1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "NativeProcessLinux.h"
11 
12 // C Includes
13 #include <errno.h>
14 #include <stdint.h>
15 #include <string.h>
16 #include <unistd.h>
17 
18 // C++ Includes
19 #include <fstream>
20 #include <mutex>
21 #include <sstream>
22 #include <string>
23 #include <unordered_map>
24 
25 // Other libraries and framework includes
26 #include "lldb/Core/EmulateInstruction.h"
27 #include "lldb/Core/ModuleSpec.h"
28 #include "lldb/Core/RegisterValue.h"
29 #include "lldb/Core/State.h"
30 #include "lldb/Host/Host.h"
31 #include "lldb/Host/HostProcess.h"
32 #include "lldb/Host/PseudoTerminal.h"
33 #include "lldb/Host/ThreadLauncher.h"
34 #include "lldb/Host/common/NativeBreakpoint.h"
35 #include "lldb/Host/common/NativeRegisterContext.h"
36 #include "lldb/Host/linux/Ptrace.h"
37 #include "lldb/Host/linux/Uio.h"
38 #include "lldb/Host/posix/ProcessLauncherPosixFork.h"
39 #include "lldb/Symbol/ObjectFile.h"
40 #include "lldb/Target/Process.h"
41 #include "lldb/Target/ProcessLaunchInfo.h"
42 #include "lldb/Target/Target.h"
43 #include "lldb/Utility/LLDBAssert.h"
44 #include "lldb/Utility/Status.h"
45 #include "lldb/Utility/StringExtractor.h"
46 #include "llvm/Support/Errno.h"
47 #include "llvm/Support/FileSystem.h"
48 #include "llvm/Support/Threading.h"
49 
50 #include "NativeThreadLinux.h"
51 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
52 #include "Procfs.h"
53 
54 #include <linux/unistd.h>
55 #include <sys/socket.h>
56 #include <sys/syscall.h>
57 #include <sys/types.h>
58 #include <sys/user.h>
59 #include <sys/wait.h>
60 
61 // Support hardware breakpoints in case it has not been defined
62 #ifndef TRAP_HWBKPT
63 #define TRAP_HWBKPT 4
64 #endif
65 
66 using namespace lldb;
67 using namespace lldb_private;
68 using namespace lldb_private::process_linux;
69 using namespace llvm;
70 
71 // Private bits we only need internally.
72 
73 static bool ProcessVmReadvSupported() {
74   static bool is_supported;
75   static llvm::once_flag flag;
76 
77   llvm::call_once(flag, [] {
78     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
79 
80     uint32_t source = 0x47424742;
81     uint32_t dest = 0;
82 
83     struct iovec local, remote;
84     remote.iov_base = &source;
85     local.iov_base = &dest;
86     remote.iov_len = local.iov_len = sizeof source;
87 
88     // We shall try if cross-process-memory reads work by attempting to read a
89     // value from our own process.
90     ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
91     is_supported = (res == sizeof(source) && source == dest);
92     if (is_supported)
93       LLDB_LOG(log,
94                "Detected kernel support for process_vm_readv syscall. "
95                "Fast memory reads enabled.");
96     else
97       LLDB_LOG(log,
98                "syscall process_vm_readv failed (error: {0}). Fast memory "
99                "reads disabled.",
100                llvm::sys::StrError());
101   });
102 
103   return is_supported;
104 }
105 
106 namespace {
107 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) {
108   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
109   if (!log)
110     return;
111 
112   if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO))
113     LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec());
114   else
115     LLDB_LOG(log, "leaving STDIN as is");
116 
117   if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO))
118     LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec());
119   else
120     LLDB_LOG(log, "leaving STDOUT as is");
121 
122   if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO))
123     LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec());
124   else
125     LLDB_LOG(log, "leaving STDERR as is");
126 
127   int i = 0;
128   for (const char **args = info.GetArguments().GetConstArgumentVector(); *args;
129        ++args, ++i)
130     LLDB_LOG(log, "arg {0}: '{1}'", i, *args);
131 }
132 
133 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) {
134   uint8_t *ptr = (uint8_t *)bytes;
135   const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
136   for (uint32_t i = 0; i < loop_count; i++) {
137     s.Printf("[%x]", *ptr);
138     ptr++;
139   }
140 }
141 
142 void PtraceDisplayBytes(int &req, void *data, size_t data_size) {
143   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
144   if (!log)
145     return;
146   StreamString buf;
147 
148   switch (req) {
149   case PTRACE_POKETEXT: {
150     DisplayBytes(buf, &data, 8);
151     LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData());
