1 //===-- NativeProcessLinux.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "NativeProcessLinux.h" 10 11 #include <errno.h> 12 #include <stdint.h> 13 #include <string.h> 14 #include <unistd.h> 15 16 #include <fstream> 17 #include <mutex> 18 #include <sstream> 19 #include <string> 20 #include <unordered_map> 21 22 #include "NativeThreadLinux.h" 23 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 24 #include "Plugins/Process/Utility/LinuxProcMaps.h" 25 #include "Procfs.h" 26 #include "lldb/Core/ModuleSpec.h" 27 #include "lldb/Host/Host.h" 28 #include "lldb/Host/HostProcess.h" 29 #include "lldb/Host/ProcessLaunchInfo.h" 30 #include "lldb/Host/PseudoTerminal.h" 31 #include "lldb/Host/ThreadLauncher.h" 32 #include "lldb/Host/common/NativeRegisterContext.h" 33 #include "lldb/Host/linux/Host.h" 34 #include "lldb/Host/linux/Ptrace.h" 35 #include "lldb/Host/linux/Uio.h" 36 #include "lldb/Host/posix/ProcessLauncherPosixFork.h" 37 #include "lldb/Symbol/ObjectFile.h" 38 #include "lldb/Target/Process.h" 39 #include "lldb/Target/Target.h" 40 #include "lldb/Utility/LLDBAssert.h" 41 #include "lldb/Utility/State.h" 42 #include "lldb/Utility/Status.h" 43 #include "lldb/Utility/StringExtractor.h" 44 #include "llvm/ADT/ScopeExit.h" 45 #include "llvm/Support/Errno.h" 46 #include "llvm/Support/FileSystem.h" 47 #include "llvm/Support/Threading.h" 48 49 #include <linux/unistd.h> 50 #include <sys/socket.h> 51 #include <sys/syscall.h> 52 #include <sys/types.h> 53 #include <sys/user.h> 54 #include <sys/wait.h> 55 56 // Support hardware breakpoints in case it has not been defined 57 #ifndef TRAP_HWBKPT 58 #define TRAP_HWBKPT 4 59 #endif 60 61 using namespace lldb; 62 using namespace lldb_private; 63 using namespace lldb_private::process_linux; 64 using namespace llvm; 65 66 // Private bits we only need internally. 67 68 static bool ProcessVmReadvSupported() { 69 static bool is_supported; 70 static llvm::once_flag flag; 71 72 llvm::call_once(flag, [] { 73 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 74 75 uint32_t source = 0x47424742; 76 uint32_t dest = 0; 77 78 struct iovec local, remote; 79 remote.iov_base = &source; 80 local.iov_base = &dest; 81 remote.iov_len = local.iov_len = sizeof source; 82 83 // We shall try if cross-process-memory reads work by attempting to read a 84 // value from our own process. 85 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); 86 is_supported = (res == sizeof(source) && source == dest); 87 if (is_supported) 88 LLDB_LOG(log, 89 "Detected kernel support for process_vm_readv syscall. " 90 "Fast memory reads enabled."); 91 else 92 LLDB_LOG(log, 93 "syscall process_vm_readv failed (error: {0}). Fast memory " 94 "reads disabled.", 95 llvm::sys::StrError()); 96 }); 97 98 return is_supported; 99 } 100 101 namespace { 102 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) { 103 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 104 if (!log) 105 return; 106 107 if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO)) 108 LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec()); 109 else 110 LLDB_LOG(log, "leaving STDIN as is"); 111 112 if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO)) 113 LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec()); 114 else 115 LLDB_LOG(log, "leaving STDOUT as is"); 116 117 if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO)) 118 LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec()); 119 else 120 LLDB_LOG(log, "leaving STDERR as is"); 121 122 int i = 0; 123 for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; 124 ++args, ++i) 125 LLDB_LOG(log, "arg {0}: '{1}'", i, *args); 126 } 127 128 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) { 129 uint8_t *ptr = (uint8_t *)bytes; 130 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 131 for (uint32_t i = 0; i < loop_count; i++) { 132 s.Printf("[%x]", *ptr); 133 ptr++; 134 } 135 } 136 137 void PtraceDisplayBytes(int &req, void *data, size_t data_size) { 138 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 139 if (!log) 140 return; 141 StreamString buf; 142 143 switch (req) { 144 case PTRACE_POKETEXT: { 145 DisplayBytes(buf, &data, 8); 146 LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData()); 147 break; 148 } 149 case PTRACE_POKEDATA: { 150 DisplayBytes(buf, &data, 8); 151 LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData()); 152 break; 153 } 154 case PTRACE_POKEUSER: { 155 DisplayBytes(buf, &data, 8); 156 LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData()); 157 break; 158 } 159 case PTRACE_SETREGS: { 160 DisplayBytes(buf, data, data_size); 161 LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData()); 162 break; 163 } 164 case PTRACE_SETFPREGS: { 165 DisplayBytes(buf, data, data_size); 166 LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData()); 167 break; 168 } 169 case PTRACE_SETSIGINFO: { 170 DisplayBytes(buf, data, sizeof(siginfo_t)); 171 LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData()); 172 break; 173 } 174 case PTRACE_SETREGSET: { 175 // Extract iov_base from data, which is a pointer to the struct iovec 176 DisplayBytes(buf, *(void **)data, data_size); 177 LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData()); 178 break; 179 } 180 default: {} 181 } 182 } 183 184 static constexpr unsigned k_ptrace_word_size = sizeof(void *); 185 static_assert(sizeof(long) >= k_ptrace_word_size, 186 "Size of long must be larger than ptrace word size"); 187 } // end of anonymous namespace 188 189 // Simple helper function to ensure flags are enabled on the given file 190 // descriptor. 191 static Status EnsureFDFlags(int fd, int flags) { 192 Status error; 193 194 int status = fcntl(fd, F_GETFL); 195 if (status == -1) { 196 error.SetErrorToErrno(); 197 return error; 198 } 199 200 if (fcntl(fd, F_SETFL, status | flags) == -1) { 201 error.SetErrorToErrno(); 202 return error; 203 } 204 205 return error; 206 } 207 208 // Public Static Methods 209 210 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 211 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info, 212 NativeDelegate &native_delegate, 213 MainLoop &mainloop) const { 214 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 215 216 MaybeLogLaunchInfo(launch_info); 217 218 Status status; 219 ::pid_t pid = ProcessLauncherPosixFork() 220 .LaunchProcess(launch_info, status) 221 .GetProcessId(); 222 LLDB_LOG(log, "pid = {0:x}", pid); 223 if (status.Fail()) { 224 LLDB_LOG(log, "failed to launch process: {0}", status); 225 return status.ToError(); 226 } 227 228 // Wait for the child process to trap on its call to execve. 229 int wstatus; 230 ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0); 231 assert(wpid == pid); 232 (void)wpid; 233 if (!WIFSTOPPED(wstatus)) { 234 LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}", 235 WaitStatus::Decode(wstatus)); 236 return llvm::make_error<StringError>("Could not sync with inferior process", 237 llvm::inconvertibleErrorCode()); 238 } 239 LLDB_LOG(log, "inferior started, now in stopped state"); 240 241 ProcessInstanceInfo Info; 242 if (!Host::GetProcessInfo(pid, Info)) { 243 return llvm::make_error<StringError>("Cannot get process architecture", 244 llvm::inconvertibleErrorCode()); 245 } 246 247 // Set the architecture to the exe architecture. 248 LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid, 249 Info.GetArchitecture().GetArchitectureName()); 250 251 status = SetDefaultPtraceOpts(pid); 252 if (status.Fail()) { 253 LLDB_LOG(log, "failed to set default ptrace options: {0}", status); 254 return status.ToError(); 255 } 256 257 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 258 pid, launch_info.GetPTY().ReleasePrimaryFileDescriptor(), native_delegate, 259 Info.GetArchitecture(), mainloop, {pid})); 260 } 261 262 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 263 NativeProcessLinux::Factory::Attach( 264 lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate, 265 MainLoop &mainloop) const { 266 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 267 LLDB_LOG(log, "pid = {0:x}", pid); 268 269 // Retrieve the architecture for the running process. 