1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "lldb/lldb-python.h"
11 
12 #include "NativeProcessLinux.h"
13 
14 // C Includes
15 #include <errno.h>
16 #include <poll.h>
17 #include <string.h>
18 #include <stdint.h>
19 #include <unistd.h>
20 
21 #if defined (__arm64__) || defined (__aarch64__)
22 // NT_PRSTATUS and NT_FPREGSET definition
23 #include <elf.h>
24 #endif
25 
26 // C++ Includes
27 #include <fstream>
28 #include <string>
29 
30 // Other libraries and framework includes
31 #include "lldb/Core/Debugger.h"
32 #include "lldb/Core/Error.h"
33 #include "lldb/Core/Module.h"
34 #include "lldb/Core/ModuleSpec.h"
35 #include "lldb/Core/RegisterValue.h"
36 #include "lldb/Core/Scalar.h"
37 #include "lldb/Core/State.h"
38 #include "lldb/Host/Host.h"
39 #include "lldb/Host/HostInfo.h"
40 #include "lldb/Host/ThreadLauncher.h"
41 #include "lldb/Symbol/ObjectFile.h"
42 #include "lldb/Host/common/NativeRegisterContext.h"
43 #include "lldb/Target/ProcessLaunchInfo.h"
44 #include "lldb/Utility/PseudoTerminal.h"
45 
46 #include "lldb/Host/common/NativeBreakpoint.h"
47 #include "Utility/StringExtractor.h"
48 
49 #include "Plugins/Process/Utility/LinuxSignals.h"
50 #include "NativeThreadLinux.h"
51 #include "ProcFileReader.h"
52 #include "ThreadStateCoordinator.h"
53 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
54 
55 // System includes - They have to be included after framework includes because they define some
56 // macros which collide with variable names in other modules
57 #include <linux/unistd.h>
58 #ifndef __ANDROID__
59 #include <sys/procfs.h>
60 #endif
61 #include <sys/personality.h>
62 #include <sys/ptrace.h>
63 #include <sys/socket.h>
64 #include <sys/syscall.h>
65 #include <sys/types.h>
66 #include <sys/uio.h>
67 #include <sys/user.h>
68 #include <sys/wait.h>
69 
70 #ifdef __ANDROID__
71 #define __ptrace_request int
72 #define PT_DETACH PTRACE_DETACH
73 #endif
74 
75 #define DEBUG_PTRACE_MAXBYTES 20
76 
77 // Support ptrace extensions even when compiled without required kernel support
78 #ifndef PT_GETREGS
79 #ifndef PTRACE_GETREGS
80   #define PTRACE_GETREGS 12
81 #endif
82 #endif
83 #ifndef PT_SETREGS
84 #ifndef PTRACE_SETREGS
85   #define PTRACE_SETREGS 13
86 #endif
87 #endif
88 #ifndef PT_GETFPREGS
89 #ifndef PTRACE_GETFPREGS
90   #define PTRACE_GETFPREGS 14
91 #endif
92 #endif
93 #ifndef PT_SETFPREGS
94 #ifndef PTRACE_SETFPREGS
95   #define PTRACE_SETFPREGS 15
96 #endif
97 #endif
98 #ifndef PTRACE_GETREGSET
99   #define PTRACE_GETREGSET 0x4204
100 #endif
101 #ifndef PTRACE_SETREGSET
102   #define PTRACE_SETREGSET 0x4205
103 #endif
104 #ifndef PTRACE_GET_THREAD_AREA
105   #define PTRACE_GET_THREAD_AREA 25
106 #endif
107 #ifndef PTRACE_ARCH_PRCTL
108   #define PTRACE_ARCH_PRCTL      30
109 #endif
110 #ifndef ARCH_GET_FS
111   #define ARCH_SET_GS 0x1001
112   #define ARCH_SET_FS 0x1002
113   #define ARCH_GET_FS 0x1003
114   #define ARCH_GET_GS 0x1004
115 #endif
116 
117 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS  0xffffffff
118 
119 // Support hardware breakpoints in case it has not been defined
120 #ifndef TRAP_HWBKPT
121   #define TRAP_HWBKPT 4
122 #endif
123 
124 // Try to define a macro to encapsulate the tgkill syscall
125 // fall back on kill() if tgkill isn't available
126 #define tgkill(pid, tid, sig)  syscall(SYS_tgkill, pid, tid, sig)
127 
128 // We disable the tracing of ptrace calls for integration builds to
129 // avoid the additional indirection and checks.
130 #ifndef LLDB_CONFIGURATION_BUILDANDINTEGRATION
131 #define PTRACE(req, pid, addr, data, data_size, error) \
132     PtraceWrapper((req), (pid), (addr), (data), (data_size), (error), #req, __FILE__, __LINE__)
133 #else
134 #define PTRACE(req, pid, addr, data, data_size, error) \
135     PtraceWrapper((req), (pid), (addr), (data), (data_size), (error))
136 #endif
137 
138 // Private bits we only need internally.
139 namespace
140 {
141     using namespace lldb;
142     using namespace lldb_private;
143 
144     const UnixSignals&
145     GetUnixSignals ()
146     {
147         static process_linux::LinuxSignals signals;
148         return signals;
149     }
150 
151     ThreadStateCoordinator::LogFunction
152     GetThreadLoggerFunction ()
153     {
154         return [](const char *format, va_list args)
155         {
156             Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
157             if (log)
158                 log->VAPrintf (format, args);
159         };
160     }
161 
162     void
163     CoordinatorErrorHandler (const std::string &error_message)
164     {
165         Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
166         if (log)
167             log->Printf ("NativeProcessLinux::%s %s", __FUNCTION__, error_message.c_str ());
168         assert (false && "ThreadStateCoordinator error reported");
169     }
170 
171     Error
172     ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch)
173     {
174         // Grab process info for the running process.
175         ProcessInstanceInfo process_info;
176         if (!platform.GetProcessInfo (pid, process_info))
177             return lldb_private::Error("failed to get process info");
178 
179         // Resolve the executable module.
180         ModuleSP exe_module_sp;
181         ModuleSpec exe_module_spec(process_info.GetExecutableFile(), platform.GetSystemArchitecture ());
182         FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ());
183         Error error = platform.ResolveExecutable(
184             exe_module_spec,
185             exe_module_sp,
186             executable_search_paths.GetSize () ? &executable_search_paths : NULL);
187 
188         if (!error.Success ())
189             return error;
190 
191         // Check if we've got our architecture from the exe_module.
192         arch = exe_module_sp->GetArchitecture ();
193         if (arch.IsValid ())
194             return Error();
195         else
196             return Error("failed to retrieve a valid architecture from the exe module");
197     }
198 
199     void
200     DisplayBytes (lldb_private::StreamString &s, void *bytes, uint32_t count)
201     {
202         uint8_t *ptr = (uint8_t *)bytes;
203         const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
204         for(uint32_t i=0; i<loop_count; i++)
205         {
206             s.Printf ("[%x]", *ptr);
207             ptr++;
208         }
209     }
210 
211     void
212     PtraceDisplayBytes(int &req, void *data, size_t data_size)
213     {
214         StreamString buf;
215         Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (
216                     POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE));
217 
218         if (verbose_log)
219         {
220             switch(req)
221             {
222             case PTRACE_POKETEXT:
223             {
224                 DisplayBytes(buf, &data, 8);
225                 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData());
226                 break;
227             }
228             case PTRACE_POKEDATA:
229             {
230                 DisplayBytes(buf, &data, 8);
231                 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData());
232                 break;
233             }
234             case PTRACE_POKEUSER:
235             {
236                 DisplayBytes(buf, &data, 8);
237                 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData());
238                 break;
239             }
240             case PTRACE_SETREGS:
241             {
242                 DisplayBytes(buf, data, data_size);
243                 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData());
244                 break;
245             }
246             case PTRACE_SETFPREGS:
247             {
248                 DisplayBytes(buf, data, data_size);
249                 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData());
250                 break;
251             }
252             case PTRACE_SETSIGINFO:
253             {
254                 DisplayBytes(buf, data, sizeof(siginfo_t));
255                 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData());
256                 break;
257             }
258             case PTRACE_SETREGSET:
259             {
260                 // Extract iov_base from data, which is a pointer to the struct IOVEC
261                 DisplayBytes(buf, *(void **)data, data_size);
262                 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData());
263                 break;
264             }
265             default:
266             {
267             }
268             }
269         }
270     }
271 
272     // Wrapper for ptrace to catch errors and log calls.
273     // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
274     long
275     PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error,
276                   const char* reqName, const char* file, int line)
277     {
278         long int result;
279 
280         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE));
281 
282         PtraceDisplayBytes(req, data, data_size);
283 
284         error.Clear();
285         errno = 0;
286         if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
287             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
288         else
289             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
290 
291         if (result == -1)
292             error.SetErrorToErrno();
293 
294         if (log)
295             log->Printf("ptrace(%s, %" PRIu64 ", %p, %p, %zu)=%lX called from file %s line %d",
296                     reqName, pid, addr, data, data_size, result, file, line);
297 
298         PtraceDisplayBytes(req, data, data_size);
299 
300         if (log && error.GetError() != 0)
301         {
302             const char* str;
303             switch (error.GetError())
304             {
305             case ESRCH:  str = "ESRCH"; break;
306             case EINVAL: str = "EINVAL"; break;
307             case EBUSY:  str = "EBUSY"; break;
308             case EPERM:  str = "EPERM"; break;
309             default:     str = error.AsCString();
310             }
311             log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str);
312         }
313 
314         return result;
315     }
316 
317 #ifdef LLDB_CONFIGURATION_BUILDANDINTEGRATION
318     // Wrapper for ptrace when logging is not required.
319     // Sets errno to 0 prior to calling ptrace.
320     long
321     PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error)
322     {
323         long result = 0;
324 
325         error.Clear();
326         errno = 0;
327         if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
328             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
329         else
330             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
331 
332         if (result == -1)
333             error.SetErrorToErrno();
334         return result;
335     }
336 #endif
337 
338     //------------------------------------------------------------------------------
339     // Static implementations of NativeProcessLinux::ReadMemory and
340     // NativeProcessLinux::WriteMemory.  This enables mutual recursion between these
341     // functions without needed to go thru the thread funnel.
342 
343     lldb::addr_t
344     DoReadMemory (
345         lldb::pid_t pid,
346         lldb::addr_t vm_addr,
347         void *buf,
348         lldb::addr_t size,
349         Error &error)
350     {
351         // ptrace word size is determined by the host, not the child
352         static const unsigned word_size = sizeof(void*);
353         unsigned char *dst = static_cast<unsigned char*>(buf);
354         lldb::addr_t bytes_read;
355         lldb::addr_t remainder;
356         long data;
357 
358         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
359         if (log)
360             ProcessPOSIXLog::IncNestLevel();
361         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
362             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__,
363                     pid, word_size, (void*)vm_addr, buf, size);
364 
365         assert(sizeof(data) >= word_size);
366         for (bytes_read = 0; bytes_read < size; bytes_read += remainder)
367         {
368             data = PTRACE(PTRACE_PEEKDATA, pid, (void*)vm_addr, nullptr, 0, error);
369             if (error.Fail())
370             {
371                 if (log)
372                     ProcessPOSIXLog::DecNestLevel();
373                 return bytes_read;
374             }
375 
376             remainder = size - bytes_read;
377             remainder = remainder > word_size ? word_size : remainder;
378 
379             // Copy the data into our buffer
380             for (unsigned i = 0; i < remainder; ++i)
381                 dst[i] = ((data >> i*8) & 0xFF);
382 
383             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
384                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
385                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
386                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
387             {
388                 uintptr_t print_dst = 0;
389                 // Format bytes from data by moving into print_dst for log output
390                 for (unsigned i = 0; i < remainder; ++i)
391                     print_dst |= (((data >> i*8) & 0xFF) << i*8);
392                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
393                         (void*)vm_addr, print_dst, (unsigned long)data);
394             }
395 
396             vm_addr += word_size;
397             dst += word_size;
398         }
399 
400         if (log)
401             ProcessPOSIXLog::DecNestLevel();
402         return bytes_read;
403     }
404 
405     lldb::addr_t
406     DoWriteMemory(
407         lldb::pid_t pid,
408         lldb::addr_t vm_addr,
409         const void *buf,
410         lldb::addr_t size,
411         Error &error)
412     {
413         // ptrace word size is determined by the host, not the child
414         static const unsigned word_size = sizeof(void*);
415         const unsigned char *src = static_cast<const unsigned char*>(buf);
416         lldb::addr_t bytes_written = 0;
417         lldb::addr_t remainder;
418 
419         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
420         if (log)
421             ProcessPOSIXLog::IncNestLevel();
422         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
423             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__,
424                     pid, word_size, (void*)vm_addr, buf, size);
425 
426         for (bytes_written = 0; bytes_written < size; bytes_written += remainder)
427         {
428             remainder = size - bytes_written;
429             remainder = remainder > word_size ? word_size : remainder;
430 
431             if (remainder == word_size)
432             {
433                 unsigned long data = 0;
434                 assert(sizeof(data) >= word_size);
435                 for (unsigned i = 0; i < word_size; ++i)
436                     data |= (unsigned long)src[i] << i*8;
437 
438                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
439                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
440                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
441                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
442                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
443                             (void*)vm_addr, *(unsigned long*)src, data);
444 
445                 if (PTRACE(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data, 0, error))
446                 {
447                     if (log)
448                         ProcessPOSIXLog::DecNestLevel();
449                     return bytes_written;
450                 }
451             }
452             else
453             {
454                 unsigned char buff[8];
455                 if (DoReadMemory(pid, vm_addr,
456                                 buff, word_size, error) != word_size)
457                 {
458                     if (log)
459                         ProcessPOSIXLog::DecNestLevel();
460                     return bytes_written;
461                 }
462 
463                 memcpy(buff, src, remainder);
464 
465                 if (DoWriteMemory(pid, vm_addr,
466                                 buff, word_size, error) != word_size)
467                 {
468                     if (log)
469                         ProcessPOSIXLog::DecNestLevel();
470                     return bytes_written;
471                 }
472 
473                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
474                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
475                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
476                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
477                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
478                             (void*)vm_addr, *(unsigned long*)src, *(unsigned long*)buff);
479             }
480 
481             vm_addr += word_size;
482             src += word_size;
483         }
484         if (log)
485             ProcessPOSIXLog::DecNestLevel();
486         return bytes_written;
487     }
488 
489     //------------------------------------------------------------------------------
490     /// @class Operation
491     /// @brief Represents a NativeProcessLinux operation.
492     ///
493     /// Under Linux, it is not possible to ptrace() from any other thread but the
494     /// one that spawned or attached to the process from the start.  Therefore, when
495     /// a NativeProcessLinux is asked to deliver or change the state of an inferior
496     /// process the operation must be "funneled" to a specific thread to perform the
497     /// task.  The Operation class provides an abstract base for all services the
498     /// NativeProcessLinux must perform via the single virtual function Execute, thus
499     /// encapsulating the code that needs to run in the privileged context.
500     class Operation
501     {
502     public:
503         Operation () : m_error() { }
504 
505         virtual
506         ~Operation() {}
507 
508         virtual void
509         Execute (NativeProcessLinux *process) = 0;
510 
511         const Error &
512         GetError () const { return m_error; }
513 
514     protected:
515         Error m_error;
516     };
517 
518     //------------------------------------------------------------------------------
519     /// @class ReadOperation
520     /// @brief Implements NativeProcessLinux::ReadMemory.