152     break;
153   }
154   case PTRACE_POKEDATA: {
155     DisplayBytes(buf, &data, 8);
156     LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData());
157     break;
158   }
159   case PTRACE_POKEUSER: {
160     DisplayBytes(buf, &data, 8);
161     LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData());
162     break;
163   }
164   case PTRACE_SETREGS: {
165     DisplayBytes(buf, data, data_size);
166     LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData());
167     break;
168   }
169   case PTRACE_SETFPREGS: {
170     DisplayBytes(buf, data, data_size);
171     LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData());
172     break;
173   }
174   case PTRACE_SETSIGINFO: {
175     DisplayBytes(buf, data, sizeof(siginfo_t));
176     LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData());
177     break;
178   }
179   case PTRACE_SETREGSET: {
180     // Extract iov_base from data, which is a pointer to the struct iovec
181     DisplayBytes(buf, *(void **)data, data_size);
182     LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData());
183     break;
184   }
185   default: {}
186   }
187 }
188 
189 static constexpr unsigned k_ptrace_word_size = sizeof(void *);
190 static_assert(sizeof(long) >= k_ptrace_word_size,
191               "Size of long must be larger than ptrace word size");
192 } // end of anonymous namespace
193 
194 // Simple helper function to ensure flags are enabled on the given file
195 // descriptor.
196 static Status EnsureFDFlags(int fd, int flags) {
197   Status error;
198 
199   int status = fcntl(fd, F_GETFL);
200   if (status == -1) {
201     error.SetErrorToErrno();
202     return error;
203   }
204 
205   if (fcntl(fd, F_SETFL, status | flags) == -1) {
206     error.SetErrorToErrno();
207     return error;
208   }
209 
210   return error;
211 }
212 
213 // -----------------------------------------------------------------------------
214 // Public Static Methods
215 // -----------------------------------------------------------------------------
216 
217 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
218 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info,
219                                     NativeDelegate &native_delegate,
220                                     MainLoop &mainloop) const {
221   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
222 
223   MaybeLogLaunchInfo(launch_info);
224 
225   Status status;
226   ::pid_t pid = ProcessLauncherPosixFork()
227                     .LaunchProcess(launch_info, status)
228                     .GetProcessId();
229   LLDB_LOG(log, "pid = {0:x}", pid);
230   if (status.Fail()) {
231     LLDB_LOG(log, "failed to launch process: {0}", status);
232     return status.ToError();
233   }
234 
235   // Wait for the child process to trap on its call to execve.
236   int wstatus;
237   ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0);
238   assert(wpid == pid);
239   (void)wpid;
240   if (!WIFSTOPPED(wstatus)) {
241     LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}",
242              WaitStatus::Decode(wstatus));
243     return llvm::make_error<StringError>("Could not sync with inferior process",
244                                          llvm::inconvertibleErrorCode());
245   }
246   LLDB_LOG(log, "inferior started, now in stopped state");
247 
248   ProcessInstanceInfo Info;
249   if (!Host::GetProcessInfo(pid, Info)) {
250     return llvm::make_error<StringError>("Cannot get process architecture",
251                                          llvm::inconvertibleErrorCode());
252   }
253 
254   // Set the architecture to the exe architecture.
255   LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid,
256            Info.GetArchitecture().GetArchitectureName());
257 
258   status = SetDefaultPtraceOpts(pid);
259   if (status.Fail()) {
260     LLDB_LOG(log, "failed to set default ptrace options: {0}", status);
261     return status.ToError();
262   }
263 
264   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
265       pid, launch_info.GetPTY().ReleaseMasterFileDescriptor(), native_delegate,
266       Info.GetArchitecture(), mainloop, {pid}));
267 }
268 
269 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
270 NativeProcessLinux::Factory::Attach(
271     lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate,
272     MainLoop &mainloop) const {
273   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
274   LLDB_LOG(log, "pid = {0:x}", pid);
275 
276   // Retrieve the architecture for the running process.
