1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "NativeProcessLinux.h" 11 12 // C Includes 13 #include <errno.h> 14 #include <stdint.h> 15 #include <string.h> 16 #include <unistd.h> 17 18 // C++ Includes 19 #include <fstream> 20 #include <mutex> 21 #include <sstream> 22 #include <string> 23 #include <unordered_map> 24 25 // Other libraries and framework includes 26 #include "lldb/Core/EmulateInstruction.h" 27 #include "lldb/Core/ModuleSpec.h" 28 #include "lldb/Core/RegisterValue.h" 29 #include "lldb/Core/State.h" 30 #include "lldb/Host/Host.h" 31 #include "lldb/Host/HostProcess.h" 32 #include "lldb/Host/PseudoTerminal.h" 33 #include "lldb/Host/ThreadLauncher.h" 34 #include "lldb/Host/common/NativeBreakpoint.h" 35 #include "lldb/Host/common/NativeRegisterContext.h" 36 #include "lldb/Host/linux/Ptrace.h" 37 #include "lldb/Host/linux/Uio.h" 38 #include "lldb/Host/posix/ProcessLauncherPosixFork.h" 39 #include "lldb/Symbol/ObjectFile.h" 40 #include "lldb/Target/Process.h" 41 #include "lldb/Target/ProcessLaunchInfo.h" 42 #include "lldb/Target/Target.h" 43 #include "lldb/Utility/LLDBAssert.h" 44 #include "lldb/Utility/Status.h" 45 #include "lldb/Utility/StringExtractor.h" 46 #include "llvm/Support/Errno.h" 47 #include "llvm/Support/FileSystem.h" 48 #include "llvm/Support/Threading.h" 49 50 #include "NativeThreadLinux.h" 51 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 52 #include "Procfs.h" 53 54 #include <linux/unistd.h> 55 #include <sys/socket.h> 56 #include <sys/syscall.h> 57 #include <sys/types.h> 58 #include <sys/user.h> 59 #include <sys/wait.h> 60 61 // Support hardware breakpoints in case it has not been defined 62 #ifndef TRAP_HWBKPT 63 #define TRAP_HWBKPT 4 64 #endif 65 66 using namespace lldb; 67 using namespace lldb_private; 68 using namespace lldb_private::process_linux; 69 using namespace llvm; 70 71 // Private bits we only need internally. 72 73 static bool ProcessVmReadvSupported() { 74 static bool is_supported; 75 static llvm::once_flag flag; 76 77 llvm::call_once(flag, [] { 78 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 79 80 uint32_t source = 0x47424742; 81 uint32_t dest = 0; 82 83 struct iovec local, remote; 84 remote.iov_base = &source; 85 local.iov_base = &dest; 86 remote.iov_len = local.iov_len = sizeof source; 87 88 // We shall try if cross-process-memory reads work by attempting to read a 89 // value from our own process. 90 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); 91 is_supported = (res == sizeof(source) && source == dest); 92 if (is_supported) 93 LLDB_LOG(log, 94 "Detected kernel support for process_vm_readv syscall. " 95 "Fast memory reads enabled."); 96 else 97 LLDB_LOG(log, 98 "syscall process_vm_readv failed (error: {0}). Fast memory " 99 "reads disabled.", 100 llvm::sys::StrError()); 101 }); 102 103 return is_supported; 104 } 105 106 namespace { 107 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) { 108 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 109 if (!log) 110 return; 111 112 if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO)) 113 LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec()); 114 else 115 LLDB_LOG(log, "leaving STDIN as is"); 116 117 if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO)) 118 LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec()); 119 else 120 LLDB_LOG(log, "leaving STDOUT as is"); 121 122 if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO)) 123 LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec()); 124 else 125 LLDB_LOG(log, "leaving STDERR as is"); 126 127 int i = 0; 128 for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; 129 ++args, ++i) 130 LLDB_LOG(log, "arg {0}: '{1}'", i, *args); 131 } 132 133 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) { 134 uint8_t *ptr = (uint8_t *)bytes; 135 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 136 for (uint32_t i = 0; i < loop_count; i++) { 137 s.Printf("[%x]", *ptr); 138 ptr++; 139 } 140 } 141 142 void PtraceDisplayBytes(int &req, void *data, size_t data_size) { 143 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 144 if (!log) 145 return; 146 StreamString buf; 147 148 switch (req) { 149 case PTRACE_POKETEXT: { 150 DisplayBytes(buf, &data, 8); 151 LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData()); 152 break; 153 } 154 case PTRACE_POKEDATA: { 155 DisplayBytes(buf, &data, 8); 156 LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData()); 157 break; 158 } 159 case PTRACE_POKEUSER: { 160 DisplayBytes(buf, &data, 8); 161 LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData()); 162 break; 163 } 164 case PTRACE_SETREGS: { 165 DisplayBytes(buf, data, data_size); 166 LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData()); 167 break; 168 } 169 case PTRACE_SETFPREGS: { 170 DisplayBytes(buf, data, data_size); 171 LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData()); 172 break; 173 } 174 case PTRACE_SETSIGINFO: { 175 DisplayBytes(buf, data, sizeof(siginfo_t)); 176 LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData()); 177 break; 178 } 179 case PTRACE_SETREGSET: { 180 // Extract iov_base from data, which is a pointer to the struct iovec 181 DisplayBytes(buf, *(void **)data, data_size); 182 LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData()); 183 break; 184 } 185 default: {} 186 } 187 } 188 189 static constexpr unsigned k_ptrace_word_size = sizeof(void *); 190 static_assert(sizeof(long) >= k_ptrace_word_size, 191 "Size of long must be larger than ptrace word size"); 192 } // end of anonymous namespace 193 194 // Simple helper function to ensure flags are enabled on the given file 195 // descriptor. 196 static Status EnsureFDFlags(int fd, int flags) { 197 Status error; 198 199 int status = fcntl(fd, F_GETFL); 200 if (status == -1) { 201 error.SetErrorToErrno(); 202 return error; 203 } 204 205 if (fcntl(fd, F_SETFL, status | flags) == -1) { 206 error.SetErrorToErrno(); 207 return error; 208 } 209 210 return error; 211 } 212 213 // ----------------------------------------------------------------------------- 214 // Public Static Methods 215 // ----------------------------------------------------------------------------- 216 217 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 218 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info, 219 NativeDelegate &native_delegate, 220 MainLoop &mainloop) const { 221 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 222 223 MaybeLogLaunchInfo(launch_info); 224 225 Status status; 226 ::pid_t pid = ProcessLauncherPosixFork() 227 .LaunchProcess(launch_info, status) 228 .GetProcessId(); 229 LLDB_LOG(log, "pid = {0:x}", pid); 230 if (status.Fail()) { 231 LLDB_LOG(log, "failed to launch process: {0}", status); 232 return status.ToError(); 233 } 234 235 // Wait for the child process to trap on its call to execve. 236 int wstatus; 237 ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0); 238 assert(wpid == pid); 239 (void)wpid; 240 if (!WIFSTOPPED(wstatus)) { 241 LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}", 242 WaitStatus::Decode(wstatus)); 243 return llvm::make_error<StringError>("Could not sync with inferior process", 244 llvm::inconvertibleErrorCode()); 245 } 246 LLDB_LOG(log, "inferior started, now in stopped state"); 247 248 ProcessInstanceInfo Info; 249 if (!Host::GetProcessInfo(pid, Info)) { 250 return llvm::make_error<StringError>("Cannot get process architecture", 251 llvm::inconvertibleErrorCode()); 252 } 253 254 // Set the architecture to the exe architecture. 255 LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid, 256 Info.GetArchitecture().GetArchitectureName()); 257 258 status = SetDefaultPtraceOpts(pid); 259 if (status.Fail()) { 260 LLDB_LOG(log, "failed to set default ptrace options: {0}", status); 261 return status.ToError(); 262 } 263 264 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 265 pid, launch_info.GetPTY().ReleaseMasterFileDescriptor(), native_delegate, 266 Info.GetArchitecture(), mainloop, {pid})); 267 } 268 269 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 270 NativeProcessLinux::Factory::Attach( 271 lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate, 272 MainLoop &mainloop) const { 273 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 274 LLDB_LOG(log, "pid = {0:x}", pid); 275 276 // Retrieve the architecture for the running process. 277 ProcessInstanceInfo Info; 278 if (!Host::GetProcessInfo(pid, Info)) { 279 return llvm::make_error<StringError>("Cannot get process architecture", 280 llvm::inconvertibleErrorCode()); 281 } 282 283 auto tids_or = NativeProcessLinux::Attach(pid); 284 if (!tids_or) 285 return tids_or.takeError(); 286 287 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 288 pid, -1, native_delegate, Info.GetArchitecture(), mainloop, *tids_or)); 289 } 290 291 // ----------------------------------------------------------------------------- 292 // Public Instance Methods 293 // ----------------------------------------------------------------------------- 294 295 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd, 296 NativeDelegate &delegate, 297 const ArchSpec &arch, MainLoop &mainloop, 298 llvm::ArrayRef<::pid_t> tids) 299 : NativeProcessProtocol(pid, terminal_fd, delegate), m_arch(arch) { 300 if (m_terminal_fd != -1) { 301 Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 302 assert(status.Success()); 303 } 304 305 Status status; 306 m_sigchld_handle = mainloop.RegisterSignal( 307 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status); 308 assert(m_sigchld_handle && status.Success()); 309 310 for (const auto &tid : tids) { 311 NativeThreadLinux &thread = AddThread(tid); 312 thread.SetStoppedBySignal(SIGSTOP); 313 ThreadWasCreated(thread); 314 } 315 316 // Let our process instance know the thread has stopped. 317 SetCurrentThreadID(tids[0]); 318 SetState(StateType::eStateStopped, false); 319 320 // Proccess any signals we received before installing our handler 321 SigchldHandler(); 322 } 323 324 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) { 325 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 326 327 Status status; 328 // Use a map to keep track of the threads which we have attached/need to 329 // attach. 330 Host::TidMap tids_to_attach; 331 while (Host::FindProcessThreads(pid, tids_to_attach)) { 332 for (Host::TidMap::iterator it = tids_to_attach.begin(); 333 it != tids_to_attach.end();) { 334 if (it->second == false) { 335 lldb::tid_t tid = it->first; 336 337 // Attach to the requested process. 