1 //===-- NativeProcessLinux.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "NativeProcessLinux.h"
10 
11 #include <cerrno>
12 #include <cstdint>
13 #include <cstring>
14 #include <unistd.h>
15 
16 #include <fstream>
17 #include <mutex>
18 #include <sstream>
19 #include <string>
20 #include <unordered_map>
21 
22 #include "NativeThreadLinux.h"
23 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
24 #include "Plugins/Process/Utility/LinuxProcMaps.h"
25 #include "Procfs.h"
26 #include "lldb/Core/ModuleSpec.h"
27 #include "lldb/Host/Host.h"
28 #include "lldb/Host/HostProcess.h"
29 #include "lldb/Host/ProcessLaunchInfo.h"
30 #include "lldb/Host/PseudoTerminal.h"
31 #include "lldb/Host/ThreadLauncher.h"
32 #include "lldb/Host/common/NativeRegisterContext.h"
33 #include "lldb/Host/linux/Host.h"
34 #include "lldb/Host/linux/Ptrace.h"
35 #include "lldb/Host/linux/Uio.h"
36 #include "lldb/Host/posix/ProcessLauncherPosixFork.h"
37 #include "lldb/Symbol/ObjectFile.h"
38 #include "lldb/Target/Process.h"
39 #include "lldb/Target/Target.h"
40 #include "lldb/Utility/LLDBAssert.h"
41 #include "lldb/Utility/LLDBLog.h"
42 #include "lldb/Utility/State.h"
43 #include "lldb/Utility/Status.h"
44 #include "lldb/Utility/StringExtractor.h"
45 #include "llvm/ADT/ScopeExit.h"
46 #include "llvm/Support/Errno.h"
47 #include "llvm/Support/FileSystem.h"
48 #include "llvm/Support/Threading.h"
49 
50 #include <linux/unistd.h>
51 #include <sys/socket.h>
52 #include <sys/syscall.h>
53 #include <sys/types.h>
54 #include <sys/user.h>
55 #include <sys/wait.h>
56 
57 #ifdef __aarch64__
58 #include <asm/hwcap.h>
59 #include <sys/auxv.h>
60 #endif
61 
62 // Support hardware breakpoints in case it has not been defined
63 #ifndef TRAP_HWBKPT
64 #define TRAP_HWBKPT 4
65 #endif
66 
67 #ifndef HWCAP2_MTE
68 #define HWCAP2_MTE (1 << 18)
69 #endif
70 
71 using namespace lldb;
72 using namespace lldb_private;
73 using namespace lldb_private::process_linux;
74 using namespace llvm;
75 
76 // Private bits we only need internally.
77 
78 static bool ProcessVmReadvSupported() {
79   static bool is_supported;
80   static llvm::once_flag flag;
81 
82   llvm::call_once(flag, [] {
83     Log *log = GetLog(POSIXLog::Process);
84 
85     uint32_t source = 0x47424742;
86     uint32_t dest = 0;
87 
88     struct iovec local, remote;
89     remote.iov_base = &source;
90     local.iov_base = &dest;
91     remote.iov_len = local.iov_len = sizeof source;
92 
93     // We shall try if cross-process-memory reads work by attempting to read a
94     // value from our own process.
95     ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
96     is_supported = (res == sizeof(source) && source == dest);
97     if (is_supported)
98       LLDB_LOG(log,
99                "Detected kernel support for process_vm_readv syscall. "
100                "Fast memory reads enabled.");
101     else
102       LLDB_LOG(log,
103                "syscall process_vm_readv failed (error: {0}). Fast memory "
104                "reads disabled.",
105                llvm::sys::StrError());
106   });
107 
108   return is_supported;
109 }
110 
111 static void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) {
112   Log *log = GetLog(POSIXLog::Process);
113   if (!log)
114     return;
115 
116   if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO))
117     LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec());
118   else
119     LLDB_LOG(log, "leaving STDIN as is");
120 
121   if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO))
122     LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec());
123   else
124     LLDB_LOG(log, "leaving STDOUT as is");
125 
126   if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO))
127     LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec());
128   else
129     LLDB_LOG(log, "leaving STDERR as is");
130 
131   int i = 0;
132   for (const char **args = info.GetArguments().GetConstArgumentVector(); *args;
133        ++args, ++i)
134     LLDB_LOG(log, "arg {0}: '{1}'", i, *args);
135 }
136 
137 static void DisplayBytes(StreamString &s, void *bytes, uint32_t count) {
138   uint8_t *ptr = (uint8_t *)bytes;
139   const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
140   for (uint32_t i = 0; i < loop_count; i++) {
141     s.Printf("[%x]", *ptr);
142     ptr++;
143   }
144 }
145 
146 static void PtraceDisplayBytes(int &req, void *data, size_t data_size) {
147   Log *log = GetLog(POSIXLog::Ptrace);
148   if (!log)
149     return;
150   StreamString buf;
151 
152   switch (req) {
153   case PTRACE_POKETEXT: {
154     DisplayBytes(buf, &data, 8);
155     LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData());
156     break;
157   }
158   case PTRACE_POKEDATA: {
159     DisplayBytes(buf, &data, 8);
160     LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData());
161     break;
162   }
163   case PTRACE_POKEUSER: {
164     DisplayBytes(buf, &data, 8);
165     LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData());
166     break;
167   }
168   case PTRACE_SETREGS: {
169     DisplayBytes(buf, data, data_size);
170     LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData());
171     break;
172   }
173   case PTRACE_SETFPREGS: {
174     DisplayBytes(buf, data, data_size);
175     LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData());
176     break;
177   }
178   case PTRACE_SETSIGINFO: {
179     DisplayBytes(buf, data, sizeof(siginfo_t));
180     LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData());
181     break;
182   }
183   case PTRACE_SETREGSET: {
184     // Extract iov_base from data, which is a pointer to the struct iovec
185     DisplayBytes(buf, *(void **)data, data_size);
186     LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData());
187     break;
188   }
189   default: {}
190   }
191 }
192 
193 static constexpr unsigned k_ptrace_word_size = sizeof(void *);
194 static_assert(sizeof(long) >= k_ptrace_word_size,
195               "Size of long must be larger than ptrace word size");
196 
197 // Simple helper function to ensure flags are enabled on the given file
198 // descriptor.
199 static Status EnsureFDFlags(int fd, int flags) {
200   Status error;
201 
202   int status = fcntl(fd, F_GETFL);
203   if (status == -1) {
204     error.SetErrorToErrno();
205     return error;
206   }
207 
208   if (fcntl(fd, F_SETFL, status | flags) == -1) {
209     error.SetErrorToErrno();
210     return error;
211   }
212 
213   return error;
214 }
215 
216 // Public Static Methods
217 
218 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
219 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info,
220                                     NativeDelegate &native_delegate,
221                                     MainLoop &mainloop) const {
222   Log *log = GetLog(POSIXLog::Process);
223 
224   MaybeLogLaunchInfo(launch_info);
225 
226   Status status;
227   ::pid_t pid = ProcessLauncherPosixFork()
228                     .LaunchProcess(launch_info, status)
229                     .GetProcessId();
230   LLDB_LOG(log, "pid = {0:x}", pid);
231   if (status.Fail()) {
232     LLDB_LOG(log, "failed to launch process: {0}", status);
233     return status.ToError();
234   }
235 
236   // Wait for the child process to trap on its call to execve.
237   int wstatus;
238   ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0);
239   assert(wpid == pid);
240   (void)wpid;
241   if (!WIFSTOPPED(wstatus)) {
242     LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}",
243              WaitStatus::Decode(wstatus));
244     return llvm::make_error<StringError>("Could not sync with inferior process",
245                                          llvm::inconvertibleErrorCode());
246   }
247   LLDB_LOG(log, "inferior started, now in stopped state");
248 
249   ProcessInstanceInfo Info;
250   if (!Host::GetProcessInfo(pid, Info)) {
251     return llvm::make_error<StringError>("Cannot get process architecture",
252                                          llvm::inconvertibleErrorCode());
253   }
254 
255   // Set the architecture to the exe architecture.
256   LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid,
257            Info.GetArchitecture().GetArchitectureName());
258 
259   status = SetDefaultPtraceOpts(pid);
260   if (status.Fail()) {
261     LLDB_LOG(log, "failed to set default ptrace options: {0}", status);
262     return status.ToError();
263   }
264 
265   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
266       pid, launch_info.GetPTY().ReleasePrimaryFileDescriptor(), native_delegate,
267       Info.GetArchitecture(), mainloop, {pid}));
268 }
269 
270 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
271 NativeProcessLinux::Factory::Attach(
272     lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate,
273     MainLoop &mainloop) const {
274   Log *log = GetLog(POSIXLog::Process);
275   LLDB_LOG(log, "pid = {0:x}", pid);
276 
277   // Retrieve the architecture for the running process.