521     class ReadOperation : public Operation
522     {
523     public:
524         ReadOperation (
525             lldb::addr_t addr,
526             void *buff,
527             lldb::addr_t size,
528             lldb::addr_t &result) :
529             Operation (),
530             m_addr (addr),
531             m_buff (buff),
532             m_size (size),
533             m_result (result)
534             {
535             }
536 
537         void Execute (NativeProcessLinux *process) override;
538 
539     private:
540         lldb::addr_t m_addr;
541         void *m_buff;
542         lldb::addr_t m_size;
543         lldb::addr_t &m_result;
544     };
545 
546     void
547     ReadOperation::Execute (NativeProcessLinux *process)
548     {
549         m_result = DoReadMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
550     }
551 
552     //------------------------------------------------------------------------------
553     /// @class WriteOperation
554     /// @brief Implements NativeProcessLinux::WriteMemory.
555     class WriteOperation : public Operation
556     {
557     public:
558         WriteOperation (
559             lldb::addr_t addr,
560             const void *buff,
561             lldb::addr_t size,
562             lldb::addr_t &result) :
563             Operation (),
564             m_addr (addr),
565             m_buff (buff),
566             m_size (size),
567             m_result (result)
568             {
569             }
570 
571         void Execute (NativeProcessLinux *process) override;
572 
573     private:
574         lldb::addr_t m_addr;
575         const void *m_buff;
576         lldb::addr_t m_size;
577         lldb::addr_t &m_result;
578     };
579 
580     void
581     WriteOperation::Execute(NativeProcessLinux *process)
582     {
583         m_result = DoWriteMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
584     }
585 
586     //------------------------------------------------------------------------------
587     /// @class ReadRegOperation
588     /// @brief Implements NativeProcessLinux::ReadRegisterValue.
589     class ReadRegOperation : public Operation
590     {
591     public:
592         ReadRegOperation(lldb::tid_t tid, uint32_t offset, const char *reg_name,
593                 RegisterValue &value)
594             : m_tid(tid),
595               m_offset(static_cast<uintptr_t> (offset)),
596               m_reg_name(reg_name),
597               m_value(value)
598             { }
599 
600         void Execute(NativeProcessLinux *monitor);
601 
602     private:
603         lldb::tid_t m_tid;
604         uintptr_t m_offset;
605         const char *m_reg_name;
606         RegisterValue &m_value;
607     };
608 
609     void
610     ReadRegOperation::Execute(NativeProcessLinux *monitor)
611     {
612 #if defined (__arm64__) || defined (__aarch64__)
613         if (m_offset > sizeof(struct user_pt_regs))
614         {
615             uintptr_t offset = m_offset - sizeof(struct user_pt_regs);
616             if (offset > sizeof(struct user_fpsimd_state))
617             {
618                 m_error.SetErrorString("invalid offset value");
619                 return;
620             }
621             elf_fpregset_t regs;
622             int regset = NT_FPREGSET;
623             struct iovec ioVec;
624 
625             ioVec.iov_base = &regs;
626             ioVec.iov_len = sizeof regs;
627             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
628             if (m_error.Success())
629             {
630                 lldb_private::ArchSpec arch;
631                 if (monitor->GetArchitecture(arch))
632                     m_value.SetBytes((void *)(((unsigned char *)(&regs)) + offset), 16, arch.GetByteOrder());
633                 else
634                     m_error.SetErrorString("failed to get architecture");
635             }
636         }
637         else
638         {
639             elf_gregset_t regs;
640             int regset = NT_PRSTATUS;
641             struct iovec ioVec;
642 
643             ioVec.iov_base = &regs;
644             ioVec.iov_len = sizeof regs;
645             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
646             if (m_error.Success())
647             {
648                 lldb_private::ArchSpec arch;
649                 if (monitor->GetArchitecture(arch))
650                     m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, arch.GetByteOrder());
651                 else
652                     m_error.SetErrorString("failed to get architecture");
653             }
654         }
655 #else
656         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS));
657 
658         lldb::addr_t data = PTRACE(PTRACE_PEEKUSER, m_tid, (void*)m_offset, nullptr, 0, m_error);
659         if (m_error.Success())
660             m_value = data;
661 
662         if (log)
663             log->Printf ("NativeProcessLinux::%s() reg %s: 0x%" PRIx64, __FUNCTION__,
664                     m_reg_name, data);
665 #endif
666     }
667 
668     //------------------------------------------------------------------------------
669     /// @class WriteRegOperation
670     /// @brief Implements NativeProcessLinux::WriteRegisterValue.
671     class WriteRegOperation : public Operation
672     {
673     public:
674         WriteRegOperation(lldb::tid_t tid, unsigned offset, const char *reg_name,
675                 const RegisterValue &value)
676             : m_tid(tid),
677               m_offset(offset),
678               m_reg_name(reg_name),
679               m_value(value)
680             { }
681 
682         void Execute(NativeProcessLinux *monitor);
683 
684     private:
685         lldb::tid_t m_tid;
686         uintptr_t m_offset;
687         const char *m_reg_name;
688         const RegisterValue &m_value;
689     };
690 
691     void
692     WriteRegOperation::Execute(NativeProcessLinux *monitor)
693     {
694 #if defined (__arm64__) || defined (__aarch64__)
695         if (m_offset > sizeof(struct user_pt_regs))
696         {
697             uintptr_t offset = m_offset - sizeof(struct user_pt_regs);
698             if (offset > sizeof(struct user_fpsimd_state))
699             {
700                 m_error.SetErrorString("invalid offset value");
701                 return;
702             }
703             elf_fpregset_t regs;
704             int regset = NT_FPREGSET;
705             struct iovec ioVec;
706 
707             ioVec.iov_base = &regs;
708             ioVec.iov_len = sizeof regs;
709             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
710             if (m_error.Sucess())
711             {
712                 ::memcpy((void *)(((unsigned char *)(&regs)) + offset), m_value.GetBytes(), 16);
713                 PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
714             }
715         }
716         else
717         {
718             elf_gregset_t regs;
719             int regset = NT_PRSTATUS;
720             struct iovec ioVec;
721 
722             ioVec.iov_base = &regs;
723             ioVec.iov_len = sizeof regs;
724             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
725             if (m_error.Sucess())
726             {
727                 ::memcpy((void *)(((unsigned char *)(&regs)) + m_offset), m_value.GetBytes(), 8);
728                 PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
729             }
730         }
731 #else
732         void* buf;
733         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS));
734 
735         buf = (void*) m_value.GetAsUInt64();
736 
737         if (log)
738             log->Printf ("NativeProcessLinux::%s() reg %s: %p", __FUNCTION__, m_reg_name, buf);
739         PTRACE(PTRACE_POKEUSER, m_tid, (void*)m_offset, buf, 0, m_error);
740 #endif
741     }
742 
743     //------------------------------------------------------------------------------
744     /// @class ReadGPROperation
745     /// @brief Implements NativeProcessLinux::ReadGPR.
746     class ReadGPROperation : public Operation
747     {
748     public:
749         ReadGPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
750             : m_tid(tid), m_buf(buf), m_buf_size(buf_size)
751             { }
752 
753         void Execute(NativeProcessLinux *monitor);
754 
755     private:
756         lldb::tid_t m_tid;
757         void *m_buf;
758         size_t m_buf_size;
759     };
760 
761     void
762     ReadGPROperation::Execute(NativeProcessLinux *monitor)
763     {
764 #if defined (__arm64__) || defined (__aarch64__)
765         int regset = NT_PRSTATUS;
766         struct iovec ioVec;
767 
768         ioVec.iov_base = m_buf;
769         ioVec.iov_len = m_buf_size;
770         PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
771 #else
772         PTRACE(PTRACE_GETREGS, m_tid, nullptr, m_buf, m_buf_size, m_error);
773 #endif
774     }
775 
776     //------------------------------------------------------------------------------
777     /// @class ReadFPROperation
778     /// @brief Implements NativeProcessLinux::ReadFPR.
779     class ReadFPROperation : public Operation
780     {
781     public:
782         ReadFPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
783             : m_tid(tid),
784               m_buf(buf),
785               m_buf_size(buf_size)
786             { }
787 
788         void Execute(NativeProcessLinux *monitor);
789 
790     private:
791         lldb::tid_t m_tid;
792         void *m_buf;
793         size_t m_buf_size;
794     };
795 
796     void
797     ReadFPROperation::Execute(NativeProcessLinux *monitor)
798     {
799 #if defined (__arm64__) || defined (__aarch64__)
800         int regset = NT_FPREGSET;
801         struct iovec ioVec;
802 
803         ioVec.iov_base = m_buf;
804         ioVec.iov_len = m_buf_size;
805         if (PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, m_buf_size) < 0)
806             m_result = false;
807         else
808             m_result = true;
809 #else
810         PTRACE(PTRACE_GETFPREGS, m_tid, nullptr, m_buf, m_buf_size, m_error);
811 #endif
812     }
813 
814     //------------------------------------------------------------------------------
815     /// @class ReadRegisterSetOperation
816     /// @brief Implements NativeProcessLinux::ReadRegisterSet.
817     class ReadRegisterSetOperation : public Operation
818     {
819     public:
820         ReadRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
821             : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset)
822             { }
823 
824         void Execute(NativeProcessLinux *monitor);
825 
826     private:
827         lldb::tid_t m_tid;
828         void *m_buf;
829         size_t m_buf_size;
830         const unsigned int m_regset;
831     };
832 
833     void
834     ReadRegisterSetOperation::Execute(NativeProcessLinux *monitor)
835     {
836         PTRACE(PTRACE_GETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error);
837     }
838 
839     //------------------------------------------------------------------------------
840     /// @class WriteGPROperation
841     /// @brief Implements NativeProcessLinux::WriteGPR.
842     class WriteGPROperation : public Operation
843     {
844     public:
845         WriteGPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
846             : m_tid(tid), m_buf(buf), m_buf_size(buf_size)
847             { }
848 
849         void Execute(NativeProcessLinux *monitor);
850 
851     private:
852         lldb::tid_t m_tid;
853         void *m_buf;
854         size_t m_buf_size;
855     };
856 
857     void
858     WriteGPROperation::Execute(NativeProcessLinux *monitor)
859     {
860 #if defined (__arm64__) || defined (__aarch64__)
861         int regset = NT_PRSTATUS;
862         struct iovec ioVec;
863 
864         ioVec.iov_base = m_buf;
865         ioVec.iov_len = m_buf_size;
866         PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
867 #else
868         PTRACE(PTRACE_SETREGS, m_tid, NULL, m_buf, m_buf_size, m_error);
869 #endif
870     }
871 
872     //------------------------------------------------------------------------------
873     /// @class WriteFPROperation
874     /// @brief Implements NativeProcessLinux::WriteFPR.
875     class WriteFPROperation : public Operation
876     {
877     public:
878         WriteFPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
879             : m_tid(tid), m_buf(buf), m_buf_size(buf_size)
880             { }
881 
882         void Execute(NativeProcessLinux *monitor);
883 
884     private:
885         lldb::tid_t m_tid;
886         void *m_buf;
887         size_t m_buf_size;
888     };
889 
890     void
891     WriteFPROperation::Execute(NativeProcessLinux *monitor)
892     {
893 #if defined (__arm64__) || defined (__aarch64__)
894         int regset = NT_FPREGSET;
895         struct iovec ioVec;
896 
897         ioVec.iov_base = m_buf;
898         ioVec.iov_len = m_buf_size;
899         PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
900 #else
901         PTRACE(PTRACE_SETFPREGS, m_tid, NULL, m_buf, m_buf_size, m_error);
902 #endif
903     }
904 
905     //------------------------------------------------------------------------------
906     /// @class WriteRegisterSetOperation
907     /// @brief Implements NativeProcessLinux::WriteRegisterSet.
908     class WriteRegisterSetOperation : public Operation
909     {
910     public:
911         WriteRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
912             : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset)
913             { }
914 
915         void Execute(NativeProcessLinux *monitor);
916 
917     private:
918         lldb::tid_t m_tid;
919         void *m_buf;
920         size_t m_buf_size;
921         const unsigned int m_regset;
922     };
923 
924     void
925     WriteRegisterSetOperation::Execute(NativeProcessLinux *monitor)
926     {
927         PTRACE(PTRACE_SETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error);
928     }
929 
930     //------------------------------------------------------------------------------
931     /// @class ResumeOperation
932     /// @brief Implements NativeProcessLinux::Resume.
933     class ResumeOperation : public Operation
934     {
935     public:
936         ResumeOperation(lldb::tid_t tid, uint32_t signo) :
937             m_tid(tid), m_signo(signo) { }
938 
939         void Execute(NativeProcessLinux *monitor);
940 
941     private:
942         lldb::tid_t m_tid;
943         uint32_t m_signo;
944     };
945 
946     void
947     ResumeOperation::Execute(NativeProcessLinux *monitor)
948     {
949         intptr_t data = 0;
950 
951         if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
952             data = m_signo;
953 
954         PTRACE(PTRACE_CONT, m_tid, nullptr, (void*)data, 0, m_error);
955         if (m_error.Fail())
956         {
957             Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
958 
959             if (log)
960                 log->Printf ("ResumeOperation (%"  PRIu64 ") failed: %s", m_tid, m_error.AsCString());
961         }
962     }
963 
964     //------------------------------------------------------------------------------
965     /// @class SingleStepOperation
966     /// @brief Implements NativeProcessLinux::SingleStep.
967     class SingleStepOperation : public Operation
968     {
969     public:
970         SingleStepOperation(lldb::tid_t tid, uint32_t signo)
971             : m_tid(tid), m_signo(signo) { }
972 
973         void Execute(NativeProcessLinux *monitor);
974 
975     private:
976         lldb::tid_t m_tid;
977         uint32_t m_signo;
978     };
979 
980     void
981     SingleStepOperation::Execute(NativeProcessLinux *monitor)
982     {
983         intptr_t data = 0;
984 
985         if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
986             data = m_signo;
987 
988         PTRACE(PTRACE_SINGLESTEP, m_tid, nullptr, (void*)data, 0, m_error);
989     }
990 
991     //------------------------------------------------------------------------------
992     /// @class SiginfoOperation
993     /// @brief Implements NativeProcessLinux::GetSignalInfo.
994     class SiginfoOperation : public Operation
995     {
996     public:
997         SiginfoOperation(lldb::tid_t tid, void *info)
998             : m_tid(tid), m_info(info) { }
999 
1000         void Execute(NativeProcessLinux *monitor);
1001 
1002     private:
1003         lldb::tid_t m_tid;
1004         void *m_info;
1005     };
1006 
1007     void
1008     SiginfoOperation::Execute(NativeProcessLinux *monitor)
1009     {
1010         PTRACE(PTRACE_GETSIGINFO, m_tid, nullptr, m_info, 0, m_error);
1011     }
1012 
1013     //------------------------------------------------------------------------------
1014     /// @class EventMessageOperation
1015     /// @brief Implements NativeProcessLinux::GetEventMessage.
1016     class EventMessageOperation : public Operation
1017     {
1018     public:
1019         EventMessageOperation(lldb::tid_t tid, unsigned long *message)
1020             : m_tid(tid), m_message(message) { }
1021 
1022         void Execute(NativeProcessLinux *monitor);
1023 
1024     private:
1025         lldb::tid_t m_tid;
1026         unsigned long *m_message;
1027     };
1028 
1029     void
1030     EventMessageOperation::Execute(NativeProcessLinux *monitor)
1031     {
1032         PTRACE(PTRACE_GETEVENTMSG, m_tid, nullptr, m_message, 0, m_error);
1033     }
1034 
1035     class DetachOperation : public Operation
1036     {
1037     public:
1038         DetachOperation(lldb::tid_t tid) : m_tid(tid) { }
1039 
1040         void Execute(NativeProcessLinux *monitor);
1041 
1042     private:
1043         lldb::tid_t m_tid;
1044     };
1045 
1046     void
1047     DetachOperation::Execute(NativeProcessLinux *monitor)
1048     {
1049         PTRACE(PTRACE_DETACH, m_tid, nullptr, 0, 0, m_error);
1050     }
1051 
1052 }
1053 
1054 using namespace lldb_private;
1055 
1056 // Simple helper function to ensure flags are enabled on the given file
1057 // descriptor.
