1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "NativeProcessLinux.h"
11 
12 // C Includes
13 #include <errno.h>
14 #include <semaphore.h>
15 #include <string.h>
16 #include <stdint.h>
17 #include <unistd.h>
18 
19 // C++ Includes
20 #include <fstream>
21 #include <mutex>
22 #include <sstream>
23 #include <string>
24 #include <unordered_map>
25 
26 // Other libraries and framework includes
27 #include "lldb/Core/EmulateInstruction.h"
28 #include "lldb/Core/Error.h"
29 #include "lldb/Core/Module.h"
30 #include "lldb/Core/ModuleSpec.h"
31 #include "lldb/Core/RegisterValue.h"
32 #include "lldb/Core/State.h"
33 #include "lldb/Host/common/NativeBreakpoint.h"
34 #include "lldb/Host/common/NativeRegisterContext.h"
35 #include "lldb/Host/Host.h"
36 #include "lldb/Host/ThreadLauncher.h"
37 #include "lldb/Target/Platform.h"
38 #include "lldb/Target/Process.h"
39 #include "lldb/Target/ProcessLaunchInfo.h"
40 #include "lldb/Target/Target.h"
41 #include "lldb/Utility/LLDBAssert.h"
42 #include "lldb/Utility/PseudoTerminal.h"
43 
44 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
45 #include "Plugins/Process/Utility/LinuxSignals.h"
46 #include "Utility/StringExtractor.h"
47 #include "NativeThreadLinux.h"
48 #include "ProcFileReader.h"
49 #include "Procfs.h"
50 
51 // System includes - They have to be included after framework includes because they define some
52 // macros which collide with variable names in other modules
53 #include <linux/unistd.h>
54 #include <sys/socket.h>
55 
56 #include <sys/syscall.h>
57 #include <sys/types.h>
58 #include <sys/user.h>
59 #include <sys/wait.h>
60 
61 #include "lldb/Host/linux/Personality.h"
62 #include "lldb/Host/linux/Ptrace.h"
63 #include "lldb/Host/linux/Signalfd.h"
64 #include "lldb/Host/linux/Uio.h"
65 #include "lldb/Host/android/Android.h"
66 
67 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS  0xffffffff
68 
69 // Support hardware breakpoints in case it has not been defined
70 #ifndef TRAP_HWBKPT
71   #define TRAP_HWBKPT 4
72 #endif
73 
74 using namespace lldb;
75 using namespace lldb_private;
76 using namespace lldb_private::process_linux;
77 using namespace llvm;
78 
79 // Private bits we only need internally.
80 
81 static bool ProcessVmReadvSupported()
82 {
83     static bool is_supported;
84     static std::once_flag flag;
85 
86     std::call_once(flag, [] {
87         Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
88 
89         uint32_t source = 0x47424742;
90         uint32_t dest = 0;
91 
92         struct iovec local, remote;
93         remote.iov_base = &source;
94         local.iov_base = &dest;
95         remote.iov_len = local.iov_len = sizeof source;
96 
97         // We shall try if cross-process-memory reads work by attempting to read a value from our own process.
98         ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
99         is_supported = (res == sizeof(source) && source == dest);
100         if (log)
101         {
102             if (is_supported)
103                 log->Printf("%s: Detected kernel support for process_vm_readv syscall. Fast memory reads enabled.",
104                         __FUNCTION__);
105             else
106                 log->Printf("%s: syscall process_vm_readv failed (error: %s). Fast memory reads disabled.",
107                         __FUNCTION__, strerror(errno));
108         }
109     });
110 
111     return is_supported;
112 }
113 
114 namespace
115 {
116     const UnixSignals&
117     GetUnixSignals ()
118     {
119         static process_linux::LinuxSignals signals;
120         return signals;
121     }
122 
123     Error
124     ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch)
125     {
126         // Grab process info for the running process.
127         ProcessInstanceInfo process_info;
128         if (!platform.GetProcessInfo (pid, process_info))
129             return Error("failed to get process info");
130 
131         // Resolve the executable module.
132         ModuleSP exe_module_sp;
133         ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
134         FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ());
135         Error error = platform.ResolveExecutable(
136             exe_module_spec,
137             exe_module_sp,
138             executable_search_paths.GetSize () ? &executable_search_paths : NULL);
139 
140         if (!error.Success ())
141             return error;
142 
143         // Check if we've got our architecture from the exe_module.
144         arch = exe_module_sp->GetArchitecture ();
145         if (arch.IsValid ())
146             return Error();
147         else
148             return Error("failed to retrieve a valid architecture from the exe module");
149     }
150 
151     void
152     DisplayBytes (StreamString &s, void *bytes, uint32_t count)
153     {
154         uint8_t *ptr = (uint8_t *)bytes;
155         const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
156         for(uint32_t i=0; i<loop_count; i++)
157         {
158             s.Printf ("[%x]", *ptr);
159             ptr++;
160         }
161     }
162 
163     void
164     PtraceDisplayBytes(int &req, void *data, size_t data_size)
165     {
166         StreamString buf;
167         Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (
168                     POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE));
169 
170         if (verbose_log)
171         {
172             switch(req)
173             {
174             case PTRACE_POKETEXT:
175             {
176                 DisplayBytes(buf, &data, 8);
177                 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData());
178                 break;
179             }
180             case PTRACE_POKEDATA:
181             {
182                 DisplayBytes(buf, &data, 8);
183                 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData());
184                 break;
185             }
186             case PTRACE_POKEUSER:
187             {
188                 DisplayBytes(buf, &data, 8);
189                 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData());
190                 break;
191             }
192             case PTRACE_SETREGS:
193             {
194                 DisplayBytes(buf, data, data_size);
195                 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData());
196                 break;
197             }
198             case PTRACE_SETFPREGS:
199             {
200                 DisplayBytes(buf, data, data_size);
201                 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData());
202                 break;
203             }
204             case PTRACE_SETSIGINFO:
205             {
206                 DisplayBytes(buf, data, sizeof(siginfo_t));
207                 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData());
208                 break;
209             }
210             case PTRACE_SETREGSET:
211             {
212                 // Extract iov_base from data, which is a pointer to the struct IOVEC
213                 DisplayBytes(buf, *(void **)data, data_size);
214                 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData());
215                 break;
216             }
217             default:
218             {
219             }
220             }
221         }
222     }
223 
224     //------------------------------------------------------------------------------
225     // Static implementations of NativeProcessLinux::ReadMemory and
226     // NativeProcessLinux::WriteMemory.  This enables mutual recursion between these
227     // functions without needed to go thru the thread funnel.
228 
229     size_t
230     DoReadMemory(
231         lldb::pid_t pid,
232         lldb::addr_t vm_addr,
233         void *buf,
234         size_t size,
235         Error &error)
236     {
237         // ptrace word size is determined by the host, not the child
238         static const unsigned word_size = sizeof(void*);
239         unsigned char *dst = static_cast<unsigned char*>(buf);
240         size_t bytes_read;
241         size_t remainder;
242         long data;
243 
244         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
245         if (log)
246             ProcessPOSIXLog::IncNestLevel();
247         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
248             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__,
249                     pid, word_size, (void*)vm_addr, buf, size);
250 
251         assert(sizeof(data) >= word_size);
252         for (bytes_read = 0; bytes_read < size; bytes_read += remainder)
253         {
254             data = NativeProcessLinux::PtraceWrapper(PTRACE_PEEKDATA, pid, (void*)vm_addr, nullptr, 0, error);
255             if (error.Fail())
256             {
257                 if (log)
258                     ProcessPOSIXLog::DecNestLevel();
259                 return bytes_read;
260             }
261 
262             remainder = size - bytes_read;
263             remainder = remainder > word_size ? word_size : remainder;
264 
265             // Copy the data into our buffer
266             for (unsigned i = 0; i < remainder; ++i)
267                 dst[i] = ((data >> i*8) & 0xFF);
268 
269             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
270                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
271                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
272                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
273             {
274                 uintptr_t print_dst = 0;
275                 // Format bytes from data by moving into print_dst for log output
276                 for (unsigned i = 0; i < remainder; ++i)
277                     print_dst |= (((data >> i*8) & 0xFF) << i*8);
278                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
279                         (void*)vm_addr, print_dst, (unsigned long)data);
280             }
281             vm_addr += word_size;
282             dst += word_size;
283         }
284 
285         if (log)
286             ProcessPOSIXLog::DecNestLevel();
287         return bytes_read;
288     }
289 
290     size_t
291     DoWriteMemory(
292         lldb::pid_t pid,
293         lldb::addr_t vm_addr,
294         const void *buf,
295         size_t size,
296         Error &error)
297     {
298         // ptrace word size is determined by the host, not the child
299         static const unsigned word_size = sizeof(void*);
300         const unsigned char *src = static_cast<const unsigned char*>(buf);
301         size_t bytes_written = 0;
302         size_t remainder;
303 
304         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
305         if (log)
306             ProcessPOSIXLog::IncNestLevel();
307         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
308             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__,
309                     pid, word_size, (void*)vm_addr, buf, size);
310 
311         for (bytes_written = 0; bytes_written < size; bytes_written += remainder)
312         {
313             remainder = size - bytes_written;
314             remainder = remainder > word_size ? word_size : remainder;
315 
316             if (remainder == word_size)
317             {
318                 unsigned long data = 0;
319                 assert(sizeof(data) >= word_size);
320                 for (unsigned i = 0; i < word_size; ++i)
321                     data |= (unsigned long)src[i] << i*8;
322 
323                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
324                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
325                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
326                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
327                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
328                             (void*)vm_addr, *(const unsigned long*)src, data);
329 
330                 if (NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data, 0, error))
331                 {
332                     if (log)
333                         ProcessPOSIXLog::DecNestLevel();
334                     return bytes_written;
335                 }
336             }
337             else
338             {
339                 unsigned char buff[8];
340                 if (DoReadMemory(pid, vm_addr,
341                                 buff, word_size, error) != word_size)
342                 {
343                     if (log)
344                         ProcessPOSIXLog::DecNestLevel();
345                     return bytes_written;
346                 }
347 
348                 memcpy(buff, src, remainder);
349 
350                 if (DoWriteMemory(pid, vm_addr,
351                                 buff, word_size, error) != word_size)
352                 {
353                     if (log)
354                         ProcessPOSIXLog::DecNestLevel();
355                     return bytes_written;
356                 }
357 
358                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
359                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
360                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
361                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
362                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
363                             (void*)vm_addr, *(const unsigned long*)src, *(unsigned long*)buff);
364             }
365 
366             vm_addr += word_size;
367             src += word_size;
368         }
369         if (log)
370             ProcessPOSIXLog::DecNestLevel();
371         return bytes_written;
372     }
373 
374     //------------------------------------------------------------------------------
375     /// @class ReadOperation
376     /// @brief Implements NativeProcessLinux::ReadMemory.
377     class ReadOperation : public NativeProcessLinux::Operation
378     {
379     public:
380         ReadOperation(
381             lldb::addr_t addr,
382             void *buff,
383             size_t size,
384             size_t &result) :
385             Operation (),
386             m_addr (addr),
387             m_buff (buff),
388             m_size (size),
389             m_result (result)
390             {
391             }
392 
393         void Execute (NativeProcessLinux *process) override;
394 
395     private:
396         lldb::addr_t m_addr;
397         void *m_buff;
398         size_t m_size;
399         size_t &m_result;
400     };
401 
402     void
403     ReadOperation::Execute (NativeProcessLinux *process)
404     {
405         m_result = DoReadMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
406     }
407 
408     //------------------------------------------------------------------------------
409     /// @class WriteOperation
410     /// @brief Implements NativeProcessLinux::WriteMemory.
411     class WriteOperation : public NativeProcessLinux::Operation
412     {
413     public:
414         WriteOperation(
415             lldb::addr_t addr,
416             const void *buff,
417             size_t size,
418             size_t &result) :
419             Operation (),
420             m_addr (addr),
421             m_buff (buff),
422             m_size (size),
423             m_result (result)
424             {
425             }
426 
427         void Execute (NativeProcessLinux *process) override;
428 
429     private:
430         lldb::addr_t m_addr;
431         const void *m_buff;
432         size_t m_size;
433         size_t &m_result;
434     };
435 
436     void
437     WriteOperation::Execute(NativeProcessLinux *process)
438     {
439         m_result = DoWriteMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
440     }
441 
442     //------------------------------------------------------------------------------
443     /// @class ResumeOperation
444     /// @brief Implements NativeProcessLinux::Resume.
445     class ResumeOperation : public NativeProcessLinux::Operation
446     {
447     public:
448         ResumeOperation(lldb::tid_t tid, uint32_t signo) :
449             m_tid(tid), m_signo(signo) { }
450 
451         void Execute(NativeProcessLinux *monitor) override;
452 
453     private:
454         lldb::tid_t m_tid;
455         uint32_t m_signo;
456     };
457 
458     void
459     ResumeOperation::Execute(NativeProcessLinux *monitor)
460     {
461         intptr_t data = 0;
462 
463         if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
464             data = m_signo;
465 
466         NativeProcessLinux::PtraceWrapper(PTRACE_CONT, m_tid, nullptr, (void*)data, 0, m_error);
467         if (m_error.Fail())
468         {
469             Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
470 
471             if (log)
472                 log->Printf ("ResumeOperation (%"  PRIu64 ") failed: %s", m_tid, m_error.AsCString());
473         }
474     }
475 
476     //------------------------------------------------------------------------------
477     /// @class SingleStepOperation
478     /// @brief Implements NativeProcessLinux::SingleStep.
479     class SingleStepOperation : public NativeProcessLinux::Operation
480     {
481     public:
482         SingleStepOperation(lldb::tid_t tid, uint32_t signo)
483             : m_tid(tid), m_signo(signo) { }
484 
485         void Execute(NativeProcessLinux *monitor) override;
486 
487     private:
488         lldb::tid_t m_tid;
489         uint32_t m_signo;
490     };
491 
492     void
493     SingleStepOperation::Execute(NativeProcessLinux *monitor)
494     {
495         intptr_t data = 0;
496 
497         if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
498             data = m_signo;
499 
500         NativeProcessLinux::PtraceWrapper(PTRACE_SINGLESTEP, m_tid, nullptr, (void*)data, 0, m_error);
501     }
502 
503     //------------------------------------------------------------------------------
504     /// @class SiginfoOperation
505     /// @brief Implements NativeProcessLinux::GetSignalInfo.
506     class SiginfoOperation : public NativeProcessLinux::Operation
507     {
508     public:
509         SiginfoOperation(lldb::tid_t tid, void *info)
510             : m_tid(tid), m_info(info) { }
511 
512         void Execute(NativeProcessLinux *monitor) override;
513 
514     private:
515         lldb::tid_t m_tid;
516         void *m_info;
517     };
518 
519     void
520     SiginfoOperation::Execute(NativeProcessLinux *monitor)
521     {
522         NativeProcessLinux::PtraceWrapper(PTRACE_GETSIGINFO, m_tid, nullptr, m_info, 0, m_error);
523     }
524 
525     //------------------------------------------------------------------------------
526     /// @class EventMessageOperation
527     /// @brief Implements NativeProcessLinux::GetEventMessage.