278   ProcessInstanceInfo Info;
279   if (!Host::GetProcessInfo(pid, Info)) {
280     return llvm::make_error<StringError>("Cannot get process architecture",
281                                          llvm::inconvertibleErrorCode());
282   }
283 
284   auto tids_or = NativeProcessLinux::Attach(pid);
285   if (!tids_or)
286     return tids_or.takeError();
287 
288   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
289       pid, -1, native_delegate, Info.GetArchitecture(), mainloop, *tids_or));
290 }
291 
292 NativeProcessLinux::Extension
293 NativeProcessLinux::Factory::GetSupportedExtensions() const {
294   NativeProcessLinux::Extension supported =
295       Extension::multiprocess | Extension::fork | Extension::vfork |
296       Extension::pass_signals | Extension::auxv | Extension::libraries_svr4 |
297       Extension::siginfo_read;
298 
299 #ifdef __aarch64__
300   // At this point we do not have a process so read auxv directly.
301   if ((getauxval(AT_HWCAP2) & HWCAP2_MTE))
302     supported |= Extension::memory_tagging;
303 #endif
304 
305   return supported;
306 }
307 
308 // Public Instance Methods
309 
310 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd,
311                                        NativeDelegate &delegate,
312                                        const ArchSpec &arch, MainLoop &mainloop,
313                                        llvm::ArrayRef<::pid_t> tids)
314     : NativeProcessELF(pid, terminal_fd, delegate), m_arch(arch),
315       m_main_loop(mainloop), m_intel_pt_collector(pid) {
316   if (m_terminal_fd != -1) {
317     Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
318     assert(status.Success());
319   }
320 
321   Status status;
322   m_sigchld_handle = mainloop.RegisterSignal(
323       SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status);
324   assert(m_sigchld_handle && status.Success());
325 
326   for (const auto &tid : tids) {
327     NativeThreadLinux &thread = AddThread(tid, /*resume*/ false);
328     ThreadWasCreated(thread);
329   }
330 
331   // Let our process instance know the thread has stopped.
332   SetCurrentThreadID(tids[0]);
333   SetState(StateType::eStateStopped, false);
334 
335   // Proccess any signals we received before installing our handler
336   SigchldHandler();
337 }
338 
339 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) {
340   Log *log = GetLog(POSIXLog::Process);
341 
342   Status status;
343   // Use a map to keep track of the threads which we have attached/need to
344   // attach.
345   Host::TidMap tids_to_attach;
346   while (Host::FindProcessThreads(pid, tids_to_attach)) {
347     for (Host::TidMap::iterator it = tids_to_attach.begin();
348          it != tids_to_attach.end();) {
349       if (it->second == false) {
350         lldb::tid_t tid = it->first;
351 
352         // Attach to the requested process.
353         // An attach will cause the thread to stop with a SIGSTOP.
354         if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) {
355           // No such thread. The thread may have exited. More error handling
356           // may be needed.
357           if (status.GetError() == ESRCH) {
358             it = tids_to_attach.erase(it);
359             continue;
360           }
361           return status.ToError();
362         }
363 
364         int wpid =
365             llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL);
366         // Need to use __WALL otherwise we receive an error with errno=ECHLD At
367         // this point we should have a thread stopped if waitpid succeeds.
368         if (wpid < 0) {
369           // No such thread. The thread may have exited. More error handling
370           // may be needed.
371           if (errno == ESRCH) {
372             it = tids_to_attach.erase(it);
373             continue;
374           }
375           return llvm::errorCodeToError(
376               std::error_code(errno, std::generic_category()));
377         }
378 
379         if ((status = SetDefaultPtraceOpts(tid)).Fail())
380           return status.ToError();
381 
382         LLDB_LOG(log, "adding tid = {0}", tid);
383         it->second = true;
384       }
385 
386       // move the loop forward
387       ++it;
388     }
389   }
390 
391   size_t tid_count = tids_to_attach.size();
392   if (tid_count == 0)
393     return llvm::make_error<StringError>("No such process",
394                                          llvm::inconvertibleErrorCode());
395 
396   std::vector<::pid_t> tids;
397   tids.reserve(tid_count);
398   for (const auto &p : tids_to_attach)
399     tids.push_back(p.first);
400   return std::move(tids);
401 }
402 
403 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) {
404   long ptrace_opts = 0;
405 
406   // Have the child raise an event on exit.  This is used to keep the child in
407   // limbo until it is destroyed.
408   ptrace_opts |= PTRACE_O_TRACEEXIT;
409 
410   // Have the tracer trace threads which spawn in the inferior process.
411   ptrace_opts |= PTRACE_O_TRACECLONE;
412 
413   // Have the tracer notify us before execve returns (needed to disable legacy
414   // SIGTRAP generation)
415   ptrace_opts |= PTRACE_O_TRACEEXEC;
416 
417   // Have the tracer trace forked children.
418   ptrace_opts |= PTRACE_O_TRACEFORK;
419 
420   // Have the tracer trace vforks.
421   ptrace_opts |= PTRACE_O_TRACEVFORK;
422 
423   // Have the tracer trace vfork-done in order to restore breakpoints after
424   // the child finishes sharing memory.
425   ptrace_opts |= PTRACE_O_TRACEVFORKDONE;
426 
427   return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts);
428 }
429 
430 // Handles all waitpid events from the inferior process.
431 void NativeProcessLinux::MonitorCallback(NativeThreadLinux &thread,
432                                          WaitStatus status) {
433   Log *log = GetLog(LLDBLog::Process);
434 
435   // Certain activities differ based on whether the pid is the tid of the main
436   // thread.
437   const bool is_main_thread = (thread.GetID() == GetID());
438 
439   // Handle when the thread exits.
440   if (status.type == WaitStatus::Exit || status.type == WaitStatus::Signal) {
441     LLDB_LOG(log,
442              "got exit status({0}) , tid = {1} ({2} main thread), process "
443              "state = {3}",
444              status, thread.GetID(), is_main_thread ? "is" : "is not",
445              GetState());
446 
447     // This is a thread that exited.  Ensure we're not tracking it anymore.
448     StopTrackingThread(thread);
449 
450     if (is_main_thread) {
451       // The main thread exited.  We're done monitoring.  Report to delegate.
452       SetExitStatus(status, true);
453 
454       // Notify delegate that our process has exited.
455       SetState(StateType::eStateExited, true);
456     }
457     return;
458   }
459 
460   siginfo_t info;
461   const auto info_err = GetSignalInfo(thread.GetID(), &info);
462 
463   // Get details on the signal raised.
464   if (info_err.Success()) {
465     // We have retrieved the signal info.  Dispatch appropriately.
466     if (info.si_signo == SIGTRAP)
467       MonitorSIGTRAP(info, thread);
468     else
469       MonitorSignal(info, thread);
470   } else {
471     if (info_err.GetError() == EINVAL) {
472       // This is a group stop reception for this tid. We can reach here if we
473       // reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the tracee,
474       // triggering the group-stop mechanism. Normally receiving these would
475       // stop the process, pending a SIGCONT. Simulating this state in a
476       // debugger is hard and is generally not needed (one use case is
477       // debugging background task being managed by a shell). For general use,
478       // it is sufficient to stop the process in a signal-delivery stop which
479       // happens before the group stop. This done by MonitorSignal and works
480       // correctly for all signals.
481       LLDB_LOG(log,
482                "received a group stop for pid {0} tid {1}. Transparent "
483                "handling of group stops not supported, resuming the "
484                "thread.",
485                GetID(), thread.GetID());
486       ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
487     } else {
488       // ptrace(GETSIGINFO) failed (but not due to group-stop).
489 
490       // A return value of ESRCH means the thread/process has died in the mean
491       // time. This can (e.g.) happen when another thread does an exit_group(2)
492       // or the entire process get SIGKILLed.
493       // We can't do anything with this thread anymore, but we keep it around
494       // until we get the WIFEXITED event.
495 
496       LLDB_LOG(log,
497                "GetSignalInfo({0}) failed: {1}, status = {2}, main_thread = "
498                "{3}. Expecting WIFEXITED soon.",
499                thread.GetID(), info_err, status, is_main_thread);
500     }
501   }
502 }
503 
504 void NativeProcessLinux::WaitForCloneNotification(::pid_t pid) {
505   Log *log = GetLog(POSIXLog::Process);
506 
507   // The PID is not tracked yet, let's wait for it to appear.
508   int status = -1;
509   LLDB_LOG(log,
510            "received clone event for pid {0}. pid not tracked yet, "
511            "waiting for it to appear...",
512            pid);
513   ::pid_t wait_pid =
514       llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &status, __WALL);
515 
516   // It's theoretically possible to get other events if the entire process was
517   // SIGKILLed before we got a chance to check this. In that case, we'll just
518   // clean everything up when we get the process exit event.
