1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "NativeProcessLinux.h"
11 
12 // C Includes
13 #include <errno.h>
14 #include <string.h>
15 #include <stdint.h>
16 #include <unistd.h>
17 
18 // C++ Includes
19 #include <fstream>
20 #include <mutex>
21 #include <sstream>
22 #include <string>
23 #include <unordered_map>
24 
25 // Other libraries and framework includes
26 #include "lldb/Core/EmulateInstruction.h"
27 #include "lldb/Core/Error.h"
28 #include "lldb/Core/Module.h"
29 #include "lldb/Core/ModuleSpec.h"
30 #include "lldb/Core/RegisterValue.h"
31 #include "lldb/Core/State.h"
32 #include "lldb/Host/common/NativeBreakpoint.h"
33 #include "lldb/Host/common/NativeRegisterContext.h"
34 #include "lldb/Host/Host.h"
35 #include "lldb/Host/ThreadLauncher.h"
36 #include "lldb/Target/Platform.h"
37 #include "lldb/Target/Process.h"
38 #include "lldb/Target/ProcessLaunchInfo.h"
39 #include "lldb/Target/Target.h"
40 #include "lldb/Utility/LLDBAssert.h"
41 #include "lldb/Utility/PseudoTerminal.h"
42 #include "lldb/Utility/StringExtractor.h"
43 
44 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
45 #include "NativeThreadLinux.h"
46 #include "ProcFileReader.h"
47 #include "Procfs.h"
48 
49 // System includes - They have to be included after framework includes because they define some
50 // macros which collide with variable names in other modules
51 #include <linux/unistd.h>
52 #include <sys/socket.h>
53 
54 #include <sys/syscall.h>
55 #include <sys/types.h>
56 #include <sys/user.h>
57 #include <sys/wait.h>
58 
59 #include "lldb/Host/linux/Personality.h"
60 #include "lldb/Host/linux/Ptrace.h"
61 #include "lldb/Host/linux/Signalfd.h"
62 #include "lldb/Host/linux/Uio.h"
63 #include "lldb/Host/android/Android.h"
64 
65 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS  0xffffffff
66 
67 // Support hardware breakpoints in case it has not been defined
68 #ifndef TRAP_HWBKPT
69   #define TRAP_HWBKPT 4
70 #endif
71 
72 using namespace lldb;
73 using namespace lldb_private;
74 using namespace lldb_private::process_linux;
75 using namespace llvm;
76 
77 // Private bits we only need internally.
78 
79 static bool ProcessVmReadvSupported()
80 {
81     static bool is_supported;
82     static std::once_flag flag;
83 
84     std::call_once(flag, [] {
85         Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
86 
87         uint32_t source = 0x47424742;
88         uint32_t dest = 0;
89 
90         struct iovec local, remote;
91         remote.iov_base = &source;
92         local.iov_base = &dest;
93         remote.iov_len = local.iov_len = sizeof source;
94 
95         // We shall try if cross-process-memory reads work by attempting to read a value from our own process.
96         ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
97         is_supported = (res == sizeof(source) && source == dest);
98         if (log)
99         {
100             if (is_supported)
101                 log->Printf("%s: Detected kernel support for process_vm_readv syscall. Fast memory reads enabled.",
102                         __FUNCTION__);
103             else
104                 log->Printf("%s: syscall process_vm_readv failed (error: %s). Fast memory reads disabled.",
105                         __FUNCTION__, strerror(errno));
106         }
107     });
108 
109     return is_supported;
110 }
111 
112 namespace
113 {
114     Error
115     ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch)
116     {
117         // Grab process info for the running process.
118         ProcessInstanceInfo process_info;
119         if (!platform.GetProcessInfo (pid, process_info))
120             return Error("failed to get process info");
121 
122         // Resolve the executable module.
123         ModuleSP exe_module_sp;
124         ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
125         FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ());
126         Error error = platform.ResolveExecutable(
127             exe_module_spec,
128             exe_module_sp,
129             executable_search_paths.GetSize () ? &executable_search_paths : NULL);
130 
131         if (!error.Success ())
132             return error;
133 
134         // Check if we've got our architecture from the exe_module.
135         arch = exe_module_sp->GetArchitecture ();
136         if (arch.IsValid ())
137             return Error();
138         else
139             return Error("failed to retrieve a valid architecture from the exe module");
140     }
141 
142     void
143     DisplayBytes (StreamString &s, void *bytes, uint32_t count)
144     {
145         uint8_t *ptr = (uint8_t *)bytes;
146         const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
147         for(uint32_t i=0; i<loop_count; i++)
148         {
149             s.Printf ("[%x]", *ptr);
150             ptr++;
151         }
152     }
153 
154     void
155     PtraceDisplayBytes(int &req, void *data, size_t data_size)
156     {
157         StreamString buf;
158         Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (
159                     POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE));
160 
161         if (verbose_log)
162         {
163             switch(req)
164             {
165             case PTRACE_POKETEXT:
166             {
167                 DisplayBytes(buf, &data, 8);
168                 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData());
169                 break;
170             }
171             case PTRACE_POKEDATA:
172             {
173                 DisplayBytes(buf, &data, 8);
174                 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData());
175                 break;
176             }
177             case PTRACE_POKEUSER:
178             {
179                 DisplayBytes(buf, &data, 8);
180                 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData());
181                 break;
182             }
183             case PTRACE_SETREGS:
184             {
185                 DisplayBytes(buf, data, data_size);
186                 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData());
187                 break;
188             }
189             case PTRACE_SETFPREGS:
190             {
191                 DisplayBytes(buf, data, data_size);
192                 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData());
193                 break;
194             }
195             case PTRACE_SETSIGINFO:
196             {
197                 DisplayBytes(buf, data, sizeof(siginfo_t));
198                 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData());
199                 break;
200             }
201             case PTRACE_SETREGSET:
202             {
203                 // Extract iov_base from data, which is a pointer to the struct IOVEC
204                 DisplayBytes(buf, *(void **)data, data_size);
205                 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData());
206                 break;
207             }
208             default:
209             {
210             }
211             }
212         }
213     }
214 
215     static constexpr unsigned k_ptrace_word_size = sizeof(void*);
216     static_assert(sizeof(long) >= k_ptrace_word_size, "Size of long must be larger than ptrace word size");
217 } // end of anonymous namespace
218 
219 // Simple helper function to ensure flags are enabled on the given file
220 // descriptor.
221 static Error
222 EnsureFDFlags(int fd, int flags)
223 {
224     Error error;
225 
226     int status = fcntl(fd, F_GETFL);
227     if (status == -1)
228     {
229         error.SetErrorToErrno();
230         return error;
231     }
232 
233     if (fcntl(fd, F_SETFL, status | flags) == -1)
234     {
235         error.SetErrorToErrno();
236         return error;
237     }
238 
239     return error;
240 }
241 
242 NativeProcessLinux::LaunchArgs::LaunchArgs(Module *module,
243                                        char const **argv,
244                                        char const **envp,
245                                        const FileSpec &stdin_file_spec,
246                                        const FileSpec &stdout_file_spec,
247                                        const FileSpec &stderr_file_spec,
248                                        const FileSpec &working_dir,
249                                        const ProcessLaunchInfo &launch_info)
250     : m_module(module),
251       m_argv(argv),
252       m_envp(envp),
253       m_stdin_file_spec(stdin_file_spec),
254       m_stdout_file_spec(stdout_file_spec),
255       m_stderr_file_spec(stderr_file_spec),
256       m_working_dir(working_dir),
257       m_launch_info(launch_info)
258 {
259 }
260 
261 NativeProcessLinux::LaunchArgs::~LaunchArgs()
262 { }
263 
264 // -----------------------------------------------------------------------------
265 // Public Static Methods
266 // -----------------------------------------------------------------------------
267 
268 Error
269 NativeProcessProtocol::Launch (
270     ProcessLaunchInfo &launch_info,
271     NativeProcessProtocol::NativeDelegate &native_delegate,
272     MainLoop &mainloop,
273     NativeProcessProtocolSP &native_process_sp)
274 {
275     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
276 
277     lldb::ModuleSP exe_module_sp;
278     PlatformSP platform_sp (Platform::GetHostPlatform ());
279     Error error = platform_sp->ResolveExecutable(
280             ModuleSpec(launch_info.GetExecutableFile(), launch_info.GetArchitecture()),
281             exe_module_sp,
282             nullptr);
283 
284     if (! error.Success())
285         return error;
286 
287     // Verify the working directory is valid if one was specified.
288     FileSpec working_dir{launch_info.GetWorkingDirectory()};
289     if (working_dir &&
290             (!working_dir.ResolvePath() ||
291              working_dir.GetFileType() != FileSpec::eFileTypeDirectory))
292     {
293         error.SetErrorStringWithFormat ("No such file or directory: %s",
294                 working_dir.GetCString());
295         return error;
296     }
297 
298     const FileAction *file_action;
299 
300     // Default of empty will mean to use existing open file descriptors.
301     FileSpec stdin_file_spec{};
302     FileSpec stdout_file_spec{};
303     FileSpec stderr_file_spec{};
304 
305     file_action = launch_info.GetFileActionForFD (STDIN_FILENO);
306     if (file_action)
307         stdin_file_spec = file_action->GetFileSpec();
308 
309     file_action = launch_info.GetFileActionForFD (STDOUT_FILENO);
310     if (file_action)
311         stdout_file_spec = file_action->GetFileSpec();
312 
313     file_action = launch_info.GetFileActionForFD (STDERR_FILENO);
314     if (file_action)
315         stderr_file_spec = file_action->GetFileSpec();
316 
317     if (log)
318     {
319         if (stdin_file_spec)
320             log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'",
321                     __FUNCTION__, stdin_file_spec.GetCString());
322         else
323             log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__);
324 
325         if (stdout_file_spec)
326             log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'",
327                     __FUNCTION__, stdout_file_spec.GetCString());
328         else
329             log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__);
330 
331         if (stderr_file_spec)
332             log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'",
333                     __FUNCTION__, stderr_file_spec.GetCString());
334         else
335             log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__);
336     }
337 
338     // Create the NativeProcessLinux in launch mode.
339     native_process_sp.reset (new NativeProcessLinux ());
340 
341     if (log)
342     {
343         int i = 0;
344         for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i)
345         {
346             log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr");
347             ++i;
348         }
349     }
350 
351     if (!native_process_sp->RegisterNativeDelegate (native_delegate))
352     {
353         native_process_sp.reset ();
354         error.SetErrorStringWithFormat ("failed to register the native delegate");
355         return error;
356     }
357 
358     std::static_pointer_cast<NativeProcessLinux> (native_process_sp)->LaunchInferior (
359             mainloop,
360             exe_module_sp.get(),
361             launch_info.GetArguments ().GetConstArgumentVector (),
362             launch_info.GetEnvironmentEntries ().GetConstArgumentVector (),
363             stdin_file_spec,
364             stdout_file_spec,
365             stderr_file_spec,
366             working_dir,
367             launch_info,
368             error);
369 
370     if (error.Fail ())
371     {
372         native_process_sp.reset ();
373         if (log)
374             log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ());
375         return error;
376     }
377 
378     launch_info.SetProcessID (native_process_sp->GetID ());
379 
380     return error;
381 }
382 
383 Error
384 NativeProcessProtocol::Attach (
385     lldb::pid_t pid,
386     NativeProcessProtocol::NativeDelegate &native_delegate,
387     MainLoop &mainloop,
388     NativeProcessProtocolSP &native_process_sp)
389 {
390     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
391     if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE))
392         log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid);
393 
394     // Grab the current platform architecture.  This should be Linux,
395     // since this code is only intended to run on a Linux host.
396     PlatformSP platform_sp (Platform::GetHostPlatform ());
397     if (!platform_sp)
398         return Error("failed to get a valid default platform");
399 
400     // Retrieve the architecture for the running process.