1058 static bool
1059 EnsureFDFlags(int fd, int flags, Error &error)
1060 {
1061     int status;
1062 
1063     if ((status = fcntl(fd, F_GETFL)) == -1)
1064     {
1065         error.SetErrorToErrno();
1066         return false;
1067     }
1068 
1069     if (fcntl(fd, F_SETFL, status | flags) == -1)
1070     {
1071         error.SetErrorToErrno();
1072         return false;
1073     }
1074 
1075     return true;
1076 }
1077 
1078 NativeProcessLinux::OperationArgs::OperationArgs(NativeProcessLinux *monitor)
1079     : m_monitor(monitor)
1080 {
1081     sem_init(&m_semaphore, 0, 0);
1082 }
1083 
1084 NativeProcessLinux::OperationArgs::~OperationArgs()
1085 {
1086     sem_destroy(&m_semaphore);
1087 }
1088 
1089 NativeProcessLinux::LaunchArgs::LaunchArgs(NativeProcessLinux *monitor,
1090                                        lldb_private::Module *module,
1091                                        char const **argv,
1092                                        char const **envp,
1093                                        const std::string &stdin_path,
1094                                        const std::string &stdout_path,
1095                                        const std::string &stderr_path,
1096                                        const char *working_dir,
1097                                        const lldb_private::ProcessLaunchInfo &launch_info)
1098     : OperationArgs(monitor),
1099       m_module(module),
1100       m_argv(argv),
1101       m_envp(envp),
1102       m_stdin_path(stdin_path),
1103       m_stdout_path(stdout_path),
1104       m_stderr_path(stderr_path),
1105       m_working_dir(working_dir),
1106       m_launch_info(launch_info)
1107 {
1108 }
1109 
1110 NativeProcessLinux::LaunchArgs::~LaunchArgs()
1111 { }
1112 
1113 NativeProcessLinux::AttachArgs::AttachArgs(NativeProcessLinux *monitor,
1114                                        lldb::pid_t pid)
1115     : OperationArgs(monitor), m_pid(pid) { }
1116 
1117 NativeProcessLinux::AttachArgs::~AttachArgs()
1118 { }
1119 
1120 // -----------------------------------------------------------------------------
1121 // Public Static Methods
1122 // -----------------------------------------------------------------------------
1123 
1124 lldb_private::Error
1125 NativeProcessLinux::LaunchProcess (
1126     lldb_private::Module *exe_module,
1127     lldb_private::ProcessLaunchInfo &launch_info,
1128     lldb_private::NativeProcessProtocol::NativeDelegate &native_delegate,
1129     NativeProcessProtocolSP &native_process_sp)
1130 {
1131     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1132 
1133     Error error;
1134 
1135     // Verify the working directory is valid if one was specified.
1136     const char* working_dir = launch_info.GetWorkingDirectory ();
1137     if (working_dir)
1138     {
1139       FileSpec working_dir_fs (working_dir, true);
1140       if (!working_dir_fs || working_dir_fs.GetFileType () != FileSpec::eFileTypeDirectory)
1141       {
1142           error.SetErrorStringWithFormat ("No such file or directory: %s", working_dir);
1143           return error;
1144       }
1145     }
1146 
1147     const lldb_private::FileAction *file_action;
1148 
1149     // Default of NULL will mean to use existing open file descriptors.
1150     std::string stdin_path;
1151     std::string stdout_path;
1152     std::string stderr_path;
1153 
1154     file_action = launch_info.GetFileActionForFD (STDIN_FILENO);
1155     if (file_action)
1156         stdin_path = file_action->GetPath ();
1157 
1158     file_action = launch_info.GetFileActionForFD (STDOUT_FILENO);
1159     if (file_action)
1160         stdout_path = file_action->GetPath ();
1161 
1162     file_action = launch_info.GetFileActionForFD (STDERR_FILENO);
1163     if (file_action)
1164         stderr_path = file_action->GetPath ();
1165 
1166     if (log)
1167     {
1168         if (!stdin_path.empty ())
1169             log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'", __FUNCTION__, stdin_path.c_str ());
1170         else
1171             log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__);
1172 
1173         if (!stdout_path.empty ())
1174             log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'", __FUNCTION__, stdout_path.c_str ());
1175         else
1176             log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__);
1177 
1178         if (!stderr_path.empty ())
1179             log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'", __FUNCTION__, stderr_path.c_str ());
1180         else
1181             log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__);
1182     }
1183 
1184     // Create the NativeProcessLinux in launch mode.
1185     native_process_sp.reset (new NativeProcessLinux ());
1186 
1187     if (log)
1188     {
1189         int i = 0;
1190         for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i)
1191         {
1192             log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr");
1193             ++i;
1194         }
1195     }
1196 
1197     if (!native_process_sp->RegisterNativeDelegate (native_delegate))
1198     {
1199         native_process_sp.reset ();
1200         error.SetErrorStringWithFormat ("failed to register the native delegate");
1201         return error;
1202     }
1203 
1204     reinterpret_cast<NativeProcessLinux*> (native_process_sp.get ())->LaunchInferior (
1205             exe_module,
1206             launch_info.GetArguments ().GetConstArgumentVector (),
1207             launch_info.GetEnvironmentEntries ().GetConstArgumentVector (),
1208             stdin_path,
1209             stdout_path,
1210             stderr_path,
1211             working_dir,
1212             launch_info,
1213             error);
1214 
1215     if (error.Fail ())
1216     {
1217         native_process_sp.reset ();
1218         if (log)
1219             log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ());
1220         return error;
1221     }
1222 
1223     launch_info.SetProcessID (native_process_sp->GetID ());
1224 
1225     return error;
1226 }
1227 
1228 lldb_private::Error
1229 NativeProcessLinux::AttachToProcess (
1230     lldb::pid_t pid,
1231     lldb_private::NativeProcessProtocol::NativeDelegate &native_delegate,
1232     NativeProcessProtocolSP &native_process_sp)
1233 {
1234     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1235     if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE))
1236         log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid);
1237 
1238     // Grab the current platform architecture.  This should be Linux,
1239     // since this code is only intended to run on a Linux host.
1240     PlatformSP platform_sp (Platform::GetHostPlatform ());
1241     if (!platform_sp)
1242         return Error("failed to get a valid default platform");
1243 
1244     // Retrieve the architecture for the running process.
1245     ArchSpec process_arch;
1246     Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch);
1247     if (!error.Success ())
1248         return error;
1249 
1250     std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ());
1251 
1252     if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate))
1253     {
1254         error.SetErrorStringWithFormat ("failed to register the native delegate");
1255         return error;
1256     }
1257 
1258     native_process_linux_sp->AttachToInferior (pid, error);
1259     if (!error.Success ())
1260         return error;
1261 
1262     native_process_sp = native_process_linux_sp;
1263     return error;
1264 }
1265 
1266 // -----------------------------------------------------------------------------
1267 // Public Instance Methods
1268 // -----------------------------------------------------------------------------
1269 
1270 NativeProcessLinux::NativeProcessLinux () :
1271     NativeProcessProtocol (LLDB_INVALID_PROCESS_ID),
1272     m_arch (),
1273     m_operation_thread (),
1274     m_monitor_thread (),
1275     m_operation (nullptr),
1276     m_operation_mutex (),
1277     m_operation_pending (),
1278     m_operation_done (),
1279     m_supports_mem_region (eLazyBoolCalculate),
1280     m_mem_region_cache (),
1281     m_mem_region_cache_mutex (),
1282     m_coordinator_up (new ThreadStateCoordinator (GetThreadLoggerFunction ())),
1283     m_coordinator_thread ()
1284 {
1285 }
1286 
1287 //------------------------------------------------------------------------------
1288 /// The basic design of the NativeProcessLinux is built around two threads.
1289 ///
1290 /// One thread (@see SignalThread) simply blocks on a call to waitpid() looking
1291 /// for changes in the debugee state.  When a change is detected a
1292 /// ProcessMessage is sent to the associated ProcessLinux instance.  This thread
1293 /// "drives" state changes in the debugger.
1294 ///
1295 /// The second thread (@see OperationThread) is responsible for two things 1)
1296 /// launching or attaching to the inferior process, and then 2) servicing
1297 /// operations such as register reads/writes, stepping, etc.  See the comments
1298 /// on the Operation class for more info as to why this is needed.
1299 void
1300 NativeProcessLinux::LaunchInferior (
1301     Module *module,
1302     const char *argv[],
1303     const char *envp[],
1304     const std::string &stdin_path,
1305     const std::string &stdout_path,
1306     const std::string &stderr_path,
1307     const char *working_dir,
1308     const lldb_private::ProcessLaunchInfo &launch_info,
1309     lldb_private::Error &error)
1310 {
1311     if (module)
1312         m_arch = module->GetArchitecture ();
1313 
1314     SetState (eStateLaunching);
1315 
1316     std::unique_ptr<LaunchArgs> args(
1317         new LaunchArgs(
1318             this, module, argv, envp,
1319             stdin_path, stdout_path, stderr_path,
1320             working_dir, launch_info));
1321 
1322     sem_init (&m_operation_pending, 0, 0);
1323     sem_init (&m_operation_done, 0, 0);
1324 
1325     StartLaunchOpThread (args.get(), error);
1326     if (!error.Success ())
1327         return;
1328 
1329     error = StartCoordinatorThread ();
1330     if (!error.Success ())
1331         return;
1332 
1333 WAIT_AGAIN:
1334     // Wait for the operation thread to initialize.
1335     if (sem_wait(&args->m_semaphore))
1336     {
1337         if (errno == EINTR)
1338             goto WAIT_AGAIN;
1339         else
1340         {
1341             error.SetErrorToErrno();
1342             return;
1343         }
1344     }
1345 
1346     // Check that the launch was a success.
1347     if (!args->m_error.Success())
1348     {
1349         StopOpThread();
1350         StopCoordinatorThread ();
1351         error = args->m_error;
1352         return;
1353     }
1354 
1355     // Finally, start monitoring the child process for change in state.
1356     m_monitor_thread = Host::StartMonitoringChildProcess(
1357         NativeProcessLinux::MonitorCallback, this, GetID(), true);
1358     if (!m_monitor_thread.IsJoinable())
1359     {
1360         error.SetErrorToGenericError();
1361         error.SetErrorString ("Process attach failed to create monitor thread for NativeProcessLinux::MonitorCallback.");
1362         return;
1363     }
1364 }
1365 
1366 void
1367 NativeProcessLinux::AttachToInferior (lldb::pid_t pid, lldb_private::Error &error)
1368 {
1369     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1370     if (log)
1371         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid);
1372 
1373     // We can use the Host for everything except the ResolveExecutable portion.
1374     PlatformSP platform_sp = Platform::GetHostPlatform ();
1375     if (!platform_sp)
1376     {
1377         if (log)
1378             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid);
1379         error.SetErrorString ("no default platform available");
1380         return;
1381     }
1382 
1383     // Gather info about the process.
1384     ProcessInstanceInfo process_info;
1385     if (!platform_sp->GetProcessInfo (pid, process_info))
1386     {
1387         if (log)
1388             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid);
1389         error.SetErrorString ("failed to get process info");
1390         return;
1391     }
1392 
1393     // Resolve the executable module
1394     ModuleSP exe_module_sp;
1395     FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths());
1396     ModuleSpec exe_module_spec(process_info.GetExecutableFile(), HostInfo::GetArchitecture());
1397     error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp,
1398                                            executable_search_paths.GetSize() ? &executable_search_paths : NULL);
1399     if (!error.Success())
1400         return;
1401 
1402     // Set the architecture to the exe architecture.
1403     m_arch = exe_module_sp->GetArchitecture();
1404     if (log)
1405         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ());
1406 
1407     m_pid = pid;
1408     SetState(eStateAttaching);
1409 
1410     sem_init (&m_operation_pending, 0, 0);
1411     sem_init (&m_operation_done, 0, 0);
1412 
1413     std::unique_ptr<AttachArgs> args (new AttachArgs (this, pid));
1414 
1415     StartAttachOpThread(args.get (), error);
1416     if (!error.Success ())
1417         return;
1418 
1419     error = StartCoordinatorThread ();
1420     if (!error.Success ())
1421         return;
1422 
1423 WAIT_AGAIN:
1424     // Wait for the operation thread to initialize.
1425     if (sem_wait (&args->m_semaphore))
1426     {
1427         if (errno == EINTR)
1428             goto WAIT_AGAIN;
1429         else
1430         {
1431             error.SetErrorToErrno ();
1432             return;
1433         }
1434     }
1435 
1436     // Check that the attach was a success.
1437     if (!args->m_error.Success ())
1438     {
1439         StopOpThread ();
1440         StopCoordinatorThread ();
1441         error = args->m_error;
1442         return;
1443     }
1444 
1445     // Finally, start monitoring the child process for change in state.
1446     m_monitor_thread = Host::StartMonitoringChildProcess (
1447         NativeProcessLinux::MonitorCallback, this, GetID (), true);
1448     if (!m_monitor_thread.IsJoinable())
1449     {
1450         error.SetErrorToGenericError ();
1451         error.SetErrorString ("Process attach failed to create monitor thread for NativeProcessLinux::MonitorCallback.");
1452         return;
1453     }
1454 }
1455 
1456 void
1457 NativeProcessLinux::Terminate ()
1458 {
1459     StopMonitor();
1460 }
1461 
1462 //------------------------------------------------------------------------------
1463 // Thread setup and tear down.
1464 
1465 void
1466 NativeProcessLinux::StartLaunchOpThread(LaunchArgs *args, Error &error)
1467 {
1468     static const char *g_thread_name = "lldb.process.nativelinux.operation";
1469 
1470     if (m_operation_thread.IsJoinable())
1471         return;
1472 
1473     m_operation_thread = ThreadLauncher::LaunchThread(g_thread_name, LaunchOpThread, args, &error);
1474 }
1475 
1476 void *
1477 NativeProcessLinux::LaunchOpThread(void *arg)
1478 {
1479     LaunchArgs *args = static_cast<LaunchArgs*>(arg);
1480 
1481     if (!Launch(args)) {
1482         sem_post(&args->m_semaphore);
1483         return NULL;
1484     }
1485 
1486     ServeOperation(args);
1487     return NULL;
1488 }
1489 
1490 bool
1491 NativeProcessLinux::Launch(LaunchArgs *args)
1492 {
1493     assert (args && "null args");
1494     if (!args)
1495         return false;
1496 
1497     NativeProcessLinux *monitor = args->m_monitor;
1498     assert (monitor && "monitor is NULL");
1499 
1500     const char **argv = args->m_argv;
1501     const char **envp = args->m_envp;
1502     const char *working_dir = args->m_working_dir;
1503 
1504     lldb_utility::PseudoTerminal terminal;
1505     const size_t err_len = 1024;
1506     char err_str[err_len];
1507     lldb::pid_t pid;
1508     NativeThreadProtocolSP thread_sp;
1509 
1510     lldb::ThreadSP inferior;
1511 
1512     // Propagate the environment if one is not supplied.
1513     if (envp == NULL || envp[0] == NULL)
1514         envp = const_cast<const char **>(environ);
1515 
1516     if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1))
1517     {
1518         args->m_error.SetErrorToGenericError();
1519         args->m_error.SetErrorString("Process fork failed.");
1520         return false;
1521     }
1522 
1523     // Recognized child exit status codes.