519 
520   LLDB_LOG(log,
521            "waitpid({0}, &status, __WALL) => {1} (errno: {2}, status = {3})",
522            pid, wait_pid, errno, WaitStatus::Decode(status));
523 }
524 
525 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info,
526                                         NativeThreadLinux &thread) {
527   Log *log = GetLog(POSIXLog::Process);
528   const bool is_main_thread = (thread.GetID() == GetID());
529 
530   assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
531 
532   switch (info.si_code) {
533   case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
534   case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
535   case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): {
536     // This can either mean a new thread or a new process spawned via
537     // clone(2) without SIGCHLD or CLONE_VFORK flag.  Note that clone(2)
538     // can also cause PTRACE_EVENT_FORK and PTRACE_EVENT_VFORK if one
539     // of these flags are passed.
540 
541     unsigned long event_message = 0;
542     if (GetEventMessage(thread.GetID(), &event_message).Fail()) {
543       LLDB_LOG(log,
544                "pid {0} received clone() event but GetEventMessage failed "
545                "so we don't know the new pid/tid",
546                thread.GetID());
547       ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
548     } else {
549       MonitorClone(thread, event_message, info.si_code >> 8);
550     }
551 
552     break;
553   }
554 
555   case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): {
556     LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP);
557 
558     // Exec clears any pending notifications.
559     m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
560 
561     // Remove all but the main thread here.  Linux fork creates a new process
562     // which only copies the main thread.
563     LLDB_LOG(log, "exec received, stop tracking all but main thread");
564 
565     llvm::erase_if(m_threads, [&](std::unique_ptr<NativeThreadProtocol> &t) {
566       return t->GetID() != GetID();
567     });
568     assert(m_threads.size() == 1);
569     auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get());
570 
571     SetCurrentThreadID(main_thread->GetID());
572     main_thread->SetStoppedByExec();
573 
574     // Tell coordinator about about the "new" (since exec) stopped main thread.
575     ThreadWasCreated(*main_thread);
576 
577     // Let our delegate know we have just exec'd.
578     NotifyDidExec();
579 
580     // Let the process know we're stopped.
581     StopRunningThreads(main_thread->GetID());
582 
583     break;
584   }
585 
586   case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): {
587     // The inferior process or one of its threads is about to exit. We don't
588     // want to do anything with the thread so we just resume it. In case we
589     // want to implement "break on thread exit" functionality, we would need to
590     // stop here.
591 
592     unsigned long data = 0;
593     if (GetEventMessage(thread.GetID(), &data).Fail())
594       data = -1;
595 
596     LLDB_LOG(log,
597              "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, "
598              "WIFSIGNALED={2}, pid = {3}, main_thread = {4}",
599              data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(),
600              is_main_thread);
601 
602 
603     StateType state = thread.GetState();
604     if (!StateIsRunningState(state)) {
605       // Due to a kernel bug, we may sometimes get this stop after the inferior
606       // gets a SIGKILL. This confuses our state tracking logic in
607       // ResumeThread(), since normally, we should not be receiving any ptrace
608       // events while the inferior is stopped. This makes sure that the
609       // inferior is resumed and exits normally.
610       state = eStateRunning;
611     }
612     ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
613 
614     break;
615   }
616 
617   case (SIGTRAP | (PTRACE_EVENT_VFORK_DONE << 8)): {
618     if (bool(m_enabled_extensions & Extension::vfork)) {
619       thread.SetStoppedByVForkDone();
620       StopRunningThreads(thread.GetID());
621     }
622     else
623       ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
624     break;
625   }
626 
627   case 0:
628   case TRAP_TRACE:  // We receive this on single stepping.
629   case TRAP_HWBKPT: // We receive this on watchpoint hit
630   {
631     // If a watchpoint was hit, report it
632     uint32_t wp_index;
633     Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
634         wp_index, (uintptr_t)info.si_addr);
635     if (error.Fail())
636       LLDB_LOG(log,
637                "received error while checking for watchpoint hits, pid = "
638                "{0}, error = {1}",
639                thread.GetID(), error);
640     if (wp_index != LLDB_INVALID_INDEX32) {
641       MonitorWatchpoint(thread, wp_index);
642       break;
643     }
644 
645     // If a breakpoint was hit, report it
646     uint32_t bp_index;
647     error = thread.GetRegisterContext().GetHardwareBreakHitIndex(
648         bp_index, (uintptr_t)info.si_addr);
649     if (error.Fail())
650       LLDB_LOG(log, "received error while checking for hardware "
651                     "breakpoint hits, pid = {0}, error = {1}",
652                thread.GetID(), error);
653     if (bp_index != LLDB_INVALID_INDEX32) {
654       MonitorBreakpoint(thread);
655       break;
656     }
657 
658     // Otherwise, report step over
659     MonitorTrace(thread);
660     break;
661   }
662 
663   case SI_KERNEL:
664 #if defined __mips__
665     // For mips there is no special signal for watchpoint So we check for
666     // watchpoint in kernel trap
667     {
668       // If a watchpoint was hit, report it
669       uint32_t wp_index;
670       Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
671           wp_index, LLDB_INVALID_ADDRESS);
672       if (error.Fail())
673         LLDB_LOG(log,
674                  "received error while checking for watchpoint hits, pid = "
675                  "{0}, error = {1}",
676                  thread.GetID(), error);
677       if (wp_index != LLDB_INVALID_INDEX32) {
678         MonitorWatchpoint(thread, wp_index);
679         break;
680       }
681     }
682 // NO BREAK
683 #endif
684   case TRAP_BRKPT:
685     MonitorBreakpoint(thread);
686     break;
687 
688   case SIGTRAP:
689   case (SIGTRAP | 0x80):
690     LLDB_LOG(
691         log,
692         "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming",
693         info.si_code, GetID(), thread.GetID());
694 
695     // Ignore these signals until we know more about them.
696     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
697     break;
698 
699   default:
700     LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}",
701              info.si_code, GetID(), thread.GetID());
702     MonitorSignal(info, thread);
703     break;
704   }
705 }
706 
707 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) {
708   Log *log = GetLog(POSIXLog::Process);
709   LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID());
710 
711   // This thread is currently stopped.
712   thread.SetStoppedByTrace();
713 
714   StopRunningThreads(thread.GetID());
715 }
716 
717 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) {
718   Log *log = GetLog(LLDBLog::Process | LLDBLog::Breakpoints);
719   LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID());
720 
721   // Mark the thread as stopped at breakpoint.
722   thread.SetStoppedByBreakpoint();
723   FixupBreakpointPCAsNeeded(thread);
724 
725   if (m_threads_stepping_with_breakpoint.find(thread.GetID()) !=
726       m_threads_stepping_with_breakpoint.end())
727     thread.SetStoppedByTrace();
728 
729   StopRunningThreads(thread.GetID());
730 }
731 
732 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread,
733                                            uint32_t wp_index) {
734   Log *log = GetLog(LLDBLog::Process | LLDBLog::Watchpoints);
735   LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}",
736            thread.GetID(), wp_index);
737 
738   // Mark the thread as stopped at watchpoint. The address is at
739   // (lldb::addr_t)info->si_addr if we need it.
740   thread.SetStoppedByWatchpoint(wp_index);
741 
742   // We need to tell all other running threads before we notify the delegate
743   // about this stop.
744   StopRunningThreads(thread.GetID());
745 }
746 
747 void NativeProcessLinux::MonitorSignal(const siginfo_t &info,
748                                        NativeThreadLinux &thread) {
749   const int signo = info.si_signo;
750   const bool is_from_llgs = info.si_pid == getpid();
751 
752   Log *log = GetLog(POSIXLog::Process);
753 
754   // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
755   // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2)
756   // or raise(3).  Similarly for tgkill(2) on Linux.
757   //
758   // IOW, user generated signals never generate what we consider to be a
759   // "crash".
760   //
761   // Similarly, ACK signals generated by this monitor.
762 
763   // Handle the signal.
764   LLDB_LOG(log,
765            "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, "
766            "waitpid pid = {4})",
767            Host::GetSignalAsCString(signo), signo, info.si_code,
768            thread.GetID());
769 
770   // Check for thread stop notification.
771   if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) {
772     // This is a tgkill()-based stop.
773     LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID());
774 
775     // Check that we're not already marked with a stop reason. Note this thread
776     // really shouldn't already be marked as stopped - if we were, that would
777     // imply that the kernel signaled us with the thread stopping which we
778     // handled and marked as stopped, and that, without an intervening resume,
779     // we received another stop.  It is more likely that we are missing the
780     // marking of a run state somewhere if we find that the thread was marked
781     // as stopped.
782     const StateType thread_state = thread.GetState();
783     if (!StateIsStoppedState(thread_state, false)) {
784       // An inferior thread has stopped because of a SIGSTOP we have sent it.