401     ArchSpec process_arch;
402     Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch);
403     if (!error.Success ())
404         return error;
405 
406     std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ());
407 
408     if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate))
409     {
410         error.SetErrorStringWithFormat ("failed to register the native delegate");
411         return error;
412     }
413 
414     native_process_linux_sp->AttachToInferior (mainloop, pid, error);
415     if (!error.Success ())
416         return error;
417 
418     native_process_sp = native_process_linux_sp;
419     return error;
420 }
421 
422 // -----------------------------------------------------------------------------
423 // Public Instance Methods
424 // -----------------------------------------------------------------------------
425 
426 NativeProcessLinux::NativeProcessLinux () :
427     NativeProcessProtocol (LLDB_INVALID_PROCESS_ID),
428     m_arch (),
429     m_supports_mem_region (eLazyBoolCalculate),
430     m_mem_region_cache (),
431     m_mem_region_cache_mutex(),
432     m_pending_notification_tid(LLDB_INVALID_THREAD_ID)
433 {
434 }
435 
436 void
437 NativeProcessLinux::LaunchInferior (
438     MainLoop &mainloop,
439     Module *module,
440     const char *argv[],
441     const char *envp[],
442     const FileSpec &stdin_file_spec,
443     const FileSpec &stdout_file_spec,
444     const FileSpec &stderr_file_spec,
445     const FileSpec &working_dir,
446     const ProcessLaunchInfo &launch_info,
447     Error &error)
448 {
449     m_sigchld_handle = mainloop.RegisterSignal(SIGCHLD,
450             [this] (MainLoopBase &) { SigchldHandler(); }, error);
451     if (! m_sigchld_handle)
452         return;
453 
454     if (module)
455         m_arch = module->GetArchitecture ();
456 
457     SetState (eStateLaunching);
458 
459     std::unique_ptr<LaunchArgs> args(
460         new LaunchArgs(module, argv, envp,
461                        stdin_file_spec,
462                        stdout_file_spec,
463                        stderr_file_spec,
464                        working_dir,
465                        launch_info));
466 
467     Launch(args.get(), error);
468 }
469 
470 void
471 NativeProcessLinux::AttachToInferior (MainLoop &mainloop, lldb::pid_t pid, Error &error)
472 {
473     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
474     if (log)
475         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid);
476 
477     m_sigchld_handle = mainloop.RegisterSignal(SIGCHLD,
478             [this] (MainLoopBase &) { SigchldHandler(); }, error);
479     if (! m_sigchld_handle)
480         return;
481 
482     // We can use the Host for everything except the ResolveExecutable portion.
483     PlatformSP platform_sp = Platform::GetHostPlatform ();
484     if (!platform_sp)
485     {
486         if (log)
487             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid);
488         error.SetErrorString ("no default platform available");
489         return;
490     }
491 
492     // Gather info about the process.
493     ProcessInstanceInfo process_info;
494     if (!platform_sp->GetProcessInfo (pid, process_info))
495     {
496         if (log)
497             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid);
498         error.SetErrorString ("failed to get process info");
499         return;
500     }
501 
502     // Resolve the executable module
503     ModuleSP exe_module_sp;
504     FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths());
505     ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
506     error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp,
507                                            executable_search_paths.GetSize() ? &executable_search_paths : NULL);
508     if (!error.Success())
509         return;
510 
511     // Set the architecture to the exe architecture.
512     m_arch = exe_module_sp->GetArchitecture();
513     if (log)
514         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ());
515 
516     m_pid = pid;
517     SetState(eStateAttaching);
518 
519     Attach(pid, error);
520 }
521 
522 ::pid_t
523 NativeProcessLinux::Launch(LaunchArgs *args, Error &error)
524 {
525     assert (args && "null args");
526 
527     const char **argv = args->m_argv;
528     const char **envp = args->m_envp;
529     const FileSpec working_dir = args->m_working_dir;
530 
531     lldb_utility::PseudoTerminal terminal;
532     const size_t err_len = 1024;
533     char err_str[err_len];
534     lldb::pid_t pid;
535 
536     // Propagate the environment if one is not supplied.
537     if (envp == NULL || envp[0] == NULL)
538         envp = const_cast<const char **>(environ);
539 
540     if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1))
541     {
542         error.SetErrorToGenericError();
543         error.SetErrorStringWithFormat("Process fork failed: %s", err_str);
544         return -1;
545     }
546 
547     // Recognized child exit status codes.
548     enum {
549         ePtraceFailed = 1,
550         eDupStdinFailed,
551         eDupStdoutFailed,
552         eDupStderrFailed,
553         eChdirFailed,
554         eExecFailed,
555         eSetGidFailed,
556         eSetSigMaskFailed
557     };
558 
559     // Child process.
560     if (pid == 0)
561     {
562         // First, make sure we disable all logging. If we are logging to stdout, our logs can be
563         // mistaken for inferior output.
564         Log::DisableAllLogChannels(nullptr);
565         // FIXME consider opening a pipe between parent/child and have this forked child
566         // send log info to parent re: launch status.
567 
568         // Start tracing this child that is about to exec.
569         error = PtraceWrapper(PTRACE_TRACEME, 0);
570         if (error.Fail())
571             exit(ePtraceFailed);
572 
573         // terminal has already dupped the tty descriptors to stdin/out/err.
574         // This closes original fd from which they were copied (and avoids
575         // leaking descriptors to the debugged process.
576         terminal.CloseSlaveFileDescriptor();
577 
578         // Do not inherit setgid powers.
579         if (setgid(getgid()) != 0)
580             exit(eSetGidFailed);
581 
582         // Attempt to have our own process group.
583         if (setpgid(0, 0) != 0)
584         {
585             // FIXME log that this failed. This is common.
586             // Don't allow this to prevent an inferior exec.
587         }
588 
589         // Dup file descriptors if needed.
590         if (args->m_stdin_file_spec)
591             if (!DupDescriptor(args->m_stdin_file_spec, STDIN_FILENO, O_RDONLY))
592                 exit(eDupStdinFailed);
593 
594         if (args->m_stdout_file_spec)
595             if (!DupDescriptor(args->m_stdout_file_spec, STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
596                 exit(eDupStdoutFailed);
597 
598         if (args->m_stderr_file_spec)
599             if (!DupDescriptor(args->m_stderr_file_spec, STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
600                 exit(eDupStderrFailed);
601 
602         // Close everything besides stdin, stdout, and stderr that has no file
603         // action to avoid leaking
604         for (int fd = 3; fd < sysconf(_SC_OPEN_MAX); ++fd)
605             if (!args->m_launch_info.GetFileActionForFD(fd))
606                 close(fd);
607 
608         // Change working directory
609         if (working_dir && 0 != ::chdir(working_dir.GetCString()))
610               exit(eChdirFailed);
611 
612         // Disable ASLR if requested.
613         if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR))
614         {
615             const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS);
616             if (old_personality == -1)
617             {
618                 // Can't retrieve Linux personality.  Cannot disable ASLR.
619             }
620             else
621             {
622                 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality);
623                 if (new_personality == -1)
624                 {
625                     // Disabling ASLR failed.
626                 }
627                 else
628                 {
629                     // Disabling ASLR succeeded.
630                 }
631             }
632         }
633 
634         // Clear the signal mask to prevent the child from being affected by
635         // any masking done by the parent.
636         sigset_t set;
637         if (sigemptyset(&set) != 0 || pthread_sigmask(SIG_SETMASK, &set, nullptr) != 0)
638             exit(eSetSigMaskFailed);
639 
640         // Execute.  We should never return...
641         execve(argv[0],
642                const_cast<char *const *>(argv),
643                const_cast<char *const *>(envp));
644 
645         // ...unless exec fails.  In which case we definitely need to end the child here.
646         exit(eExecFailed);
647     }
648 
649     //
650     // This is the parent code here.
651     //
652     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
653 
654     // Wait for the child process to trap on its call to execve.
655     ::pid_t wpid;
656     int status;
657     if ((wpid = waitpid(pid, &status, 0)) < 0)
658     {
659         error.SetErrorToErrno();
660         if (log)
661             log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s",
662                     __FUNCTION__, error.AsCString ());
663 
664         // Mark the inferior as invalid.
665         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
666         SetState (StateType::eStateInvalid);
667 
668         return -1;
669     }
670     else if (WIFEXITED(status))
671     {
672         // open, dup or execve likely failed for some reason.
673         error.SetErrorToGenericError();
674         switch (WEXITSTATUS(status))
675         {
676             case ePtraceFailed:
677                 error.SetErrorString("Child ptrace failed.");
678                 break;
679             case eDupStdinFailed:
680                 error.SetErrorString("Child open stdin failed.");
681                 break;
682             case eDupStdoutFailed:
683                 error.SetErrorString("Child open stdout failed.");
684                 break;
685             case eDupStderrFailed:
686                 error.SetErrorString("Child open stderr failed.");
687                 break;
688             case eChdirFailed:
689                 error.SetErrorString("Child failed to set working directory.");
690                 break;
691             case eExecFailed:
692                 error.SetErrorString("Child exec failed.");
693                 break;
694             case eSetGidFailed:
695                 error.SetErrorString("Child setgid failed.");
696                 break;
697             case eSetSigMaskFailed:
698                 error.SetErrorString("Child failed to set signal mask.");
699                 break;
700             default:
701                 error.SetErrorString("Child returned unknown exit status.");
702                 break;
703         }
704 
705         if (log)
706         {
707             log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP",
708                     __FUNCTION__,
709                     WEXITSTATUS(status));
710         }
711 
712         // Mark the inferior as invalid.
713         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
714         SetState (StateType::eStateInvalid);
715 
716         return -1;
717     }
718     assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) &&
719            "Could not sync with inferior process.");
720 
721     if (log)
722         log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__);
723 
724     error = SetDefaultPtraceOpts(pid);
725     if (error.Fail())
726     {
727         if (log)
728             log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s",
729                     __FUNCTION__, error.AsCString ());
730 
731         // Mark the inferior as invalid.
732         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
733         SetState (StateType::eStateInvalid);
734 
735         return -1;
736     }
737 
738     // Release the master terminal descriptor and pass it off to the
739     // NativeProcessLinux instance.  Similarly stash the inferior pid.
740     m_terminal_fd = terminal.ReleaseMasterFileDescriptor();
741     m_pid = pid;
742 
743     // Set the terminal fd to be in non blocking mode (it simplifies the
744     // implementation of ProcessLinux::GetSTDOUT to have a non-blocking
745     // descriptor to read from).
746     error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
747     if (error.Fail())
748     {
749         if (log)
750             log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s",
751                     __FUNCTION__, error.AsCString ());
752 
753         // Mark the inferior as invalid.
754         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
755         SetState (StateType::eStateInvalid);
756 
757         return -1;
758     }
759 
760     if (log)
761         log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid);
762 
763     NativeThreadLinuxSP thread_sp = AddThread(pid);
764     assert (thread_sp && "AddThread() returned a nullptr thread");
765     thread_sp->SetStoppedBySignal(SIGSTOP);
766     ThreadWasCreated(*thread_sp);
767 
768     // Let our process instance know the thread has stopped.
769     SetCurrentThreadID (thread_sp->GetID ());
770     SetState (StateType::eStateStopped);
771 
772     if (log)
773     {
774         if (error.Success ())
775         {
776             log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__);
777         }
778         else
779         {
780             log->Printf ("NativeProcessLinux::%s inferior launching failed: %s",
781                 __FUNCTION__, error.AsCString ());
782             return -1;
783         }
784     }
785     return pid;
786 }
787 
788 ::pid_t
789 NativeProcessLinux::Attach(lldb::pid_t pid, Error &error)
790 {
791     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
792 
793     // Use a map to keep track of the threads which we have attached/need to attach.
794     Host::TidMap tids_to_attach;
795     if (pid <= 1)
796     {
797         error.SetErrorToGenericError();
798         error.SetErrorString("Attaching to process 1 is not allowed.");
799         return -1;
800     }
801 
802     while (Host::FindProcessThreads(pid, tids_to_attach))
803     {
804         for (Host::TidMap::iterator it = tids_to_attach.begin();
805              it != tids_to_attach.end();)
806         {
807             if (it->second == false)
808             {
809                 lldb::tid_t tid = it->first;
810 
811                 // Attach to the requested process.
812                 // An attach will cause the thread to stop with a SIGSTOP.
813                 error = PtraceWrapper(PTRACE_ATTACH, tid);
814                 if (error.Fail())
815                 {
816                     // No such thread. The thread may have exited.
817                     // More error handling may be needed.