277   ProcessInstanceInfo Info;
278   if (!Host::GetProcessInfo(pid, Info)) {
279     return llvm::make_error<StringError>("Cannot get process architecture",
280                                          llvm::inconvertibleErrorCode());
281   }
282 
283   auto tids_or = NativeProcessLinux::Attach(pid);
284   if (!tids_or)
285     return tids_or.takeError();
286 
287   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
288       pid, -1, native_delegate, Info.GetArchitecture(), mainloop, *tids_or));
289 }
290 
291 // -----------------------------------------------------------------------------
292 // Public Instance Methods
293 // -----------------------------------------------------------------------------
294 
295 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd,
296                                        NativeDelegate &delegate,
297                                        const ArchSpec &arch, MainLoop &mainloop,
298                                        llvm::ArrayRef<::pid_t> tids)
299     : NativeProcessProtocol(pid, terminal_fd, delegate), m_arch(arch) {
300   if (m_terminal_fd != -1) {
301     Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
302     assert(status.Success());
303   }
304 
305   Status status;
306   m_sigchld_handle = mainloop.RegisterSignal(
307       SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status);
308   assert(m_sigchld_handle && status.Success());
309 
310   for (const auto &tid : tids) {
311     NativeThreadLinux &thread = AddThread(tid);
312     thread.SetStoppedBySignal(SIGSTOP);
313     ThreadWasCreated(thread);
314   }
315 
316   // Let our process instance know the thread has stopped.
317   SetCurrentThreadID(tids[0]);
318   SetState(StateType::eStateStopped, false);
319 
320   // Proccess any signals we received before installing our handler
321   SigchldHandler();
322 }
323 
324 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) {
325   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
326 
327   Status status;
328   // Use a map to keep track of the threads which we have attached/need to
329   // attach.
330   Host::TidMap tids_to_attach;
331   while (Host::FindProcessThreads(pid, tids_to_attach)) {
332     for (Host::TidMap::iterator it = tids_to_attach.begin();
333          it != tids_to_attach.end();) {
334       if (it->second == false) {
335         lldb::tid_t tid = it->first;
336 
337         // Attach to the requested process.
338         // An attach will cause the thread to stop with a SIGSTOP.
339         if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) {
340           // No such thread. The thread may have exited. More error handling
341           // may be needed.
342           if (status.GetError() == ESRCH) {
343             it = tids_to_attach.erase(it);
344             continue;
345           }
346           return status.ToError();
347         }
348 
349         int wpid =
350             llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL);
351         // Need to use __WALL otherwise we receive an error with errno=ECHLD At
352         // this point we should have a thread stopped if waitpid succeeds.
353         if (wpid < 0) {
354           // No such thread. The thread may have exited. More error handling
355           // may be needed.
356           if (errno == ESRCH) {
357             it = tids_to_attach.erase(it);
358             continue;
359           }
360           return llvm::errorCodeToError(
361               std::error_code(errno, std::generic_category()));
362         }
363 
364         if ((status = SetDefaultPtraceOpts(tid)).Fail())
365           return status.ToError();
366 
367         LLDB_LOG(log, "adding tid = {0}", tid);
368         it->second = true;
369       }
370 
371       // move the loop forward
372       ++it;
373     }
374   }
375 
376   size_t tid_count = tids_to_attach.size();
377   if (tid_count == 0)
378     return llvm::make_error<StringError>("No such process",
379                                          llvm::inconvertibleErrorCode());
380 
381   std::vector<::pid_t> tids;
382   tids.reserve(tid_count);
383   for (const auto &p : tids_to_attach)
384     tids.push_back(p.first);
385   return std::move(tids);
386 }
387 
388 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) {
389   long ptrace_opts = 0;
390 
391   // Have the child raise an event on exit.  This is used to keep the child in
392   // limbo until it is destroyed.
393   ptrace_opts |= PTRACE_O_TRACEEXIT;
394 
395   // Have the tracer trace threads which spawn in the inferior process.
396   // TODO: if we want to support tracing the inferiors' child, add the
397   // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
398   ptrace_opts |= PTRACE_O_TRACECLONE;
399 
400   // Have the tracer notify us before execve returns (needed to disable legacy
401   // SIGTRAP generation)
402   ptrace_opts |= PTRACE_O_TRACEEXEC;
403 
404   return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts);
405 }
406 
407 // Handles all waitpid events from the inferior process.