785       // Generally, these are not important stops and we don't want to report
786       // them as they are just used to stop other threads when one thread (the
787       // one with the *real* stop reason) hits a breakpoint (watchpoint,
788       // etc...). However, in the case of an asynchronous Interrupt(), this
789       // *is* the real stop reason, so we leave the signal intact if this is
790       // the thread that was chosen as the triggering thread.
791       if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
792         if (m_pending_notification_tid == thread.GetID())
793           thread.SetStoppedBySignal(SIGSTOP, &info);
794         else
795           thread.SetStoppedWithNoReason();
796 
797         SetCurrentThreadID(thread.GetID());
798         SignalIfAllThreadsStopped();
799       } else {
800         // We can end up here if stop was initiated by LLGS but by this time a
801         // thread stop has occurred - maybe initiated by another event.
802         Status error = ResumeThread(thread, thread.GetState(), 0);
803         if (error.Fail())
804           LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(),
805                    error);
806       }
807     } else {
808       LLDB_LOG(log,
809                "pid {0} tid {1}, thread was already marked as a stopped "
810                "state (state={2}), leaving stop signal as is",
811                GetID(), thread.GetID(), thread_state);
812       SignalIfAllThreadsStopped();
813     }
814 
815     // Done handling.
816     return;
817   }
818 
819   // Check if debugger should stop at this signal or just ignore it and resume
820   // the inferior.
821   if (m_signals_to_ignore.contains(signo)) {
822      ResumeThread(thread, thread.GetState(), signo);
823      return;
824   }
825 
826   // This thread is stopped.
827   LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo));
828   thread.SetStoppedBySignal(signo, &info);
829 
830   // Send a stop to the debugger after we get all other threads to stop.
831   StopRunningThreads(thread.GetID());
832 }
833 
834 bool NativeProcessLinux::MonitorClone(NativeThreadLinux &parent,
835                                       lldb::pid_t child_pid, int event) {
836   Log *log = GetLog(POSIXLog::Process);
837   LLDB_LOG(log, "parent_tid={0}, child_pid={1}, event={2}", parent.GetID(),
838            child_pid, event);
839 
840   WaitForCloneNotification(child_pid);
841 
842   switch (event) {
843   case PTRACE_EVENT_CLONE: {
844     // PTRACE_EVENT_CLONE can either mean a new thread or a new process.
845     // Try to grab the new process' PGID to figure out which one it is.
846     // If PGID is the same as the PID, then it's a new process.  Otherwise,
847     // it's a thread.
848     auto tgid_ret = getPIDForTID(child_pid);
849     if (tgid_ret != child_pid) {
850       // A new thread should have PGID matching our process' PID.
851       assert(!tgid_ret || tgid_ret.getValue() == GetID());
852 
853       NativeThreadLinux &child_thread = AddThread(child_pid, /*resume*/ true);
854       ThreadWasCreated(child_thread);
855 
856       // Resume the parent.
857       ResumeThread(parent, parent.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
858       break;
859     }
860   }
861     LLVM_FALLTHROUGH;
862   case PTRACE_EVENT_FORK:
863   case PTRACE_EVENT_VFORK: {
864     bool is_vfork = event == PTRACE_EVENT_VFORK;
865     std::unique_ptr<NativeProcessLinux> child_process{new NativeProcessLinux(
866         static_cast<::pid_t>(child_pid), m_terminal_fd, m_delegate, m_arch,
867         m_main_loop, {static_cast<::pid_t>(child_pid)})};
868     if (!is_vfork)
869       child_process->m_software_breakpoints = m_software_breakpoints;
870 
871     Extension expected_ext = is_vfork ? Extension::vfork : Extension::fork;
872     if (bool(m_enabled_extensions & expected_ext)) {
873       m_delegate.NewSubprocess(this, std::move(child_process));
874       // NB: non-vfork clone() is reported as fork
875       parent.SetStoppedByFork(is_vfork, child_pid);
876       StopRunningThreads(parent.GetID());
877     } else {
878       child_process->Detach();
879       ResumeThread(parent, parent.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
880     }
881     break;
882   }
883   default:
884     llvm_unreachable("unknown clone_info.event");
885   }
886 
887   return true;
888 }
889 
890 bool NativeProcessLinux::SupportHardwareSingleStepping() const {
891   if (m_arch.GetMachine() == llvm::Triple::arm || m_arch.IsMIPS())
892     return false;
893   return true;
894 }
895 
896 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) {
897   Log *log = GetLog(POSIXLog::Process);
898   LLDB_LOG(log, "pid {0}", GetID());
899 
900   bool software_single_step = !SupportHardwareSingleStepping();
901 
902   if (software_single_step) {
903     for (const auto &thread : m_threads) {
904       assert(thread && "thread list should not contain NULL threads");
905 
906       const ResumeAction *const action =
907           resume_actions.GetActionForThread(thread->GetID(), true);
908       if (action == nullptr)
909         continue;
910 
911       if (action->state == eStateStepping) {
912         Status error = SetupSoftwareSingleStepping(
913             static_cast<NativeThreadLinux &>(*thread));
914         if (error.Fail())
915           return error;
916       }
917     }
918   }
919 
920   for (const auto &thread : m_threads) {
921     assert(thread && "thread list should not contain NULL threads");
922 
923     const ResumeAction *const action =
924         resume_actions.GetActionForThread(thread->GetID(), true);
925 
926     if (action == nullptr) {
927       LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(),
928                thread->GetID());
929       continue;
930     }
931 
932     LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}",
933              action->state, GetID(), thread->GetID());
934 
935     switch (action->state) {
936     case eStateRunning:
937     case eStateStepping: {
938       // Run the thread, possibly feeding it the signal.
939       const int signo = action->signal;
940       ResumeThread(static_cast<NativeThreadLinux &>(*thread), action->state,
941                    signo);
942       break;
943     }
944 
945     case eStateSuspended:
946     case eStateStopped:
947       llvm_unreachable("Unexpected state");
948 
949     default:
950       return Status("NativeProcessLinux::%s (): unexpected state %s specified "
951                     "for pid %" PRIu64 ", tid %" PRIu64,
952                     __FUNCTION__, StateAsCString(action->state), GetID(),
953                     thread->GetID());
954     }
955   }
956 
957   return Status();
958 }
959 
960 Status NativeProcessLinux::Halt() {
961   Status error;
962 
963   if (kill(GetID(), SIGSTOP) != 0)
964     error.SetErrorToErrno();
965 
966   return error;
967 }
968 
969 Status NativeProcessLinux::Detach() {
970   Status error;
971 
972   // Stop monitoring the inferior.
973   m_sigchld_handle.reset();
974 
975   // Tell ptrace to detach from the process.
976   if (GetID() == LLDB_INVALID_PROCESS_ID)
977     return error;
978 
979   for (const auto &thread : m_threads) {
980     Status e = Detach(thread->GetID());
981     if (e.Fail())
982       error =
983           e; // Save the error, but still attempt to detach from other threads.
984   }
985 
986   m_intel_pt_collector.Clear();
987 
988   return error;
989 }
990 
991 Status NativeProcessLinux::Signal(int signo) {
992   Status error;
993 
994   Log *log = GetLog(POSIXLog::Process);
995   LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo,
996            Host::GetSignalAsCString(signo), GetID());
997 
998   if (kill(GetID(), signo))
999     error.SetErrorToErrno();
1000 
1001   return error;
1002 }
1003 
1004 Status NativeProcessLinux::Interrupt() {
1005   // Pick a running thread (or if none, a not-dead stopped thread) as the
1006   // chosen thread that will be the stop-reason thread.
1007   Log *log = GetLog(POSIXLog::Process);
1008 
1009   NativeThreadProtocol *running_thread = nullptr;
1010   NativeThreadProtocol *stopped_thread = nullptr;
1011 
1012   LLDB_LOG(log, "selecting running thread for interrupt target");
1013   for (const auto &thread : m_threads) {
1014     // If we have a running or stepping thread, we'll call that the target of
1015     // the interrupt.
1016     const auto thread_state = thread->GetState();
1017     if (thread_state == eStateRunning || thread_state == eStateStepping) {
1018       running_thread = thread.get();
1019       break;
1020     } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) {
1021       // Remember the first non-dead stopped thread.  We'll use that as a
1022       // backup if there are no running threads.
1023       stopped_thread = thread.get();
1024     }
1025   }
1026 
1027   if (!running_thread && !stopped_thread) {
1028     Status error("found no running/stepping or live stopped threads as target "
1029                  "for interrupt");
1030     LLDB_LOG(log, "skipping due to error: {0}", error);
1031 
1032     return error;
1033   }
1034 
1035   NativeThreadProtocol *deferred_signal_thread =
1036       running_thread ? running_thread : stopped_thread;
1037 
1038   LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(),
1039            running_thread ? "running" : "stopped",
1040            deferred_signal_thread->GetID());
1041 
1042   StopRunningThreads(deferred_signal_thread->GetID());
1043 
1044   return Status();
1045 }
1046 
1047 Status NativeProcessLinux::Kill() {
1048   Log *log = GetLog(POSIXLog::Process);
1049   LLDB_LOG(log, "pid {0}", GetID());
1050 
1051   Status error;
1052 
1053   switch (m_state) {
1054   case StateType::eStateInvalid:
1055   case StateType::eStateExited:
1056   case StateType::eStateCrashed:
1057   case StateType::eStateDetached:
1058   case StateType::eStateUnloaded:
1059     // Nothing to do - the process is already dead.