338 // An attach will cause the thread to stop with a SIGSTOP. 339 if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) { 340 // No such thread. The thread may have exited. More error handling 341 // may be needed. 342 if (status.GetError() == ESRCH) { 343 it = tids_to_attach.erase(it); 344 continue; 345 } 346 return status.ToError(); 347 } 348 349 int wpid = 350 llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL); 351 // Need to use __WALL otherwise we receive an error with errno=ECHLD At 352 // this point we should have a thread stopped if waitpid succeeds. 353 if (wpid < 0) { 354 // No such thread. The thread may have exited. More error handling 355 // may be needed. 356 if (errno == ESRCH) { 357 it = tids_to_attach.erase(it); 358 continue; 359 } 360 return llvm::errorCodeToError( 361 std::error_code(errno, std::generic_category())); 362 } 363 364 if ((status = SetDefaultPtraceOpts(tid)).Fail()) 365 return status.ToError(); 366 367 LLDB_LOG(log, "adding tid = {0}", tid); 368 it->second = true; 369 } 370 371 // move the loop forward 372 ++it; 373 } 374 } 375 376 size_t tid_count = tids_to_attach.size(); 377 if (tid_count == 0) 378 return llvm::make_error<StringError>("No such process", 379 llvm::inconvertibleErrorCode()); 380 381 std::vector<::pid_t> tids; 382 tids.reserve(tid_count); 383 for (const auto &p : tids_to_attach) 384 tids.push_back(p.first); 385 return std::move(tids); 386 } 387 388 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) { 389 long ptrace_opts = 0; 390 391 // Have the child raise an event on exit. This is used to keep the child in 392 // limbo until it is destroyed. 393 ptrace_opts |= PTRACE_O_TRACEEXIT; 394 395 // Have the tracer trace threads which spawn in the inferior process. 396 // TODO: if we want to support tracing the inferiors' child, add the 397 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) 398 ptrace_opts |= PTRACE_O_TRACECLONE; 399 400 // Have the tracer notify us before execve returns (needed to disable legacy 401 // SIGTRAP generation) 402 ptrace_opts |= PTRACE_O_TRACEEXEC; 403 404 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts); 405 } 406 407 // Handles all waitpid events from the inferior process. 408 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited, 409 WaitStatus status) { 410 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 411 412 // Certain activities differ based on whether the pid is the tid of the main 413 // thread. 414 const bool is_main_thread = (pid == GetID()); 415 416 // Handle when the thread exits. 417 if (exited) { 418 LLDB_LOG(log, 419 "got exit signal({0}) , tid = {1} ({2} main thread), process " 420 "state = {3}", 421 signal, pid, is_main_thread ? "is" : "is not", GetState()); 422 423 // This is a thread that exited. Ensure we're not tracking it anymore. 424 StopTrackingThread(pid); 425 426 if (is_main_thread) { 427 // The main thread exited. We're done monitoring. Report to delegate. 428 SetExitStatus(status, true); 429 430 // Notify delegate that our process has exited. 431 SetState(StateType::eStateExited, true); 432 } 433 return; 434 } 435 436 siginfo_t info; 437 const auto info_err = GetSignalInfo(pid, &info); 438 auto thread_sp = GetThreadByID(pid); 439 440 if (!thread_sp) { 441 // Normally, the only situation when we cannot find the thread is if we 442 // have just received a new thread notification. This is indicated by 443 // GetSignalInfo() returning si_code == SI_USER and si_pid == 0 444 LLDB_LOG(log, "received notification about an unknown tid {0}.", pid); 445 446 if (info_err.Fail()) { 447 LLDB_LOG(log, 448 "(tid {0}) GetSignalInfo failed ({1}). " 449 "Ingoring this notification.", 450 pid, info_err); 451 return; 452 } 453 454 LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code, 455 info.si_pid); 456 457 NativeThreadLinux &thread = AddThread(pid); 458 459 // Resume the newly created thread. 460 ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 461 ThreadWasCreated(thread); 462 return; 463 } 464 465 // Get details on the signal raised. 466 if (info_err.Success()) { 467 // We have retrieved the signal info. Dispatch appropriately. 468 if (info.si_signo == SIGTRAP) 469 MonitorSIGTRAP(info, *thread_sp); 470 else 471 MonitorSignal(info, *thread_sp, exited); 472 } else { 473 if (info_err.GetError() == EINVAL) { 474 // This is a group stop reception for this tid. We can reach here if we 475 // reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the tracee, 476 // triggering the group-stop mechanism. Normally receiving these would 477 // stop the process, pending a SIGCONT. Simulating this state in a 478 // debugger is hard and is generally not needed (one use case is 479 // debugging background task being managed by a shell). For general use, 480 // it is sufficient to stop the process in a signal-delivery stop which 481 // happens before the group stop. This done by MonitorSignal and works 482 // correctly for all signals. 483 LLDB_LOG(log, 484 "received a group stop for pid {0} tid {1}. Transparent " 485 "handling of group stops not supported, resuming the " 486 "thread.", 487 GetID(), pid); 488 ResumeThread(*thread_sp, thread_sp->GetState(), 489 LLDB_INVALID_SIGNAL_NUMBER); 490 } else { 491 // ptrace(GETSIGINFO) failed (but not due to group-stop). 492 493 // A return value of ESRCH means the thread/process is no longer on the 494 // system, so it was killed somehow outside of our control. Either way, 495 // we can't do anything with it anymore. 496 497 // Stop tracking the metadata for the thread since it's entirely off the 498 // system now. 499 const bool thread_found = StopTrackingThread(pid); 500 501 LLDB_LOG(log, 502 "GetSignalInfo failed: {0}, tid = {1}, signal = {2}, " 503 "status = {3}, main_thread = {4}, thread_found: {5}", 504 info_err, pid, signal, status, is_main_thread, thread_found); 505 506 if (is_main_thread) { 507 // Notify the delegate - our process is not available but appears to 508 // have been killed outside our control. Is eStateExited the right 509 // exit state in this case? 510 SetExitStatus(status, true); 511 SetState(StateType::eStateExited, true); 512 } else { 513 // This thread was pulled out from underneath us. Anything to do here? 514 // Do we want to do an all stop? 515 LLDB_LOG(log, 516 "pid {0} tid {1} non-main thread exit occurred, didn't " 517 "tell delegate anything since thread disappeared out " 518 "from underneath us", 519 GetID(), pid); 520 } 521 } 522 } 523 } 524 525 void NativeProcessLinux::WaitForNewThread(::pid_t tid) { 526 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 527 528 if (GetThreadByID(tid)) { 529 // We are already tracking the thread - we got the event on the new thread 530 // (see MonitorSignal) before this one. We are done. 531 return; 532 } 533 534 // The thread is not tracked yet, let's wait for it to appear. 535 int status = -1; 536 LLDB_LOG(log, 537 "received thread creation event for tid {0}. tid not tracked " 538 "yet, waiting for thread to appear...", 539 tid); 540 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, &status, __WALL); 541 // Since we are waiting on a specific tid, this must be the creation event. 542 // But let's do some checks just in case. 543 if (wait_pid != tid) { 544 LLDB_LOG(log, 545 "waiting for tid {0} failed. Assuming the thread has " 546 "disappeared in the meantime", 547 tid); 548 // The only way I know of this could happen is if the whole process was 549 // SIGKILLed in the mean time. In any case, we can't do anything about that 550 // now. 551 return; 552 } 553 if (WIFEXITED(status)) { 554 LLDB_LOG(log, 555 "waiting for tid {0} returned an 'exited' event. Not " 556 "tracking the thread.", 557 tid); 558 // Also a very improbable event. 559 return; 560 } 561 562 LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid); 563 NativeThreadLinux &new_thread = AddThread(tid); 564 565 ResumeThread(new_thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 566 ThreadWasCreated(new_thread); 567 } 568 569 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, 570 NativeThreadLinux &thread) { 571 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 572 const bool is_main_thread = (thread.GetID() == GetID()); 573 574 assert(info.si_signo == SIGTRAP && "Unexpected child signal!"); 575 576 switch (info.si_code) { 577 // TODO: these two cases are required if we want to support tracing of the 578 // inferiors' children. We'd need this to debug a monitor. case (SIGTRAP | 579 // (PTRACE_EVENT_FORK << 8)): case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 580 581 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { 582 // This is the notification on the parent thread which informs us of new 583 // thread creation. We don't want to do anything with the parent thread so 584 // we just resume it. In case we want to implement "break on thread 585 // creation" functionality, we would need to stop here. 586 587 unsigned long event_message = 0; 588 if (GetEventMessage(thread.GetID(), &event_message).Fail()) { 589 LLDB_LOG(log, 590 "pid {0} received thread creation event but " 591 "GetEventMessage failed so we don't know the new tid", 592 thread.GetID()); 593 } else 594 WaitForNewThread(event_message); 595 596 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 597 break; 598 } 599 600 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): { 601 LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP); 602 603 // Exec clears any pending notifications. 604 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 605 606 // Remove all but the main thread here. Linux fork creates a new process 607 // which only copies the main thread. 608 LLDB_LOG(log, "exec received, stop tracking all but main thread"); 609 610 for (auto i = m_threads.begin(); i != m_threads.end();) { 611 if ((*i)->GetID() == GetID()) 612 i = m_threads.erase(i); 613 else 614 ++i; 615 } 616 assert(m_threads.size() == 1); 617 auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get()); 618 619 SetCurrentThreadID(main_thread->GetID()); 620 main_thread->SetStoppedByExec(); 621 622 // Tell coordinator about about the "new" (since exec) stopped main thread. 623 ThreadWasCreated(*main_thread); 624 625 // Let our delegate know we have just exec'd. 626 NotifyDidExec(); 627 628 // Let the process know we're stopped. 