1524     enum {
1525         ePtraceFailed = 1,
1526         eDupStdinFailed,
1527         eDupStdoutFailed,
1528         eDupStderrFailed,
1529         eChdirFailed,
1530         eExecFailed,
1531         eSetGidFailed
1532     };
1533 
1534     // Child process.
1535     if (pid == 0)
1536     {
1537         // FIXME consider opening a pipe between parent/child and have this forked child
1538         // send log info to parent re: launch status, in place of the log lines removed here.
1539 
1540         // Start tracing this child that is about to exec.
1541         PTRACE(PTRACE_TRACEME, 0, nullptr, nullptr, 0, args->m_error);
1542         if (args->m_error.Fail())
1543             exit(ePtraceFailed);
1544 
1545         // terminal has already dupped the tty descriptors to stdin/out/err.
1546         // This closes original fd from which they were copied (and avoids
1547         // leaking descriptors to the debugged process.
1548         terminal.CloseSlaveFileDescriptor();
1549 
1550         // Do not inherit setgid powers.
1551         if (setgid(getgid()) != 0)
1552             exit(eSetGidFailed);
1553 
1554         // Attempt to have our own process group.
1555         if (setpgid(0, 0) != 0)
1556         {
1557             // FIXME log that this failed. This is common.
1558             // Don't allow this to prevent an inferior exec.
1559         }
1560 
1561         // Dup file descriptors if needed.
1562         if (!args->m_stdin_path.empty ())
1563             if (!DupDescriptor(args->m_stdin_path.c_str (), STDIN_FILENO, O_RDONLY))
1564                 exit(eDupStdinFailed);
1565 
1566         if (!args->m_stdout_path.empty ())
1567             if (!DupDescriptor(args->m_stdout_path.c_str (), STDOUT_FILENO, O_WRONLY | O_CREAT))
1568                 exit(eDupStdoutFailed);
1569 
1570         if (!args->m_stderr_path.empty ())
1571             if (!DupDescriptor(args->m_stderr_path.c_str (), STDERR_FILENO, O_WRONLY | O_CREAT))
1572                 exit(eDupStderrFailed);
1573 
1574         // Change working directory
1575         if (working_dir != NULL && working_dir[0])
1576           if (0 != ::chdir(working_dir))
1577               exit(eChdirFailed);
1578 
1579         // Disable ASLR if requested.
1580         if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR))
1581         {
1582             const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS);
1583             if (old_personality == -1)
1584             {
1585                 // Can't retrieve Linux personality.  Cannot disable ASLR.
1586             }
1587             else
1588             {
1589                 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality);
1590                 if (new_personality == -1)
1591                 {
1592                     // Disabling ASLR failed.
1593                 }
1594                 else
1595                 {
1596                     // Disabling ASLR succeeded.
1597                 }
1598             }
1599         }
1600 
1601         // Execute.  We should never return...
1602         execve(argv[0],
1603                const_cast<char *const *>(argv),
1604                const_cast<char *const *>(envp));
1605 
1606         // ...unless exec fails.  In which case we definitely need to end the child here.
1607         exit(eExecFailed);
1608     }
1609 
1610     //
1611     // This is the parent code here.
1612     //
1613     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1614 
1615     // Wait for the child process to trap on its call to execve.
1616     ::pid_t wpid;
1617     int status;
1618     if ((wpid = waitpid(pid, &status, 0)) < 0)
1619     {
1620         args->m_error.SetErrorToErrno();
1621 
1622         if (log)
1623             log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s", __FUNCTION__, args->m_error.AsCString ());
1624 
1625         // Mark the inferior as invalid.
1626         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1627         monitor->SetState (StateType::eStateInvalid);
1628 
1629         return false;
1630     }
1631     else if (WIFEXITED(status))
1632     {
1633         // open, dup or execve likely failed for some reason.
1634         args->m_error.SetErrorToGenericError();
1635         switch (WEXITSTATUS(status))
1636         {
1637             case ePtraceFailed:
1638                 args->m_error.SetErrorString("Child ptrace failed.");
1639                 break;
1640             case eDupStdinFailed:
1641                 args->m_error.SetErrorString("Child open stdin failed.");
1642                 break;
1643             case eDupStdoutFailed:
1644                 args->m_error.SetErrorString("Child open stdout failed.");
1645                 break;
1646             case eDupStderrFailed:
1647                 args->m_error.SetErrorString("Child open stderr failed.");
1648                 break;
1649             case eChdirFailed:
1650                 args->m_error.SetErrorString("Child failed to set working directory.");
1651                 break;
1652             case eExecFailed:
1653                 args->m_error.SetErrorString("Child exec failed.");
1654                 break;
1655             case eSetGidFailed:
1656                 args->m_error.SetErrorString("Child setgid failed.");
1657                 break;
1658             default:
1659                 args->m_error.SetErrorString("Child returned unknown exit status.");
1660                 break;
1661         }
1662 
1663         if (log)
1664         {
1665             log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP",
1666                     __FUNCTION__,
1667                     WEXITSTATUS(status));
1668         }
1669 
1670         // Mark the inferior as invalid.
1671         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1672         monitor->SetState (StateType::eStateInvalid);
1673 
1674         return false;
1675     }
1676     assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) &&
1677            "Could not sync with inferior process.");
1678 
1679     if (log)
1680         log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__);
1681 
1682     args->m_error = SetDefaultPtraceOpts(pid);
1683     if (args->m_error.Fail())
1684     {
1685         if (log)
1686             log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s",
1687                     __FUNCTION__,
1688                     args->m_error.AsCString ());
1689 
1690         // Mark the inferior as invalid.
1691         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1692         monitor->SetState (StateType::eStateInvalid);
1693 
1694         return false;
1695     }
1696 
1697     // Release the master terminal descriptor and pass it off to the
1698     // NativeProcessLinux instance.  Similarly stash the inferior pid.
1699     monitor->m_terminal_fd = terminal.ReleaseMasterFileDescriptor();
1700     monitor->m_pid = pid;
1701 
1702     // Set the terminal fd to be in non blocking mode (it simplifies the
1703     // implementation of ProcessLinux::GetSTDOUT to have a non-blocking
1704     // descriptor to read from).
1705     if (!EnsureFDFlags(monitor->m_terminal_fd, O_NONBLOCK, args->m_error))
1706     {
1707         if (log)
1708             log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s",
1709                     __FUNCTION__,
1710                     args->m_error.AsCString ());
1711 
1712         // Mark the inferior as invalid.
1713         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1714         monitor->SetState (StateType::eStateInvalid);
1715 
1716         return false;
1717     }
1718 
1719     if (log)
1720         log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid);
1721 
1722     thread_sp = monitor->AddThread (pid);
1723     assert (thread_sp && "AddThread() returned a nullptr thread");
1724     monitor->NotifyThreadCreateStopped (pid);
1725     reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGSTOP);
1726 
1727     // Let our process instance know the thread has stopped.
1728     monitor->SetCurrentThreadID (thread_sp->GetID ());
1729     monitor->SetState (StateType::eStateStopped);
1730 
1731     if (log)
1732     {
1733         if (args->m_error.Success ())
1734         {
1735             log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__);
1736         }
1737         else
1738         {
1739             log->Printf ("NativeProcessLinux::%s inferior launching failed: %s",
1740                 __FUNCTION__,
1741                 args->m_error.AsCString ());
1742         }
1743     }
1744     return args->m_error.Success();
1745 }
1746 
1747 void
1748 NativeProcessLinux::StartAttachOpThread(AttachArgs *args, lldb_private::Error &error)
1749 {
1750     static const char *g_thread_name = "lldb.process.linux.operation";
1751 
1752     if (m_operation_thread.IsJoinable())
1753         return;
1754 
1755     m_operation_thread = ThreadLauncher::LaunchThread(g_thread_name, AttachOpThread, args, &error);
1756 }
1757 
1758 void *
1759 NativeProcessLinux::AttachOpThread(void *arg)
1760 {
1761     AttachArgs *args = static_cast<AttachArgs*>(arg);
1762 
1763     if (!Attach(args)) {
1764         sem_post(&args->m_semaphore);
1765         return nullptr;
1766     }
1767 
1768     ServeOperation(args);
1769     return nullptr;
1770 }
1771 
1772 bool
1773 NativeProcessLinux::Attach(AttachArgs *args)
1774 {
1775     lldb::pid_t pid = args->m_pid;
1776 
1777     NativeProcessLinux *monitor = args->m_monitor;
1778     lldb::ThreadSP inferior;
1779     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1780 
1781     // Use a map to keep track of the threads which we have attached/need to attach.
1782     Host::TidMap tids_to_attach;
1783     if (pid <= 1)
1784     {
1785         args->m_error.SetErrorToGenericError();
1786         args->m_error.SetErrorString("Attaching to process 1 is not allowed.");
1787         goto FINISH;
1788     }
1789 
1790     while (Host::FindProcessThreads(pid, tids_to_attach))
1791     {
1792         for (Host::TidMap::iterator it = tids_to_attach.begin();
1793              it != tids_to_attach.end();)
1794         {
1795             if (it->second == false)
1796             {
1797                 lldb::tid_t tid = it->first;
1798 
1799                 // Attach to the requested process.
1800                 // An attach will cause the thread to stop with a SIGSTOP.
1801                 PTRACE(PTRACE_ATTACH, tid, nullptr, nullptr, 0, args->m_error);
1802                 if (args->m_error.Fail())
1803                 {
1804                     // No such thread. The thread may have exited.
1805                     // More error handling may be needed.
1806                     if (args->m_error.GetError() == ESRCH)
1807                     {
1808                         it = tids_to_attach.erase(it);
1809                         continue;
1810                     }
1811                     else
1812                         goto FINISH;
1813                 }
1814 
1815                 int status;
1816                 // Need to use __WALL otherwise we receive an error with errno=ECHLD
1817                 // At this point we should have a thread stopped if waitpid succeeds.
1818                 if ((status = waitpid(tid, NULL, __WALL)) < 0)
1819                 {
1820                     // No such thread. The thread may have exited.
1821                     // More error handling may be needed.
1822                     if (errno == ESRCH)
1823                     {
1824                         it = tids_to_attach.erase(it);
1825                         continue;
1826                     }
1827                     else
1828                     {
1829                         args->m_error.SetErrorToErrno();
1830                         goto FINISH;
1831                     }
1832                 }
1833 
1834                 args->m_error = SetDefaultPtraceOpts(tid);
1835                 if (args->m_error.Fail())
1836                     goto FINISH;
1837 
1838 
1839                 if (log)
1840                     log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid);
1841 
1842                 it->second = true;
1843 
1844                 // Create the thread, mark it as stopped.
1845                 NativeThreadProtocolSP thread_sp (monitor->AddThread (static_cast<lldb::tid_t> (tid)));
1846                 assert (thread_sp && "AddThread() returned a nullptr");
1847 
1848                 // This will notify this is a new thread and tell the system it is stopped.
1849                 monitor->NotifyThreadCreateStopped (tid);
1850                 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGSTOP);
1851                 monitor->SetCurrentThreadID (thread_sp->GetID ());
1852             }
1853 
1854             // move the loop forward
1855             ++it;
1856         }
1857     }
1858 
1859     if (tids_to_attach.size() > 0)
1860     {
1861         monitor->m_pid = pid;
1862         // Let our process instance know the thread has stopped.
1863         monitor->SetState (StateType::eStateStopped);
1864     }
1865     else
1866     {
1867         args->m_error.SetErrorToGenericError();
1868         args->m_error.SetErrorString("No such process.");
1869     }
1870 
1871  FINISH:
1872     return args->m_error.Success();
1873 }
1874 
1875 Error
1876 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid)
1877 {
1878     long ptrace_opts = 0;
1879 
1880     // Have the child raise an event on exit.  This is used to keep the child in
1881     // limbo until it is destroyed.
1882     ptrace_opts |= PTRACE_O_TRACEEXIT;
1883 
1884     // Have the tracer trace threads which spawn in the inferior process.
1885     // TODO: if we want to support tracing the inferiors' child, add the
1886     // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
1887     ptrace_opts |= PTRACE_O_TRACECLONE;
1888 
1889     // Have the tracer notify us before execve returns
1890     // (needed to disable legacy SIGTRAP generation)
1891     ptrace_opts |= PTRACE_O_TRACEEXEC;
1892 
1893     Error error;
1894     PTRACE(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts, 0, error);
1895     return error;
1896 }
1897 
1898 static ExitType convert_pid_status_to_exit_type (int status)
1899 {
1900     if (WIFEXITED (status))
1901         return ExitType::eExitTypeExit;
1902     else if (WIFSIGNALED (status))
1903         return ExitType::eExitTypeSignal;
1904     else if (WIFSTOPPED (status))
1905         return ExitType::eExitTypeStop;
1906     else
1907     {
1908         // We don't know what this is.
1909         return ExitType::eExitTypeInvalid;
1910     }
1911 }
1912 
1913 static int convert_pid_status_to_return_code (int status)
1914 {
1915     if (WIFEXITED (status))
1916         return WEXITSTATUS (status);
1917     else if (WIFSIGNALED (status))
1918         return WTERMSIG (status);
1919     else if (WIFSTOPPED (status))
1920         return WSTOPSIG (status);
1921     else
1922     {
1923         // We don't know what this is.
1924         return ExitType::eExitTypeInvalid;
1925     }
1926 }
1927 
1928 // Main process monitoring waitpid-loop handler.
1929 bool
1930 NativeProcessLinux::MonitorCallback(void *callback_baton,
1931                                 lldb::pid_t pid,
1932                                 bool exited,
1933                                 int signal,
1934                                 int status)
1935 {
1936     Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS));
1937 
1938     NativeProcessLinux *const process = static_cast<NativeProcessLinux*>(callback_baton);
1939     assert (process && "process is null");
1940     if (!process)
1941     {
1942         if (log)
1943             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " callback_baton was null, can't determine process to use", __FUNCTION__, pid);
1944         return true;
1945     }
1946 
1947     // Certain activities differ based on whether the pid is the tid of the main thread.
1948     const bool is_main_thread = (pid == process->GetID ());
1949 
1950     // Assume we keep monitoring by default.
1951     bool stop_monitoring = false;
1952 
1953     // Handle when the thread exits.
1954     if (exited)
1955     {
1956         if (log)
1957             log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %"  PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not");
1958 
1959         // This is a thread that exited.  Ensure we're not tracking it anymore.
1960         const bool thread_found = process->StopTrackingThread (pid);
1961 
1962         // Make sure the thread state coordinator knows about this.
1963         process->NotifyThreadDeath (pid);
1964 
1965         if (is_main_thread)
1966         {
1967             // We only set the exit status and notify the delegate if we haven't already set the process
1968             // state to an exited state.  We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8)
1969             // for the main thread.
1970             const bool already_notified = (process->GetState() == StateType::eStateExited) || (process->GetState () == StateType::eStateCrashed);
1971             if (!already_notified)
1972             {
1973                 if (log)
1974                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (process->GetState ()));
1975                 // The main thread exited.  We're done monitoring.  Report to delegate.
1976                 process->SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
1977 
1978                 // Notify delegate that our process has exited.
1979                 process->SetState (StateType::eStateExited, true);
1980             }
1981             else
1982             {
1983                 if (log)
1984                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
1985             }
1986             return true;
1987         }
1988         else
1989         {
1990             // Do we want to report to the delegate in this case?  I think not.  If this was an orderly
1991             // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal,
1992             // and we would have done an all-stop then.
1993             if (log)
1994                 log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
1995 
1996             // Not the main thread, we keep going.
1997             return false;
1998         }
1999     }
2000 
2001     // Get details on the signal raised.
2002     siginfo_t info;
2003     const auto err = process->GetSignalInfo(pid, &info);
2004     if (err.Success())
2005     {
2006         // We have retrieved the signal info.  Dispatch appropriately.