528     class EventMessageOperation : public NativeProcessLinux::Operation
529     {
530     public:
531         EventMessageOperation(lldb::tid_t tid, unsigned long *message)
532             : m_tid(tid), m_message(message) { }
533 
534         void Execute(NativeProcessLinux *monitor) override;
535 
536     private:
537         lldb::tid_t m_tid;
538         unsigned long *m_message;
539     };
540 
541     void
542     EventMessageOperation::Execute(NativeProcessLinux *monitor)
543     {
544         NativeProcessLinux::PtraceWrapper(PTRACE_GETEVENTMSG, m_tid, nullptr, m_message, 0, m_error);
545     }
546 
547     class DetachOperation : public NativeProcessLinux::Operation
548     {
549     public:
550         DetachOperation(lldb::tid_t tid) : m_tid(tid) { }
551 
552         void Execute(NativeProcessLinux *monitor) override;
553 
554     private:
555         lldb::tid_t m_tid;
556     };
557 
558     void
559     DetachOperation::Execute(NativeProcessLinux *monitor)
560     {
561         NativeProcessLinux::PtraceWrapper(PTRACE_DETACH, m_tid, nullptr, 0, 0, m_error);
562     }
563 } // end of anonymous namespace
564 
565 // Simple helper function to ensure flags are enabled on the given file
566 // descriptor.
567 static Error
568 EnsureFDFlags(int fd, int flags)
569 {
570     Error error;
571 
572     int status = fcntl(fd, F_GETFL);
573     if (status == -1)
574     {
575         error.SetErrorToErrno();
576         return error;
577     }
578 
579     if (fcntl(fd, F_SETFL, status | flags) == -1)
580     {
581         error.SetErrorToErrno();
582         return error;
583     }
584 
585     return error;
586 }
587 
588 // This class encapsulates the privileged thread which performs all ptrace and wait operations on
589 // the inferior. The thread consists of a main loop which waits for events and processes them
590 //   - SIGCHLD (delivered over a signalfd file descriptor): These signals notify us of events in
591 //     the inferior process. Upon receiving this signal we do a waitpid to get more information
592 //     and dispatch to NativeProcessLinux::MonitorCallback.
593 //   - requests for ptrace operations: These initiated via the DoOperation method, which funnels
594 //     them to the Monitor thread via m_operation member. The Monitor thread is signaled over a
595 //     pipe, and the completion of the operation is signalled over the semaphore.
596 //   - thread exit event: this is signaled from the Monitor destructor by closing the write end
597 //     of the command pipe.
598 class NativeProcessLinux::Monitor
599 {
600 private:
601     // The initial monitor operation (launch or attach). It returns a inferior process id.
602     std::unique_ptr<InitialOperation> m_initial_operation_up;
603 
604     ::pid_t                           m_child_pid = -1;
605     NativeProcessLinux              * m_native_process;
606 
607     enum { READ, WRITE };
608     int        m_pipefd[2] = {-1, -1};
609     int        m_signal_fd = -1;
610     HostThread m_thread;
611 
612     // current operation which must be executed on the priviliged thread
613     Mutex      m_operation_mutex;
614     Operation *m_operation = nullptr;
615     sem_t      m_operation_sem;
616     Error      m_operation_error;
617 
618     unsigned   m_operation_nesting_level = 0;
619 
620     static constexpr char operation_command   = 'o';
621     static constexpr char begin_block_command = '{';
622     static constexpr char end_block_command   = '}';
623 
624     void
625     HandleSignals();
626 
627     void
628     HandleWait();
629 
630     // Returns true if the thread should exit.
631     bool
632     HandleCommands();
633 
634     void
635     MainLoop();
636 
637     static void *
638     RunMonitor(void *arg);
639 
640     Error
641     WaitForAck();
642 
643     void
644     BeginOperationBlock()
645     {
646         write(m_pipefd[WRITE], &begin_block_command, sizeof operation_command);
647         WaitForAck();
648     }
649 
650     void
651     EndOperationBlock()
652     {
653         write(m_pipefd[WRITE], &end_block_command, sizeof operation_command);
654         WaitForAck();
655     }
656 
657 public:
658     Monitor(const InitialOperation &initial_operation,
659             NativeProcessLinux *native_process)
660         : m_initial_operation_up(new InitialOperation(initial_operation)),
661           m_native_process(native_process)
662     {
663         sem_init(&m_operation_sem, 0, 0);
664     }
665 
666     ~Monitor();
667 
668     Error
669     Initialize();
670 
671     void
672     Terminate();
673 
674     void
675     DoOperation(Operation *op);
676 
677     class ScopedOperationLock {
678         Monitor &m_monitor;
679 
680     public:
681         ScopedOperationLock(Monitor &monitor)
682             : m_monitor(monitor)
683         { m_monitor.BeginOperationBlock(); }
684 
685         ~ScopedOperationLock()
686         { m_monitor.EndOperationBlock(); }
687     };
688 };
689 constexpr char NativeProcessLinux::Monitor::operation_command;
690 constexpr char NativeProcessLinux::Monitor::begin_block_command;
691 constexpr char NativeProcessLinux::Monitor::end_block_command;
692 
693 Error
694 NativeProcessLinux::Monitor::Initialize()
695 {
696     Error error;
697 
698     // We get a SIGCHLD every time something interesting happens with the inferior. We shall be
699     // listening for these signals over a signalfd file descriptors. This allows us to wait for
700     // multiple kinds of events with select.
701     sigset_t signals;
702     sigemptyset(&signals);
703     sigaddset(&signals, SIGCHLD);
704     m_signal_fd = signalfd(-1, &signals, SFD_NONBLOCK | SFD_CLOEXEC);
705     if (m_signal_fd < 0)
706     {
707         return Error("NativeProcessLinux::Monitor::%s failed due to signalfd failure. Monitoring the inferior will be impossible: %s",
708                     __FUNCTION__, strerror(errno));
709 
710     }
711 
712     if (pipe2(m_pipefd, O_CLOEXEC) == -1)
713     {
714         error.SetErrorToErrno();
715         return error;
716     }
717 
718     if ((error = EnsureFDFlags(m_pipefd[READ], O_NONBLOCK)).Fail()) {
719         return error;
720     }
721 
722     static const char g_thread_name[] = "lldb.process.nativelinux.monitor";
723     m_thread = ThreadLauncher::LaunchThread(g_thread_name, Monitor::RunMonitor, this, nullptr);
724     if (!m_thread.IsJoinable())
725         return Error("Failed to create monitor thread for NativeProcessLinux.");
726 
727     // Wait for initial operation to complete.
728     return WaitForAck();
729 }
730 
731 void
732 NativeProcessLinux::Monitor::DoOperation(Operation *op)
733 {
734     if (m_thread.EqualsThread(pthread_self())) {
735         // If we're on the Monitor thread, we can simply execute the operation.
736         op->Execute(m_native_process);
737         return;
738     }
739 
740     // Otherwise we need to pass the operation to the Monitor thread so it can handle it.
741     Mutex::Locker lock(m_operation_mutex);
742 
743     m_operation = op;
744 
745     // notify the thread that an operation is ready to be processed
746     write(m_pipefd[WRITE], &operation_command, sizeof operation_command);
747 
748     WaitForAck();
749 }
750 
751 void
752 NativeProcessLinux::Monitor::Terminate()
753 {
754     if (m_pipefd[WRITE] >= 0)
755     {
756         close(m_pipefd[WRITE]);
757         m_pipefd[WRITE] = -1;
758     }
759     if (m_thread.IsJoinable())
760         m_thread.Join(nullptr);
761 }
762 
763 NativeProcessLinux::Monitor::~Monitor()
764 {
765     Terminate();
766     if (m_pipefd[READ] >= 0)
767         close(m_pipefd[READ]);
768     if (m_signal_fd >= 0)
769         close(m_signal_fd);
770     sem_destroy(&m_operation_sem);
771 }
772 
773 void
774 NativeProcessLinux::Monitor::HandleSignals()
775 {
776     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
777 
778     // We don't really care about the content of the SIGCHLD siginfo structure, as we will get
779     // all the information from waitpid(). We just need to read all the signals so that we can
780     // sleep next time we reach select().
781     while (true)
782     {
783         signalfd_siginfo info;
784         ssize_t size = read(m_signal_fd, &info, sizeof info);
785         if (size == -1)
786         {
787             if (errno == EAGAIN || errno == EWOULDBLOCK)
788                 break; // We are done.
789             if (errno == EINTR)
790                 continue;
791             if (log)
792                 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor failed: %s",
793                         __FUNCTION__, strerror(errno));
794             break;
795         }
796         if (size != sizeof info)
797         {
798             // We got incomplete information structure. This should not happen, let's just log
799             // that.
800             if (log)
801                 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor returned incomplete data: "
802                         "structure size is %zd, read returned %zd bytes",
803                         __FUNCTION__, sizeof info, size);
804             break;
805         }
806         if (log)
807             log->Printf("NativeProcessLinux::Monitor::%s received signal %s(%d).", __FUNCTION__,
808                 Host::GetSignalAsCString(info.ssi_signo), info.ssi_signo);
809     }
810 }
811 
812 void
813 NativeProcessLinux::Monitor::HandleWait()
814 {
815     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
816     // Process all pending waitpid notifications.
817     while (true)
818     {
819         int status = -1;
820         ::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG);
821 
822         if (wait_pid == 0)
823             break; // We are done.
824 
825         if (wait_pid == -1)
826         {
827             if (errno == EINTR)
828                 continue;
829 
830             if (log)
831               log->Printf("NativeProcessLinux::Monitor::%s waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG) failed: %s",
832                       __FUNCTION__, strerror(errno));
833             break;
834         }
835 
836         bool exited = false;
837         int signal = 0;
838         int exit_status = 0;
839         const char *status_cstr = NULL;
840         if (WIFSTOPPED(status))
841         {
842             signal = WSTOPSIG(status);
843             status_cstr = "STOPPED";
844         }
845         else if (WIFEXITED(status))
846         {
847             exit_status = WEXITSTATUS(status);
848             status_cstr = "EXITED";
849             exited = true;
850         }
851         else if (WIFSIGNALED(status))
852         {
853             signal = WTERMSIG(status);
854             status_cstr = "SIGNALED";
855             if (wait_pid == m_child_pid) {
856                 exited = true;
857                 exit_status = -1;
858             }
859         }
860         else
861             status_cstr = "(\?\?\?)";
862 
863         if (log)
864             log->Printf("NativeProcessLinux::Monitor::%s: waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG)"
865                 "=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i",
866                 __FUNCTION__, wait_pid, status, status_cstr, signal, exit_status);
867 
868         m_native_process->MonitorCallback (wait_pid, exited, signal, exit_status);
869     }
870 }
871 
872 bool
873 NativeProcessLinux::Monitor::HandleCommands()
874 {
875     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
876 
877     while (true)
878     {
879         char command = 0;
880         ssize_t size = read(m_pipefd[READ], &command, sizeof command);
881         if (size == -1)
882         {
883             if (errno == EAGAIN || errno == EWOULDBLOCK)
884                 return false;
885             if (errno == EINTR)
886                 continue;
887             if (log)
888                 log->Printf("NativeProcessLinux::Monitor::%s exiting because read from command file descriptor failed: %s", __FUNCTION__, strerror(errno));
889             return true;
890         }
891         if (size == 0) // end of file - write end closed
892         {
893             if (log)
894                 log->Printf("NativeProcessLinux::Monitor::%s exit command received, exiting...", __FUNCTION__);
895             assert(m_operation_nesting_level == 0 && "Unbalanced begin/end block commands detected");
896             return true; // We are done.
897         }
898 
899         switch (command)
900         {
901         case operation_command:
902             m_operation->Execute(m_native_process);
903             break;
904         case begin_block_command:
905             ++m_operation_nesting_level;
906             break;
907         case end_block_command:
908             assert(m_operation_nesting_level > 0);
909             --m_operation_nesting_level;
910             break;
911         default:
912             if (log)
913                 log->Printf("NativeProcessLinux::Monitor::%s received unknown command '%c'",
914                         __FUNCTION__, command);
915         }
916 
917         // notify calling thread that the command has been processed
918         sem_post(&m_operation_sem);
919     }
920 }
921 
922 void
923 NativeProcessLinux::Monitor::MainLoop()
924 {
925     ::pid_t child_pid = (*m_initial_operation_up)(m_operation_error);
926     m_initial_operation_up.reset();
927     m_child_pid = child_pid;
928     sem_post(&m_operation_sem);
929 
930     while (true)
931     {
932         fd_set fds;
933         FD_ZERO(&fds);
934         // Only process waitpid events if we are outside of an operation block. Any pending
935         // events will be processed after we leave the block.
936         if (m_operation_nesting_level == 0)
937             FD_SET(m_signal_fd, &fds);
938         FD_SET(m_pipefd[READ], &fds);
939 
940         int max_fd = std::max(m_signal_fd, m_pipefd[READ]) + 1;
941         int r = select(max_fd, &fds, nullptr, nullptr, nullptr);
942         if (r < 0)
943         {
944             Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
945             if (log)
946                 log->Printf("NativeProcessLinux::Monitor::%s exiting because select failed: %s",
947                         __FUNCTION__, strerror(errno));
948             return;
949         }
950 
951         if (FD_ISSET(m_pipefd[READ], &fds))
952         {
953             if (HandleCommands())
954                 return;
955         }
956 
957         if (FD_ISSET(m_signal_fd, &fds))
958         {
959             HandleSignals();
960             HandleWait();
961         }
962     }
963 }
964 
965 Error
966 NativeProcessLinux::Monitor::WaitForAck()
967 {
968     Error error;
969     while (sem_wait(&m_operation_sem) != 0)
970     {
971         if (errno == EINTR)
972             continue;
973 
974         error.SetErrorToErrno();
975         return error;
976     }
977 
978     return m_operation_error;
979 }
980 
981 void *
982 NativeProcessLinux::Monitor::RunMonitor(void *arg)
983 {
984     static_cast<Monitor *>(arg)->MainLoop();
985     return nullptr;
986 }
987 
988 
989 NativeProcessLinux::LaunchArgs::LaunchArgs(Module *module,
990                                        char const **argv,
991                                        char const **envp,
992                                        const FileSpec &stdin_file_spec,
993                                        const FileSpec &stdout_file_spec,
994                                        const FileSpec &stderr_file_spec,
995                                        const FileSpec &working_dir,
996                                        const ProcessLaunchInfo &launch_info)
997     : m_module(module),
998       m_argv(argv),
999       m_envp(envp),
1000       m_stdin_file_spec(stdin_file_spec),
1001       m_stdout_file_spec(stdout_file_spec),
1002       m_stderr_file_spec(stderr_file_spec),
1003       m_working_dir(working_dir),
1004       m_launch_info(launch_info)
1005 {
1006 }
1007 
1008 NativeProcessLinux::LaunchArgs::~LaunchArgs()
1009 { }
1010 
1011 // -----------------------------------------------------------------------------
1012 // Public Static Methods
1013 // -----------------------------------------------------------------------------
1014 
1015 Error
1016 NativeProcessLinux::LaunchProcess (
1017     Module *exe_module,
1018     ProcessLaunchInfo &launch_info,
1019     NativeProcessProtocol::NativeDelegate &native_delegate,
1020     NativeProcessProtocolSP &native_process_sp)
1021 {
1022     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1023 
1024     Error error;
1025 
1026     // Verify the working directory is valid if one was specified.
