1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "NativeProcessLinux.h"
11 
12 // C Includes
13 #include <errno.h>
14 #include <string.h>
15 #include <stdint.h>
16 #include <unistd.h>
17 
18 // C++ Includes
19 #include <fstream>
20 #include <mutex>
21 #include <sstream>
22 #include <string>
23 #include <unordered_map>
24 
25 // Other libraries and framework includes
26 #include "lldb/Core/EmulateInstruction.h"
27 #include "lldb/Core/Error.h"
28 #include "lldb/Core/Module.h"
29 #include "lldb/Core/ModuleSpec.h"
30 #include "lldb/Core/RegisterValue.h"
31 #include "lldb/Core/State.h"
32 #include "lldb/Host/common/NativeBreakpoint.h"
33 #include "lldb/Host/common/NativeRegisterContext.h"
34 #include "lldb/Host/Host.h"
35 #include "lldb/Host/ThreadLauncher.h"
36 #include "lldb/Target/Platform.h"
37 #include "lldb/Target/Process.h"
38 #include "lldb/Target/ProcessLaunchInfo.h"
39 #include "lldb/Target/Target.h"
40 #include "lldb/Utility/LLDBAssert.h"
41 #include "lldb/Utility/PseudoTerminal.h"
42 #include "lldb/Utility/StringExtractor.h"
43 
44 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
45 #include "NativeThreadLinux.h"
46 #include "ProcFileReader.h"
47 #include "Procfs.h"
48 
49 // System includes - They have to be included after framework includes because they define some
50 // macros which collide with variable names in other modules
51 #include <linux/unistd.h>
52 #include <sys/socket.h>
53 
54 #include <sys/syscall.h>
55 #include <sys/types.h>
56 #include <sys/user.h>
57 #include <sys/wait.h>
58 
59 #include "lldb/Host/linux/Personality.h"
60 #include "lldb/Host/linux/Ptrace.h"
61 #include "lldb/Host/linux/Signalfd.h"
62 #include "lldb/Host/linux/Uio.h"
63 #include "lldb/Host/android/Android.h"
64 
65 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS  0xffffffff
66 
67 // Support hardware breakpoints in case it has not been defined
68 #ifndef TRAP_HWBKPT
69   #define TRAP_HWBKPT 4
70 #endif
71 
72 using namespace lldb;
73 using namespace lldb_private;
74 using namespace lldb_private::process_linux;
75 using namespace llvm;
76 
77 // Private bits we only need internally.
78 
79 static bool ProcessVmReadvSupported()
80 {
81     static bool is_supported;
82     static std::once_flag flag;
83 
84     std::call_once(flag, [] {
85         Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
86 
87         uint32_t source = 0x47424742;
88         uint32_t dest = 0;
89 
90         struct iovec local, remote;
91         remote.iov_base = &source;
92         local.iov_base = &dest;
93         remote.iov_len = local.iov_len = sizeof source;
94 
95         // We shall try if cross-process-memory reads work by attempting to read a value from our own process.
96         ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
97         is_supported = (res == sizeof(source) && source == dest);
98         if (log)
99         {
100             if (is_supported)
101                 log->Printf("%s: Detected kernel support for process_vm_readv syscall. Fast memory reads enabled.",
102                         __FUNCTION__);
103             else
104                 log->Printf("%s: syscall process_vm_readv failed (error: %s). Fast memory reads disabled.",
105                         __FUNCTION__, strerror(errno));
106         }
107     });
108 
109     return is_supported;
110 }
111 
112 namespace
113 {
114     Error
115     ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch)
116     {
117         // Grab process info for the running process.
118         ProcessInstanceInfo process_info;
119         if (!platform.GetProcessInfo (pid, process_info))
120             return Error("failed to get process info");
121 
122         // Resolve the executable module.
123         ModuleSP exe_module_sp;
124         ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
125         FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ());
126         Error error = platform.ResolveExecutable(
127             exe_module_spec,
128             exe_module_sp,
129             executable_search_paths.GetSize () ? &executable_search_paths : NULL);
130 
131         if (!error.Success ())
132             return error;
133 
134         // Check if we've got our architecture from the exe_module.
135         arch = exe_module_sp->GetArchitecture ();
136         if (arch.IsValid ())
137             return Error();
138         else
139             return Error("failed to retrieve a valid architecture from the exe module");
140     }
141 
142     void
143     DisplayBytes (StreamString &s, void *bytes, uint32_t count)
144     {
145         uint8_t *ptr = (uint8_t *)bytes;
146         const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
147         for(uint32_t i=0; i<loop_count; i++)
148         {
149             s.Printf ("[%x]", *ptr);
150             ptr++;
151         }
152     }
153 
154     void
155     PtraceDisplayBytes(int &req, void *data, size_t data_size)
156     {
157         StreamString buf;
158         Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (
159                     POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE));
160 
161         if (verbose_log)
162         {
163             switch(req)
164             {
165             case PTRACE_POKETEXT:
166             {
167                 DisplayBytes(buf, &data, 8);
168                 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData());
169                 break;
170             }
171             case PTRACE_POKEDATA:
172             {
173                 DisplayBytes(buf, &data, 8);
174                 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData());
175                 break;
176             }
177             case PTRACE_POKEUSER:
178             {
179                 DisplayBytes(buf, &data, 8);
180                 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData());
181                 break;
182             }
183             case PTRACE_SETREGS:
184             {
185                 DisplayBytes(buf, data, data_size);
186                 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData());
187                 break;
188             }
189             case PTRACE_SETFPREGS:
190             {
191                 DisplayBytes(buf, data, data_size);
192                 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData());
193                 break;
194             }
195             case PTRACE_SETSIGINFO:
196             {
197                 DisplayBytes(buf, data, sizeof(siginfo_t));
198                 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData());
199                 break;
200             }
201             case PTRACE_SETREGSET:
202             {
203                 // Extract iov_base from data, which is a pointer to the struct IOVEC
204                 DisplayBytes(buf, *(void **)data, data_size);
205                 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData());
206                 break;
207             }
208             default:
209             {
210             }
211             }
212         }
213     }
214 
215     static constexpr unsigned k_ptrace_word_size = sizeof(void*);
216     static_assert(sizeof(long) >= k_ptrace_word_size, "Size of long must be larger than ptrace word size");
217 } // end of anonymous namespace
218 
219 // Simple helper function to ensure flags are enabled on the given file
220 // descriptor.
221 static Error
222 EnsureFDFlags(int fd, int flags)
223 {
224     Error error;
225 
226     int status = fcntl(fd, F_GETFL);
227     if (status == -1)
228     {
229         error.SetErrorToErrno();
230         return error;
231     }
232 
233     if (fcntl(fd, F_SETFL, status | flags) == -1)
234     {
235         error.SetErrorToErrno();
236         return error;
237     }
238 
239     return error;
240 }
241 
242 NativeProcessLinux::LaunchArgs::LaunchArgs(Module *module,
243                                        char const **argv,
244                                        char const **envp,
245                                        const FileSpec &stdin_file_spec,
246                                        const FileSpec &stdout_file_spec,
247                                        const FileSpec &stderr_file_spec,
248                                        const FileSpec &working_dir,
249                                        const ProcessLaunchInfo &launch_info)
250     : m_module(module),
251       m_argv(argv),
252       m_envp(envp),
253       m_stdin_file_spec(stdin_file_spec),
254       m_stdout_file_spec(stdout_file_spec),
255       m_stderr_file_spec(stderr_file_spec),
256       m_working_dir(working_dir),
257       m_launch_info(launch_info)
258 {
259 }
260 
261 NativeProcessLinux::LaunchArgs::~LaunchArgs()
262 { }
263 
264 // -----------------------------------------------------------------------------
265 // Public Static Methods
266 // -----------------------------------------------------------------------------
267 
268 Error
269 NativeProcessProtocol::Launch (
270     ProcessLaunchInfo &launch_info,
271     NativeProcessProtocol::NativeDelegate &native_delegate,
272     MainLoop &mainloop,
273     NativeProcessProtocolSP &native_process_sp)
274 {
275     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
276 
277     lldb::ModuleSP exe_module_sp;
278     PlatformSP platform_sp (Platform::GetHostPlatform ());
279     Error error = platform_sp->ResolveExecutable(
280             ModuleSpec(launch_info.GetExecutableFile(), launch_info.GetArchitecture()),
281             exe_module_sp,
282             nullptr);
283 
284     if (! error.Success())
285         return error;
286 
287     // Verify the working directory is valid if one was specified.
288     FileSpec working_dir{launch_info.GetWorkingDirectory()};
289     if (working_dir &&
290             (!working_dir.ResolvePath() ||
291              working_dir.GetFileType() != FileSpec::eFileTypeDirectory))
292     {
293         error.SetErrorStringWithFormat ("No such file or directory: %s",
294                 working_dir.GetCString());
295         return error;
296     }
297 
298     const FileAction *file_action;
299 
300     // Default of empty will mean to use existing open file descriptors.
301     FileSpec stdin_file_spec{};
302     FileSpec stdout_file_spec{};
303     FileSpec stderr_file_spec{};
304 
305     file_action = launch_info.GetFileActionForFD (STDIN_FILENO);
306     if (file_action)
307         stdin_file_spec = file_action->GetFileSpec();
308 
309     file_action = launch_info.GetFileActionForFD (STDOUT_FILENO);
310     if (file_action)
311         stdout_file_spec = file_action->GetFileSpec();
312 
313     file_action = launch_info.GetFileActionForFD (STDERR_FILENO);
314     if (file_action)
315         stderr_file_spec = file_action->GetFileSpec();
316 
317     if (log)
318     {
319         if (stdin_file_spec)
320             log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'",
321                     __FUNCTION__, stdin_file_spec.GetCString());
322         else
323             log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__);
324 
325         if (stdout_file_spec)
326             log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'",
327                     __FUNCTION__, stdout_file_spec.GetCString());
328         else
329             log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__);
330 
331         if (stderr_file_spec)
332             log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'",
333                     __FUNCTION__, stderr_file_spec.GetCString());
334         else
335             log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__);
336     }
337 
338     // Create the NativeProcessLinux in launch mode.
339     native_process_sp.reset (new NativeProcessLinux ());
340 
341     if (log)
342     {
343         int i = 0;
344         for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i)
345         {
346             log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr");
347             ++i;
348         }
349     }
350 
351     if (!native_process_sp->RegisterNativeDelegate (native_delegate))
352     {
353         native_process_sp.reset ();
354         error.SetErrorStringWithFormat ("failed to register the native delegate");
355         return error;
356     }
357 
358     std::static_pointer_cast<NativeProcessLinux> (native_process_sp)->LaunchInferior (
359             mainloop,
360             exe_module_sp.get(),
361             launch_info.GetArguments ().GetConstArgumentVector (),
362             launch_info.GetEnvironmentEntries ().GetConstArgumentVector (),
363             stdin_file_spec,
364             stdout_file_spec,
365             stderr_file_spec,
366             working_dir,
367             launch_info,
368             error);
369 
370     if (error.Fail ())
371     {
372         native_process_sp.reset ();
373         if (log)
374             log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ());
375         return error;
376     }
377 
378     launch_info.SetProcessID (native_process_sp->GetID ());
379 
380     return error;
381 }
382 
383 Error
384 NativeProcessProtocol::Attach (
385     lldb::pid_t pid,
386     NativeProcessProtocol::NativeDelegate &native_delegate,
387     MainLoop &mainloop,
388     NativeProcessProtocolSP &native_process_sp)
389 {
390     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
391     if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE))
392         log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid);
393 
394     // Grab the current platform architecture.  This should be Linux,
395     // since this code is only intended to run on a Linux host.
396     PlatformSP platform_sp (Platform::GetHostPlatform ());
397     if (!platform_sp)
398         return Error("failed to get a valid default platform");
399 
400     // Retrieve the architecture for the running process.