1060     LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(),
1061              m_state);
1062     return error;
1063 
1064   case StateType::eStateConnected:
1065   case StateType::eStateAttaching:
1066   case StateType::eStateLaunching:
1067   case StateType::eStateStopped:
1068   case StateType::eStateRunning:
1069   case StateType::eStateStepping:
1070   case StateType::eStateSuspended:
1071     // We can try to kill a process in these states.
1072     break;
1073   }
1074 
1075   if (kill(GetID(), SIGKILL) != 0) {
1076     error.SetErrorToErrno();
1077     return error;
1078   }
1079 
1080   return error;
1081 }
1082 
1083 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr,
1084                                                MemoryRegionInfo &range_info) {
1085   // FIXME review that the final memory region returned extends to the end of
1086   // the virtual address space,
1087   // with no perms if it is not mapped.
1088 
1089   // Use an approach that reads memory regions from /proc/{pid}/maps. Assume
1090   // proc maps entries are in ascending order.
1091   // FIXME assert if we find differently.
1092 
1093   if (m_supports_mem_region == LazyBool::eLazyBoolNo) {
1094     // We're done.
1095     return Status("unsupported");
1096   }
1097 
1098   Status error = PopulateMemoryRegionCache();
1099   if (error.Fail()) {
1100     return error;
1101   }
1102 
1103   lldb::addr_t prev_base_address = 0;
1104 
1105   // FIXME start by finding the last region that is <= target address using
1106   // binary search.  Data is sorted.
1107   // There can be a ton of regions on pthreads apps with lots of threads.
1108   for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end();
1109        ++it) {
1110     MemoryRegionInfo &proc_entry_info = it->first;
1111 
1112     // Sanity check assumption that /proc/{pid}/maps entries are ascending.
1113     assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) &&
1114            "descending /proc/pid/maps entries detected, unexpected");
1115     prev_base_address = proc_entry_info.GetRange().GetRangeBase();
1116     UNUSED_IF_ASSERT_DISABLED(prev_base_address);
1117 
1118     // If the target address comes before this entry, indicate distance to next
1119     // region.
1120     if (load_addr < proc_entry_info.GetRange().GetRangeBase()) {
1121       range_info.GetRange().SetRangeBase(load_addr);
1122       range_info.GetRange().SetByteSize(
1123           proc_entry_info.GetRange().GetRangeBase() - load_addr);
1124       range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1125       range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1126       range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1127       range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1128 
1129       return error;
1130     } else if (proc_entry_info.GetRange().Contains(load_addr)) {
1131       // The target address is within the memory region we're processing here.
1132       range_info = proc_entry_info;
1133       return error;
1134     }
1135 
1136     // The target memory address comes somewhere after the region we just
1137     // parsed.
1138   }
1139 
1140   // If we made it here, we didn't find an entry that contained the given
1141   // address. Return the load_addr as start and the amount of bytes betwwen
1142   // load address and the end of the memory as size.
1143   range_info.GetRange().SetRangeBase(load_addr);
1144   range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS);
1145   range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1146   range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1147   range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1148   range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1149   return error;
1150 }
1151 
1152 Status NativeProcessLinux::PopulateMemoryRegionCache() {
1153   Log *log = GetLog(POSIXLog::Process);
1154 
1155   // If our cache is empty, pull the latest.  There should always be at least
1156   // one memory region if memory region handling is supported.
1157   if (!m_mem_region_cache.empty()) {
1158     LLDB_LOG(log, "reusing {0} cached memory region entries",
1159              m_mem_region_cache.size());
1160     return Status();
1161   }
1162 
1163   Status Result;
1164   LinuxMapCallback callback = [&](llvm::Expected<MemoryRegionInfo> Info) {
1165     if (Info) {
1166       FileSpec file_spec(Info->GetName().GetCString());
1167       FileSystem::Instance().Resolve(file_spec);
1168       m_mem_region_cache.emplace_back(*Info, file_spec);
1169       return true;
1170     }
1171 
1172     Result = Info.takeError();
1173     m_supports_mem_region = LazyBool::eLazyBoolNo;
1174     LLDB_LOG(log, "failed to parse proc maps: {0}", Result);
1175     return false;
1176   };
1177 
1178   // Linux kernel since 2.6.14 has /proc/{pid}/smaps
1179   // if CONFIG_PROC_PAGE_MONITOR is enabled
1180   auto BufferOrError = getProcFile(GetID(), "smaps");
1181   if (BufferOrError)
1182     ParseLinuxSMapRegions(BufferOrError.get()->getBuffer(), callback);
1183   else {
1184     BufferOrError = getProcFile(GetID(), "maps");
1185     if (!BufferOrError) {
1186       m_supports_mem_region = LazyBool::eLazyBoolNo;
1187       return BufferOrError.getError();
1188     }
1189 
1190     ParseLinuxMapRegions(BufferOrError.get()->getBuffer(), callback);
1191   }
1192 
1193   if (Result.Fail())
1194     return Result;
1195 
1196   if (m_mem_region_cache.empty()) {
1197     // No entries after attempting to read them.  This shouldn't happen if
1198     // /proc/{pid}/maps is supported. Assume we don't support map entries via
1199     // procfs.
1200     m_supports_mem_region = LazyBool::eLazyBoolNo;
1201     LLDB_LOG(log,
1202              "failed to find any procfs maps entries, assuming no support "
1203              "for memory region metadata retrieval");
1204     return Status("not supported");
1205   }
1206 
1207   LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps",
1208            m_mem_region_cache.size(), GetID());
1209 
1210   // We support memory retrieval, remember that.
1211   m_supports_mem_region = LazyBool::eLazyBoolYes;
1212   return Status();
1213 }
1214 
1215 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) {
1216   Log *log = GetLog(POSIXLog::Process);
1217   LLDB_LOG(log, "newBumpId={0}", newBumpId);
1218   LLDB_LOG(log, "clearing {0} entries from memory region cache",
1219            m_mem_region_cache.size());
1220   m_mem_region_cache.clear();
1221 }
1222 
1223 llvm::Expected<uint64_t>
1224 NativeProcessLinux::Syscall(llvm::ArrayRef<uint64_t> args) {
1225   PopulateMemoryRegionCache();
1226   auto region_it = llvm::find_if(m_mem_region_cache, [](const auto &pair) {
1227     return pair.first.GetExecutable() == MemoryRegionInfo::eYes;
1228   });
1229   if (region_it == m_mem_region_cache.end())
1230     return llvm::createStringError(llvm::inconvertibleErrorCode(),
1231                                    "No executable memory region found!");
1232 
1233   addr_t exe_addr = region_it->first.GetRange().GetRangeBase();
1234 
1235   NativeThreadLinux &thread = *GetThreadByID(GetID());
1236   assert(thread.GetState() == eStateStopped);
1237   NativeRegisterContextLinux &reg_ctx = thread.GetRegisterContext();
1238 
1239   NativeRegisterContextLinux::SyscallData syscall_data =
1240       *reg_ctx.GetSyscallData();
1241 
1242   DataBufferSP registers_sp;
1243   if (llvm::Error Err = reg_ctx.ReadAllRegisterValues(registers_sp).ToError())
1244     return std::move(Err);
1245   auto restore_regs = llvm::make_scope_exit(
1246       [&] { reg_ctx.WriteAllRegisterValues(registers_sp); });
1247 
1248   llvm::SmallVector<uint8_t, 8> memory(syscall_data.Insn.size());
1249   size_t bytes_read;
1250   if (llvm::Error Err =
1251           ReadMemory(exe_addr, memory.data(), memory.size(), bytes_read)
1252               .ToError()) {
1253     return std::move(Err);
1254   }
1255 
1256   auto restore_mem = llvm::make_scope_exit(
1257       [&] { WriteMemory(exe_addr, memory.data(), memory.size(), bytes_read); });
1258 
1259   if (llvm::Error Err = reg_ctx.SetPC(exe_addr).ToError())
1260     return std::move(Err);
1261 
1262   for (const auto &zip : llvm::zip_first(args, syscall_data.Args)) {
1263     if (llvm::Error Err =
1264             reg_ctx
1265                 .WriteRegisterFromUnsigned(std::get<1>(zip), std::get<0>(zip))
1266                 .ToError()) {
1267       return std::move(Err);
1268     }
1269   }
1270   if (llvm::Error Err = WriteMemory(exe_addr, syscall_data.Insn.data(),
1271                                     syscall_data.Insn.size(), bytes_read)
1272                             .ToError())
1273     return std::move(Err);
1274 
1275   m_mem_region_cache.clear();
1276 
1277   // With software single stepping the syscall insn buffer must also include a
1278   // trap instruction to stop the process.