629 StopRunningThreads(main_thread->GetID()); 630 631 break; 632 } 633 634 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { 635 // The inferior process or one of its threads is about to exit. We don't 636 // want to do anything with the thread so we just resume it. In case we 637 // want to implement "break on thread exit" functionality, we would need to 638 // stop here. 639 640 unsigned long data = 0; 641 if (GetEventMessage(thread.GetID(), &data).Fail()) 642 data = -1; 643 644 LLDB_LOG(log, 645 "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, " 646 "WIFSIGNALED={2}, pid = {3}, main_thread = {4}", 647 data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(), 648 is_main_thread); 649 650 651 StateType state = thread.GetState(); 652 if (!StateIsRunningState(state)) { 653 // Due to a kernel bug, we may sometimes get this stop after the inferior 654 // gets a SIGKILL. This confuses our state tracking logic in 655 // ResumeThread(), since normally, we should not be receiving any ptrace 656 // events while the inferior is stopped. This makes sure that the 657 // inferior is resumed and exits normally. 658 state = eStateRunning; 659 } 660 ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); 661 662 break; 663 } 664 665 case 0: 666 case TRAP_TRACE: // We receive this on single stepping. 667 case TRAP_HWBKPT: // We receive this on watchpoint hit 668 { 669 // If a watchpoint was hit, report it 670 uint32_t wp_index; 671 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 672 wp_index, (uintptr_t)info.si_addr); 673 if (error.Fail()) 674 LLDB_LOG(log, 675 "received error while checking for watchpoint hits, pid = " 676 "{0}, error = {1}", 677 thread.GetID(), error); 678 if (wp_index != LLDB_INVALID_INDEX32) { 679 MonitorWatchpoint(thread, wp_index); 680 break; 681 } 682 683 // If a breakpoint was hit, report it 684 uint32_t bp_index; 685 error = thread.GetRegisterContext().GetHardwareBreakHitIndex( 686 bp_index, (uintptr_t)info.si_addr); 687 if (error.Fail()) 688 LLDB_LOG(log, "received error while checking for hardware " 689 "breakpoint hits, pid = {0}, error = {1}", 690 thread.GetID(), error); 691 if (bp_index != LLDB_INVALID_INDEX32) { 692 MonitorBreakpoint(thread); 693 break; 694 } 695 696 // Otherwise, report step over 697 MonitorTrace(thread); 698 break; 699 } 700 701 case SI_KERNEL: 702 #if defined __mips__ 703 // For mips there is no special signal for watchpoint So we check for 704 // watchpoint in kernel trap 705 { 706 // If a watchpoint was hit, report it 707 uint32_t wp_index; 708 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 709 wp_index, LLDB_INVALID_ADDRESS); 710 if (error.Fail()) 711 LLDB_LOG(log, 712 "received error while checking for watchpoint hits, pid = " 713 "{0}, error = {1}", 714 thread.GetID(), error); 715 if (wp_index != LLDB_INVALID_INDEX32) { 716 MonitorWatchpoint(thread, wp_index); 717 break; 718 } 719 } 720 // NO BREAK 721 #endif 722 case TRAP_BRKPT: 723 MonitorBreakpoint(thread); 724 break; 725 726 case SIGTRAP: 727 case (SIGTRAP | 0x80): 728 LLDB_LOG( 729 log, 730 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 731 info.si_code, GetID(), thread.GetID()); 732 733 // Ignore these signals until we know more about them. 734 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 735 break; 736 737 default: 738 LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}", 739 info.si_code, GetID(), thread.GetID()); 740 MonitorSignal(info, thread, false); 741 break; 742 } 743 } 744 745 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) { 746 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 747 LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID()); 748 749 // This thread is currently stopped. 750 thread.SetStoppedByTrace(); 751 752 StopRunningThreads(thread.GetID()); 753 } 754 755 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) { 756 Log *log( 757 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 758 LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID()); 759 760 // Mark the thread as stopped at breakpoint. 761 thread.SetStoppedByBreakpoint(); 762 Status error = FixupBreakpointPCAsNeeded(thread); 763 if (error.Fail()) 764 LLDB_LOG(log, "pid = {0} fixup: {1}", thread.GetID(), error); 765 766 if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != 767 m_threads_stepping_with_breakpoint.end()) 768 thread.SetStoppedByTrace(); 769 770 StopRunningThreads(thread.GetID()); 771 } 772 773 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, 774 uint32_t wp_index) { 775 Log *log( 776 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); 777 LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}", 778 thread.GetID(), wp_index); 779 780 // Mark the thread as stopped at watchpoint. The address is at 781 // (lldb::addr_t)info->si_addr if we need it. 782 thread.SetStoppedByWatchpoint(wp_index); 783 784 // We need to tell all other running threads before we notify the delegate 785 // about this stop. 786 StopRunningThreads(thread.GetID()); 787 } 788 789 void NativeProcessLinux::MonitorSignal(const siginfo_t &info, 790 NativeThreadLinux &thread, bool exited) { 791 const int signo = info.si_signo; 792 const bool is_from_llgs = info.si_pid == getpid(); 793 794 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 795 796 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 797 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2) 798 // or raise(3). Similarly for tgkill(2) on Linux. 799 // 800 // IOW, user generated signals never generate what we consider to be a 801 // "crash". 802 // 803 // Similarly, ACK signals generated by this monitor. 804 805 // Handle the signal. 806 LLDB_LOG(log, 807 "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, " 808 "waitpid pid = {4})", 809 Host::GetSignalAsCString(signo), signo, info.si_code, 810 thread.GetID()); 811 812 // Check for thread stop notification. 813 if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) { 814 // This is a tgkill()-based stop. 815 LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID()); 816 817 // Check that we're not already marked with a stop reason. Note this thread 818 // really shouldn't already be marked as stopped - if we were, that would 819 // imply that the kernel signaled us with the thread stopping which we 820 // handled and marked as stopped, and that, without an intervening resume, 821 // we received another stop. It is more likely that we are missing the 822 // marking of a run state somewhere if we find that the thread was marked 823 // as stopped. 824 const StateType thread_state = thread.GetState(); 825 if (!StateIsStoppedState(thread_state, false)) { 826 // An inferior thread has stopped because of a SIGSTOP we have sent it. 827 // Generally, these are not important stops and we don't want to report 828 // them as they are just used to stop other threads when one thread (the 829 // one with the *real* stop reason) hits a breakpoint (watchpoint, 830 // etc...). However, in the case of an asynchronous Interrupt(), this 831 // *is* the real stop reason, so we leave the signal intact if this is 832 // the thread that was chosen as the triggering thread. 833 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 834 if (m_pending_notification_tid == thread.GetID()) 835 thread.SetStoppedBySignal(SIGSTOP, &info); 836 else 837 thread.SetStoppedWithNoReason(); 838 839 SetCurrentThreadID(thread.GetID()); 840 SignalIfAllThreadsStopped(); 841 } else { 842 // We can end up here if stop was initiated by LLGS but by this time a 843 // thread stop has occurred - maybe initiated by another event. 844 Status error = ResumeThread(thread, thread.GetState(), 0); 845 if (error.Fail()) 846 LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(), 847 error); 848 } 849 } else { 850 LLDB_LOG(log, 851 "pid {0} tid {1}, thread was already marked as a stopped " 852 "state (state={2}), leaving stop signal as is", 853 GetID(), thread.GetID(), thread_state); 854 SignalIfAllThreadsStopped(); 855 } 856 857 // Done handling. 858 return; 859 } 860 861 // Check if debugger should stop at this signal or just ignore it and resume 862 // the inferior. 863 if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) { 864 ResumeThread(thread, thread.GetState(), signo); 865 return; 866 } 867 868 // This thread is stopped. 869 LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo)); 870 thread.SetStoppedBySignal(signo, &info); 871 872 // Send a stop to the debugger after we get all other threads to stop. 873 StopRunningThreads(thread.GetID()); 874 } 875 876 namespace { 877 878 struct EmulatorBaton { 879 NativeProcessLinux &m_process; 880 NativeRegisterContext &m_reg_context; 881 882 // eRegisterKindDWARF -> RegsiterValue 883 std::unordered_map<uint32_t, RegisterValue> m_register_values; 884 885 EmulatorBaton(NativeProcessLinux &process, NativeRegisterContext ®_context) 886 : m_process(process), m_reg_context(reg_context) {} 887 }; 888 889 } // anonymous namespace 890 891 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton, 892 const EmulateInstruction::Context &context, 893 lldb::addr_t addr, void *dst, size_t length) { 894 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 895 896 size_t bytes_read; 897 emulator_baton->m_process.ReadMemory(addr, dst, length, bytes_read); 898 return bytes_read; 899 } 900 901 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton, 902 const RegisterInfo *reg_info, 903 RegisterValue ®_value) { 904 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 905 906 auto it = emulator_baton->m_register_values.find( 907 reg_info->kinds[eRegisterKindDWARF]); 908 if (it != emulator_baton->m_register_values.end()) { 909 reg_value = it->second; 910 return true; 911 } 912 913 // The emulator only fill in the dwarf regsiter numbers (and in some case the 914 // generic register numbers). Get the full register info from the register 915 // context based on the dwarf register numbers. 