401     ArchSpec process_arch;
402     Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch);
403     if (!error.Success ())
404         return error;
405 
406     std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ());
407 
408     if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate))
409     {
410         error.SetErrorStringWithFormat ("failed to register the native delegate");
411         return error;
412     }
413 
414     native_process_linux_sp->AttachToInferior (mainloop, pid, error);
415     if (!error.Success ())
416         return error;
417 
418     native_process_sp = native_process_linux_sp;
419     return error;
420 }
421 
422 // -----------------------------------------------------------------------------
423 // Public Instance Methods
424 // -----------------------------------------------------------------------------
425 
426 NativeProcessLinux::NativeProcessLinux () :
427     NativeProcessProtocol (LLDB_INVALID_PROCESS_ID),
428     m_arch (),
429     m_supports_mem_region (eLazyBoolCalculate),
430     m_mem_region_cache (),
431     m_mem_region_cache_mutex ()
432 {
433 }
434 
435 void
436 NativeProcessLinux::LaunchInferior (
437     MainLoop &mainloop,
438     Module *module,
439     const char *argv[],
440     const char *envp[],
441     const FileSpec &stdin_file_spec,
442     const FileSpec &stdout_file_spec,
443     const FileSpec &stderr_file_spec,
444     const FileSpec &working_dir,
445     const ProcessLaunchInfo &launch_info,
446     Error &error)
447 {
448     m_sigchld_handle = mainloop.RegisterSignal(SIGCHLD,
449             [this] (MainLoopBase &) { SigchldHandler(); }, error);
450     if (! m_sigchld_handle)
451         return;
452 
453     if (module)
454         m_arch = module->GetArchitecture ();
455 
456     SetState (eStateLaunching);
457 
458     std::unique_ptr<LaunchArgs> args(
459         new LaunchArgs(module, argv, envp,
460                        stdin_file_spec,
461                        stdout_file_spec,
462                        stderr_file_spec,
463                        working_dir,
464                        launch_info));
465 
466     Launch(args.get(), error);
467 }
468 
469 void
470 NativeProcessLinux::AttachToInferior (MainLoop &mainloop, lldb::pid_t pid, Error &error)
471 {
472     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
473     if (log)
474         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid);
475 
476     m_sigchld_handle = mainloop.RegisterSignal(SIGCHLD,
477             [this] (MainLoopBase &) { SigchldHandler(); }, error);
478     if (! m_sigchld_handle)
479         return;
480 
481     // We can use the Host for everything except the ResolveExecutable portion.
482     PlatformSP platform_sp = Platform::GetHostPlatform ();
483     if (!platform_sp)
484     {
485         if (log)
486             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid);
487         error.SetErrorString ("no default platform available");
488         return;
489     }
490 
491     // Gather info about the process.
492     ProcessInstanceInfo process_info;
493     if (!platform_sp->GetProcessInfo (pid, process_info))
494     {
495         if (log)
496             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid);
497         error.SetErrorString ("failed to get process info");
498         return;
499     }
500 
501     // Resolve the executable module
502     ModuleSP exe_module_sp;
503     FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths());
504     ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
505     error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp,
506                                            executable_search_paths.GetSize() ? &executable_search_paths : NULL);
507     if (!error.Success())
508         return;
509 
510     // Set the architecture to the exe architecture.
511     m_arch = exe_module_sp->GetArchitecture();
512     if (log)
513         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ());
514 
515     m_pid = pid;
516     SetState(eStateAttaching);
517 
518     Attach(pid, error);
519 }
520 
521 ::pid_t
522 NativeProcessLinux::Launch(LaunchArgs *args, Error &error)
523 {
524     assert (args && "null args");
525 
526     const char **argv = args->m_argv;
527     const char **envp = args->m_envp;
528     const FileSpec working_dir = args->m_working_dir;
529 
530     lldb_utility::PseudoTerminal terminal;
531     const size_t err_len = 1024;
532     char err_str[err_len];
533     lldb::pid_t pid;
534     NativeThreadProtocolSP thread_sp;
535 
536     lldb::ThreadSP inferior;
537 
538     // Propagate the environment if one is not supplied.
539     if (envp == NULL || envp[0] == NULL)
540         envp = const_cast<const char **>(environ);
541 
542     if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1))
543     {
544         error.SetErrorToGenericError();
545         error.SetErrorStringWithFormat("Process fork failed: %s", err_str);
546         return -1;
547     }
548 
549     // Recognized child exit status codes.
550     enum {
551         ePtraceFailed = 1,
552         eDupStdinFailed,
553         eDupStdoutFailed,
554         eDupStderrFailed,
555         eChdirFailed,
556         eExecFailed,
557         eSetGidFailed,
558         eSetSigMaskFailed
559     };
560 
561     // Child process.
562     if (pid == 0)
563     {
564         // First, make sure we disable all logging. If we are logging to stdout, our logs can be
565         // mistaken for inferior output.
566         Log::DisableAllLogChannels(nullptr);
567         // FIXME consider opening a pipe between parent/child and have this forked child
568         // send log info to parent re: launch status.
569 
570         // Start tracing this child that is about to exec.
571         error = PtraceWrapper(PTRACE_TRACEME, 0);
572         if (error.Fail())
573             exit(ePtraceFailed);
574 
575         // terminal has already dupped the tty descriptors to stdin/out/err.
576         // This closes original fd from which they were copied (and avoids
577         // leaking descriptors to the debugged process.
578         terminal.CloseSlaveFileDescriptor();
579 
580         // Do not inherit setgid powers.
581         if (setgid(getgid()) != 0)
582             exit(eSetGidFailed);
583 
584         // Attempt to have our own process group.
585         if (setpgid(0, 0) != 0)
586         {
587             // FIXME log that this failed. This is common.
588             // Don't allow this to prevent an inferior exec.
589         }
590 
591         // Dup file descriptors if needed.
592         if (args->m_stdin_file_spec)
593             if (!DupDescriptor(args->m_stdin_file_spec, STDIN_FILENO, O_RDONLY))
594                 exit(eDupStdinFailed);
595 
596         if (args->m_stdout_file_spec)
597             if (!DupDescriptor(args->m_stdout_file_spec, STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
598                 exit(eDupStdoutFailed);
599 
600         if (args->m_stderr_file_spec)
601             if (!DupDescriptor(args->m_stderr_file_spec, STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
602                 exit(eDupStderrFailed);
603 
604         // Close everything besides stdin, stdout, and stderr that has no file
605         // action to avoid leaking
606         for (int fd = 3; fd < sysconf(_SC_OPEN_MAX); ++fd)
607             if (!args->m_launch_info.GetFileActionForFD(fd))
608                 close(fd);
609 
610         // Change working directory
611         if (working_dir && 0 != ::chdir(working_dir.GetCString()))
612               exit(eChdirFailed);
613 
614         // Disable ASLR if requested.
615         if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR))
616         {
617             const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS);
618             if (old_personality == -1)
619             {
620                 // Can't retrieve Linux personality.  Cannot disable ASLR.
621             }
622             else
623             {
624                 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality);
625                 if (new_personality == -1)
626                 {
627                     // Disabling ASLR failed.
628                 }
629                 else
630                 {
631                     // Disabling ASLR succeeded.
632                 }
633             }
634         }
635 
636         // Clear the signal mask to prevent the child from being affected by
637         // any masking done by the parent.
638         sigset_t set;
639         if (sigemptyset(&set) != 0 || pthread_sigmask(SIG_SETMASK, &set, nullptr) != 0)
640             exit(eSetSigMaskFailed);
641 
642         // Execute.  We should never return...
643         execve(argv[0],
644                const_cast<char *const *>(argv),
645                const_cast<char *const *>(envp));
646 
647         // ...unless exec fails.  In which case we definitely need to end the child here.
648         exit(eExecFailed);
649     }
650 
651     //
652     // This is the parent code here.
653     //
654     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
655 
656     // Wait for the child process to trap on its call to execve.
657     ::pid_t wpid;
658     int status;
659     if ((wpid = waitpid(pid, &status, 0)) < 0)
660     {
661         error.SetErrorToErrno();
662         if (log)
663             log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s",
664                     __FUNCTION__, error.AsCString ());
665 
666         // Mark the inferior as invalid.
667         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
668         SetState (StateType::eStateInvalid);
669 
670         return -1;
671     }
672     else if (WIFEXITED(status))
673     {
674         // open, dup or execve likely failed for some reason.
675         error.SetErrorToGenericError();
676         switch (WEXITSTATUS(status))
677         {
678             case ePtraceFailed:
679                 error.SetErrorString("Child ptrace failed.");
680                 break;
681             case eDupStdinFailed:
682                 error.SetErrorString("Child open stdin failed.");
683                 break;
684             case eDupStdoutFailed:
685                 error.SetErrorString("Child open stdout failed.");
686                 break;
687             case eDupStderrFailed:
688                 error.SetErrorString("Child open stderr failed.");
689                 break;
690             case eChdirFailed:
691                 error.SetErrorString("Child failed to set working directory.");
692                 break;
693             case eExecFailed:
694                 error.SetErrorString("Child exec failed.");
695                 break;
696             case eSetGidFailed:
697                 error.SetErrorString("Child setgid failed.");
698                 break;
699             case eSetSigMaskFailed:
700                 error.SetErrorString("Child failed to set signal mask.");
701                 break;
702             default:
703                 error.SetErrorString("Child returned unknown exit status.");
704                 break;
705         }
706 
707         if (log)
708         {
709             log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP",
710                     __FUNCTION__,
711                     WEXITSTATUS(status));
712         }
713 
714         // Mark the inferior as invalid.
715         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
716         SetState (StateType::eStateInvalid);
717 
718         return -1;
719     }
720     assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) &&
721            "Could not sync with inferior process.");
722 
723     if (log)
724         log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__);
725 
726     error = SetDefaultPtraceOpts(pid);
727     if (error.Fail())
728     {
729         if (log)
730             log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s",
731                     __FUNCTION__, error.AsCString ());
732 
733         // Mark the inferior as invalid.
734         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
735         SetState (StateType::eStateInvalid);
736 
737         return -1;
738     }
739 
740     // Release the master terminal descriptor and pass it off to the
741     // NativeProcessLinux instance.  Similarly stash the inferior pid.
742     m_terminal_fd = terminal.ReleaseMasterFileDescriptor();
743     m_pid = pid;
744 
745     // Set the terminal fd to be in non blocking mode (it simplifies the
746     // implementation of ProcessLinux::GetSTDOUT to have a non-blocking
747     // descriptor to read from).
748     error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
749     if (error.Fail())
750     {
751         if (log)
752             log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s",
753                     __FUNCTION__, error.AsCString ());
754 
755         // Mark the inferior as invalid.
756         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
757         SetState (StateType::eStateInvalid);
758 
759         return -1;
760     }
761 
762     if (log)
763         log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid);
764 
765     thread_sp = AddThread (pid);
766     assert (thread_sp && "AddThread() returned a nullptr thread");
767     std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP);
768     ThreadWasCreated(pid);
769 
770     // Let our process instance know the thread has stopped.
771     SetCurrentThreadID (thread_sp->GetID ());
772     SetState (StateType::eStateStopped);
773 
774     if (log)
775     {
776         if (error.Success ())
777         {
778             log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__);
779         }
780         else
781         {
782             log->Printf ("NativeProcessLinux::%s inferior launching failed: %s",
783                 __FUNCTION__, error.AsCString ());
784             return -1;
785         }
786     }
787     return pid;
788 }
789 
790 ::pid_t
791 NativeProcessLinux::Attach(lldb::pid_t pid, Error &error)
792 {
793     lldb::ThreadSP inferior;
794     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
795 
796     // Use a map to keep track of the threads which we have attached/need to attach.
797     Host::TidMap tids_to_attach;
798     if (pid <= 1)
799     {
800         error.SetErrorToGenericError();
801         error.SetErrorString("Attaching to process 1 is not allowed.");
802         return -1;
803     }
804 
805     while (Host::FindProcessThreads(pid, tids_to_attach))
806     {
807         for (Host::TidMap::iterator it = tids_to_attach.begin();
808              it != tids_to_attach.end();)
809         {
810             if (it->second == false)
811             {
812                 lldb::tid_t tid = it->first;
813 
814                 // Attach to the requested process.
815                 // An attach will cause the thread to stop with a SIGSTOP.
816                 error = PtraceWrapper(PTRACE_ATTACH, tid);
817                 if (error.Fail())
818                 {
819                     // No such thread. The thread may have exited.
820                     // More error handling may be needed.
821                     if (error.GetError() == ESRCH)
822                     {
823                         it = tids_to_attach.erase(it);
824                         continue;
825                     }
826                     else
827                         return -1;
828                 }
829 
830                 int status;
831                 // Need to use __WALL otherwise we receive an error with errno=ECHLD
832                 // At this point we should have a thread stopped if waitpid succeeds.
833                 if ((status = waitpid(tid, NULL, __WALL)) < 0)
834                 {
835                     // No such thread. The thread may have exited.
836                     // More error handling may be needed.
837                     if (errno == ESRCH)
838                     {
839                         it = tids_to_attach.erase(it);
840                         continue;
841                     }
842                     else
843                     {
844                         error.SetErrorToErrno();
845                         return -1;
846                     }
847                 }
848 
849                 error = SetDefaultPtraceOpts(tid);
850                 if (error.Fail())
851                     return -1;
852 
853                 if (log)
854                     log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid);
855 
856                 it->second = true;
857 
858                 // Create the thread, mark it as stopped.
859                 NativeThreadProtocolSP thread_sp (AddThread (static_cast<lldb::tid_t> (tid)));
860                 assert (thread_sp && "AddThread() returned a nullptr");
861 
862                 // This will notify this is a new thread and tell the system it is stopped.
863                 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP);
864                 ThreadWasCreated(tid);
865                 SetCurrentThreadID (thread_sp->GetID ());
866             }
867 
868             // move the loop forward
869             ++it;
870         }
871     }
872 
873     if (tids_to_attach.size() > 0)
874     {
875         m_pid = pid;
876         // Let our process instance know the thread has stopped.