818                     if (error.GetError() == ESRCH)
819                     {
820                         it = tids_to_attach.erase(it);
821                         continue;
822                     }
823                     else
824                         return -1;
825                 }
826 
827                 int status;
828                 // Need to use __WALL otherwise we receive an error with errno=ECHLD
829                 // At this point we should have a thread stopped if waitpid succeeds.
830                 if ((status = waitpid(tid, NULL, __WALL)) < 0)
831                 {
832                     // No such thread. The thread may have exited.
833                     // More error handling may be needed.
834                     if (errno == ESRCH)
835                     {
836                         it = tids_to_attach.erase(it);
837                         continue;
838                     }
839                     else
840                     {
841                         error.SetErrorToErrno();
842                         return -1;
843                     }
844                 }
845 
846                 error = SetDefaultPtraceOpts(tid);
847                 if (error.Fail())
848                     return -1;
849 
850                 if (log)
851                     log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid);
852 
853                 it->second = true;
854 
855                 // Create the thread, mark it as stopped.
856                 NativeThreadLinuxSP thread_sp (AddThread(static_cast<lldb::tid_t>(tid)));
857                 assert (thread_sp && "AddThread() returned a nullptr");
858 
859                 // This will notify this is a new thread and tell the system it is stopped.
860                 thread_sp->SetStoppedBySignal(SIGSTOP);
861                 ThreadWasCreated(*thread_sp);
862                 SetCurrentThreadID (thread_sp->GetID ());
863             }
864 
865             // move the loop forward
866             ++it;
867         }
868     }
869 
870     if (tids_to_attach.size() > 0)
871     {
872         m_pid = pid;
873         // Let our process instance know the thread has stopped.
874         SetState (StateType::eStateStopped);
875     }
876     else
877     {
878         error.SetErrorToGenericError();
879         error.SetErrorString("No such process.");
880         return -1;
881     }
882 
883     return pid;
884 }
885 
886 Error
887 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid)
888 {
889     long ptrace_opts = 0;
890 
891     // Have the child raise an event on exit.  This is used to keep the child in
892     // limbo until it is destroyed.
893     ptrace_opts |= PTRACE_O_TRACEEXIT;
894 
895     // Have the tracer trace threads which spawn in the inferior process.
896     // TODO: if we want to support tracing the inferiors' child, add the
897     // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
898     ptrace_opts |= PTRACE_O_TRACECLONE;
899 
900     // Have the tracer notify us before execve returns
901     // (needed to disable legacy SIGTRAP generation)
902     ptrace_opts |= PTRACE_O_TRACEEXEC;
903 
904     return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts);
905 }
906 
907 static ExitType convert_pid_status_to_exit_type (int status)
908 {
909     if (WIFEXITED (status))
910         return ExitType::eExitTypeExit;
911     else if (WIFSIGNALED (status))
912         return ExitType::eExitTypeSignal;
913     else if (WIFSTOPPED (status))
914         return ExitType::eExitTypeStop;
915     else
916     {
917         // We don't know what this is.
918         return ExitType::eExitTypeInvalid;
919     }
920 }
921 
922 static int convert_pid_status_to_return_code (int status)
923 {
924     if (WIFEXITED (status))
925         return WEXITSTATUS (status);
926     else if (WIFSIGNALED (status))
927         return WTERMSIG (status);
928     else if (WIFSTOPPED (status))
929         return WSTOPSIG (status);
930     else
931     {
932         // We don't know what this is.
933         return ExitType::eExitTypeInvalid;
934     }
935 }
936 
937 // Handles all waitpid events from the inferior process.
938 void
939 NativeProcessLinux::MonitorCallback(lldb::pid_t pid,
940                                     bool exited,
941                                     int signal,
942                                     int status)
943 {
944     Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS));
945 
946     // Certain activities differ based on whether the pid is the tid of the main thread.
947     const bool is_main_thread = (pid == GetID ());
948 
949     // Handle when the thread exits.
950     if (exited)
951     {
952         if (log)
953             log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %"  PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not");
954 
955         // This is a thread that exited.  Ensure we're not tracking it anymore.
956         const bool thread_found = StopTrackingThread (pid);
957 
958         if (is_main_thread)
959         {
960             // We only set the exit status and notify the delegate if we haven't already set the process
961             // state to an exited state.  We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8)
962             // for the main thread.
963             const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed);
964             if (!already_notified)
965             {
966                 if (log)
967                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ()));
968                 // The main thread exited.  We're done monitoring.  Report to delegate.
969                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
970 
971                 // Notify delegate that our process has exited.
972                 SetState (StateType::eStateExited, true);
973             }
974             else
975             {
976                 if (log)
977                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
978             }
979         }
980         else
981         {
982             // Do we want to report to the delegate in this case?  I think not.  If this was an orderly
983             // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal,
984             // and we would have done an all-stop then.
985             if (log)
986                 log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
987         }
988         return;
989     }
990 
991     siginfo_t info;
992     const auto info_err = GetSignalInfo(pid, &info);
993     auto thread_sp = GetThreadByID(pid);
994 
995     if (! thread_sp)
996     {
997         // Normally, the only situation when we cannot find the thread is if we have just
998         // received a new thread notification. This is indicated by GetSignalInfo() returning
999         // si_code == SI_USER and si_pid == 0
1000         if (log)
1001             log->Printf("NativeProcessLinux::%s received notification about an unknown tid %" PRIu64 ".", __FUNCTION__, pid);
1002 
1003         if (info_err.Fail())
1004         {
1005             if (log)
1006                 log->Printf("NativeProcessLinux::%s (tid %" PRIu64 ") GetSignalInfo failed (%s). Ingoring this notification.", __FUNCTION__, pid, info_err.AsCString());
1007             return;
1008         }
1009 
1010         if (log && (info.si_code != SI_USER || info.si_pid != 0))
1011             log->Printf("NativeProcessLinux::%s (tid %" PRIu64 ") unexpected signal info (si_code: %d, si_pid: %d). Treating as a new thread notification anyway.", __FUNCTION__, pid, info.si_code, info.si_pid);
1012 
1013         auto thread_sp = AddThread(pid);
1014         // Resume the newly created thread.
1015         ResumeThread(*thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
1016         ThreadWasCreated(*thread_sp);
1017         return;
1018     }
1019 
1020     // Get details on the signal raised.
1021     if (info_err.Success())
1022     {
1023         // We have retrieved the signal info.  Dispatch appropriately.
1024         if (info.si_signo == SIGTRAP)
1025             MonitorSIGTRAP(info, *thread_sp);
1026         else
1027             MonitorSignal(info, *thread_sp, exited);
1028     }
1029     else
1030     {
1031         if (info_err.GetError() == EINVAL)
1032         {
1033             // This is a group stop reception for this tid.
1034             // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the
1035             // tracee, triggering the group-stop mechanism. Normally receiving these would stop
1036             // the process, pending a SIGCONT. Simulating this state in a debugger is hard and is
1037             // generally not needed (one use case is debugging background task being managed by a
1038             // shell). For general use, it is sufficient to stop the process in a signal-delivery
1039             // stop which happens before the group stop. This done by MonitorSignal and works
1040             // correctly for all signals.
1041             if (log)
1042                 log->Printf("NativeProcessLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64 ". Transparent handling of group stops not supported, resuming the thread.", __FUNCTION__, GetID (), pid);
1043             ResumeThread(*thread_sp, thread_sp->GetState(), LLDB_INVALID_SIGNAL_NUMBER);
1044         }
1045         else
1046         {
1047             // ptrace(GETSIGINFO) failed (but not due to group-stop).
1048 
1049             // A return value of ESRCH means the thread/process is no longer on the system,
1050             // so it was killed somehow outside of our control.  Either way, we can't do anything
1051             // with it anymore.
1052 
1053             // Stop tracking the metadata for the thread since it's entirely off the system now.
1054             const bool thread_found = StopTrackingThread (pid);
1055 
1056             if (log)
1057                 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)",
1058                              __FUNCTION__, info_err.AsCString(), pid, signal, status, info_err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found");
1059 
1060             if (is_main_thread)
1061             {
1062                 // Notify the delegate - our process is not available but appears to have been killed outside
1063                 // our control.  Is eStateExited the right exit state in this case?
1064                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
1065                 SetState (StateType::eStateExited, true);
1066             }
1067             else
1068             {
1069                 // This thread was pulled out from underneath us.  Anything to do here? Do we want to do an all stop?
1070                 if (log)
1071                     log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid);
1072             }
1073         }
1074     }
1075 }
1076 
1077 void
1078 NativeProcessLinux::WaitForNewThread(::pid_t tid)
1079 {
1080     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1081 
1082     NativeThreadLinuxSP new_thread_sp = GetThreadByID(tid);
1083 
1084     if (new_thread_sp)
1085     {
1086         // We are already tracking the thread - we got the event on the new thread (see
1087         // MonitorSignal) before this one. We are done.
1088         return;
1089     }
1090 
1091     // The thread is not tracked yet, let's wait for it to appear.
1092     int status = -1;
1093     ::pid_t wait_pid;
1094     do
1095     {
1096         if (log)
1097             log->Printf ("NativeProcessLinux::%s() received thread creation event for tid %" PRIu32 ". tid not tracked yet, waiting for thread to appear...", __FUNCTION__, tid);
1098         wait_pid = waitpid(tid, &status, __WALL);
1099     }
1100     while (wait_pid == -1 && errno == EINTR);
1101     // Since we are waiting on a specific tid, this must be the creation event. But let's do
1102     // some checks just in case.
1103     if (wait_pid != tid) {
1104         if (log)
1105             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime", __FUNCTION__, tid);
1106         // The only way I know of this could happen is if the whole process was
1107         // SIGKILLed in the mean time. In any case, we can't do anything about that now.
1108         return;
1109     }
1110     if (WIFEXITED(status))
1111     {
1112         if (log)
1113             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " returned an 'exited' event. Not tracking the thread.", __FUNCTION__, tid);
1114         // Also a very improbable event.
1115         return;
1116     }
1117 
1118     siginfo_t info;
1119     Error error = GetSignalInfo(tid, &info);
1120     if (error.Fail())
1121     {
1122         if (log)
1123             log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime.", __FUNCTION__, tid);
1124         return;
1125     }
1126 
1127     if (((info.si_pid != 0) || (info.si_code != SI_USER)) && log)
1128     {
1129         // We should be getting a thread creation signal here, but we received something
1130         // else. There isn't much we can do about it now, so we will just log that. Since the
1131         // thread is alive and we are receiving events from it, we shall pretend that it was
1132         // created properly.
1133         log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " received unexpected signal with code %d from pid %d.", __FUNCTION__, tid, info.si_code, info.si_pid);
1134     }
1135 
1136     if (log)
1137         log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": tracking new thread tid %" PRIu32,
1138                  __FUNCTION__, GetID (), tid);
1139 
1140     new_thread_sp = AddThread(tid);
1141     ResumeThread(*new_thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
1142     ThreadWasCreated(*new_thread_sp);
1143 }
1144 
1145 void
1146 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, NativeThreadLinux &thread)
1147 {
1148     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1149     const bool is_main_thread = (thread.GetID() == GetID ());
1150 
1151     assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
1152 
1153     Mutex::Locker locker (m_threads_mutex);
1154 
1155     switch (info.si_code)
1156     {
1157     // TODO: these two cases are required if we want to support tracing of the inferiors' children.  We'd need this to debug a monitor.
1158     // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
1159     // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
1160 
1161     case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)):
1162     {
1163         // This is the notification on the parent thread which informs us of new thread
1164         // creation.
1165         // We don't want to do anything with the parent thread so we just resume it. In case we
1166         // want to implement "break on thread creation" functionality, we would need to stop
1167         // here.
1168 
1169         unsigned long event_message = 0;
1170         if (GetEventMessage(thread.GetID(), &event_message).Fail())
1171         {
1172             if (log)
1173                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, thread.GetID());
1174         } else
1175             WaitForNewThread(event_message);
1176 
1177         ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
1178         break;
1179     }
1180 
1181     case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)):
1182     {
1183         NativeThreadLinuxSP main_thread_sp;
1184         if (log)
1185             log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info.si_code ^ SIGTRAP);
1186 
1187         // Exec clears any pending notifications.