1027     FileSpec working_dir{launch_info.GetWorkingDirectory()};
1028     if (working_dir &&
1029             (!working_dir.ResolvePath() ||
1030              working_dir.GetFileType() != FileSpec::eFileTypeDirectory))
1031     {
1032         error.SetErrorStringWithFormat ("No such file or directory: %s",
1033                 working_dir.GetCString());
1034         return error;
1035     }
1036 
1037     const FileAction *file_action;
1038 
1039     // Default of empty will mean to use existing open file descriptors.
1040     FileSpec stdin_file_spec{};
1041     FileSpec stdout_file_spec{};
1042     FileSpec stderr_file_spec{};
1043 
1044     file_action = launch_info.GetFileActionForFD (STDIN_FILENO);
1045     if (file_action)
1046         stdin_file_spec = file_action->GetFileSpec();
1047 
1048     file_action = launch_info.GetFileActionForFD (STDOUT_FILENO);
1049     if (file_action)
1050         stdout_file_spec = file_action->GetFileSpec();
1051 
1052     file_action = launch_info.GetFileActionForFD (STDERR_FILENO);
1053     if (file_action)
1054         stderr_file_spec = file_action->GetFileSpec();
1055 
1056     if (log)
1057     {
1058         if (stdin_file_spec)
1059             log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'",
1060                     __FUNCTION__, stdin_file_spec.GetCString());
1061         else
1062             log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__);
1063 
1064         if (stdout_file_spec)
1065             log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'",
1066                     __FUNCTION__, stdout_file_spec.GetCString());
1067         else
1068             log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__);
1069 
1070         if (stderr_file_spec)
1071             log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'",
1072                     __FUNCTION__, stderr_file_spec.GetCString());
1073         else
1074             log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__);
1075     }
1076 
1077     // Create the NativeProcessLinux in launch mode.
1078     native_process_sp.reset (new NativeProcessLinux ());
1079 
1080     if (log)
1081     {
1082         int i = 0;
1083         for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i)
1084         {
1085             log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr");
1086             ++i;
1087         }
1088     }
1089 
1090     if (!native_process_sp->RegisterNativeDelegate (native_delegate))
1091     {
1092         native_process_sp.reset ();
1093         error.SetErrorStringWithFormat ("failed to register the native delegate");
1094         return error;
1095     }
1096 
1097     std::static_pointer_cast<NativeProcessLinux> (native_process_sp)->LaunchInferior (
1098             exe_module,
1099             launch_info.GetArguments ().GetConstArgumentVector (),
1100             launch_info.GetEnvironmentEntries ().GetConstArgumentVector (),
1101             stdin_file_spec,
1102             stdout_file_spec,
1103             stderr_file_spec,
1104             working_dir,
1105             launch_info,
1106             error);
1107 
1108     if (error.Fail ())
1109     {
1110         native_process_sp.reset ();
1111         if (log)
1112             log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ());
1113         return error;
1114     }
1115 
1116     launch_info.SetProcessID (native_process_sp->GetID ());
1117 
1118     return error;
1119 }
1120 
1121 Error
1122 NativeProcessLinux::AttachToProcess (
1123     lldb::pid_t pid,
1124     NativeProcessProtocol::NativeDelegate &native_delegate,
1125     NativeProcessProtocolSP &native_process_sp)
1126 {
1127     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1128     if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE))
1129         log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid);
1130 
1131     // Grab the current platform architecture.  This should be Linux,
1132     // since this code is only intended to run on a Linux host.
1133     PlatformSP platform_sp (Platform::GetHostPlatform ());
1134     if (!platform_sp)
1135         return Error("failed to get a valid default platform");
1136 
1137     // Retrieve the architecture for the running process.
1138     ArchSpec process_arch;
1139     Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch);
1140     if (!error.Success ())
1141         return error;
1142 
1143     std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ());
1144 
1145     if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate))
1146     {
1147         error.SetErrorStringWithFormat ("failed to register the native delegate");
1148         return error;
1149     }
1150 
1151     native_process_linux_sp->AttachToInferior (pid, error);
1152     if (!error.Success ())
1153         return error;
1154 
1155     native_process_sp = native_process_linux_sp;
1156     return error;
1157 }
1158 
1159 // -----------------------------------------------------------------------------
1160 // Public Instance Methods
1161 // -----------------------------------------------------------------------------
1162 
1163 NativeProcessLinux::NativeProcessLinux () :
1164     NativeProcessProtocol (LLDB_INVALID_PROCESS_ID),
1165     m_arch (),
1166     m_supports_mem_region (eLazyBoolCalculate),
1167     m_mem_region_cache (),
1168     m_mem_region_cache_mutex ()
1169 {
1170 }
1171 
1172 //------------------------------------------------------------------------------
1173 // NativeProcessLinux spawns a new thread which performs all operations on the inferior process.
1174 // Refer to Monitor and Operation classes to see why this is necessary.
1175 //------------------------------------------------------------------------------
1176 void
1177 NativeProcessLinux::LaunchInferior (
1178     Module *module,
1179     const char *argv[],
1180     const char *envp[],
1181     const FileSpec &stdin_file_spec,
1182     const FileSpec &stdout_file_spec,
1183     const FileSpec &stderr_file_spec,
1184     const FileSpec &working_dir,
1185     const ProcessLaunchInfo &launch_info,
1186     Error &error)
1187 {
1188     if (module)
1189         m_arch = module->GetArchitecture ();
1190 
1191     SetState (eStateLaunching);
1192 
1193     std::unique_ptr<LaunchArgs> args(
1194         new LaunchArgs(module, argv, envp,
1195                        stdin_file_spec,
1196                        stdout_file_spec,
1197                        stderr_file_spec,
1198                        working_dir,
1199                        launch_info));
1200 
1201     StartMonitorThread ([&] (Error &e) { return Launch(args.get(), e); }, error);
1202     if (!error.Success ())
1203         return;
1204 }
1205 
1206 void
1207 NativeProcessLinux::AttachToInferior (lldb::pid_t pid, Error &error)
1208 {
1209     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1210     if (log)
1211         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid);
1212 
1213     // We can use the Host for everything except the ResolveExecutable portion.
1214     PlatformSP platform_sp = Platform::GetHostPlatform ();
1215     if (!platform_sp)
1216     {
1217         if (log)
1218             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid);
1219         error.SetErrorString ("no default platform available");
1220         return;
1221     }
1222 
1223     // Gather info about the process.
1224     ProcessInstanceInfo process_info;
1225     if (!platform_sp->GetProcessInfo (pid, process_info))
1226     {
1227         if (log)
1228             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid);
1229         error.SetErrorString ("failed to get process info");
1230         return;
1231     }
1232 
1233     // Resolve the executable module
1234     ModuleSP exe_module_sp;
1235     FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths());
1236     ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
1237     error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp,
1238                                            executable_search_paths.GetSize() ? &executable_search_paths : NULL);
1239     if (!error.Success())
1240         return;
1241 
1242     // Set the architecture to the exe architecture.
1243     m_arch = exe_module_sp->GetArchitecture();
1244     if (log)
1245         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ());
1246 
1247     m_pid = pid;
1248     SetState(eStateAttaching);
1249 
1250     StartMonitorThread ([=] (Error &e) { return Attach(pid, e); }, error);
1251     if (!error.Success ())
1252         return;
1253 }
1254 
1255 void
1256 NativeProcessLinux::Terminate ()
1257 {
1258     m_monitor_up->Terminate();
1259 }
1260 
1261 ::pid_t
1262 NativeProcessLinux::Launch(LaunchArgs *args, Error &error)
1263 {
1264     assert (args && "null args");
1265 
1266     const char **argv = args->m_argv;
1267     const char **envp = args->m_envp;
1268     const FileSpec working_dir = args->m_working_dir;
1269 
1270     lldb_utility::PseudoTerminal terminal;
1271     const size_t err_len = 1024;
1272     char err_str[err_len];
1273     lldb::pid_t pid;
1274     NativeThreadProtocolSP thread_sp;
1275 
1276     lldb::ThreadSP inferior;
1277 
1278     // Propagate the environment if one is not supplied.
1279     if (envp == NULL || envp[0] == NULL)
1280         envp = const_cast<const char **>(environ);
1281 
1282     if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1))
1283     {
1284         error.SetErrorToGenericError();
1285         error.SetErrorStringWithFormat("Process fork failed: %s", err_str);
1286         return -1;
1287     }
1288 
1289     // Recognized child exit status codes.
1290     enum {
1291         ePtraceFailed = 1,
1292         eDupStdinFailed,
1293         eDupStdoutFailed,
1294         eDupStderrFailed,
1295         eChdirFailed,
1296         eExecFailed,
1297         eSetGidFailed
1298     };
1299 
1300     // Child process.
1301     if (pid == 0)
1302     {
1303         // FIXME consider opening a pipe between parent/child and have this forked child
1304         // send log info to parent re: launch status, in place of the log lines removed here.
1305 
1306         // Start tracing this child that is about to exec.
1307         NativeProcessLinux::PtraceWrapper(PTRACE_TRACEME, 0, nullptr, nullptr, 0, error);
1308         if (error.Fail())
1309             exit(ePtraceFailed);
1310 
1311         // terminal has already dupped the tty descriptors to stdin/out/err.
1312         // This closes original fd from which they were copied (and avoids
1313         // leaking descriptors to the debugged process.
1314         terminal.CloseSlaveFileDescriptor();
1315 
1316         // Do not inherit setgid powers.
1317         if (setgid(getgid()) != 0)
1318             exit(eSetGidFailed);
1319 
1320         // Attempt to have our own process group.
1321         if (setpgid(0, 0) != 0)
1322         {
1323             // FIXME log that this failed. This is common.
1324             // Don't allow this to prevent an inferior exec.
1325         }
1326 
1327         // Dup file descriptors if needed.
1328         if (args->m_stdin_file_spec)
1329             if (!DupDescriptor(args->m_stdin_file_spec, STDIN_FILENO, O_RDONLY))
1330                 exit(eDupStdinFailed);
1331 
1332         if (args->m_stdout_file_spec)
1333             if (!DupDescriptor(args->m_stdout_file_spec, STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
1334                 exit(eDupStdoutFailed);
1335 
1336         if (args->m_stderr_file_spec)
1337             if (!DupDescriptor(args->m_stderr_file_spec, STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
1338                 exit(eDupStderrFailed);
1339 
1340         // Close everything besides stdin, stdout, and stderr that has no file
1341         // action to avoid leaking
1342         for (int fd = 3; fd < sysconf(_SC_OPEN_MAX); ++fd)
1343             if (!args->m_launch_info.GetFileActionForFD(fd))
1344                 close(fd);
1345 
1346         // Change working directory
1347         if (working_dir && 0 != ::chdir(working_dir.GetCString()))
1348               exit(eChdirFailed);
1349 
1350         // Disable ASLR if requested.
1351         if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR))
1352         {
1353             const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS);
1354             if (old_personality == -1)
1355             {
1356                 // Can't retrieve Linux personality.  Cannot disable ASLR.
1357             }
1358             else
1359             {
1360                 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality);
1361                 if (new_personality == -1)
1362                 {
1363                     // Disabling ASLR failed.
1364                 }
1365                 else
1366                 {
1367                     // Disabling ASLR succeeded.
1368                 }
1369             }
1370         }
1371 
1372         // Execute.  We should never return...
1373         execve(argv[0],
1374                const_cast<char *const *>(argv),
1375                const_cast<char *const *>(envp));
1376 
1377         // ...unless exec fails.  In which case we definitely need to end the child here.
1378         exit(eExecFailed);
1379     }
1380 
1381     //
1382     // This is the parent code here.
1383     //
1384     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1385 
1386     // Wait for the child process to trap on its call to execve.
1387     ::pid_t wpid;
1388     int status;
1389     if ((wpid = waitpid(pid, &status, 0)) < 0)
1390     {
1391         error.SetErrorToErrno();
1392         if (log)
1393             log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s",
1394                     __FUNCTION__, error.AsCString ());
1395 
1396         // Mark the inferior as invalid.
1397         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1398         SetState (StateType::eStateInvalid);
1399 
1400         return -1;
1401     }
1402     else if (WIFEXITED(status))
1403     {
1404         // open, dup or execve likely failed for some reason.
1405         error.SetErrorToGenericError();
1406         switch (WEXITSTATUS(status))
1407         {
1408             case ePtraceFailed:
1409                 error.SetErrorString("Child ptrace failed.");
1410                 break;
1411             case eDupStdinFailed:
1412                 error.SetErrorString("Child open stdin failed.");
1413                 break;
1414             case eDupStdoutFailed:
1415                 error.SetErrorString("Child open stdout failed.");
1416                 break;
1417             case eDupStderrFailed:
1418                 error.SetErrorString("Child open stderr failed.");
1419                 break;
1420             case eChdirFailed:
1421                 error.SetErrorString("Child failed to set working directory.");
1422                 break;
1423             case eExecFailed:
1424                 error.SetErrorString("Child exec failed.");
1425                 break;
1426             case eSetGidFailed:
1427                 error.SetErrorString("Child setgid failed.");
1428                 break;
1429             default:
1430                 error.SetErrorString("Child returned unknown exit status.");
1431                 break;
1432         }
1433 
1434         if (log)
1435         {
1436             log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP",
1437                     __FUNCTION__,
1438                     WEXITSTATUS(status));
1439         }
1440 
1441         // Mark the inferior as invalid.
1442         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1443         SetState (StateType::eStateInvalid);
1444 
1445         return -1;
1446     }
1447     assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) &&
1448            "Could not sync with inferior process.");
1449 
1450     if (log)
1451         log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__);
1452 
1453     error = SetDefaultPtraceOpts(pid);
1454     if (error.Fail())
1455     {
1456         if (log)
1457             log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s",
1458                     __FUNCTION__, error.AsCString ());
1459 
1460         // Mark the inferior as invalid.
1461         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1462         SetState (StateType::eStateInvalid);
1463 
1464         return -1;
1465     }
1466 
1467     // Release the master terminal descriptor and pass it off to the
1468     // NativeProcessLinux instance.  Similarly stash the inferior pid.
1469     m_terminal_fd = terminal.ReleaseMasterFileDescriptor();
1470     m_pid = pid;
1471 
1472     // Set the terminal fd to be in non blocking mode (it simplifies the
1473     // implementation of ProcessLinux::GetSTDOUT to have a non-blocking
1474     // descriptor to read from).
1475     error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
1476     if (error.Fail())
1477     {
1478         if (log)
1479             log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s",
1480                     __FUNCTION__, error.AsCString ());
1481 
1482         // Mark the inferior as invalid.
1483         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1484         SetState (StateType::eStateInvalid);
1485 
1486         return -1;
1487     }
1488 
1489     if (log)
1490         log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid);
1491 
1492     thread_sp = AddThread (pid);
1493     assert (thread_sp && "AddThread() returned a nullptr thread");
1494     std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP);
1495     ThreadWasCreated(pid);
1496 
1497     // Let our process instance know the thread has stopped.
1498     SetCurrentThreadID (thread_sp->GetID ());
1499     SetState (StateType::eStateStopped);
1500 
1501     if (log)
1502     {
1503         if (error.Success ())
1504         {
1505             log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__);
1506         }
1507         else
1508         {
1509             log->Printf ("NativeProcessLinux::%s inferior launching failed: %s",
1510                 __FUNCTION__, error.AsCString ());
1511             return -1;
1512         }
1513     }
1514     return pid;
1515 }
1516 
1517 ::pid_t
1518 NativeProcessLinux::Attach(lldb::pid_t pid, Error &error)
1519 {
1520     lldb::ThreadSP inferior;
1521     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1522 
1523     // Use a map to keep track of the threads which we have attached/need to attach.