877         SetState (StateType::eStateStopped);
878     }
879     else
880     {
881         error.SetErrorToGenericError();
882         error.SetErrorString("No such process.");
883         return -1;
884     }
885 
886     return pid;
887 }
888 
889 Error
890 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid)
891 {
892     long ptrace_opts = 0;
893 
894     // Have the child raise an event on exit.  This is used to keep the child in
895     // limbo until it is destroyed.
896     ptrace_opts |= PTRACE_O_TRACEEXIT;
897 
898     // Have the tracer trace threads which spawn in the inferior process.
899     // TODO: if we want to support tracing the inferiors' child, add the
900     // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
901     ptrace_opts |= PTRACE_O_TRACECLONE;
902 
903     // Have the tracer notify us before execve returns
904     // (needed to disable legacy SIGTRAP generation)
905     ptrace_opts |= PTRACE_O_TRACEEXEC;
906 
907     return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts);
908 }
909 
910 static ExitType convert_pid_status_to_exit_type (int status)
911 {
912     if (WIFEXITED (status))
913         return ExitType::eExitTypeExit;
914     else if (WIFSIGNALED (status))
915         return ExitType::eExitTypeSignal;
916     else if (WIFSTOPPED (status))
917         return ExitType::eExitTypeStop;
918     else
919     {
920         // We don't know what this is.
921         return ExitType::eExitTypeInvalid;
922     }
923 }
924 
925 static int convert_pid_status_to_return_code (int status)
926 {
927     if (WIFEXITED (status))
928         return WEXITSTATUS (status);
929     else if (WIFSIGNALED (status))
930         return WTERMSIG (status);
931     else if (WIFSTOPPED (status))
932         return WSTOPSIG (status);
933     else
934     {
935         // We don't know what this is.
936         return ExitType::eExitTypeInvalid;
937     }
938 }
939 
940 // Handles all waitpid events from the inferior process.
941 void
942 NativeProcessLinux::MonitorCallback(lldb::pid_t pid,
943                                     bool exited,
944                                     int signal,
945                                     int status)
946 {
947     Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS));
948 
949     // Certain activities differ based on whether the pid is the tid of the main thread.
950     const bool is_main_thread = (pid == GetID ());
951 
952     // Handle when the thread exits.
953     if (exited)
954     {
955         if (log)
956             log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %"  PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not");
957 
958         // This is a thread that exited.  Ensure we're not tracking it anymore.
959         const bool thread_found = StopTrackingThread (pid);
960 
961         if (is_main_thread)
962         {
963             // We only set the exit status and notify the delegate if we haven't already set the process
964             // state to an exited state.  We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8)
965             // for the main thread.
966             const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed);
967             if (!already_notified)
968             {
969                 if (log)
970                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ()));
971                 // The main thread exited.  We're done monitoring.  Report to delegate.
972                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
973 
974                 // Notify delegate that our process has exited.
975                 SetState (StateType::eStateExited, true);
976             }
977             else
978             {
979                 if (log)
980                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
981             }
982         }
983         else
984         {
985             // Do we want to report to the delegate in this case?  I think not.  If this was an orderly
986             // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal,
987             // and we would have done an all-stop then.
988             if (log)
989                 log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
990         }
991         return;
992     }
993 
994     // Get details on the signal raised.
995     siginfo_t info;
996     const auto err = GetSignalInfo(pid, &info);
997     if (err.Success())
998     {
999         // We have retrieved the signal info.  Dispatch appropriately.
1000         if (info.si_signo == SIGTRAP)
1001             MonitorSIGTRAP(&info, pid);
1002         else
1003             MonitorSignal(&info, pid, exited);
1004     }
1005     else
1006     {
1007         if (err.GetError() == EINVAL)
1008         {
1009             // This is a group stop reception for this tid.
1010             // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the
1011             // tracee, triggering the group-stop mechanism. Normally receiving these would stop
1012             // the process, pending a SIGCONT. Simulating this state in a debugger is hard and is
1013             // generally not needed (one use case is debugging background task being managed by a
1014             // shell). For general use, it is sufficient to stop the process in a signal-delivery
1015             // stop which happens before the group stop. This done by MonitorSignal and works
1016             // correctly for all signals.
1017             if (log)
1018                 log->Printf("NativeProcessLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64 ". Transparent handling of group stops not supported, resuming the thread.", __FUNCTION__, GetID (), pid);
1019             Resume(pid, signal);
1020         }
1021         else
1022         {
1023             // ptrace(GETSIGINFO) failed (but not due to group-stop).
1024 
1025             // A return value of ESRCH means the thread/process is no longer on the system,
1026             // so it was killed somehow outside of our control.  Either way, we can't do anything
1027             // with it anymore.
1028 
1029             // Stop tracking the metadata for the thread since it's entirely off the system now.
1030             const bool thread_found = StopTrackingThread (pid);
1031 
1032             if (log)
1033                 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)",
1034                              __FUNCTION__, err.AsCString(), pid, signal, status, err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found");
1035 
1036             if (is_main_thread)
1037             {
1038                 // Notify the delegate - our process is not available but appears to have been killed outside
1039                 // our control.  Is eStateExited the right exit state in this case?
1040                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
1041                 SetState (StateType::eStateExited, true);
1042             }
1043             else
1044             {
1045                 // This thread was pulled out from underneath us.  Anything to do here? Do we want to do an all stop?
1046                 if (log)
1047                     log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid);
1048             }
1049         }
1050     }
1051 }
1052 
1053 void
1054 NativeProcessLinux::WaitForNewThread(::pid_t tid)
1055 {
1056     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1057 
1058     NativeThreadProtocolSP new_thread_sp = GetThreadByID(tid);
1059 
1060     if (new_thread_sp)
1061     {
1062         // We are already tracking the thread - we got the event on the new thread (see
1063         // MonitorSignal) before this one. We are done.
1064         return;
1065     }
1066 
1067     // The thread is not tracked yet, let's wait for it to appear.
1068     int status = -1;
1069     ::pid_t wait_pid;
1070     do
1071     {
1072         if (log)
1073             log->Printf ("NativeProcessLinux::%s() received thread creation event for tid %" PRIu32 ". tid not tracked yet, waiting for thread to appear...", __FUNCTION__, tid);
1074         wait_pid = waitpid(tid, &status, __WALL);
1075     }
1076     while (wait_pid == -1 && errno == EINTR);
1077     // Since we are waiting on a specific tid, this must be the creation event. But let's do
1078     // some checks just in case.
1079     if (wait_pid != tid) {
1080         if (log)
1081             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime", __FUNCTION__, tid);
1082         // The only way I know of this could happen is if the whole process was
1083         // SIGKILLed in the mean time. In any case, we can't do anything about that now.
1084         return;
1085     }
1086     if (WIFEXITED(status))
1087     {
1088         if (log)
1089             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " returned an 'exited' event. Not tracking the thread.", __FUNCTION__, tid);
1090         // Also a very improbable event.
1091         return;
1092     }
1093 
1094     siginfo_t info;
1095     Error error = GetSignalInfo(tid, &info);
1096     if (error.Fail())
1097     {
1098         if (log)
1099             log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime.", __FUNCTION__, tid);
1100         return;
1101     }
1102 
1103     if (((info.si_pid != 0) || (info.si_code != SI_USER)) && log)
1104     {
1105         // We should be getting a thread creation signal here, but we received something
1106         // else. There isn't much we can do about it now, so we will just log that. Since the
1107         // thread is alive and we are receiving events from it, we shall pretend that it was
1108         // created properly.
1109         log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " received unexpected signal with code %d from pid %d.", __FUNCTION__, tid, info.si_code, info.si_pid);
1110     }
1111 
1112     if (log)
1113         log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": tracking new thread tid %" PRIu32,
1114                  __FUNCTION__, GetID (), tid);
1115 
1116     new_thread_sp = AddThread(tid);
1117     std::static_pointer_cast<NativeThreadLinux> (new_thread_sp)->SetRunning ();
1118     Resume (tid, LLDB_INVALID_SIGNAL_NUMBER);
1119     ThreadWasCreated(tid);
1120 }
1121 
1122 void
1123 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid)
1124 {
1125     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1126     const bool is_main_thread = (pid == GetID ());
1127 
1128     assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!");
1129     if (!info)
1130         return;
1131 
1132     Mutex::Locker locker (m_threads_mutex);
1133 
1134     // See if we can find a thread for this signal.
1135     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
1136     if (!thread_sp)
1137     {
1138         if (log)
1139             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
1140     }
1141 
1142     switch (info->si_code)
1143     {
1144     // TODO: these two cases are required if we want to support tracing of the inferiors' children.  We'd need this to debug a monitor.
1145     // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
1146     // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
1147 
1148     case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)):
1149     {
1150         // This is the notification on the parent thread which informs us of new thread
1151         // creation.
1152         // We don't want to do anything with the parent thread so we just resume it. In case we
1153         // want to implement "break on thread creation" functionality, we would need to stop
1154         // here.
1155 
1156         unsigned long event_message = 0;
1157         if (GetEventMessage (pid, &event_message).Fail())
1158         {
1159             if (log)
1160                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, pid);
1161         } else
1162             WaitForNewThread(event_message);
1163 
1164         Resume (pid, LLDB_INVALID_SIGNAL_NUMBER);
1165         break;
1166     }
1167 
1168     case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)):
1169     {
1170         NativeThreadProtocolSP main_thread_sp;
1171         if (log)
1172             log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP);
1173 
1174         // Exec clears any pending notifications.
1175         m_pending_notification_up.reset ();
1176 
1177         // Remove all but the main thread here.  Linux fork creates a new process which only copies the main thread.  Mutexes are in undefined state.
1178         if (log)
1179             log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__);
1180 
1181         for (auto thread_sp : m_threads)
1182         {
1183             const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID ();
1184             if (is_main_thread)
1185             {
1186                 main_thread_sp = thread_sp;
1187                 if (log)
1188                     log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ());
1189             }
1190             else
1191             {
1192                 // Tell thread coordinator this thread is dead.
1193                 if (log)
1194                     log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ());
1195             }
1196         }
1197 
1198         m_threads.clear ();
1199 
1200         if (main_thread_sp)
1201         {
1202             m_threads.push_back (main_thread_sp);
1203             SetCurrentThreadID (main_thread_sp->GetID ());
1204             std::static_pointer_cast<NativeThreadLinux> (main_thread_sp)->SetStoppedByExec ();
1205         }
1206         else
1207         {
1208             SetCurrentThreadID (LLDB_INVALID_THREAD_ID);
1209             if (log)
1210                 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ());
1211         }
1212 
1213         // Tell coordinator about about the "new" (since exec) stopped main thread.
1214         const lldb::tid_t main_thread_tid = GetID ();
1215         ThreadWasCreated(main_thread_tid);
1216 
1217         // NOTE: ideally these next statements would execute at the same time as the coordinator thread create was executed.
1218         // Consider a handler that can execute when that happens.
1219         // Let our delegate know we have just exec'd.
1220         NotifyDidExec ();
1221 
1222         // If we have a main thread, indicate we are stopped.
1223         assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked");
1224 
1225         // Let the process know we're stopped.
1226         StopRunningThreads (pid);
1227 
1228         break;
1229     }
1230 
1231     case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)):
1232     {
1233         // The inferior process or one of its threads is about to exit.
1234         // We don't want to do anything with the thread so we just resume it. In case we
1235         // want to implement "break on thread exit" functionality, we would need to stop
1236         // here.
1237 
1238         unsigned long data = 0;
1239         if (GetEventMessage(pid, &data).Fail())
1240             data = -1;
1241 
1242         if (log)
1243         {
1244             log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)",
1245                          __FUNCTION__,
1246                          data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false",
1247                          pid,
1248                     is_main_thread ? "is main thread" : "not main thread");
1249         }
1250 
1251         if (is_main_thread)
1252         {
1253             SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true);
1254         }
1255 
1256         Resume(pid, LLDB_INVALID_SIGNAL_NUMBER);
1257 
1258         break;
1259     }
1260 
1261     case 0:
1262     case TRAP_TRACE:  // We receive this on single stepping.