1188         m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
1189 
1190         // Remove all but the main thread here.  Linux fork creates a new process which only copies the main thread.  Mutexes are in undefined state.
1191         if (log)
1192             log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__);
1193 
1194         for (auto thread_sp : m_threads)
1195         {
1196             const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID ();
1197             if (is_main_thread)
1198             {
1199                 main_thread_sp = std::static_pointer_cast<NativeThreadLinux>(thread_sp);
1200                 if (log)
1201                     log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ());
1202             }
1203             else
1204             {
1205                 if (log)
1206                     log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ());
1207             }
1208         }
1209 
1210         m_threads.clear ();
1211 
1212         if (main_thread_sp)
1213         {
1214             m_threads.push_back (main_thread_sp);
1215             SetCurrentThreadID (main_thread_sp->GetID ());
1216             main_thread_sp->SetStoppedByExec();
1217         }
1218         else
1219         {
1220             SetCurrentThreadID (LLDB_INVALID_THREAD_ID);
1221             if (log)
1222                 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ());
1223         }
1224 
1225         // Tell coordinator about about the "new" (since exec) stopped main thread.
1226         ThreadWasCreated(*main_thread_sp);
1227 
1228         // Let our delegate know we have just exec'd.
1229         NotifyDidExec ();
1230 
1231         // If we have a main thread, indicate we are stopped.
1232         assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked");
1233 
1234         // Let the process know we're stopped.
1235         StopRunningThreads(main_thread_sp->GetID());
1236 
1237         break;
1238     }
1239 
1240     case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)):
1241     {
1242         // The inferior process or one of its threads is about to exit.
1243         // We don't want to do anything with the thread so we just resume it. In case we
1244         // want to implement "break on thread exit" functionality, we would need to stop
1245         // here.
1246 
1247         unsigned long data = 0;
1248         if (GetEventMessage(thread.GetID(), &data).Fail())
1249             data = -1;
1250 
1251         if (log)
1252         {
1253             log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)",
1254                          __FUNCTION__,
1255                          data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false",
1256                          thread.GetID(),
1257                     is_main_thread ? "is main thread" : "not main thread");
1258         }
1259 
1260         if (is_main_thread)
1261         {
1262             SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true);
1263         }
1264 
1265         StateType state = thread.GetState();
1266         if (! StateIsRunningState(state))
1267         {
1268             // Due to a kernel bug, we may sometimes get this stop after the inferior gets a
1269             // SIGKILL. This confuses our state tracking logic in ResumeThread(), since normally,
1270             // we should not be receiving any ptrace events while the inferior is stopped. This
1271             // makes sure that the inferior is resumed and exits normally.
1272             state = eStateRunning;
1273         }
1274         ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
1275 
1276         break;
1277     }
1278 
1279     case 0:
1280     case TRAP_TRACE:  // We receive this on single stepping.
1281     case TRAP_HWBKPT: // We receive this on watchpoint hit
1282     {
1283         // If a watchpoint was hit, report it
1284         uint32_t wp_index;
1285         Error error = thread.GetRegisterContext()->GetWatchpointHitIndex(wp_index, (lldb::addr_t)info.si_addr);
1286         if (error.Fail() && log)
1287             log->Printf("NativeProcessLinux::%s() "
1288                         "received error while checking for watchpoint hits, "
1289                         "pid = %" PRIu64 " error = %s",
1290                         __FUNCTION__, thread.GetID(), error.AsCString());
1291         if (wp_index != LLDB_INVALID_INDEX32)
1292         {
1293             MonitorWatchpoint(thread, wp_index);
1294             break;
1295         }
1296 
1297         // Otherwise, report step over
1298         MonitorTrace(thread);
1299         break;
1300     }
1301 
1302     case SI_KERNEL:
1303 #if defined __mips__
1304         // For mips there is no special signal for watchpoint
1305         // So we check for watchpoint in kernel trap
1306     {
1307         // If a watchpoint was hit, report it
1308         uint32_t wp_index;
1309         Error error = thread.GetRegisterContext()->GetWatchpointHitIndex(wp_index, LLDB_INVALID_ADDRESS);
1310         if (error.Fail() && log)
1311             log->Printf("NativeProcessLinux::%s() "
1312                         "received error while checking for watchpoint hits, "
1313                         "pid = %" PRIu64 " error = %s",
1314                         __FUNCTION__, thread.GetID(), error.AsCString());
1315         if (wp_index != LLDB_INVALID_INDEX32)
1316         {
1317             MonitorWatchpoint(thread, wp_index);
1318             break;
1319         }
1320     }
1321         // NO BREAK
1322 #endif
1323     case TRAP_BRKPT:
1324         MonitorBreakpoint(thread);
1325         break;
1326 
1327     case SIGTRAP:
1328     case (SIGTRAP | 0x80):
1329         if (log)
1330             log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), thread.GetID());
1331 
1332         // Ignore these signals until we know more about them.
1333         ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
1334         break;
1335 
1336     default:
1337         assert(false && "Unexpected SIGTRAP code!");
1338         if (log)
1339             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%d",
1340                     __FUNCTION__, GetID(), thread.GetID(), info.si_code);
1341         break;
1342 
1343     }
1344 }
1345 
1346 void
1347 NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread)
1348 {
1349     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1350     if (log)
1351         log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)",
1352                 __FUNCTION__, thread.GetID());
1353 
1354     // This thread is currently stopped.
1355     thread.SetStoppedByTrace();
1356 
1357     StopRunningThreads(thread.GetID());
1358 }
1359 
1360 void
1361 NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread)
1362 {
1363     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
1364     if (log)
1365         log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64,
1366                 __FUNCTION__, thread.GetID());
1367 
1368     // Mark the thread as stopped at breakpoint.
1369     thread.SetStoppedByBreakpoint();
1370     Error error = FixupBreakpointPCAsNeeded(thread);
1371     if (error.Fail())
1372         if (log)
1373             log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s",
1374                     __FUNCTION__, thread.GetID(), error.AsCString());
1375 
1376     if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != m_threads_stepping_with_breakpoint.end())
1377         thread.SetStoppedByTrace();
1378 
1379     StopRunningThreads(thread.GetID());
1380 }
1381 
1382 void
1383 NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, uint32_t wp_index)
1384 {
1385     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
1386     if (log)
1387         log->Printf("NativeProcessLinux::%s() received watchpoint event, "
1388                     "pid = %" PRIu64 ", wp_index = %" PRIu32,
1389                     __FUNCTION__, thread.GetID(), wp_index);
1390 
1391     // Mark the thread as stopped at watchpoint.
1392     // The address is at (lldb::addr_t)info->si_addr if we need it.
1393     thread.SetStoppedByWatchpoint(wp_index);
1394 
1395     // We need to tell all other running threads before we notify the delegate about this stop.
1396     StopRunningThreads(thread.GetID());
1397 }
1398 
1399 void
1400 NativeProcessLinux::MonitorSignal(const siginfo_t &info, NativeThreadLinux &thread, bool exited)
1401 {
1402     const int signo = info.si_signo;
1403     const bool is_from_llgs = info.si_pid == getpid ();
1404 
1405     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1406 
1407     // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
1408     // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
1409     // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
1410     //
1411     // IOW, user generated signals never generate what we consider to be a
1412     // "crash".
1413     //
1414     // Similarly, ACK signals generated by this monitor.
1415 
1416     Mutex::Locker locker (m_threads_mutex);
1417 
1418     // Handle the signal.
1419     if (info.si_code == SI_TKILL || info.si_code == SI_USER)
1420     {
1421         if (log)
1422             log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")",
1423                             __FUNCTION__,
1424                             Host::GetSignalAsCString(signo),
1425                             signo,
1426                             (info.si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"),
1427                             info.si_pid,
1428                             is_from_llgs ? "from llgs" : "not from llgs",
1429                             thread.GetID());
1430     }
1431 
1432     // Check for thread stop notification.
1433     if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP))
1434     {
1435         // This is a tgkill()-based stop.
1436         if (log)
1437             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped",
1438                          __FUNCTION__,
1439                          GetID (),
1440                          thread.GetID());
1441 
1442         // Check that we're not already marked with a stop reason.
1443         // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that
1444         // the kernel signaled us with the thread stopping which we handled and marked as stopped,
1445         // and that, without an intervening resume, we received another stop.  It is more likely
1446         // that we are missing the marking of a run state somewhere if we find that the thread was
1447         // marked as stopped.
1448         const StateType thread_state = thread.GetState();
1449         if (!StateIsStoppedState (thread_state, false))
1450         {
1451             // An inferior thread has stopped because of a SIGSTOP we have sent it.
1452             // Generally, these are not important stops and we don't want to report them as
1453             // they are just used to stop other threads when one thread (the one with the
1454             // *real* stop reason) hits a breakpoint (watchpoint, etc...). However, in the
1455             // case of an asynchronous Interrupt(), this *is* the real stop reason, so we
1456             // leave the signal intact if this is the thread that was chosen as the
1457             // triggering thread.
1458             if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID)
1459             {
1460                 if (m_pending_notification_tid == thread.GetID())
1461                     thread.SetStoppedBySignal(SIGSTOP, &info);
1462                 else
1463                     thread.SetStoppedWithNoReason();
1464 
1465                 SetCurrentThreadID (thread.GetID ());
1466                 SignalIfAllThreadsStopped();
1467             }
1468             else
1469             {
1470                 // We can end up here if stop was initiated by LLGS but by this time a
1471                 // thread stop has occurred - maybe initiated by another event.
1472                 Error error = ResumeThread(thread, thread.GetState(), 0);
1473                 if (error.Fail() && log)
1474                 {
1475                     log->Printf("NativeProcessLinux::%s failed to resume thread tid  %" PRIu64 ": %s",
1476                             __FUNCTION__, thread.GetID(), error.AsCString());
1477                 }
1478             }
1479         }
1480         else
1481         {
1482             if (log)
1483             {
1484                 // Retrieve the signal name if the thread was stopped by a signal.
1485                 int stop_signo = 0;
1486                 const bool stopped_by_signal = thread.IsStopped(&stop_signo);
1487                 const char *signal_name = stopped_by_signal ? Host::GetSignalAsCString(stop_signo) : "<not stopped by signal>";
1488                 if (!signal_name)
1489                     signal_name = "<no-signal-name>";
1490 
1491                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is",
1492                              __FUNCTION__,
1493                              GetID (),
1494                              thread.GetID(),
1495                              StateAsCString (thread_state),
1496                              stop_signo,
1497                              signal_name);
1498             }
1499             SignalIfAllThreadsStopped();
1500         }
1501 
1502         // Done handling.
1503         return;
1504     }
1505 
1506     if (log)
1507         log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, Host::GetSignalAsCString(signo));
1508 
1509     // This thread is stopped.
1510     thread.SetStoppedBySignal(signo, &info);
1511 
1512     // Send a stop to the debugger after we get all other threads to stop.
1513     StopRunningThreads(thread.GetID());
1514 }
1515 
1516 namespace {
1517 
1518 struct EmulatorBaton
1519 {
1520     NativeProcessLinux* m_process;
1521     NativeRegisterContext* m_reg_context;
1522 
1523     // eRegisterKindDWARF -> RegsiterValue
1524     std::unordered_map<uint32_t, RegisterValue> m_register_values;
1525 
1526     EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) :
1527             m_process(process), m_reg_context(reg_context) {}
1528 };
1529 
1530 } // anonymous namespace
1531 
1532 static size_t
1533 ReadMemoryCallback (EmulateInstruction *instruction,
1534                     void *baton,
1535                     const EmulateInstruction::Context &context,
1536                     lldb::addr_t addr,
1537                     void *dst,
1538                     size_t length)
1539 {
1540     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
1541 
1542     size_t bytes_read;
1543     emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read);
1544     return bytes_read;
1545 }
1546 
1547 static bool
1548 ReadRegisterCallback (EmulateInstruction *instruction,
1549                       void *baton,
1550                       const RegisterInfo *reg_info,
1551                       RegisterValue &reg_value)
1552 {
1553     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
1554 
1555     auto it = emulator_baton->m_register_values.find(reg_info->kinds[eRegisterKindDWARF]);
1556     if (it != emulator_baton->m_register_values.end())
1557     {
1558         reg_value = it->second;
1559         return true;
1560     }
1561 
1562     // The emulator only fill in the dwarf regsiter numbers (and in some case
1563     // the generic register numbers). Get the full register info from the
1564     // register context based on the dwarf register numbers.