2007         if (info.si_signo == SIGTRAP)
2008             process->MonitorSIGTRAP(&info, pid);
2009         else
2010             process->MonitorSignal(&info, pid, exited);
2011 
2012         stop_monitoring = false;
2013     }
2014     else
2015     {
2016         if (err.GetError() == EINVAL)
2017         {
2018             // This is a group stop reception for this tid.
2019             if (log)
2020                 log->Printf ("NativeThreadLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64, __FUNCTION__, process->GetID (), pid);
2021             process->NotifyThreadStop (pid);
2022         }
2023         else
2024         {
2025             // ptrace(GETSIGINFO) failed (but not due to group-stop).
2026 
2027             // A return value of ESRCH means the thread/process is no longer on the system,
2028             // so it was killed somehow outside of our control.  Either way, we can't do anything
2029             // with it anymore.
2030 
2031             // We stop monitoring if it was the main thread.
2032             stop_monitoring = is_main_thread;
2033 
2034             // Stop tracking the metadata for the thread since it's entirely off the system now.
2035             const bool thread_found = process->StopTrackingThread (pid);
2036 
2037             // Make sure the thread state coordinator knows about this.
2038             process->NotifyThreadDeath (pid);
2039 
2040             if (log)
2041                 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)",
2042                              __FUNCTION__, err.AsCString(), pid, signal, status, err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found");
2043 
2044             if (is_main_thread)
2045             {
2046                 // Notify the delegate - our process is not available but appears to have been killed outside
2047                 // our control.  Is eStateExited the right exit state in this case?
2048                 process->SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
2049                 process->SetState (StateType::eStateExited, true);
2050             }
2051             else
2052             {
2053                 // This thread was pulled out from underneath us.  Anything to do here? Do we want to do an all stop?
2054                 if (log)
2055                     log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, process->GetID (), pid);
2056             }
2057         }
2058     }
2059 
2060     return stop_monitoring;
2061 }
2062 
2063 void
2064 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid)
2065 {
2066     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2067     const bool is_main_thread = (pid == GetID ());
2068 
2069     assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!");
2070     if (!info)
2071         return;
2072 
2073     Mutex::Locker locker (m_threads_mutex);
2074 
2075     // See if we can find a thread for this signal.
2076     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
2077     if (!thread_sp)
2078     {
2079         if (log)
2080             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
2081     }
2082 
2083     switch (info->si_code)
2084     {
2085     // TODO: these two cases are required if we want to support tracing of the inferiors' children.  We'd need this to debug a monitor.
2086     // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
2087     // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
2088 
2089     case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)):
2090     {
2091         lldb::tid_t tid = LLDB_INVALID_THREAD_ID;
2092 
2093         // The main thread is stopped here.
2094         if (thread_sp)
2095             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGTRAP);
2096         NotifyThreadStop (pid);
2097 
2098         unsigned long event_message = 0;
2099         if (GetEventMessage (pid, &event_message).Success())
2100         {
2101             tid = static_cast<lldb::tid_t> (event_message);
2102             if (log)
2103                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event for tid %" PRIu64, __FUNCTION__, pid, tid);
2104 
2105             // If we don't track the thread yet: create it, mark as stopped.
2106             // If we do track it, this is the wait we needed.  Now resume the new thread.
2107             // In all cases, resume the current (i.e. main process) thread.
2108             bool created_now = false;
2109             NativeThreadProtocolSP new_thread_sp = GetOrCreateThread (tid, created_now);
2110             assert (new_thread_sp.get() && "failed to get or create the tracking data for newly created inferior thread");
2111 
2112             // If the thread was already tracked, it means the created thread already received its SI_USER notification of creation.
2113             if (!created_now)
2114             {
2115                 // We can now resume the newly created thread since it is fully created.
2116                 NotifyThreadCreateStopped (tid);
2117                 m_coordinator_up->RequestThreadResume (tid,
2118                                                        [=](lldb::tid_t tid_to_resume, bool supress_signal)
2119                                                        {
2120                                                            reinterpret_cast<NativeThreadLinux*> (new_thread_sp.get ())->SetRunning ();
2121                                                            return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER);
2122                                                        },
2123                                                        CoordinatorErrorHandler);
2124             }
2125             else
2126             {
2127                 // Mark the thread as currently launching.  Need to wait for SIGTRAP clone on the main thread before
2128                 // this thread is ready to go.
2129                 reinterpret_cast<NativeThreadLinux*> (new_thread_sp.get ())->SetLaunching ();
2130             }
2131         }
2132         else
2133         {
2134             if (log)
2135                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, pid);
2136         }
2137 
2138         // In all cases, we can resume the main thread here.
2139         m_coordinator_up->RequestThreadResume (pid,
2140                                                [=](lldb::tid_t tid_to_resume, bool supress_signal)
2141                                                {
2142                                                    reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning ();
2143                                                    return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER);
2144                                                },
2145                                                CoordinatorErrorHandler);
2146 
2147         break;
2148     }
2149 
2150     case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)):
2151     {
2152         NativeThreadProtocolSP main_thread_sp;
2153         if (log)
2154             log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP);
2155 
2156         // The thread state coordinator needs to reset due to the exec.
2157         m_coordinator_up->ResetForExec ();
2158 
2159         // Remove all but the main thread here.  Linux fork creates a new process which only copies the main thread.  Mutexes are in undefined state.
2160         if (log)
2161             log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__);
2162 
2163         for (auto thread_sp : m_threads)
2164         {
2165             const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID ();
2166             if (is_main_thread)
2167             {
2168                 main_thread_sp = thread_sp;
2169                 if (log)
2170                     log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ());
2171             }
2172             else
2173             {
2174                 // Tell thread coordinator this thread is dead.
2175                 if (log)
2176                     log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ());
2177             }
2178         }
2179 
2180         m_threads.clear ();
2181 
2182         if (main_thread_sp)
2183         {
2184             m_threads.push_back (main_thread_sp);
2185             SetCurrentThreadID (main_thread_sp->GetID ());
2186             reinterpret_cast<NativeThreadLinux*>(main_thread_sp.get())->SetStoppedByExec ();
2187         }
2188         else
2189         {
2190             SetCurrentThreadID (LLDB_INVALID_THREAD_ID);
2191             if (log)
2192                 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ());
2193         }
2194 
2195         // Tell coordinator about about the "new" (since exec) stopped main thread.
2196         const lldb::tid_t main_thread_tid = GetID ();
2197         NotifyThreadCreateStopped (main_thread_tid);
2198 
2199         // NOTE: ideally these next statements would execute at the same time as the coordinator thread create was executed.
2200         // Consider a handler that can execute when that happens.
2201         // Let our delegate know we have just exec'd.
2202         NotifyDidExec ();
2203 
2204         // If we have a main thread, indicate we are stopped.
2205         assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked");
2206 
2207         // Let the process know we're stopped.
2208         CallAfterRunningThreadsStop (pid,
2209                                      [=] (lldb::tid_t signaling_tid)
2210                                      {
2211                                          SetState (StateType::eStateStopped, true);
2212                                      });
2213 
2214         break;
2215     }
2216 
2217     case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)):
2218     {
2219         // The inferior process or one of its threads is about to exit.
2220 
2221         // This thread is currently stopped.  It's not actually dead yet, just about to be.
2222         NotifyThreadStop (pid);
2223 
2224         unsigned long data = 0;
2225         if (GetEventMessage(pid, &data).Fail())
2226             data = -1;
2227 
2228         if (log)
2229         {
2230             log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)",
2231                          __FUNCTION__,
2232                          data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false",
2233                          pid,
2234                     is_main_thread ? "is main thread" : "not main thread");
2235         }
2236 
2237         if (is_main_thread)
2238         {
2239             SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true);
2240         }
2241 
2242         const int signo = static_cast<int> (data);
2243         m_coordinator_up->RequestThreadResume (pid,
2244                                                [=](lldb::tid_t tid_to_resume, bool supress_signal)
2245                                                {
2246                                                    reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning ();
2247                                                    return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo);
2248                                                },
2249                                                CoordinatorErrorHandler);
2250 
2251         break;
2252     }
2253 
2254     case 0:
2255     case TRAP_TRACE:
2256         // We receive this on single stepping.
2257         if (log)
2258             log->Printf ("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)", __FUNCTION__, pid);
2259 
2260         if (thread_sp)
2261         {
2262             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedByTrace ();
2263         }
2264 
2265         // This thread is currently stopped.
2266         NotifyThreadStop (pid);
2267 
2268         // Here we don't have to request the rest of the threads to stop or request a deferred stop.
2269         // This would have already happened at the time the Resume() with step operation was signaled.
2270         // At this point, we just need to say we stopped, and the deferred notifcation will fire off
2271         // once all running threads have checked in as stopped.
2272         SetCurrentThreadID (pid);
2273         // Tell the process we have a stop (from software breakpoint).
2274         CallAfterRunningThreadsStop (pid,
2275                                      [=] (lldb::tid_t signaling_tid)
2276                                      {
2277                                          SetState (StateType::eStateStopped, true);
2278                                      });
2279         break;
2280 
2281     case SI_KERNEL:
2282     case TRAP_BRKPT:
2283         if (log)
2284             log->Printf ("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64, __FUNCTION__, pid);
2285 
2286         // This thread is currently stopped.
2287         NotifyThreadStop (pid);
2288 
2289         // Mark the thread as stopped at breakpoint.
2290         if (thread_sp)
2291         {
2292             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedByBreakpoint ();
2293             Error error = FixupBreakpointPCAsNeeded (thread_sp);
2294             if (error.Fail ())
2295             {
2296                 if (log)
2297                     log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s", __FUNCTION__, pid, error.AsCString ());
2298             }
2299         }
2300         else
2301         {
2302             if (log)
2303                 log->Printf ("NativeProcessLinux::%s()  pid = %" PRIu64 ": warning, cannot process software breakpoint since no thread metadata", __FUNCTION__, pid);
2304         }
2305 
2306 
2307         // We need to tell all other running threads before we notify the delegate about this stop.
2308         CallAfterRunningThreadsStop (pid,
2309                                      [=](lldb::tid_t deferred_notification_tid)
2310                                      {
2311                                          SetCurrentThreadID (deferred_notification_tid);
2312                                          // Tell the process we have a stop (from software breakpoint).
2313                                          SetState (StateType::eStateStopped, true);
2314                                      });
2315         break;
2316 
2317     case TRAP_HWBKPT:
2318         if (log)
2319             log->Printf ("NativeProcessLinux::%s() received watchpoint event, pid = %" PRIu64, __FUNCTION__, pid);
2320 
2321         // This thread is currently stopped.
2322         NotifyThreadStop (pid);
2323 
2324         // Mark the thread as stopped at watchpoint.
2325         // The address is at (lldb::addr_t)info->si_addr if we need it.
2326         if (thread_sp)
2327             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedByWatchpoint ();
2328         else
2329         {
2330             if (log)
2331                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ": warning, cannot process hardware breakpoint since no thread metadata", __FUNCTION__, GetID (), pid);
2332         }
2333 
2334         // We need to tell all other running threads before we notify the delegate about this stop.
2335         CallAfterRunningThreadsStop (pid,
2336                                      [=](lldb::tid_t deferred_notification_tid)
2337                                      {
2338                                          SetCurrentThreadID (deferred_notification_tid);
2339                                          // Tell the process we have a stop (from hardware breakpoint).
2340                                          SetState (StateType::eStateStopped, true);
2341                                      });
2342         break;
2343 
2344     case SIGTRAP:
2345     case (SIGTRAP | 0x80):
2346         if (log)
2347             log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), pid);
2348 
2349         // This thread is currently stopped.
2350         NotifyThreadStop (pid);
2351         if (thread_sp)
2352             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGTRAP);
2353 
2354 
2355         // Ignore these signals until we know more about them.
2356         m_coordinator_up->RequestThreadResume (pid,
2357                                                [=](lldb::tid_t tid_to_resume, bool supress_signal)
2358                                                {
2359                                                    reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning ();
2360                                                    return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER);
2361                                                },
2362                                                CoordinatorErrorHandler);
2363         break;
2364 
2365     default:
2366         assert(false && "Unexpected SIGTRAP code!");
2367         if (log)
2368             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%" PRIx64, __FUNCTION__, GetID (), pid, static_cast<uint64_t> (SIGTRAP | (PTRACE_EVENT_CLONE << 8)));
2369         break;
2370 
2371     }
2372 }
2373 
2374 void
2375 NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited)
2376 {
2377     assert (info && "null info");
2378     if (!info)
2379         return;
2380 
2381     const int signo = info->si_signo;
2382     const bool is_from_llgs = info->si_pid == getpid ();
2383 
2384     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2385 
2386     // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
2387     // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
2388     // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
2389     //
2390     // IOW, user generated signals never generate what we consider to be a
2391     // "crash".
2392     //
2393     // Similarly, ACK signals generated by this monitor.
2394 
2395     Mutex::Locker locker (m_threads_mutex);
2396 
2397     // See if we can find a thread for this signal.
2398     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
2399     if (!thread_sp)
2400     {
2401         if (log)
2402             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
2403     }
2404 
2405     // Handle the signal.
2406     if (info->si_code == SI_TKILL || info->si_code == SI_USER)
2407     {
2408         if (log)
2409             log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")",
2410                             __FUNCTION__,
2411                             GetUnixSignals ().GetSignalAsCString (signo),
2412                             signo,
2413                             (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"),
2414                             info->si_pid,
2415                             is_from_llgs ? "from llgs" : "not from llgs",
2416                             pid);
2417     }
2418 
2419     // Check for new thread notification.
2420     if ((info->si_pid == 0) && (info->si_code == SI_USER))
2421     {
2422         // A new thread creation is being signaled.  This is one of two parts that come in
2423         // a non-deterministic order.  pid is the thread id.
2424         if (log)
2425             log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification",
2426                      __FUNCTION__, GetID (), pid);
2427 
2428         // Did we already create the thread?
2429         bool created_now = false;
2430         thread_sp = GetOrCreateThread (pid, created_now);
2431         assert (thread_sp.get() && "failed to get or create the tracking data for newly created inferior thread");
2432 
2433         // If the thread was already tracked, it means the main thread already received its SIGTRAP for the create.
2434         if (!created_now)
2435         {
2436             // We can now resume the newly created thread since it is fully created.
2437             NotifyThreadCreateStopped (pid);
2438             m_coordinator_up->RequestThreadResume (pid,
2439                                                    [=](lldb::tid_t tid_to_resume, bool supress_signal)
2440                                                    {
2441                                                        reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning ();
2442                                                        return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER);
2443                                                    },
2444                                                    CoordinatorErrorHandler);
2445         }
2446         else
2447         {
2448             // Mark the thread as currently launching.  Need to wait for SIGTRAP clone on the main thread before
2449             // this thread is ready to go.
2450             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetLaunching ();
2451         }
2452 
2453         // Done handling.
2454         return;
2455     }
2456 
2457     // Check for thread stop notification.
2458     if (is_from_llgs && (info->si_code == SI_TKILL) && (signo == SIGSTOP))
2459     {
2460         // This is a tgkill()-based stop.
2461         if (thread_sp)
2462         {
2463             if (log)
2464                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped",
2465                              __FUNCTION__,
2466                              GetID (),
2467                              pid);
2468 
2469             // Check that we're not already marked with a stop reason.
2470             // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that
2471             // the kernel signaled us with the thread stopping which we handled and marked as stopped,
2472             // and that, without an intervening resume, we received another stop.  It is more likely
2473             // that we are missing the marking of a run state somewhere if we find that the thread was
2474             // marked as stopped.