1263     case TRAP_HWBKPT: // We receive this on watchpoint hit
1264         if (thread_sp)
1265         {
1266             // If a watchpoint was hit, report it
1267             uint32_t wp_index;
1268             Error error = thread_sp->GetRegisterContext()->GetWatchpointHitIndex(wp_index, (lldb::addr_t)info->si_addr);
1269             if (error.Fail() && log)
1270                 log->Printf("NativeProcessLinux::%s() "
1271                             "received error while checking for watchpoint hits, "
1272                             "pid = %" PRIu64 " error = %s",
1273                             __FUNCTION__, pid, error.AsCString());
1274             if (wp_index != LLDB_INVALID_INDEX32)
1275             {
1276                 MonitorWatchpoint(pid, thread_sp, wp_index);
1277                 break;
1278             }
1279         }
1280         // Otherwise, report step over
1281         MonitorTrace(pid, thread_sp);
1282         break;
1283 
1284     case SI_KERNEL:
1285 #if defined __mips__
1286         // For mips there is no special signal for watchpoint
1287         // So we check for watchpoint in kernel trap
1288         if (thread_sp)
1289         {
1290             // If a watchpoint was hit, report it
1291             uint32_t wp_index;
1292             Error error = thread_sp->GetRegisterContext()->GetWatchpointHitIndex(wp_index, LLDB_INVALID_ADDRESS);
1293             if (error.Fail() && log)
1294                 log->Printf("NativeProcessLinux::%s() "
1295                             "received error while checking for watchpoint hits, "
1296                             "pid = %" PRIu64 " error = %s",
1297                             __FUNCTION__, pid, error.AsCString());
1298             if (wp_index != LLDB_INVALID_INDEX32)
1299             {
1300                 MonitorWatchpoint(pid, thread_sp, wp_index);
1301                 break;
1302             }
1303         }
1304         // NO BREAK
1305 #endif
1306     case TRAP_BRKPT:
1307         MonitorBreakpoint(pid, thread_sp);
1308         break;
1309 
1310     case SIGTRAP:
1311     case (SIGTRAP | 0x80):
1312         if (log)
1313             log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), pid);
1314 
1315         // Ignore these signals until we know more about them.
1316         Resume(pid, LLDB_INVALID_SIGNAL_NUMBER);
1317         break;
1318 
1319     default:
1320         assert(false && "Unexpected SIGTRAP code!");
1321         if (log)
1322             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%d",
1323                     __FUNCTION__, GetID (), pid, info->si_code);
1324         break;
1325 
1326     }
1327 }
1328 
1329 void
1330 NativeProcessLinux::MonitorTrace(lldb::pid_t pid, NativeThreadProtocolSP thread_sp)
1331 {
1332     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1333     if (log)
1334         log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)",
1335                 __FUNCTION__, pid);
1336 
1337     if (thread_sp)
1338         std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace();
1339 
1340     // This thread is currently stopped.
1341     ThreadDidStop(pid, false);
1342 
1343     // Here we don't have to request the rest of the threads to stop or request a deferred stop.
1344     // This would have already happened at the time the Resume() with step operation was signaled.
1345     // At this point, we just need to say we stopped, and the deferred notifcation will fire off
1346     // once all running threads have checked in as stopped.
1347     SetCurrentThreadID(pid);
1348     // Tell the process we have a stop (from software breakpoint).
1349     StopRunningThreads(pid);
1350 }
1351 
1352 void
1353 NativeProcessLinux::MonitorBreakpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp)
1354 {
1355     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
1356     if (log)
1357         log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64,
1358                 __FUNCTION__, pid);
1359 
1360     // This thread is currently stopped.
1361     ThreadDidStop(pid, false);
1362 
1363     // Mark the thread as stopped at breakpoint.
1364     if (thread_sp)
1365     {
1366         std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByBreakpoint();
1367         Error error = FixupBreakpointPCAsNeeded(thread_sp);
1368         if (error.Fail())
1369             if (log)
1370                 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s",
1371                         __FUNCTION__, pid, error.AsCString());
1372 
1373         if (m_threads_stepping_with_breakpoint.find(pid) != m_threads_stepping_with_breakpoint.end())
1374             std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace();
1375     }
1376     else
1377         if (log)
1378             log->Printf("NativeProcessLinux::%s()  pid = %" PRIu64 ": "
1379                     "warning, cannot process software breakpoint since no thread metadata",
1380                     __FUNCTION__, pid);
1381 
1382 
1383     // We need to tell all other running threads before we notify the delegate about this stop.
1384     StopRunningThreads(pid);
1385 }
1386 
1387 void
1388 NativeProcessLinux::MonitorWatchpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp, uint32_t wp_index)
1389 {
1390     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
1391     if (log)
1392         log->Printf("NativeProcessLinux::%s() received watchpoint event, "
1393                     "pid = %" PRIu64 ", wp_index = %" PRIu32,
1394                     __FUNCTION__, pid, wp_index);
1395 
1396     // This thread is currently stopped.
1397     ThreadDidStop(pid, false);
1398 
1399     // Mark the thread as stopped at watchpoint.
1400     // The address is at (lldb::addr_t)info->si_addr if we need it.
1401     lldbassert(thread_sp && "thread_sp cannot be NULL");
1402     std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByWatchpoint(wp_index);
1403 
1404     // We need to tell all other running threads before we notify the delegate about this stop.
1405     StopRunningThreads(pid);
1406 }
1407 
1408 void
1409 NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited)
1410 {
1411     assert (info && "null info");
1412     if (!info)
1413         return;
1414 
1415     const int signo = info->si_signo;
1416     const bool is_from_llgs = info->si_pid == getpid ();
1417 
1418     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1419 
1420     // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
1421     // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
1422     // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
1423     //
1424     // IOW, user generated signals never generate what we consider to be a
1425     // "crash".
1426     //
1427     // Similarly, ACK signals generated by this monitor.
1428 
1429     Mutex::Locker locker (m_threads_mutex);
1430 
1431     // See if we can find a thread for this signal.
1432     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
1433     if (!thread_sp)
1434     {
1435         if (log)
1436             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
1437     }
1438 
1439     // Handle the signal.
1440     if (info->si_code == SI_TKILL || info->si_code == SI_USER)
1441     {
1442         if (log)
1443             log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")",
1444                             __FUNCTION__,
1445                             Host::GetSignalAsCString(signo),
1446                             signo,
1447                             (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"),
1448                             info->si_pid,
1449                             is_from_llgs ? "from llgs" : "not from llgs",
1450                             pid);
1451     }
1452 
1453     // Check for new thread notification.
1454     if ((info->si_pid == 0) && (info->si_code == SI_USER))
1455     {
1456         // A new thread creation is being signaled. This is one of two parts that come in
1457         // a non-deterministic order. This code handles the case where the new thread event comes
1458         // before the event on the parent thread. For the opposite case see code in
1459         // MonitorSIGTRAP.
1460         if (log)
1461             log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification",
1462                      __FUNCTION__, GetID (), pid);
1463 
1464         thread_sp = AddThread(pid);
1465         assert (thread_sp.get() && "failed to create the tracking data for newly created inferior thread");
1466         // We can now resume the newly created thread.
1467         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
1468         Resume (pid, LLDB_INVALID_SIGNAL_NUMBER);
1469         ThreadWasCreated(pid);
1470         // Done handling.
1471         return;
1472     }
1473 
1474     // Check for thread stop notification.
1475     if (is_from_llgs && (info->si_code == SI_TKILL) && (signo == SIGSTOP))
1476     {
1477         // This is a tgkill()-based stop.
1478         if (thread_sp)
1479         {
1480             if (log)
1481                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped",
1482                              __FUNCTION__,
1483                              GetID (),
1484                              pid);
1485 
1486             // Check that we're not already marked with a stop reason.
1487             // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that
1488             // the kernel signaled us with the thread stopping which we handled and marked as stopped,
1489             // and that, without an intervening resume, we received another stop.  It is more likely
1490             // that we are missing the marking of a run state somewhere if we find that the thread was
1491             // marked as stopped.
1492             std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp);
1493             assert (linux_thread_sp && "linux_thread_sp is null!");
1494 
1495             const StateType thread_state = linux_thread_sp->GetState ();
1496             if (!StateIsStoppedState (thread_state, false))
1497             {
1498                 // An inferior thread has stopped because of a SIGSTOP we have sent it.
1499                 // Generally, these are not important stops and we don't want to report them as
1500                 // they are just used to stop other threads when one thread (the one with the
1501                 // *real* stop reason) hits a breakpoint (watchpoint, etc...). However, in the
1502                 // case of an asynchronous Interrupt(), this *is* the real stop reason, so we
1503                 // leave the signal intact if this is the thread that was chosen as the
1504                 // triggering thread.
1505                 if (m_pending_notification_up && m_pending_notification_up->triggering_tid == pid)
1506                     linux_thread_sp->SetStoppedBySignal(SIGSTOP, info);
1507                 else
1508                     linux_thread_sp->SetStoppedWithNoReason();
1509 
1510                 SetCurrentThreadID (thread_sp->GetID ());
1511                 ThreadDidStop (thread_sp->GetID (), true);
1512             }
1513             else
1514             {
1515                 if (log)
1516                 {
1517                     // Retrieve the signal name if the thread was stopped by a signal.
1518                     int stop_signo = 0;
1519                     const bool stopped_by_signal = linux_thread_sp->IsStopped (&stop_signo);
1520                     const char *signal_name = stopped_by_signal ? Host::GetSignalAsCString(stop_signo) : "<not stopped by signal>";
1521                     if (!signal_name)
1522                         signal_name = "<no-signal-name>";
1523 
1524                     log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is",
1525                                  __FUNCTION__,
1526                                  GetID (),
1527                                  linux_thread_sp->GetID (),
1528                                  StateAsCString (thread_state),
1529                                  stop_signo,
1530                                  signal_name);
1531                 }
1532                 ThreadDidStop (thread_sp->GetID (), false);
1533             }
1534         }
1535 
1536         // Done handling.
1537         return;
1538     }
1539 
1540     if (log)
1541         log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, Host::GetSignalAsCString(signo));
1542 
1543     // This thread is stopped.
1544     ThreadDidStop (pid, false);
1545 
1546     if (thread_sp)
1547         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal(signo, info);
1548 
1549     // Send a stop to the debugger after we get all other threads to stop.
1550     StopRunningThreads (pid);
1551 }
1552 
1553 namespace {
1554 
1555 struct EmulatorBaton
1556 {
1557     NativeProcessLinux* m_process;
1558     NativeRegisterContext* m_reg_context;
1559 
1560     // eRegisterKindDWARF -> RegsiterValue
1561     std::unordered_map<uint32_t, RegisterValue> m_register_values;
1562 
1563     EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) :
1564             m_process(process), m_reg_context(reg_context) {}
1565 };
1566 
1567 } // anonymous namespace
1568 
1569 static size_t
1570 ReadMemoryCallback (EmulateInstruction *instruction,
1571                     void *baton,
1572                     const EmulateInstruction::Context &context,
1573                     lldb::addr_t addr,
1574                     void *dst,
1575                     size_t length)
1576 {
1577     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
1578 
1579     size_t bytes_read;
1580     emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read);
1581     return bytes_read;
1582 }
1583 
1584 static bool
1585 ReadRegisterCallback (EmulateInstruction *instruction,
1586                       void *baton,
1587                       const RegisterInfo *reg_info,
1588                       RegisterValue &reg_value)
1589 {
1590     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
1591 
1592     auto it = emulator_baton->m_register_values.find(reg_info->kinds[eRegisterKindDWARF]);
1593     if (it != emulator_baton->m_register_values.end())
1594     {
1595         reg_value = it->second;
1596         return true;
1597     }
1598 
1599     // The emulator only fill in the dwarf regsiter numbers (and in some case
1600     // the generic register numbers). Get the full register info from the
1601     // register context based on the dwarf register numbers.
1602     const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo(
1603             eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
1604 
1605     Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value);
1606     if (error.Success())
1607         return true;
1608 
1609     return false;
1610 }
1611 
1612 static bool
1613 WriteRegisterCallback (EmulateInstruction *instruction,
1614                        void *baton,
1615                        const EmulateInstruction::Context &context,
1616                        const RegisterInfo *reg_info,
1617                        const RegisterValue &reg_value)
1618 {
1619     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
1620     emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value;
1621     return true;
1622 }
1623 
1624 static size_t
1625 WriteMemoryCallback (EmulateInstruction *instruction,
1626                      void *baton,
1627                      const EmulateInstruction::Context &context,
1628                      lldb::addr_t addr,
1629                      const void *dst,
1630                      size_t length)
1631 {
1632     return length;
1633 }
1634 
1635 static lldb::addr_t
1636 ReadFlags (NativeRegisterContext* regsiter_context)
1637 {
1638     const RegisterInfo* flags_info = regsiter_context->GetRegisterInfo(
1639             eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1640     return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS);
1641 }
1642 
1643 Error
1644 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadProtocolSP thread_sp)
1645 {
1646     Error error;
1647     NativeRegisterContextSP register_context_sp = thread_sp->GetRegisterContext();
1648 
1649     std::unique_ptr<EmulateInstruction> emulator_ap(
1650         EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr));
1651 
1652     if (emulator_ap == nullptr)
1653         return Error("Instruction emulator not found!");
1654 
1655     EmulatorBaton baton(this, register_context_sp.get());
1656     emulator_ap->SetBaton(&baton);
1657     emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
1658     emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
1659     emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
1660     emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
1661 
1662     if (!emulator_ap->ReadInstruction())
1663         return Error("Read instruction failed!");
1664 
1665     bool emulation_result = emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
1666 
1667     const RegisterInfo* reg_info_pc = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
1668     const RegisterInfo* reg_info_flags = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1669 
1670     auto pc_it = baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
1671     auto flags_it = baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
1672 
1673     lldb::addr_t next_pc;
1674     lldb::addr_t next_flags;
1675     if (emulation_result)
1676     {
1677         assert(pc_it != baton.m_register_values.end() && "Emulation was successfull but PC wasn't updated");
1678         next_pc = pc_it->second.GetAsUInt64();
1679 
1680         if (flags_it != baton.m_register_values.end())
1681             next_flags = flags_it->second.GetAsUInt64();
1682         else
1683             next_flags = ReadFlags (register_context_sp.get());
1684     }
1685     else if (pc_it == baton.m_register_values.end())
1686     {
1687         // Emulate instruction failed and it haven't changed PC. Advance PC
1688         // with the size of the current opcode because the emulation of all
1689         // PC modifying instruction should be successful. The failure most
1690         // likely caused by a not supported instruction which don't modify PC.