1565     const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo(
1566             eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
1567 
1568     Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value);
1569     if (error.Success())
1570         return true;
1571 
1572     return false;
1573 }
1574 
1575 static bool
1576 WriteRegisterCallback (EmulateInstruction *instruction,
1577                        void *baton,
1578                        const EmulateInstruction::Context &context,
1579                        const RegisterInfo *reg_info,
1580                        const RegisterValue &reg_value)
1581 {
1582     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
1583     emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value;
1584     return true;
1585 }
1586 
1587 static size_t
1588 WriteMemoryCallback (EmulateInstruction *instruction,
1589                      void *baton,
1590                      const EmulateInstruction::Context &context,
1591                      lldb::addr_t addr,
1592                      const void *dst,
1593                      size_t length)
1594 {
1595     return length;
1596 }
1597 
1598 static lldb::addr_t
1599 ReadFlags (NativeRegisterContext* regsiter_context)
1600 {
1601     const RegisterInfo* flags_info = regsiter_context->GetRegisterInfo(
1602             eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1603     return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS);
1604 }
1605 
1606 Error
1607 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread)
1608 {
1609     Error error;
1610     NativeRegisterContextSP register_context_sp = thread.GetRegisterContext();
1611 
1612     std::unique_ptr<EmulateInstruction> emulator_ap(
1613         EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr));
1614 
1615     if (emulator_ap == nullptr)
1616         return Error("Instruction emulator not found!");
1617 
1618     EmulatorBaton baton(this, register_context_sp.get());
1619     emulator_ap->SetBaton(&baton);
1620     emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
1621     emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
1622     emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
1623     emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
1624 
1625     if (!emulator_ap->ReadInstruction())
1626         return Error("Read instruction failed!");
1627 
1628     bool emulation_result = emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
1629 
1630     const RegisterInfo* reg_info_pc = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
1631     const RegisterInfo* reg_info_flags = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1632 
1633     auto pc_it = baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
1634     auto flags_it = baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
1635 
1636     lldb::addr_t next_pc;
1637     lldb::addr_t next_flags;
1638     if (emulation_result)
1639     {
1640         assert(pc_it != baton.m_register_values.end() && "Emulation was successfull but PC wasn't updated");
1641         next_pc = pc_it->second.GetAsUInt64();
1642 
1643         if (flags_it != baton.m_register_values.end())
1644             next_flags = flags_it->second.GetAsUInt64();
1645         else
1646             next_flags = ReadFlags (register_context_sp.get());
1647     }
1648     else if (pc_it == baton.m_register_values.end())
1649     {
1650         // Emulate instruction failed and it haven't changed PC. Advance PC
1651         // with the size of the current opcode because the emulation of all
1652         // PC modifying instruction should be successful. The failure most
1653         // likely caused by a not supported instruction which don't modify PC.
1654         next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize();
1655         next_flags = ReadFlags (register_context_sp.get());
1656     }
1657     else
1658     {
1659         // The instruction emulation failed after it modified the PC. It is an
1660         // unknown error where we can't continue because the next instruction is
1661         // modifying the PC but we don't  know how.
1662         return Error ("Instruction emulation failed unexpectedly.");
1663     }
1664 
1665     if (m_arch.GetMachine() == llvm::Triple::arm)
1666     {
1667         if (next_flags & 0x20)
1668         {
1669             // Thumb mode
1670             error = SetSoftwareBreakpoint(next_pc, 2);
1671         }
1672         else
1673         {
1674             // Arm mode
1675             error = SetSoftwareBreakpoint(next_pc, 4);
1676         }
1677     }
1678     else if (m_arch.GetMachine() == llvm::Triple::mips64
1679             || m_arch.GetMachine() == llvm::Triple::mips64el
1680             || m_arch.GetMachine() == llvm::Triple::mips
1681             || m_arch.GetMachine() == llvm::Triple::mipsel)
1682         error = SetSoftwareBreakpoint(next_pc, 4);
1683     else
1684     {
1685         // No size hint is given for the next breakpoint
1686         error = SetSoftwareBreakpoint(next_pc, 0);
1687     }
1688 
1689     if (error.Fail())
1690         return error;
1691 
1692     m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc});
1693 
1694     return Error();
1695 }
1696 
1697 bool
1698 NativeProcessLinux::SupportHardwareSingleStepping() const
1699 {
1700     if (m_arch.GetMachine() == llvm::Triple::arm
1701         || m_arch.GetMachine() == llvm::Triple::mips64 || m_arch.GetMachine() == llvm::Triple::mips64el
1702         || m_arch.GetMachine() == llvm::Triple::mips || m_arch.GetMachine() == llvm::Triple::mipsel)
1703         return false;
1704     return true;
1705 }
1706 
1707 Error
1708 NativeProcessLinux::Resume (const ResumeActionList &resume_actions)
1709 {
1710     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD));
1711     if (log)
1712         log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ());
1713 
1714     bool software_single_step = !SupportHardwareSingleStepping();
1715 
1716     Mutex::Locker locker (m_threads_mutex);
1717 
1718     if (software_single_step)
1719     {
1720         for (auto thread_sp : m_threads)
1721         {
1722             assert (thread_sp && "thread list should not contain NULL threads");
1723 
1724             const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
1725             if (action == nullptr)
1726                 continue;
1727 
1728             if (action->state == eStateStepping)
1729             {
1730                 Error error = SetupSoftwareSingleStepping(static_cast<NativeThreadLinux &>(*thread_sp));
1731                 if (error.Fail())
1732                     return error;
1733             }
1734         }
1735     }
1736 
1737     for (auto thread_sp : m_threads)
1738     {
1739         assert (thread_sp && "thread list should not contain NULL threads");
1740 
1741         const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
1742 
1743         if (action == nullptr)
1744         {
1745             if (log)
1746                 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64,
1747                     __FUNCTION__, GetID (), thread_sp->GetID ());
1748             continue;
1749         }
1750 
1751         if (log)
1752         {
1753             log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64,
1754                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
1755         }
1756 
1757         switch (action->state)
1758         {
1759         case eStateRunning:
1760         case eStateStepping:
1761         {
1762             // Run the thread, possibly feeding it the signal.
1763             const int signo = action->signal;
1764             ResumeThread(static_cast<NativeThreadLinux &>(*thread_sp), action->state, signo);
1765             break;
1766         }
1767 
1768         case eStateSuspended:
1769         case eStateStopped:
1770             lldbassert(0 && "Unexpected state");
1771 
1772         default:
1773             return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64,
1774                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
1775         }
1776     }
1777 
1778     return Error();
1779 }
1780 
1781 Error
1782 NativeProcessLinux::Halt ()
1783 {
1784     Error error;
1785 
1786     if (kill (GetID (), SIGSTOP) != 0)
1787         error.SetErrorToErrno ();
1788 
1789     return error;
1790 }
1791 
1792 Error
1793 NativeProcessLinux::Detach ()
1794 {
1795     Error error;
1796 
1797     // Tell ptrace to detach from the process.
1798     if (GetID () != LLDB_INVALID_PROCESS_ID)
1799         error = Detach (GetID ());
1800 
1801     // Stop monitoring the inferior.
1802     m_sigchld_handle.reset();
1803 
1804     // No error.
1805     return error;
1806 }
1807 
1808 Error
1809 NativeProcessLinux::Signal (int signo)
1810 {
1811     Error error;
1812 
1813     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1814     if (log)
1815         log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64,
1816                 __FUNCTION__, signo, Host::GetSignalAsCString(signo), GetID());
1817 
1818     if (kill(GetID(), signo))
1819         error.SetErrorToErrno();
1820 
1821     return error;
1822 }
1823 
1824 Error
1825 NativeProcessLinux::Interrupt ()
1826 {
1827     // Pick a running thread (or if none, a not-dead stopped thread) as
1828     // the chosen thread that will be the stop-reason thread.
1829     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1830 
1831     NativeThreadProtocolSP running_thread_sp;
1832     NativeThreadProtocolSP stopped_thread_sp;
1833 
1834     if (log)
1835         log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__);
1836 
1837     Mutex::Locker locker (m_threads_mutex);
1838 
1839     for (auto thread_sp : m_threads)
1840     {
1841         // The thread shouldn't be null but lets just cover that here.
1842         if (!thread_sp)
1843             continue;
1844 
1845         // If we have a running or stepping thread, we'll call that the
1846         // target of the interrupt.
1847         const auto thread_state = thread_sp->GetState ();
1848         if (thread_state == eStateRunning ||
1849             thread_state == eStateStepping)
1850         {
1851             running_thread_sp = thread_sp;
1852             break;
1853         }
1854         else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true))
1855         {
1856             // Remember the first non-dead stopped thread.  We'll use that as a backup if there are no running threads.
1857             stopped_thread_sp = thread_sp;
1858         }
1859     }
1860 
1861     if (!running_thread_sp && !stopped_thread_sp)
1862     {
1863         Error error("found no running/stepping or live stopped threads as target for interrupt");
1864         if (log)
1865             log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ());
1866 
1867         return error;
1868     }
1869 
1870     NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp;
1871 
1872     if (log)
1873         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target",
1874                      __FUNCTION__,
1875                      GetID (),
1876                      running_thread_sp ? "running" : "stopped",
1877                      deferred_signal_thread_sp->GetID ());
1878 
1879     StopRunningThreads(deferred_signal_thread_sp->GetID());
1880 
1881     return Error();
1882 }
1883 
1884 Error
1885 NativeProcessLinux::Kill ()
1886 {
1887     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1888     if (log)
1889         log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ());
1890 
1891     Error error;
1892 
1893     switch (m_state)
1894     {
1895         case StateType::eStateInvalid:
1896         case StateType::eStateExited:
1897         case StateType::eStateCrashed:
1898         case StateType::eStateDetached:
1899         case StateType::eStateUnloaded:
1900             // Nothing to do - the process is already dead.
1901             if (log)
1902                 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state));
1903             return error;
1904 
1905         case StateType::eStateConnected:
1906         case StateType::eStateAttaching:
1907         case StateType::eStateLaunching:
1908         case StateType::eStateStopped:
1909         case StateType::eStateRunning:
1910         case StateType::eStateStepping:
1911         case StateType::eStateSuspended:
1912             // We can try to kill a process in these states.
1913             break;
1914     }
1915 
1916     if (kill (GetID (), SIGKILL) != 0)
1917     {
1918         error.SetErrorToErrno ();
1919         return error;
1920     }
1921 
1922     return error;
1923 }
1924 
1925 static Error
1926 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info)
1927 {
1928     memory_region_info.Clear();
1929 
1930     StringExtractor line_extractor (maps_line.c_str ());
1931 
1932     // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode   pathname
1933     // perms: rwxp   (letter is present if set, '-' if not, final character is p=private, s=shared).
1934 
1935     // Parse out the starting address
1936     lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0);
1937 
1938     // Parse out hyphen separating start and end address from range.
1939     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-'))
1940         return Error ("malformed /proc/{pid}/maps entry, missing dash between address range");
1941 
1942     // Parse out the ending address
1943     lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address);
1944 
1945     // Parse out the space after the address.
1946     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' '))
1947         return Error ("malformed /proc/{pid}/maps entry, missing space after range");
1948 
1949     // Save the range.
1950     memory_region_info.GetRange ().SetRangeBase (start_address);
1951     memory_region_info.GetRange ().SetRangeEnd (end_address);
1952 
1953     // Parse out each permission entry.
1954     if (line_extractor.GetBytesLeft () < 4)
1955         return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions");
1956 
1957     // Handle read permission.
1958     const char read_perm_char = line_extractor.GetChar ();
1959     if (read_perm_char == 'r')
1960         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes);
1961     else
1962     {
1963         assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" );
1964         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
1965     }
1966 
1967     // Handle write permission.
1968     const char write_perm_char = line_extractor.GetChar ();
1969     if (write_perm_char == 'w')
1970         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes);
1971     else
1972     {
1973         assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" );
1974         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
1975     }
1976 
1977     // Handle execute permission.