408 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited,
409                                          WaitStatus status) {
410   Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
411 
412   // Certain activities differ based on whether the pid is the tid of the main
413   // thread.
414   const bool is_main_thread = (pid == GetID());
415 
416   // Handle when the thread exits.
417   if (exited) {
418     LLDB_LOG(log,
419              "got exit signal({0}) , tid = {1} ({2} main thread), process "
420              "state = {3}",
421              signal, pid, is_main_thread ? "is" : "is not", GetState());
422 
423     // This is a thread that exited.  Ensure we're not tracking it anymore.
424     StopTrackingThread(pid);
425 
426     if (is_main_thread) {
427       // The main thread exited.  We're done monitoring.  Report to delegate.
428       SetExitStatus(status, true);
429 
430       // Notify delegate that our process has exited.
431       SetState(StateType::eStateExited, true);
432     }
433     return;
434   }
435 
436   siginfo_t info;
437   const auto info_err = GetSignalInfo(pid, &info);
438   auto thread_sp = GetThreadByID(pid);
439 
440   if (!thread_sp) {
441     // Normally, the only situation when we cannot find the thread is if we
442     // have just received a new thread notification. This is indicated by
443     // GetSignalInfo() returning si_code == SI_USER and si_pid == 0
444     LLDB_LOG(log, "received notification about an unknown tid {0}.", pid);
445 
446     if (info_err.Fail()) {
447       LLDB_LOG(log,
448                "(tid {0}) GetSignalInfo failed ({1}). "
449                "Ingoring this notification.",
450                pid, info_err);
451       return;
452     }
453 
454     LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code,
455              info.si_pid);
456 
457     NativeThreadLinux &thread = AddThread(pid);
458 
459     // Resume the newly created thread.
460     ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
461     ThreadWasCreated(thread);
462     return;
463   }
464 
465   // Get details on the signal raised.
466   if (info_err.Success()) {
467     // We have retrieved the signal info.  Dispatch appropriately.
468     if (info.si_signo == SIGTRAP)
469       MonitorSIGTRAP(info, *thread_sp);
470     else
471       MonitorSignal(info, *thread_sp, exited);
472   } else {
473     if (info_err.GetError() == EINVAL) {
474       // This is a group stop reception for this tid. We can reach here if we
475       // reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the tracee,
476       // triggering the group-stop mechanism. Normally receiving these would
477       // stop the process, pending a SIGCONT. Simulating this state in a
478       // debugger is hard and is generally not needed (one use case is
479       // debugging background task being managed by a shell). For general use,
480       // it is sufficient to stop the process in a signal-delivery stop which
481       // happens before the group stop. This done by MonitorSignal and works
482       // correctly for all signals.
483       LLDB_LOG(log,
484                "received a group stop for pid {0} tid {1}. Transparent "
485                "handling of group stops not supported, resuming the "
486                "thread.",
487                GetID(), pid);
488       ResumeThread(*thread_sp, thread_sp->GetState(),
489                    LLDB_INVALID_SIGNAL_NUMBER);
490     } else {
491       // ptrace(GETSIGINFO) failed (but not due to group-stop).
492 
493       // A return value of ESRCH means the thread/process is no longer on the
494       // system, so it was killed somehow outside of our control.  Either way,
495       // we can't do anything with it anymore.
496 
497       // Stop tracking the metadata for the thread since it's entirely off the
498       // system now.
499       const bool thread_found = StopTrackingThread(pid);
500 
501       LLDB_LOG(log,
502                "GetSignalInfo failed: {0}, tid = {1}, signal = {2}, "
503                "status = {3}, main_thread = {4}, thread_found: {5}",
504                info_err, pid, signal, status, is_main_thread, thread_found);
505 
506       if (is_main_thread) {
507         // Notify the delegate - our process is not available but appears to
508         // have been killed outside our control.  Is eStateExited the right
509         // exit state in this case?
510         SetExitStatus(status, true);
511         SetState(StateType::eStateExited, true);
512       } else {
513         // This thread was pulled out from underneath us.  Anything to do here?