1279   int req = SupportHardwareSingleStepping() ? PTRACE_SINGLESTEP : PTRACE_CONT;
1280   if (llvm::Error Err =
1281           PtraceWrapper(req, thread.GetID(), nullptr, nullptr).ToError())
1282     return std::move(Err);
1283 
1284   int status;
1285   ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, thread.GetID(),
1286                                                  &status, __WALL);
1287   if (wait_pid == -1) {
1288     return llvm::errorCodeToError(
1289         std::error_code(errno, std::generic_category()));
1290   }
1291   assert((unsigned)wait_pid == thread.GetID());
1292 
1293   uint64_t result = reg_ctx.ReadRegisterAsUnsigned(syscall_data.Result, -ESRCH);
1294 
1295   // Values larger than this are actually negative errno numbers.
1296   uint64_t errno_threshold =
1297       (uint64_t(-1) >> (64 - 8 * m_arch.GetAddressByteSize())) - 0x1000;
1298   if (result > errno_threshold) {
1299     return llvm::errorCodeToError(
1300         std::error_code(-result & 0xfff, std::generic_category()));
1301   }
1302 
1303   return result;
1304 }
1305 
1306 llvm::Expected<addr_t>
1307 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions) {
1308 
1309   llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data =
1310       GetCurrentThread()->GetRegisterContext().GetMmapData();
1311   if (!mmap_data)
1312     return llvm::make_error<UnimplementedError>();
1313 
1314   unsigned prot = PROT_NONE;
1315   assert((permissions & (ePermissionsReadable | ePermissionsWritable |
1316                          ePermissionsExecutable)) == permissions &&
1317          "Unknown permission!");
1318   if (permissions & ePermissionsReadable)
1319     prot |= PROT_READ;
1320   if (permissions & ePermissionsWritable)
1321     prot |= PROT_WRITE;
1322   if (permissions & ePermissionsExecutable)
1323     prot |= PROT_EXEC;
1324 
1325   llvm::Expected<uint64_t> Result =
1326       Syscall({mmap_data->SysMmap, 0, size, prot, MAP_ANONYMOUS | MAP_PRIVATE,
1327                uint64_t(-1), 0});
1328   if (Result)
1329     m_allocated_memory.try_emplace(*Result, size);
1330   return Result;
1331 }
1332 
1333 llvm::Error NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) {
1334   llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data =
1335       GetCurrentThread()->GetRegisterContext().GetMmapData();
1336   if (!mmap_data)
1337     return llvm::make_error<UnimplementedError>();
1338 
1339   auto it = m_allocated_memory.find(addr);
1340   if (it == m_allocated_memory.end())
1341     return llvm::createStringError(llvm::errc::invalid_argument,
1342                                    "Memory not allocated by the debugger.");
1343 
1344   llvm::Expected<uint64_t> Result =
1345       Syscall({mmap_data->SysMunmap, addr, it->second});
1346   if (!Result)
1347     return Result.takeError();
1348 
1349   m_allocated_memory.erase(it);
1350   return llvm::Error::success();
1351 }
1352 
1353 Status NativeProcessLinux::ReadMemoryTags(int32_t type, lldb::addr_t addr,
1354                                           size_t len,
1355                                           std::vector<uint8_t> &tags) {
1356   llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details =
1357       GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type);
1358   if (!details)
1359     return Status(details.takeError());
1360 
1361   // Ignore 0 length read
1362   if (!len)
1363     return Status();
1364 
1365   // lldb will align the range it requests but it is not required to by
1366   // the protocol so we'll do it again just in case.
1367   // Remove tag bits too. Ptrace calls may work regardless but that
1368   // is not a guarantee.
1369   MemoryTagManager::TagRange range(details->manager->RemoveTagBits(addr), len);
1370   range = details->manager->ExpandToGranule(range);
1371 
1372   // Allocate enough space for all tags to be read
1373   size_t num_tags = range.GetByteSize() / details->manager->GetGranuleSize();
1374   tags.resize(num_tags * details->manager->GetTagSizeInBytes());
1375 
1376   struct iovec tags_iovec;
1377   uint8_t *dest = tags.data();
1378   lldb::addr_t read_addr = range.GetRangeBase();
1379 
1380   // This call can return partial data so loop until we error or
1381   // get all tags back.
1382   while (num_tags) {
1383     tags_iovec.iov_base = dest;
1384     tags_iovec.iov_len = num_tags;
1385 
1386     Status error = NativeProcessLinux::PtraceWrapper(
1387         details->ptrace_read_req, GetID(), reinterpret_cast<void *>(read_addr),
1388         static_cast<void *>(&tags_iovec), 0, nullptr);
1389 
1390     if (error.Fail()) {
1391       // Discard partial reads
1392       tags.resize(0);
1393       return error;
1394     }
1395 
1396     size_t tags_read = tags_iovec.iov_len;
1397     assert(tags_read && (tags_read <= num_tags));
1398 
1399     dest += tags_read * details->manager->GetTagSizeInBytes();
1400     read_addr += details->manager->GetGranuleSize() * tags_read;
1401     num_tags -= tags_read;
1402   }
1403 
1404   return Status();
1405 }
1406 
1407 Status NativeProcessLinux::WriteMemoryTags(int32_t type, lldb::addr_t addr,
1408                                            size_t len,
1409                                            const std::vector<uint8_t> &tags) {
1410   llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details =
1411       GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type);
1412   if (!details)
1413     return Status(details.takeError());
1414 
1415   // Ignore 0 length write
1416   if (!len)
1417     return Status();
1418 
1419   // lldb will align the range it requests but it is not required to by
1420   // the protocol so we'll do it again just in case.
1421   // Remove tag bits too. Ptrace calls may work regardless but that
1422   // is not a guarantee.
1423   MemoryTagManager::TagRange range(details->manager->RemoveTagBits(addr), len);
1424   range = details->manager->ExpandToGranule(range);
1425 
1426   // Not checking number of tags here, we may repeat them below
1427   llvm::Expected<std::vector<lldb::addr_t>> unpacked_tags_or_err =
1428       details->manager->UnpackTagsData(tags);
1429   if (!unpacked_tags_or_err)
1430     return Status(unpacked_tags_or_err.takeError());
1431 
1432   llvm::Expected<std::vector<lldb::addr_t>> repeated_tags_or_err =
1433       details->manager->RepeatTagsForRange(*unpacked_tags_or_err, range);
1434   if (!repeated_tags_or_err)
1435     return Status(repeated_tags_or_err.takeError());
1436 
1437   // Repack them for ptrace to use
1438   llvm::Expected<std::vector<uint8_t>> final_tag_data =
1439       details->manager->PackTags(*repeated_tags_or_err);
1440   if (!final_tag_data)
1441     return Status(final_tag_data.takeError());
1442 
1443   struct iovec tags_vec;
1444   uint8_t *src = final_tag_data->data();
1445   lldb::addr_t write_addr = range.GetRangeBase();
1446   // unpacked tags size because the number of bytes per tag might not be 1
1447   size_t num_tags = repeated_tags_or_err->size();
1448 
1449   // This call can partially write tags, so we loop until we
1450   // error or all tags have been written.
1451   while (num_tags > 0) {
1452     tags_vec.iov_base = src;
1453     tags_vec.iov_len = num_tags;
1454 
1455     Status error = NativeProcessLinux::PtraceWrapper(
1456         details->ptrace_write_req, GetID(),
1457         reinterpret_cast<void *>(write_addr), static_cast<void *>(&tags_vec), 0,
1458         nullptr);
1459 
1460     if (error.Fail()) {
1461       // Don't attempt to restore the original values in the case of a partial
1462       // write
1463       return error;
1464     }
1465 
1466     size_t tags_written = tags_vec.iov_len;
1467     assert(tags_written && (tags_written <= num_tags));
1468 
1469     src += tags_written * details->manager->GetTagSizeInBytes();
1470     write_addr += details->manager->GetGranuleSize() * tags_written;
1471     num_tags -= tags_written;
1472   }
1473 
1474   return Status();
1475 }
1476 
1477 size_t NativeProcessLinux::UpdateThreads() {
1478   // The NativeProcessLinux monitoring threads are always up to date with
1479   // respect to thread state and they keep the thread list populated properly.
1480   // All this method needs to do is return the thread count.