1524     Host::TidMap tids_to_attach;
1525     if (pid <= 1)
1526     {
1527         error.SetErrorToGenericError();
1528         error.SetErrorString("Attaching to process 1 is not allowed.");
1529         return -1;
1530     }
1531 
1532     while (Host::FindProcessThreads(pid, tids_to_attach))
1533     {
1534         for (Host::TidMap::iterator it = tids_to_attach.begin();
1535              it != tids_to_attach.end();)
1536         {
1537             if (it->second == false)
1538             {
1539                 lldb::tid_t tid = it->first;
1540 
1541                 // Attach to the requested process.
1542                 // An attach will cause the thread to stop with a SIGSTOP.
1543                 NativeProcessLinux::PtraceWrapper(PTRACE_ATTACH, tid, nullptr, nullptr, 0, error);
1544                 if (error.Fail())
1545                 {
1546                     // No such thread. The thread may have exited.
1547                     // More error handling may be needed.
1548                     if (error.GetError() == ESRCH)
1549                     {
1550                         it = tids_to_attach.erase(it);
1551                         continue;
1552                     }
1553                     else
1554                         return -1;
1555                 }
1556 
1557                 int status;
1558                 // Need to use __WALL otherwise we receive an error with errno=ECHLD
1559                 // At this point we should have a thread stopped if waitpid succeeds.
1560                 if ((status = waitpid(tid, NULL, __WALL)) < 0)
1561                 {
1562                     // No such thread. The thread may have exited.
1563                     // More error handling may be needed.
1564                     if (errno == ESRCH)
1565                     {
1566                         it = tids_to_attach.erase(it);
1567                         continue;
1568                     }
1569                     else
1570                     {
1571                         error.SetErrorToErrno();
1572                         return -1;
1573                     }
1574                 }
1575 
1576                 error = SetDefaultPtraceOpts(tid);
1577                 if (error.Fail())
1578                     return -1;
1579 
1580                 if (log)
1581                     log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid);
1582 
1583                 it->second = true;
1584 
1585                 // Create the thread, mark it as stopped.
1586                 NativeThreadProtocolSP thread_sp (AddThread (static_cast<lldb::tid_t> (tid)));
1587                 assert (thread_sp && "AddThread() returned a nullptr");
1588 
1589                 // This will notify this is a new thread and tell the system it is stopped.
1590                 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP);
1591                 ThreadWasCreated(tid);
1592                 SetCurrentThreadID (thread_sp->GetID ());
1593             }
1594 
1595             // move the loop forward
1596             ++it;
1597         }
1598     }
1599 
1600     if (tids_to_attach.size() > 0)
1601     {
1602         m_pid = pid;
1603         // Let our process instance know the thread has stopped.
1604         SetState (StateType::eStateStopped);
1605     }
1606     else
1607     {
1608         error.SetErrorToGenericError();
1609         error.SetErrorString("No such process.");
1610         return -1;
1611     }
1612 
1613     return pid;
1614 }
1615 
1616 Error
1617 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid)
1618 {
1619     long ptrace_opts = 0;
1620 
1621     // Have the child raise an event on exit.  This is used to keep the child in
1622     // limbo until it is destroyed.
1623     ptrace_opts |= PTRACE_O_TRACEEXIT;
1624 
1625     // Have the tracer trace threads which spawn in the inferior process.
1626     // TODO: if we want to support tracing the inferiors' child, add the
1627     // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
1628     ptrace_opts |= PTRACE_O_TRACECLONE;
1629 
1630     // Have the tracer notify us before execve returns
1631     // (needed to disable legacy SIGTRAP generation)
1632     ptrace_opts |= PTRACE_O_TRACEEXEC;
1633 
1634     Error error;
1635     NativeProcessLinux::PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts, 0, error);
1636     return error;
1637 }
1638 
1639 static ExitType convert_pid_status_to_exit_type (int status)
1640 {
1641     if (WIFEXITED (status))
1642         return ExitType::eExitTypeExit;
1643     else if (WIFSIGNALED (status))
1644         return ExitType::eExitTypeSignal;
1645     else if (WIFSTOPPED (status))
1646         return ExitType::eExitTypeStop;
1647     else
1648     {
1649         // We don't know what this is.
1650         return ExitType::eExitTypeInvalid;
1651     }
1652 }
1653 
1654 static int convert_pid_status_to_return_code (int status)
1655 {
1656     if (WIFEXITED (status))
1657         return WEXITSTATUS (status);
1658     else if (WIFSIGNALED (status))
1659         return WTERMSIG (status);
1660     else if (WIFSTOPPED (status))
1661         return WSTOPSIG (status);
1662     else
1663     {
1664         // We don't know what this is.
1665         return ExitType::eExitTypeInvalid;
1666     }
1667 }
1668 
1669 // Handles all waitpid events from the inferior process.
1670 void
1671 NativeProcessLinux::MonitorCallback(lldb::pid_t pid,
1672                                     bool exited,
1673                                     int signal,
1674                                     int status)
1675 {
1676     Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS));
1677 
1678     // Certain activities differ based on whether the pid is the tid of the main thread.
1679     const bool is_main_thread = (pid == GetID ());
1680 
1681     // Handle when the thread exits.
1682     if (exited)
1683     {
1684         if (log)
1685             log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %"  PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not");
1686 
1687         // This is a thread that exited.  Ensure we're not tracking it anymore.
1688         const bool thread_found = StopTrackingThread (pid);
1689 
1690         if (is_main_thread)
1691         {
1692             // We only set the exit status and notify the delegate if we haven't already set the process
1693             // state to an exited state.  We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8)
1694             // for the main thread.
1695             const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed);
1696             if (!already_notified)
1697             {
1698                 if (log)
1699                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ()));
1700                 // The main thread exited.  We're done monitoring.  Report to delegate.
1701                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
1702 
1703                 // Notify delegate that our process has exited.
1704                 SetState (StateType::eStateExited, true);
1705             }
1706             else
1707             {
1708                 if (log)
1709                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
1710             }
1711         }
1712         else
1713         {
1714             // Do we want to report to the delegate in this case?  I think not.  If this was an orderly
1715             // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal,
1716             // and we would have done an all-stop then.
1717             if (log)
1718                 log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
1719         }
1720         return;
1721     }
1722 
1723     // Get details on the signal raised.
1724     siginfo_t info;
1725     const auto err = GetSignalInfo(pid, &info);
1726     if (err.Success())
1727     {
1728         // We have retrieved the signal info.  Dispatch appropriately.
1729         if (info.si_signo == SIGTRAP)
1730             MonitorSIGTRAP(&info, pid);
1731         else
1732             MonitorSignal(&info, pid, exited);
1733     }
1734     else
1735     {
1736         if (err.GetError() == EINVAL)
1737         {
1738             // This is a group stop reception for this tid.
1739             // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the
1740             // tracee, triggering the group-stop mechanism. Normally receiving these would stop
1741             // the process, pending a SIGCONT. Simulating this state in a debugger is hard and is
1742             // generally not needed (one use case is debugging background task being managed by a
1743             // shell). For general use, it is sufficient to stop the process in a signal-delivery
1744             // stop which happens before the group stop. This done by MonitorSignal and works
1745             // correctly for all signals.
1746             if (log)
1747                 log->Printf("NativeProcessLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64 ". Transparent handling of group stops not supported, resuming the thread.", __FUNCTION__, GetID (), pid);
1748             Resume(pid, signal);
1749         }
1750         else
1751         {
1752             // ptrace(GETSIGINFO) failed (but not due to group-stop).
1753 
1754             // A return value of ESRCH means the thread/process is no longer on the system,
1755             // so it was killed somehow outside of our control.  Either way, we can't do anything
1756             // with it anymore.
1757 
1758             // Stop tracking the metadata for the thread since it's entirely off the system now.
1759             const bool thread_found = StopTrackingThread (pid);
1760 
1761             if (log)
1762                 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)",
1763                              __FUNCTION__, err.AsCString(), pid, signal, status, err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found");
1764 
1765             if (is_main_thread)
1766             {
1767                 // Notify the delegate - our process is not available but appears to have been killed outside
1768                 // our control.  Is eStateExited the right exit state in this case?
1769                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
1770                 SetState (StateType::eStateExited, true);
1771             }
1772             else
1773             {
1774                 // This thread was pulled out from underneath us.  Anything to do here? Do we want to do an all stop?
1775                 if (log)
1776                     log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid);
1777             }
1778         }
1779     }
1780 }
1781 
1782 void
1783 NativeProcessLinux::WaitForNewThread(::pid_t tid)
1784 {
1785     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1786 
1787     NativeThreadProtocolSP new_thread_sp = GetThreadByID(tid);
1788 
1789     if (new_thread_sp)
1790     {
1791         // We are already tracking the thread - we got the event on the new thread (see
1792         // MonitorSignal) before this one. We are done.
1793         return;
1794     }
1795 
1796     // The thread is not tracked yet, let's wait for it to appear.
1797     int status = -1;
1798     ::pid_t wait_pid;
1799     do
1800     {
1801         if (log)
1802             log->Printf ("NativeProcessLinux::%s() received thread creation event for tid %" PRIu32 ". tid not tracked yet, waiting for thread to appear...", __FUNCTION__, tid);
1803         wait_pid = waitpid(tid, &status, __WALL);
1804     }
1805     while (wait_pid == -1 && errno == EINTR);
1806     // Since we are waiting on a specific tid, this must be the creation event. But let's do
1807     // some checks just in case.
1808     if (wait_pid != tid) {
1809         if (log)
1810             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime", __FUNCTION__, tid);
1811         // The only way I know of this could happen is if the whole process was
1812         // SIGKILLed in the mean time. In any case, we can't do anything about that now.
1813         return;
1814     }
1815     if (WIFEXITED(status))
1816     {
1817         if (log)
1818             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " returned an 'exited' event. Not tracking the thread.", __FUNCTION__, tid);
1819         // Also a very improbable event.
1820         return;
1821     }
1822 
1823     siginfo_t info;
1824     Error error = GetSignalInfo(tid, &info);
1825     if (error.Fail())
1826     {
1827         if (log)
1828             log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime.", __FUNCTION__, tid);
1829         return;
1830     }
1831 
1832     if (((info.si_pid != 0) || (info.si_code != SI_USER)) && log)
1833     {
1834         // We should be getting a thread creation signal here, but we received something
1835         // else. There isn't much we can do about it now, so we will just log that. Since the
1836         // thread is alive and we are receiving events from it, we shall pretend that it was
1837         // created properly.
1838         log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " received unexpected signal with code %d from pid %d.", __FUNCTION__, tid, info.si_code, info.si_pid);
1839     }
1840 
1841     if (log)
1842         log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": tracking new thread tid %" PRIu32,
1843                  __FUNCTION__, GetID (), tid);
1844 
1845     new_thread_sp = AddThread(tid);
1846     std::static_pointer_cast<NativeThreadLinux> (new_thread_sp)->SetRunning ();
1847     Resume (tid, LLDB_INVALID_SIGNAL_NUMBER);
1848     ThreadWasCreated(tid);
1849 }
1850 
1851 void
1852 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid)
1853 {
1854     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1855     const bool is_main_thread = (pid == GetID ());
1856 
1857     assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!");
1858     if (!info)
1859         return;
1860 
1861     Mutex::Locker locker (m_threads_mutex);
1862 
1863     // See if we can find a thread for this signal.
1864     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
1865     if (!thread_sp)
1866     {
1867         if (log)
1868             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
1869     }
1870 
1871     switch (info->si_code)
1872     {
1873     // TODO: these two cases are required if we want to support tracing of the inferiors' children.  We'd need this to debug a monitor.
1874     // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
1875     // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
1876 
1877     case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)):
1878     {
1879         // This is the notification on the parent thread which informs us of new thread
1880         // creation.
1881         // We don't want to do anything with the parent thread so we just resume it. In case we
1882         // want to implement "break on thread creation" functionality, we would need to stop
1883         // here.
1884 
1885         unsigned long event_message = 0;
1886         if (GetEventMessage (pid, &event_message).Fail())
1887         {
1888             if (log)
1889                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, pid);
1890         } else
1891             WaitForNewThread(event_message);
1892 
1893         Resume (pid, LLDB_INVALID_SIGNAL_NUMBER);
1894         break;
1895     }
1896 
1897     case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)):
1898     {
1899         NativeThreadProtocolSP main_thread_sp;
1900         if (log)
1901             log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP);
1902 
1903         // Exec clears any pending notifications.
1904         m_pending_notification_up.reset ();
1905 
1906         // Remove all but the main thread here.  Linux fork creates a new process which only copies the main thread.  Mutexes are in undefined state.
1907         if (log)
1908             log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__);
1909 
1910         for (auto thread_sp : m_threads)
1911         {
1912             const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID ();
1913             if (is_main_thread)
1914             {
1915                 main_thread_sp = thread_sp;
1916                 if (log)
1917                     log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ());
1918             }
1919             else
1920             {
1921                 // Tell thread coordinator this thread is dead.
1922                 if (log)
1923                     log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ());
1924             }
1925         }
1926 
1927         m_threads.clear ();
1928 
1929         if (main_thread_sp)
1930         {
1931             m_threads.push_back (main_thread_sp);
1932             SetCurrentThreadID (main_thread_sp->GetID ());
1933             std::static_pointer_cast<NativeThreadLinux> (main_thread_sp)->SetStoppedByExec ();
1934         }
1935         else
1936         {
1937             SetCurrentThreadID (LLDB_INVALID_THREAD_ID);
1938             if (log)
1939                 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ());
1940         }
1941 
1942         // Tell coordinator about about the "new" (since exec) stopped main thread.
1943         const lldb::tid_t main_thread_tid = GetID ();
1944         ThreadWasCreated(main_thread_tid);
1945 
1946         // NOTE: ideally these next statements would execute at the same time as the coordinator thread create was executed.
1947         // Consider a handler that can execute when that happens.
1948         // Let our delegate know we have just exec'd.
1949         NotifyDidExec ();
1950 
1951         // If we have a main thread, indicate we are stopped.
1952         assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked");
1953 
1954         // Let the process know we're stopped.
1955         StopRunningThreads (pid);
1956 
1957         break;
1958     }
1959 
1960     case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)):
1961     {
1962         // The inferior process or one of its threads is about to exit.
1963         // We don't want to do anything with the thread so we just resume it. In case we
1964         // want to implement "break on thread exit" functionality, we would need to stop
1965         // here.
1966 
1967         unsigned long data = 0;
1968         if (GetEventMessage(pid, &data).Fail())
1969             data = -1;
1970 
1971         if (log)
1972         {
1973             log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)",
1974                          __FUNCTION__,
1975                          data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false",
1976                          pid,
1977                     is_main_thread ? "is main thread" : "not main thread");
1978         }
1979 
1980         if (is_main_thread)
1981         {
1982             SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true);
1983         }
1984 
1985         Resume(pid, LLDB_INVALID_SIGNAL_NUMBER);
1986 
1987         break;
1988     }
1989 
1990     case 0:
1991     case TRAP_TRACE:  // We receive this on single stepping.