514         // Do we want to do an all stop?
515         LLDB_LOG(log,
516                  "pid {0} tid {1} non-main thread exit occurred, didn't "
517                  "tell delegate anything since thread disappeared out "
518                  "from underneath us",
519                  GetID(), pid);
520       }
521     }
522   }
523 }
524 
525 void NativeProcessLinux::WaitForNewThread(::pid_t tid) {
526   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
527 
528   if (GetThreadByID(tid)) {
529     // We are already tracking the thread - we got the event on the new thread
530     // (see MonitorSignal) before this one. We are done.
531     return;
532   }
533 
534   // The thread is not tracked yet, let's wait for it to appear.
535   int status = -1;
536   LLDB_LOG(log,
537            "received thread creation event for tid {0}. tid not tracked "
538            "yet, waiting for thread to appear...",
539            tid);
540   ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, &status, __WALL);
541   // Since we are waiting on a specific tid, this must be the creation event.
542   // But let's do some checks just in case.
543   if (wait_pid != tid) {
544     LLDB_LOG(log,
545              "waiting for tid {0} failed. Assuming the thread has "
546              "disappeared in the meantime",
547              tid);
548     // The only way I know of this could happen is if the whole process was
549     // SIGKILLed in the mean time. In any case, we can't do anything about that
550     // now.
551     return;
552   }
553   if (WIFEXITED(status)) {
554     LLDB_LOG(log,
555              "waiting for tid {0} returned an 'exited' event. Not "
556              "tracking the thread.",
557              tid);
558     // Also a very improbable event.
559     return;
560   }
561 
562   LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid);
563   NativeThreadLinux &new_thread = AddThread(tid);
564 
565   ResumeThread(new_thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
566   ThreadWasCreated(new_thread);
567 }
568 
569 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info,
570                                         NativeThreadLinux &thread) {
571   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
572   const bool is_main_thread = (thread.GetID() == GetID());
573 
574   assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
575 
576   switch (info.si_code) {
577   // TODO: these two cases are required if we want to support tracing of the
578   // inferiors' children.  We'd need this to debug a monitor. case (SIGTRAP |
579   // (PTRACE_EVENT_FORK << 8)): case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
580 
581   case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): {
582     // This is the notification on the parent thread which informs us of new
583     // thread creation. We don't want to do anything with the parent thread so
584     // we just resume it. In case we want to implement "break on thread
585     // creation" functionality, we would need to stop here.
586 
587     unsigned long event_message = 0;
588     if (GetEventMessage(thread.GetID(), &event_message).Fail()) {
589       LLDB_LOG(log,
590                "pid {0} received thread creation event but "
591                "GetEventMessage failed so we don't know the new tid",
592                thread.GetID());
593     } else
594       WaitForNewThread(event_message);
595 
596     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
597     break;
598   }
599 
600   case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): {
601     LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP);
602 
603     // Exec clears any pending notifications.
604     m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
605 
606     // Remove all but the main thread here.  Linux fork creates a new process
607     // which only copies the main thread.
608     LLDB_LOG(log, "exec received, stop tracking all but main thread");
609 
610     for (auto i = m_threads.begin(); i != m_threads.end();) {
611       if ((*i)->GetID() == GetID())
612         i = m_threads.erase(i);
613       else
614         ++i;
615     }
616     assert(m_threads.size() == 1);
617     auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get());
618 
619     SetCurrentThreadID(main_thread->GetID());
620     main_thread->SetStoppedByExec();
621 
622     // Tell coordinator about about the "new" (since exec) stopped main thread.
623     ThreadWasCreated(*main_thread);
624 
625     // Let our delegate know we have just exec'd.
626     NotifyDidExec();
627 
628     // Let the process know we're stopped.
629     StopRunningThreads(main_thread->GetID());
630 
631     break;
632   }
633 
634   case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): {
635     // The inferior process or one of its threads is about to exit. We don't
636     // want to do anything with the thread so we just resume it. In case we
637     // want to implement "break on thread exit" functionality, we would need to
638     // stop here.