1481   return m_threads.size();
1482 }
1483 
1484 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size,
1485                                          bool hardware) {
1486   if (hardware)
1487     return SetHardwareBreakpoint(addr, size);
1488   else
1489     return SetSoftwareBreakpoint(addr, size);
1490 }
1491 
1492 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) {
1493   if (hardware)
1494     return RemoveHardwareBreakpoint(addr);
1495   else
1496     return NativeProcessProtocol::RemoveBreakpoint(addr);
1497 }
1498 
1499 llvm::Expected<llvm::ArrayRef<uint8_t>>
1500 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(size_t size_hint) {
1501   // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
1502   // linux kernel does otherwise.
1503   static const uint8_t g_arm_opcode[] = {0xf0, 0x01, 0xf0, 0xe7};
1504   static const uint8_t g_thumb_opcode[] = {0x01, 0xde};
1505 
1506   switch (GetArchitecture().GetMachine()) {
1507   case llvm::Triple::arm:
1508     switch (size_hint) {
1509     case 2:
1510       return llvm::makeArrayRef(g_thumb_opcode);
1511     case 4:
1512       return llvm::makeArrayRef(g_arm_opcode);
1513     default:
1514       return llvm::createStringError(llvm::inconvertibleErrorCode(),
1515                                      "Unrecognised trap opcode size hint!");
1516     }
1517   default:
1518     return NativeProcessProtocol::GetSoftwareBreakpointTrapOpcode(size_hint);
1519   }
1520 }
1521 
1522 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size,
1523                                       size_t &bytes_read) {
1524   if (ProcessVmReadvSupported()) {
1525     // The process_vm_readv path is about 50 times faster than ptrace api. We
1526     // want to use this syscall if it is supported.
1527 
1528     const ::pid_t pid = GetID();
1529 
1530     struct iovec local_iov, remote_iov;
1531     local_iov.iov_base = buf;
1532     local_iov.iov_len = size;
1533     remote_iov.iov_base = reinterpret_cast<void *>(addr);
1534     remote_iov.iov_len = size;
1535 
1536     bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
1537     const bool success = bytes_read == size;
1538 
1539     Log *log = GetLog(POSIXLog::Process);
1540     LLDB_LOG(log,
1541              "using process_vm_readv to read {0} bytes from inferior "
1542              "address {1:x}: {2}",
1543              size, addr, success ? "Success" : llvm::sys::StrError(errno));
1544 
1545     if (success)
1546       return Status();
1547     // else the call failed for some reason, let's retry the read using ptrace
1548     // api.
1549   }
1550 
1551   unsigned char *dst = static_cast<unsigned char *>(buf);
1552   size_t remainder;
1553   long data;
1554 
1555   Log *log = GetLog(POSIXLog::Memory);
1556   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1557 
1558   for (bytes_read = 0; bytes_read < size; bytes_read += remainder) {
1559     Status error = NativeProcessLinux::PtraceWrapper(
1560         PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data);
1561     if (error.Fail())
1562       return error;
1563 
1564     remainder = size - bytes_read;
1565     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1566 
1567     // Copy the data into our buffer
1568     memcpy(dst, &data, remainder);
1569 
1570     LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1571     addr += k_ptrace_word_size;
1572     dst += k_ptrace_word_size;
1573   }
1574   return Status();
1575 }
1576 
1577 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf,
1578                                        size_t size, size_t &bytes_written) {
1579   const unsigned char *src = static_cast<const unsigned char *>(buf);
1580   size_t remainder;
1581   Status error;
1582 
1583   Log *log = GetLog(POSIXLog::Memory);
1584   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1585 
1586   for (bytes_written = 0; bytes_written < size; bytes_written += remainder) {
1587     remainder = size - bytes_written;
1588     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1589 
1590     if (remainder == k_ptrace_word_size) {
1591       unsigned long data = 0;
1592       memcpy(&data, src, k_ptrace_word_size);
1593 
1594       LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1595       error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(),
1596                                                 (void *)addr, (void *)data);
1597       if (error.Fail())
1598         return error;
1599     } else {
1600       unsigned char buff[8];
1601       size_t bytes_read;
1602       error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
1603       if (error.Fail())
1604         return error;
1605 
1606       memcpy(buff, src, remainder);
1607 
1608       size_t bytes_written_rec;
1609       error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
1610       if (error.Fail())
1611         return error;
1612 
1613       LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src,
1614                *(unsigned long *)buff);
1615     }
1616 
1617     addr += k_ptrace_word_size;
1618     src += k_ptrace_word_size;
1619   }
1620   return error;
1621 }
1622 
1623 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) const {
1624   return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
1625 }
1626 
1627 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid,
1628                                            unsigned long *message) {
1629   return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
1630 }
1631 
1632 Status NativeProcessLinux::Detach(lldb::tid_t tid) {
1633   if (tid == LLDB_INVALID_THREAD_ID)
1634     return Status();
1635 
1636   return PtraceWrapper(PTRACE_DETACH, tid);
1637 }
1638 
1639 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) {
1640   for (const auto &thread : m_threads) {
1641     assert(thread && "thread list should not contain NULL threads");
1642     if (thread->GetID() == thread_id) {
1643       // We have this thread.
1644       return true;
1645     }
1646   }
1647 
1648   // We don't have this thread.
1649   return false;
1650 }
1651 
1652 void NativeProcessLinux::StopTrackingThread(NativeThreadLinux &thread) {
1653   Log *const log = GetLog(POSIXLog::Thread);
1654   lldb::tid_t thread_id = thread.GetID();
1655   LLDB_LOG(log, "tid: {0}", thread_id);
1656 
1657   auto it = llvm::find_if(m_threads, [&](const auto &thread_up) {
1658     return thread_up.get() == &thread;
1659   });
1660   assert(it != m_threads.end());
1661   m_threads.erase(it);
1662 
1663   NotifyTracersOfThreadDestroyed(thread_id);
1664   SignalIfAllThreadsStopped();
1665 }
1666 
1667 Status NativeProcessLinux::NotifyTracersOfNewThread(lldb::tid_t tid) {
1668   Log *log = GetLog(POSIXLog::Thread);
1669   Status error(m_intel_pt_collector.OnThreadCreated(tid));
1670   if (error.Fail())
1671     LLDB_LOG(log, "Failed to trace a new thread with intel-pt, tid = {0}. {1}",
1672              tid, error.AsCString());
1673   return error;
1674 }
1675 
1676 Status NativeProcessLinux::NotifyTracersOfThreadDestroyed(lldb::tid_t tid) {
1677   Log *log = GetLog(POSIXLog::Thread);
1678   Status error(m_intel_pt_collector.OnThreadDestroyed(tid));
1679   if (error.Fail())
1680     LLDB_LOG(log,
1681              "Failed to stop a destroyed thread with intel-pt, tid = {0}. {1}",
1682              tid, error.AsCString());
1683   return error;
1684 }
1685 
1686 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id,
1687                                                  bool resume) {
1688   Log *log = GetLog(POSIXLog::Thread);
1689   LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id);
1690 
1691   assert(!HasThreadNoLock(thread_id) &&
1692          "attempted to add a thread by id that already exists");
1693 
1694   // If this is the first thread, save it as the current thread
1695   if (m_threads.empty())
1696     SetCurrentThreadID(thread_id);
1697 
1698   m_threads.push_back(std::make_unique<NativeThreadLinux>(*this, thread_id));
1699   NativeThreadLinux &thread =
1700       static_cast<NativeThreadLinux &>(*m_threads.back());
1701 
1702   Status tracing_error = NotifyTracersOfNewThread(thread.GetID());
1703   if (tracing_error.Fail()) {
1704     thread.SetStoppedByProcessorTrace(tracing_error.AsCString());
1705     StopRunningThreads(thread.GetID());
1706   } else if (resume)
1707     ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
1708   else
1709     thread.SetStoppedBySignal(SIGSTOP);
1710 
1711   return thread;
1712 }
1713 
1714 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path,
1715                                                    FileSpec &file_spec) {
1716   Status error = PopulateMemoryRegionCache();
1717   if (error.Fail())
1718     return error;
1719 
1720   FileSpec module_file_spec(module_path);
1721   FileSystem::Instance().Resolve(module_file_spec);
1722 
1723   file_spec.Clear();
1724   for (const auto &it : m_mem_region_cache) {
1725     if (it.second.GetFilename() == module_file_spec.GetFilename()) {
1726       file_spec = it.second;
1727       return Status();
1728     }
1729   }
1730   return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
1731                 module_file_spec.GetFilename().AsCString(), GetID());
1732 }
1733 
1734 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name,
1735                                               lldb::addr_t &load_addr) {
1736   load_addr = LLDB_INVALID_ADDRESS;
1737   Status error = PopulateMemoryRegionCache();
1738   if (error.Fail())
1739     return error;
1740 
1741   FileSpec file(file_name);
1742   for (const auto &it : m_mem_region_cache) {
1743     if (it.second == file) {
1744       load_addr = it.first.GetRange().GetRangeBase();
1745       return Status();
1746     }
1747   }
1748   return Status("No load address found for specified file.");
1749 }
1750 
1751 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) {
1752   return static_cast<NativeThreadLinux *>(
1753       NativeProcessProtocol::GetThreadByID(tid));
1754 }
1755 
1756 NativeThreadLinux *NativeProcessLinux::GetCurrentThread() {
1757   return static_cast<NativeThreadLinux *>(
1758       NativeProcessProtocol::GetCurrentThread());
1759 }
1760 
1761 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread,
1762                                         lldb::StateType state, int signo) {
1763   Log *const log = GetLog(POSIXLog::Thread);
1764   LLDB_LOG(log, "tid: {0}", thread.GetID());
1765 
1766   // Before we do the resume below, first check if we have a pending stop
1767   // notification that is currently waiting for all threads to stop.  This is
1768   // potentially a buggy situation since we're ostensibly waiting for threads
1769   // to stop before we send out the pending notification, and here we are
1770   // resuming one before we send out the pending stop notification.