1978     const char exec_perm_char = line_extractor.GetChar ();
1979     if (exec_perm_char == 'x')
1980         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes);
1981     else
1982     {
1983         assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" );
1984         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
1985     }
1986 
1987     return Error ();
1988 }
1989 
1990 Error
1991 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info)
1992 {
1993     // FIXME review that the final memory region returned extends to the end of the virtual address space,
1994     // with no perms if it is not mapped.
1995 
1996     // Use an approach that reads memory regions from /proc/{pid}/maps.
1997     // Assume proc maps entries are in ascending order.
1998     // FIXME assert if we find differently.
1999     Mutex::Locker locker (m_mem_region_cache_mutex);
2000 
2001     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2002     Error error;
2003 
2004     if (m_supports_mem_region == LazyBool::eLazyBoolNo)
2005     {
2006         // We're done.
2007         error.SetErrorString ("unsupported");
2008         return error;
2009     }
2010 
2011     // If our cache is empty, pull the latest.  There should always be at least one memory region
2012     // if memory region handling is supported.
2013     if (m_mem_region_cache.empty ())
2014     {
2015         error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
2016              [&] (const std::string &line) -> bool
2017              {
2018                  MemoryRegionInfo info;
2019                  const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info);
2020                  if (parse_error.Success ())
2021                  {
2022                      m_mem_region_cache.push_back (info);
2023                      return true;
2024                  }
2025                  else
2026                  {
2027                      if (log)
2028                          log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ());
2029                      return false;
2030                  }
2031              });
2032 
2033         // If we had an error, we'll mark unsupported.
2034         if (error.Fail ())
2035         {
2036             m_supports_mem_region = LazyBool::eLazyBoolNo;
2037             return error;
2038         }
2039         else if (m_mem_region_cache.empty ())
2040         {
2041             // No entries after attempting to read them.  This shouldn't happen if /proc/{pid}/maps
2042             // is supported.  Assume we don't support map entries via procfs.
2043             if (log)
2044                 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__);
2045             m_supports_mem_region = LazyBool::eLazyBoolNo;
2046             error.SetErrorString ("not supported");
2047             return error;
2048         }
2049 
2050         if (log)
2051             log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ());
2052 
2053         // We support memory retrieval, remember that.
2054         m_supports_mem_region = LazyBool::eLazyBoolYes;
2055     }
2056     else
2057     {
2058         if (log)
2059             log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
2060     }
2061 
2062     lldb::addr_t prev_base_address = 0;
2063 
2064     // FIXME start by finding the last region that is <= target address using binary search.  Data is sorted.
2065     // There can be a ton of regions on pthreads apps with lots of threads.
2066     for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it)
2067     {
2068         MemoryRegionInfo &proc_entry_info = *it;
2069 
2070         // Sanity check assumption that /proc/{pid}/maps entries are ascending.
2071         assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected");
2072         prev_base_address = proc_entry_info.GetRange ().GetRangeBase ();
2073 
2074         // If the target address comes before this entry, indicate distance to next region.
2075         if (load_addr < proc_entry_info.GetRange ().GetRangeBase ())
2076         {
2077             range_info.GetRange ().SetRangeBase (load_addr);
2078             range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr);
2079             range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2080             range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2081             range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2082 
2083             return error;
2084         }
2085         else if (proc_entry_info.GetRange ().Contains (load_addr))
2086         {
2087             // The target address is within the memory region we're processing here.
2088             range_info = proc_entry_info;
2089             return error;
2090         }
2091 
2092         // The target memory address comes somewhere after the region we just parsed.
2093     }
2094 
2095     // If we made it here, we didn't find an entry that contained the given address. Return the
2096     // load_addr as start and the amount of bytes betwwen load address and the end of the memory as
2097     // size.
2098     range_info.GetRange ().SetRangeBase (load_addr);
2099     switch (m_arch.GetAddressByteSize())
2100     {
2101         case 4:
2102             range_info.GetRange ().SetByteSize (0x100000000ull - load_addr);
2103             break;
2104         case 8:
2105             range_info.GetRange ().SetByteSize (0ull - load_addr);
2106             break;
2107         default:
2108             assert(false && "Unrecognized data byte size");
2109             break;
2110     }
2111     range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2112     range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2113     range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2114     return error;
2115 }
2116 
2117 void
2118 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId)
2119 {
2120     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2121     if (log)
2122         log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId);
2123 
2124     {
2125         Mutex::Locker locker (m_mem_region_cache_mutex);
2126         if (log)
2127             log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
2128         m_mem_region_cache.clear ();
2129     }
2130 }
2131 
2132 Error
2133 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, lldb::addr_t &addr)
2134 {
2135     // FIXME implementing this requires the equivalent of
2136     // InferiorCallPOSIX::InferiorCallMmap, which depends on
2137     // functional ThreadPlans working with Native*Protocol.
2138 #if 1
2139     return Error ("not implemented yet");
2140 #else
2141     addr = LLDB_INVALID_ADDRESS;
2142 
2143     unsigned prot = 0;
2144     if (permissions & lldb::ePermissionsReadable)
2145         prot |= eMmapProtRead;
2146     if (permissions & lldb::ePermissionsWritable)
2147         prot |= eMmapProtWrite;
2148     if (permissions & lldb::ePermissionsExecutable)
2149         prot |= eMmapProtExec;
2150 
2151     // TODO implement this directly in NativeProcessLinux
2152     // (and lift to NativeProcessPOSIX if/when that class is
2153     // refactored out).
2154     if (InferiorCallMmap(this, addr, 0, size, prot,
2155                          eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
2156         m_addr_to_mmap_size[addr] = size;
2157         return Error ();
2158     } else {
2159         addr = LLDB_INVALID_ADDRESS;
2160         return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions));
2161     }
2162 #endif
2163 }
2164 
2165 Error
2166 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr)
2167 {
2168     // FIXME see comments in AllocateMemory - required lower-level
2169     // bits not in place yet (ThreadPlans)
2170     return Error ("not implemented");
2171 }
2172 
2173 lldb::addr_t
2174 NativeProcessLinux::GetSharedLibraryInfoAddress ()
2175 {
2176 #if 1
2177     // punt on this for now
2178     return LLDB_INVALID_ADDRESS;
2179 #else
2180     // Return the image info address for the exe module
2181 #if 1
2182     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2183 
2184     ModuleSP module_sp;
2185     Error error = GetExeModuleSP (module_sp);
2186     if (error.Fail ())
2187     {
2188          if (log)
2189             log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ());
2190         return LLDB_INVALID_ADDRESS;
2191     }
2192 
2193     if (module_sp == nullptr)
2194     {
2195          if (log)
2196             log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__);
2197          return LLDB_INVALID_ADDRESS;
2198     }
2199 
2200     ObjectFileSP object_file_sp = module_sp->GetObjectFile ();
2201     if (object_file_sp == nullptr)
2202     {
2203          if (log)
2204             log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__);
2205          return LLDB_INVALID_ADDRESS;
2206     }
2207 
2208     return obj_file_sp->GetImageInfoAddress();
2209 #else
2210     Target *target = &GetTarget();
2211     ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile();
2212     Address addr = obj_file->GetImageInfoAddress(target);
2213 
2214     if (addr.IsValid())
2215         return addr.GetLoadAddress(target);
2216     return LLDB_INVALID_ADDRESS;
2217 #endif
2218 #endif // punt on this for now
2219 }
2220 
2221 size_t
2222 NativeProcessLinux::UpdateThreads ()
2223 {
2224     // The NativeProcessLinux monitoring threads are always up to date
2225     // with respect to thread state and they keep the thread list
2226     // populated properly. All this method needs to do is return the
2227     // thread count.
2228     Mutex::Locker locker (m_threads_mutex);
2229     return m_threads.size ();
2230 }
2231 
2232 bool
2233 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const
2234 {
2235     arch = m_arch;
2236     return true;
2237 }
2238 
2239 Error
2240 NativeProcessLinux::GetSoftwareBreakpointPCOffset(uint32_t &actual_opcode_size)
2241 {
2242     // FIXME put this behind a breakpoint protocol class that can be
2243     // set per architecture.  Need ARM, MIPS support here.
2244     static const uint8_t g_i386_opcode [] = { 0xCC };
2245 
2246     switch (m_arch.GetMachine ())
2247     {
2248         case llvm::Triple::x86:
2249         case llvm::Triple::x86_64:
2250             actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode));
2251             return Error ();
2252 
2253         case llvm::Triple::arm:
2254         case llvm::Triple::aarch64:
2255         case llvm::Triple::mips64:
2256         case llvm::Triple::mips64el:
2257         case llvm::Triple::mips:
2258         case llvm::Triple::mipsel:
2259             // On these architectures the PC don't get updated for breakpoint hits
2260             actual_opcode_size = 0;
2261             return Error ();
2262 
2263         default:
2264             assert(false && "CPU type not supported!");
2265             return Error ("CPU type not supported");
2266     }
2267 }
2268 
2269 Error
2270 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware)
2271 {
2272     if (hardware)
2273         return Error ("NativeProcessLinux does not support hardware breakpoints");
2274     else
2275         return SetSoftwareBreakpoint (addr, size);
2276 }
2277 
2278 Error
2279 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint,
2280                                                      size_t &actual_opcode_size,
2281                                                      const uint8_t *&trap_opcode_bytes)
2282 {
2283     // FIXME put this behind a breakpoint protocol class that can be set per
2284     // architecture.  Need MIPS support here.
2285     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
2286     // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
2287     // linux kernel does otherwise.
2288     static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 };
2289     static const uint8_t g_i386_opcode [] = { 0xCC };
2290     static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d };
2291     static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 };
2292     static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde };
2293 
2294     switch (m_arch.GetMachine ())
2295     {
2296     case llvm::Triple::aarch64:
2297         trap_opcode_bytes = g_aarch64_opcode;
2298         actual_opcode_size = sizeof(g_aarch64_opcode);
2299         return Error ();
2300 
2301     case llvm::Triple::arm:
2302         switch (trap_opcode_size_hint)
2303         {
2304         case 2:
2305             trap_opcode_bytes = g_thumb_breakpoint_opcode;
2306             actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
2307             return Error ();
2308         case 4:
2309             trap_opcode_bytes = g_arm_breakpoint_opcode;
2310             actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
2311             return Error ();
2312         default:
2313             assert(false && "Unrecognised trap opcode size hint!");
2314             return Error ("Unrecognised trap opcode size hint!");
2315         }
2316 
2317     case llvm::Triple::x86:
2318     case llvm::Triple::x86_64:
2319         trap_opcode_bytes = g_i386_opcode;
2320         actual_opcode_size = sizeof(g_i386_opcode);
2321         return Error ();
2322 
2323     case llvm::Triple::mips:
2324     case llvm::Triple::mips64:
2325         trap_opcode_bytes = g_mips64_opcode;
2326         actual_opcode_size = sizeof(g_mips64_opcode);
2327         return Error ();
2328 
2329     case llvm::Triple::mipsel:
2330     case llvm::Triple::mips64el:
2331         trap_opcode_bytes = g_mips64el_opcode;
2332         actual_opcode_size = sizeof(g_mips64el_opcode);
2333         return Error ();
2334 
2335     default:
2336         assert(false && "CPU type not supported!");
2337         return Error ("CPU type not supported");
2338     }
2339 }
2340 
2341 #if 0
2342 ProcessMessage::CrashReason
2343 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
2344 {
2345     ProcessMessage::CrashReason reason;
2346     assert(info->si_signo == SIGSEGV);
2347 
2348     reason = ProcessMessage::eInvalidCrashReason;
2349 
2350     switch (info->si_code)
2351     {
2352     default:
2353         assert(false && "unexpected si_code for SIGSEGV");
2354         break;
2355     case SI_KERNEL:
2356         // Linux will occasionally send spurious SI_KERNEL codes.
2357         // (this is poorly documented in sigaction)
2358         // One way to get this is via unaligned SIMD loads.