1992     case TRAP_HWBKPT: // We receive this on watchpoint hit
1993         if (thread_sp)
1994         {
1995             // If a watchpoint was hit, report it
1996             uint32_t wp_index;
1997             Error error = thread_sp->GetRegisterContext()->GetWatchpointHitIndex(wp_index, (lldb::addr_t)info->si_addr);
1998             if (error.Fail() && log)
1999                 log->Printf("NativeProcessLinux::%s() "
2000                             "received error while checking for watchpoint hits, "
2001                             "pid = %" PRIu64 " error = %s",
2002                             __FUNCTION__, pid, error.AsCString());
2003             if (wp_index != LLDB_INVALID_INDEX32)
2004             {
2005                 MonitorWatchpoint(pid, thread_sp, wp_index);
2006                 break;
2007             }
2008         }
2009         // Otherwise, report step over
2010         MonitorTrace(pid, thread_sp);
2011         break;
2012 
2013     case SI_KERNEL:
2014 #if defined __mips__
2015         // For mips there is no special signal for watchpoint
2016         // So we check for watchpoint in kernel trap
2017         if (thread_sp)
2018         {
2019             // If a watchpoint was hit, report it
2020             uint32_t wp_index;
2021             Error error = thread_sp->GetRegisterContext()->GetWatchpointHitIndex(wp_index, NULL);
2022             if (error.Fail() && log)
2023                 log->Printf("NativeProcessLinux::%s() "
2024                             "received error while checking for watchpoint hits, "
2025                             "pid = %" PRIu64 " error = %s",
2026                             __FUNCTION__, pid, error.AsCString());
2027             if (wp_index != LLDB_INVALID_INDEX32)
2028             {
2029                 MonitorWatchpoint(pid, thread_sp, wp_index);
2030                 break;
2031             }
2032         }
2033         // NO BREAK
2034 #endif
2035     case TRAP_BRKPT:
2036         MonitorBreakpoint(pid, thread_sp);
2037         break;
2038 
2039     case SIGTRAP:
2040     case (SIGTRAP | 0x80):
2041         if (log)
2042             log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), pid);
2043 
2044         // Ignore these signals until we know more about them.
2045         Resume(pid, LLDB_INVALID_SIGNAL_NUMBER);
2046         break;
2047 
2048     default:
2049         assert(false && "Unexpected SIGTRAP code!");
2050         if (log)
2051             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%d",
2052                     __FUNCTION__, GetID (), pid, info->si_code);
2053         break;
2054 
2055     }
2056 }
2057 
2058 void
2059 NativeProcessLinux::MonitorTrace(lldb::pid_t pid, NativeThreadProtocolSP thread_sp)
2060 {
2061     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2062     if (log)
2063         log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)",
2064                 __FUNCTION__, pid);
2065 
2066     if (thread_sp)
2067         std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace();
2068 
2069     // This thread is currently stopped.
2070     ThreadDidStop(pid, false);
2071 
2072     // Here we don't have to request the rest of the threads to stop or request a deferred stop.
2073     // This would have already happened at the time the Resume() with step operation was signaled.
2074     // At this point, we just need to say we stopped, and the deferred notifcation will fire off
2075     // once all running threads have checked in as stopped.
2076     SetCurrentThreadID(pid);
2077     // Tell the process we have a stop (from software breakpoint).
2078     StopRunningThreads(pid);
2079 }
2080 
2081 void
2082 NativeProcessLinux::MonitorBreakpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp)
2083 {
2084     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
2085     if (log)
2086         log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64,
2087                 __FUNCTION__, pid);
2088 
2089     // This thread is currently stopped.
2090     ThreadDidStop(pid, false);
2091 
2092     // Mark the thread as stopped at breakpoint.
2093     if (thread_sp)
2094     {
2095         std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByBreakpoint();
2096         Error error = FixupBreakpointPCAsNeeded(thread_sp);
2097         if (error.Fail())
2098             if (log)
2099                 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s",
2100                         __FUNCTION__, pid, error.AsCString());
2101 
2102         if (m_threads_stepping_with_breakpoint.find(pid) != m_threads_stepping_with_breakpoint.end())
2103             std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace();
2104     }
2105     else
2106         if (log)
2107             log->Printf("NativeProcessLinux::%s()  pid = %" PRIu64 ": "
2108                     "warning, cannot process software breakpoint since no thread metadata",
2109                     __FUNCTION__, pid);
2110 
2111 
2112     // We need to tell all other running threads before we notify the delegate about this stop.
2113     StopRunningThreads(pid);
2114 }
2115 
2116 void
2117 NativeProcessLinux::MonitorWatchpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp, uint32_t wp_index)
2118 {
2119     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
2120     if (log)
2121         log->Printf("NativeProcessLinux::%s() received watchpoint event, "
2122                     "pid = %" PRIu64 ", wp_index = %" PRIu32,
2123                     __FUNCTION__, pid, wp_index);
2124 
2125     // This thread is currently stopped.
2126     ThreadDidStop(pid, false);
2127 
2128     // Mark the thread as stopped at watchpoint.
2129     // The address is at (lldb::addr_t)info->si_addr if we need it.
2130     lldbassert(thread_sp && "thread_sp cannot be NULL");
2131     std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByWatchpoint(wp_index);
2132 
2133     // We need to tell all other running threads before we notify the delegate about this stop.
2134     StopRunningThreads(pid);
2135 }
2136 
2137 void
2138 NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited)
2139 {
2140     assert (info && "null info");
2141     if (!info)
2142         return;
2143 
2144     const int signo = info->si_signo;
2145     const bool is_from_llgs = info->si_pid == getpid ();
2146 
2147     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2148 
2149     // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
2150     // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
2151     // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
2152     //
2153     // IOW, user generated signals never generate what we consider to be a
2154     // "crash".
2155     //
2156     // Similarly, ACK signals generated by this monitor.
2157 
2158     Mutex::Locker locker (m_threads_mutex);
2159 
2160     // See if we can find a thread for this signal.
2161     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
2162     if (!thread_sp)
2163     {
2164         if (log)
2165             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
2166     }
2167 
2168     // Handle the signal.
2169     if (info->si_code == SI_TKILL || info->si_code == SI_USER)
2170     {
2171         if (log)
2172             log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")",
2173                             __FUNCTION__,
2174                             GetUnixSignals ().GetSignalAsCString (signo),
2175                             signo,
2176                             (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"),
2177                             info->si_pid,
2178                             is_from_llgs ? "from llgs" : "not from llgs",
2179                             pid);
2180     }
2181 
2182     // Check for new thread notification.
2183     if ((info->si_pid == 0) && (info->si_code == SI_USER))
2184     {
2185         // A new thread creation is being signaled. This is one of two parts that come in
2186         // a non-deterministic order. This code handles the case where the new thread event comes
2187         // before the event on the parent thread. For the opposite case see code in
2188         // MonitorSIGTRAP.
2189         if (log)
2190             log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification",
2191                      __FUNCTION__, GetID (), pid);
2192 
2193         thread_sp = AddThread(pid);
2194         assert (thread_sp.get() && "failed to create the tracking data for newly created inferior thread");
2195         // We can now resume the newly created thread.
2196         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2197         Resume (pid, LLDB_INVALID_SIGNAL_NUMBER);
2198         ThreadWasCreated(pid);
2199         // Done handling.
2200         return;
2201     }
2202 
2203     // Check for thread stop notification.
2204     if (is_from_llgs && (info->si_code == SI_TKILL) && (signo == SIGSTOP))
2205     {
2206         // This is a tgkill()-based stop.
2207         if (thread_sp)
2208         {
2209             if (log)
2210                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped",
2211                              __FUNCTION__,
2212                              GetID (),
2213                              pid);
2214 
2215             // Check that we're not already marked with a stop reason.
2216             // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that
2217             // the kernel signaled us with the thread stopping which we handled and marked as stopped,
2218             // and that, without an intervening resume, we received another stop.  It is more likely
2219             // that we are missing the marking of a run state somewhere if we find that the thread was
2220             // marked as stopped.
2221             std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp);
2222             assert (linux_thread_sp && "linux_thread_sp is null!");
2223 
2224             const StateType thread_state = linux_thread_sp->GetState ();
2225             if (!StateIsStoppedState (thread_state, false))
2226             {
2227                 // An inferior thread has stopped because of a SIGSTOP we have sent it.
2228                 // Generally, these are not important stops and we don't want to report them as
2229                 // they are just used to stop other threads when one thread (the one with the
2230                 // *real* stop reason) hits a breakpoint (watchpoint, etc...). However, in the
2231                 // case of an asynchronous Interrupt(), this *is* the real stop reason, so we
2232                 // leave the signal intact if this is the thread that was chosen as the
2233                 // triggering thread.
2234                 if (m_pending_notification_up && m_pending_notification_up->triggering_tid == pid)
2235                     linux_thread_sp->SetStoppedBySignal(SIGSTOP, info);
2236                 else
2237                     linux_thread_sp->SetStoppedBySignal(0);
2238 
2239                 SetCurrentThreadID (thread_sp->GetID ());
2240                 ThreadDidStop (thread_sp->GetID (), true);
2241             }
2242             else
2243             {
2244                 if (log)
2245                 {
2246                     // Retrieve the signal name if the thread was stopped by a signal.
2247                     int stop_signo = 0;
2248                     const bool stopped_by_signal = linux_thread_sp->IsStopped (&stop_signo);
2249                     const char *signal_name = stopped_by_signal ? GetUnixSignals ().GetSignalAsCString (stop_signo) : "<not stopped by signal>";
2250                     if (!signal_name)
2251                         signal_name = "<no-signal-name>";
2252 
2253                     log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is",
2254                                  __FUNCTION__,
2255                                  GetID (),
2256                                  linux_thread_sp->GetID (),
2257                                  StateAsCString (thread_state),
2258                                  stop_signo,
2259                                  signal_name);
2260                 }
2261                 ThreadDidStop (thread_sp->GetID (), false);
2262             }
2263         }
2264 
2265         // Done handling.
2266         return;
2267     }
2268 
2269     if (log)
2270         log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo));
2271 
2272     // This thread is stopped.
2273     ThreadDidStop (pid, false);
2274 
2275     if (thread_sp)
2276         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal(signo, info);
2277 
2278     // Send a stop to the debugger after we get all other threads to stop.
2279     StopRunningThreads (pid);
2280 }
2281 
2282 namespace {
2283 
2284 struct EmulatorBaton
2285 {
2286     NativeProcessLinux* m_process;
2287     NativeRegisterContext* m_reg_context;
2288 
2289     // eRegisterKindDWARF -> RegsiterValue
2290     std::unordered_map<uint32_t, RegisterValue> m_register_values;
2291 
2292     EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) :
2293             m_process(process), m_reg_context(reg_context) {}
2294 };
2295 
2296 } // anonymous namespace
2297 
2298 static size_t
2299 ReadMemoryCallback (EmulateInstruction *instruction,
2300                     void *baton,
2301                     const EmulateInstruction::Context &context,
2302                     lldb::addr_t addr,
2303                     void *dst,
2304                     size_t length)
2305 {
2306     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2307 
2308     size_t bytes_read;
2309     emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read);
2310     return bytes_read;
2311 }
2312 
2313 static bool
2314 ReadRegisterCallback (EmulateInstruction *instruction,
2315                       void *baton,
2316                       const RegisterInfo *reg_info,
2317                       RegisterValue &reg_value)
2318 {
2319     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2320 
2321     auto it = emulator_baton->m_register_values.find(reg_info->kinds[eRegisterKindDWARF]);
2322     if (it != emulator_baton->m_register_values.end())
2323     {
2324         reg_value = it->second;
2325         return true;
2326     }
2327 
2328     // The emulator only fill in the dwarf regsiter numbers (and in some case
2329     // the generic register numbers). Get the full register info from the
2330     // register context based on the dwarf register numbers.
2331     const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo(
2332             eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
2333 
2334     Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value);
2335     if (error.Success())
2336         return true;
2337 
2338     return false;
2339 }
2340 
2341 static bool
2342 WriteRegisterCallback (EmulateInstruction *instruction,
2343                        void *baton,
2344                        const EmulateInstruction::Context &context,
2345                        const RegisterInfo *reg_info,
2346                        const RegisterValue &reg_value)
2347 {
2348     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2349     emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value;
2350     return true;
2351 }
2352 
2353 static size_t
2354 WriteMemoryCallback (EmulateInstruction *instruction,
2355                      void *baton,
2356                      const EmulateInstruction::Context &context,
2357                      lldb::addr_t addr,
2358                      const void *dst,
2359                      size_t length)
2360 {
2361     return length;
2362 }
2363 
2364 static lldb::addr_t
2365 ReadFlags (NativeRegisterContext* regsiter_context)
2366 {
2367     const RegisterInfo* flags_info = regsiter_context->GetRegisterInfo(
2368             eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
2369     return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS);
2370 }
2371 
2372 Error
2373 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadProtocolSP thread_sp)
2374 {
2375     Error error;
2376     NativeRegisterContextSP register_context_sp = thread_sp->GetRegisterContext();
2377 
2378     std::unique_ptr<EmulateInstruction> emulator_ap(
2379         EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr));
2380 
2381     if (emulator_ap == nullptr)
2382         return Error("Instruction emulator not found!");
2383 
2384     EmulatorBaton baton(this, register_context_sp.get());
2385     emulator_ap->SetBaton(&baton);
2386     emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
2387     emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
2388     emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
2389     emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
2390 
2391     if (!emulator_ap->ReadInstruction())
2392         return Error("Read instruction failed!");
2393 
2394     bool emulation_result = emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
2395 
2396     const RegisterInfo* reg_info_pc = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
2397     const RegisterInfo* reg_info_flags = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
2398 
2399     auto pc_it = baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
2400     auto flags_it = baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
2401 
2402     lldb::addr_t next_pc;
2403     lldb::addr_t next_flags;
2404     if (emulation_result)
2405     {
2406         assert(pc_it != baton.m_register_values.end() && "Emulation was successfull but PC wasn't updated");
2407         next_pc = pc_it->second.GetAsUInt64();
2408 
2409         if (flags_it != baton.m_register_values.end())
2410             next_flags = flags_it->second.GetAsUInt64();
2411         else
2412             next_flags = ReadFlags (register_context_sp.get());
2413     }
2414     else if (pc_it == baton.m_register_values.end())
2415     {
2416         // Emulate instruction failed and it haven't changed PC. Advance PC
2417         // with the size of the current opcode because the emulation of all
2418         // PC modifying instruction should be successful. The failure most
2419         // likely caused by a not supported instruction which don't modify PC.
2420         next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize();
2421         next_flags = ReadFlags (register_context_sp.get());
2422     }
2423     else
2424     {
2425         // The instruction emulation failed after it modified the PC. It is an
2426         // unknown error where we can't continue because the next instruction is
2427         // modifying the PC but we don't  know how.
