id separator
1348   line_extractor.GetHexMaxU64(false, 0); // Read the major device number
1349   line_extractor.SkipSpaces();           // Skip the separator
1350   line_extractor.GetU64(0, 10);          // Read the inode number
1351 
1352   line_extractor.SkipSpaces();
1353   const char *name = line_extractor.Peek();
1354   if (name)
1355     memory_region_info.SetName(name);
1356 
1357   return Status();
1358 }
1359 
1360 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr,
1361                                                MemoryRegionInfo &range_info) {
1362   // FIXME review that the final memory region returned extends to the end of
1363   // the virtual address space,
1364   // with no perms if it is not mapped.
1365 
1366   // Use an approach that reads memory regions from /proc/{pid}/maps.
1367   // Assume proc maps entries are in ascending order.
1368   // FIXME assert if we find differently.
1369 
1370   if (m_supports_mem_region == LazyBool::eLazyBoolNo) {
1371     // We're done.
1372     return Status("unsupported");
1373   }
1374 
1375   Status error = PopulateMemoryRegionCache();
1376   if (error.Fail()) {
1377     return error;
1378   }
1379 
1380   lldb::addr_t prev_base_address = 0;
1381 
1382   // FIXME start by finding the last region that is <= target address using
1383   // binary search.  Data is sorted.
1384   // There can be a ton of regions on pthreads apps with lots of threads.
1385   for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end();
1386        ++it) {
1387     MemoryRegionInfo &proc_entry_info = it->first;
1388 
1389     // Sanity check assumption that /proc/{pid}/maps entries are ascending.
1390     assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) &&
1391            "descending /proc/pid/maps entries detected, unexpected");
1392     prev_base_address = proc_entry_info.GetRange().GetRangeBase();
1393     UNUSED_IF_ASSERT_DISABLED(prev_base_address);
1394 
1395     // If the target address comes before this entry, indicate distance to next
1396     // region.
1397     if (load_addr < proc_entry_info.GetRange().GetRangeBase()) {
1398       range_info.GetRange().SetRangeBase(load_addr);
1399       range_info.GetRange().SetByteSize(
1400           proc_entry_info.GetRange().GetRangeBase() - load_addr);
1401       range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1402       range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1403       range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1404       range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1405 
1406       return error;
1407     } else if (proc_entry_info.GetRange().Contains(load_addr)) {
1408       // The target address is within the memory region we're processing here.
1409       range_info = proc_entry_info;
1410       return error;
1411     }
1412 
1413     // The target memory address comes somewhere after the region we just
1414     // parsed.
1415   }
1416 
1417   // If we made it here, we didn't find an entry that contained the given
1418   // address. Return the
1419   // load_addr as start and the amount of bytes betwwen load address and the end
1420   // of the memory as
1421   // size.
1422   range_info.GetRange().SetRangeBase(load_addr);
1423   range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS);
1424   range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1425   range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1426   range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1427   range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1428   return error;
1429 }
1430 
1431 Status NativeProcessLinux::PopulateMemoryRegionCache() {
1432   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1433 
1434   // If our cache is empty, pull the latest.  There should always be at least
1435   // one memory region if memory region handling is supported.
1436   if (!m_mem_region_cache.empty()) {
1437     LLDB_LOG(log, "reusing {0} cached memory region entries",
1438              m_mem_region_cache.size());
1439     return Status();
1440   }
1441 
1442   auto BufferOrError = getProcFile(GetID(), "maps");
1443   if (!BufferOrError) {
1444     m_supports_mem_region = LazyBool::eLazyBoolNo;
1445     return BufferOrError.getError();
1446   }
1447   StringRef Rest = BufferOrError.get()->getBuffer();
1448   while (! Rest.empty()) {
1449     StringRef Line;
1450     std::tie(Line, Rest) = Rest.split('\n');
1451     MemoryRegionInfo info;
1452     const Status parse_error =
1453         ParseMemoryRegionInfoFromProcMapsLine(Line, info);
1454     if (parse_error.Fail()) {
1455       LLDB_LOG(log, "failed to parse proc maps line '{0}': {1}", Line,
1456                parse_error);
1457       m_supports_mem_region = LazyBool::eLazyBoolNo;
1458       return parse_error;
1459     }
1460     m_mem_region_cache.emplace_back(
1461         info, FileSpec(info.GetName().GetCString(), true));
1462   }
1463 
1464   if (m_mem_region_cache.empty()) {
1465     // No entries after attempting to read them.  This shouldn't happen if
1466     // /proc/{pid}/maps is supported. Assume we don't support map entries
1467     // via procfs.
1468     m_supports_mem_region = LazyBool::eLazyBoolNo;
1469     LLDB_LOG(log,
1470              "failed to find any procfs maps entries, assuming no support "
1471              "for memory region metadata retrieval");
1472     return Status("not supported");
1473   }
1474 
1475   LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps",
1476            m_mem_region_cache.size(), GetID());
1477 
1478   // We support memory retrieval, remember that.
1479   m_supports_mem_region = LazyBool::eLazyBoolYes;
1480   return Status();
1481 }
1482 
1483 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) {
1484   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1485   LLDB_LOG(log, "newBumpId={0}", newBumpId);
1486   LLDB_LOG(log, "clearing {0} entries from memory region cache",
1487            m_mem_region_cache.size());
1488   m_mem_region_cache.clear();
1489 }
1490 
1491 Status NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions,
1492                                           lldb::addr_t &addr) {
1493 // FIXME implementing this requires the equivalent of
1494 // InferiorCallPOSIX::InferiorCallMmap, which depends on
1495 // functional ThreadPlans working with Native*Protocol.