2359         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
2360         break;
2361     case SEGV_MAPERR:
2362         reason = ProcessMessage::eInvalidAddress;
2363         break;
2364     case SEGV_ACCERR:
2365         reason = ProcessMessage::ePrivilegedAddress;
2366         break;
2367     }
2368 
2369     return reason;
2370 }
2371 #endif
2372 
2373 
2374 #if 0
2375 ProcessMessage::CrashReason
2376 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
2377 {
2378     ProcessMessage::CrashReason reason;
2379     assert(info->si_signo == SIGILL);
2380 
2381     reason = ProcessMessage::eInvalidCrashReason;
2382 
2383     switch (info->si_code)
2384     {
2385     default:
2386         assert(false && "unexpected si_code for SIGILL");
2387         break;
2388     case ILL_ILLOPC:
2389         reason = ProcessMessage::eIllegalOpcode;
2390         break;
2391     case ILL_ILLOPN:
2392         reason = ProcessMessage::eIllegalOperand;
2393         break;
2394     case ILL_ILLADR:
2395         reason = ProcessMessage::eIllegalAddressingMode;
2396         break;
2397     case ILL_ILLTRP:
2398         reason = ProcessMessage::eIllegalTrap;
2399         break;
2400     case ILL_PRVOPC:
2401         reason = ProcessMessage::ePrivilegedOpcode;
2402         break;
2403     case ILL_PRVREG:
2404         reason = ProcessMessage::ePrivilegedRegister;
2405         break;
2406     case ILL_COPROC:
2407         reason = ProcessMessage::eCoprocessorError;
2408         break;
2409     case ILL_BADSTK:
2410         reason = ProcessMessage::eInternalStackError;
2411         break;
2412     }
2413 
2414     return reason;
2415 }
2416 #endif
2417 
2418 #if 0
2419 ProcessMessage::CrashReason
2420 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
2421 {
2422     ProcessMessage::CrashReason reason;
2423     assert(info->si_signo == SIGFPE);
2424 
2425     reason = ProcessMessage::eInvalidCrashReason;
2426 
2427     switch (info->si_code)
2428     {
2429     default:
2430         assert(false && "unexpected si_code for SIGFPE");
2431         break;
2432     case FPE_INTDIV:
2433         reason = ProcessMessage::eIntegerDivideByZero;
2434         break;
2435     case FPE_INTOVF:
2436         reason = ProcessMessage::eIntegerOverflow;
2437         break;
2438     case FPE_FLTDIV:
2439         reason = ProcessMessage::eFloatDivideByZero;
2440         break;
2441     case FPE_FLTOVF:
2442         reason = ProcessMessage::eFloatOverflow;
2443         break;
2444     case FPE_FLTUND:
2445         reason = ProcessMessage::eFloatUnderflow;
2446         break;
2447     case FPE_FLTRES:
2448         reason = ProcessMessage::eFloatInexactResult;
2449         break;
2450     case FPE_FLTINV:
2451         reason = ProcessMessage::eFloatInvalidOperation;
2452         break;
2453     case FPE_FLTSUB:
2454         reason = ProcessMessage::eFloatSubscriptRange;
2455         break;
2456     }
2457 
2458     return reason;
2459 }
2460 #endif
2461 
2462 #if 0
2463 ProcessMessage::CrashReason
2464 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
2465 {
2466     ProcessMessage::CrashReason reason;
2467     assert(info->si_signo == SIGBUS);
2468 
2469     reason = ProcessMessage::eInvalidCrashReason;
2470 
2471     switch (info->si_code)
2472     {
2473     default:
2474         assert(false && "unexpected si_code for SIGBUS");
2475         break;
2476     case BUS_ADRALN:
2477         reason = ProcessMessage::eIllegalAlignment;
2478         break;
2479     case BUS_ADRERR:
2480         reason = ProcessMessage::eIllegalAddress;
2481         break;
2482     case BUS_OBJERR:
2483         reason = ProcessMessage::eHardwareError;
2484         break;
2485     }
2486 
2487     return reason;
2488 }
2489 #endif
2490 
2491 Error
2492 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
2493 {
2494     if (ProcessVmReadvSupported()) {
2495         // The process_vm_readv path is about 50 times faster than ptrace api. We want to use
2496         // this syscall if it is supported.
2497 
2498         const ::pid_t pid = GetID();
2499 
2500         struct iovec local_iov, remote_iov;
2501         local_iov.iov_base = buf;
2502         local_iov.iov_len = size;
2503         remote_iov.iov_base = reinterpret_cast<void *>(addr);
2504         remote_iov.iov_len = size;
2505 
2506         bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
2507         const bool success = bytes_read == size;
2508 
2509         Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2510         if (log)
2511             log->Printf ("NativeProcessLinux::%s using process_vm_readv to read %zd bytes from inferior address 0x%" PRIx64": %s",
2512                     __FUNCTION__, size, addr, success ? "Success" : strerror(errno));
2513 
2514         if (success)
2515             return Error();
2516         // else
2517         //     the call failed for some reason, let's retry the read using ptrace api.
2518     }
2519 
2520     unsigned char *dst = static_cast<unsigned char*>(buf);
2521     size_t remainder;
2522     long data;
2523 
2524     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
2525     if (log)
2526         ProcessPOSIXLog::IncNestLevel();
2527     if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
2528         log->Printf ("NativeProcessLinux::%s(%p, %p, %zd, _)", __FUNCTION__, (void*)addr, buf, size);
2529 
2530     for (bytes_read = 0; bytes_read < size; bytes_read += remainder)
2531     {
2532         Error error = NativeProcessLinux::PtraceWrapper(PTRACE_PEEKDATA, GetID(), (void*)addr, nullptr, 0, &data);
2533         if (error.Fail())
2534         {
2535             if (log)
2536                 ProcessPOSIXLog::DecNestLevel();
2537             return error;
2538         }
2539 
2540         remainder = size - bytes_read;
2541         remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
2542 
2543         // Copy the data into our buffer
2544         for (unsigned i = 0; i < remainder; ++i)
2545             dst[i] = ((data >> i*8) & 0xFF);
2546 
2547         if (log && ProcessPOSIXLog::AtTopNestLevel() &&
2548                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
2549                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
2550                                 size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
2551         {
2552             uintptr_t print_dst = 0;
2553             // Format bytes from data by moving into print_dst for log output
2554             for (unsigned i = 0; i < remainder; ++i)
2555                 print_dst |= (((data >> i*8) & 0xFF) << i*8);
2556             log->Printf ("NativeProcessLinux::%s() [0x%" PRIx64 "]:0x%" PRIx64 " (0x%" PRIx64 ")",
2557                     __FUNCTION__, addr, uint64_t(print_dst), uint64_t(data));
2558         }
2559         addr += k_ptrace_word_size;
2560         dst += k_ptrace_word_size;
2561     }
2562 
2563     if (log)
2564         ProcessPOSIXLog::DecNestLevel();
2565     return Error();
2566 }
2567 
2568 Error
2569 NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
2570 {
2571     Error error = ReadMemory(addr, buf, size, bytes_read);
2572     if (error.Fail()) return error;
2573     return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size);
2574 }
2575 
2576 Error
2577 NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, size_t size, size_t &bytes_written)
2578 {
2579     const unsigned char *src = static_cast<const unsigned char*>(buf);
2580     size_t remainder;
2581     Error error;
2582 
2583     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
2584     if (log)
2585         ProcessPOSIXLog::IncNestLevel();
2586     if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
2587         log->Printf ("NativeProcessLinux::%s(0x%" PRIx64 ", %p, %zu)", __FUNCTION__, addr, buf, size);
2588 
2589     for (bytes_written = 0; bytes_written < size; bytes_written += remainder)
2590     {
2591         remainder = size - bytes_written;
2592         remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
2593 
2594         if (remainder == k_ptrace_word_size)
2595         {
2596             unsigned long data = 0;
2597             for (unsigned i = 0; i < k_ptrace_word_size; ++i)
2598                 data |= (unsigned long)src[i] << i*8;
2599 
2600             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
2601                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
2602                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
2603                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
2604                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
2605                         (void*)addr, *(const unsigned long*)src, data);
2606 
2607             error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), (void*)addr, (void*)data);
2608             if (error.Fail())
2609             {
2610                 if (log)
2611                     ProcessPOSIXLog::DecNestLevel();
2612                 return error;
2613             }
2614         }
2615         else
2616         {
2617             unsigned char buff[8];
2618             size_t bytes_read;
2619             error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
2620             if (error.Fail())
2621             {
2622                 if (log)
2623                     ProcessPOSIXLog::DecNestLevel();
2624                 return error;
2625             }
2626 
2627             memcpy(buff, src, remainder);
2628 
2629             size_t bytes_written_rec;
2630             error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
2631             if (error.Fail())
2632             {
2633                 if (log)
2634                     ProcessPOSIXLog::DecNestLevel();
2635                 return error;
2636             }
2637 
2638             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
2639                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
2640                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
2641                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
2642                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
2643                         (void*)addr, *(const unsigned long*)src, *(unsigned long*)buff);
2644         }
2645 
2646         addr += k_ptrace_word_size;
2647         src += k_ptrace_word_size;
2648     }
2649     if (log)
2650         ProcessPOSIXLog::DecNestLevel();
2651     return error;
2652 }
2653 
2654 Error
2655 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo)
2656 {
2657     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2658 
2659     if (log)
2660         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " with signal %s", __FUNCTION__, tid,
2661                                  Host::GetSignalAsCString(signo));
2662 
2663 
2664 
2665     intptr_t data = 0;
2666 
2667     if (signo != LLDB_INVALID_SIGNAL_NUMBER)
2668         data = signo;
2669 
2670     Error error = PtraceWrapper(PTRACE_CONT, tid, nullptr, (void*)data);
2671 
2672     if (log)
2673         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " result = %s", __FUNCTION__, tid, error.Success() ? "true" : "false");
2674     return error;
2675 }
2676 
2677 Error
2678 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo)
2679 {
2680     intptr_t data = 0;
2681 
2682     if (signo != LLDB_INVALID_SIGNAL_NUMBER)
2683         data = signo;
2684 
2685     // If hardware single-stepping is not supported, we just do a continue. The breakpoint on the
2686     // next instruction has been setup in NativeProcessLinux::Resume.
2687     return PtraceWrapper(SupportHardwareSingleStepping() ? PTRACE_SINGLESTEP : PTRACE_CONT,
2688             tid, nullptr, (void*)data);
2689 }
2690 
2691 Error
2692 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo)
2693 {
2694     return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
2695 }
2696 
2697 Error
2698 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message)
2699 {
2700     return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
2701 }
2702 
2703 Error
2704 NativeProcessLinux::Detach(lldb::tid_t tid)
2705 {
2706     if (tid == LLDB_INVALID_THREAD_ID)
2707         return Error();
2708 
2709     return PtraceWrapper(PTRACE_DETACH, tid);
2710 }
2711 
2712 bool
2713 NativeProcessLinux::DupDescriptor(const FileSpec &file_spec, int fd, int flags)
2714 {
2715     int target_fd = open(file_spec.GetCString(), flags, 0666);
2716 
2717     if (target_fd == -1)
2718         return false;
2719 
2720     if (dup2(target_fd, fd) == -1)
2721         return false;
2722 
2723     return (close(target_fd) == -1) ? false : true;
2724 }
2725 
2726 bool
2727 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id)
2728 {
2729     for (auto thread_sp : m_threads)
2730     {
2731         assert (thread_sp && "thread list should not contain NULL threads");
2732         if (thread_sp->GetID () == thread_id)
2733         {
2734             // We have this thread.
2735             return true;
2736         }
2737     }
2738 
2739     // We don't have this thread.
2740     return false;
2741 }
2742 
2743 bool
2744 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id)
2745 {
2746     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
2747 
2748     if (log)
2749         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread_id);
2750 
2751     bool found = false;
2752 
2753     Mutex::Locker locker (m_threads_mutex);
2754     for (auto it = m_threads.begin (); it != m_threads.end (); ++it)
2755     {
2756         if (*it && ((*it)->GetID () == thread_id))
2757         {
2758             m_threads.erase (it);
2759             found = true;
2760             break;
2761         }
2762     }
2763 
2764     SignalIfAllThreadsStopped();
2765 
2766     return found;
2767 }
2768 
2769 NativeThreadLinuxSP
2770 NativeProcessLinux::AddThread (lldb::tid_t thread_id)
2771 {
2772     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
2773 
2774     Mutex::Locker locker (m_threads_mutex);
2775 
2776     if (log)
2777     {
2778         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64,
2779                 __FUNCTION__,
2780                 GetID (),
2781                 thread_id);
2782     }
2783 
2784     assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists");
2785 
2786     // If this is the first thread, save it as the current thread
2787     if (m_threads.empty ())
2788         SetCurrentThreadID (thread_id);
2789 
2790     auto thread_sp = std::make_shared<NativeThreadLinux>(this, thread_id);
2791     m_threads.push_back (thread_sp);
2792     return thread_sp;
2793 }
2794 
2795 Error
2796 NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread)
2797 {
2798     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS));
2799 
2800     Error error;
2801 
2802     // Find out the size of a breakpoint (might depend on where we are in the code).