2428         return Error ("Instruction emulation failed unexpectedly.");
2429     }
2430 
2431     if (m_arch.GetMachine() == llvm::Triple::arm)
2432     {
2433         if (next_flags & 0x20)
2434         {
2435             // Thumb mode
2436             error = SetSoftwareBreakpoint(next_pc, 2);
2437         }
2438         else
2439         {
2440             // Arm mode
2441             error = SetSoftwareBreakpoint(next_pc, 4);
2442         }
2443     }
2444     else if (m_arch.GetMachine() == llvm::Triple::mips64
2445             || m_arch.GetMachine() == llvm::Triple::mips64el)
2446         error = SetSoftwareBreakpoint(next_pc, 4);
2447     else
2448     {
2449         // No size hint is given for the next breakpoint
2450         error = SetSoftwareBreakpoint(next_pc, 0);
2451     }
2452 
2453     if (error.Fail())
2454         return error;
2455 
2456     m_threads_stepping_with_breakpoint.insert({thread_sp->GetID(), next_pc});
2457 
2458     return Error();
2459 }
2460 
2461 bool
2462 NativeProcessLinux::SupportHardwareSingleStepping() const
2463 {
2464     if (m_arch.GetMachine() == llvm::Triple::arm
2465         || m_arch.GetMachine() == llvm::Triple::mips64 || m_arch.GetMachine() == llvm::Triple::mips64el)
2466         return false;
2467     return true;
2468 }
2469 
2470 Error
2471 NativeProcessLinux::Resume (const ResumeActionList &resume_actions)
2472 {
2473     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD));
2474     if (log)
2475         log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ());
2476 
2477     bool software_single_step = !SupportHardwareSingleStepping();
2478 
2479     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
2480     Mutex::Locker locker (m_threads_mutex);
2481 
2482     if (software_single_step)
2483     {
2484         for (auto thread_sp : m_threads)
2485         {
2486             assert (thread_sp && "thread list should not contain NULL threads");
2487 
2488             const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
2489             if (action == nullptr)
2490                 continue;
2491 
2492             if (action->state == eStateStepping)
2493             {
2494                 Error error = SetupSoftwareSingleStepping(thread_sp);
2495                 if (error.Fail())
2496                     return error;
2497             }
2498         }
2499     }
2500 
2501     for (auto thread_sp : m_threads)
2502     {
2503         assert (thread_sp && "thread list should not contain NULL threads");
2504 
2505         const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
2506 
2507         if (action == nullptr)
2508         {
2509             if (log)
2510                 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64,
2511                     __FUNCTION__, GetID (), thread_sp->GetID ());
2512             continue;
2513         }
2514 
2515         if (log)
2516         {
2517             log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64,
2518                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
2519         }
2520 
2521         switch (action->state)
2522         {
2523         case eStateRunning:
2524         {
2525             // Run the thread, possibly feeding it the signal.
2526             const int signo = action->signal;
2527             ResumeThread(thread_sp->GetID (),
2528                     [=](lldb::tid_t tid_to_resume, bool supress_signal)
2529                     {
2530                         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2531                         // Pass this signal number on to the inferior to handle.
2532                         const auto resume_result = Resume (tid_to_resume, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
2533                         if (resume_result.Success())
2534                             SetState(eStateRunning, true);
2535                         return resume_result;
2536                     },
2537                     false);
2538             break;
2539         }
2540 
2541         case eStateStepping:
2542         {
2543             // Request the step.
2544             const int signo = action->signal;
2545             ResumeThread(thread_sp->GetID (),
2546                     [=](lldb::tid_t tid_to_step, bool supress_signal)
2547                     {
2548                         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStepping ();
2549 
2550                         Error step_result;
2551                         if (software_single_step)
2552                             step_result = Resume (tid_to_step, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
2553                         else
2554                             step_result = SingleStep (tid_to_step,(signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
2555 
2556                         assert (step_result.Success() && "SingleStep() failed");
2557                         if (step_result.Success())
2558                             SetState(eStateStepping, true);
2559                         return step_result;
2560                     },
2561                     false);
2562             break;
2563         }
2564 
2565         case eStateSuspended:
2566         case eStateStopped:
2567             lldbassert(0 && "Unexpected state");
2568 
2569         default:
2570             return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64,
2571                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
2572         }
2573     }
2574 
2575     return Error();
2576 }
2577 
2578 Error
2579 NativeProcessLinux::Halt ()
2580 {
2581     Error error;
2582 
2583     if (kill (GetID (), SIGSTOP) != 0)
2584         error.SetErrorToErrno ();
2585 
2586     return error;
2587 }
2588 
2589 Error
2590 NativeProcessLinux::Detach ()
2591 {
2592     Error error;
2593 
2594     // Tell ptrace to detach from the process.
2595     if (GetID () != LLDB_INVALID_PROCESS_ID)
2596         error = Detach (GetID ());
2597 
2598     // Stop monitoring the inferior.
2599     m_monitor_up->Terminate();
2600 
2601     // No error.
2602     return error;
2603 }
2604 
2605 Error
2606 NativeProcessLinux::Signal (int signo)
2607 {
2608     Error error;
2609 
2610     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2611     if (log)
2612         log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64,
2613                 __FUNCTION__, signo,  GetUnixSignals ().GetSignalAsCString (signo), GetID ());
2614 
2615     if (kill(GetID(), signo))
2616         error.SetErrorToErrno();
2617 
2618     return error;
2619 }
2620 
2621 Error
2622 NativeProcessLinux::Interrupt ()
2623 {
2624     // Pick a running thread (or if none, a not-dead stopped thread) as
2625     // the chosen thread that will be the stop-reason thread.
2626     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2627 
2628     NativeThreadProtocolSP running_thread_sp;
2629     NativeThreadProtocolSP stopped_thread_sp;
2630 
2631     if (log)
2632         log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__);
2633 
2634     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
2635     Mutex::Locker locker (m_threads_mutex);
2636 
2637     for (auto thread_sp : m_threads)
2638     {
2639         // The thread shouldn't be null but lets just cover that here.
2640         if (!thread_sp)
2641             continue;
2642 
2643         // If we have a running or stepping thread, we'll call that the
2644         // target of the interrupt.
2645         const auto thread_state = thread_sp->GetState ();
2646         if (thread_state == eStateRunning ||
2647             thread_state == eStateStepping)
2648         {
2649             running_thread_sp = thread_sp;
2650             break;
2651         }
2652         else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true))
2653         {
2654             // Remember the first non-dead stopped thread.  We'll use that as a backup if there are no running threads.
2655             stopped_thread_sp = thread_sp;
2656         }
2657     }
2658 
2659     if (!running_thread_sp && !stopped_thread_sp)
2660     {
2661         Error error("found no running/stepping or live stopped threads as target for interrupt");
2662         if (log)
2663             log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ());
2664 
2665         return error;
2666     }
2667 
2668     NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp;
2669 
2670     if (log)
2671         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target",
2672                      __FUNCTION__,
2673                      GetID (),
2674                      running_thread_sp ? "running" : "stopped",
2675                      deferred_signal_thread_sp->GetID ());
2676 
2677     StopRunningThreads(deferred_signal_thread_sp->GetID());
2678 
2679     return Error();
2680 }
2681 
2682 Error
2683 NativeProcessLinux::Kill ()
2684 {
2685     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2686     if (log)
2687         log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ());
2688 
2689     Error error;
2690 
2691     switch (m_state)
2692     {
2693         case StateType::eStateInvalid:
2694         case StateType::eStateExited:
2695         case StateType::eStateCrashed:
2696         case StateType::eStateDetached:
2697         case StateType::eStateUnloaded:
2698             // Nothing to do - the process is already dead.
2699             if (log)
2700                 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state));
2701             return error;
2702 
2703         case StateType::eStateConnected:
2704         case StateType::eStateAttaching:
2705         case StateType::eStateLaunching:
2706         case StateType::eStateStopped:
2707         case StateType::eStateRunning:
2708         case StateType::eStateStepping:
2709         case StateType::eStateSuspended:
2710             // We can try to kill a process in these states.
2711             break;
2712     }
2713 
2714     if (kill (GetID (), SIGKILL) != 0)
2715     {
2716         error.SetErrorToErrno ();
2717         return error;
2718     }
2719 
2720     return error;
2721 }
2722 
2723 static Error
2724 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info)
2725 {
2726     memory_region_info.Clear();
2727 
2728     StringExtractor line_extractor (maps_line.c_str ());
2729 
2730     // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode   pathname
2731     // perms: rwxp   (letter is present if set, '-' if not, final character is p=private, s=shared).
2732 
2733     // Parse out the starting address
2734     lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0);
2735 
2736     // Parse out hyphen separating start and end address from range.
2737     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-'))
2738         return Error ("malformed /proc/{pid}/maps entry, missing dash between address range");
2739 
2740     // Parse out the ending address
2741     lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address);
2742 
2743     // Parse out the space after the address.
2744     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' '))
2745         return Error ("malformed /proc/{pid}/maps entry, missing space after range");
2746 
2747     // Save the range.
2748     memory_region_info.GetRange ().SetRangeBase (start_address);
2749     memory_region_info.GetRange ().SetRangeEnd (end_address);
2750 
2751     // Parse out each permission entry.
2752     if (line_extractor.GetBytesLeft () < 4)
2753         return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions");
2754 
2755     // Handle read permission.
2756     const char read_perm_char = line_extractor.GetChar ();
2757     if (read_perm_char == 'r')
2758         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes);
2759     else
2760     {
2761         assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" );
2762         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2763     }
2764 
2765     // Handle write permission.
2766     const char write_perm_char = line_extractor.GetChar ();
2767     if (write_perm_char == 'w')
2768         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes);
2769     else
2770     {
2771         assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" );
2772         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2773     }
2774 
2775     // Handle execute permission.
2776     const char exec_perm_char = line_extractor.GetChar ();
2777     if (exec_perm_char == 'x')
2778         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes);
2779     else
2780     {
2781         assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" );
2782         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2783     }
2784 
2785     return Error ();
2786 }
2787 
2788 Error
2789 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info)
2790 {
2791     // FIXME review that the final memory region returned extends to the end of the virtual address space,
2792     // with no perms if it is not mapped.
2793 
2794     // Use an approach that reads memory regions from /proc/{pid}/maps.
2795     // Assume proc maps entries are in ascending order.
2796     // FIXME assert if we find differently.
2797     Mutex::Locker locker (m_mem_region_cache_mutex);
2798 
2799     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2800     Error error;
2801 
2802     if (m_supports_mem_region == LazyBool::eLazyBoolNo)
2803     {
2804         // We're done.
2805         error.SetErrorString ("unsupported");
2806         return error;
2807     }
2808 
2809     // If our cache is empty, pull the latest.  There should always be at least one memory region
2810     // if memory region handling is supported.
2811     if (m_mem_region_cache.empty ())
2812     {
2813         error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
2814              [&] (const std::string &line) -> bool
2815              {
2816                  MemoryRegionInfo info;
2817                  const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info);
2818                  if (parse_error.Success ())
2819                  {
2820                      m_mem_region_cache.push_back (info);
2821                      return true;
2822                  }
2823                  else
2824                  {
2825                      if (log)
2826                          log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ());
2827                      return false;
2828                  }
2829              });
2830 
2831         // If we had an error, we'll mark unsupported.
2832         if (error.Fail ())
2833         {
2834             m_supports_mem_region = LazyBool::eLazyBoolNo;
2835             return error;
2836         }
2837         else if (m_mem_region_cache.empty ())
2838         {
2839             // No entries after attempting to read them.  This shouldn't happen if /proc/{pid}/maps
2840             // is supported.  Assume we don't support map entries via procfs.
2841             if (log)
2842                 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__);
2843             m_supports_mem_region = LazyBool::eLazyBoolNo;
2844             error.SetErrorString ("not supported");
2845             return error;
2846         }
2847 
2848         if (log)
2849             log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ());
2850 
2851         // We support memory retrieval, remember that.
2852         m_supports_mem_region = LazyBool::eLazyBoolYes;
2853     }
2854     else
2855     {
2856         if (log)
2857             log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
2858     }
2859 
2860     lldb::addr_t prev_base_address = 0;
2861 
2862     // FIXME start by finding the last region that is <= target address using binary search.  Data is sorted.
2863     // There can be a ton of regions on pthreads apps with lots of threads.
2864     for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it)
2865     {
2866         MemoryRegionInfo &proc_entry_info = *it;
2867 
2868         // Sanity check assumption that /proc/{pid}/maps entries are ascending.
2869         assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected");
2870         prev_base_address = proc_entry_info.GetRange ().GetRangeBase ();
2871 
2872         // If the target address comes before this entry, indicate distance to next region.
2873         if (load_addr < proc_entry_info.GetRange ().GetRangeBase ())
2874         {
2875             range_info.GetRange ().SetRangeBase (load_addr);
2876             range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr);
2877             range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2878             range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2879             range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2880 
2881             return error;
2882         }
2883         else if (proc_entry_info.GetRange ().Contains (load_addr))
2884         {
2885             // The target address is within the memory region we're processing here.
2886             range_info = proc_entry_info;
2887             return error;
2888         }
2889 
2890         // The target memory address comes somewhere after the region we just parsed.
2891     }
2892 
2893     // If we made it here, we didn't find an entry that contained the given address.
2894     error.SetErrorString ("address comes after final region");
2895 
2896     if (log)
2897         log->Printf ("NativeProcessLinux::%s failed to find map entry for address 0x%" PRIx64 ": %s", __FUNCTION__, load_addr, error.AsCString ());
2898 
2899     return error;
2900 }
2901 
2902 void
2903 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId)
2904 {
2905     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2906     if (log)
2907         log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId);
2908 
2909     {
2910         Mutex::Locker locker (m_mem_region_cache_mutex);
2911         if (log)
2912             log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
2913         m_mem_region_cache.clear ();
2914     }
2915 }
2916 
2917 Error
2918 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, lldb::addr_t &addr)
2919 {
2920     // FIXME implementing this requires the equivalent of
2921     // InferiorCallPOSIX::InferiorCallMmap, which depends on
2922     // functional ThreadPlans working with Native*Protocol.
2923 #if 1
2924     return Error ("not implemented yet");
2925 #else
2926     addr = LLDB_INVALID_ADDRESS;
2927 
2928     unsigned prot = 0;
2929     if (permissions & lldb::ePermissionsReadable)
2930         prot |= eMmapProtRead;
2931     if (permissions & lldb::ePermissionsWritable)
2932         prot |= eMmapProtWrite;
2933     if (permissions & lldb::ePermissionsExecutable)
2934         prot |= eMmapProtExec;
2935 
2936     // TODO implement this directly in NativeProcessLinux
2937     // (and lift to NativeProcessPOSIX if/when that class is
2938     // refactored out).