1496 #if 1
1497   return Status("not implemented yet");
1498 #else
1499   addr = LLDB_INVALID_ADDRESS;
1500 
1501   unsigned prot = 0;
1502   if (permissions & lldb::ePermissionsReadable)
1503     prot |= eMmapProtRead;
1504   if (permissions & lldb::ePermissionsWritable)
1505     prot |= eMmapProtWrite;
1506   if (permissions & lldb::ePermissionsExecutable)
1507     prot |= eMmapProtExec;
1508 
1509   // TODO implement this directly in NativeProcessLinux
1510   // (and lift to NativeProcessPOSIX if/when that class is
1511   // refactored out).
1512   if (InferiorCallMmap(this, addr, 0, size, prot,
1513                        eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
1514     m_addr_to_mmap_size[addr] = size;
1515     return Status();
1516   } else {
1517     addr = LLDB_INVALID_ADDRESS;
1518     return Status("unable to allocate %" PRIu64
1519                   " bytes of memory with permissions %s",
1520                   size, GetPermissionsAsCString(permissions));
1521   }
1522 #endif
1523 }
1524 
1525 Status NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) {
1526   // FIXME see comments in AllocateMemory - required lower-level
1527   // bits not in place yet (ThreadPlans)
1528   return Status("not implemented");
1529 }
1530 
1531 lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress() {
1532   // punt on this for now
1533   return LLDB_INVALID_ADDRESS;
1534 }
1535 
1536 size_t NativeProcessLinux::UpdateThreads() {
1537   // The NativeProcessLinux monitoring threads are always up to date
1538   // with respect to thread state and they keep the thread list
1539   // populated properly. All this method needs to do is return the
1540   // thread count.
1541   return m_threads.size();
1542 }
1543 
1544 Status NativeProcessLinux::GetSoftwareBreakpointPCOffset(
1545     uint32_t &actual_opcode_size) {
1546   // FIXME put this behind a breakpoint protocol class that can be
1547   // set per architecture.  Need ARM, MIPS support here.
1548   static const uint8_t g_i386_opcode[] = {0xCC};
1549   static const uint8_t g_s390x_opcode[] = {0x00, 0x01};
1550   static const uint8_t g_ppc64le_opcode[] = {0x08, 0x00, 0xe0, 0x7f}; // trap
1551 
1552   switch (m_arch.GetMachine()) {
1553   case llvm::Triple::x86:
1554   case llvm::Triple::x86_64:
1555     actual_opcode_size = static_cast<uint32_t>(sizeof(g_i386_opcode));
1556     return Status();
1557 
1558   case llvm::Triple::systemz:
1559     actual_opcode_size = static_cast<uint32_t>(sizeof(g_s390x_opcode));
1560     return Status();
1561 
1562   case llvm::Triple::ppc64le:
1563     actual_opcode_size = static_cast<uint32_t>(sizeof(g_ppc64le_opcode));
1564     return Status();
1565 
1566   case llvm::Triple::arm:
1567   case llvm::Triple::aarch64:
1568   case llvm::Triple::mips64:
1569   case llvm::Triple::mips64el:
1570   case llvm::Triple::mips:
1571   case llvm::Triple::mipsel:
1572     // On these architectures the PC don't get updated for breakpoint hits
1573     actual_opcode_size = 0;
1574     return Status();
1575 
1576   default:
1577     assert(false && "CPU type not supported!");
1578     return Status("CPU type not supported");
1579   }
1580 }
1581 
1582 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size,
1583                                          bool hardware) {
1584   if (hardware)
1585     return SetHardwareBreakpoint(addr, size);
1586   else
1587     return SetSoftwareBreakpoint(addr, size);
1588 }
1589 
1590 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) {
1591   if (hardware)
1592     return RemoveHardwareBreakpoint(addr);
1593   else
1594     return NativeProcessProtocol::RemoveBreakpoint(addr);
1595 }
1596 
1597 Status NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(
1598     size_t trap_opcode_size_hint, size_t &actual_opcode_size,
1599     const uint8_t *&trap_opcode_bytes) {
1600   // FIXME put this behind a breakpoint protocol class that can be set per
1601   // architecture.  Need MIPS support here.
1602   static const uint8_t g_aarch64_opcode[] = {0x00, 0x00, 0x20, 0xd4};
1603   // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
1604   // linux kernel does otherwise.