270 ProcessInstanceInfo Info; 271 if (!Host::GetProcessInfo(pid, Info)) { 272 return llvm::make_error<StringError>("Cannot get process architecture", 273 llvm::inconvertibleErrorCode()); 274 } 275 276 auto tids_or = NativeProcessLinux::Attach(pid); 277 if (!tids_or) 278 return tids_or.takeError(); 279 280 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 281 pid, -1, native_delegate, Info.GetArchitecture(), mainloop, *tids_or)); 282 } 283 284 NativeProcessLinux::Extension 285 NativeProcessLinux::Factory::GetSupportedExtensions() const { 286 return Extension::multiprocess | Extension::fork | Extension::vfork | 287 Extension::pass_signals | Extension::auxv | Extension::libraries_svr4; 288 } 289 290 // Public Instance Methods 291 292 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd, 293 NativeDelegate &delegate, 294 const ArchSpec &arch, MainLoop &mainloop, 295 llvm::ArrayRef<::pid_t> tids) 296 : NativeProcessELF(pid, terminal_fd, delegate), m_arch(arch), 297 m_main_loop(mainloop), m_intel_pt_manager(pid) { 298 if (m_terminal_fd != -1) { 299 Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 300 assert(status.Success()); 301 } 302 303 Status status; 304 m_sigchld_handle = mainloop.RegisterSignal( 305 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status); 306 assert(m_sigchld_handle && status.Success()); 307 308 for (const auto &tid : tids) { 309 NativeThreadLinux &thread = AddThread(tid, /*resume*/ false); 310 ThreadWasCreated(thread); 311 } 312 313 // Let our process instance know the thread has stopped. 314 SetCurrentThreadID(tids[0]); 315 SetState(StateType::eStateStopped, false); 316 317 // Proccess any signals we received before installing our handler 318 SigchldHandler(); 319 } 320 321 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) { 322 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 323 324 Status status; 325 // Use a map to keep track of the threads which we have attached/need to 326 // attach. 327 Host::TidMap tids_to_attach; 328 while (Host::FindProcessThreads(pid, tids_to_attach)) { 329 for (Host::TidMap::iterator it = tids_to_attach.begin(); 330 it != tids_to_attach.end();) { 331 if (it->second == false) { 332 lldb::tid_t tid = it->first; 333 334 // Attach to the requested process. 335 // An attach will cause the thread to stop with a SIGSTOP. 336 if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) { 337 // No such thread. The thread may have exited. More error handling 338 // may be needed. 339 if (status.GetError() == ESRCH) { 340 it = tids_to_attach.erase(it); 341 continue; 342 } 343 return status.ToError(); 344 } 345 346 int wpid = 347 llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL); 348 // Need to use __WALL otherwise we receive an error with errno=ECHLD At 349 // this point we should have a thread stopped if waitpid succeeds. 350 if (wpid < 0) { 351 // No such thread. The thread may have exited. More error handling 352 // may be needed. 353 if (errno == ESRCH) { 354 it = tids_to_attach.erase(it); 355 continue; 356 } 357 return llvm::errorCodeToError( 358 std::error_code(errno, std::generic_category())); 359 } 360 361 if ((status = SetDefaultPtraceOpts(tid)).Fail()) 362 return status.ToError(); 363 364 LLDB_LOG(log, "adding tid = {0}", tid); 365 it->second = true; 366 } 367 368 // move the loop forward 369 ++it; 370 } 371 } 372 373 size_t tid_count = tids_to_attach.size(); 374 if (tid_count == 0) 375 return llvm::make_error<StringError>("No such process", 376 llvm::inconvertibleErrorCode()); 377 378 std::vector<::pid_t> tids; 379 tids.reserve(tid_count); 380 for (const auto &p : tids_to_attach) 381 tids.push_back(p.first); 382 return std::move(tids); 383 } 384 385 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) { 386 long ptrace_opts = 0; 387 388 // Have the child raise an event on exit. This is used to keep the child in 389 // limbo until it is destroyed. 390 ptrace_opts |= PTRACE_O_TRACEEXIT; 391 392 // Have the tracer trace threads which spawn in the inferior process. 393 ptrace_opts |= PTRACE_O_TRACECLONE; 394 395 // Have the tracer notify us before execve returns (needed to disable legacy 396 // SIGTRAP generation) 397 ptrace_opts |= PTRACE_O_TRACEEXEC; 398 399 // Have the tracer trace forked children. 400 ptrace_opts |= PTRACE_O_TRACEFORK; 401 402 // Have the tracer trace vforks. 403 ptrace_opts |= PTRACE_O_TRACEVFORK; 404 405 // Have the tracer trace vfork-done in order to restore breakpoints after 406 // the child finishes sharing memory. 407 ptrace_opts |= PTRACE_O_TRACEVFORKDONE; 408 409 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts); 410 } 411 412 // Handles all waitpid events from the inferior process. 413 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited, 414 WaitStatus status) { 415 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 416 417 // Certain activities differ based on whether the pid is the tid of the main 418 // thread. 419 const bool is_main_thread = (pid == GetID()); 420 421 // Handle when the thread exits. 422 if (exited) { 423 LLDB_LOG(log, 424 "got exit status({0}) , tid = {1} ({2} main thread), process " 425 "state = {3}", 426 status, pid, is_main_thread ? "is" : "is not", GetState()); 427 428 // This is a thread that exited. Ensure we're not tracking it anymore. 429 StopTrackingThread(pid); 430 431 if (is_main_thread) { 432 // The main thread exited. We're done monitoring. Report to delegate. 433 SetExitStatus(status, true); 434 435 // Notify delegate that our process has exited. 436 SetState(StateType::eStateExited, true); 437 } 438 return; 439 } 440 441 siginfo_t info; 442 const auto info_err = GetSignalInfo(pid, &info); 443 auto thread_sp = GetThreadByID(pid); 444 445 if (!thread_sp) { 446 // Normally, the only situation when we cannot find the thread is if we 447 // have just received a new thread notification. This is indicated by 448 // GetSignalInfo() returning si_code == SI_USER and si_pid == 0 449 LLDB_LOG(log, "received notification about an unknown tid {0}.", pid); 450 451 if (info_err.Fail()) { 452 LLDB_LOG(log, 453 "(tid {0}) GetSignalInfo failed ({1}). " 454 "Ingoring this notification.", 455 pid, info_err); 456 return; 457 } 458 459 LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code, 460 info.si_pid); 461 462 MonitorClone(pid, llvm::None); 463 return; 464 } 465 466 // Get details on the signal raised. 467 if (info_err.Success()) { 468 // We have retrieved the signal info. Dispatch appropriately. 469 if (info.si_signo == SIGTRAP) 470 MonitorSIGTRAP(info, *thread_sp); 471 else 472 MonitorSignal(info, *thread_sp, exited); 473 } else { 474 if (info_err.GetError() == EINVAL) { 475 // This is a group stop reception for this tid. We can reach here if we 476 // reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the tracee, 477 // triggering the group-stop mechanism. Normally receiving these would 478 // stop the process, pending a SIGCONT. Simulating this state in a 479 // debugger is hard and is generally not needed (one use case is 480 // debugging background task being managed by a shell). For general use, 481 // it is sufficient to stop the process in a signal-delivery stop which 482 // happens before the group stop. This done by MonitorSignal and works 483 // correctly for all signals. 484 LLDB_LOG(log, 485 "received a group stop for pid {0} tid {1}. Transparent " 486 "handling of group stops not supported, resuming the " 487 "thread.", 488 GetID(), pid); 489 ResumeThread(*thread_sp, thread_sp->GetState(), 490 LLDB_INVALID_SIGNAL_NUMBER); 491 } else { 492 // ptrace(GETSIGINFO) failed (but not due to group-stop). 493 494 // A return value of ESRCH means the thread/process is no longer on the 495 // system, so it was killed somehow outside of our control. Either way, 496 // we can't do anything with it anymore. 