639 
640     unsigned long data = 0;
641     if (GetEventMessage(thread.GetID(), &data).Fail())
642       data = -1;
643 
644     LLDB_LOG(log,
645              "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, "
646              "WIFSIGNALED={2}, pid = {3}, main_thread = {4}",
647              data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(),
648              is_main_thread);
649 
650 
651     StateType state = thread.GetState();
652     if (!StateIsRunningState(state)) {
653       // Due to a kernel bug, we may sometimes get this stop after the inferior
654       // gets a SIGKILL. This confuses our state tracking logic in
655       // ResumeThread(), since normally, we should not be receiving any ptrace
656       // events while the inferior is stopped. This makes sure that the
657       // inferior is resumed and exits normally.
658       state = eStateRunning;
659     }
660     ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
661 
662     break;
663   }
664 
665   case 0:
666   case TRAP_TRACE:  // We receive this on single stepping.
667   case TRAP_HWBKPT: // We receive this on watchpoint hit
668   {
669     // If a watchpoint was hit, report it
670     uint32_t wp_index;
671     Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
672         wp_index, (uintptr_t)info.si_addr);
673     if (error.Fail())
674       LLDB_LOG(log,
675                "received error while checking for watchpoint hits, pid = "
676                "{0}, error = {1}",
677                thread.GetID(), error);
678     if (wp_index != LLDB_INVALID_INDEX32) {
679       MonitorWatchpoint(thread, wp_index);
680       break;
681     }
682 
683     // If a breakpoint was hit, report it
684     uint32_t bp_index;
685     error = thread.GetRegisterContext().GetHardwareBreakHitIndex(
686         bp_index, (uintptr_t)info.si_addr);
687     if (error.Fail())
688       LLDB_LOG(log, "received error while checking for hardware "
689                     "breakpoint hits, pid = {0}, error = {1}",
690                thread.GetID(), error);
691     if (bp_index != LLDB_INVALID_INDEX32) {
692       MonitorBreakpoint(thread);
693       break;
694     }
695 
696     // Otherwise, report step over
697     MonitorTrace(thread);
698     break;
699   }
700 
701   case SI_KERNEL:
702 #if defined __mips__
703     // For mips there is no special signal for watchpoint So we check for
704     // watchpoint in kernel trap
705     {
706       // If a watchpoint was hit, report it
707       uint32_t wp_index;
708       Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
709           wp_index, LLDB_INVALID_ADDRESS);
710       if (error.Fail())
711         LLDB_LOG(log,
712                  "received error while checking for watchpoint hits, pid = "
713                  "{0}, error = {1}",
714                  thread.GetID(), error);
715       if (wp_index != LLDB_INVALID_INDEX32) {
716         MonitorWatchpoint(thread, wp_index);
717         break;
718       }
719     }
720 // NO BREAK
721 #endif
722   case TRAP_BRKPT:
723     MonitorBreakpoint(thread);
724     break;
725 
726   case SIGTRAP:
727   case (SIGTRAP | 0x80):
728     LLDB_LOG(
729         log,
730         "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming",
731         info.si_code, GetID(), thread.GetID());
732 
733     // Ignore these signals until we know more about them.
734     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
735     break;
736 
737   default:
738     LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}",
739              info.si_code, GetID(), thread.GetID());
740     MonitorSignal(info, thread, false);
741     break;
742   }
743 }
744 
745 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) {
746   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
747   LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID());
748 
749   // This thread is currently stopped.
750   thread.SetStoppedByTrace();
751 
752   StopRunningThreads(thread.GetID());
753 }
754 
755 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) {
756   Log *log(
757       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
758   LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID());
759 
760   // Mark the thread as stopped at breakpoint.
761   thread.SetStoppedByBreakpoint();
762   Status error = FixupBreakpointPCAsNeeded(thread);
763   if (error.Fail())
764     LLDB_LOG(log, "pid = {0} fixup: {1}", thread.GetID(), error);
765 
766   if (m_threads_stepping_with_breakpoint.find(thread.GetID()) !=
767       m_threads_stepping_with_breakpoint.end())
768     thread.SetStoppedByTrace();
769 
770   StopRunningThreads(thread.GetID());
771 }
772 
773 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread,
774                                            uint32_t wp_index) {
775   Log *log(
776       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
777   LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}",
778            thread.GetID(), wp_index);
779 
780   // Mark the thread as stopped at watchpoint. The address is at
781   // (lldb::addr_t)info->si_addr if we need it.