1605   static const uint8_t g_arm_breakpoint_opcode[] = {0xf0, 0x01, 0xf0, 0xe7};
1606   static const uint8_t g_i386_opcode[] = {0xCC};
1607   static const uint8_t g_mips64_opcode[] = {0x00, 0x00, 0x00, 0x0d};
1608   static const uint8_t g_mips64el_opcode[] = {0x0d, 0x00, 0x00, 0x00};
1609   static const uint8_t g_s390x_opcode[] = {0x00, 0x01};
1610   static const uint8_t g_thumb_breakpoint_opcode[] = {0x01, 0xde};
1611   static const uint8_t g_ppc64le_opcode[] = {0x08, 0x00, 0xe0, 0x7f}; // trap
1612 
1613   switch (m_arch.GetMachine()) {
1614   case llvm::Triple::aarch64:
1615     trap_opcode_bytes = g_aarch64_opcode;
1616     actual_opcode_size = sizeof(g_aarch64_opcode);
1617     return Status();
1618 
1619   case llvm::Triple::arm:
1620     switch (trap_opcode_size_hint) {
1621     case 2:
1622       trap_opcode_bytes = g_thumb_breakpoint_opcode;
1623       actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
1624       return Status();
1625     case 4:
1626       trap_opcode_bytes = g_arm_breakpoint_opcode;
1627       actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
1628       return Status();
1629     default:
1630       assert(false && "Unrecognised trap opcode size hint!");
1631       return Status("Unrecognised trap opcode size hint!");
1632     }
1633 
1634   case llvm::Triple::x86:
1635   case llvm::Triple::x86_64:
1636     trap_opcode_bytes = g_i386_opcode;
1637     actual_opcode_size = sizeof(g_i386_opcode);
1638     return Status();
1639 
1640   case llvm::Triple::mips:
1641   case llvm::Triple::mips64:
1642     trap_opcode_bytes = g_mips64_opcode;
1643     actual_opcode_size = sizeof(g_mips64_opcode);
1644     return Status();
1645 
1646   case llvm::Triple::mipsel:
1647   case llvm::Triple::mips64el:
1648     trap_opcode_bytes = g_mips64el_opcode;
1649     actual_opcode_size = sizeof(g_mips64el_opcode);
1650     return Status();
1651 
1652   case llvm::Triple::systemz:
1653     trap_opcode_bytes = g_s390x_opcode;
1654     actual_opcode_size = sizeof(g_s390x_opcode);
1655     return Status();
1656 
1657   case llvm::Triple::ppc64le:
1658     trap_opcode_bytes = g_ppc64le_opcode;
1659     actual_opcode_size = sizeof(g_ppc64le_opcode);
1660     return Status();
1661 
1662   default:
1663     assert(false && "CPU type not supported!");
1664     return Status("CPU type not supported");
1665   }
1666 }
1667 
1668 #if 0
1669 ProcessMessage::CrashReason
1670 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
1671 {
1672     ProcessMessage::CrashReason reason;
1673     assert(info->si_signo == SIGSEGV);
1674 
1675     reason = ProcessMessage::eInvalidCrashReason;
1676 
1677     switch (info->si_code)
1678     {
1679     default:
1680         assert(false && "unexpected si_code for SIGSEGV");
1681         break;
1682     case SI_KERNEL:
1683         // Linux will occasionally send spurious SI_KERNEL codes.
1684         // (this is poorly documented in sigaction)
1685         // One way to get this is via unaligned SIMD loads.
1686         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
1687         break;
1688     case SEGV_MAPERR:
1689         reason = ProcessMessage::eInvalidAddress;
1690         break;
1691     case SEGV_ACCERR:
1692         reason = ProcessMessage::ePrivilegedAddress;
1693         break;
1694     }
1695 
1696     return reason;
1697 }
1698 #endif
1699 
1700 #if 0
1701 ProcessMessage::CrashReason
1702 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
1703 {
1704     ProcessMessage::CrashReason reason;
1705     assert(info->si_signo == SIGILL);
1706 
1707     reason = ProcessMessage::eInvalidCrashReason;
1708 
1709     switch (info->si_code)
1710     {
1711     default:
1712         assert(false && "unexpected si_code for SIGILL");
1713         break;
1714     case ILL_ILLOPC:
1715         reason = ProcessMessage::eIllegalOpcode;
1716         break;
1717     case ILL_ILLOPN:
1718         reason = ProcessMessage::eIllegalOperand;
1719         break;
1720     case ILL_ILLADR:
1721         reason = ProcessMessage::eIllegalAddressingMode;
1722         break;
1723     case ILL_ILLTRP:
1724         reason = ProcessMessage::eIllegalTrap;
1725         break;
1726     case ILL_PRVOPC:
1727         reason = ProcessMessage::ePrivilegedOpcode;
1728         break;
1729     case ILL_PRVREG:
1730         reason = ProcessMessage::ePrivilegedRegister;
1731         break;
1732     case ILL_COPROC:
1733         reason = ProcessMessage::eCoprocessorError;
1734         break;
1735     case ILL_BADSTK:
1736         reason = ProcessMessage::eInternalStackError;
1737         break;
1738     }
1739 
1740     return reason;
1741 }
1742 #endif
1743 
1744 #if 0
1745 ProcessMessage::CrashReason
1746 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
1747 {
1748     ProcessMessage::CrashReason reason;
1749     assert(info->si_signo == SIGFPE);
1750 
1751     reason = ProcessMessage::eInvalidCrashReason;
1752 
1753     switch (info->si_code)
1754     {
1755     default:
1756         assert(false && "unexpected si_code for SIGFPE");
1757         break;
1758     case FPE_INTDIV:
1759         reason = ProcessMessage::eIntegerDivideByZero;
1760         break;
1761     case FPE_INTOVF:
1762         reason = ProcessMessage::eIntegerOverflow;
1763         break;
1764     case FPE_FLTDIV:
1765         reason = ProcessMessage::eFloatDivideByZero;
1766         break;
1767     case FPE_FLTOVF:
1768         reason = ProcessMessage::eFloatOverflow;
1769         break;
1770     case FPE_FLTUND:
1771         reason = ProcessMessage::eFloatUnderflow;
1772         break;
1773     case FPE_FLTRES:
1774         reason = ProcessMessage::eFloatInexactResult;
1775         break;
1776     case FPE_FLTINV:
1777         reason = ProcessMessage::eFloatInvalidOperation;
1778         break;
1779     case FPE_FLTSUB:
1780         reason = ProcessMessage::eFloatSubscriptRange;
1781         break;
1782     }
1783 
1784     return reason;
1785 }
1786 #endif
1787 
1788 #if 0
1789 ProcessMessage::CrashReason
1790 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
1791 {
1792     ProcessMessage::CrashReason reason;
1793     assert(info->si_signo == SIGBUS);
1794 
1795     reason = ProcessMessage::eInvalidCrashReason;
1796 
1797     switch (info->si_code)
1798     {
1799     default:
1800         assert(false && "unexpected si_code for SIGBUS");
1801         break;
1802     case BUS_ADRALN:
1803         reason = ProcessMessage::eIllegalAlignment;
1804         break;
1805     case BUS_ADRERR:
1806         reason = ProcessMessage::eIllegalAddress;
1807         break;
1808     case BUS_OBJERR:
1809         reason = ProcessMessage::eHardwareError;
1810         break;
1811     }
1812 
1813     return reason;
1814 }
1815 #endif
1816 
1817 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size,
1818                                       size_t &bytes_read) {
1819   if (ProcessVmReadvSupported()) {
1820     // The process_vm_readv path is about 50 times faster than ptrace api. We
1821     // want to use
1822     // this syscall if it is supported.