497 498 // Stop tracking the metadata for the thread since it's entirely off the 499 // system now. 500 const bool thread_found = StopTrackingThread(pid); 501 502 LLDB_LOG(log, 503 "GetSignalInfo failed: {0}, tid = {1}, status = {2}, " 504 "status = {3}, main_thread = {4}, thread_found: {5}", 505 info_err, pid, status, status, is_main_thread, thread_found); 506 507 if (is_main_thread) { 508 // Notify the delegate - our process is not available but appears to 509 // have been killed outside our control. Is eStateExited the right 510 // exit state in this case? 511 SetExitStatus(status, true); 512 SetState(StateType::eStateExited, true); 513 } else { 514 // This thread was pulled out from underneath us. Anything to do here? 515 // Do we want to do an all stop? 516 LLDB_LOG(log, 517 "pid {0} tid {1} non-main thread exit occurred, didn't " 518 "tell delegate anything since thread disappeared out " 519 "from underneath us", 520 GetID(), pid); 521 } 522 } 523 } 524 } 525 526 void NativeProcessLinux::WaitForCloneNotification(::pid_t pid) { 527 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 528 529 // The PID is not tracked yet, let's wait for it to appear. 530 int status = -1; 531 LLDB_LOG(log, 532 "received clone event for pid {0}. pid not tracked yet, " 533 "waiting for it to appear...", 534 pid); 535 ::pid_t wait_pid = 536 llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &status, __WALL); 537 // Since we are waiting on a specific pid, this must be the creation event. 538 // But let's do some checks just in case. 539 if (wait_pid != pid) { 540 LLDB_LOG(log, 541 "waiting for pid {0} failed. Assuming the pid has " 542 "disappeared in the meantime", 543 pid); 544 // The only way I know of this could happen is if the whole process was 545 // SIGKILLed in the mean time. In any case, we can't do anything about that 546 // now. 547 return; 548 } 549 if (WIFEXITED(status)) { 550 LLDB_LOG(log, 551 "waiting for pid {0} returned an 'exited' event. Not " 552 "tracking it.", 553 pid); 554 // Also a very improbable event. 555 m_pending_pid_map.erase(pid); 556 return; 557 } 558 559 MonitorClone(pid, llvm::None); 560 } 561 562 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, 563 NativeThreadLinux &thread) { 564 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 565 const bool is_main_thread = (thread.GetID() == GetID()); 566 567 assert(info.si_signo == SIGTRAP && "Unexpected child signal!"); 568 569 switch (info.si_code) { 570 case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 571 case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 572 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { 573 // This can either mean a new thread or a new process spawned via 574 // clone(2) without SIGCHLD or CLONE_VFORK flag. Note that clone(2) 575 // can also cause PTRACE_EVENT_FORK and PTRACE_EVENT_VFORK if one 576 // of these flags are passed. 577 578 unsigned long event_message = 0; 579 if (GetEventMessage(thread.GetID(), &event_message).Fail()) { 580 LLDB_LOG(log, 581 "pid {0} received clone() event but GetEventMessage failed " 582 "so we don't know the new pid/tid", 583 thread.GetID()); 584 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 585 } else { 586 if (!MonitorClone(event_message, {{(info.si_code >> 8), thread.GetID()}})) 587 WaitForCloneNotification(event_message); 588 } 589 590 break; 591 } 592 593 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): { 594 LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP); 595 596 // Exec clears any pending notifications. 597 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 598 599 // Remove all but the main thread here. Linux fork creates a new process 600 // which only copies the main thread. 601 LLDB_LOG(log, "exec received, stop tracking all but main thread"); 602 603 llvm::erase_if(m_threads, [&](std::unique_ptr<NativeThreadProtocol> &t) { 604 return t->GetID() != GetID(); 605 }); 606 assert(m_threads.size() == 1); 607 auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get()); 608 609 SetCurrentThreadID(main_thread->GetID()); 610 main_thread->SetStoppedByExec(); 611 612 // Tell coordinator about about the "new" (since exec) stopped main thread. 613 ThreadWasCreated(*main_thread); 614 615 // Let our delegate know we have just exec'd. 616 NotifyDidExec(); 617 618 // Let the process know we're stopped. 619 StopRunningThreads(main_thread->GetID()); 620 621 break; 622 } 623 624 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { 625 // The inferior process or one of its threads is about to exit. We don't 626 // want to do anything with the thread so we just resume it. In case we 627 // want to implement "break on thread exit" functionality, we would need to 628 // stop here. 629 630 unsigned long data = 0; 631 if (GetEventMessage(thread.GetID(), &data).Fail()) 632 data = -1; 633 634 LLDB_LOG(log, 635 "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, " 636 "WIFSIGNALED={2}, pid = {3}, main_thread = {4}", 637 data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(), 638 is_main_thread); 639 640 641 StateType state = thread.GetState(); 642 if (!StateIsRunningState(state)) { 643 // Due to a kernel bug, we may sometimes get this stop after the inferior 644 // gets a SIGKILL. This confuses our state tracking logic in 645 // ResumeThread(), since normally, we should not be receiving any ptrace 646 // events while the inferior is stopped. This makes sure that the 647 // inferior is resumed and exits normally. 648 state = eStateRunning; 649 } 650 ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); 651 652 break; 653 } 654 655 case (SIGTRAP | (PTRACE_EVENT_VFORK_DONE << 8)): { 656 if (bool(m_enabled_extensions & Extension::vfork)) { 657 thread.SetStoppedByVForkDone(); 658 StopRunningThreads(thread.GetID()); 659 } 660 else 661 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 662 break; 663 } 664 665 case 0: 666 case TRAP_TRACE: // We receive this on single stepping. 667 case TRAP_HWBKPT: // We receive this on watchpoint hit 668 { 669 // If a watchpoint was hit, report it 670 uint32_t wp_index; 671 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 672 wp_index, (uintptr_t)info.si_addr); 673 if (error.Fail()) 674 LLDB_LOG(log, 675 "received error while checking for watchpoint hits, pid = " 676 "{0}, error = {1}", 677 thread.GetID(), error); 678 if (wp_index != LLDB_INVALID_INDEX32) { 679 MonitorWatchpoint(thread, wp_index); 680 break; 681 } 682 683 // If a breakpoint was hit, report it 684 uint32_t bp_index; 685 error = thread.GetRegisterContext().GetHardwareBreakHitIndex( 686 bp_index, (uintptr_t)info.si_addr); 687 if (error.Fail()) 688 LLDB_LOG(log, "received error while checking for hardware " 689 "breakpoint hits, pid = {0}, error = {1}", 690 thread.GetID(), error); 691 if (bp_index != LLDB_INVALID_INDEX32) { 692 MonitorBreakpoint(thread); 693 break; 694 } 695 696 // Otherwise, report step over 697 MonitorTrace(thread); 698 break; 699 } 700 701 case SI_KERNEL: 702 #if defined __mips__ 703 // For mips there is no special signal for watchpoint So we check for 704 // watchpoint in kernel trap 705 { 706 // If a watchpoint was hit, report it 707 uint32_t wp_index; 708 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 709 wp_index, LLDB_INVALID_ADDRESS); 710 if (error.Fail()) 711 LLDB_LOG(log, 712 "received error while checking for watchpoint hits, pid = " 713 "{0}, error = {1}", 714 thread.GetID(), error); 715 if (wp_index != LLDB_INVALID_INDEX32) { 716 MonitorWatchpoint(thread, wp_index); 717 break; 718 } 719 } 720 // NO BREAK 721 #endif 722 case TRAP_BRKPT: 723 MonitorBreakpoint(thread); 724 break; 725 726 case SIGTRAP: 727 case (SIGTRAP | 0x80): 728 LLDB_LOG( 729 log, 730 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 731 info.si_code, GetID(), thread.GetID()); 732 733 // Ignore these signals until we know more about them. 734 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 735 break; 736 737 default: 738 LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}", 739 info.si_code, GetID(), thread.GetID()); 740 MonitorSignal(info, thread, false); 741 break; 742 } 743 } 744 745 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) { 746 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 747 LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID()); 748 749 // This thread is currently stopped. 