2803     NativeRegisterContextSP context_sp = thread.GetRegisterContext();
2804     if (!context_sp)
2805     {
2806         error.SetErrorString ("cannot get a NativeRegisterContext for the thread");
2807         if (log)
2808             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
2809         return error;
2810     }
2811 
2812     uint32_t breakpoint_size = 0;
2813     error = GetSoftwareBreakpointPCOffset(breakpoint_size);
2814     if (error.Fail ())
2815     {
2816         if (log)
2817             log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ());
2818         return error;
2819     }
2820     else
2821     {
2822         if (log)
2823             log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size);
2824     }
2825 
2826     // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size.
2827     const lldb::addr_t initial_pc_addr = context_sp->GetPCfromBreakpointLocation ();
2828     lldb::addr_t breakpoint_addr = initial_pc_addr;
2829     if (breakpoint_size > 0)
2830     {
2831         // Do not allow breakpoint probe to wrap around.
2832         if (breakpoint_addr >= breakpoint_size)
2833             breakpoint_addr -= breakpoint_size;
2834     }
2835 
2836     // Check if we stopped because of a breakpoint.
2837     NativeBreakpointSP breakpoint_sp;
2838     error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp);
2839     if (!error.Success () || !breakpoint_sp)
2840     {
2841         // We didn't find one at a software probe location.  Nothing to do.
2842         if (log)
2843             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr);
2844         return Error ();
2845     }
2846 
2847     // If the breakpoint is not a software breakpoint, nothing to do.
2848     if (!breakpoint_sp->IsSoftwareBreakpoint ())
2849     {
2850         if (log)
2851             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr);
2852         return Error ();
2853     }
2854 
2855     //
2856     // We have a software breakpoint and need to adjust the PC.
2857     //
2858 
2859     // Sanity check.
2860     if (breakpoint_size == 0)
2861     {
2862         // Nothing to do!  How did we get here?
2863         if (log)
2864             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr);
2865         return Error ();
2866     }
2867 
2868     // Change the program counter.
2869     if (log)
2870         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID(), thread.GetID(), initial_pc_addr, breakpoint_addr);
2871 
2872     error = context_sp->SetPC (breakpoint_addr);
2873     if (error.Fail ())
2874     {
2875         if (log)
2876             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID(), thread.GetID(), error.AsCString ());
2877         return error;
2878     }
2879 
2880     return error;
2881 }
2882 
2883 Error
2884 NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec)
2885 {
2886     FileSpec module_file_spec(module_path, true);
2887 
2888     bool found = false;
2889     file_spec.Clear();
2890     ProcFileReader::ProcessLineByLine(GetID(), "maps",
2891         [&] (const std::string &line)
2892         {
2893             SmallVector<StringRef, 16> columns;
2894             StringRef(line).split(columns, " ", -1, false);
2895             if (columns.size() < 6)
2896                 return true; // continue searching
2897 
2898             FileSpec this_file_spec(columns[5].str().c_str(), false);
2899             if (this_file_spec.GetFilename() != module_file_spec.GetFilename())
2900                 return true; // continue searching
2901 
2902             file_spec = this_file_spec;
2903             found = true;
2904             return false; // we are done
2905         });
2906 
2907     if (! found)
2908         return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
2909                 module_file_spec.GetFilename().AsCString(), GetID());
2910 
2911     return Error();
2912 }
2913 
2914 Error
2915 NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef& file_name, lldb::addr_t& load_addr)
2916 {
2917     load_addr = LLDB_INVALID_ADDRESS;
2918     Error error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
2919         [&] (const std::string &line) -> bool
2920         {
2921             StringRef maps_row(line);
2922 
2923             SmallVector<StringRef, 16> maps_columns;
2924             maps_row.split(maps_columns, StringRef(" "), -1, false);
2925 
2926             if (maps_columns.size() < 6)
2927             {
2928                 // Return true to continue reading the proc file
2929                 return true;
2930             }
2931 
2932             if (maps_columns[5] == file_name)
2933             {
2934                 StringExtractor addr_extractor(maps_columns[0].str().c_str());
2935                 load_addr = addr_extractor.GetHexMaxU64(false, LLDB_INVALID_ADDRESS);
2936 
2937                 // Return false to stop reading the proc file further
2938                 return false;
2939             }
2940 
2941             // Return true to continue reading the proc file
2942             return true;
2943         });
2944     return error;
2945 }
2946 
2947 NativeThreadLinuxSP
2948 NativeProcessLinux::GetThreadByID(lldb::tid_t tid)
2949 {
2950     return std::static_pointer_cast<NativeThreadLinux>(NativeProcessProtocol::GetThreadByID(tid));
2951 }
2952 
2953 Error
2954 NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, lldb::StateType state, int signo)
2955 {
2956     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
2957 
2958     if (log)
2959         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")",
2960                 __FUNCTION__, thread.GetID());
2961 
2962     // Before we do the resume below, first check if we have a pending
2963     // stop notification that is currently waiting for
2964     // all threads to stop.  This is potentially a buggy situation since
2965     // we're ostensibly waiting for threads to stop before we send out the
2966     // pending notification, and here we are resuming one before we send
2967     // out the pending stop notification.
2968     if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && log)
2969     {
2970         log->Printf("NativeProcessLinux::%s about to resume tid %" PRIu64 " per explicit request but we have a pending stop notification (tid %" PRIu64 ") that is actively waiting for this thread to stop. Valid sequence of events?", __FUNCTION__, thread.GetID(), m_pending_notification_tid);
2971     }
2972 
2973     // Request a resume.  We expect this to be synchronous and the system
2974     // to reflect it is running after this completes.
2975     switch (state)
2976     {
2977     case eStateRunning:
2978     {
2979         thread.SetRunning();
2980         const auto resume_result = Resume(thread.GetID(), signo);
2981         if (resume_result.Success())
2982             SetState(eStateRunning, true);
2983         return resume_result;
2984     }
2985     case eStateStepping:
2986     {
2987         thread.SetStepping();
2988         const auto step_result = SingleStep(thread.GetID(), signo);
2989         if (step_result.Success())
2990             SetState(eStateRunning, true);
2991         return step_result;
2992     }
2993     default:
2994         if (log)
2995             log->Printf("NativeProcessLinux::%s Unhandled state %s.",
2996                     __FUNCTION__, StateAsCString(state));
2997         llvm_unreachable("Unhandled state for resume");
2998     }
2999 }
3000 
3001 //===----------------------------------------------------------------------===//
3002 
3003 void
3004 NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid)
3005 {
3006     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3007 
3008     if (log)
3009     {
3010         log->Printf("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ")",
3011                 __FUNCTION__, triggering_tid);
3012     }
3013 
3014     m_pending_notification_tid = triggering_tid;
3015 
3016     // Request a stop for all the thread stops that need to be stopped
3017     // and are not already known to be stopped.
3018     for (const auto &thread_sp: m_threads)
3019     {
3020         if (StateIsRunningState(thread_sp->GetState()))
3021             static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop();
3022     }
3023 
3024     SignalIfAllThreadsStopped();
3025 
3026     if (log)
3027     {
3028         log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__);
3029     }
3030 }
3031 
3032 void
3033 NativeProcessLinux::SignalIfAllThreadsStopped()
3034 {
3035     if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
3036         return; // No pending notification. Nothing to do.
3037 
3038     for (const auto &thread_sp: m_threads)
3039     {
3040         if (StateIsRunningState(thread_sp->GetState()))
3041             return; // Some threads are still running. Don't signal yet.
3042     }
3043 
3044     // We have a pending notification and all threads have stopped.
3045     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
3046 
3047     // Clear any temporary breakpoints we used to implement software single stepping.
3048     for (const auto &thread_info: m_threads_stepping_with_breakpoint)
3049     {
3050         Error error = RemoveBreakpoint (thread_info.second);
3051         if (error.Fail())
3052             if (log)
3053                 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s",
3054                         __FUNCTION__, thread_info.first, error.AsCString());
3055     }
3056     m_threads_stepping_with_breakpoint.clear();
3057 
3058     // Notify the delegate about the stop
3059     SetCurrentThreadID(m_pending_notification_tid);
3060     SetState(StateType::eStateStopped, true);
3061     m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
3062 }
3063 
3064 void
3065 NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread)
3066 {
3067     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3068 
3069     if (log)
3070         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread.GetID());
3071 
3072     if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && StateIsRunningState(thread.GetState()))
3073     {
3074         // We will need to wait for this new thread to stop as well before firing the
3075         // notification.
3076         thread.RequestStop();
3077     }
3078 }
3079 
3080 void
3081 NativeProcessLinux::SigchldHandler()
3082 {
3083     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3084     // Process all pending waitpid notifications.
3085     while (true)
3086     {
3087         int status = -1;
3088         ::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG);
3089 
3090         if (wait_pid == 0)
3091             break; // We are done.
3092 
3093         if (wait_pid == -1)
3094         {
3095             if (errno == EINTR)
3096                 continue;
3097 
3098             Error error(errno, eErrorTypePOSIX);
3099             if (log)
3100                 log->Printf("NativeProcessLinux::%s waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG) failed: %s",
3101                         __FUNCTION__, error.AsCString());
3102             break;
3103         }
3104 
3105         bool exited = false;
3106         int signal = 0;
3107         int exit_status = 0;
3108         const char *status_cstr = nullptr;
3109         if (WIFSTOPPED(status))
3110         {
3111             signal = WSTOPSIG(status);
3112             status_cstr = "STOPPED";
3113         }
3114         else if (WIFEXITED(status))
3115         {
3116             exit_status = WEXITSTATUS(status);
3117             status_cstr = "EXITED";
3118             exited = true;
3119         }
3120         else if (WIFSIGNALED(status))
3121         {
3122             signal = WTERMSIG(status);
3123             status_cstr = "SIGNALED";
3124             if (wait_pid == static_cast< ::pid_t>(GetID())) {
3125                 exited = true;
3126                 exit_status = -1;
3127             }
3128         }
3129         else
3130             status_cstr = "(\?\?\?)";
3131 
3132         if (log)
3133             log->Printf("NativeProcessLinux::%s: waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG)"
3134                 "=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i",
3135                 __FUNCTION__, wait_pid, status, status_cstr, signal, exit_status);
3136 
3137         MonitorCallback (wait_pid, exited, signal, exit_status);
3138     }
3139 }
3140 
3141 // Wrapper for ptrace to catch errors and log calls.
3142 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
3143 Error
3144 NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, long *result)
3145 {
3146     Error error;
3147     long int ret;
3148 
3149     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE));
3150 
3151     PtraceDisplayBytes(req, data, data_size);
3152 
3153     errno = 0;
3154     if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
3155         ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
3156     else
3157         ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
3158 
3159     if (ret == -1)
3160         error.SetErrorToErrno();
3161 
3162     if (result)
3163         *result = ret;
3164 
3165     if (log)
3166         log->Printf("ptrace(%d, %" PRIu64 ", %p, %p, %zu)=%lX", req, pid, addr, data, data_size, ret);
3167 
3168     PtraceDisplayBytes(req, data, data_size);
3169 
3170     if (log && error.GetError() != 0)
3171     {
3172         const char* str;
3173         switch (error.GetError())
3174         {
3175         case ESRCH:  str = "ESRCH"; break;
3176         case EINVAL: str = "EINVAL"; break;
3177         case EBUSY:  str = "EBUSY"; break;
3178         case EPERM:  str = "EPERM"; break;
3179         default:     str = error.AsCString();
3180         }
3181         log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str);
3182     }
3183 
3184     return error;
3185 }
3186