916 const RegisterInfo *full_reg_info = 917 emulator_baton->m_reg_context.GetRegisterInfo( 918 eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]); 919 920 Status error = 921 emulator_baton->m_reg_context.ReadRegister(full_reg_info, reg_value); 922 if (error.Success()) 923 return true; 924 925 return false; 926 } 927 928 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton, 929 const EmulateInstruction::Context &context, 930 const RegisterInfo *reg_info, 931 const RegisterValue ®_value) { 932 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 933 emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = 934 reg_value; 935 return true; 936 } 937 938 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton, 939 const EmulateInstruction::Context &context, 940 lldb::addr_t addr, const void *dst, 941 size_t length) { 942 return length; 943 } 944 945 static lldb::addr_t ReadFlags(NativeRegisterContext ®siter_context) { 946 const RegisterInfo *flags_info = regsiter_context.GetRegisterInfo( 947 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 948 return regsiter_context.ReadRegisterAsUnsigned(flags_info, 949 LLDB_INVALID_ADDRESS); 950 } 951 952 Status 953 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) { 954 Status error; 955 NativeRegisterContext& register_context = thread.GetRegisterContext(); 956 957 std::unique_ptr<EmulateInstruction> emulator_ap( 958 EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, 959 nullptr)); 960 961 if (emulator_ap == nullptr) 962 return Status("Instruction emulator not found!"); 963 964 EmulatorBaton baton(*this, register_context); 965 emulator_ap->SetBaton(&baton); 966 emulator_ap->SetReadMemCallback(&ReadMemoryCallback); 967 emulator_ap->SetReadRegCallback(&ReadRegisterCallback); 968 emulator_ap->SetWriteMemCallback(&WriteMemoryCallback); 969 emulator_ap->SetWriteRegCallback(&WriteRegisterCallback); 970 971 if (!emulator_ap->ReadInstruction()) 972 return Status("Read instruction failed!"); 973 974 bool emulation_result = 975 emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC); 976 977 const RegisterInfo *reg_info_pc = register_context.GetRegisterInfo( 978 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); 979 const RegisterInfo *reg_info_flags = register_context.GetRegisterInfo( 980 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 981 982 auto pc_it = 983 baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]); 984 auto flags_it = 985 baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]); 986 987 lldb::addr_t next_pc; 988 lldb::addr_t next_flags; 989 if (emulation_result) { 990 assert(pc_it != baton.m_register_values.end() && 991 "Emulation was successfull but PC wasn't updated"); 992 next_pc = pc_it->second.GetAsUInt64(); 993 994 if (flags_it != baton.m_register_values.end()) 995 next_flags = flags_it->second.GetAsUInt64(); 996 else 997 next_flags = ReadFlags(register_context); 998 } else if (pc_it == baton.m_register_values.end()) { 999 // Emulate instruction failed and it haven't changed PC. Advance PC with 1000 // the size of the current opcode because the emulation of all 1001 // PC modifying instruction should be successful. The failure most 1002 // likely caused by a not supported instruction which don't modify PC. 1003 next_pc = register_context.GetPC() + emulator_ap->GetOpcode().GetByteSize(); 1004 next_flags = ReadFlags(register_context); 1005 } else { 1006 // The instruction emulation failed after it modified the PC. It is an 1007 // unknown error where we can't continue because the next instruction is 1008 // modifying the PC but we don't know how. 1009 return Status("Instruction emulation failed unexpectedly."); 1010 } 1011 1012 if (m_arch.GetMachine() == llvm::Triple::arm) { 1013 if (next_flags & 0x20) { 1014 // Thumb mode 1015 error = SetSoftwareBreakpoint(next_pc, 2); 1016 } else { 1017 // Arm mode 1018 error = SetSoftwareBreakpoint(next_pc, 4); 1019 } 1020 } else if (m_arch.GetMachine() == llvm::Triple::mips64 || 1021 m_arch.GetMachine() == llvm::Triple::mips64el || 1022 m_arch.GetMachine() == llvm::Triple::mips || 1023 m_arch.GetMachine() == llvm::Triple::mipsel || 1024 m_arch.GetMachine() == llvm::Triple::ppc64le) 1025 error = SetSoftwareBreakpoint(next_pc, 4); 1026 else { 1027 // No size hint is given for the next breakpoint 1028 error = SetSoftwareBreakpoint(next_pc, 0); 1029 } 1030 1031 // If setting the breakpoint fails because next_pc is out of the address 1032 // space, ignore it and let the debugee segfault. 1033 if (error.GetError() == EIO || error.GetError() == EFAULT) { 1034 return Status(); 1035 } else if (error.Fail()) 1036 return error; 1037 1038 m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc}); 1039 1040 return Status(); 1041 } 1042 1043 bool NativeProcessLinux::SupportHardwareSingleStepping() const { 1044 if (m_arch.GetMachine() == llvm::Triple::arm || 1045 m_arch.GetMachine() == llvm::Triple::mips64 || 1046 m_arch.GetMachine() == llvm::Triple::mips64el || 1047 m_arch.GetMachine() == llvm::Triple::mips || 1048 m_arch.GetMachine() == llvm::Triple::mipsel) 1049 return false; 1050 return true; 1051 } 1052 1053 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) { 1054 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1055 LLDB_LOG(log, "pid {0}", GetID()); 1056 1057 bool software_single_step = !SupportHardwareSingleStepping(); 1058 1059 if (software_single_step) { 1060 for (const auto &thread : m_threads) { 1061 assert(thread && "thread list should not contain NULL threads"); 1062 1063 const ResumeAction *const action = 1064 resume_actions.GetActionForThread(thread->GetID(), true); 1065 if (action == nullptr) 1066 continue; 1067 1068 if (action->state == eStateStepping) { 1069 Status error = SetupSoftwareSingleStepping( 1070 static_cast<NativeThreadLinux &>(*thread)); 1071 if (error.Fail()) 1072 return error; 1073 } 1074 } 1075 } 1076 1077 for (const auto &thread : m_threads) { 1078 assert(thread && "thread list should not contain NULL threads"); 1079 1080 const ResumeAction *const action = 1081 resume_actions.GetActionForThread(thread->GetID(), true); 1082 1083 if (action == nullptr) { 1084 LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(), 1085 thread->GetID()); 1086 continue; 1087 } 1088 1089 LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}", 1090 action->state, GetID(), thread->GetID()); 1091 1092 switch (action->state) { 1093 case eStateRunning: 1094 case eStateStepping: { 1095 // Run the thread, possibly feeding it the signal. 1096 const int signo = action->signal; 1097 ResumeThread(static_cast<NativeThreadLinux &>(*thread), action->state, 1098 signo); 1099 break; 1100 } 1101 1102 case eStateSuspended: 1103 case eStateStopped: 1104 llvm_unreachable("Unexpected state"); 1105 1106 default: 1107 return Status("NativeProcessLinux::%s (): unexpected state %s specified " 1108 "for pid %" PRIu64 ", tid %" PRIu64, 1109 __FUNCTION__, StateAsCString(action->state), GetID(), 1110 thread->GetID()); 1111 } 1112 } 1113 1114 return Status(); 1115 } 1116 1117 Status NativeProcessLinux::Halt() { 1118 Status error; 1119 1120 if (kill(GetID(), SIGSTOP) != 0) 1121 error.SetErrorToErrno(); 1122 1123 return error; 1124 } 1125 1126 Status NativeProcessLinux::Detach() { 1127 Status error; 1128 1129 // Stop monitoring the inferior. 1130 m_sigchld_handle.reset(); 1131 1132 // Tell ptrace to detach from the process. 1133 if (GetID() == LLDB_INVALID_PROCESS_ID) 1134 return error; 1135 1136 for (const auto &thread : m_threads) { 1137 Status e = Detach(thread->GetID()); 1138 if (e.Fail()) 1139 error = 1140 e; // Save the error, but still attempt to detach from other threads. 1141 } 1142 1143 m_processor_trace_monitor.clear(); 1144 m_pt_proces_trace_id = LLDB_INVALID_UID; 1145 1146 return error; 1147 } 1148 1149 Status NativeProcessLinux::Signal(int signo) { 1150 Status error; 1151 1152 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1153 LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo, 1154 Host::GetSignalAsCString(signo), GetID()); 1155 1156 if (kill(GetID(), signo)) 1157 error.SetErrorToErrno(); 1158 1159 return error; 1160 } 1161 1162 Status NativeProcessLinux::Interrupt() { 1163 // Pick a running thread (or if none, a not-dead stopped thread) as the 1164 // chosen thread that will be the stop-reason thread. 1165 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1166 1167 NativeThreadProtocol *running_thread = nullptr; 1168 NativeThreadProtocol *stopped_thread = nullptr; 1169 1170 LLDB_LOG(log, "selecting running thread for interrupt target"); 1171 for (const auto &thread : m_threads) { 1172 // If we have a running or stepping thread, we'll call that the target of 1173 // the interrupt. 1174 const auto thread_state = thread->GetState(); 1175 if (thread_state == eStateRunning || thread_state == eStateStepping) { 1176 running_thread = thread.get(); 1177 break; 1178 } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) { 1179 // Remember the first non-dead stopped thread. We'll use that as a 1180 // backup if there are no running threads. 1181 stopped_thread = thread.get(); 1182 } 1183 } 1184 1185 if (!running_thread && !stopped_thread) { 1186 Status error("found no running/stepping or live stopped threads as target " 1187 "for interrupt"); 1188 LLDB_LOG(log, "skipping due to error: {0}", error); 1189 1190 return error; 1191 } 1192 1193 NativeThreadProtocol *deferred_signal_thread = 1194 running_thread ? running_thread : stopped_thread; 1195 1196 LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(), 1197 running_thread ? "running" : "stopped", 1198 deferred_signal_thread->GetID()); 1199 1200 StopRunningThreads(deferred_signal_thread->GetID()); 1201 1202 return Status(); 1203 } 1204 1205 Status NativeProcessLinux::Kill() { 1206 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1207 LLDB_LOG(log, "pid {0}", GetID()); 1208 1209 Status error; 1210 1211 switch (m_state) { 1212 case StateType::eStateInvalid: 1213 case StateType::eStateExited: 1214 case StateType::eStateCrashed: 1215 case StateType::eStateDetached: 1216 case StateType::eStateUnloaded: 1217 // Nothing to do - the process is already dead. 1218 LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(), 1219 m_state); 1220 return error; 1221 1222 case StateType::eStateConnected: 1223 case StateType::eStateAttaching: 1224 case StateType::eStateLaunching: 1225 case StateType::eStateStopped: 1226 case StateType::eStateRunning: 1227 case StateType::eStateStepping: 1228 case StateType::eStateSuspended: 1229 // We can try to kill a process in these states. 1230 break; 1231 } 1232 1233 if (kill(GetID(), SIGKILL) != 0) { 1234 error.SetErrorToErrno(); 1235 return error; 1236 } 1237 1238 return error; 1239 } 1240 1241 static Status 1242 ParseMemoryRegionInfoFromProcMapsLine(llvm::StringRef &maps_line, 1243 MemoryRegionInfo &memory_region_info) { 1244 memory_region_info.Clear(); 1245 1246 StringExtractor line_extractor(maps_line); 1247 1248 // Format: {address_start_hex}-{address_end_hex} perms offset dev inode 1249 // pathname perms: rwxp (letter is present if set, '-' if not, final 1250 // character is p=private, s=shared). 1251 1252 // Parse out the starting address 1253 lldb::addr_t start_address = line_extractor.GetHexMaxU64(false, 0); 1254 1255 // Parse out hyphen separating start and end address from range. 1256 if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != '-')) 1257 return Status( 1258 "malformed /proc/{pid}/maps entry, missing dash between address range"); 1259 1260 // Parse out the ending address 1261 lldb::addr_t end_address = line_extractor.GetHexMaxU64(false, start_address); 1262 1263 // Parse out the space after the address. 1264 if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != ' ')) 1265 return Status( 1266 "malformed /proc/{pid}/maps entry, missing space after range"); 1267 1268 // Save the range. 1269 memory_region_info.GetRange().SetRangeBase(start_address); 1270 memory_region_info.GetRange().SetRangeEnd(end_address); 1271 1272 // Any memory region in /proc/{pid}/maps is by definition mapped into the 1273 // process. 1274 memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes); 1275 1276 // Parse out each permission entry. 1277 if (line_extractor.GetBytesLeft() < 4) 1278 return Status("malformed /proc/{pid}/maps entry, missing some portion of " 1279 "permissions"); 1280 1281 // Handle read permission. 1282 const char read_perm_char = line_extractor.GetChar(); 1283 if (read_perm_char == 'r') 1284 memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eYes); 1285 else if (read_perm_char == '-') 1286 memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1287 else 1288 return Status("unexpected /proc/{pid}/maps read permission char"); 1289 1290 // Handle write permission. 1291 const char write_perm_char = line_extractor.GetChar(); 1292 if (write_perm_char == 'w') 1293 memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eYes); 1294 else if (write_perm_char == '-') 1295 memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1296 else 1297 return Status("unexpected /proc/{pid}/maps write permission char"); 1298 1299 // Handle execute permission. 1300 const char exec_perm_char = line_extractor.GetChar(); 1301 if (exec_perm_char == 'x') 1302 memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eYes); 1303 else if (exec_perm_char == '-') 1304 memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1305 else 1306 return Status("unexpected /proc/{pid}/maps exec permission char"); 1307 1308 line_extractor.GetChar(); // Read the private bit 1309 line_extractor.SkipSpaces(); // Skip the separator 1310 line_extractor.GetHexMaxU64(false, 0); // Read the offset 1311 line_extractor.GetHexMaxU64(false, 0); // Read the major device number 1312 line_extractor.GetChar(); // Read the device id separator 1313 line_extractor.GetHexMaxU64(false, 0); // Read the major device number 1314 line_extractor.SkipSpaces(); // Skip the separator 1315 line_extractor.GetU64(0, 10); // Read the inode number 1316 1317 line_extractor.SkipSpaces(); 1318 const char *name = line_extractor.Peek(); 1319 if (name) 1320 memory_region_info.SetName(name); 1321 1322 return Status(); 1323 } 1324 1325 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr, 1326 MemoryRegionInfo &range_info) { 1327 // FIXME review that the final memory region returned extends to the end of 1328 // the virtual address space, 1329 // with no perms if it is not mapped. 1330 1331 // Use an approach that reads memory regions from /proc/{pid}/maps. Assume 1332 // proc maps entries are in ascending order. 1333 // FIXME assert if we find differently. 1334 1335 if (m_supports_mem_region == LazyBool::eLazyBoolNo) { 1336 // We're done. 1337 return Status("unsupported"); 1338 } 1339 1340 Status error = PopulateMemoryRegionCache(); 1341 if (error.Fail()) { 1342 return error; 1343 } 1344 1345 lldb::addr_t prev_base_address = 0; 1346 1347 // FIXME start by finding the last region that is <= target address using 1348 // binary search. Data is sorted. 1349 // There can be a ton of regions on pthreads apps with lots of threads. 1350 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end(); 1351 ++it) { 1352 MemoryRegionInfo &proc_entry_info = it->first; 1353 1354 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 1355 assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) && 1356 "descending /proc/pid/maps entries detected, unexpected"); 1357 prev_base_address = proc_entry_info.GetRange().GetRangeBase(); 1358 UNUSED_IF_ASSERT_DISABLED(prev_base_address); 1359 1360 // If the target address comes before this entry, indicate distance to next 1361 // region. 1362 if (load_addr < proc_entry_info.GetRange().GetRangeBase()) { 1363 range_info.GetRange().SetRangeBase(load_addr); 1364 range_info.GetRange().SetByteSize( 1365 proc_entry_info.GetRange().GetRangeBase() - load_addr); 1366 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1367 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1368 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1369 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1370 1371 return error; 1372 } else if (proc_entry_info.GetRange().Contains(load_addr)) { 1373 // The target address is within the memory region we're processing here. 1374 range_info = proc_entry_info; 1375 return error; 1376 } 1377 1378 // The target memory address comes somewhere after the region we just 1379 // parsed. 1380 } 1381 1382 // If we made it here, we didn't find an entry that contained the given 1383 // address. Return the load_addr as start and the amount of bytes betwwen 1384 // load address and the end of the memory as size. 1385 range_info.GetRange().SetRangeBase(load_addr); 1386 range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS); 1387 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1388 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1389 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1390 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1391 return error; 1392 } 1393 1394 Status NativeProcessLinux::PopulateMemoryRegionCache() { 1395 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1396 1397 // If our cache is empty, pull the latest. There should always be at least 1398 // one memory region if memory region handling is supported. 1399 if (!m_mem_region_cache.empty()) { 1400 LLDB_LOG(log, "reusing {0} cached memory region entries", 1401 m_mem_region_cache.size()); 1402 return Status(); 1403 } 1404 1405 auto BufferOrError = getProcFile(GetID(), "maps"); 1406 if (!BufferOrError) { 1407 m_supports_mem_region = LazyBool::eLazyBoolNo; 1408 return BufferOrError.getError(); 1409 } 1410 StringRef Rest = BufferOrError.get()->getBuffer(); 1411 while (! Rest.empty()) { 1412 StringRef Line; 1413 std::tie(Line, Rest) = Rest.split('\n'); 1414 MemoryRegionInfo info; 1415 const Status parse_error = 1416 ParseMemoryRegionInfoFromProcMapsLine(Line, info); 1417 if (parse_error.Fail()) { 1418 LLDB_LOG(log, "failed to parse proc maps line '{0}': {1}", Line, 1419 parse_error); 1420 m_supports_mem_region = LazyBool::eLazyBoolNo; 1421 return parse_error; 1422 } 1423 m_mem_region_cache.emplace_back( 1424 info, FileSpec(info.GetName().GetCString(), true)); 1425 } 1426 1427 if (m_mem_region_cache.empty()) { 1428 // No entries after attempting to read them. This shouldn't happen if 1429 // /proc/{pid}/maps is supported. Assume we don't support map entries via 1430 // procfs. 1431 m_supports_mem_region = LazyBool::eLazyBoolNo; 1432 LLDB_LOG(log, 1433 "failed to find any procfs maps entries, assuming no support " 1434 "for memory region metadata retrieval"); 1435 return Status("not supported"); 1436 } 1437 1438 LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps", 1439 m_mem_region_cache.size(), GetID()); 1440 1441 // We support memory retrieval, remember that. 1442 m_supports_mem_region = LazyBool::eLazyBoolYes; 1443 return Status(); 1444 } 1445 1446 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) { 1447 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1448 LLDB_LOG(log, "newBumpId={0}", newBumpId); 1449 LLDB_LOG(log, "clearing {0} entries from memory region cache", 1450 m_mem_region_cache.size()); 1451 m_mem_region_cache.clear(); 1452 } 1453 1454 Status NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, 1455 lldb::addr_t &addr) { 1456 // FIXME implementing this requires the equivalent of 1457 // InferiorCallPOSIX::InferiorCallMmap, which depends on functional ThreadPlans 1458 // working with Native*Protocol. 1459 #if 1 1460 return Status("not implemented yet"); 1461 #else 1462 addr = LLDB_INVALID_ADDRESS; 1463 1464 unsigned prot = 0; 1465 if (permissions & lldb::ePermissionsReadable) 1466 prot |= eMmapProtRead; 1467 if (permissions & lldb::ePermissionsWritable) 1468 prot |= eMmapProtWrite; 1469 if (permissions & lldb::ePermissionsExecutable) 1470 prot |= eMmapProtExec; 1471 1472 // TODO implement this directly in NativeProcessLinux 1473 // (and lift to NativeProcessPOSIX if/when that class is refactored out). 1474 if (InferiorCallMmap(this, addr, 0, size, prot, 1475 eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { 1476 m_addr_to_mmap_size[addr] = size; 1477 return Status(); 1478 } else { 1479 addr = LLDB_INVALID_ADDRESS; 1480 return Status("unable to allocate %" PRIu64 1481 " bytes of memory with permissions %s", 1482 size, GetPermissionsAsCString(permissions)); 1483 } 1484 #endif 1485 } 1486 1487 Status NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) { 1488 // FIXME see comments in AllocateMemory - required lower-level 1489 // bits not in place yet (ThreadPlans) 1490 return Status("not implemented"); 1491 } 1492 1493 lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress() { 1494 // punt on this for now 1495 return LLDB_INVALID_ADDRESS; 1496 } 1497 1498 size_t NativeProcessLinux::UpdateThreads() { 1499 // The NativeProcessLinux monitoring threads are always up to date with 1500 // respect to thread state and they keep the thread list populated properly. 1501 // All this method needs to do is return the thread count. 