750 thread.SetStoppedByTrace(); 751 752 StopRunningThreads(thread.GetID()); 753 } 754 755 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) { 756 Log *log( 757 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 758 LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID()); 759 760 // Mark the thread as stopped at breakpoint. 761 thread.SetStoppedByBreakpoint(); 762 FixupBreakpointPCAsNeeded(thread); 763 764 if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != 765 m_threads_stepping_with_breakpoint.end()) 766 thread.SetStoppedByTrace(); 767 768 StopRunningThreads(thread.GetID()); 769 } 770 771 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, 772 uint32_t wp_index) { 773 Log *log( 774 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); 775 LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}", 776 thread.GetID(), wp_index); 777 778 // Mark the thread as stopped at watchpoint. The address is at 779 // (lldb::addr_t)info->si_addr if we need it. 780 thread.SetStoppedByWatchpoint(wp_index); 781 782 // We need to tell all other running threads before we notify the delegate 783 // about this stop. 784 StopRunningThreads(thread.GetID()); 785 } 786 787 void NativeProcessLinux::MonitorSignal(const siginfo_t &info, 788 NativeThreadLinux &thread, bool exited) { 789 const int signo = info.si_signo; 790 const bool is_from_llgs = info.si_pid == getpid(); 791 792 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 793 794 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 795 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2) 796 // or raise(3). Similarly for tgkill(2) on Linux. 797 // 798 // IOW, user generated signals never generate what we consider to be a 799 // "crash". 800 // 801 // Similarly, ACK signals generated by this monitor. 802 803 // Handle the signal. 804 LLDB_LOG(log, 805 "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, " 806 "waitpid pid = {4})", 807 Host::GetSignalAsCString(signo), signo, info.si_code, 808 thread.GetID()); 809 810 // Check for thread stop notification. 811 if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) { 812 // This is a tgkill()-based stop. 813 LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID()); 814 815 // Check that we're not already marked with a stop reason. Note this thread 816 // really shouldn't already be marked as stopped - if we were, that would 817 // imply that the kernel signaled us with the thread stopping which we 818 // handled and marked as stopped, and that, without an intervening resume, 819 // we received another stop. It is more likely that we are missing the 820 // marking of a run state somewhere if we find that the thread was marked 821 // as stopped. 822 const StateType thread_state = thread.GetState(); 823 if (!StateIsStoppedState(thread_state, false)) { 824 // An inferior thread has stopped because of a SIGSTOP we have sent it. 825 // Generally, these are not important stops and we don't want to report 826 // them as they are just used to stop other threads when one thread (the 827 // one with the *real* stop reason) hits a breakpoint (watchpoint, 828 // etc...). However, in the case of an asynchronous Interrupt(), this 829 // *is* the real stop reason, so we leave the signal intact if this is 830 // the thread that was chosen as the triggering thread. 831 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 832 if (m_pending_notification_tid == thread.GetID()) 833 thread.SetStoppedBySignal(SIGSTOP, &info); 834 else 835 thread.SetStoppedWithNoReason(); 836 837 SetCurrentThreadID(thread.GetID()); 838 SignalIfAllThreadsStopped(); 839 } else { 840 // We can end up here if stop was initiated by LLGS but by this time a 841 // thread stop has occurred - maybe initiated by another event. 842 Status error = ResumeThread(thread, thread.GetState(), 0); 843 if (error.Fail()) 844 LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(), 845 error); 846 } 847 } else { 848 LLDB_LOG(log, 849 "pid {0} tid {1}, thread was already marked as a stopped " 850 "state (state={2}), leaving stop signal as is", 851 GetID(), thread.GetID(), thread_state); 852 SignalIfAllThreadsStopped(); 853 } 854 855 // Done handling. 856 return; 857 } 858 859 // Check if debugger should stop at this signal or just ignore it and resume 860 // the inferior. 861 if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) { 862 ResumeThread(thread, thread.GetState(), signo); 863 return; 864 } 865 866 // This thread is stopped. 867 LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo)); 868 thread.SetStoppedBySignal(signo, &info); 869 870 // Send a stop to the debugger after we get all other threads to stop. 871 StopRunningThreads(thread.GetID()); 872 } 873 874 bool NativeProcessLinux::MonitorClone( 875 lldb::pid_t child_pid, 876 llvm::Optional<NativeProcessLinux::CloneInfo> clone_info) { 877 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 878 LLDB_LOG(log, "clone, child_pid={0}, clone info?={1}", child_pid, 879 clone_info.hasValue()); 880 881 auto find_it = m_pending_pid_map.find(child_pid); 882 if (find_it == m_pending_pid_map.end()) { 883 // not in the map, so this is the first signal for the PID 884 m_pending_pid_map.insert({child_pid, clone_info}); 885 return false; 886 } 887 m_pending_pid_map.erase(find_it); 888 889 // second signal for the pid 890 assert(clone_info.hasValue() != find_it->second.hasValue()); 891 if (!clone_info) { 892 // child signal does not indicate the event, so grab the one stored 893 // earlier 894 clone_info = find_it->second; 895 } 896 897 LLDB_LOG(log, "second signal for child_pid={0}, parent_tid={1}, event={2}", 898 child_pid, clone_info->parent_tid, clone_info->event); 899 900 auto *parent_thread = GetThreadByID(clone_info->parent_tid); 901 assert(parent_thread); 902 903 switch (clone_info->event) { 904 case PTRACE_EVENT_CLONE: { 905 // PTRACE_EVENT_CLONE can either mean a new thread or a new process. 906 // Try to grab the new process' PGID to figure out which one it is. 907 // If PGID is the same as the PID, then it's a new process. Otherwise, 908 // it's a thread. 909 auto tgid_ret = getPIDForTID(child_pid); 910 if (tgid_ret != child_pid) { 911 // A new thread should have PGID matching our process' PID. 912 assert(!tgid_ret || tgid_ret.getValue() == GetID()); 913 914 NativeThreadLinux &child_thread = AddThread(child_pid, /*resume*/ true); 915 ThreadWasCreated(child_thread); 916 917 // Resume the parent. 918 ResumeThread(*parent_thread, parent_thread->GetState(), 919 LLDB_INVALID_SIGNAL_NUMBER); 920 break; 921 } 922 } 923 LLVM_FALLTHROUGH; 924 case PTRACE_EVENT_FORK: 925 case PTRACE_EVENT_VFORK: { 926 bool is_vfork = clone_info->event == PTRACE_EVENT_VFORK; 927 std::unique_ptr<NativeProcessLinux> child_process{new NativeProcessLinux( 928 static_cast<::pid_t>(child_pid), m_terminal_fd, m_delegate, m_arch, 929 m_main_loop, {static_cast<::pid_t>(child_pid)})}; 930 if (!is_vfork) 931 child_process->m_software_breakpoints = m_software_breakpoints; 932 933 Extension expected_ext = is_vfork ? Extension::vfork : Extension::fork; 934 if (bool(m_enabled_extensions & expected_ext)) { 935 m_delegate.NewSubprocess(this, std::move(child_process)); 936 // NB: non-vfork clone() is reported as fork 937 parent_thread->SetStoppedByFork(is_vfork, child_pid); 938 StopRunningThreads(parent_thread->GetID()); 939 } else { 940 child_process->Detach(); 941 ResumeThread(*parent_thread, parent_thread->GetState(), 942 LLDB_INVALID_SIGNAL_NUMBER); 943 } 944 break; 945 } 946 default: 947 llvm_unreachable("unknown clone_info.event"); 948 } 949 950 return true; 951 } 952 953 bool NativeProcessLinux::SupportHardwareSingleStepping() const { 954 if (m_arch.GetMachine() == llvm::Triple::arm || m_arch.IsMIPS()) 955 return false; 956 return true; 957 } 958 959 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) { 960 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 961 LLDB_LOG(log, "pid {0}", GetID()); 962 963 bool software_single_step = !SupportHardwareSingleStepping(); 964 965 if (software_single_step) { 966 for (const auto &thread : m_threads) { 967 assert(thread && "thread list should not contain NULL threads"); 968 969 const ResumeAction *const action = 970 resume_actions.GetActionForThread(thread->GetID(), true); 971 if (action == nullptr) 972 continue; 973 974 if (action->state == eStateStepping) { 975 Status error = SetupSoftwareSingleStepping( 976 static_cast<NativeThreadLinux &>(*thread)); 977 if (error.Fail()) 978 return error; 979 } 980 } 981 } 982 983 for (const auto &thread : m_threads) { 984 assert(thread && "thread list should not contain NULL threads"); 985 986 const ResumeAction *const action = 987 resume_actions.GetActionForThread(thread->GetID(), true); 988 989 if (action == nullptr) { 990 LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(), 991 thread->GetID()); 992 continue; 993 } 994 995 LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}", 996 action->state, GetID(), thread->GetID()); 997 998 switch (action->state) { 999 case eStateRunning: 1000 case eStateStepping: { 1001 // Run the thread, possibly feeding it the signal. 