2939     if (InferiorCallMmap(this, addr, 0, size, prot,
2940                          eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
2941         m_addr_to_mmap_size[addr] = size;
2942         return Error ();
2943     } else {
2944         addr = LLDB_INVALID_ADDRESS;
2945         return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions));
2946     }
2947 #endif
2948 }
2949 
2950 Error
2951 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr)
2952 {
2953     // FIXME see comments in AllocateMemory - required lower-level
2954     // bits not in place yet (ThreadPlans)
2955     return Error ("not implemented");
2956 }
2957 
2958 lldb::addr_t
2959 NativeProcessLinux::GetSharedLibraryInfoAddress ()
2960 {
2961 #if 1
2962     // punt on this for now
2963     return LLDB_INVALID_ADDRESS;
2964 #else
2965     // Return the image info address for the exe module
2966 #if 1
2967     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2968 
2969     ModuleSP module_sp;
2970     Error error = GetExeModuleSP (module_sp);
2971     if (error.Fail ())
2972     {
2973          if (log)
2974             log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ());
2975         return LLDB_INVALID_ADDRESS;
2976     }
2977 
2978     if (module_sp == nullptr)
2979     {
2980          if (log)
2981             log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__);
2982          return LLDB_INVALID_ADDRESS;
2983     }
2984 
2985     ObjectFileSP object_file_sp = module_sp->GetObjectFile ();
2986     if (object_file_sp == nullptr)
2987     {
2988          if (log)
2989             log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__);
2990          return LLDB_INVALID_ADDRESS;
2991     }
2992 
2993     return obj_file_sp->GetImageInfoAddress();
2994 #else
2995     Target *target = &GetTarget();
2996     ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile();
2997     Address addr = obj_file->GetImageInfoAddress(target);
2998 
2999     if (addr.IsValid())
3000         return addr.GetLoadAddress(target);
3001     return LLDB_INVALID_ADDRESS;
3002 #endif
3003 #endif // punt on this for now
3004 }
3005 
3006 size_t
3007 NativeProcessLinux::UpdateThreads ()
3008 {
3009     // The NativeProcessLinux monitoring threads are always up to date
3010     // with respect to thread state and they keep the thread list
3011     // populated properly. All this method needs to do is return the
3012     // thread count.
3013     Mutex::Locker locker (m_threads_mutex);
3014     return m_threads.size ();
3015 }
3016 
3017 bool
3018 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const
3019 {
3020     arch = m_arch;
3021     return true;
3022 }
3023 
3024 Error
3025 NativeProcessLinux::GetSoftwareBreakpointPCOffset (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size)
3026 {
3027     // FIXME put this behind a breakpoint protocol class that can be
3028     // set per architecture.  Need ARM, MIPS support here.
3029     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
3030     static const uint8_t g_i386_opcode [] = { 0xCC };
3031     static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d };
3032 
3033     switch (m_arch.GetMachine ())
3034     {
3035         case llvm::Triple::aarch64:
3036             actual_opcode_size = static_cast<uint32_t> (sizeof(g_aarch64_opcode));
3037             return Error ();
3038 
3039         case llvm::Triple::arm:
3040             actual_opcode_size = 0; // On arm the PC don't get updated for breakpoint hits
3041             return Error ();
3042 
3043         case llvm::Triple::x86:
3044         case llvm::Triple::x86_64:
3045             actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode));
3046             return Error ();
3047 
3048         case llvm::Triple::mips64:
3049         case llvm::Triple::mips64el:
3050         case llvm::Triple::mips:
3051         case llvm::Triple::mipsel:
3052             actual_opcode_size = static_cast<uint32_t> (sizeof(g_mips64_opcode));
3053             return Error ();
3054 
3055         default:
3056             assert(false && "CPU type not supported!");
3057             return Error ("CPU type not supported");
3058     }
3059 }
3060 
3061 Error
3062 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware)
3063 {
3064     if (hardware)
3065         return Error ("NativeProcessLinux does not support hardware breakpoints");
3066     else
3067         return SetSoftwareBreakpoint (addr, size);
3068 }
3069 
3070 Error
3071 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint,
3072                                                      size_t &actual_opcode_size,
3073                                                      const uint8_t *&trap_opcode_bytes)
3074 {
3075     // FIXME put this behind a breakpoint protocol class that can be set per
3076     // architecture.  Need MIPS support here.
3077     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
3078     // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
3079     // linux kernel does otherwise.
3080     static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 };
3081     static const uint8_t g_i386_opcode [] = { 0xCC };
3082     static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d };
3083     static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 };
3084     static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde };
3085 
3086     switch (m_arch.GetMachine ())
3087     {
3088     case llvm::Triple::aarch64:
3089         trap_opcode_bytes = g_aarch64_opcode;
3090         actual_opcode_size = sizeof(g_aarch64_opcode);
3091         return Error ();
3092 
3093     case llvm::Triple::arm:
3094         switch (trap_opcode_size_hint)
3095         {
3096         case 2:
3097             trap_opcode_bytes = g_thumb_breakpoint_opcode;
3098             actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
3099             return Error ();
3100         case 4:
3101             trap_opcode_bytes = g_arm_breakpoint_opcode;
3102             actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
3103             return Error ();
3104         default:
3105             assert(false && "Unrecognised trap opcode size hint!");
3106             return Error ("Unrecognised trap opcode size hint!");
3107         }
3108 
3109     case llvm::Triple::x86:
3110     case llvm::Triple::x86_64:
3111         trap_opcode_bytes = g_i386_opcode;
3112         actual_opcode_size = sizeof(g_i386_opcode);
3113         return Error ();
3114 
3115     case llvm::Triple::mips:
3116     case llvm::Triple::mips64:
3117         trap_opcode_bytes = g_mips64_opcode;
3118         actual_opcode_size = sizeof(g_mips64_opcode);
3119         return Error ();
3120 
3121     case llvm::Triple::mipsel:
3122     case llvm::Triple::mips64el:
3123         trap_opcode_bytes = g_mips64el_opcode;
3124         actual_opcode_size = sizeof(g_mips64el_opcode);
3125         return Error ();
3126 
3127     default:
3128         assert(false && "CPU type not supported!");
3129         return Error ("CPU type not supported");
3130     }
3131 }
3132 
3133 #if 0
3134 ProcessMessage::CrashReason
3135 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
3136 {
3137     ProcessMessage::CrashReason reason;
3138     assert(info->si_signo == SIGSEGV);
3139 
3140     reason = ProcessMessage::eInvalidCrashReason;
3141 
3142     switch (info->si_code)
3143     {
3144     default:
3145         assert(false && "unexpected si_code for SIGSEGV");
3146         break;
3147     case SI_KERNEL:
3148         // Linux will occasionally send spurious SI_KERNEL codes.
3149         // (this is poorly documented in sigaction)
3150         // One way to get this is via unaligned SIMD loads.
3151         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
3152         break;
3153     case SEGV_MAPERR:
3154         reason = ProcessMessage::eInvalidAddress;
3155         break;
3156     case SEGV_ACCERR:
3157         reason = ProcessMessage::ePrivilegedAddress;
3158         break;
3159     }
3160 
3161     return reason;
3162 }
3163 #endif
3164 
3165 
3166 #if 0
3167 ProcessMessage::CrashReason
3168 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
3169 {
3170     ProcessMessage::CrashReason reason;
3171     assert(info->si_signo == SIGILL);
3172 
3173     reason = ProcessMessage::eInvalidCrashReason;
3174 
3175     switch (info->si_code)
3176     {
3177     default:
3178         assert(false && "unexpected si_code for SIGILL");
3179         break;
3180     case ILL_ILLOPC:
3181         reason = ProcessMessage::eIllegalOpcode;
3182         break;
3183     case ILL_ILLOPN:
3184         reason = ProcessMessage::eIllegalOperand;
3185         break;
3186     case ILL_ILLADR:
3187         reason = ProcessMessage::eIllegalAddressingMode;
3188         break;
3189     case ILL_ILLTRP:
3190         reason = ProcessMessage::eIllegalTrap;
3191         break;
3192     case ILL_PRVOPC:
3193         reason = ProcessMessage::ePrivilegedOpcode;
3194         break;
3195     case ILL_PRVREG:
3196         reason = ProcessMessage::ePrivilegedRegister;
3197         break;
3198     case ILL_COPROC:
3199         reason = ProcessMessage::eCoprocessorError;
3200         break;
3201     case ILL_BADSTK:
3202         reason = ProcessMessage::eInternalStackError;
3203         break;
3204     }
3205 
3206     return reason;
3207 }
3208 #endif
3209 
3210 #if 0
3211 ProcessMessage::CrashReason
3212 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
3213 {
3214     ProcessMessage::CrashReason reason;
3215     assert(info->si_signo == SIGFPE);
3216 
3217     reason = ProcessMessage::eInvalidCrashReason;
3218 
3219     switch (info->si_code)
3220     {
3221     default:
3222         assert(false && "unexpected si_code for SIGFPE");
3223         break;
3224     case FPE_INTDIV:
3225         reason = ProcessMessage::eIntegerDivideByZero;
3226         break;
3227     case FPE_INTOVF:
3228         reason = ProcessMessage::eIntegerOverflow;
3229         break;
3230     case FPE_FLTDIV:
3231         reason = ProcessMessage::eFloatDivideByZero;
3232         break;
3233     case FPE_FLTOVF:
3234         reason = ProcessMessage::eFloatOverflow;
3235         break;
3236     case FPE_FLTUND:
3237         reason = ProcessMessage::eFloatUnderflow;
3238         break;
3239     case FPE_FLTRES:
3240         reason = ProcessMessage::eFloatInexactResult;
3241         break;
3242     case FPE_FLTINV:
3243         reason = ProcessMessage::eFloatInvalidOperation;
3244         break;
3245     case FPE_FLTSUB:
3246         reason = ProcessMessage::eFloatSubscriptRange;
3247         break;
3248     }
3249 
3250     return reason;
3251 }
3252 #endif
3253 
3254 #if 0
3255 ProcessMessage::CrashReason
3256 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
3257 {
3258     ProcessMessage::CrashReason reason;
3259     assert(info->si_signo == SIGBUS);
3260 
3261     reason = ProcessMessage::eInvalidCrashReason;
3262 
3263     switch (info->si_code)
3264     {
3265     default:
3266         assert(false && "unexpected si_code for SIGBUS");
3267         break;
3268     case BUS_ADRALN:
3269         reason = ProcessMessage::eIllegalAlignment;
3270         break;
3271     case BUS_ADRERR:
3272         reason = ProcessMessage::eIllegalAddress;
3273         break;
3274     case BUS_OBJERR:
3275         reason = ProcessMessage::eHardwareError;
3276         break;
3277     }
3278 
3279     return reason;
3280 }
3281 #endif
3282 
3283 Error
3284 NativeProcessLinux::SetWatchpoint (lldb::addr_t addr, size_t size, uint32_t watch_flags, bool hardware)
3285 {
3286     // The base SetWatchpoint will end up executing monitor operations. Let's lock the monitor
3287     // for it.
3288     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
3289     return NativeProcessProtocol::SetWatchpoint(addr, size, watch_flags, hardware);
3290 }
3291 
3292 Error
3293 NativeProcessLinux::RemoveWatchpoint (lldb::addr_t addr)
3294 {
3295     // The base RemoveWatchpoint will end up executing monitor operations. Let's lock the monitor
3296     // for it.
3297     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
3298     return NativeProcessProtocol::RemoveWatchpoint(addr);
3299 }
3300 
3301 Error
3302 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
3303 {
3304     if (ProcessVmReadvSupported()) {
3305         // The process_vm_readv path is about 50 times faster than ptrace api. We want to use
3306         // this syscall if it is supported.
3307 
3308         const ::pid_t pid = GetID();
3309 
3310         struct iovec local_iov, remote_iov;
3311         local_iov.iov_base = buf;
3312         local_iov.iov_len = size;
3313         remote_iov.iov_base = reinterpret_cast<void *>(addr);
3314         remote_iov.iov_len = size;
3315 
3316         bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
3317         const bool success = bytes_read == size;
3318 
3319         Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3320         if (log)
3321             log->Printf ("NativeProcessLinux::%s using process_vm_readv to read %zd bytes from inferior address 0x%" PRIx64": %s",
3322                     __FUNCTION__, size, addr, success ? "Success" : strerror(errno));
3323 
3324         if (success)
3325             return Error();
3326         // else
3327         //     the call failed for some reason, let's retry the read using ptrace api.
3328     }
3329 
3330     ReadOperation op(addr, buf, size, bytes_read);
3331     m_monitor_up->DoOperation(&op);
3332     return op.GetError ();
3333 }
3334 
3335 Error
3336 NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
3337 {
3338     Error error = ReadMemory(addr, buf, size, bytes_read);
3339     if (error.Fail()) return error;
3340     return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size);
3341 }
3342 
3343 Error
3344 NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, size_t size, size_t &bytes_written)
3345 {
3346     WriteOperation op(addr, buf, size, bytes_written);
3347     m_monitor_up->DoOperation(&op);
3348     return op.GetError ();
3349 }
3350 
3351 Error
3352 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo)
3353 {
3354     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3355 
3356     if (log)
3357         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " with signal %s", __FUNCTION__, tid,
3358                                  GetUnixSignals().GetSignalAsCString (signo));
3359     ResumeOperation op (tid, signo);
3360     m_monitor_up->DoOperation (&op);
3361     if (log)
3362         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " result = %s", __FUNCTION__, tid, op.GetError().Success() ? "true" : "false");
3363     return op.GetError();
3364 }
3365 
3366 Error
3367 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo)
3368 {
3369     SingleStepOperation op(tid, signo);
3370     m_monitor_up->DoOperation(&op);
3371     return op.GetError();
3372 }
3373 
3374 Error
3375 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo)
3376 {
3377     SiginfoOperation op(tid, siginfo);
3378     m_monitor_up->DoOperation(&op);
3379     return op.GetError();
3380 }
3381 
3382 Error
3383 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message)
3384 {
3385     EventMessageOperation op(tid, message);
3386     m_monitor_up->DoOperation(&op);
3387     return op.GetError();
3388 }
3389 
3390 Error
3391 NativeProcessLinux::Detach(lldb::tid_t tid)
3392 {
3393     if (tid == LLDB_INVALID_THREAD_ID)
3394         return Error();
3395 
3396     DetachOperation op(tid);
3397     m_monitor_up->DoOperation(&op);
3398     return op.GetError();
3399 }
3400 
3401 bool
3402 NativeProcessLinux::DupDescriptor(const FileSpec &file_spec, int fd, int flags)
3403 {
3404     int target_fd = open(file_spec.GetCString(), flags, 0666);
3405 
3406     if (target_fd == -1)
3407         return false;
3408 
3409     if (dup2(target_fd, fd) == -1)
3410         return false;
3411 
3412     return (close(target_fd) == -1) ? false : true;
3413 }
3414 
3415 void
3416 NativeProcessLinux::StartMonitorThread(const InitialOperation &initial_operation, Error &error)
3417 {
3418     m_monitor_up.reset(new Monitor(initial_operation, this));
3419     error = m_monitor_up->Initialize();
3420     if (error.Fail()) {
3421         m_monitor_up.reset();
3422     }
3423 }
3424 
3425 bool
3426 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id)
3427 {
3428     for (auto thread_sp : m_threads)
3429     {
3430         assert (thread_sp && "thread list should not contain NULL threads");
3431         if (thread_sp->GetID () == thread_id)
3432         {
3433             // We have this thread.
3434             return true;
3435         }
3436     }
3437 
3438     // We don't have this thread.
3439     return false;
3440 }
3441 
3442 NativeThreadProtocolSP
3443 NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id)
3444 {
3445     // CONSIDER organize threads by map - we can do better than linear.
3446     for (auto thread_sp : m_threads)
3447     {
3448         if (thread_sp->GetID () == thread_id)
3449             return thread_sp;
3450     }
3451 
3452     // We don't have this thread.
3453     return NativeThreadProtocolSP ();
3454 }
3455 
3456 bool
3457 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id)
3458 {
3459     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3460 
3461     if (log)
3462         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread_id);
3463 
3464     bool found = false;
3465 
3466     Mutex::Locker locker (m_threads_mutex);
3467     for (auto it = m_threads.begin (); it != m_threads.end (); ++it)
3468     {
3469         if (*it && ((*it)->GetID () == thread_id))
3470         {
3471             m_threads.erase (it);
3472             found = true;
3473             break;
3474         }
3475     }
3476 
3477     // If we have a pending notification, remove this from the set.