2475             NativeThreadLinux *const linux_thread_p = reinterpret_cast<NativeThreadLinux*> (thread_sp.get ());
2476             assert (linux_thread_p && "linux_thread_p is null!");
2477 
2478             const StateType thread_state = linux_thread_p->GetState ();
2479             if (!StateIsStoppedState (thread_state, false))
2480             {
2481                 // An inferior thread just stopped, but was not the primary cause of the process stop.
2482                 // Instead, something else (like a breakpoint or step) caused the stop.  Mark the
2483                 // stop signal as 0 to let lldb know this isn't the important stop.
2484                 linux_thread_p->SetStoppedBySignal (0);
2485                 SetCurrentThreadID (thread_sp->GetID ());
2486                 m_coordinator_up->NotifyThreadStop (thread_sp->GetID (), true, CoordinatorErrorHandler);
2487             }
2488             else
2489             {
2490                 if (log)
2491                 {
2492                     // Retrieve the signal name if the thread was stopped by a signal.
2493                     int stop_signo = 0;
2494                     const bool stopped_by_signal = linux_thread_p->IsStopped (&stop_signo);
2495                     const char *signal_name = stopped_by_signal ? GetUnixSignals ().GetSignalAsCString (stop_signo) : "<not stopped by signal>";
2496                     if (!signal_name)
2497                         signal_name = "<no-signal-name>";
2498 
2499                     log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is",
2500                                  __FUNCTION__,
2501                                  GetID (),
2502                                  linux_thread_p->GetID (),
2503                                  StateAsCString (thread_state),
2504                                  stop_signo,
2505                                  signal_name);
2506                 }
2507                 // Tell the thread state coordinator about the stop.
2508                 NotifyThreadStop (thread_sp->GetID ());
2509             }
2510         }
2511 
2512         // Done handling.
2513         return;
2514     }
2515 
2516     if (log)
2517         log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo));
2518 
2519     // This thread is stopped.
2520     NotifyThreadStop (pid);
2521 
2522     switch (signo)
2523     {
2524     case SIGSTOP:
2525         {
2526             if (log)
2527             {
2528                 if (is_from_llgs)
2529                     log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from llgs, most likely an interrupt", __FUNCTION__, GetID (), pid);
2530                 else
2531                     log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from outside of debugger", __FUNCTION__, GetID (), pid);
2532             }
2533 
2534             // Resume this thread to get the group-stop mechanism to fire off the true group stops.
2535             // This thread will get stopped again as part of the group-stop completion.
2536             m_coordinator_up->RequestThreadResume (pid,
2537                                                    [=](lldb::tid_t tid_to_resume, bool supress_signal)
2538                                                    {
2539                                                        reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning ();
2540                                                        // Pass this signal number on to the inferior to handle.
2541                                                        return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo);
2542                                                    },
2543                                                    CoordinatorErrorHandler);
2544         }
2545         break;
2546     case SIGSEGV:
2547     case SIGILL:
2548     case SIGFPE:
2549     case SIGBUS:
2550         if (thread_sp)
2551             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetCrashedWithException (*info);
2552         break;
2553     default:
2554         // This is just a pre-signal-delivery notification of the incoming signal.
2555         if (thread_sp)
2556             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (signo);
2557 
2558         break;
2559     }
2560 
2561     // Send a stop to the debugger after we get all other threads to stop.
2562     CallAfterRunningThreadsStop (pid,
2563                                  [=] (lldb::tid_t signaling_tid)
2564                                  {
2565                                      SetCurrentThreadID (signaling_tid);
2566                                      SetState (StateType::eStateStopped, true);
2567                                  });
2568 }
2569 
2570 Error
2571 NativeProcessLinux::Resume (const ResumeActionList &resume_actions)
2572 {
2573     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD));
2574     if (log)
2575         log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ());
2576 
2577     lldb::tid_t deferred_signal_tid = LLDB_INVALID_THREAD_ID;
2578     lldb::tid_t deferred_signal_skip_tid = LLDB_INVALID_THREAD_ID;
2579     int deferred_signo = 0;
2580     NativeThreadProtocolSP deferred_signal_thread_sp;
2581     bool stepping = false;
2582 
2583     Mutex::Locker locker (m_threads_mutex);
2584 
2585     for (auto thread_sp : m_threads)
2586     {
2587         assert (thread_sp && "thread list should not contain NULL threads");
2588 
2589         const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
2590 
2591         if (action == nullptr)
2592         {
2593             if (log)
2594                 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64,
2595                     __FUNCTION__, GetID (), thread_sp->GetID ());
2596             continue;
2597         }
2598 
2599         if (log)
2600         {
2601             log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64,
2602                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
2603         }
2604 
2605         switch (action->state)
2606         {
2607         case eStateRunning:
2608         {
2609             // Run the thread, possibly feeding it the signal.
2610             const int signo = action->signal;
2611             m_coordinator_up->RequestThreadResumeAsNeeded (thread_sp->GetID (),
2612                                                            [=](lldb::tid_t tid_to_resume, bool supress_signal)
2613                                                            {
2614                                                                reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning ();
2615                                                                // Pass this signal number on to the inferior to handle.
2616                                                                const auto resume_result = Resume (tid_to_resume, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
2617                                                                if (resume_result.Success())
2618                                                                    SetState(eStateRunning, true);
2619                                                                return resume_result;
2620                                                            },
2621                                                            CoordinatorErrorHandler);
2622             break;
2623         }
2624 
2625         case eStateStepping:
2626         {
2627             // Request the step.
2628             const int signo = action->signal;
2629             m_coordinator_up->RequestThreadResume (thread_sp->GetID (),
2630                                                    [=](lldb::tid_t tid_to_step, bool supress_signal)
2631                                                    {
2632                                                        reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStepping ();
2633                                                        const auto step_result = SingleStep (tid_to_step,(signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
2634                                                        assert (step_result.Success() && "SingleStep() failed");
2635                                                        if (step_result.Success())
2636                                                            SetState(eStateStepping, true);
2637                                                        return step_result;
2638                                                    },
2639                                                    CoordinatorErrorHandler);
2640             stepping = true;
2641             break;
2642         }
2643 
2644         case eStateSuspended:
2645         case eStateStopped:
2646             // if we haven't chosen a deferred signal tid yet, use this one.
2647             if (deferred_signal_tid == LLDB_INVALID_THREAD_ID)
2648             {
2649                 deferred_signal_tid = thread_sp->GetID ();
2650                 deferred_signal_thread_sp = thread_sp;
2651                 deferred_signo = SIGSTOP;
2652             }
2653             break;
2654 
2655         default:
2656             return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64,
2657                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
2658         }
2659     }
2660 
2661     // If we had any thread stopping, then do a deferred notification of the chosen stop thread id and signal
2662     // after all other running threads have stopped.
2663     // If there is a stepping thread involved we'll be eventually stopped by SIGTRAP trace signal.
2664     if (deferred_signal_tid != LLDB_INVALID_THREAD_ID && !stepping)
2665     {
2666         CallAfterRunningThreadsStopWithSkipTID (deferred_signal_tid,
2667                                                 deferred_signal_skip_tid,
2668                                      [=](lldb::tid_t deferred_notification_tid)
2669                                      {
2670                                          // Set the signal thread to the current thread.
2671                                          SetCurrentThreadID (deferred_notification_tid);
2672 
2673                                          // Set the thread state as stopped by the deferred signo.
2674                                          reinterpret_cast<NativeThreadLinux*> (deferred_signal_thread_sp.get ())->SetStoppedBySignal (deferred_signo);
2675 
2676                                          // Tell the process delegate that the process is in a stopped state.
2677                                          SetState (StateType::eStateStopped, true);
2678                                      });
2679     }
2680 
2681     return Error();
2682 }
2683 
2684 Error
2685 NativeProcessLinux::Halt ()
2686 {
2687     Error error;
2688 
2689     if (kill (GetID (), SIGSTOP) != 0)
2690         error.SetErrorToErrno ();
2691 
2692     return error;
2693 }
2694 
2695 Error
2696 NativeProcessLinux::Detach ()
2697 {
2698     Error error;
2699 
2700     // Tell ptrace to detach from the process.
2701     if (GetID () != LLDB_INVALID_PROCESS_ID)
2702         error = Detach (GetID ());
2703 
2704     // Stop monitoring the inferior.
2705     StopMonitor ();
2706 
2707     // No error.
2708     return error;
2709 }
2710 
2711 Error
2712 NativeProcessLinux::Signal (int signo)
2713 {
2714     Error error;
2715 
2716     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2717     if (log)
2718         log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64,
2719                 __FUNCTION__, signo,  GetUnixSignals ().GetSignalAsCString (signo), GetID ());
2720 
2721     if (kill(GetID(), signo))
2722         error.SetErrorToErrno();
2723 
2724     return error;
2725 }
2726 
2727 Error
2728 NativeProcessLinux::Interrupt ()
2729 {
2730     // Pick a running thread (or if none, a not-dead stopped thread) as
2731     // the chosen thread that will be the stop-reason thread.
2732     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2733 
2734     NativeThreadProtocolSP running_thread_sp;
2735     NativeThreadProtocolSP stopped_thread_sp;
2736 
2737     if (log)
2738         log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__);
2739 
2740     Mutex::Locker locker (m_threads_mutex);
2741 
2742     for (auto thread_sp : m_threads)
2743     {
2744         // The thread shouldn't be null but lets just cover that here.
2745         if (!thread_sp)
2746             continue;
2747 
2748         // If we have a running or stepping thread, we'll call that the
2749         // target of the interrupt.
2750         const auto thread_state = thread_sp->GetState ();
2751         if (thread_state == eStateRunning ||
2752             thread_state == eStateStepping)
2753         {
2754             running_thread_sp = thread_sp;
2755             break;
2756         }
2757         else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true))
2758         {
2759             // Remember the first non-dead stopped thread.  We'll use that as a backup if there are no running threads.
2760             stopped_thread_sp = thread_sp;
2761         }
2762     }
2763 
2764     if (!running_thread_sp && !stopped_thread_sp)
2765     {
2766         Error error("found no running/stepping or live stopped threads as target for interrupt");
2767         if (log)
2768             log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ());
2769 
2770         return error;
2771     }
2772 
2773     NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp;
2774 
2775     if (log)
2776         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target",
2777                      __FUNCTION__,
2778                      GetID (),
2779                      running_thread_sp ? "running" : "stopped",
2780                      deferred_signal_thread_sp->GetID ());
2781 
2782     CallAfterRunningThreadsStop (deferred_signal_thread_sp->GetID (),
2783                                  [=](lldb::tid_t deferred_notification_tid)
2784                                  {
2785                                      // Set the signal thread to the current thread.
2786                                      SetCurrentThreadID (deferred_notification_tid);
2787 
2788                                      // Set the thread state as stopped by the deferred signo.
2789                                      reinterpret_cast<NativeThreadLinux*> (deferred_signal_thread_sp.get ())->SetStoppedBySignal (SIGSTOP);
2790 
2791                                      // Tell the process delegate that the process is in a stopped state.
2792                                      SetState (StateType::eStateStopped, true);
2793                                  });
2794     return Error();
2795 }
2796 
2797 Error
2798 NativeProcessLinux::Kill ()
2799 {
2800     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2801     if (log)
2802         log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ());
2803 
2804     Error error;
2805 
2806     switch (m_state)
2807     {
2808         case StateType::eStateInvalid:
2809         case StateType::eStateExited:
2810         case StateType::eStateCrashed:
2811         case StateType::eStateDetached:
2812         case StateType::eStateUnloaded:
2813             // Nothing to do - the process is already dead.
2814             if (log)
2815                 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state));
2816             return error;
2817 
2818         case StateType::eStateConnected:
2819         case StateType::eStateAttaching:
2820         case StateType::eStateLaunching:
2821         case StateType::eStateStopped:
2822         case StateType::eStateRunning:
2823         case StateType::eStateStepping:
2824         case StateType::eStateSuspended:
2825             // We can try to kill a process in these states.
2826             break;
2827     }
2828 
2829     if (kill (GetID (), SIGKILL) != 0)
2830     {
2831         error.SetErrorToErrno ();
2832         return error;
2833     }
2834 
2835     return error;
2836 }
2837 
2838 static Error
2839 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info)
2840 {
2841     memory_region_info.Clear();
2842 
2843     StringExtractor line_extractor (maps_line.c_str ());
2844 
2845     // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode   pathname
2846     // perms: rwxp   (letter is present if set, '-' if not, final character is p=private, s=shared).
2847 
2848     // Parse out the starting address
2849     lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0);
2850 
2851     // Parse out hyphen separating start and end address from range.
2852     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-'))
2853         return Error ("malformed /proc/{pid}/maps entry, missing dash between address range");
2854 
2855     // Parse out the ending address
2856     lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address);
2857 
2858     // Parse out the space after the address.
2859     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' '))
2860         return Error ("malformed /proc/{pid}/maps entry, missing space after range");
2861 
2862     // Save the range.
2863     memory_region_info.GetRange ().SetRangeBase (start_address);
2864     memory_region_info.GetRange ().SetRangeEnd (end_address);
2865 
2866     // Parse out each permission entry.
2867     if (line_extractor.GetBytesLeft () < 4)
2868         return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions");
2869 
2870     // Handle read permission.
2871     const char read_perm_char = line_extractor.GetChar ();
2872     if (read_perm_char == 'r')
2873         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes);
2874     else
2875     {
2876         assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" );
2877         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2878     }
2879 
2880     // Handle write permission.
2881     const char write_perm_char = line_extractor.GetChar ();
2882     if (write_perm_char == 'w')
2883         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes);
2884     else
2885     {
2886         assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" );
2887         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2888     }
2889 
2890     // Handle execute permission.
2891     const char exec_perm_char = line_extractor.GetChar ();
2892     if (exec_perm_char == 'x')
2893         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes);
2894     else
2895     {
2896         assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" );
2897         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2898     }
2899 
2900     return Error ();
2901 }
2902 
2903 Error
2904 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info)
2905 {
2906     // FIXME review that the final memory region returned extends to the end of the virtual address space,
2907     // with no perms if it is not mapped.
2908 
2909     // Use an approach that reads memory regions from /proc/{pid}/maps.
2910     // Assume proc maps entries are in ascending order.
2911     // FIXME assert if we find differently.
2912     Mutex::Locker locker (m_mem_region_cache_mutex);
2913 
2914     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2915     Error error;
2916 
2917     if (m_supports_mem_region == LazyBool::eLazyBoolNo)
2918     {
2919         // We're done.
2920         error.SetErrorString ("unsupported");
2921         return error;
2922     }
2923 
2924     // If our cache is empty, pull the latest.  There should always be at least one memory region
2925     // if memory region handling is supported.
2926     if (m_mem_region_cache.empty ())
2927     {
2928         error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
2929              [&] (const std::string &line) -> bool
2930              {
2931                  MemoryRegionInfo info;
2932                  const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info);
2933                  if (parse_error.Success ())
2934                  {
2935                      m_mem_region_cache.push_back (info);
2936                      return true;
2937                  }
2938                  else
2939                  {
2940                      if (log)
2941                          log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ());
2942                      return false;
2943                  }
2944              });
2945 
2946         // If we had an error, we'll mark unsupported.
2947         if (error.Fail ())
2948         {
2949             m_supports_mem_region = LazyBool::eLazyBoolNo;
2950             return error;
2951         }
2952         else if (m_mem_region_cache.empty ())
2953         {
2954             // No entries after attempting to read them.  This shouldn't happen if /proc/{pid}/maps
2955             // is supported.  Assume we don't support map entries via procfs.
2956             if (log)
2957                 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__);
2958             m_supports_mem_region = LazyBool::eLazyBoolNo;
2959             error.SetErrorString ("not supported");
2960             return error;
2961         }
2962 
2963         if (log)
2964             log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ());
2965 
2966         // We support memory retrieval, remember that.