1002 const int signo = action->signal; 1003 ResumeThread(static_cast<NativeThreadLinux &>(*thread), action->state, 1004 signo); 1005 break; 1006 } 1007 1008 case eStateSuspended: 1009 case eStateStopped: 1010 llvm_unreachable("Unexpected state"); 1011 1012 default: 1013 return Status("NativeProcessLinux::%s (): unexpected state %s specified " 1014 "for pid %" PRIu64 ", tid %" PRIu64, 1015 __FUNCTION__, StateAsCString(action->state), GetID(), 1016 thread->GetID()); 1017 } 1018 } 1019 1020 return Status(); 1021 } 1022 1023 Status NativeProcessLinux::Halt() { 1024 Status error; 1025 1026 if (kill(GetID(), SIGSTOP) != 0) 1027 error.SetErrorToErrno(); 1028 1029 return error; 1030 } 1031 1032 Status NativeProcessLinux::Detach() { 1033 Status error; 1034 1035 // Stop monitoring the inferior. 1036 m_sigchld_handle.reset(); 1037 1038 // Tell ptrace to detach from the process. 1039 if (GetID() == LLDB_INVALID_PROCESS_ID) 1040 return error; 1041 1042 for (const auto &thread : m_threads) { 1043 Status e = Detach(thread->GetID()); 1044 if (e.Fail()) 1045 error = 1046 e; // Save the error, but still attempt to detach from other threads. 1047 } 1048 1049 m_intel_pt_manager.Clear(); 1050 1051 return error; 1052 } 1053 1054 Status NativeProcessLinux::Signal(int signo) { 1055 Status error; 1056 1057 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1058 LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo, 1059 Host::GetSignalAsCString(signo), GetID()); 1060 1061 if (kill(GetID(), signo)) 1062 error.SetErrorToErrno(); 1063 1064 return error; 1065 } 1066 1067 Status NativeProcessLinux::Interrupt() { 1068 // Pick a running thread (or if none, a not-dead stopped thread) as the 1069 // chosen thread that will be the stop-reason thread. 1070 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1071 1072 NativeThreadProtocol *running_thread = nullptr; 1073 NativeThreadProtocol *stopped_thread = nullptr; 1074 1075 LLDB_LOG(log, "selecting running thread for interrupt target"); 1076 for (const auto &thread : m_threads) { 1077 // If we have a running or stepping thread, we'll call that the target of 1078 // the interrupt. 1079 const auto thread_state = thread->GetState(); 1080 if (thread_state == eStateRunning || thread_state == eStateStepping) { 1081 running_thread = thread.get(); 1082 break; 1083 } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) { 1084 // Remember the first non-dead stopped thread. We'll use that as a 1085 // backup if there are no running threads. 1086 stopped_thread = thread.get(); 1087 } 1088 } 1089 1090 if (!running_thread && !stopped_thread) { 1091 Status error("found no running/stepping or live stopped threads as target " 1092 "for interrupt"); 1093 LLDB_LOG(log, "skipping due to error: {0}", error); 1094 1095 return error; 1096 } 1097 1098 NativeThreadProtocol *deferred_signal_thread = 1099 running_thread ? running_thread : stopped_thread; 1100 1101 LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(), 1102 running_thread ? "running" : "stopped", 1103 deferred_signal_thread->GetID()); 1104 1105 StopRunningThreads(deferred_signal_thread->GetID()); 1106 1107 return Status(); 1108 } 1109 1110 Status NativeProcessLinux::Kill() { 1111 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1112 LLDB_LOG(log, "pid {0}", GetID()); 1113 1114 Status error; 1115 1116 switch (m_state) { 1117 case StateType::eStateInvalid: 1118 case StateType::eStateExited: 1119 case StateType::eStateCrashed: 1120 case StateType::eStateDetached: 1121 case StateType::eStateUnloaded: 1122 // Nothing to do - the process is already dead. 1123 LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(), 1124 m_state); 1125 return error; 1126 1127 case StateType::eStateConnected: 1128 case StateType::eStateAttaching: 1129 case StateType::eStateLaunching: 1130 case StateType::eStateStopped: 1131 case StateType::eStateRunning: 1132 case StateType::eStateStepping: 1133 case StateType::eStateSuspended: 1134 // We can try to kill a process in these states. 1135 break; 1136 } 1137 1138 if (kill(GetID(), SIGKILL) != 0) { 1139 error.SetErrorToErrno(); 1140 return error; 1141 } 1142 1143 return error; 1144 } 1145 1146 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr, 1147 MemoryRegionInfo &range_info) { 1148 // FIXME review that the final memory region returned extends to the end of 1149 // the virtual address space, 1150 // with no perms if it is not mapped. 1151 1152 // Use an approach that reads memory regions from /proc/{pid}/maps. Assume 1153 // proc maps entries are in ascending order. 1154 // FIXME assert if we find differently. 1155 1156 if (m_supports_mem_region == LazyBool::eLazyBoolNo) { 1157 // We're done. 1158 return Status("unsupported"); 1159 } 1160 1161 Status error = PopulateMemoryRegionCache(); 1162 if (error.Fail()) { 1163 return error; 1164 } 1165 1166 lldb::addr_t prev_base_address = 0; 1167 1168 // FIXME start by finding the last region that is <= target address using 1169 // binary search. Data is sorted. 1170 // There can be a ton of regions on pthreads apps with lots of threads. 1171 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end(); 1172 ++it) { 1173 MemoryRegionInfo &proc_entry_info = it->first; 1174 1175 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 1176 assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) && 1177 "descending /proc/pid/maps entries detected, unexpected"); 1178 prev_base_address = proc_entry_info.GetRange().GetRangeBase(); 1179 UNUSED_IF_ASSERT_DISABLED(prev_base_address); 1180 1181 // If the target address comes before this entry, indicate distance to next 1182 // region. 1183 if (load_addr < proc_entry_info.GetRange().GetRangeBase()) { 1184 range_info.GetRange().SetRangeBase(load_addr); 1185 range_info.GetRange().SetByteSize( 1186 proc_entry_info.GetRange().GetRangeBase() - load_addr); 1187 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1188 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1189 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1190 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1191 1192 return error; 1193 } else if (proc_entry_info.GetRange().Contains(load_addr)) { 1194 // The target address is within the memory region we're processing here. 1195 range_info = proc_entry_info; 1196 return error; 1197 } 1198 1199 // The target memory address comes somewhere after the region we just 1200 // parsed. 1201 } 1202 1203 // If we made it here, we didn't find an entry that contained the given 1204 // address. Return the load_addr as start and the amount of bytes betwwen 1205 // load address and the end of the memory as size. 1206 range_info.GetRange().SetRangeBase(load_addr); 1207 range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS); 1208 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1209 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1210 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1211 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1212 return error; 1213 } 1214 1215 Status NativeProcessLinux::PopulateMemoryRegionCache() { 1216 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1217 1218 // If our cache is empty, pull the latest. There should always be at least 1219 // one memory region if memory region handling is supported. 