1502 return m_threads.size(); 1503 } 1504 1505 Status NativeProcessLinux::GetSoftwareBreakpointPCOffset( 1506 uint32_t &actual_opcode_size) { 1507 // FIXME put this behind a breakpoint protocol class that can be 1508 // set per architecture. Need ARM, MIPS support here. 1509 static const uint8_t g_i386_opcode[] = {0xCC}; 1510 static const uint8_t g_s390x_opcode[] = {0x00, 0x01}; 1511 1512 switch (m_arch.GetMachine()) { 1513 case llvm::Triple::x86: 1514 case llvm::Triple::x86_64: 1515 actual_opcode_size = static_cast<uint32_t>(sizeof(g_i386_opcode)); 1516 return Status(); 1517 1518 case llvm::Triple::systemz: 1519 actual_opcode_size = static_cast<uint32_t>(sizeof(g_s390x_opcode)); 1520 return Status(); 1521 1522 case llvm::Triple::arm: 1523 case llvm::Triple::aarch64: 1524 case llvm::Triple::mips64: 1525 case llvm::Triple::mips64el: 1526 case llvm::Triple::mips: 1527 case llvm::Triple::mipsel: 1528 case llvm::Triple::ppc64le: 1529 // On these architectures the PC don't get updated for breakpoint hits 1530 actual_opcode_size = 0; 1531 return Status(); 1532 1533 default: 1534 assert(false && "CPU type not supported!"); 1535 return Status("CPU type not supported"); 1536 } 1537 } 1538 1539 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size, 1540 bool hardware) { 1541 if (hardware) 1542 return SetHardwareBreakpoint(addr, size); 1543 else 1544 return SetSoftwareBreakpoint(addr, size); 1545 } 1546 1547 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) { 1548 if (hardware) 1549 return RemoveHardwareBreakpoint(addr); 1550 else 1551 return NativeProcessProtocol::RemoveBreakpoint(addr); 1552 } 1553 1554 Status NativeProcessLinux::GetSoftwareBreakpointTrapOpcode( 1555 size_t trap_opcode_size_hint, size_t &actual_opcode_size, 1556 const uint8_t *&trap_opcode_bytes) { 1557 // FIXME put this behind a breakpoint protocol class that can be set per 1558 // architecture. Need MIPS support here. 1559 static const uint8_t g_aarch64_opcode[] = {0x00, 0x00, 0x20, 0xd4}; 1560 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 1561 // linux kernel does otherwise. 1562 static const uint8_t g_arm_breakpoint_opcode[] = {0xf0, 0x01, 0xf0, 0xe7}; 1563 static const uint8_t g_i386_opcode[] = {0xCC}; 1564 static const uint8_t g_mips64_opcode[] = {0x00, 0x00, 0x00, 0x0d}; 1565 static const uint8_t g_mips64el_opcode[] = {0x0d, 0x00, 0x00, 0x00}; 1566 static const uint8_t g_s390x_opcode[] = {0x00, 0x01}; 1567 static const uint8_t g_thumb_breakpoint_opcode[] = {0x01, 0xde}; 1568 static const uint8_t g_ppc64le_opcode[] = {0x08, 0x00, 0xe0, 0x7f}; // trap 1569 1570 switch (m_arch.GetMachine()) { 1571 case llvm::Triple::aarch64: 1572 trap_opcode_bytes = g_aarch64_opcode; 1573 actual_opcode_size = sizeof(g_aarch64_opcode); 1574 return Status(); 1575 1576 case llvm::Triple::arm: 1577 switch (trap_opcode_size_hint) { 1578 case 2: 1579 trap_opcode_bytes = g_thumb_breakpoint_opcode; 1580 actual_opcode_size = sizeof(g_thumb_breakpoint_opcode); 1581 return Status(); 1582 case 4: 1583 trap_opcode_bytes = g_arm_breakpoint_opcode; 1584 actual_opcode_size = sizeof(g_arm_breakpoint_opcode); 1585 return Status(); 1586 default: 1587 assert(false && "Unrecognised trap opcode size hint!"); 1588 return Status("Unrecognised trap opcode size hint!"); 1589 } 1590 1591 case llvm::Triple::x86: 1592 case llvm::Triple::x86_64: 1593 trap_opcode_bytes = g_i386_opcode; 1594 actual_opcode_size = sizeof(g_i386_opcode); 1595 return Status(); 1596 1597 case llvm::Triple::mips: 1598 case llvm::Triple::mips64: 1599 trap_opcode_bytes = g_mips64_opcode; 1600 actual_opcode_size = sizeof(g_mips64_opcode); 1601 return Status(); 1602 1603 case llvm::Triple::mipsel: 1604 case llvm::Triple::mips64el: 1605 trap_opcode_bytes = g_mips64el_opcode; 1606 actual_opcode_size = sizeof(g_mips64el_opcode); 1607 return Status(); 1608 1609 case llvm::Triple::systemz: 1610 trap_opcode_bytes = g_s390x_opcode; 1611 actual_opcode_size = sizeof(g_s390x_opcode); 1612 return Status(); 1613 1614 case llvm::Triple::ppc64le: 1615 trap_opcode_bytes = g_ppc64le_opcode; 1616 actual_opcode_size = sizeof(g_ppc64le_opcode); 1617 return Status(); 1618 1619 default: 1620 assert(false && "CPU type not supported!"); 1621 return Status("CPU type not supported"); 1622 } 1623 } 1624 1625 #if 0 1626 ProcessMessage::CrashReason 1627 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info) 1628 { 1629 ProcessMessage::CrashReason reason; 1630 assert(info->si_signo == SIGSEGV); 1631 1632 reason = ProcessMessage::eInvalidCrashReason; 1633 1634 switch (info->si_code) 1635 { 1636 default: 1637 assert(false && "unexpected si_code for SIGSEGV"); 1638 break; 1639 case SI_KERNEL: 1640 // Linux will occasionally send spurious SI_KERNEL codes. (this is 1641 // poorly documented in sigaction) One way to get this is via unaligned 1642 // SIMD loads. 1643 reason = ProcessMessage::eInvalidAddress; // for lack of anything better 1644 break; 1645 case SEGV_MAPERR: 1646 reason = ProcessMessage::eInvalidAddress; 1647 break; 1648 case SEGV_ACCERR: 1649 reason = ProcessMessage::ePrivilegedAddress; 1650 break; 1651 } 1652 1653 return reason; 1654 } 1655 #endif 1656 1657 #if 0 1658 ProcessMessage::CrashReason 1659 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info) 1660 { 1661 ProcessMessage::CrashReason reason; 1662 assert(info->si_signo == SIGILL); 1663 1664 reason = ProcessMessage::eInvalidCrashReason; 1665 1666 switch (info->si_code) 1667 { 1668 default: 1669 assert(false && "unexpected si_code for SIGILL"); 1670 break; 1671 case ILL_ILLOPC: 1672 reason = ProcessMessage::eIllegalOpcode; 1673 break; 1674 case ILL_ILLOPN: 1675 reason = ProcessMessage::eIllegalOperand; 1676 break; 1677 case ILL_ILLADR: 1678 reason = ProcessMessage::eIllegalAddressingMode; 1679 break; 1680 case ILL_ILLTRP: 1681 reason = ProcessMessage::eIllegalTrap; 1682 break; 1683 case ILL_PRVOPC: 1684 reason = ProcessMessage::ePrivilegedOpcode; 1685 break; 1686 case ILL_PRVREG: 1687 reason = ProcessMessage::ePrivilegedRegister; 1688 break; 1689 case ILL_COPROC: 1690 reason = ProcessMessage::eCoprocessorError; 1691 break; 1692 case ILL_BADSTK: 1693 reason = ProcessMessage::eInternalStackError; 1694 break; 1695 } 1696 1697 return reason; 1698 } 1699 #endif 1700 1701 #if 0 1702 ProcessMessage::CrashReason 1703 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info) 1704 { 1705 ProcessMessage::CrashReason reason; 1706 assert(info->si_signo == SIGFPE); 1707 1708 reason = ProcessMessage::eInvalidCrashReason; 1709 1710 switch (info->si_code) 1711 { 1712 default: 1713 assert(false && "unexpected si_code for SIGFPE"); 1714 break; 1715 case FPE_INTDIV: 1716 reason = ProcessMessage::eIntegerDivideByZero; 1717 break; 1718 case FPE_INTOVF: 1719 reason = ProcessMessage::eIntegerOverflow; 1720 break; 1721 case FPE_FLTDIV: 1722 reason = ProcessMessage::eFloatDivideByZero; 1723 break; 1724 case FPE_FLTOVF: 1725 reason = ProcessMessage::eFloatOverflow; 1726 break; 1727 case FPE_FLTUND: 1728 reason = ProcessMessage::eFloatUnderflow; 1729 break; 1730 case FPE_FLTRES: 1731 reason = ProcessMessage::eFloatInexactResult; 1732 break; 1733 case FPE_FLTINV: 1734 reason = ProcessMessage::eFloatInvalidOperation; 1735 break; 1736 case FPE_FLTSUB: 1737 reason = ProcessMessage::eFloatSubscriptRange; 1738 break; 1739 } 1740 1741 return reason; 1742 } 1743 #endif 1744 1745 #if 0 1746 ProcessMessage::CrashReason 1747 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info) 1748 { 1749 ProcessMessage::CrashReason reason; 1750 assert(info->si_signo == SIGBUS); 1751 1752 reason = ProcessMessage::eInvalidCrashReason; 1753 1754 switch (info->si_code) 1755 { 1756 default: 1757 assert(false && "unexpected si_code for SIGBUS"); 1758 break; 1759 case BUS_ADRALN: 1760 reason = ProcessMessage::eIllegalAlignment; 1761 break; 1762 case BUS_ADRERR: 1763 reason = ProcessMessage::eIllegalAddress; 1764 break; 1765 case BUS_OBJERR: 1766 reason = ProcessMessage::eHardwareError; 1767 break; 1768 } 1769 1770 return reason; 1771 } 1772 #endif 1773 1774 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size, 1775 size_t &bytes_read) { 1776 if (ProcessVmReadvSupported()) { 1777 // The process_vm_readv path is about 50 times faster than ptrace api. We 1778 // want to use this syscall if it is supported. 1779 1780 const ::pid_t pid = GetID(); 1781 1782 struct iovec local_iov, remote_iov; 1783 local_iov.iov_base = buf; 1784 local_iov.iov_len = size; 1785 remote_iov.iov_base = reinterpret_cast<void *>(addr); 1786 remote_iov.iov_len = size; 1787 1788 bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0); 1789 const bool success = bytes_read == size; 1790 1791 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1792 LLDB_LOG(log, 1793 "using process_vm_readv to read {0} bytes from inferior " 1794 "address {1:x}: {2}", 1795 size, addr, success ? "Success" : llvm::sys::StrError(errno)); 1796 1797 if (success) 1798 return Status(); 1799 // else the call failed for some reason, let's retry the read using ptrace 1800 // api. 1801 } 1802 1803 unsigned char *dst = static_cast<unsigned char *>(buf); 1804 size_t remainder; 1805 long data; 1806 1807 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1808 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1809 1810 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { 1811 Status error = NativeProcessLinux::PtraceWrapper( 1812 PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data); 1813 if (error.Fail()) 1814 return error; 1815 1816 remainder = size - bytes_read; 1817 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1818 1819 // Copy the data into our buffer 1820 memcpy(dst, &data, remainder); 1821 1822 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1823 addr += k_ptrace_word_size; 1824 dst += k_ptrace_word_size; 1825 } 1826 return Status(); 1827 } 1828 1829 Status NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, 1830 size_t size, 1831 size_t &bytes_read) { 1832 Status error = ReadMemory(addr, buf, size, bytes_read); 1833 if (error.Fail()) 1834 return error; 1835 return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size); 1836 } 1837 1838 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, 1839 size_t size, size_t &bytes_written) { 1840 const unsigned char *src = static_cast<const unsigned char *>(buf); 1841 size_t remainder; 1842 Status error; 1843 1844 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1845 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1846 1847 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { 1848 remainder = size - bytes_written; 1849 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1850 1851 if (remainder == k_ptrace_word_size) { 1852 unsigned long data = 0; 1853 memcpy(&data, src, k_ptrace_word_size); 1854 1855 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1856 error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), 1857 (void *)addr, (void *)data); 1858 if (error.Fail()) 1859 return error; 1860 } else { 1861 unsigned char buff[8]; 1862 size_t bytes_read; 1863 error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read); 1864 if (error.Fail()) 1865 return error; 1866 1867 memcpy(buff, src, remainder); 1868 1869 size_t bytes_written_rec; 1870 error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec); 1871 if (error.Fail()) 1872 return error; 1873 1874 LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src, 1875 *(unsigned long *)buff); 1876 } 1877 1878 addr += k_ptrace_word_size; 1879 src += k_ptrace_word_size; 1880 } 1881 return error; 1882 } 1883 1884 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) { 1885 return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); 1886 } 1887 1888 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid, 1889 unsigned long *message) { 1890 return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); 1891 } 1892 1893 Status NativeProcessLinux::Detach(lldb::tid_t tid) { 1894 if (tid == LLDB_INVALID_THREAD_ID) 1895 return Status(); 1896 1897 return PtraceWrapper(PTRACE_DETACH, tid); 1898 } 1899 1900 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) { 1901 for (const auto &thread : m_threads) { 1902 assert(thread && "thread list should not contain NULL threads"); 1903 if (thread->GetID() == thread_id) { 1904 // We have this thread. 