2967         m_supports_mem_region = LazyBool::eLazyBoolYes;
2968     }
2969     else
2970     {
2971         if (log)
2972             log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
2973     }
2974 
2975     lldb::addr_t prev_base_address = 0;
2976 
2977     // FIXME start by finding the last region that is <= target address using binary search.  Data is sorted.
2978     // There can be a ton of regions on pthreads apps with lots of threads.
2979     for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it)
2980     {
2981         MemoryRegionInfo &proc_entry_info = *it;
2982 
2983         // Sanity check assumption that /proc/{pid}/maps entries are ascending.
2984         assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected");
2985         prev_base_address = proc_entry_info.GetRange ().GetRangeBase ();
2986 
2987         // If the target address comes before this entry, indicate distance to next region.
2988         if (load_addr < proc_entry_info.GetRange ().GetRangeBase ())
2989         {
2990             range_info.GetRange ().SetRangeBase (load_addr);
2991             range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr);
2992             range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2993             range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2994             range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2995 
2996             return error;
2997         }
2998         else if (proc_entry_info.GetRange ().Contains (load_addr))
2999         {
3000             // The target address is within the memory region we're processing here.
3001             range_info = proc_entry_info;
3002             return error;
3003         }
3004 
3005         // The target memory address comes somewhere after the region we just parsed.
3006     }
3007 
3008     // If we made it here, we didn't find an entry that contained the given address.
3009     error.SetErrorString ("address comes after final region");
3010 
3011     if (log)
3012         log->Printf ("NativeProcessLinux::%s failed to find map entry for address 0x%" PRIx64 ": %s", __FUNCTION__, load_addr, error.AsCString ());
3013 
3014     return error;
3015 }
3016 
3017 void
3018 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId)
3019 {
3020     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3021     if (log)
3022         log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId);
3023 
3024     {
3025         Mutex::Locker locker (m_mem_region_cache_mutex);
3026         if (log)
3027             log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
3028         m_mem_region_cache.clear ();
3029     }
3030 }
3031 
3032 Error
3033 NativeProcessLinux::AllocateMemory (
3034     lldb::addr_t size,
3035     uint32_t permissions,
3036     lldb::addr_t &addr)
3037 {
3038     // FIXME implementing this requires the equivalent of
3039     // InferiorCallPOSIX::InferiorCallMmap, which depends on
3040     // functional ThreadPlans working with Native*Protocol.
3041 #if 1
3042     return Error ("not implemented yet");
3043 #else
3044     addr = LLDB_INVALID_ADDRESS;
3045 
3046     unsigned prot = 0;
3047     if (permissions & lldb::ePermissionsReadable)
3048         prot |= eMmapProtRead;
3049     if (permissions & lldb::ePermissionsWritable)
3050         prot |= eMmapProtWrite;
3051     if (permissions & lldb::ePermissionsExecutable)
3052         prot |= eMmapProtExec;
3053 
3054     // TODO implement this directly in NativeProcessLinux
3055     // (and lift to NativeProcessPOSIX if/when that class is
3056     // refactored out).
3057     if (InferiorCallMmap(this, addr, 0, size, prot,
3058                          eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
3059         m_addr_to_mmap_size[addr] = size;
3060         return Error ();
3061     } else {
3062         addr = LLDB_INVALID_ADDRESS;
3063         return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions));
3064     }
3065 #endif
3066 }
3067 
3068 Error
3069 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr)
3070 {
3071     // FIXME see comments in AllocateMemory - required lower-level
3072     // bits not in place yet (ThreadPlans)
3073     return Error ("not implemented");
3074 }
3075 
3076 lldb::addr_t
3077 NativeProcessLinux::GetSharedLibraryInfoAddress ()
3078 {
3079 #if 1
3080     // punt on this for now
3081     return LLDB_INVALID_ADDRESS;
3082 #else
3083     // Return the image info address for the exe module
3084 #if 1
3085     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3086 
3087     ModuleSP module_sp;
3088     Error error = GetExeModuleSP (module_sp);
3089     if (error.Fail ())
3090     {
3091          if (log)
3092             log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ());
3093         return LLDB_INVALID_ADDRESS;
3094     }
3095 
3096     if (module_sp == nullptr)
3097     {
3098          if (log)
3099             log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__);
3100          return LLDB_INVALID_ADDRESS;
3101     }
3102 
3103     ObjectFileSP object_file_sp = module_sp->GetObjectFile ();
3104     if (object_file_sp == nullptr)
3105     {
3106          if (log)
3107             log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__);
3108          return LLDB_INVALID_ADDRESS;
3109     }
3110 
3111     return obj_file_sp->GetImageInfoAddress();
3112 #else
3113     Target *target = &GetTarget();
3114     ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile();
3115     Address addr = obj_file->GetImageInfoAddress(target);
3116 
3117     if (addr.IsValid())
3118         return addr.GetLoadAddress(target);
3119     return LLDB_INVALID_ADDRESS;
3120 #endif
3121 #endif // punt on this for now
3122 }
3123 
3124 size_t
3125 NativeProcessLinux::UpdateThreads ()
3126 {
3127     // The NativeProcessLinux monitoring threads are always up to date
3128     // with respect to thread state and they keep the thread list
3129     // populated properly. All this method needs to do is return the
3130     // thread count.
3131     Mutex::Locker locker (m_threads_mutex);
3132     return m_threads.size ();
3133 }
3134 
3135 bool
3136 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const
3137 {
3138     arch = m_arch;
3139     return true;
3140 }
3141 
3142 Error
3143 NativeProcessLinux::GetSoftwareBreakpointSize (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size)
3144 {
3145     // FIXME put this behind a breakpoint protocol class that can be
3146     // set per architecture.  Need ARM, MIPS support here.
3147     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
3148     static const uint8_t g_i386_opcode [] = { 0xCC };
3149 
3150     switch (m_arch.GetMachine ())
3151     {
3152         case llvm::Triple::aarch64:
3153             actual_opcode_size = static_cast<uint32_t> (sizeof(g_aarch64_opcode));
3154             return Error ();
3155 
3156         case llvm::Triple::x86:
3157         case llvm::Triple::x86_64:
3158             actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode));
3159             return Error ();
3160 
3161         default:
3162             assert(false && "CPU type not supported!");
3163             return Error ("CPU type not supported");
3164     }
3165 }
3166 
3167 Error
3168 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware)
3169 {
3170     if (hardware)
3171         return Error ("NativeProcessLinux does not support hardware breakpoints");
3172     else
3173         return SetSoftwareBreakpoint (addr, size);
3174 }
3175 
3176 Error
3177 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint, size_t &actual_opcode_size, const uint8_t *&trap_opcode_bytes)
3178 {
3179     // FIXME put this behind a breakpoint protocol class that can be
3180     // set per architecture.  Need ARM, MIPS support here.
3181     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
3182     static const uint8_t g_i386_opcode [] = { 0xCC };
3183 
3184     switch (m_arch.GetMachine ())
3185     {
3186     case llvm::Triple::aarch64:
3187         trap_opcode_bytes = g_aarch64_opcode;
3188         actual_opcode_size = sizeof(g_aarch64_opcode);
3189         return Error ();
3190 
3191     case llvm::Triple::x86:
3192     case llvm::Triple::x86_64:
3193         trap_opcode_bytes = g_i386_opcode;
3194         actual_opcode_size = sizeof(g_i386_opcode);
3195         return Error ();
3196 
3197     default:
3198         assert(false && "CPU type not supported!");
3199         return Error ("CPU type not supported");
3200     }
3201 }
3202 
3203 #if 0
3204 ProcessMessage::CrashReason
3205 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
3206 {
3207     ProcessMessage::CrashReason reason;
3208     assert(info->si_signo == SIGSEGV);
3209 
3210     reason = ProcessMessage::eInvalidCrashReason;
3211 
3212     switch (info->si_code)
3213     {
3214     default:
3215         assert(false && "unexpected si_code for SIGSEGV");
3216         break;
3217     case SI_KERNEL:
3218         // Linux will occasionally send spurious SI_KERNEL codes.
3219         // (this is poorly documented in sigaction)
3220         // One way to get this is via unaligned SIMD loads.
3221         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
3222         break;
3223     case SEGV_MAPERR:
3224         reason = ProcessMessage::eInvalidAddress;
3225         break;
3226     case SEGV_ACCERR:
3227         reason = ProcessMessage::ePrivilegedAddress;
3228         break;
3229     }
3230 
3231     return reason;
3232 }
3233 #endif
3234 
3235 
3236 #if 0
3237 ProcessMessage::CrashReason
3238 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
3239 {
3240     ProcessMessage::CrashReason reason;
3241     assert(info->si_signo == SIGILL);
3242 
3243     reason = ProcessMessage::eInvalidCrashReason;
3244 
3245     switch (info->si_code)
3246     {
3247     default:
3248         assert(false && "unexpected si_code for SIGILL");
3249         break;
3250     case ILL_ILLOPC:
3251         reason = ProcessMessage::eIllegalOpcode;
3252         break;
3253     case ILL_ILLOPN:
3254         reason = ProcessMessage::eIllegalOperand;
3255         break;
3256     case ILL_ILLADR:
3257         reason = ProcessMessage::eIllegalAddressingMode;
3258         break;
3259     case ILL_ILLTRP:
3260         reason = ProcessMessage::eIllegalTrap;
3261         break;
3262     case ILL_PRVOPC:
3263         reason = ProcessMessage::ePrivilegedOpcode;
3264         break;
3265     case ILL_PRVREG:
3266         reason = ProcessMessage::ePrivilegedRegister;
3267         break;
3268     case ILL_COPROC:
3269         reason = ProcessMessage::eCoprocessorError;
3270         break;
3271     case ILL_BADSTK:
3272         reason = ProcessMessage::eInternalStackError;
3273         break;
3274     }
3275 
3276     return reason;
3277 }
3278 #endif
3279 
3280 #if 0
3281 ProcessMessage::CrashReason
3282 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
3283 {
3284     ProcessMessage::CrashReason reason;
3285     assert(info->si_signo == SIGFPE);
3286 
3287     reason = ProcessMessage::eInvalidCrashReason;
3288 
3289     switch (info->si_code)
3290     {
3291     default:
3292         assert(false && "unexpected si_code for SIGFPE");
3293         break;
3294     case FPE_INTDIV:
3295         reason = ProcessMessage::eIntegerDivideByZero;
3296         break;
3297     case FPE_INTOVF:
3298         reason = ProcessMessage::eIntegerOverflow;
3299         break;
3300     case FPE_FLTDIV:
3301         reason = ProcessMessage::eFloatDivideByZero;
3302         break;
3303     case FPE_FLTOVF:
3304         reason = ProcessMessage::eFloatOverflow;
3305         break;
3306     case FPE_FLTUND:
3307         reason = ProcessMessage::eFloatUnderflow;
3308         break;
3309     case FPE_FLTRES:
3310         reason = ProcessMessage::eFloatInexactResult;
3311         break;
3312     case FPE_FLTINV:
3313         reason = ProcessMessage::eFloatInvalidOperation;
3314         break;
3315     case FPE_FLTSUB:
3316         reason = ProcessMessage::eFloatSubscriptRange;
3317         break;
3318     }
3319 
3320     return reason;
3321 }
3322 #endif
3323 
3324 #if 0
3325 ProcessMessage::CrashReason
3326 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
3327 {
3328     ProcessMessage::CrashReason reason;
3329     assert(info->si_signo == SIGBUS);
3330 
3331     reason = ProcessMessage::eInvalidCrashReason;
3332 
3333     switch (info->si_code)
3334     {
3335     default:
3336         assert(false && "unexpected si_code for SIGBUS");
3337         break;
3338     case BUS_ADRALN:
3339         reason = ProcessMessage::eIllegalAlignment;
3340         break;
3341     case BUS_ADRERR:
3342         reason = ProcessMessage::eIllegalAddress;
3343         break;
3344     case BUS_OBJERR:
3345         reason = ProcessMessage::eHardwareError;
3346         break;
3347     }
3348 
3349     return reason;
3350 }
3351 #endif
3352 
3353 void
3354 NativeProcessLinux::ServeOperation(OperationArgs *args)
3355 {
3356     NativeProcessLinux *monitor = args->m_monitor;
3357 
3358     // We are finised with the arguments and are ready to go.  Sync with the
3359     // parent thread and start serving operations on the inferior.
3360     sem_post(&args->m_semaphore);
3361 
3362     for(;;)
3363     {
3364         // wait for next pending operation
3365         if (sem_wait(&monitor->m_operation_pending))
3366         {
3367             if (errno == EINTR)
3368                 continue;
3369             assert(false && "Unexpected errno from sem_wait");
3370         }
3371 
3372         reinterpret_cast<Operation*>(monitor->m_operation)->Execute(monitor);
3373 
3374         // notify calling thread that operation is complete
3375         sem_post(&monitor->m_operation_done);
3376     }
3377 }
3378 
3379 void
3380 NativeProcessLinux::DoOperation(void *op)
3381 {
3382     Mutex::Locker lock(m_operation_mutex);
3383 
3384     m_operation = op;
3385 
3386     // notify operation thread that an operation is ready to be processed
3387     sem_post(&m_operation_pending);
3388 
3389     // wait for operation to complete
3390     while (sem_wait(&m_operation_done))
3391     {
3392         if (errno == EINTR)
3393             continue;
3394         assert(false && "Unexpected errno from sem_wait");
3395     }
3396 }
3397 
3398 Error
3399 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, lldb::addr_t size, lldb::addr_t &bytes_read)
3400 {
3401     ReadOperation op(addr, buf, size, bytes_read);
3402     DoOperation(&op);
3403     return op.GetError ();
3404 }
3405 
3406 Error
3407 NativeProcessLinux::WriteMemory (lldb::addr_t addr, const void *buf, lldb::addr_t size, lldb::addr_t &bytes_written)
3408 {
3409     WriteOperation op(addr, buf, size, bytes_written);
3410     DoOperation(&op);
3411     return op.GetError ();
3412 }
3413 
3414 Error
3415 NativeProcessLinux::ReadRegisterValue(lldb::tid_t tid, uint32_t offset, const char* reg_name,
3416                                   uint32_t size, RegisterValue &value)
3417 {
3418     ReadRegOperation op(tid, offset, reg_name, value);
3419     DoOperation(&op);
3420     return op.GetError();
3421 }
3422 
3423 Error
3424 NativeProcessLinux::WriteRegisterValue(lldb::tid_t tid, unsigned offset,
3425                                    const char* reg_name, const RegisterValue &value)
3426 {
3427     WriteRegOperation op(tid, offset, reg_name, value);
3428     DoOperation(&op);
3429     return op.GetError();
3430 }
3431 
3432 Error
3433 NativeProcessLinux::ReadGPR(lldb::tid_t tid, void *buf, size_t buf_size)
3434 {
3435     ReadGPROperation op(tid, buf, buf_size);
3436     DoOperation(&op);
3437     return op.GetError();
3438 }
3439 
3440 Error
3441 NativeProcessLinux::ReadFPR(lldb::tid_t tid, void *buf, size_t buf_size)
3442 {
3443     ReadFPROperation op(tid, buf, buf_size);
3444     DoOperation(&op);
3445     return op.GetError();
3446 }
3447 
3448 Error
3449 NativeProcessLinux::ReadRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
3450 {
3451     ReadRegisterSetOperation op(tid, buf, buf_size, regset);
3452     DoOperation(&op);
3453     return op.GetError();
3454 }
3455 
3456 Error
3457 NativeProcessLinux::WriteGPR(lldb::tid_t tid, void *buf, size_t buf_size)
3458 {
3459     WriteGPROperation op(tid, buf, buf_size);
3460     DoOperation(&op);
3461     return op.GetError();
3462 }
3463 
3464 Error
3465 NativeProcessLinux::WriteFPR(lldb::tid_t tid, void *buf, size_t buf_size)
3466 {
3467     WriteFPROperation op(tid, buf, buf_size);
3468     DoOperation(&op);
3469     return op.GetError();
3470 }
3471 
3472 Error
3473 NativeProcessLinux::WriteRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
3474 {
3475     WriteRegisterSetOperation op(tid, buf, buf_size, regset);
3476     DoOperation(&op);
3477     return op.GetError();
3478 }
3479 
3480 Error
3481 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo)
3482 {
3483     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3484 
3485     if (log)
3486         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " with signal %s", __FUNCTION__, tid,
3487                                  GetUnixSignals().GetSignalAsCString (signo));
3488     ResumeOperation op (tid, signo);
3489     DoOperation (&op);
3490     if (log)
3491         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " result = %s", __FUNCTION__, tid, op.GetError().Success() ? "true" : "false");
3492     return op.GetError();
3493 }
3494 
3495 Error
3496 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo)
3497 {
3498     SingleStepOperation op(tid, signo);
3499     DoOperation(&op);
3500     return op.GetError();
3501 }
3502 
3503 Error
3504 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo)
3505 {
3506     SiginfoOperation op(tid, siginfo);
3507     DoOperation(&op);
3508     return op.GetError();
3509 }
3510 
3511 Error
3512 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message)
3513 {
3514     EventMessageOperation op(tid, message);
3515     DoOperation(&op);
3516     return op.GetError();
3517 }
3518 
3519 lldb_private::Error
3520 NativeProcessLinux::Detach(lldb::tid_t tid)
3521 {
3522     if (tid == LLDB_INVALID_THREAD_ID)
3523         return Error();
3524 
3525     DetachOperation op(tid);
3526     DoOperation(&op);
3527     return op.GetError();
3528 }
3529 
3530 bool
3531 NativeProcessLinux::DupDescriptor(const char *path, int fd, int flags)
3532 {
3533     int target_fd = open(path, flags, 0666);
3534 
3535     if (target_fd == -1)
3536         return false;
3537 
3538     if (dup2(target_fd, fd) == -1)
3539         return false;
3540 
3541     return (close(target_fd) == -1) ? false : true;
3542 }
3543 
3544 void
3545 NativeProcessLinux::StopMonitoringChildProcess()
3546 {
3547     if (m_monitor_thread.IsJoinable())
3548     {
3549         m_monitor_thread.Cancel();
3550         m_monitor_thread.Join(nullptr);
3551     }
3552 }
3553 
3554 void
3555 NativeProcessLinux::StopMonitor()
3556 {
3557     StopMonitoringChildProcess();
3558     StopOpThread();
3559     StopCoordinatorThread ();
3560     sem_destroy(&m_operation_pending);
3561     sem_destroy(&m_operation_done);
3562 
3563     // TODO: validate whether this still holds, fix up comment.