1220 if (!m_mem_region_cache.empty()) { 1221 LLDB_LOG(log, "reusing {0} cached memory region entries", 1222 m_mem_region_cache.size()); 1223 return Status(); 1224 } 1225 1226 Status Result; 1227 LinuxMapCallback callback = [&](llvm::Expected<MemoryRegionInfo> Info) { 1228 if (Info) { 1229 FileSpec file_spec(Info->GetName().GetCString()); 1230 FileSystem::Instance().Resolve(file_spec); 1231 m_mem_region_cache.emplace_back(*Info, file_spec); 1232 return true; 1233 } 1234 1235 Result = Info.takeError(); 1236 m_supports_mem_region = LazyBool::eLazyBoolNo; 1237 LLDB_LOG(log, "failed to parse proc maps: {0}", Result); 1238 return false; 1239 }; 1240 1241 // Linux kernel since 2.6.14 has /proc/{pid}/smaps 1242 // if CONFIG_PROC_PAGE_MONITOR is enabled 1243 auto BufferOrError = getProcFile(GetID(), "smaps"); 1244 if (BufferOrError) 1245 ParseLinuxSMapRegions(BufferOrError.get()->getBuffer(), callback); 1246 else { 1247 BufferOrError = getProcFile(GetID(), "maps"); 1248 if (!BufferOrError) { 1249 m_supports_mem_region = LazyBool::eLazyBoolNo; 1250 return BufferOrError.getError(); 1251 } 1252 1253 ParseLinuxMapRegions(BufferOrError.get()->getBuffer(), callback); 1254 } 1255 1256 if (Result.Fail()) 1257 return Result; 1258 1259 if (m_mem_region_cache.empty()) { 1260 // No entries after attempting to read them. This shouldn't happen if 1261 // /proc/{pid}/maps is supported. Assume we don't support map entries via 1262 // procfs. 1263 m_supports_mem_region = LazyBool::eLazyBoolNo; 1264 LLDB_LOG(log, 1265 "failed to find any procfs maps entries, assuming no support " 1266 "for memory region metadata retrieval"); 1267 return Status("not supported"); 1268 } 1269 1270 LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps", 1271 m_mem_region_cache.size(), GetID()); 1272 1273 // We support memory retrieval, remember that. 1274 m_supports_mem_region = LazyBool::eLazyBoolYes; 1275 return Status(); 1276 } 1277 1278 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) { 1279 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1280 LLDB_LOG(log, "newBumpId={0}", newBumpId); 1281 LLDB_LOG(log, "clearing {0} entries from memory region cache", 1282 m_mem_region_cache.size()); 1283 m_mem_region_cache.clear(); 1284 } 1285 1286 llvm::Expected<uint64_t> 1287 NativeProcessLinux::Syscall(llvm::ArrayRef<uint64_t> args) { 1288 PopulateMemoryRegionCache(); 1289 auto region_it = llvm::find_if(m_mem_region_cache, [](const auto &pair) { 1290 return pair.first.GetExecutable() == MemoryRegionInfo::eYes; 1291 }); 1292 if (region_it == m_mem_region_cache.end()) 1293 return llvm::createStringError(llvm::inconvertibleErrorCode(), 1294 "No executable memory region found!"); 1295 1296 addr_t exe_addr = region_it->first.GetRange().GetRangeBase(); 1297 1298 NativeThreadLinux &thread = *GetThreadByID(GetID()); 1299 assert(thread.GetState() == eStateStopped); 1300 NativeRegisterContextLinux ®_ctx = thread.GetRegisterContext(); 1301 1302 NativeRegisterContextLinux::SyscallData syscall_data = 1303 *reg_ctx.GetSyscallData(); 1304 1305 DataBufferSP registers_sp; 1306 if (llvm::Error Err = reg_ctx.ReadAllRegisterValues(registers_sp).ToError()) 1307 return std::move(Err); 1308 auto restore_regs = llvm::make_scope_exit( 1309 [&] { reg_ctx.WriteAllRegisterValues(registers_sp); }); 1310 1311 llvm::SmallVector<uint8_t, 8> memory(syscall_data.Insn.size()); 1312 size_t bytes_read; 1313 if (llvm::Error Err = 1314 ReadMemory(exe_addr, memory.data(), memory.size(), bytes_read) 1315 .ToError()) { 1316 return std::move(Err); 1317 } 1318 1319 auto restore_mem = llvm::make_scope_exit( 1320 [&] { WriteMemory(exe_addr, memory.data(), memory.size(), bytes_read); }); 1321 1322 if (llvm::Error Err = reg_ctx.SetPC(exe_addr).ToError()) 1323 return std::move(Err); 1324 1325 for (const auto &zip : llvm::zip_first(args, syscall_data.Args)) { 1326 if (llvm::Error Err = 1327 reg_ctx 1328 .WriteRegisterFromUnsigned(std::get<1>(zip), std::get<0>(zip)) 1329 .ToError()) { 1330 return std::move(Err); 1331 } 1332 } 1333 if (llvm::Error Err = WriteMemory(exe_addr, syscall_data.Insn.data(), 1334 syscall_data.Insn.size(), bytes_read) 1335 .ToError()) 1336 return std::move(Err); 1337 1338 m_mem_region_cache.clear(); 1339 1340 // With software single stepping the syscall insn buffer must also include a 1341 // trap instruction to stop the process. 1342 int req = SupportHardwareSingleStepping() ? PTRACE_SINGLESTEP : PTRACE_CONT; 1343 if (llvm::Error Err = 1344 PtraceWrapper(req, thread.GetID(), nullptr, nullptr).ToError()) 1345 return std::move(Err); 1346 1347 int status; 1348 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, thread.GetID(), 1349 &status, __WALL); 1350 if (wait_pid == -1) { 1351 return llvm::errorCodeToError( 1352 std::error_code(errno, std::generic_category())); 1353 } 1354 assert((unsigned)wait_pid == thread.GetID()); 1355 1356 uint64_t result = reg_ctx.ReadRegisterAsUnsigned(syscall_data.Result, -ESRCH); 1357 1358 // Values larger than this are actually negative errno numbers. 1359 uint64_t errno_threshold = 1360 (uint64_t(-1) >> (64 - 8 * m_arch.GetAddressByteSize())) - 0x1000; 1361 if (result > errno_threshold) { 1362 return llvm::errorCodeToError( 1363 std::error_code(-result & 0xfff, std::generic_category())); 1364 } 1365 1366 return result; 1367 } 1368 1369 llvm::Expected<addr_t> 1370 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions) { 1371 1372 llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data = 1373 GetCurrentThread()->GetRegisterContext().GetMmapData(); 1374 if (!mmap_data) 1375 return llvm::make_error<UnimplementedError>(); 1376 1377 unsigned prot = PROT_NONE; 1378 assert((permissions & (ePermissionsReadable | ePermissionsWritable | 1379 ePermissionsExecutable)) == permissions && 1380 "Unknown permission!"); 1381 if (permissions & ePermissionsReadable) 1382 prot |= PROT_READ; 1383 if (permissions & ePermissionsWritable) 1384 prot |= PROT_WRITE; 1385 if (permissions & ePermissionsExecutable) 1386 prot |= PROT_EXEC; 1387 1388 llvm::Expected<uint64_t> Result = 1389 Syscall({mmap_data->SysMmap, 0, size, prot, MAP_ANONYMOUS | MAP_PRIVATE, 1390 uint64_t(-1), 0}); 1391 if (Result) 1392 m_allocated_memory.try_emplace(*Result, size); 1393 return Result; 1394 } 1395 1396 llvm::Error NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) { 1397 llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data = 1398 GetCurrentThread()->GetRegisterContext().GetMmapData(); 1399 if (!mmap_data) 1400 return llvm::make_error<UnimplementedError>(); 1401 1402 auto it = m_allocated_memory.find(addr); 1403 if (it == m_allocated_memory.end()) 1404 return llvm::createStringError(llvm::errc::invalid_argument, 1405 "Memory not allocated by the debugger."); 1406 1407 llvm::Expected<uint64_t> Result = 1408 Syscall({mmap_data->SysMunmap, addr, it->second}); 1409 if (!Result) 1410 return Result.takeError(); 1411 1412 m_allocated_memory.erase(it); 1413 return llvm::Error::success(); 1414 } 1415 1416 size_t NativeProcessLinux::UpdateThreads() { 1417 // The NativeProcessLinux monitoring threads are always up to date with 1418 // respect to thread state and they keep the thread list populated properly. 1419 // All this method needs to do is return the thread count. 1420 return m_threads.size(); 1421 } 1422 1423 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size, 1424 bool hardware) { 1425 if (hardware) 1426 return SetHardwareBreakpoint(addr, size); 1427 else 1428 return SetSoftwareBreakpoint(addr, size); 1429 } 1430 1431 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) { 1432 if (hardware) 1433 return RemoveHardwareBreakpoint(addr); 1434 else 1435 return NativeProcessProtocol::RemoveBreakpoint(addr); 1436 } 1437 1438 llvm::Expected<llvm::ArrayRef<uint8_t>> 1439 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(size_t size_hint) { 1440 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 1441 // linux kernel does otherwise. 