1691         next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize();
1692         next_flags = ReadFlags (register_context_sp.get());
1693     }
1694     else
1695     {
1696         // The instruction emulation failed after it modified the PC. It is an
1697         // unknown error where we can't continue because the next instruction is
1698         // modifying the PC but we don't  know how.
1699         return Error ("Instruction emulation failed unexpectedly.");
1700     }
1701 
1702     if (m_arch.GetMachine() == llvm::Triple::arm)
1703     {
1704         if (next_flags & 0x20)
1705         {
1706             // Thumb mode
1707             error = SetSoftwareBreakpoint(next_pc, 2);
1708         }
1709         else
1710         {
1711             // Arm mode
1712             error = SetSoftwareBreakpoint(next_pc, 4);
1713         }
1714     }
1715     else if (m_arch.GetMachine() == llvm::Triple::mips64
1716             || m_arch.GetMachine() == llvm::Triple::mips64el
1717             || m_arch.GetMachine() == llvm::Triple::mips
1718             || m_arch.GetMachine() == llvm::Triple::mipsel)
1719         error = SetSoftwareBreakpoint(next_pc, 4);
1720     else
1721     {
1722         // No size hint is given for the next breakpoint
1723         error = SetSoftwareBreakpoint(next_pc, 0);
1724     }
1725 
1726     if (error.Fail())
1727         return error;
1728 
1729     m_threads_stepping_with_breakpoint.insert({thread_sp->GetID(), next_pc});
1730 
1731     return Error();
1732 }
1733 
1734 bool
1735 NativeProcessLinux::SupportHardwareSingleStepping() const
1736 {
1737     if (m_arch.GetMachine() == llvm::Triple::arm
1738         || m_arch.GetMachine() == llvm::Triple::mips64 || m_arch.GetMachine() == llvm::Triple::mips64el
1739         || m_arch.GetMachine() == llvm::Triple::mips || m_arch.GetMachine() == llvm::Triple::mipsel)
1740         return false;
1741     return true;
1742 }
1743 
1744 Error
1745 NativeProcessLinux::Resume (const ResumeActionList &resume_actions)
1746 {
1747     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD));
1748     if (log)
1749         log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ());
1750 
1751     bool software_single_step = !SupportHardwareSingleStepping();
1752 
1753     Mutex::Locker locker (m_threads_mutex);
1754 
1755     if (software_single_step)
1756     {
1757         for (auto thread_sp : m_threads)
1758         {
1759             assert (thread_sp && "thread list should not contain NULL threads");
1760 
1761             const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
1762             if (action == nullptr)
1763                 continue;
1764 
1765             if (action->state == eStateStepping)
1766             {
1767                 Error error = SetupSoftwareSingleStepping(thread_sp);
1768                 if (error.Fail())
1769                     return error;
1770             }
1771         }
1772     }
1773 
1774     for (auto thread_sp : m_threads)
1775     {
1776         assert (thread_sp && "thread list should not contain NULL threads");
1777 
1778         const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
1779 
1780         if (action == nullptr)
1781         {
1782             if (log)
1783                 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64,
1784                     __FUNCTION__, GetID (), thread_sp->GetID ());
1785             continue;
1786         }
1787 
1788         if (log)
1789         {
1790             log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64,
1791                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
1792         }
1793 
1794         switch (action->state)
1795         {
1796         case eStateRunning:
1797         {
1798             // Run the thread, possibly feeding it the signal.
1799             const int signo = action->signal;
1800             ResumeThread(thread_sp->GetID (),
1801                     [=](lldb::tid_t tid_to_resume, bool supress_signal)
1802                     {
1803                         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
1804                         // Pass this signal number on to the inferior to handle.
1805                         const auto resume_result = Resume (tid_to_resume, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
1806                         if (resume_result.Success())
1807                             SetState(eStateRunning, true);
1808                         return resume_result;
1809                     },
1810                     false);
1811             break;
1812         }
1813 
1814         case eStateStepping:
1815         {
1816             // Request the step.
1817             const int signo = action->signal;
1818             ResumeThread(thread_sp->GetID (),
1819                     [=](lldb::tid_t tid_to_step, bool supress_signal)
1820                     {
1821                         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStepping ();
1822 
1823                         Error step_result;
1824                         if (software_single_step)
1825                             step_result = Resume (tid_to_step, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
1826                         else
1827                             step_result = SingleStep (tid_to_step,(signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
1828 
1829                         assert (step_result.Success() && "SingleStep() failed");
1830                         if (step_result.Success())
1831                             SetState(eStateStepping, true);
1832                         return step_result;
1833                     },
1834                     false);
1835             break;
1836         }
1837 
1838         case eStateSuspended:
1839         case eStateStopped:
1840             lldbassert(0 && "Unexpected state");
1841 
1842         default:
1843             return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64,
1844                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
1845         }
1846     }
1847 
1848     return Error();
1849 }
1850 
1851 Error
1852 NativeProcessLinux::Halt ()
1853 {
1854     Error error;
1855 
1856     if (kill (GetID (), SIGSTOP) != 0)
1857         error.SetErrorToErrno ();
1858 
1859     return error;
1860 }
1861 
1862 Error
1863 NativeProcessLinux::Detach ()
1864 {
1865     Error error;
1866 
1867     // Tell ptrace to detach from the process.
1868     if (GetID () != LLDB_INVALID_PROCESS_ID)
1869         error = Detach (GetID ());
1870 
1871     // Stop monitoring the inferior.
1872     m_sigchld_handle.reset();
1873 
1874     // No error.
1875     return error;
1876 }
1877 
1878 Error
1879 NativeProcessLinux::Signal (int signo)
1880 {
1881     Error error;
1882 
1883     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1884     if (log)
1885         log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64,
1886                 __FUNCTION__, signo, Host::GetSignalAsCString(signo), GetID());
1887 
1888     if (kill(GetID(), signo))
1889         error.SetErrorToErrno();
1890 
1891     return error;
1892 }
1893 
1894 Error
1895 NativeProcessLinux::Interrupt ()
1896 {
1897     // Pick a running thread (or if none, a not-dead stopped thread) as
1898     // the chosen thread that will be the stop-reason thread.
1899     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1900 
1901     NativeThreadProtocolSP running_thread_sp;
1902     NativeThreadProtocolSP stopped_thread_sp;
1903 
1904     if (log)
1905         log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__);
1906 
1907     Mutex::Locker locker (m_threads_mutex);
1908 
1909     for (auto thread_sp : m_threads)
1910     {
1911         // The thread shouldn't be null but lets just cover that here.
1912         if (!thread_sp)
1913             continue;
1914 
1915         // If we have a running or stepping thread, we'll call that the
1916         // target of the interrupt.
1917         const auto thread_state = thread_sp->GetState ();
1918         if (thread_state == eStateRunning ||
1919             thread_state == eStateStepping)
1920         {
1921             running_thread_sp = thread_sp;
1922             break;
1923         }
1924         else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true))
1925         {
1926             // Remember the first non-dead stopped thread.  We'll use that as a backup if there are no running threads.
1927             stopped_thread_sp = thread_sp;
1928         }
1929     }
1930 
1931     if (!running_thread_sp && !stopped_thread_sp)
1932     {
1933         Error error("found no running/stepping or live stopped threads as target for interrupt");
1934         if (log)
1935             log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ());
1936 
1937         return error;
1938     }
1939 
1940     NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp;
1941 
1942     if (log)
1943         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target",
1944                      __FUNCTION__,
1945                      GetID (),
1946                      running_thread_sp ? "running" : "stopped",
1947                      deferred_signal_thread_sp->GetID ());
1948 
1949     StopRunningThreads(deferred_signal_thread_sp->GetID());
1950 
1951     return Error();
1952 }
1953 
1954 Error
1955 NativeProcessLinux::Kill ()
1956 {
1957     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1958     if (log)
1959         log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ());
1960 
1961     Error error;
1962 
1963     switch (m_state)
1964     {
1965         case StateType::eStateInvalid:
1966         case StateType::eStateExited:
1967         case StateType::eStateCrashed:
1968         case StateType::eStateDetached:
1969         case StateType::eStateUnloaded:
1970             // Nothing to do - the process is already dead.
1971             if (log)
1972                 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state));
1973             return error;
1974 
1975         case StateType::eStateConnected:
1976         case StateType::eStateAttaching:
1977         case StateType::eStateLaunching:
1978         case StateType::eStateStopped:
1979         case StateType::eStateRunning:
1980         case StateType::eStateStepping:
1981         case StateType::eStateSuspended:
1982             // We can try to kill a process in these states.
1983             break;
1984     }
1985 
1986     if (kill (GetID (), SIGKILL) != 0)
1987     {
1988         error.SetErrorToErrno ();
1989         return error;
1990     }
1991 
1992     return error;
1993 }
1994 
1995 static Error
1996 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info)
1997 {
1998     memory_region_info.Clear();
1999 
2000     StringExtractor line_extractor (maps_line.c_str ());
2001 
2002     // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode   pathname
2003     // perms: rwxp   (letter is present if set, '-' if not, final character is p=private, s=shared).
2004 
2005     // Parse out the starting address
2006     lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0);
2007 
2008     // Parse out hyphen separating start and end address from range.
2009     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-'))
2010         return Error ("malformed /proc/{pid}/maps entry, missing dash between address range");
2011 
2012     // Parse out the ending address
2013     lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address);
2014 
2015     // Parse out the space after the address.
2016     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' '))
2017         return Error ("malformed /proc/{pid}/maps entry, missing space after range");
2018 
2019     // Save the range.
2020     memory_region_info.GetRange ().SetRangeBase (start_address);
2021     memory_region_info.GetRange ().SetRangeEnd (end_address);
2022 
2023     // Parse out each permission entry.
2024     if (line_extractor.GetBytesLeft () < 4)
2025         return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions");
2026 
2027     // Handle read permission.
2028     const char read_perm_char = line_extractor.GetChar ();
2029     if (read_perm_char == 'r')
2030         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes);
2031     else
2032     {
2033         assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" );
2034         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2035     }
2036 
2037     // Handle write permission.
2038     const char write_perm_char = line_extractor.GetChar ();
2039     if (write_perm_char == 'w')
2040         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes);
2041     else
2042     {
2043         assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" );
2044         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2045     }
2046 
2047     // Handle execute permission.
2048     const char exec_perm_char = line_extractor.GetChar ();
2049     if (exec_perm_char == 'x')
2050         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes);
2051     else
2052     {
2053         assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" );
2054         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2055     }
2056 
2057     return Error ();
2058 }
2059 
2060 Error
2061 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info)
2062 {
2063     // FIXME review that the final memory region returned extends to the end of the virtual address space,
2064     // with no perms if it is not mapped.
2065 
2066     // Use an approach that reads memory regions from /proc/{pid}/maps.
2067     // Assume proc maps entries are in ascending order.
2068     // FIXME assert if we find differently.
2069     Mutex::Locker locker (m_mem_region_cache_mutex);
2070 
2071     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2072     Error error;
2073 
2074     if (m_supports_mem_region == LazyBool::eLazyBoolNo)
2075     {
2076         // We're done.
2077         error.SetErrorString ("unsupported");
2078         return error;
2079     }
2080 
2081     // If our cache is empty, pull the latest.  There should always be at least one memory region
2082     // if memory region handling is supported.
2083     if (m_mem_region_cache.empty ())
2084     {
2085         error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
2086              [&] (const std::string &line) -> bool
2087              {
2088                  MemoryRegionInfo info;
2089                  const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info);
2090                  if (parse_error.Success ())
2091                  {
2092                      m_mem_region_cache.push_back (info);
2093                      return true;
2094                  }
2095                  else
2096                  {
2097                      if (log)
2098                          log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ());
2099                      return false;
2100                  }
2101              });
2102 
2103         // If we had an error, we'll mark unsupported.
2104         if (error.Fail ())
2105         {
2106             m_supports_mem_region = LazyBool::eLazyBoolNo;
2107             return error;
2108         }
2109         else if (m_mem_region_cache.empty ())
2110         {
2111             // No entries after attempting to read them.  This shouldn't happen if /proc/{pid}/maps
2112             // is supported.  Assume we don't support map entries via procfs.