1823 
1824     const ::pid_t pid = GetID();
1825 
1826     struct iovec local_iov, remote_iov;
1827     local_iov.iov_base = buf;
1828     local_iov.iov_len = size;
1829     remote_iov.iov_base = reinterpret_cast<void *>(addr);
1830     remote_iov.iov_len = size;
1831 
1832     bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
1833     const bool success = bytes_read == size;
1834 
1835     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1836     LLDB_LOG(log,
1837              "using process_vm_readv to read {0} bytes from inferior "
1838              "address {1:x}: {2}",
1839              size, addr, success ? "Success" : llvm::sys::StrError(errno));
1840 
1841     if (success)
1842       return Status();
1843     // else the call failed for some reason, let's retry the read using ptrace
1844     // api.
1845   }
1846 
1847   unsigned char *dst = static_cast<unsigned char *>(buf);
1848   size_t remainder;
1849   long data;
1850 
1851   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1852   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1853 
1854   for (bytes_read = 0; bytes_read < size; bytes_read += remainder) {
1855     Status error = NativeProcessLinux::PtraceWrapper(
1856         PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data);
1857     if (error.Fail())
1858       return error;
1859 
1860     remainder = size - bytes_read;
1861     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1862 
1863     // Copy the data into our buffer
1864     memcpy(dst, &data, remainder);
1865 
1866     LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1867     addr += k_ptrace_word_size;
1868     dst += k_ptrace_word_size;
1869   }
1870   return Status();
1871 }
1872 
1873 Status NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf,
1874                                                  size_t size,
1875                                                  size_t &bytes_read) {
1876   Status error = ReadMemory(addr, buf, size, bytes_read);
1877   if (error.Fail())
1878     return error;
1879   return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size);
1880 }
1881 
1882 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf,
1883                                        size_t size, size_t &bytes_written) {
1884   const unsigned char *src = static_cast<const unsigned char *>(buf);
1885   size_t remainder;
1886   Status error;
1887 
1888   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1889   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1890 
1891   for (bytes_written = 0; bytes_written < size; bytes_written += remainder) {
1892     remainder = size - bytes_written;
1893     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1894 
1895     if (remainder == k_ptrace_word_size) {
1896       unsigned long data = 0;
1897       memcpy(&data, src, k_ptrace_word_size);
1898 
1899       LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1900       error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(),
1901                                                 (void *)addr, (void *)data);
1902       if (error.Fail())
1903         return error;
1904     } else {
1905       unsigned char buff[8];
1906       size_t bytes_read;
1907       error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
1908       if (error.Fail())
1909         return error;
1910 
1911       memcpy(buff, src, remainder);
1912 
1913       size_t bytes_written_rec;
1914       error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
1915       if (error.Fail())
1916         return error;
1917 
1918       LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src,
1919                *(unsigned long *)buff);
1920     }
1921 
1922     addr += k_ptrace_word_size;
1923     src += k_ptrace_word_size;
1924   }
1925   return error;
1926 }
1927 
1928 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) {
1929   return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
1930 }
1931 
1932 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid,
1933                                            unsigned long *message) {
1934   return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
1935 }
1936 
1937 Status NativeProcessLinux::Detach(lldb::tid_t tid) {
1938   if (tid == LLDB_INVALID_THREAD_ID)
1939     return Status();
1940 
1941   return PtraceWrapper(PTRACE_DETACH, tid);
1942 }
1943 
1944 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) {
1945   for (const auto &thread : m_threads) {
1946     assert(thread && "thread list should not contain NULL threads");
1947     if (thread->GetID() == thread_id) {
1948       // We have this thread.
1949       return true;
1950     }
1951   }
1952 
1953   // We don't have this thread.