3478     if (m_pending_notification_up)
3479     {
3480         m_pending_notification_up->wait_for_stop_tids.erase(thread_id);
3481         SignalIfAllThreadsStopped();
3482     }
3483 
3484     return found;
3485 }
3486 
3487 NativeThreadProtocolSP
3488 NativeProcessLinux::AddThread (lldb::tid_t thread_id)
3489 {
3490     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3491 
3492     Mutex::Locker locker (m_threads_mutex);
3493 
3494     if (log)
3495     {
3496         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64,
3497                 __FUNCTION__,
3498                 GetID (),
3499                 thread_id);
3500     }
3501 
3502     assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists");
3503 
3504     // If this is the first thread, save it as the current thread
3505     if (m_threads.empty ())
3506         SetCurrentThreadID (thread_id);
3507 
3508     NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id));
3509     m_threads.push_back (thread_sp);
3510 
3511     return thread_sp;
3512 }
3513 
3514 Error
3515 NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp)
3516 {
3517     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS));
3518 
3519     Error error;
3520 
3521     // Get a linux thread pointer.
3522     if (!thread_sp)
3523     {
3524         error.SetErrorString ("null thread_sp");
3525         if (log)
3526             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
3527         return error;
3528     }
3529     std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp);
3530 
3531     // Find out the size of a breakpoint (might depend on where we are in the code).
3532     NativeRegisterContextSP context_sp = linux_thread_sp->GetRegisterContext ();
3533     if (!context_sp)
3534     {
3535         error.SetErrorString ("cannot get a NativeRegisterContext for the thread");
3536         if (log)
3537             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
3538         return error;
3539     }
3540 
3541     uint32_t breakpoint_size = 0;
3542     error = GetSoftwareBreakpointPCOffset (context_sp, breakpoint_size);
3543     if (error.Fail ())
3544     {
3545         if (log)
3546             log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ());
3547         return error;
3548     }
3549     else
3550     {
3551         if (log)
3552             log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size);
3553     }
3554 
3555     // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size.
3556     const lldb::addr_t initial_pc_addr = context_sp->GetPC ();
3557     lldb::addr_t breakpoint_addr = initial_pc_addr;
3558     if (breakpoint_size > 0)
3559     {
3560         // Do not allow breakpoint probe to wrap around.
3561         if (breakpoint_addr >= breakpoint_size)
3562             breakpoint_addr -= breakpoint_size;
3563     }
3564 
3565     // Check if we stopped because of a breakpoint.
3566     NativeBreakpointSP breakpoint_sp;
3567     error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp);
3568     if (!error.Success () || !breakpoint_sp)
3569     {
3570         // We didn't find one at a software probe location.  Nothing to do.
3571         if (log)
3572             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr);
3573         return Error ();
3574     }
3575 
3576     // If the breakpoint is not a software breakpoint, nothing to do.
3577     if (!breakpoint_sp->IsSoftwareBreakpoint ())
3578     {
3579         if (log)
3580             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr);
3581         return Error ();
3582     }
3583 
3584     //
3585     // We have a software breakpoint and need to adjust the PC.
3586     //
3587 
3588     // Sanity check.
3589     if (breakpoint_size == 0)
3590     {
3591         // Nothing to do!  How did we get here?
3592         if (log)
3593             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr);
3594         return Error ();
3595     }
3596 
3597     // Change the program counter.
3598     if (log)
3599         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_sp->GetID (), initial_pc_addr, breakpoint_addr);
3600 
3601     error = context_sp->SetPC (breakpoint_addr);
3602     if (error.Fail ())
3603     {
3604         if (log)
3605             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_sp->GetID (), error.AsCString ());
3606         return error;
3607     }
3608 
3609     return error;
3610 }
3611 
3612 Error
3613 NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec)
3614 {
3615     char maps_file_name[32];
3616     snprintf(maps_file_name, sizeof(maps_file_name), "/proc/%" PRIu64 "/maps", GetID());
3617 
3618     FileSpec maps_file_spec(maps_file_name, false);
3619     if (!maps_file_spec.Exists()) {
3620         file_spec.Clear();
3621         return Error("/proc/%" PRIu64 "/maps file doesn't exists!", GetID());
3622     }
3623 
3624     FileSpec module_file_spec(module_path, true);
3625 
3626     std::ifstream maps_file(maps_file_name);
3627     std::string maps_data_str((std::istreambuf_iterator<char>(maps_file)), std::istreambuf_iterator<char>());
3628     StringRef maps_data(maps_data_str.c_str());
3629 
3630     while (!maps_data.empty())
3631     {
3632         StringRef maps_row;
3633         std::tie(maps_row, maps_data) = maps_data.split('\n');
3634 
3635         SmallVector<StringRef, 16> maps_columns;
3636         maps_row.split(maps_columns, StringRef(" "), -1, false);
3637 
3638         if (maps_columns.size() >= 6)
3639         {
3640             file_spec.SetFile(maps_columns[5].str().c_str(), false);
3641             if (file_spec.GetFilename() == module_file_spec.GetFilename())
3642                 return Error();
3643         }
3644     }
3645 
3646     file_spec.Clear();
3647     return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
3648                  module_file_spec.GetFilename().AsCString(), GetID());
3649 }
3650 
3651 Error
3652 NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef& file_name, lldb::addr_t& load_addr)
3653 {
3654     load_addr = LLDB_INVALID_ADDRESS;
3655     Error error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
3656         [&] (const std::string &line) -> bool
3657         {
3658             StringRef maps_row(line);
3659 
3660             SmallVector<StringRef, 16> maps_columns;
3661             maps_row.split(maps_columns, StringRef(" "), -1, false);
3662 
3663             if (maps_columns.size() < 6)
3664             {
3665                 // Return true to continue reading the proc file
3666                 return true;
3667             }
3668 
3669             if (maps_columns[5] == file_name)
3670             {
3671                 StringExtractor addr_extractor(maps_columns[0].str().c_str());
3672                 load_addr = addr_extractor.GetHexMaxU64(false, LLDB_INVALID_ADDRESS);
3673 
3674                 // Return false to stop reading the proc file further
3675                 return false;
3676             }
3677 
3678             // Return true to continue reading the proc file
3679             return true;
3680         });
3681     return error;
3682 }
3683 
3684 Error
3685 NativeProcessLinux::ResumeThread(
3686         lldb::tid_t tid,
3687         NativeThreadLinux::ResumeThreadFunction request_thread_resume_function,
3688         bool error_when_already_running)
3689 {
3690     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3691 
3692     if (log)
3693         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ", error_when_already_running: %s)",
3694                 __FUNCTION__, tid, error_when_already_running?"true":"false");
3695 
3696     auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid));
3697     lldbassert(thread_sp != nullptr);
3698 
3699     auto& context = thread_sp->GetThreadContext();
3700     // Tell the thread to resume if we don't already think it is running.
3701     const bool is_stopped = StateIsStoppedState(thread_sp->GetState(), true);
3702 
3703     lldbassert(!(error_when_already_running && !is_stopped));
3704 
3705     if (!is_stopped)
3706     {
3707         // It's not an error, just a log, if the error_when_already_running flag is not set.
3708         // This covers cases where, for instance, we're just trying to resume all threads
3709         // from the user side.
3710         if (log)
3711             log->Printf("NativeProcessLinux::%s tid %" PRIu64 " optional resume skipped since it is already running",
3712                     __FUNCTION__,
3713                     tid);
3714         return Error();
3715     }
3716 
3717     // Before we do the resume below, first check if we have a pending
3718     // stop notification that is currently waiting for
3719     // this thread to stop.  This is potentially a buggy situation since
3720     // we're ostensibly waiting for threads to stop before we send out the
3721     // pending notification, and here we are resuming one before we send
3722     // out the pending stop notification.
3723     if (m_pending_notification_up && log && m_pending_notification_up->wait_for_stop_tids.count (tid) > 0)
3724     {
3725         log->Printf("NativeProcessLinux::%s about to resume tid %" PRIu64 " per explicit request but we have a pending stop notification (tid %" PRIu64 ") that is actively waiting for this thread to stop. Valid sequence of events?", __FUNCTION__, tid, m_pending_notification_up->triggering_tid);
3726     }
3727 
3728     // Request a resume.  We expect this to be synchronous and the system
3729     // to reflect it is running after this completes.
3730     const auto error = request_thread_resume_function (tid, false);
3731     if (error.Success())
3732         context.request_resume_function = request_thread_resume_function;
3733     else if (log)
3734     {
3735         log->Printf("NativeProcessLinux::%s failed to resume thread tid  %" PRIu64 ": %s",
3736                          __FUNCTION__, tid, error.AsCString ());
3737     }
3738 
3739     return error;
3740 }
3741 
3742 //===----------------------------------------------------------------------===//
3743 
3744 void
3745 NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid)
3746 {
3747     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3748 
3749     if (log)
3750     {
3751         log->Printf("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ")",
3752                 __FUNCTION__, triggering_tid);
3753     }
3754 
3755     DoStopThreads(PendingNotificationUP(new PendingNotification(triggering_tid)));
3756 
3757     if (log)
3758     {
3759         log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__);
3760     }
3761 }
3762 
3763 void
3764 NativeProcessLinux::SignalIfAllThreadsStopped()
3765 {
3766     if (m_pending_notification_up && m_pending_notification_up->wait_for_stop_tids.empty ())
3767     {
3768         Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
3769 
3770         // Clear any temporary breakpoints we used to implement software single stepping.
3771         for (const auto &thread_info: m_threads_stepping_with_breakpoint)
3772         {
3773             Error error = RemoveBreakpoint (thread_info.second);
3774             if (error.Fail())
3775                 if (log)
3776                     log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s",
3777                             __FUNCTION__, thread_info.first, error.AsCString());
3778         }
3779         m_threads_stepping_with_breakpoint.clear();
3780 
3781         // Notify the delegate about the stop
3782         SetCurrentThreadID(m_pending_notification_up->triggering_tid);
3783         SetState(StateType::eStateStopped, true);
3784         m_pending_notification_up.reset();
3785     }
3786 }
3787 
3788 void
3789 NativeProcessLinux::RequestStopOnAllRunningThreads()
3790 {
3791     // Request a stop for all the thread stops that need to be stopped
3792     // and are not already known to be stopped.  Keep a list of all the
3793     // threads from which we still need to hear a stop reply.
3794 
3795     ThreadIDSet sent_tids;
3796     for (const auto &thread_sp: m_threads)
3797     {
3798         // We only care about running threads
3799         if (StateIsStoppedState(thread_sp->GetState(), true))
3800             continue;
3801 
3802         static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop();
3803         sent_tids.insert (thread_sp->GetID());
3804     }
3805 
3806     // Set the wait list to the set of tids for which we requested stops.
3807     m_pending_notification_up->wait_for_stop_tids.swap (sent_tids);
3808 }
3809 
3810 
3811 Error
3812 NativeProcessLinux::ThreadDidStop (lldb::tid_t tid, bool initiated_by_llgs)
3813 {
3814     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3815 
3816     if (log)
3817         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ", %sinitiated by llgs)",
3818                 __FUNCTION__, tid, initiated_by_llgs?"":"not ");
3819 
3820     // Ensure we know about the thread.
3821     auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid));
3822     lldbassert(thread_sp != nullptr);
3823 
3824     // Update the global list of known thread states.  This one is definitely stopped.
3825     auto& context = thread_sp->GetThreadContext();
3826     const auto stop_was_requested = context.stop_requested;
3827     context.stop_requested = false;
3828 
3829     // If we have a pending notification, remove this from the set.
3830     if (m_pending_notification_up)
3831     {
3832         m_pending_notification_up->wait_for_stop_tids.erase(tid);
3833         SignalIfAllThreadsStopped();
3834     }
3835 
3836     Error error;
3837     if (initiated_by_llgs && context.request_resume_function && !stop_was_requested)
3838     {
3839         // We can end up here if stop was initiated by LLGS but by this time a
3840         // thread stop has occurred - maybe initiated by another event.
3841         if (log)
3842             log->Printf("Resuming thread %"  PRIu64 " since stop wasn't requested", tid);
3843         error = context.request_resume_function (tid, true);
3844         if (error.Fail() && log)
3845         {
3846                 log->Printf("NativeProcessLinux::%s failed to resume thread tid  %" PRIu64 ": %s",
3847                         __FUNCTION__, tid, error.AsCString ());
3848         }
3849     }
3850     return error;
3851 }
3852 
3853 void
3854 NativeProcessLinux::DoStopThreads(PendingNotificationUP &&notification_up)
3855 {
3856     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3857     if (m_pending_notification_up && log)
3858     {
3859         // Yikes - we've already got a pending signal notification in progress.
3860         // Log this info.  We lose the pending notification here.
3861         log->Printf("NativeProcessLinux::%s dropping existing pending signal notification for tid %" PRIu64 ", to be replaced with signal for tid %" PRIu64,
3862                    __FUNCTION__,
3863                    m_pending_notification_up->triggering_tid,
3864                    notification_up->triggering_tid);
3865     }
3866     m_pending_notification_up = std::move(notification_up);
3867 
3868     RequestStopOnAllRunningThreads();
3869 
3870     SignalIfAllThreadsStopped();
3871 }
3872 
3873 void
3874 NativeProcessLinux::ThreadWasCreated (lldb::tid_t tid)
3875 {
3876     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3877 
3878     if (log)
3879         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, tid);
3880 
3881     auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid));
3882     lldbassert(thread_sp != nullptr);
3883 
3884     if (m_pending_notification_up && StateIsRunningState(thread_sp->GetState()))
3885     {
3886         // We will need to wait for this new thread to stop as well before firing the
3887         // notification.
3888         m_pending_notification_up->wait_for_stop_tids.insert(tid);
3889         thread_sp->RequestStop();
3890     }
3891 }
3892 
3893 Error
3894 NativeProcessLinux::DoOperation(Operation* op)
3895 {
3896     m_monitor_up->DoOperation(op);
3897     return op->GetError();
3898 }
3899 
3900 // Wrapper for ptrace to catch errors and log calls.
3901 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
3902 long
3903 NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error)
3904 {
3905     long int result;
3906 
3907     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE));
3908 
3909     PtraceDisplayBytes(req, data, data_size);
3910 
3911     error.Clear();
3912     errno = 0;
3913     if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
3914         result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
3915     else
3916         result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
3917 
3918     if (result == -1)
3919         error.SetErrorToErrno();
3920 
3921     if (log)
3922         log->Printf("ptrace(%d, %" PRIu64 ", %p, %p, %zu)=%lX", req, pid, addr, data, data_size, result);
3923 
3924     PtraceDisplayBytes(req, data, data_size);
3925 
3926     if (log && error.GetError() != 0)
3927     {
3928         const char* str;
3929         switch (error.GetError())
3930         {
3931         case ESRCH:  str = "ESRCH"; break;
3932         case EINVAL: str = "EINVAL"; break;
3933         case EBUSY:  str = "EBUSY"; break;
3934         case EPERM:  str = "EPERM"; break;
3935         default:     str = error.AsCString();
3936         }
3937         log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str);
3938     }
3939 
3940     return result;
3941 }
3942