1905 return true; 1906 } 1907 } 1908 1909 // We don't have this thread. 1910 return false; 1911 } 1912 1913 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) { 1914 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1915 LLDB_LOG(log, "tid: {0})", thread_id); 1916 1917 bool found = false; 1918 for (auto it = m_threads.begin(); it != m_threads.end(); ++it) { 1919 if (*it && ((*it)->GetID() == thread_id)) { 1920 m_threads.erase(it); 1921 found = true; 1922 break; 1923 } 1924 } 1925 1926 if (found) 1927 StopTracingForThread(thread_id); 1928 SignalIfAllThreadsStopped(); 1929 return found; 1930 } 1931 1932 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id) { 1933 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD)); 1934 LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id); 1935 1936 assert(!HasThreadNoLock(thread_id) && 1937 "attempted to add a thread by id that already exists"); 1938 1939 // If this is the first thread, save it as the current thread 1940 if (m_threads.empty()) 1941 SetCurrentThreadID(thread_id); 1942 1943 m_threads.push_back(llvm::make_unique<NativeThreadLinux>(*this, thread_id)); 1944 1945 if (m_pt_proces_trace_id != LLDB_INVALID_UID) { 1946 auto traceMonitor = ProcessorTraceMonitor::Create( 1947 GetID(), thread_id, m_pt_process_trace_config, true); 1948 if (traceMonitor) { 1949 m_pt_traced_thread_group.insert(thread_id); 1950 m_processor_trace_monitor.insert( 1951 std::make_pair(thread_id, std::move(*traceMonitor))); 1952 } else { 1953 LLDB_LOG(log, "failed to start trace on thread {0}", thread_id); 1954 Status error(traceMonitor.takeError()); 1955 LLDB_LOG(log, "error {0}", error); 1956 } 1957 } 1958 1959 return static_cast<NativeThreadLinux &>(*m_threads.back()); 1960 } 1961 1962 Status 1963 NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread) { 1964 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 1965 1966 Status error; 1967 1968 // Find out the size of a breakpoint (might depend on where we are in the 1969 // code). 1970 NativeRegisterContext &context = thread.GetRegisterContext(); 1971 1972 uint32_t breakpoint_size = 0; 1973 error = GetSoftwareBreakpointPCOffset(breakpoint_size); 1974 if (error.Fail()) { 1975 LLDB_LOG(log, "GetBreakpointSize() failed: {0}", error); 1976 return error; 1977 } else 1978 LLDB_LOG(log, "breakpoint size: {0}", breakpoint_size); 1979 1980 // First try probing for a breakpoint at a software breakpoint location: PC - 1981 // breakpoint size. 1982 const lldb::addr_t initial_pc_addr = context.GetPCfromBreakpointLocation(); 1983 lldb::addr_t breakpoint_addr = initial_pc_addr; 1984 if (breakpoint_size > 0) { 1985 // Do not allow breakpoint probe to wrap around. 1986 if (breakpoint_addr >= breakpoint_size) 1987 breakpoint_addr -= breakpoint_size; 1988 } 1989 1990 // Check if we stopped because of a breakpoint. 1991 NativeBreakpointSP breakpoint_sp; 1992 error = m_breakpoint_list.GetBreakpoint(breakpoint_addr, breakpoint_sp); 1993 if (!error.Success() || !breakpoint_sp) { 1994 // We didn't find one at a software probe location. Nothing to do. 1995 LLDB_LOG(log, 1996 "pid {0} no lldb breakpoint found at current pc with " 1997 "adjustment: {1}", 1998 GetID(), breakpoint_addr); 1999 return Status(); 2000 } 2001 2002 // If the breakpoint is not a software breakpoint, nothing to do. 2003 if (!breakpoint_sp->IsSoftwareBreakpoint()) { 2004 LLDB_LOG( 2005 log, 2006 "pid {0} breakpoint found at {1:x}, not software, nothing to adjust", 2007 GetID(), breakpoint_addr); 2008 return Status(); 2009 } 2010 2011 // 2012 // We have a software breakpoint and need to adjust the PC. 2013 // 2014 2015 // Sanity check. 2016 if (breakpoint_size == 0) { 2017 // Nothing to do! How did we get here? 2018 LLDB_LOG(log, 2019 "pid {0} breakpoint found at {1:x}, it is software, but the " 2020 "size is zero, nothing to do (unexpected)", 2021 GetID(), breakpoint_addr); 2022 return Status(); 2023 } 2024 2025 // Change the program counter. 2026 LLDB_LOG(log, "pid {0} tid {1}: changing PC from {2:x} to {3:x}", GetID(), 2027 thread.GetID(), initial_pc_addr, breakpoint_addr); 2028 2029 error = context.SetPC(breakpoint_addr); 2030 if (error.Fail()) { 2031 LLDB_LOG(log, "pid {0} tid {1}: failed to set PC: {2}", GetID(), 2032 thread.GetID(), error); 2033 return error; 2034 } 2035 2036 return error; 2037 } 2038 2039 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path, 2040 FileSpec &file_spec) { 2041 Status error = PopulateMemoryRegionCache(); 2042 if (error.Fail()) 2043 return error; 2044 2045 FileSpec module_file_spec(module_path, true); 2046 2047 file_spec.Clear(); 2048 for (const auto &it : m_mem_region_cache) { 2049 if (it.second.GetFilename() == module_file_spec.GetFilename()) { 2050 file_spec = it.second; 2051 return Status(); 2052 } 2053 } 2054 return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 2055 module_file_spec.GetFilename().AsCString(), GetID()); 2056 } 2057 2058 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name, 2059 lldb::addr_t &load_addr) { 2060 load_addr = LLDB_INVALID_ADDRESS; 2061 Status error = PopulateMemoryRegionCache(); 2062 if (error.Fail()) 2063 return error; 2064 2065 FileSpec file(file_name, false); 2066 for (const auto &it : m_mem_region_cache) { 2067 if (it.second == file) { 2068 load_addr = it.first.GetRange().GetRangeBase(); 2069 return Status(); 2070 } 2071 } 2072 return Status("No load address found for specified file."); 2073 } 2074 2075 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) { 2076 return static_cast<NativeThreadLinux *>( 2077 NativeProcessProtocol::GetThreadByID(tid)); 2078 } 2079 2080 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, 2081 lldb::StateType state, int signo) { 2082 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2083 LLDB_LOG(log, "tid: {0}", thread.GetID()); 2084 2085 // Before we do the resume below, first check if we have a pending stop 2086 // notification that is currently waiting for all threads to stop. This is 2087 // potentially a buggy situation since we're ostensibly waiting for threads 2088 // to stop before we send out the pending notification, and here we are 2089 // resuming one before we send out the pending stop notification. 2090 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 2091 LLDB_LOG(log, 2092 "about to resume tid {0} per explicit request but we have a " 2093 "pending stop notification (tid {1}) that is actively " 2094 "waiting for this thread to stop. Valid sequence of events?", 2095 thread.GetID(), m_pending_notification_tid); 2096 } 2097 2098 // Request a resume. We expect this to be synchronous and the system to 2099 // reflect it is running after this completes. 2100 switch (state) { 2101 case eStateRunning: { 2102 const auto resume_result = thread.Resume(signo); 2103 if (resume_result.Success()) 2104 SetState(eStateRunning, true); 2105 return resume_result; 2106 } 2107 case eStateStepping: { 2108 const auto step_result = thread.SingleStep(signo); 2109 if (step_result.Success()) 2110 SetState(eStateRunning, true); 2111 return step_result; 2112 } 2113 default: 2114 LLDB_LOG(log, "Unhandled state {0}.", state); 2115 llvm_unreachable("Unhandled state for resume"); 2116 } 2117 } 2118 2119 //===----------------------------------------------------------------------===// 2120 2121 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) { 2122 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2123 LLDB_LOG(log, "about to process event: (triggering_tid: {0})", 2124 triggering_tid); 2125 2126 m_pending_notification_tid = triggering_tid; 2127 2128 // Request a stop for all the thread stops that need to be stopped and are 2129 // not already known to be stopped. 2130 for (const auto &thread : m_threads) { 2131 if (StateIsRunningState(thread->GetState())) 2132 static_cast<NativeThreadLinux *>(thread.get())->RequestStop(); 2133 } 2134 2135 SignalIfAllThreadsStopped(); 2136 LLDB_LOG(log, "event processing done"); 2137 } 2138 2139 void NativeProcessLinux::SignalIfAllThreadsStopped() { 2140 if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) 2141 return; // No pending notification. Nothing to do. 2142 2143 for (const auto &thread_sp : m_threads) { 2144 if (StateIsRunningState(thread_sp->GetState())) 2145 return; // Some threads are still running. Don't signal yet. 2146 } 2147 2148 // We have a pending notification and all threads have stopped. 2149 Log *log( 2150 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 2151 2152 // Clear any temporary breakpoints we used to implement software single 2153 // stepping. 2154 for (const auto &thread_info : m_threads_stepping_with_breakpoint) { 2155 Status error = RemoveBreakpoint(thread_info.second); 2156 if (error.Fail()) 2157 LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}", 2158 thread_info.first, error); 2159 } 2160 m_threads_stepping_with_breakpoint.clear(); 2161 2162 // Notify the delegate about the stop 2163 SetCurrentThreadID(m_pending_notification_tid); 2164 SetState(StateType::eStateStopped, true); 2165 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 2166 } 2167 2168 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) { 2169 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2170 LLDB_LOG(log, "tid: {0}", thread.GetID()); 2171 2172 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && 2173 StateIsRunningState(thread.GetState())) { 2174 // We will need to wait for this new thread to stop as well before firing 2175 // the notification. 2176 thread.RequestStop(); 2177 } 2178 } 2179 2180 void NativeProcessLinux::SigchldHandler() { 2181 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 2182 // Process all pending waitpid notifications. 