1954   return false;
1955 }
1956 
1957 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) {
1958   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1959   LLDB_LOG(log, "tid: {0})", thread_id);
1960 
1961   bool found = false;
1962   for (auto it = m_threads.begin(); it != m_threads.end(); ++it) {
1963     if (*it && ((*it)->GetID() == thread_id)) {
1964       m_threads.erase(it);
1965       found = true;
1966       break;
1967     }
1968   }
1969 
1970   if (found)
1971     StopTracingForThread(thread_id);
1972   SignalIfAllThreadsStopped();
1973   return found;
1974 }
1975 
1976 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id) {
1977   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD));
1978   LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id);
1979 
1980   assert(!HasThreadNoLock(thread_id) &&
1981          "attempted to add a thread by id that already exists");
1982 
1983   // If this is the first thread, save it as the current thread
1984   if (m_threads.empty())
1985     SetCurrentThreadID(thread_id);
1986 
1987   m_threads.push_back(llvm::make_unique<NativeThreadLinux>(*this, thread_id));
1988 
1989   if (m_pt_proces_trace_id != LLDB_INVALID_UID) {
1990     auto traceMonitor = ProcessorTraceMonitor::Create(
1991         GetID(), thread_id, m_pt_process_trace_config, true);
1992     if (traceMonitor) {
1993       m_pt_traced_thread_group.insert(thread_id);
1994       m_processor_trace_monitor.insert(
1995           std::make_pair(thread_id, std::move(*traceMonitor)));
1996     } else {
1997       LLDB_LOG(log, "failed to start trace on thread {0}", thread_id);
1998       Status error(traceMonitor.takeError());
1999       LLDB_LOG(log, "error {0}", error);
2000     }
2001   }
2002 
2003   return static_cast<NativeThreadLinux &>(*m_threads.back());
2004 }
2005 
2006 Status
2007 NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread) {
2008   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
2009 
2010   Status error;
2011 
2012   // Find out the size of a breakpoint (might depend on where we are in the
2013   // code).
2014   NativeRegisterContext &context = thread.GetRegisterContext();
2015 
2016   uint32_t breakpoint_size = 0;
2017   error = GetSoftwareBreakpointPCOffset(breakpoint_size);
2018   if (error.Fail()) {
2019     LLDB_LOG(log, "GetBreakpointSize() failed: {0}", error);
2020     return error;
2021   } else
2022     LLDB_LOG(log, "breakpoint size: {0}", breakpoint_size);
2023 
2024   // First try probing for a breakpoint at a software breakpoint location: PC -
2025   // breakpoint size.
2026   const lldb::addr_t initial_pc_addr = context.GetPCfromBreakpointLocation();
2027   lldb::addr_t breakpoint_addr = initial_pc_addr;
2028   if (breakpoint_size > 0) {
2029     // Do not allow breakpoint probe to wrap around.
2030     if (breakpoint_addr >= breakpoint_size)
2031       breakpoint_addr -= breakpoint_size;
2032   }
2033 
2034   // Check if we stopped because of a breakpoint.
2035   NativeBreakpointSP breakpoint_sp;
2036   error = m_breakpoint_list.GetBreakpoint(breakpoint_addr, breakpoint_sp);
2037   if (!error.Success() || !breakpoint_sp) {
2038     // We didn't find one at a software probe location.  Nothing to do.
2039     LLDB_LOG(log,
2040              "pid {0} no lldb breakpoint found at current pc with "
2041              "adjustment: {1}",
2042              GetID(), breakpoint_addr);
2043     return Status();
2044   }
2045 
2046   // If the breakpoint is not a software breakpoint, nothing to do.
2047   if (!breakpoint_sp->IsSoftwareBreakpoint()) {
2048     LLDB_LOG(
2049         log,
2050         "pid {0} breakpoint found at {1:x}, not software, nothing to adjust",
2051         GetID(), breakpoint_addr);
2052     return Status();
2053   }
2054 
2055   //
2056   // We have a software breakpoint and need to adjust the PC.
2057   //
2058 
2059   // Sanity check.
2060   if (breakpoint_size == 0) {
2061     // Nothing to do!  How did we get here?
2062     LLDB_LOG(log,
2063              "pid {0} breakpoint found at {1:x}, it is software, but the "
2064              "size is zero, nothing to do (unexpected)",
2065              GetID(), breakpoint_addr);
2066     return Status();
2067   }
2068 
2069   // Change the program counter.
2070   LLDB_LOG(log, "pid {0} tid {1}: changing PC from {2:x} to {3:x}", GetID(),
2071            thread.GetID(), initial_pc_addr, breakpoint_addr);
2072 
2073   error = context.SetPC(breakpoint_addr);
2074   if (error.Fail()) {
2075     LLDB_LOG(log, "pid {0} tid {1}: failed to set PC: {2}", GetID(),
2076              thread.GetID(), error);
2077     return error;
2078   }
2079 
2080   return error;
2081 }
2082 
2083 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path,
2084                                                    FileSpec &file_spec) {
2085   Status error = PopulateMemoryRegionCache();
2086   if (error.Fail())
2087     return error;
2088 
2089   FileSpec module_file_spec(module_path, true);
2090 
2091   file_spec.Clear();
2092   for (const auto &it : m_mem_region_cache) {
2093     if (it.second.GetFilename() == module_file_spec.GetFilename()) {
2094       file_spec = it.second;
2095       return Status();
2096     }
2097   }
2098   return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
2099                 module_file_spec.GetFilename().AsCString(), GetID());
2100 }
2101 
2102 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name,
2103                                               lldb::addr_t &load_addr) {
2104   load_addr = LLDB_INVALID_ADDRESS;
2105   Status error = PopulateMemoryRegionCache();
2106   if (error.Fail())
2107     return error;
2108 
2109   FileSpec file(file_name, false);
2110   for (const auto &it : m_mem_region_cache) {
2111     if (it.second == file) {
2112       load_addr = it.first.GetRange().GetRangeBase();
2113       return Status();
2114     }
2115   }
2116   return Status("No load address found for specified file.");
2117 }
2118 
2119 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) {
2120   return static_cast<NativeThreadLinux *>(
2121       NativeProcessProtocol::GetThreadByID(tid));
2122 }
2123 
2124 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread,
2125                                         lldb::StateType state, int signo) {
2126   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2127   LLDB_LOG(log, "tid: {0}", thread.GetID());
2128 
2129   // Before we do the resume below, first check if we have a pending
2130   // stop notification that is currently waiting for
2131   // all threads to stop.  This is potentially a buggy situation since
2132   // we're ostensibly waiting for threads to stop before we send out the
2133   // pending notification, and here we are resuming one before we send
2134   // out the pending stop notification.