1442 static const uint8_t g_arm_opcode[] = {0xf0, 0x01, 0xf0, 0xe7}; 1443 static const uint8_t g_thumb_opcode[] = {0x01, 0xde}; 1444 1445 switch (GetArchitecture().GetMachine()) { 1446 case llvm::Triple::arm: 1447 switch (size_hint) { 1448 case 2: 1449 return llvm::makeArrayRef(g_thumb_opcode); 1450 case 4: 1451 return llvm::makeArrayRef(g_arm_opcode); 1452 default: 1453 return llvm::createStringError(llvm::inconvertibleErrorCode(), 1454 "Unrecognised trap opcode size hint!"); 1455 } 1456 default: 1457 return NativeProcessProtocol::GetSoftwareBreakpointTrapOpcode(size_hint); 1458 } 1459 } 1460 1461 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size, 1462 size_t &bytes_read) { 1463 if (ProcessVmReadvSupported()) { 1464 // The process_vm_readv path is about 50 times faster than ptrace api. We 1465 // want to use this syscall if it is supported. 1466 1467 const ::pid_t pid = GetID(); 1468 1469 struct iovec local_iov, remote_iov; 1470 local_iov.iov_base = buf; 1471 local_iov.iov_len = size; 1472 remote_iov.iov_base = reinterpret_cast<void *>(addr); 1473 remote_iov.iov_len = size; 1474 1475 bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0); 1476 const bool success = bytes_read == size; 1477 1478 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1479 LLDB_LOG(log, 1480 "using process_vm_readv to read {0} bytes from inferior " 1481 "address {1:x}: {2}", 1482 size, addr, success ? "Success" : llvm::sys::StrError(errno)); 1483 1484 if (success) 1485 return Status(); 1486 // else the call failed for some reason, let's retry the read using ptrace 1487 // api. 1488 } 1489 1490 unsigned char *dst = static_cast<unsigned char *>(buf); 1491 size_t remainder; 1492 long data; 1493 1494 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1495 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1496 1497 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { 1498 Status error = NativeProcessLinux::PtraceWrapper( 1499 PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data); 1500 if (error.Fail()) 1501 return error; 1502 1503 remainder = size - bytes_read; 1504 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1505 1506 // Copy the data into our buffer 1507 memcpy(dst, &data, remainder); 1508 1509 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1510 addr += k_ptrace_word_size; 1511 dst += k_ptrace_word_size; 1512 } 1513 return Status(); 1514 } 1515 1516 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, 1517 size_t size, size_t &bytes_written) { 1518 const unsigned char *src = static_cast<const unsigned char *>(buf); 1519 size_t remainder; 1520 Status error; 1521 1522 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1523 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1524 1525 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { 1526 remainder = size - bytes_written; 1527 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1528 1529 if (remainder == k_ptrace_word_size) { 1530 unsigned long data = 0; 1531 memcpy(&data, src, k_ptrace_word_size); 1532 1533 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1534 error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), 1535 (void *)addr, (void *)data); 1536 if (error.Fail()) 1537 return error; 1538 } else { 1539 unsigned char buff[8]; 1540 size_t bytes_read; 1541 error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read); 1542 if (error.Fail()) 1543 return error; 1544 1545 memcpy(buff, src, remainder); 1546 1547 size_t bytes_written_rec; 1548 error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec); 1549 if (error.Fail()) 1550 return error; 1551 1552 LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src, 1553 *(unsigned long *)buff); 1554 } 1555 1556 addr += k_ptrace_word_size; 1557 src += k_ptrace_word_size; 1558 } 1559 return error; 1560 } 1561 1562 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) { 1563 return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); 1564 } 1565 1566 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid, 1567 unsigned long *message) { 1568 return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); 1569 } 1570 1571 Status NativeProcessLinux::Detach(lldb::tid_t tid) { 1572 if (tid == LLDB_INVALID_THREAD_ID) 1573 return Status(); 1574 1575 return PtraceWrapper(PTRACE_DETACH, tid); 1576 } 1577 1578 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) { 1579 for (const auto &thread : m_threads) { 1580 assert(thread && "thread list should not contain NULL threads"); 1581 if (thread->GetID() == thread_id) { 1582 // We have this thread. 1583 return true; 1584 } 1585 } 1586 1587 // We don't have this thread. 1588 return false; 1589 } 1590 1591 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) { 1592 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1593 LLDB_LOG(log, "tid: {0})", thread_id); 1594 1595 bool found = false; 1596 for (auto it = m_threads.begin(); it != m_threads.end(); ++it) { 1597 if (*it && ((*it)->GetID() == thread_id)) { 1598 m_threads.erase(it); 1599 found = true; 1600 break; 1601 } 1602 } 1603 1604 if (found) 1605 NotifyTracersOfThreadDestroyed(thread_id); 1606 1607 SignalIfAllThreadsStopped(); 1608 return found; 1609 } 1610 1611 Status NativeProcessLinux::NotifyTracersOfNewThread(lldb::tid_t tid) { 1612 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD)); 1613 Status error(m_intel_pt_manager.OnThreadCreated(tid)); 1614 if (error.Fail()) 1615 LLDB_LOG(log, "Failed to trace a new thread with intel-pt, tid = {0}. {1}", 1616 tid, error.AsCString()); 1617 return error; 1618 } 1619 1620 Status NativeProcessLinux::NotifyTracersOfThreadDestroyed(lldb::tid_t tid) { 1621 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD)); 1622 Status error(m_intel_pt_manager.OnThreadDestroyed(tid)); 1623 if (error.Fail()) 1624 LLDB_LOG(log, 1625 "Failed to stop a destroyed thread with intel-pt, tid = {0}. {1}", 1626 tid, error.AsCString()); 1627 return error; 1628 } 1629 1630 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id, 1631 bool resume) { 1632 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD)); 1633 LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id); 1634 1635 assert(!HasThreadNoLock(thread_id) && 1636 "attempted to add a thread by id that already exists"); 1637 1638 // If this is the first thread, save it as the current thread 1639 if (m_threads.empty()) 1640 SetCurrentThreadID(thread_id); 1641 1642 m_threads.push_back(std::make_unique<NativeThreadLinux>(*this, thread_id)); 1643 NativeThreadLinux &thread = 1644 static_cast<NativeThreadLinux &>(*m_threads.back()); 1645 1646 Status tracing_error = NotifyTracersOfNewThread(thread.GetID()); 1647 if (tracing_error.Fail()) { 1648 thread.SetStoppedByProcessorTrace(tracing_error.AsCString()); 1649 StopRunningThreads(thread.GetID()); 1650 } else if (resume) 1651 ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 1652 else 1653 thread.SetStoppedBySignal(SIGSTOP); 1654 1655 return thread; 1656 } 1657 1658 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path, 1659 FileSpec &file_spec) { 1660 Status error = PopulateMemoryRegionCache(); 1661 if (error.Fail()) 1662 return error; 1663 1664 FileSpec module_file_spec(module_path); 1665 FileSystem::Instance().Resolve(module_file_spec); 1666 1667 file_spec.Clear(); 1668 for (const auto &it : m_mem_region_cache) { 1669 if (it.second.GetFilename() == module_file_spec.GetFilename()) { 1670 file_spec = it.second; 1671 return Status(); 1672 } 1673 } 1674 return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 1675 module_file_spec.GetFilename().AsCString(), GetID()); 1676 } 1677 1678 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name, 1679 lldb::addr_t &load_addr) { 1680 load_addr = LLDB_INVALID_ADDRESS; 1681 Status error = PopulateMemoryRegionCache(); 1682 if (error.Fail()) 1683 return error; 1684 1685 FileSpec file(file_name); 1686 for (const auto &it : m_mem_region_cache) { 1687 if (it.second == file) { 1688 load_addr = it.first.GetRange().GetRangeBase(); 1689 return Status(); 1690 } 1691 } 1692 return Status("No load address found for specified file."); 1693 } 1694 1695 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) { 1696 return static_cast<NativeThreadLinux *>( 1697 NativeProcessProtocol::GetThreadByID(tid)); 1698 } 1699 1700 NativeThreadLinux *NativeProcessLinux::GetCurrentThread() { 1701 return static_cast<NativeThreadLinux *>( 1702 NativeProcessProtocol::GetCurrentThread()); 1703 } 1704 1705 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, 1706 lldb::StateType state, int signo) { 1707 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1708 LLDB_LOG(log, "tid: {0}", thread.GetID()); 1709 1710 // Before we do the resume below, first check if we have a pending stop 1711 // notification that is currently waiting for all threads to stop. This is 1712 // potentially a buggy situation since we're ostensibly waiting for threads 1713 // to stop before we send out the pending notification, and here we are 1714 // resuming one before we send out the pending stop notification. 