2113             if (log)
2114                 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__);
2115             m_supports_mem_region = LazyBool::eLazyBoolNo;
2116             error.SetErrorString ("not supported");
2117             return error;
2118         }
2119 
2120         if (log)
2121             log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ());
2122 
2123         // We support memory retrieval, remember that.
2124         m_supports_mem_region = LazyBool::eLazyBoolYes;
2125     }
2126     else
2127     {
2128         if (log)
2129             log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
2130     }
2131 
2132     lldb::addr_t prev_base_address = 0;
2133 
2134     // FIXME start by finding the last region that is <= target address using binary search.  Data is sorted.
2135     // There can be a ton of regions on pthreads apps with lots of threads.
2136     for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it)
2137     {
2138         MemoryRegionInfo &proc_entry_info = *it;
2139 
2140         // Sanity check assumption that /proc/{pid}/maps entries are ascending.
2141         assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected");
2142         prev_base_address = proc_entry_info.GetRange ().GetRangeBase ();
2143 
2144         // If the target address comes before this entry, indicate distance to next region.
2145         if (load_addr < proc_entry_info.GetRange ().GetRangeBase ())
2146         {
2147             range_info.GetRange ().SetRangeBase (load_addr);
2148             range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr);
2149             range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2150             range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2151             range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2152 
2153             return error;
2154         }
2155         else if (proc_entry_info.GetRange ().Contains (load_addr))
2156         {
2157             // The target address is within the memory region we're processing here.
2158             range_info = proc_entry_info;
2159             return error;
2160         }
2161 
2162         // The target memory address comes somewhere after the region we just parsed.
2163     }
2164 
2165     // If we made it here, we didn't find an entry that contained the given address. Return the
2166     // load_addr as start and the amount of bytes betwwen load address and the end of the memory as
2167     // size.
2168     range_info.GetRange ().SetRangeBase (load_addr);
2169     switch (m_arch.GetAddressByteSize())
2170     {
2171         case 4:
2172             range_info.GetRange ().SetByteSize (0x100000000ull - load_addr);
2173             break;
2174         case 8:
2175             range_info.GetRange ().SetByteSize (0ull - load_addr);
2176             break;
2177         default:
2178             assert(false && "Unrecognized data byte size");
2179             break;
2180     }
2181     range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2182     range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2183     range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2184     return error;
2185 }
2186 
2187 void
2188 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId)
2189 {
2190     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2191     if (log)
2192         log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId);
2193 
2194     {
2195         Mutex::Locker locker (m_mem_region_cache_mutex);
2196         if (log)
2197             log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
2198         m_mem_region_cache.clear ();
2199     }
2200 }
2201 
2202 Error
2203 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, lldb::addr_t &addr)
2204 {
2205     // FIXME implementing this requires the equivalent of
2206     // InferiorCallPOSIX::InferiorCallMmap, which depends on
2207     // functional ThreadPlans working with Native*Protocol.
2208 #if 1
2209     return Error ("not implemented yet");
2210 #else
2211     addr = LLDB_INVALID_ADDRESS;
2212 
2213     unsigned prot = 0;
2214     if (permissions & lldb::ePermissionsReadable)
2215         prot |= eMmapProtRead;
2216     if (permissions & lldb::ePermissionsWritable)
2217         prot |= eMmapProtWrite;
2218     if (permissions & lldb::ePermissionsExecutable)
2219         prot |= eMmapProtExec;
2220 
2221     // TODO implement this directly in NativeProcessLinux
2222     // (and lift to NativeProcessPOSIX if/when that class is
2223     // refactored out).
2224     if (InferiorCallMmap(this, addr, 0, size, prot,
2225                          eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
2226         m_addr_to_mmap_size[addr] = size;
2227         return Error ();
2228     } else {
2229         addr = LLDB_INVALID_ADDRESS;
2230         return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions));
2231     }
2232 #endif
2233 }
2234 
2235 Error
2236 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr)
2237 {
2238     // FIXME see comments in AllocateMemory - required lower-level
2239     // bits not in place yet (ThreadPlans)
2240     return Error ("not implemented");
2241 }
2242 
2243 lldb::addr_t
2244 NativeProcessLinux::GetSharedLibraryInfoAddress ()
2245 {
2246 #if 1
2247     // punt on this for now
2248     return LLDB_INVALID_ADDRESS;
2249 #else
2250     // Return the image info address for the exe module
2251 #if 1
2252     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2253 
2254     ModuleSP module_sp;
2255     Error error = GetExeModuleSP (module_sp);
2256     if (error.Fail ())
2257     {
2258          if (log)
2259             log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ());
2260         return LLDB_INVALID_ADDRESS;
2261     }
2262 
2263     if (module_sp == nullptr)
2264     {
2265          if (log)
2266             log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__);
2267          return LLDB_INVALID_ADDRESS;
2268     }
2269 
2270     ObjectFileSP object_file_sp = module_sp->GetObjectFile ();
2271     if (object_file_sp == nullptr)
2272     {
2273          if (log)
2274             log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__);
2275          return LLDB_INVALID_ADDRESS;
2276     }
2277 
2278     return obj_file_sp->GetImageInfoAddress();
2279 #else
2280     Target *target = &GetTarget();
2281     ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile();
2282     Address addr = obj_file->GetImageInfoAddress(target);
2283 
2284     if (addr.IsValid())
2285         return addr.GetLoadAddress(target);
2286     return LLDB_INVALID_ADDRESS;
2287 #endif
2288 #endif // punt on this for now
2289 }
2290 
2291 size_t
2292 NativeProcessLinux::UpdateThreads ()
2293 {
2294     // The NativeProcessLinux monitoring threads are always up to date
2295     // with respect to thread state and they keep the thread list
2296     // populated properly. All this method needs to do is return the
2297     // thread count.
2298     Mutex::Locker locker (m_threads_mutex);
2299     return m_threads.size ();
2300 }
2301 
2302 bool
2303 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const
2304 {
2305     arch = m_arch;
2306     return true;
2307 }
2308 
2309 Error
2310 NativeProcessLinux::GetSoftwareBreakpointPCOffset (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size)
2311 {
2312     // FIXME put this behind a breakpoint protocol class that can be
2313     // set per architecture.  Need ARM, MIPS support here.
2314     static const uint8_t g_i386_opcode [] = { 0xCC };
2315 
2316     switch (m_arch.GetMachine ())
2317     {
2318         case llvm::Triple::x86:
2319         case llvm::Triple::x86_64:
2320             actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode));
2321             return Error ();
2322 
2323         case llvm::Triple::arm:
2324         case llvm::Triple::aarch64:
2325         case llvm::Triple::mips64:
2326         case llvm::Triple::mips64el:
2327         case llvm::Triple::mips:
2328         case llvm::Triple::mipsel:
2329             // On these architectures the PC don't get updated for breakpoint hits
2330             actual_opcode_size = 0;
2331             return Error ();
2332 
2333         default:
2334             assert(false && "CPU type not supported!");
2335             return Error ("CPU type not supported");
2336     }
2337 }
2338 
2339 Error
2340 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware)
2341 {
2342     if (hardware)
2343         return Error ("NativeProcessLinux does not support hardware breakpoints");
2344     else
2345         return SetSoftwareBreakpoint (addr, size);
2346 }
2347 
2348 Error
2349 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint,
2350                                                      size_t &actual_opcode_size,
2351                                                      const uint8_t *&trap_opcode_bytes)
2352 {
2353     // FIXME put this behind a breakpoint protocol class that can be set per
2354     // architecture.  Need MIPS support here.
2355     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
2356     // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
2357     // linux kernel does otherwise.
2358     static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 };
2359     static const uint8_t g_i386_opcode [] = { 0xCC };
2360     static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d };
2361     static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 };
2362     static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde };
2363 
2364     switch (m_arch.GetMachine ())
2365     {
2366     case llvm::Triple::aarch64:
2367         trap_opcode_bytes = g_aarch64_opcode;
2368         actual_opcode_size = sizeof(g_aarch64_opcode);
2369         return Error ();
2370 
2371     case llvm::Triple::arm:
2372         switch (trap_opcode_size_hint)
2373         {
2374         case 2:
2375             trap_opcode_bytes = g_thumb_breakpoint_opcode;
2376             actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
2377             return Error ();
2378         case 4:
2379             trap_opcode_bytes = g_arm_breakpoint_opcode;
2380             actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
2381             return Error ();
2382         default:
2383             assert(false && "Unrecognised trap opcode size hint!");
2384             return Error ("Unrecognised trap opcode size hint!");
2385         }
2386 
2387     case llvm::Triple::x86:
2388     case llvm::Triple::x86_64:
2389         trap_opcode_bytes = g_i386_opcode;
2390         actual_opcode_size = sizeof(g_i386_opcode);
2391         return Error ();
2392 
2393     case llvm::Triple::mips:
2394     case llvm::Triple::mips64:
2395         trap_opcode_bytes = g_mips64_opcode;
2396         actual_opcode_size = sizeof(g_mips64_opcode);
2397         return Error ();
2398 
2399     case llvm::Triple::mipsel:
2400     case llvm::Triple::mips64el:
2401         trap_opcode_bytes = g_mips64el_opcode;
2402         actual_opcode_size = sizeof(g_mips64el_opcode);
2403         return Error ();
2404 
2405     default:
2406         assert(false && "CPU type not supported!");
2407         return Error ("CPU type not supported");
2408     }
2409 }
2410 
2411 #if 0
2412 ProcessMessage::CrashReason
2413 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
2414 {
2415     ProcessMessage::CrashReason reason;
2416     assert(info->si_signo == SIGSEGV);
2417 
2418     reason = ProcessMessage::eInvalidCrashReason;
2419 
2420     switch (info->si_code)
2421     {
2422     default:
2423         assert(false && "unexpected si_code for SIGSEGV");
2424         break;
2425     case SI_KERNEL:
2426         // Linux will occasionally send spurious SI_KERNEL codes.
2427         // (this is poorly documented in sigaction)
2428         // One way to get this is via unaligned SIMD loads.
2429         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
2430         break;
2431     case SEGV_MAPERR:
2432         reason = ProcessMessage::eInvalidAddress;
2433         break;
2434     case SEGV_ACCERR:
2435         reason = ProcessMessage::ePrivilegedAddress;
2436         break;
2437     }
2438 
2439     return reason;
2440 }
2441 #endif
2442 
2443 
2444 #if 0
2445 ProcessMessage::CrashReason
2446 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
2447 {
2448     ProcessMessage::CrashReason reason;
2449     assert(info->si_signo == SIGILL);
2450 
2451     reason = ProcessMessage::eInvalidCrashReason;
2452 
2453     switch (info->si_code)
2454     {
2455     default:
2456         assert(false && "unexpected si_code for SIGILL");
2457         break;
2458     case ILL_ILLOPC:
2459         reason = ProcessMessage::eIllegalOpcode;
2460         break;
2461     case ILL_ILLOPN:
2462         reason = ProcessMessage::eIllegalOperand;
2463         break;
2464     case ILL_ILLADR:
2465         reason = ProcessMessage::eIllegalAddressingMode;
2466         break;
2467     case ILL_ILLTRP:
2468         reason = ProcessMessage::eIllegalTrap;
2469         break;
2470     case ILL_PRVOPC:
2471         reason = ProcessMessage::ePrivilegedOpcode;
2472         break;
2473     case ILL_PRVREG:
2474         reason = ProcessMessage::ePrivilegedRegister;
2475         break;
2476     case ILL_COPROC:
2477         reason = ProcessMessage::eCoprocessorError;
2478         break;
2479     case ILL_BADSTK:
2480         reason = ProcessMessage::eInternalStackError;
2481         break;
2482     }
2483 
2484     return reason;
2485 }
2486 #endif
2487 
2488 #if 0
2489 ProcessMessage::CrashReason
2490 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
2491 {
2492     ProcessMessage::CrashReason reason;
2493     assert(info->si_signo == SIGFPE);
2494 
2495     reason = ProcessMessage::eInvalidCrashReason;
2496 
2497     switch (info->si_code)
2498     {
2499     default:
2500         assert(false && "unexpected si_code for SIGFPE");
2501         break;
2502     case FPE_INTDIV:
2503         reason = ProcessMessage::eIntegerDivideByZero;
2504         break;
2505     case FPE_INTOVF:
2506         reason = ProcessMessage::eIntegerOverflow;
2507         break;
2508     case FPE_FLTDIV:
2509         reason = ProcessMessage::eFloatDivideByZero;
2510         break;
2511     case FPE_FLTOVF:
2512         reason = ProcessMessage::eFloatOverflow;
2513         break;
2514     case FPE_FLTUND:
2515         reason = ProcessMessage::eFloatUnderflow;
2516         break;
2517     case FPE_FLTRES:
2518         reason = ProcessMessage::eFloatInexactResult;
2519         break;
2520     case FPE_FLTINV:
2521         reason = ProcessMessage::eFloatInvalidOperation;
2522         break;
2523     case FPE_FLTSUB:
2524         reason = ProcessMessage::eFloatSubscriptRange;
2525         break;
2526     }
2527 
2528     return reason;
2529 }
2530 #endif
2531 
2532 #if 0
2533 ProcessMessage::CrashReason
2534 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
2535 {
2536     ProcessMessage::CrashReason reason;
2537     assert(info->si_signo == SIGBUS);
2538 
2539     reason = ProcessMessage::eInvalidCrashReason;
2540 
2541     switch (info->si_code)
2542     {
2543     default:
2544         assert(false && "unexpected si_code for SIGBUS");
2545         break;
2546     case BUS_ADRALN:
2547         reason = ProcessMessage::eIllegalAlignment;
2548         break;
2549     case BUS_ADRERR:
2550         reason = ProcessMessage::eIllegalAddress;
2551         break;
2552     case BUS_OBJERR:
2553         reason = ProcessMessage::eHardwareError;
2554         break;
2555     }
2556 
2557     return reason;
2558 }
2559 #endif
2560 
2561 Error
2562 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
2563 {
2564     if (ProcessVmReadvSupported()) {
2565         // The process_vm_readv path is about 50 times faster than ptrace api. We want to use
2566         // this syscall if it is supported.