2135   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
2136     LLDB_LOG(log,
2137              "about to resume tid {0} per explicit request but we have a "
2138              "pending stop notification (tid {1}) that is actively "
2139              "waiting for this thread to stop. Valid sequence of events?",
2140              thread.GetID(), m_pending_notification_tid);
2141   }
2142 
2143   // Request a resume.  We expect this to be synchronous and the system
2144   // to reflect it is running after this completes.
2145   switch (state) {
2146   case eStateRunning: {
2147     const auto resume_result = thread.Resume(signo);
2148     if (resume_result.Success())
2149       SetState(eStateRunning, true);
2150     return resume_result;
2151   }
2152   case eStateStepping: {
2153     const auto step_result = thread.SingleStep(signo);
2154     if (step_result.Success())
2155       SetState(eStateRunning, true);
2156     return step_result;
2157   }
2158   default:
2159     LLDB_LOG(log, "Unhandled state {0}.", state);
2160     llvm_unreachable("Unhandled state for resume");
2161   }
2162 }
2163 
2164 //===----------------------------------------------------------------------===//
2165 
2166 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) {
2167   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2168   LLDB_LOG(log, "about to process event: (triggering_tid: {0})",
2169            triggering_tid);
2170 
2171   m_pending_notification_tid = triggering_tid;
2172 
2173   // Request a stop for all the thread stops that need to be stopped
2174   // and are not already known to be stopped.
2175   for (const auto &thread : m_threads) {
2176     if (StateIsRunningState(thread->GetState()))
2177       static_cast<NativeThreadLinux *>(thread.get())->RequestStop();
2178   }
2179 
2180   SignalIfAllThreadsStopped();
2181   LLDB_LOG(log, "event processing done");
2182 }
2183 
2184 void NativeProcessLinux::SignalIfAllThreadsStopped() {
2185   if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
2186     return; // No pending notification. Nothing to do.
2187 
2188   for (const auto &thread_sp : m_threads) {
2189     if (StateIsRunningState(thread_sp->GetState()))
2190       return; // Some threads are still running. Don't signal yet.
2191   }
2192 
2193   // We have a pending notification and all threads have stopped.
2194   Log *log(
2195       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
2196 
2197   // Clear any temporary breakpoints we used to implement software single
2198   // stepping.
2199   for (const auto &thread_info : m_threads_stepping_with_breakpoint) {
2200     Status error = RemoveBreakpoint(thread_info.second);
2201     if (error.Fail())
2202       LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}",
2203                thread_info.first, error);
2204   }
2205   m_threads_stepping_with_breakpoint.clear();
2206 
2207   // Notify the delegate about the stop
2208   SetCurrentThreadID(m_pending_notification_tid);
2209   SetState(StateType::eStateStopped, true);
2210   m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
2211 }
2212 
2213 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) {
2214   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2215   LLDB_LOG(log, "tid: {0}", thread.GetID());
2216 
2217   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID &&
2218       StateIsRunningState(thread.GetState())) {
2219     // We will need to wait for this new thread to stop as well before firing
2220     // the
2221     // notification.
2222     thread.RequestStop();
2223   }
2224 }
2225 
2226 void NativeProcessLinux::SigchldHandler() {
2227   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
2228   // Process all pending waitpid notifications.
2229   while (true) {
2230     int status = -1;
2231     ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, -1, &status,
2232                                           __WALL | __WNOTHREAD | WNOHANG);
2233 
2234     if (wait_pid == 0)
2235       break; // We are done.
2236 
2237     if (wait_pid == -1) {
2238       Status error(errno, eErrorTypePOSIX);
2239       LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error);
2240       break;
2241     }
2242 
2243     WaitStatus wait_status = WaitStatus::Decode(status);
2244     bool exited = wait_status.type == WaitStatus::Exit ||
2245                   (wait_status.type == WaitStatus::Signal &&
2246                    wait_pid == static_cast<::pid_t>(GetID()));
2247 
2248     LLDB_LOG(
2249         log,
2250         "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}",
2251         wait_pid, wait_status, exited);
2252 
2253     MonitorCallback(wait_pid, exited, wait_status);
2254   }
2255 }
2256 
2257 // Wrapper for ptrace to catch errors and log calls.
2258 // Note that ptrace sets errno on error because -1 can be a valid result (i.e.