1715 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 1716 LLDB_LOG(log, 1717 "about to resume tid {0} per explicit request but we have a " 1718 "pending stop notification (tid {1}) that is actively " 1719 "waiting for this thread to stop. Valid sequence of events?", 1720 thread.GetID(), m_pending_notification_tid); 1721 } 1722 1723 // Request a resume. We expect this to be synchronous and the system to 1724 // reflect it is running after this completes. 1725 switch (state) { 1726 case eStateRunning: { 1727 const auto resume_result = thread.Resume(signo); 1728 if (resume_result.Success()) 1729 SetState(eStateRunning, true); 1730 return resume_result; 1731 } 1732 case eStateStepping: { 1733 const auto step_result = thread.SingleStep(signo); 1734 if (step_result.Success()) 1735 SetState(eStateRunning, true); 1736 return step_result; 1737 } 1738 default: 1739 LLDB_LOG(log, "Unhandled state {0}.", state); 1740 llvm_unreachable("Unhandled state for resume"); 1741 } 1742 } 1743 1744 //===----------------------------------------------------------------------===// 1745 1746 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) { 1747 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1748 LLDB_LOG(log, "about to process event: (triggering_tid: {0})", 1749 triggering_tid); 1750 1751 m_pending_notification_tid = triggering_tid; 1752 1753 // Request a stop for all the thread stops that need to be stopped and are 1754 // not already known to be stopped. 1755 for (const auto &thread : m_threads) { 1756 if (StateIsRunningState(thread->GetState())) 1757 static_cast<NativeThreadLinux *>(thread.get())->RequestStop(); 1758 } 1759 1760 SignalIfAllThreadsStopped(); 1761 LLDB_LOG(log, "event processing done"); 1762 } 1763 1764 void NativeProcessLinux::SignalIfAllThreadsStopped() { 1765 if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) 1766 return; // No pending notification. Nothing to do. 1767 1768 for (const auto &thread_sp : m_threads) { 1769 if (StateIsRunningState(thread_sp->GetState())) 1770 return; // Some threads are still running. Don't signal yet. 1771 } 1772 1773 // We have a pending notification and all threads have stopped. 1774 Log *log( 1775 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 1776 1777 // Clear any temporary breakpoints we used to implement software single 1778 // stepping. 1779 for (const auto &thread_info : m_threads_stepping_with_breakpoint) { 1780 Status error = RemoveBreakpoint(thread_info.second); 1781 if (error.Fail()) 1782 LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}", 1783 thread_info.first, error); 1784 } 1785 m_threads_stepping_with_breakpoint.clear(); 1786 1787 // Notify the delegate about the stop 1788 SetCurrentThreadID(m_pending_notification_tid); 1789 SetState(StateType::eStateStopped, true); 1790 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 1791 } 1792 1793 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) { 1794 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1795 LLDB_LOG(log, "tid: {0}", thread.GetID()); 1796 1797 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && 1798 StateIsRunningState(thread.GetState())) { 1799 // We will need to wait for this new thread to stop as well before firing 1800 // the notification. 1801 thread.RequestStop(); 1802 } 1803 } 1804 1805 void NativeProcessLinux::SigchldHandler() { 1806 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1807 // Process all pending waitpid notifications. 1808 while (true) { 1809 int status = -1; 1810 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, -1, &status, 1811 __WALL | __WNOTHREAD | WNOHANG); 1812 1813 if (wait_pid == 0) 1814 break; // We are done. 1815 1816 if (wait_pid == -1) { 1817 Status error(errno, eErrorTypePOSIX); 1818 LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error); 1819 break; 1820 } 1821 1822 WaitStatus wait_status = WaitStatus::Decode(status); 1823 bool exited = wait_status.type == WaitStatus::Exit || 1824 (wait_status.type == WaitStatus::Signal && 1825 wait_pid == static_cast<::pid_t>(GetID())); 1826 1827 LLDB_LOG( 1828 log, 1829 "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}", 1830 wait_pid, wait_status, exited); 1831 1832 MonitorCallback(wait_pid, exited, wait_status); 1833 } 1834 } 1835 1836 // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets 1837 // errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) 1838 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, 1839 void *data, size_t data_size, 1840 long *result) { 1841 Status error; 1842 long int ret; 1843 1844 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 1845 1846 PtraceDisplayBytes(req, data, data_size); 1847 1848 errno = 0; 1849 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 1850 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 1851 *(unsigned int *)addr, data); 1852 else 1853 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 1854 addr, data); 1855 1856 if (ret == -1) 1857 error.SetErrorToErrno(); 1858 1859 if (result) 1860 *result = ret; 1861 1862 LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data, 1863 data_size, ret); 1864 1865 PtraceDisplayBytes(req, data, data_size); 1866 1867 if (error.Fail()) 1868 LLDB_LOG(log, "ptrace() failed: {0}", error); 1869 1870 return error; 1871 } 1872 1873 llvm::Expected<TraceSupportedResponse> NativeProcessLinux::TraceSupported() { 1874 if (IntelPTManager::IsSupported()) 1875 return TraceSupportedResponse{"intel-pt", "Intel Processor Trace"}; 1876 return NativeProcessProtocol::TraceSupported(); 1877 } 1878 1879 Error NativeProcessLinux::TraceStart(StringRef json_request, StringRef type) { 1880 if (type == "intel-pt") { 1881 if (Expected<TraceIntelPTStartRequest> request = 1882 json::parse<TraceIntelPTStartRequest>(json_request, 1883 "TraceIntelPTStartRequest")) { 1884 std::vector<lldb::tid_t> process_threads; 1885 for (auto &thread : m_threads) 1886 process_threads.push_back(thread->GetID()); 1887 return m_intel_pt_manager.TraceStart(*request, process_threads); 1888 } else 1889 return request.takeError(); 1890 } 1891 1892 return NativeProcessProtocol::TraceStart(json_request, type); 1893 } 1894 1895 Error NativeProcessLinux::TraceStop(const TraceStopRequest &request) { 1896 if (request.type == "intel-pt") 1897 return m_intel_pt_manager.TraceStop(request); 1898 return NativeProcessProtocol::TraceStop(request); 1899 } 1900 1901 Expected<json::Value> NativeProcessLinux::TraceGetState(StringRef type) { 1902 if (type == "intel-pt") 1903 return m_intel_pt_manager.GetState(); 1904 return NativeProcessProtocol::TraceGetState(type); 1905 } 1906 1907 Expected<std::vector<uint8_t>> NativeProcessLinux::TraceGetBinaryData( 1908 const TraceGetBinaryDataRequest &request) { 1909 if (request.type == "intel-pt") 1910 return m_intel_pt_manager.GetBinaryData(request); 1911 return NativeProcessProtocol::TraceGetBinaryData(request); 1912 } 1913