782   thread.SetStoppedByWatchpoint(wp_index);
783 
784   // We need to tell all other running threads before we notify the delegate
785   // about this stop.
786   StopRunningThreads(thread.GetID());
787 }
788 
789 void NativeProcessLinux::MonitorSignal(const siginfo_t &info,
790                                        NativeThreadLinux &thread, bool exited) {
791   const int signo = info.si_signo;
792   const bool is_from_llgs = info.si_pid == getpid();
793 
794   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
795 
796   // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
797   // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2)
798   // or raise(3).  Similarly for tgkill(2) on Linux.
799   //
800   // IOW, user generated signals never generate what we consider to be a
801   // "crash".
802   //
803   // Similarly, ACK signals generated by this monitor.
804 
805   // Handle the signal.
806   LLDB_LOG(log,
807            "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, "
808            "waitpid pid = {4})",
809            Host::GetSignalAsCString(signo), signo, info.si_code,
810            thread.GetID());
811 
812   // Check for thread stop notification.
813   if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) {
814     // This is a tgkill()-based stop.
815     LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID());
816 
817     // Check that we're not already marked with a stop reason. Note this thread
818     // really shouldn't already be marked as stopped - if we were, that would
819     // imply that the kernel signaled us with the thread stopping which we
820     // handled and marked as stopped, and that, without an intervening resume,
821     // we received another stop.  It is more likely that we are missing the
822     // marking of a run state somewhere if we find that the thread was marked
823     // as stopped.
824     const StateType thread_state = thread.GetState();
825     if (!StateIsStoppedState(thread_state, false)) {
826       // An inferior thread has stopped because of a SIGSTOP we have sent it.
827       // Generally, these are not important stops and we don't want to report
828       // them as they are just used to stop other threads when one thread (the
829       // one with the *real* stop reason) hits a breakpoint (watchpoint,
830       // etc...). However, in the case of an asynchronous Interrupt(), this
831       // *is* the real stop reason, so we leave the signal intact if this is
832       // the thread that was chosen as the triggering thread.
833       if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
834         if (m_pending_notification_tid == thread.GetID())
835           thread.SetStoppedBySignal(SIGSTOP, &info);
836         else
837           thread.SetStoppedWithNoReason();
838 
839         SetCurrentThreadID(thread.GetID());
840         SignalIfAllThreadsStopped();
841       } else {
842         // We can end up here if stop was initiated by LLGS but by this time a
843         // thread stop has occurred - maybe initiated by another event.
844         Status error = ResumeThread(thread, thread.GetState(), 0);
845         if (error.Fail())
846           LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(),
847                    error);
848       }
849     } else {
850       LLDB_LOG(log,
851                "pid {0} tid {1}, thread was already marked as a stopped "
852                "state (state={2}), leaving stop signal as is",
853                GetID(), thread.GetID(), thread_state);
854       SignalIfAllThreadsStopped();
855     }
856 
857     // Done handling.
858     return;
859   }
860 
861   // Check if debugger should stop at this signal or just ignore it and resume
862   // the inferior.
863   if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) {
864      ResumeThread(thread, thread.GetState(), signo);
865      return;
866   }
867 
868   // This thread is stopped.
869   LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo));
870   thread.SetStoppedBySignal(signo, &info);
871 
872   // Send a stop to the debugger after we get all other threads to stop.
873   StopRunningThreads(thread.GetID());
874 }
875 
876 namespace {
877 
878 struct EmulatorBaton {
879   NativeProcessLinux &m_process;
880   NativeRegisterContext &m_reg_context;
881 
882   // eRegisterKindDWARF -> RegsiterValue
883   std::unordered_map<uint32_t, RegisterValue> m_register_values;
884 
885   EmulatorBaton(NativeProcessLinux &process, NativeRegisterContext &reg_context)
886       : m_process(process), m_reg_context(reg_context) {}
887 };
888 
889 } // anonymous namespace
890 
891 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton,
892                                  const EmulateInstruction::Context &context,
893                                  lldb::addr_t addr, void *dst, size_t length) {
894   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
895 
896   size_t bytes_read;
897   emulator_baton->m_process.ReadMemory(addr, dst, length, bytes_read);
898   return bytes_read;
899 }
900 
901 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton,
902                                  const RegisterInfo *reg_info,
903                                  RegisterValue &reg_value) {
904   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
905 
906   auto it = emulator_baton->m_register_values.find(
907       reg_info->kinds[eRegisterKindDWARF]);
908   if (it != emulator_baton->m_register_values.end()) {
909     reg_value = it->second;
910     return true;
911   }
912 
913   // The emulator only fill in the dwarf regsiter numbers (and in some case the
914   // generic register numbers). Get the full register info from the register
915   // context based on the dwarf register numbers.