2259 // for PTRACE_PEEK*)
2260 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr,
2261                                          void *data, size_t data_size,
2262                                          long *result) {
2263   Status error;
2264   long int ret;
2265 
2266   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2267 
2268   PtraceDisplayBytes(req, data, data_size);
2269 
2270   errno = 0;
2271   if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
2272     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
2273                  *(unsigned int *)addr, data);
2274   else
2275     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
2276                  addr, data);
2277 
2278   if (ret == -1)
2279     error.SetErrorToErrno();
2280 
2281   if (result)
2282     *result = ret;
2283 
2284   LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data,
2285            data_size, ret);
2286 
2287   PtraceDisplayBytes(req, data, data_size);
2288 
2289   if (error.Fail())
2290     LLDB_LOG(log, "ptrace() failed: {0}", error);
2291 
2292   return error;
2293 }
2294 
2295 llvm::Expected<ProcessorTraceMonitor &>
2296 NativeProcessLinux::LookupProcessorTraceInstance(lldb::user_id_t traceid,
2297                                                  lldb::tid_t thread) {
2298   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2299   if (thread == LLDB_INVALID_THREAD_ID && traceid == m_pt_proces_trace_id) {
2300     LLDB_LOG(log, "thread not specified: {0}", traceid);
2301     return Status("tracing not active thread not specified").ToError();
2302   }
2303 
2304   for (auto& iter : m_processor_trace_monitor) {
2305     if (traceid == iter.second->GetTraceID() &&
2306         (thread == iter.first || thread == LLDB_INVALID_THREAD_ID))
2307       return *(iter.second);
2308   }
2309 
2310   LLDB_LOG(log, "traceid not being traced: {0}", traceid);
2311   return Status("tracing not active for this thread").ToError();
2312 }
2313 
2314 Status NativeProcessLinux::GetMetaData(lldb::user_id_t traceid,
2315                                        lldb::tid_t thread,
2316                                        llvm::MutableArrayRef<uint8_t> &buffer,
2317                                        size_t offset) {
2318   TraceOptions trace_options;
2319   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2320   Status error;
2321 
2322   LLDB_LOG(log, "traceid {0}", traceid);
2323 
2324   auto perf_monitor = LookupProcessorTraceInstance(traceid, thread);
2325   if (!perf_monitor) {
2326     LLDB_LOG(log, "traceid not being traced: {0}", traceid);
2327     buffer = buffer.slice(buffer.size());
2328     error = perf_monitor.takeError();
2329     return error;
2330   }
2331   return (*perf_monitor).ReadPerfTraceData(buffer, offset);
2332 }
2333 
2334 Status NativeProcessLinux::GetData(lldb::user_id_t traceid, lldb::tid_t thread,
2335                                    llvm::MutableArrayRef<uint8_t> &buffer,
2336                                    size_t offset) {
2337   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2338   Status error;
2339 
2340   LLDB_LOG(log, "traceid {0}", traceid);
2341 
2342   auto perf_monitor = LookupProcessorTraceInstance(traceid, thread);
2343   if (!perf_monitor) {
2344     LLDB_LOG(log, "traceid not being traced: {0}", traceid);
2345     buffer = buffer.slice(buffer.size());
2346     error = perf_monitor.takeError();
2347     return error;
2348   }
2349   return (*perf_monitor).ReadPerfTraceAux(buffer, offset);
2350 }
2351 
2352 Status NativeProcessLinux::GetTraceConfig(lldb::user_id_t traceid,
2353                                           TraceOptions &config) {
2354   Status error;
2355   if (config.getThreadID() == LLDB_INVALID_THREAD_ID &&
2356       m_pt_proces_trace_id == traceid) {
2357     if (m_pt_proces_trace_id == LLDB_INVALID_UID) {
2358       error.SetErrorString("tracing not active for this process");
2359       return error;
2360     }
2361     config = m_pt_process_trace_config;
2362   } else {
2363     auto perf_monitor =
2364         LookupProcessorTraceInstance(traceid, config.getThreadID());
2365     if (!perf_monitor) {
2366       error = perf_monitor.takeError();
2367       return error;
2368     }
2369     error = (*perf_monitor).GetTraceConfig(config);
2370   }
2371   return error;
2372 }
2373 
2374 lldb::user_id_t
2375 NativeProcessLinux::StartTraceGroup(const TraceOptions &config,
2376                                            Status &error) {
2377 
2378   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2379   if (config.getType() != TraceType::eTraceTypeProcessorTrace)
2380     return LLDB_INVALID_UID;
2381 
2382   if (m_pt_proces_trace_id != LLDB_INVALID_UID) {
2383     error.SetErrorString("tracing already active on this process");
2384     return m_pt_proces_trace_id;
2385   }
2386 
2387   for (const auto &thread_sp : m_threads) {
2388     if (auto traceInstance = ProcessorTraceMonitor::Create(
2389             GetID(), thread_sp->GetID(), config, true)) {
2390       m_pt_traced_thread_group.insert(thread_sp->GetID());
2391       m_processor_trace_monitor.insert(
2392           std::make_pair(thread_sp->GetID(), std::move(*traceInstance)));
2393     }
2394   }
2395 
2396   m_pt_process_trace_config = config;
2397   error = ProcessorTraceMonitor::GetCPUType(m_pt_process_trace_config);
2398 
2399   // Trace on Complete process will have traceid of 0
2400   m_pt_proces_trace_id = 0;
2401 
2402   LLDB_LOG(log, "Process Trace ID {0}", m_pt_proces_trace_id);
2403   return m_pt_proces_trace_id;
2404 }
2405 
2406 lldb::user_id_t NativeProcessLinux::StartTrace(const TraceOptions &config,
2407                                                Status &error) {
2408   if (config.getType() != TraceType::eTraceTypeProcessorTrace)
2409     return NativeProcessProtocol::StartTrace(config, error);
2410 
2411   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2412 
2413   lldb::tid_t threadid = config.getThreadID();
2414 
2415   if (threadid == LLDB_INVALID_THREAD_ID)
2416     return StartTraceGroup(config, error);
2417 
2418   auto thread_sp = GetThreadByID(threadid);
2419   if (!thread_sp) {
2420     // Thread not tracked by lldb so don't trace.