1771   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
1772     LLDB_LOG(log,
1773              "about to resume tid {0} per explicit request but we have a "
1774              "pending stop notification (tid {1}) that is actively "
1775              "waiting for this thread to stop. Valid sequence of events?",
1776              thread.GetID(), m_pending_notification_tid);
1777   }
1778 
1779   // Request a resume.  We expect this to be synchronous and the system to
1780   // reflect it is running after this completes.
1781   switch (state) {
1782   case eStateRunning: {
1783     const auto resume_result = thread.Resume(signo);
1784     if (resume_result.Success())
1785       SetState(eStateRunning, true);
1786     return resume_result;
1787   }
1788   case eStateStepping: {
1789     const auto step_result = thread.SingleStep(signo);
1790     if (step_result.Success())
1791       SetState(eStateRunning, true);
1792     return step_result;
1793   }
1794   default:
1795     LLDB_LOG(log, "Unhandled state {0}.", state);
1796     llvm_unreachable("Unhandled state for resume");
1797   }
1798 }
1799 
1800 //===----------------------------------------------------------------------===//
1801 
1802 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) {
1803   Log *const log = GetLog(POSIXLog::Thread);
1804   LLDB_LOG(log, "about to process event: (triggering_tid: {0})",
1805            triggering_tid);
1806 
1807   m_pending_notification_tid = triggering_tid;
1808 
1809   // Request a stop for all the thread stops that need to be stopped and are
1810   // not already known to be stopped.
1811   for (const auto &thread : m_threads) {
1812     if (StateIsRunningState(thread->GetState()))
1813       static_cast<NativeThreadLinux *>(thread.get())->RequestStop();
1814   }
1815 
1816   SignalIfAllThreadsStopped();
1817   LLDB_LOG(log, "event processing done");
1818 }
1819 
1820 void NativeProcessLinux::SignalIfAllThreadsStopped() {
1821   if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
1822     return; // No pending notification. Nothing to do.
1823 
1824   for (const auto &thread_sp : m_threads) {
1825     if (StateIsRunningState(thread_sp->GetState()))
1826       return; // Some threads are still running. Don't signal yet.
1827   }
1828 
1829   // We have a pending notification and all threads have stopped.
1830   Log *log = GetLog(LLDBLog::Process | LLDBLog::Breakpoints);
1831 
1832   // Clear any temporary breakpoints we used to implement software single
1833   // stepping.
1834   for (const auto &thread_info : m_threads_stepping_with_breakpoint) {
1835     Status error = RemoveBreakpoint(thread_info.second);
1836     if (error.Fail())
1837       LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}",
1838                thread_info.first, error);
1839   }
1840   m_threads_stepping_with_breakpoint.clear();
1841 
1842   // Notify the delegate about the stop
1843   SetCurrentThreadID(m_pending_notification_tid);
1844   SetState(StateType::eStateStopped, true);
1845   m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
1846 }
1847 
1848 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) {
1849   Log *const log = GetLog(POSIXLog::Thread);
1850   LLDB_LOG(log, "tid: {0}", thread.GetID());
1851 
1852   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID &&
1853       StateIsRunningState(thread.GetState())) {
1854     // We will need to wait for this new thread to stop as well before firing
1855     // the notification.
1856     thread.RequestStop();
1857   }
1858 }
1859 
1860 void NativeProcessLinux::SigchldHandler() {
1861   Log *log = GetLog(POSIXLog::Process);
1862 
1863   // Threads can appear or disappear as a result of event processing, so gather
1864   // the events upfront.
1865   llvm::DenseMap<lldb::tid_t, WaitStatus> tid_events;
1866   for (const auto &thread_up : m_threads) {
1867     int status = -1;
1868     ::pid_t wait_pid =
1869         llvm::sys::RetryAfterSignal(-1, ::waitpid, thread_up->GetID(), &status,
1870                                     __WALL | __WNOTHREAD | WNOHANG);
1871 
1872     if (wait_pid == 0)
1873       continue; // Nothing to do for this thread.
1874 
1875     if (wait_pid == -1) {
1876       Status error(errno, eErrorTypePOSIX);
1877       LLDB_LOG(log, "waitpid({0}, &status, _) failed: {1}", thread_up->GetID(),
1878                error);
1879       continue;
1880     }
1881 
1882     assert(wait_pid == static_cast<::pid_t>(thread_up->GetID()));
1883 
1884     WaitStatus wait_status = WaitStatus::Decode(status);
1885 
1886     LLDB_LOG(log, "waitpid({0})  got status = {1}", thread_up->GetID(),
1887              wait_status);
1888     tid_events.try_emplace(thread_up->GetID(), wait_status);
1889   }
1890 
1891   for (auto &KV : tid_events) {
1892     LLDB_LOG(log, "processing {0}({1}) ...", KV.first, KV.second);
1893     NativeThreadLinux *thread = GetThreadByID(KV.first);
1894     if (thread) {
1895       MonitorCallback(*thread, KV.second);
1896     } else {
1897       // This can happen if one of the events is an main thread exit.
1898       LLDB_LOG(log, "... but the thread has disappeared");
1899     }
1900   }
1901 }
1902 
1903 // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets
1904 // errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
1905 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr,
1906                                          void *data, size_t data_size,
1907                                          long *result) {
1908   Status error;
1909   long int ret;
1910 
1911   Log *log = GetLog(POSIXLog::Ptrace);
1912 
1913   PtraceDisplayBytes(req, data, data_size);
1914 
1915   errno = 0;
1916   if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
1917     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
1918                  *(unsigned int *)addr, data);
1919   else
1920     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
1921                  addr, data);
1922 
1923   if (ret == -1)
1924     error.SetErrorToErrno();
1925 
1926   if (result)
1927     *result = ret;
1928 
1929   LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data,
1930            data_size, ret);
1931 
1932   PtraceDisplayBytes(req, data, data_size);
1933 
1934   if (error.Fail())
1935     LLDB_LOG(log, "ptrace() failed: {0}", error);
1936 
1937   return error;
1938 }
1939 
1940 llvm::Expected<TraceSupportedResponse> NativeProcessLinux::TraceSupported() {
1941   if (IntelPTCollector::IsSupported())
1942     return TraceSupportedResponse{"intel-pt", "Intel Processor Trace"};
1943   return NativeProcessProtocol::TraceSupported();
1944 }
1945 
1946 Error NativeProcessLinux::TraceStart(StringRef json_request, StringRef type) {
1947   if (type == "intel-pt") {
1948     if (Expected<TraceIntelPTStartRequest> request =
1949             json::parse<TraceIntelPTStartRequest>(json_request,
1950                                                   "TraceIntelPTStartRequest")) {
1951       std::vector<lldb::tid_t> process_threads;
1952       for (auto &thread : m_threads)
1953         process_threads.push_back(thread->GetID());
1954       return m_intel_pt_collector.TraceStart(*request, process_threads);
1955     } else
1956       return request.takeError();
1957   }
1958 
1959   return NativeProcessProtocol::TraceStart(json_request, type);
1960 }
1961 
1962 Error NativeProcessLinux::TraceStop(const TraceStopRequest &request) {
1963   if (request.type == "intel-pt")
1964     return m_intel_pt_collector.TraceStop(request);
1965   return NativeProcessProtocol::TraceStop(request);
1966 }
1967 
1968 Expected<json::Value> NativeProcessLinux::TraceGetState(StringRef type) {
1969   if (type == "intel-pt")
1970     return m_intel_pt_collector.GetState();
1971   return NativeProcessProtocol::TraceGetState(type);
1972 }
1973 
1974 Expected<std::vector<uint8_t>> NativeProcessLinux::TraceGetBinaryData(
1975     const TraceGetBinaryDataRequest &request) {
1976   if (request.type == "intel-pt")
1977     return m_intel_pt_collector.GetBinaryData(request);
1978   return NativeProcessProtocol::TraceGetBinaryData(request);
1979 }
1980