2567 
2568         const ::pid_t pid = GetID();
2569 
2570         struct iovec local_iov, remote_iov;
2571         local_iov.iov_base = buf;
2572         local_iov.iov_len = size;
2573         remote_iov.iov_base = reinterpret_cast<void *>(addr);
2574         remote_iov.iov_len = size;
2575 
2576         bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
2577         const bool success = bytes_read == size;
2578 
2579         Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2580         if (log)
2581             log->Printf ("NativeProcessLinux::%s using process_vm_readv to read %zd bytes from inferior address 0x%" PRIx64": %s",
2582                     __FUNCTION__, size, addr, success ? "Success" : strerror(errno));
2583 
2584         if (success)
2585             return Error();
2586         // else
2587         //     the call failed for some reason, let's retry the read using ptrace api.
2588     }
2589 
2590     unsigned char *dst = static_cast<unsigned char*>(buf);
2591     size_t remainder;
2592     long data;
2593 
2594     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
2595     if (log)
2596         ProcessPOSIXLog::IncNestLevel();
2597     if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
2598         log->Printf ("NativeProcessLinux::%s(%p, %p, %zd, _)", __FUNCTION__, (void*)addr, buf, size);
2599 
2600     for (bytes_read = 0; bytes_read < size; bytes_read += remainder)
2601     {
2602         Error error = NativeProcessLinux::PtraceWrapper(PTRACE_PEEKDATA, GetID(), (void*)addr, nullptr, 0, &data);
2603         if (error.Fail())
2604         {
2605             if (log)
2606                 ProcessPOSIXLog::DecNestLevel();
2607             return error;
2608         }
2609 
2610         remainder = size - bytes_read;
2611         remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
2612 
2613         // Copy the data into our buffer
2614         for (unsigned i = 0; i < remainder; ++i)
2615             dst[i] = ((data >> i*8) & 0xFF);
2616 
2617         if (log && ProcessPOSIXLog::AtTopNestLevel() &&
2618                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
2619                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
2620                                 size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
2621         {
2622             uintptr_t print_dst = 0;
2623             // Format bytes from data by moving into print_dst for log output
2624             for (unsigned i = 0; i < remainder; ++i)
2625                 print_dst |= (((data >> i*8) & 0xFF) << i*8);
2626             log->Printf ("NativeProcessLinux::%s() [0x%" PRIx64 "]:0x%" PRIx64 " (0x%" PRIx64 ")",
2627                     __FUNCTION__, addr, uint64_t(print_dst), uint64_t(data));
2628         }
2629         addr += k_ptrace_word_size;
2630         dst += k_ptrace_word_size;
2631     }
2632 
2633     if (log)
2634         ProcessPOSIXLog::DecNestLevel();
2635     return Error();
2636 }
2637 
2638 Error
2639 NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
2640 {
2641     Error error = ReadMemory(addr, buf, size, bytes_read);
2642     if (error.Fail()) return error;
2643     return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size);
2644 }
2645 
2646 Error
2647 NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, size_t size, size_t &bytes_written)
2648 {
2649     const unsigned char *src = static_cast<const unsigned char*>(buf);
2650     size_t remainder;
2651     Error error;
2652 
2653     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
2654     if (log)
2655         ProcessPOSIXLog::IncNestLevel();
2656     if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
2657         log->Printf ("NativeProcessLinux::%s(0x%" PRIx64 ", %p, %zu)", __FUNCTION__, addr, buf, size);
2658 
2659     for (bytes_written = 0; bytes_written < size; bytes_written += remainder)
2660     {
2661         remainder = size - bytes_written;
2662         remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
2663 
2664         if (remainder == k_ptrace_word_size)
2665         {
2666             unsigned long data = 0;
2667             for (unsigned i = 0; i < k_ptrace_word_size; ++i)
2668                 data |= (unsigned long)src[i] << i*8;
2669 
2670             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
2671                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
2672                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
2673                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
2674                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
2675                         (void*)addr, *(const unsigned long*)src, data);
2676 
2677             error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), (void*)addr, (void*)data);
2678             if (error.Fail())
2679             {
2680                 if (log)
2681                     ProcessPOSIXLog::DecNestLevel();
2682                 return error;
2683             }
2684         }
2685         else
2686         {
2687             unsigned char buff[8];
2688             size_t bytes_read;
2689             error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
2690             if (error.Fail())
2691             {
2692                 if (log)
2693                     ProcessPOSIXLog::DecNestLevel();
2694                 return error;
2695             }
2696 
2697             memcpy(buff, src, remainder);
2698 
2699             size_t bytes_written_rec;
2700             error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
2701             if (error.Fail())
2702             {
2703                 if (log)
2704                     ProcessPOSIXLog::DecNestLevel();
2705                 return error;
2706             }
2707 
2708             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
2709                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
2710                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
2711                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
2712                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
2713                         (void*)addr, *(const unsigned long*)src, *(unsigned long*)buff);
2714         }
2715 
2716         addr += k_ptrace_word_size;
2717         src += k_ptrace_word_size;
2718     }
2719     if (log)
2720         ProcessPOSIXLog::DecNestLevel();
2721     return error;
2722 }
2723 
2724 Error
2725 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo)
2726 {
2727     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2728 
2729     if (log)
2730         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " with signal %s", __FUNCTION__, tid,
2731                                  Host::GetSignalAsCString(signo));
2732 
2733 
2734 
2735     intptr_t data = 0;
2736 
2737     if (signo != LLDB_INVALID_SIGNAL_NUMBER)
2738         data = signo;
2739 
2740     Error error = PtraceWrapper(PTRACE_CONT, tid, nullptr, (void*)data);
2741 
2742     if (log)
2743         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " result = %s", __FUNCTION__, tid, error.Success() ? "true" : "false");
2744     return error;
2745 }
2746 
2747 Error
2748 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo)
2749 {
2750     intptr_t data = 0;
2751 
2752     if (signo != LLDB_INVALID_SIGNAL_NUMBER)
2753         data = signo;
2754 
2755     return PtraceWrapper(PTRACE_SINGLESTEP, tid, nullptr, (void*)data);
2756 }
2757 
2758 Error
2759 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo)
2760 {
2761     return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
2762 }
2763 
2764 Error
2765 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message)
2766 {
2767     return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
2768 }
2769 
2770 Error
2771 NativeProcessLinux::Detach(lldb::tid_t tid)
2772 {
2773     if (tid == LLDB_INVALID_THREAD_ID)
2774         return Error();
2775 
2776     return PtraceWrapper(PTRACE_DETACH, tid);
2777 }
2778 
2779 bool
2780 NativeProcessLinux::DupDescriptor(const FileSpec &file_spec, int fd, int flags)
2781 {
2782     int target_fd = open(file_spec.GetCString(), flags, 0666);
2783 
2784     if (target_fd == -1)
2785         return false;
2786 
2787     if (dup2(target_fd, fd) == -1)
2788         return false;
2789 
2790     return (close(target_fd) == -1) ? false : true;
2791 }
2792 
2793 bool
2794 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id)
2795 {
2796     for (auto thread_sp : m_threads)
2797     {
2798         assert (thread_sp && "thread list should not contain NULL threads");
2799         if (thread_sp->GetID () == thread_id)
2800         {
2801             // We have this thread.
2802             return true;
2803         }
2804     }
2805 
2806     // We don't have this thread.
2807     return false;
2808 }
2809 
2810 NativeThreadProtocolSP
2811 NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id)
2812 {
2813     // CONSIDER organize threads by map - we can do better than linear.
2814     for (auto thread_sp : m_threads)
2815     {
2816         if (thread_sp->GetID () == thread_id)
2817             return thread_sp;
2818     }
2819 
2820     // We don't have this thread.
2821     return NativeThreadProtocolSP ();
2822 }
2823 
2824 bool
2825 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id)
2826 {
2827     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
2828 
2829     if (log)
2830         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread_id);
2831 
2832     bool found = false;
2833 
2834     Mutex::Locker locker (m_threads_mutex);
2835     for (auto it = m_threads.begin (); it != m_threads.end (); ++it)
2836     {
2837         if (*it && ((*it)->GetID () == thread_id))
2838         {
2839             m_threads.erase (it);
2840             found = true;
2841             break;
2842         }
2843     }
2844 
2845     // If we have a pending notification, remove this from the set.
2846     if (m_pending_notification_up)
2847     {
2848         m_pending_notification_up->wait_for_stop_tids.erase(thread_id);
2849         SignalIfAllThreadsStopped();
2850     }
2851 
2852     return found;
2853 }
2854 
2855 NativeThreadProtocolSP
2856 NativeProcessLinux::AddThread (lldb::tid_t thread_id)
2857 {
2858     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
2859 
2860     Mutex::Locker locker (m_threads_mutex);
2861 
2862     if (log)
2863     {
2864         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64,
2865                 __FUNCTION__,
2866                 GetID (),
2867                 thread_id);
2868     }
2869 
2870     assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists");
2871 
2872     // If this is the first thread, save it as the current thread
2873     if (m_threads.empty ())
2874         SetCurrentThreadID (thread_id);
2875 
2876     NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id));
2877     m_threads.push_back (thread_sp);
2878 
2879     return thread_sp;
2880 }
2881 
2882 Error
2883 NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp)
2884 {
2885     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS));
2886 
2887     Error error;
2888 
2889     // Get a linux thread pointer.
2890     if (!thread_sp)
2891     {
2892         error.SetErrorString ("null thread_sp");
2893         if (log)
2894             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
2895         return error;
2896     }
2897     std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp);
2898 
2899     // Find out the size of a breakpoint (might depend on where we are in the code).
2900     NativeRegisterContextSP context_sp = linux_thread_sp->GetRegisterContext ();
2901     if (!context_sp)
2902     {
2903         error.SetErrorString ("cannot get a NativeRegisterContext for the thread");
2904         if (log)
2905             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
2906         return error;
2907     }
2908 
2909     uint32_t breakpoint_size = 0;
2910     error = GetSoftwareBreakpointPCOffset (context_sp, breakpoint_size);
2911     if (error.Fail ())
2912     {
2913         if (log)
2914             log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ());
2915         return error;
2916     }
2917     else
2918     {
2919         if (log)
2920             log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size);
2921     }
2922 
2923     // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size.
2924     const lldb::addr_t initial_pc_addr = context_sp->GetPCfromBreakpointLocation ();
2925     lldb::addr_t breakpoint_addr = initial_pc_addr;
2926     if (breakpoint_size > 0)
2927     {
2928         // Do not allow breakpoint probe to wrap around.
2929         if (breakpoint_addr >= breakpoint_size)
2930             breakpoint_addr -= breakpoint_size;
2931     }
2932 
2933     // Check if we stopped because of a breakpoint.
2934     NativeBreakpointSP breakpoint_sp;
2935     error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp);
2936     if (!error.Success () || !breakpoint_sp)
2937     {
2938         // We didn't find one at a software probe location.  Nothing to do.
2939         if (log)
2940             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr);
2941         return Error ();
2942     }
2943 
2944     // If the breakpoint is not a software breakpoint, nothing to do.
2945     if (!breakpoint_sp->IsSoftwareBreakpoint ())
2946     {
2947         if (log)
2948             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr);
2949         return Error ();
2950     }
2951 
2952     //
2953     // We have a software breakpoint and need to adjust the PC.
2954     //
2955 
2956     // Sanity check.
2957     if (breakpoint_size == 0)
2958     {
2959         // Nothing to do!  How did we get here?
2960         if (log)
2961             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr);
2962         return Error ();
2963     }
2964 
2965     // Change the program counter.