3564     // Note: ProcessPOSIX passes the m_terminal_fd file descriptor to
3565     // Process::SetSTDIOFileDescriptor, which in turn transfers ownership of
3566     // the descriptor to a ConnectionFileDescriptor object.  Consequently
3567     // even though still has the file descriptor, we shouldn't close it here.
3568 }
3569 
3570 void
3571 NativeProcessLinux::StopOpThread()
3572 {
3573     if (!m_operation_thread.IsJoinable())
3574         return;
3575 
3576     m_operation_thread.Cancel();
3577     m_operation_thread.Join(nullptr);
3578 }
3579 
3580 Error
3581 NativeProcessLinux::StartCoordinatorThread ()
3582 {
3583     Error error;
3584     static const char *g_thread_name = "lldb.process.linux.ts_coordinator";
3585     Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3586 
3587     // Skip if thread is already running
3588     if (m_coordinator_thread.IsJoinable())
3589     {
3590         error.SetErrorString ("ThreadStateCoordinator's run loop is already running");
3591         if (log)
3592             log->Printf ("NativeProcessLinux::%s %s", __FUNCTION__, error.AsCString ());
3593         return error;
3594     }
3595 
3596     // Enable verbose logging if lldb thread logging is enabled.
3597     m_coordinator_up->LogEnableEventProcessing (log != nullptr);
3598 
3599     if (log)
3600         log->Printf ("NativeProcessLinux::%s launching ThreadStateCoordinator thread for pid %" PRIu64, __FUNCTION__, GetID ());
3601     m_coordinator_thread = ThreadLauncher::LaunchThread(g_thread_name, CoordinatorThread, this, &error);
3602     return error;
3603 }
3604 
3605 void *
3606 NativeProcessLinux::CoordinatorThread (void *arg)
3607 {
3608     Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3609 
3610     NativeProcessLinux *const process = static_cast<NativeProcessLinux*> (arg);
3611     assert (process && "null process passed to CoordinatorThread");
3612     if (!process)
3613     {
3614         if (log)
3615             log->Printf ("NativeProcessLinux::%s null process, exiting ThreadStateCoordinator processing loop", __FUNCTION__);
3616         return nullptr;
3617     }
3618 
3619     // Run the thread state coordinator loop until it is done.  This call uses
3620     // efficient waiting for an event to be ready.
3621     while (process->m_coordinator_up->ProcessNextEvent () == ThreadStateCoordinator::eventLoopResultContinue)
3622     {
3623     }
3624 
3625     if (log)
3626         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " exiting ThreadStateCoordinator processing loop due to coordinator indicating completion", __FUNCTION__, process->GetID ());
3627 
3628     return nullptr;
3629 }
3630 
3631 void
3632 NativeProcessLinux::StopCoordinatorThread()
3633 {
3634     Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3635     if (log)
3636         log->Printf ("NativeProcessLinux::%s requesting ThreadStateCoordinator stop for pid %" PRIu64, __FUNCTION__, GetID ());
3637 
3638     // Tell the coordinator we're done.  This will cause the coordinator
3639     // run loop thread to exit when the processing queue hits this message.
3640     m_coordinator_up->StopCoordinator ();
3641     m_coordinator_thread.Join (nullptr);
3642 }
3643 
3644 bool
3645 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id)
3646 {
3647     for (auto thread_sp : m_threads)
3648     {
3649         assert (thread_sp && "thread list should not contain NULL threads");
3650         if (thread_sp->GetID () == thread_id)
3651         {
3652             // We have this thread.
3653             return true;
3654         }
3655     }
3656 
3657     // We don't have this thread.
3658     return false;
3659 }
3660 
3661 NativeThreadProtocolSP
3662 NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id)
3663 {
3664     // CONSIDER organize threads by map - we can do better than linear.
3665     for (auto thread_sp : m_threads)
3666     {
3667         if (thread_sp->GetID () == thread_id)
3668             return thread_sp;
3669     }
3670 
3671     // We don't have this thread.
3672     return NativeThreadProtocolSP ();
3673 }
3674 
3675 bool
3676 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id)
3677 {
3678     Mutex::Locker locker (m_threads_mutex);
3679     for (auto it = m_threads.begin (); it != m_threads.end (); ++it)
3680     {
3681         if (*it && ((*it)->GetID () == thread_id))
3682         {
3683             m_threads.erase (it);
3684             return true;
3685         }
3686     }
3687 
3688     // Didn't find it.
3689     return false;
3690 }
3691 
3692 NativeThreadProtocolSP
3693 NativeProcessLinux::AddThread (lldb::tid_t thread_id)
3694 {
3695     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3696 
3697     Mutex::Locker locker (m_threads_mutex);
3698 
3699     if (log)
3700     {
3701         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64,
3702                 __FUNCTION__,
3703                 GetID (),
3704                 thread_id);
3705     }
3706 
3707     assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists");
3708 
3709     // If this is the first thread, save it as the current thread
3710     if (m_threads.empty ())
3711         SetCurrentThreadID (thread_id);
3712 
3713     NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id));
3714     m_threads.push_back (thread_sp);
3715 
3716     return thread_sp;
3717 }
3718 
3719 NativeThreadProtocolSP
3720 NativeProcessLinux::GetOrCreateThread (lldb::tid_t thread_id, bool &created)
3721 {
3722     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3723 
3724     Mutex::Locker locker (m_threads_mutex);
3725     if (log)
3726     {
3727         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " get/create thread with tid %" PRIu64,
3728                      __FUNCTION__,
3729                      GetID (),
3730                      thread_id);
3731     }
3732 
3733     // Retrieve the thread if it is already getting tracked.
3734     NativeThreadProtocolSP thread_sp = MaybeGetThreadNoLock (thread_id);
3735     if (thread_sp)
3736     {
3737         if (log)
3738             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": thread already tracked, returning",
3739                          __FUNCTION__,
3740                          GetID (),
3741                          thread_id);
3742         created = false;
3743         return thread_sp;
3744 
3745     }
3746 
3747     // Create the thread metadata since it isn't being tracked.
3748     if (log)
3749         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": thread didn't exist, tracking now",
3750                      __FUNCTION__,
3751                      GetID (),
3752                      thread_id);
3753 
3754     thread_sp.reset (new NativeThreadLinux (this, thread_id));
3755     m_threads.push_back (thread_sp);
3756     created = true;
3757 
3758     return thread_sp;
3759 }
3760 
3761 Error
3762 NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp)
3763 {
3764     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS));
3765 
3766     Error error;
3767 
3768     // Get a linux thread pointer.
3769     if (!thread_sp)
3770     {
3771         error.SetErrorString ("null thread_sp");
3772         if (log)
3773             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
3774         return error;
3775     }
3776     NativeThreadLinux *const linux_thread_p = reinterpret_cast<NativeThreadLinux*> (thread_sp.get());
3777 
3778     // Find out the size of a breakpoint (might depend on where we are in the code).
3779     NativeRegisterContextSP context_sp = linux_thread_p->GetRegisterContext ();
3780     if (!context_sp)
3781     {
3782         error.SetErrorString ("cannot get a NativeRegisterContext for the thread");
3783         if (log)
3784             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
3785         return error;
3786     }
3787 
3788     uint32_t breakpoint_size = 0;
3789     error = GetSoftwareBreakpointSize (context_sp, breakpoint_size);
3790     if (error.Fail ())
3791     {
3792         if (log)
3793             log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ());
3794         return error;
3795     }
3796     else
3797     {
3798         if (log)
3799             log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size);
3800     }
3801 
3802     // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size.
3803     const lldb::addr_t initial_pc_addr = context_sp->GetPC ();
3804     lldb::addr_t breakpoint_addr = initial_pc_addr;
3805     if (breakpoint_size > static_cast<lldb::addr_t> (0))
3806     {
3807         // Do not allow breakpoint probe to wrap around.
3808         if (breakpoint_addr >= static_cast<lldb::addr_t> (breakpoint_size))
3809             breakpoint_addr -= static_cast<lldb::addr_t> (breakpoint_size);
3810     }
3811 
3812     // Check if we stopped because of a breakpoint.
3813     NativeBreakpointSP breakpoint_sp;
3814     error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp);
3815     if (!error.Success () || !breakpoint_sp)
3816     {
3817         // We didn't find one at a software probe location.  Nothing to do.
3818         if (log)
3819             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr);
3820         return Error ();
3821     }
3822 
3823     // If the breakpoint is not a software breakpoint, nothing to do.
3824     if (!breakpoint_sp->IsSoftwareBreakpoint ())
3825     {
3826         if (log)
3827             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr);
3828         return Error ();
3829     }
3830 
3831     //
3832     // We have a software breakpoint and need to adjust the PC.
3833     //
3834 
3835     // Sanity check.
3836     if (breakpoint_size == 0)
3837     {
3838         // Nothing to do!  How did we get here?
3839         if (log)
3840             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr);
3841         return Error ();
3842     }
3843 
3844     // Change the program counter.
3845     if (log)
3846         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_p->GetID (), initial_pc_addr, breakpoint_addr);
3847 
3848     error = context_sp->SetPC (breakpoint_addr);
3849     if (error.Fail ())
3850     {
3851         if (log)
3852             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_p->GetID (), error.AsCString ());
3853         return error;
3854     }
3855 
3856     return error;
3857 }
3858 
3859 void
3860 NativeProcessLinux::NotifyThreadCreateStopped (lldb::tid_t tid)
3861 {
3862     const bool is_stopped = true;
3863     m_coordinator_up->NotifyThreadCreate (tid, is_stopped, CoordinatorErrorHandler);
3864 }
3865 
3866 void
3867 NativeProcessLinux::NotifyThreadDeath (lldb::tid_t tid)
3868 {
3869     m_coordinator_up->NotifyThreadDeath (tid, CoordinatorErrorHandler);
3870 }
3871 
3872 void
3873 NativeProcessLinux::NotifyThreadStop (lldb::tid_t tid)
3874 {
3875     m_coordinator_up->NotifyThreadStop (tid, false, CoordinatorErrorHandler);
3876 }
3877 
3878 void
3879 NativeProcessLinux::CallAfterRunningThreadsStop (lldb::tid_t tid,
3880                                                  const std::function<void (lldb::tid_t tid)> &call_after_function)
3881 {
3882     Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3883     if (log)
3884         log->Printf("NativeProcessLinux::%s tid %" PRIu64, __FUNCTION__, tid);
3885 
3886     const lldb::pid_t pid = GetID ();
3887     m_coordinator_up->CallAfterRunningThreadsStop (tid,
3888                                                    [=](lldb::tid_t request_stop_tid)
3889                                                    {
3890                                                        return RequestThreadStop(pid, request_stop_tid);
3891                                                    },
3892                                                    call_after_function,
3893                                                    CoordinatorErrorHandler);
3894 }
3895 
3896 void
3897 NativeProcessLinux::CallAfterRunningThreadsStopWithSkipTID (lldb::tid_t deferred_signal_tid,
3898                                                             lldb::tid_t skip_stop_request_tid,
3899                                                             const std::function<void (lldb::tid_t tid)> &call_after_function)
3900 {
3901     Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3902     if (log)
3903         log->Printf("NativeProcessLinux::%s deferred_signal_tid %" PRIu64 ", skip_stop_request_tid %" PRIu64, __FUNCTION__, deferred_signal_tid, skip_stop_request_tid);
3904 
3905     const lldb::pid_t pid = GetID ();
3906     m_coordinator_up->CallAfterRunningThreadsStopWithSkipTIDs (deferred_signal_tid,
3907                                                                skip_stop_request_tid != LLDB_INVALID_THREAD_ID ? ThreadStateCoordinator::ThreadIDSet {skip_stop_request_tid} : ThreadStateCoordinator::ThreadIDSet (),
3908                                                                [=](lldb::tid_t request_stop_tid)
3909                                                                {
3910                                                                    return RequestThreadStop(pid, request_stop_tid);
3911                                                                },
3912                                                                call_after_function,
3913                                                                CoordinatorErrorHandler);
3914 }
3915 
3916 lldb_private::Error
3917 NativeProcessLinux::RequestThreadStop (const lldb::pid_t pid, const lldb::tid_t tid)
3918 {
3919     Log* log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3920     if (log)
3921         log->Printf ("NativeProcessLinux::%s requesting thread stop(pid: %" PRIu64 ", tid: %" PRIu64 ")", __FUNCTION__, pid, tid);
3922 
3923     Error err;
3924     errno = 0;
3925     if (::tgkill (pid, tid, SIGSTOP) != 0)
3926     {
3927         err.SetErrorToErrno ();
3928         if (log)
3929             log->Printf ("NativeProcessLinux::%s tgkill(%" PRIu64 ", %" PRIu64 ", SIGSTOP) failed: %s", __FUNCTION__, pid, tid, err.AsCString ());
3930     }
3931 
3932     return err;
3933 }
3934