2421     error.SetErrorString("invalid thread id");
2422     return LLDB_INVALID_UID;
2423   }
2424 
2425   const auto &iter = m_processor_trace_monitor.find(threadid);
2426   if (iter != m_processor_trace_monitor.end()) {
2427     LLDB_LOG(log, "Thread already being traced");
2428     error.SetErrorString("tracing already active on this thread");
2429     return LLDB_INVALID_UID;
2430   }
2431 
2432   auto traceMonitor =
2433       ProcessorTraceMonitor::Create(GetID(), threadid, config, false);
2434   if (!traceMonitor) {
2435     error = traceMonitor.takeError();
2436     LLDB_LOG(log, "error {0}", error);
2437     return LLDB_INVALID_UID;
2438   }
2439   lldb::user_id_t ret_trace_id = (*traceMonitor)->GetTraceID();
2440   m_processor_trace_monitor.insert(
2441       std::make_pair(threadid, std::move(*traceMonitor)));
2442   return ret_trace_id;
2443 }
2444 
2445 Status NativeProcessLinux::StopTracingForThread(lldb::tid_t thread) {
2446   Status error;
2447   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2448   LLDB_LOG(log, "Thread {0}", thread);
2449 
2450   const auto& iter = m_processor_trace_monitor.find(thread);
2451   if (iter == m_processor_trace_monitor.end()) {
2452     error.SetErrorString("tracing not active for this thread");
2453     return error;
2454   }
2455 
2456   if (iter->second->GetTraceID() == m_pt_proces_trace_id) {
2457     // traceid maps to the whole process so we have to erase it from the
2458     // thread group.
2459     LLDB_LOG(log, "traceid maps to process");
2460     m_pt_traced_thread_group.erase(thread);
2461   }
2462   m_processor_trace_monitor.erase(iter);
2463 
2464   return error;
2465 }
2466 
2467 Status NativeProcessLinux::StopTrace(lldb::user_id_t traceid,
2468                                      lldb::tid_t thread) {
2469   Status error;
2470 
2471   TraceOptions trace_options;
2472   trace_options.setThreadID(thread);
2473   error = NativeProcessLinux::GetTraceConfig(traceid, trace_options);
2474 
2475   if (error.Fail())
2476     return error;
2477 
2478   switch (trace_options.getType()) {
2479   case lldb::TraceType::eTraceTypeProcessorTrace:
2480     if (traceid == m_pt_proces_trace_id &&
2481         thread == LLDB_INVALID_THREAD_ID)
2482       StopProcessorTracingOnProcess();
2483     else
2484       error = StopProcessorTracingOnThread(traceid, thread);
2485     break;
2486   default:
2487     error.SetErrorString("trace not supported");
2488     break;
2489   }
2490 
2491   return error;
2492 }
2493 
2494 void NativeProcessLinux::StopProcessorTracingOnProcess() {
2495   for (auto thread_id_iter : m_pt_traced_thread_group)
2496     m_processor_trace_monitor.erase(thread_id_iter);
2497   m_pt_traced_thread_group.clear();
2498   m_pt_proces_trace_id = LLDB_INVALID_UID;
2499 }
2500 
2501 Status NativeProcessLinux::StopProcessorTracingOnThread(lldb::user_id_t traceid,
2502                                                         lldb::tid_t thread) {
2503   Status error;
2504   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2505 
2506   if (thread == LLDB_INVALID_THREAD_ID) {
2507     for (auto& iter : m_processor_trace_monitor) {
2508       if (iter.second->GetTraceID() == traceid) {
2509         // Stopping a trace instance for an individual thread
2510         // hence there will only be one traceid that can match.
2511         m_processor_trace_monitor.erase(iter.first);
2512         return error;
2513       }
2514       LLDB_LOG(log, "Trace ID {0}", iter.second->GetTraceID());
2515     }
2516 
2517     LLDB_LOG(log, "Invalid TraceID");
2518     error.SetErrorString("invalid trace id");
2519     return error;
2520   }
2521 
2522   // thread is specified so we can use find function on the map.
2523   const auto& iter = m_processor_trace_monitor.find(thread);
2524   if (iter == m_processor_trace_monitor.end()) {
2525     // thread not found in our map.
2526     LLDB_LOG(log, "thread not being traced");
2527     error.SetErrorString("tracing not active for this thread");
2528     return error;
2529   }
2530   if (iter->second->GetTraceID() != traceid) {
2531     // traceid did not match so it has to be invalid.
2532     LLDB_LOG(log, "Invalid TraceID");
2533     error.SetErrorString("invalid trace id");
2534     return error;
2535   }
2536 
2537   LLDB_LOG(log, "UID - {0} , Thread -{1}", traceid, thread);
2538 
2539   if (traceid == m_pt_proces_trace_id) {
2540     // traceid maps to the whole process so we have to erase it from the
2541     // thread group.
2542     LLDB_LOG(log, "traceid maps to process");
2543     m_pt_traced_thread_group.erase(thread);
2544   }
2545   m_processor_trace_monitor.erase(iter);
2546 
2547   return error;
2548 }
2549