2183 while (true) { 2184 int status = -1; 2185 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, -1, &status, 2186 __WALL | __WNOTHREAD | WNOHANG); 2187 2188 if (wait_pid == 0) 2189 break; // We are done. 2190 2191 if (wait_pid == -1) { 2192 Status error(errno, eErrorTypePOSIX); 2193 LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error); 2194 break; 2195 } 2196 2197 WaitStatus wait_status = WaitStatus::Decode(status); 2198 bool exited = wait_status.type == WaitStatus::Exit || 2199 (wait_status.type == WaitStatus::Signal && 2200 wait_pid == static_cast<::pid_t>(GetID())); 2201 2202 LLDB_LOG( 2203 log, 2204 "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}", 2205 wait_pid, wait_status, exited); 2206 2207 MonitorCallback(wait_pid, exited, wait_status); 2208 } 2209 } 2210 2211 // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets 2212 // errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) 2213 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, 2214 void *data, size_t data_size, 2215 long *result) { 2216 Status error; 2217 long int ret; 2218 2219 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2220 2221 PtraceDisplayBytes(req, data, data_size); 2222 2223 errno = 0; 2224 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 2225 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 2226 *(unsigned int *)addr, data); 2227 else 2228 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 2229 addr, data); 2230 2231 if (ret == -1) 2232 error.SetErrorToErrno(); 2233 2234 if (result) 2235 *result = ret; 2236 2237 LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data, 2238 data_size, ret); 2239 2240 PtraceDisplayBytes(req, data, data_size); 2241 2242 if (error.Fail()) 2243 LLDB_LOG(log, "ptrace() failed: {0}", error); 2244 2245 return error; 2246 } 2247 2248 llvm::Expected<ProcessorTraceMonitor &> 2249 NativeProcessLinux::LookupProcessorTraceInstance(lldb::user_id_t traceid, 2250 lldb::tid_t thread) { 2251 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2252 if (thread == LLDB_INVALID_THREAD_ID && traceid == m_pt_proces_trace_id) { 2253 LLDB_LOG(log, "thread not specified: {0}", traceid); 2254 return Status("tracing not active thread not specified").ToError(); 2255 } 2256 2257 for (auto& iter : m_processor_trace_monitor) { 2258 if (traceid == iter.second->GetTraceID() && 2259 (thread == iter.first || thread == LLDB_INVALID_THREAD_ID)) 2260 return *(iter.second); 2261 } 2262 2263 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 2264 return Status("tracing not active for this thread").ToError(); 2265 } 2266 2267 Status NativeProcessLinux::GetMetaData(lldb::user_id_t traceid, 2268 lldb::tid_t thread, 2269 llvm::MutableArrayRef<uint8_t> &buffer, 2270 size_t offset) { 2271 TraceOptions trace_options; 2272 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2273 Status error; 2274 2275 LLDB_LOG(log, "traceid {0}", traceid); 2276 2277 auto perf_monitor = LookupProcessorTraceInstance(traceid, thread); 2278 if (!perf_monitor) { 2279 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 2280 buffer = buffer.slice(buffer.size()); 2281 error = perf_monitor.takeError(); 2282 return error; 2283 } 2284 return (*perf_monitor).ReadPerfTraceData(buffer, offset); 2285 } 2286 2287 Status NativeProcessLinux::GetData(lldb::user_id_t traceid, lldb::tid_t thread, 2288 llvm::MutableArrayRef<uint8_t> &buffer, 2289 size_t offset) { 2290 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2291 Status error; 2292 2293 LLDB_LOG(log, "traceid {0}", traceid); 2294 2295 auto perf_monitor = LookupProcessorTraceInstance(traceid, thread); 2296 if (!perf_monitor) { 2297 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 2298 buffer = buffer.slice(buffer.size()); 2299 error = perf_monitor.takeError(); 2300 return error; 2301 } 2302 return (*perf_monitor).ReadPerfTraceAux(buffer, offset); 2303 } 2304 2305 Status NativeProcessLinux::GetTraceConfig(lldb::user_id_t traceid, 2306 TraceOptions &config) { 2307 Status error; 2308 if (config.getThreadID() == LLDB_INVALID_THREAD_ID && 2309 m_pt_proces_trace_id == traceid) { 2310 if (m_pt_proces_trace_id == LLDB_INVALID_UID) { 2311 error.SetErrorString("tracing not active for this process"); 2312 return error; 2313 } 2314 config = m_pt_process_trace_config; 2315 } else { 2316 auto perf_monitor = 2317 LookupProcessorTraceInstance(traceid, config.getThreadID()); 2318 if (!perf_monitor) { 2319 error = perf_monitor.takeError(); 2320 return error; 2321 } 2322 error = (*perf_monitor).GetTraceConfig(config); 2323 } 2324 return error; 2325 } 2326 2327 lldb::user_id_t 2328 NativeProcessLinux::StartTraceGroup(const TraceOptions &config, 2329 Status &error) { 2330 2331 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2332 if (config.getType() != TraceType::eTraceTypeProcessorTrace) 2333 return LLDB_INVALID_UID; 2334 2335 if (m_pt_proces_trace_id != LLDB_INVALID_UID) { 2336 error.SetErrorString("tracing already active on this process"); 2337 return m_pt_proces_trace_id; 2338 } 2339 2340 for (const auto &thread_sp : m_threads) { 2341 if (auto traceInstance = ProcessorTraceMonitor::Create( 2342 GetID(), thread_sp->GetID(), config, true)) { 2343 m_pt_traced_thread_group.insert(thread_sp->GetID()); 2344 m_processor_trace_monitor.insert( 2345 std::make_pair(thread_sp->GetID(), std::move(*traceInstance))); 2346 } 2347 } 2348 2349 m_pt_process_trace_config = config; 2350 error = ProcessorTraceMonitor::GetCPUType(m_pt_process_trace_config); 2351 2352 // Trace on Complete process will have traceid of 0 2353 m_pt_proces_trace_id = 0; 2354 2355 LLDB_LOG(log, "Process Trace ID {0}", m_pt_proces_trace_id); 2356 return m_pt_proces_trace_id; 2357 } 2358 2359 lldb::user_id_t NativeProcessLinux::StartTrace(const TraceOptions &config, 2360 Status &error) { 2361 if (config.getType() != TraceType::eTraceTypeProcessorTrace) 2362 return NativeProcessProtocol::StartTrace(config, error); 2363 2364 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2365 2366 lldb::tid_t threadid = config.getThreadID(); 2367 2368 if (threadid == LLDB_INVALID_THREAD_ID) 2369 return StartTraceGroup(config, error); 2370 2371 auto thread_sp = GetThreadByID(threadid); 2372 if (!thread_sp) { 2373 // Thread not tracked by lldb so don't trace. 2374 error.SetErrorString("invalid thread id"); 2375 return LLDB_INVALID_UID; 2376 } 2377 2378 const auto &iter = m_processor_trace_monitor.find(threadid); 2379 if (iter != m_processor_trace_monitor.end()) { 2380 LLDB_LOG(log, "Thread already being traced"); 2381 error.SetErrorString("tracing already active on this thread"); 2382 return LLDB_INVALID_UID; 2383 } 2384 2385 auto traceMonitor = 2386 ProcessorTraceMonitor::Create(GetID(), threadid, config, false); 2387 if (!traceMonitor) { 2388 error = traceMonitor.takeError(); 2389 LLDB_LOG(log, "error {0}", error); 2390 return LLDB_INVALID_UID; 2391 } 2392 lldb::user_id_t ret_trace_id = (*traceMonitor)->GetTraceID(); 2393 m_processor_trace_monitor.insert( 2394 std::make_pair(threadid, std::move(*traceMonitor))); 2395 return ret_trace_id; 2396 } 2397 2398 Status NativeProcessLinux::StopTracingForThread(lldb::tid_t thread) { 2399 Status error; 2400 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2401 LLDB_LOG(log, "Thread {0}", thread); 2402 2403 const auto& iter = m_processor_trace_monitor.find(thread); 2404 if (iter == m_processor_trace_monitor.end()) { 2405 error.SetErrorString("tracing not active for this thread"); 2406 return error; 2407 } 2408 2409 if (iter->second->GetTraceID() == m_pt_proces_trace_id) { 2410 // traceid maps to the whole process so we have to erase it from the thread 2411 // group. 2412 LLDB_LOG(log, "traceid maps to process"); 2413 m_pt_traced_thread_group.erase(thread); 2414 } 2415 m_processor_trace_monitor.erase(iter); 2416 2417 return error; 2418 } 2419 2420 Status NativeProcessLinux::StopTrace(lldb::user_id_t traceid, 2421 lldb::tid_t thread) { 2422 Status error; 2423 2424 TraceOptions trace_options; 2425 trace_options.setThreadID(thread); 2426 error = NativeProcessLinux::GetTraceConfig(traceid, trace_options); 2427 2428 if (error.Fail()) 2429 return error; 2430 2431 switch (trace_options.getType()) { 2432 case lldb::TraceType::eTraceTypeProcessorTrace: 2433 if (traceid == m_pt_proces_trace_id && 2434 thread == LLDB_INVALID_THREAD_ID) 2435 StopProcessorTracingOnProcess(); 2436 else 2437 error = StopProcessorTracingOnThread(traceid, thread); 2438 break; 2439 default: 2440 error.SetErrorString("trace not supported"); 2441 break; 2442 } 2443 2444 return error; 2445 } 2446 2447 void NativeProcessLinux::StopProcessorTracingOnProcess() { 2448 for (auto thread_id_iter : m_pt_traced_thread_group) 2449 m_processor_trace_monitor.erase(thread_id_iter); 2450 m_pt_traced_thread_group.clear(); 2451 m_pt_proces_trace_id = LLDB_INVALID_UID; 2452 } 2453 2454 Status NativeProcessLinux::StopProcessorTracingOnThread(lldb::user_id_t traceid, 2455 lldb::tid_t thread) { 2456 Status error; 2457 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2458 2459 if (thread == LLDB_INVALID_THREAD_ID) { 2460 for (auto& iter : m_processor_trace_monitor) { 2461 if (iter.second->GetTraceID() == traceid) { 2462 // Stopping a trace instance for an individual thread hence there will 2463 // only be one traceid that can match. 2464 m_processor_trace_monitor.erase(iter.first); 2465 return error; 2466 } 2467 LLDB_LOG(log, "Trace ID {0}", iter.second->GetTraceID()); 2468 } 2469 2470 LLDB_LOG(log, "Invalid TraceID"); 2471 error.SetErrorString("invalid trace id"); 2472 return error; 2473 } 2474 2475 // thread is specified so we can use find function on the map. 2476 const auto& iter = m_processor_trace_monitor.find(thread); 2477 if (iter == m_processor_trace_monitor.end()) { 2478 // thread not found in our map. 2479 LLDB_LOG(log, "thread not being traced"); 2480 error.SetErrorString("tracing not active for this thread"); 2481 return error; 2482 } 2483 if (iter->second->GetTraceID() != traceid) { 2484 // traceid did not match so it has to be invalid. 2485 LLDB_LOG(log, "Invalid TraceID"); 2486 error.SetErrorString("invalid trace id"); 2487 return error; 2488 } 2489 2490 LLDB_LOG(log, "UID - {0} , Thread -{1}", traceid, thread); 2491 2492 if (traceid == m_pt_proces_trace_id) { 2493 // traceid maps to the whole process so we have to erase it from the thread 2494 // group. 2495 LLDB_LOG(log, "traceid maps to process"); 2496 m_pt_traced_thread_group.erase(thread); 2497 } 2498 m_processor_trace_monitor.erase(iter); 2499 2500 return error; 2501 } 2502