2966     if (log)
2967         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_sp->GetID (), initial_pc_addr, breakpoint_addr);
2968 
2969     error = context_sp->SetPC (breakpoint_addr);
2970     if (error.Fail ())
2971     {
2972         if (log)
2973             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_sp->GetID (), error.AsCString ());
2974         return error;
2975     }
2976 
2977     return error;
2978 }
2979 
2980 Error
2981 NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec)
2982 {
2983     FileSpec module_file_spec(module_path, true);
2984 
2985     bool found = false;
2986     file_spec.Clear();
2987     ProcFileReader::ProcessLineByLine(GetID(), "maps",
2988         [&] (const std::string &line)
2989         {
2990             SmallVector<StringRef, 16> columns;
2991             StringRef(line).split(columns, " ", -1, false);
2992             if (columns.size() < 6)
2993                 return true; // continue searching
2994 
2995             FileSpec this_file_spec(columns[5].str().c_str(), false);
2996             if (this_file_spec.GetFilename() != module_file_spec.GetFilename())
2997                 return true; // continue searching
2998 
2999             file_spec = this_file_spec;
3000             found = true;
3001             return false; // we are done
3002         });
3003 
3004     if (! found)
3005         return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
3006                 module_file_spec.GetFilename().AsCString(), GetID());
3007 
3008     return Error();
3009 }
3010 
3011 Error
3012 NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef& file_name, lldb::addr_t& load_addr)
3013 {
3014     load_addr = LLDB_INVALID_ADDRESS;
3015     Error error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
3016         [&] (const std::string &line) -> bool
3017         {
3018             StringRef maps_row(line);
3019 
3020             SmallVector<StringRef, 16> maps_columns;
3021             maps_row.split(maps_columns, StringRef(" "), -1, false);
3022 
3023             if (maps_columns.size() < 6)
3024             {
3025                 // Return true to continue reading the proc file
3026                 return true;
3027             }
3028 
3029             if (maps_columns[5] == file_name)
3030             {
3031                 StringExtractor addr_extractor(maps_columns[0].str().c_str());
3032                 load_addr = addr_extractor.GetHexMaxU64(false, LLDB_INVALID_ADDRESS);
3033 
3034                 // Return false to stop reading the proc file further
3035                 return false;
3036             }
3037 
3038             // Return true to continue reading the proc file
3039             return true;
3040         });
3041     return error;
3042 }
3043 
3044 Error
3045 NativeProcessLinux::ResumeThread(
3046         lldb::tid_t tid,
3047         NativeThreadLinux::ResumeThreadFunction request_thread_resume_function,
3048         bool error_when_already_running)
3049 {
3050     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3051 
3052     if (log)
3053         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ", error_when_already_running: %s)",
3054                 __FUNCTION__, tid, error_when_already_running?"true":"false");
3055 
3056     auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid));
3057     lldbassert(thread_sp != nullptr);
3058 
3059     auto& context = thread_sp->GetThreadContext();
3060     // Tell the thread to resume if we don't already think it is running.
3061     const bool is_stopped = StateIsStoppedState(thread_sp->GetState(), true);
3062 
3063     lldbassert(!(error_when_already_running && !is_stopped));
3064 
3065     if (!is_stopped)
3066     {
3067         // It's not an error, just a log, if the error_when_already_running flag is not set.
3068         // This covers cases where, for instance, we're just trying to resume all threads
3069         // from the user side.
3070         if (log)
3071             log->Printf("NativeProcessLinux::%s tid %" PRIu64 " optional resume skipped since it is already running",
3072                     __FUNCTION__,
3073                     tid);
3074         return Error();
3075     }
3076 
3077     // Before we do the resume below, first check if we have a pending
3078     // stop notification that is currently waiting for
3079     // this thread to stop.  This is potentially a buggy situation since
3080     // we're ostensibly waiting for threads to stop before we send out the
3081     // pending notification, and here we are resuming one before we send
3082     // out the pending stop notification.
3083     if (m_pending_notification_up && log && m_pending_notification_up->wait_for_stop_tids.count (tid) > 0)
3084     {
3085         log->Printf("NativeProcessLinux::%s about to resume tid %" PRIu64 " per explicit request but we have a pending stop notification (tid %" PRIu64 ") that is actively waiting for this thread to stop. Valid sequence of events?", __FUNCTION__, tid, m_pending_notification_up->triggering_tid);
3086     }
3087 
3088     // Request a resume.  We expect this to be synchronous and the system
3089     // to reflect it is running after this completes.
3090     const auto error = request_thread_resume_function (tid, false);
3091     if (error.Success())
3092         context.request_resume_function = request_thread_resume_function;
3093     else if (log)
3094     {
3095         log->Printf("NativeProcessLinux::%s failed to resume thread tid  %" PRIu64 ": %s",
3096                          __FUNCTION__, tid, error.AsCString ());
3097     }
3098 
3099     return error;
3100 }
3101 
3102 //===----------------------------------------------------------------------===//
3103 
3104 void
3105 NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid)
3106 {
3107     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3108 
3109     if (log)
3110     {
3111         log->Printf("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ")",
3112                 __FUNCTION__, triggering_tid);
3113     }
3114 
3115     DoStopThreads(PendingNotificationUP(new PendingNotification(triggering_tid)));
3116 
3117     if (log)
3118     {
3119         log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__);
3120     }
3121 }
3122 
3123 void
3124 NativeProcessLinux::SignalIfAllThreadsStopped()
3125 {
3126     if (m_pending_notification_up && m_pending_notification_up->wait_for_stop_tids.empty ())
3127     {
3128         Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
3129 
3130         // Clear any temporary breakpoints we used to implement software single stepping.
3131         for (const auto &thread_info: m_threads_stepping_with_breakpoint)
3132         {
3133             Error error = RemoveBreakpoint (thread_info.second);
3134             if (error.Fail())
3135                 if (log)
3136                     log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s",
3137                             __FUNCTION__, thread_info.first, error.AsCString());
3138         }
3139         m_threads_stepping_with_breakpoint.clear();
3140 
3141         // Notify the delegate about the stop
3142         SetCurrentThreadID(m_pending_notification_up->triggering_tid);
3143         SetState(StateType::eStateStopped, true);
3144         m_pending_notification_up.reset();
3145     }
3146 }
3147 
3148 void
3149 NativeProcessLinux::RequestStopOnAllRunningThreads()
3150 {
3151     // Request a stop for all the thread stops that need to be stopped
3152     // and are not already known to be stopped.  Keep a list of all the
3153     // threads from which we still need to hear a stop reply.
3154 
3155     ThreadIDSet sent_tids;
3156     for (const auto &thread_sp: m_threads)
3157     {
3158         // We only care about running threads
3159         if (StateIsStoppedState(thread_sp->GetState(), true))
3160             continue;
3161 
3162         static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop();
3163         sent_tids.insert (thread_sp->GetID());
3164     }
3165 
3166     // Set the wait list to the set of tids for which we requested stops.
3167     m_pending_notification_up->wait_for_stop_tids.swap (sent_tids);
3168 }
3169 
3170 
3171 Error
3172 NativeProcessLinux::ThreadDidStop (lldb::tid_t tid, bool initiated_by_llgs)
3173 {
3174     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3175 
3176     if (log)
3177         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ", %sinitiated by llgs)",
3178                 __FUNCTION__, tid, initiated_by_llgs?"":"not ");
3179 
3180     // Ensure we know about the thread.
3181     auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid));
3182     lldbassert(thread_sp != nullptr);
3183 
3184     // Update the global list of known thread states.  This one is definitely stopped.
3185     auto& context = thread_sp->GetThreadContext();
3186     const auto stop_was_requested = context.stop_requested;
3187     context.stop_requested = false;
3188 
3189     // If we have a pending notification, remove this from the set.
3190     if (m_pending_notification_up)
3191     {
3192         m_pending_notification_up->wait_for_stop_tids.erase(tid);
3193         SignalIfAllThreadsStopped();
3194     }
3195 
3196     Error error;
3197     if (initiated_by_llgs && context.request_resume_function && !stop_was_requested)
3198     {
3199         // We can end up here if stop was initiated by LLGS but by this time a
3200         // thread stop has occurred - maybe initiated by another event.
3201         if (log)
3202             log->Printf("Resuming thread %"  PRIu64 " since stop wasn't requested", tid);
3203         error = context.request_resume_function (tid, true);
3204         if (error.Fail() && log)
3205         {
3206                 log->Printf("NativeProcessLinux::%s failed to resume thread tid  %" PRIu64 ": %s",
3207                         __FUNCTION__, tid, error.AsCString ());
3208         }
3209     }
3210     return error;
3211 }
3212 
3213 void
3214 NativeProcessLinux::DoStopThreads(PendingNotificationUP &&notification_up)
3215 {
3216     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3217     if (m_pending_notification_up && log)
3218     {
3219         // Yikes - we've already got a pending signal notification in progress.
3220         // Log this info.  We lose the pending notification here.
3221         log->Printf("NativeProcessLinux::%s dropping existing pending signal notification for tid %" PRIu64 ", to be replaced with signal for tid %" PRIu64,
3222                    __FUNCTION__,
3223                    m_pending_notification_up->triggering_tid,
3224                    notification_up->triggering_tid);
3225     }
3226     m_pending_notification_up = std::move(notification_up);
3227 
3228     RequestStopOnAllRunningThreads();
3229 
3230     SignalIfAllThreadsStopped();
3231 }
3232 
3233 void
3234 NativeProcessLinux::ThreadWasCreated (lldb::tid_t tid)
3235 {
3236     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3237 
3238     if (log)
3239         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, tid);
3240 
3241     auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid));
3242     lldbassert(thread_sp != nullptr);
3243 
3244     if (m_pending_notification_up && StateIsRunningState(thread_sp->GetState()))
3245     {
3246         // We will need to wait for this new thread to stop as well before firing the
3247         // notification.
3248         m_pending_notification_up->wait_for_stop_tids.insert(tid);
3249         thread_sp->RequestStop();
3250     }
3251 }
3252 
3253 void
3254 NativeProcessLinux::SigchldHandler()
3255 {
3256     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3257     // Process all pending waitpid notifications.
3258     while (true)
3259     {
3260         int status = -1;
3261         ::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG);
3262 
3263         if (wait_pid == 0)
3264             break; // We are done.
3265 
3266         if (wait_pid == -1)
3267         {
3268             if (errno == EINTR)
3269                 continue;
3270 
3271             Error error(errno, eErrorTypePOSIX);
3272             if (log)
3273                 log->Printf("NativeProcessLinux::%s waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG) failed: %s",
3274                         __FUNCTION__, error.AsCString());
3275             break;
3276         }
3277 
3278         bool exited = false;
3279         int signal = 0;
3280         int exit_status = 0;
3281         const char *status_cstr = nullptr;
3282         if (WIFSTOPPED(status))
3283         {
3284             signal = WSTOPSIG(status);
3285             status_cstr = "STOPPED";
3286         }
3287         else if (WIFEXITED(status))
3288         {
3289             exit_status = WEXITSTATUS(status);
3290             status_cstr = "EXITED";
3291             exited = true;
3292         }
3293         else if (WIFSIGNALED(status))
3294         {
3295             signal = WTERMSIG(status);
3296             status_cstr = "SIGNALED";
3297             if (wait_pid == static_cast< ::pid_t>(GetID())) {
3298                 exited = true;
3299                 exit_status = -1;
3300             }
3301         }
3302         else
3303             status_cstr = "(\?\?\?)";
3304 
3305         if (log)
3306             log->Printf("NativeProcessLinux::%s: waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG)"
3307                 "=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i",
3308                 __FUNCTION__, wait_pid, status, status_cstr, signal, exit_status);
3309 
3310         MonitorCallback (wait_pid, exited, signal, exit_status);
3311     }
3312 }
3313 
3314 // Wrapper for ptrace to catch errors and log calls.
3315 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
3316 Error
3317 NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, long *result)
3318 {
3319     Error error;
3320     long int ret;
3321 
3322     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE));
3323 
3324     PtraceDisplayBytes(req, data, data_size);
3325 
3326     errno = 0;
3327     if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
3328         ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
3329     else
3330         ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
3331 
3332     if (ret == -1)
3333         error.SetErrorToErrno();
3334 
3335     if (result)
3336         *result = ret;
3337 
3338     if (log)
3339         log->Printf("ptrace(%d, %" PRIu64 ", %p, %p, %zu)=%lX", req, pid, addr, data, data_size, ret);
3340 
3341     PtraceDisplayBytes(req, data, data_size);
3342 
3343     if (log && error.GetError() != 0)
3344     {
3345         const char* str;
3346         switch (error.GetError())
3347         {
3348         case ESRCH:  str = "ESRCH"; break;
3349         case EINVAL: str = "EINVAL"; break;
3350         case EBUSY:  str = "EBUSY"; break;
3351         case EPERM:  str = "EPERM"; break;
3352         default:     str = error.AsCString();
3353         }
3354         log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str);
3355     }
3356 
3357     return error;
3358 }
3359