916   const RegisterInfo *full_reg_info =
917       emulator_baton->m_reg_context.GetRegisterInfo(
918           eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
919 
920   Status error =
921       emulator_baton->m_reg_context.ReadRegister(full_reg_info, reg_value);
922   if (error.Success())
923     return true;
924 
925   return false;
926 }
927 
928 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton,
929                                   const EmulateInstruction::Context &context,
930                                   const RegisterInfo *reg_info,
931                                   const RegisterValue &reg_value) {
932   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
933   emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] =
934       reg_value;
935   return true;
936 }
937 
938 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton,
939                                   const EmulateInstruction::Context &context,
940                                   lldb::addr_t addr, const void *dst,
941                                   size_t length) {
942   return length;
943 }
944 
945 static lldb::addr_t ReadFlags(NativeRegisterContext &regsiter_context) {
946   const RegisterInfo *flags_info = regsiter_context.GetRegisterInfo(
947       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
948   return regsiter_context.ReadRegisterAsUnsigned(flags_info,
949                                                  LLDB_INVALID_ADDRESS);
950 }
951 
952 Status
953 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) {
954   Status error;
955   NativeRegisterContext& register_context = thread.GetRegisterContext();
956 
957   std::unique_ptr<EmulateInstruction> emulator_ap(
958       EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying,
959                                      nullptr));
960 
961   if (emulator_ap == nullptr)
962     return Status("Instruction emulator not found!");
963 
964   EmulatorBaton baton(*this, register_context);
965   emulator_ap->SetBaton(&baton);
966   emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
967   emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
968   emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
969   emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
970 
971   if (!emulator_ap->ReadInstruction())
972     return Status("Read instruction failed!");
973 
974   bool emulation_result =
975       emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
976 
977   const RegisterInfo *reg_info_pc = register_context.GetRegisterInfo(
978       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
979   const RegisterInfo *reg_info_flags = register_context.GetRegisterInfo(
980       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
981 
982   auto pc_it =
983       baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
984   auto flags_it =
985       baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
986 
987   lldb::addr_t next_pc;
988   lldb::addr_t next_flags;
989   if (emulation_result) {
990     assert(pc_it != baton.m_register_values.end() &&
991            "Emulation was successfull but PC wasn't updated");
992     next_pc = pc_it->second.GetAsUInt64();
993 
994     if (flags_it != baton.m_register_values.end())
995       next_flags = flags_it->second.GetAsUInt64();
996     else
997       next_flags = ReadFlags(register_context);
998   } else if (pc_it == baton.m_register_values.end()) {
999     // Emulate instruction failed and it haven't changed PC. Advance PC with
1000     // the size of the current opcode because the emulation of all
1001     // PC modifying instruction should be successful. The failure most
1002     // likely caused by a not supported instruction which don't modify PC.
1003     next_pc = register_context.GetPC() + emulator_ap->GetOpcode().GetByteSize();
1004     next_flags = ReadFlags(register_context);
1005   } else {
1006     // The instruction emulation failed after it modified the PC. It is an
1007     // unknown error where we can't continue because the next instruction is
1008     // modifying the PC but we don't  know how.
1009     return Status("Instruction emulation failed unexpectedly.");
1010   }
1011 
1012   if (m_arch.GetMachine() == llvm::Triple::arm) {
1013     if (next_flags & 0x20) {
1014       // Thumb mode
1015       error = SetSoftwareBreakpoint(next_pc, 2);
1016     } else {
1017       // Arm mode
1018       error = SetSoftwareBreakpoint(next_pc, 4);
1019     }
1020   } else if (m_arch.GetMachine() == llvm::Triple::mips64 ||
1021              m_arch.GetMachine() == llvm::Triple::mips64el ||
1022              m_arch.GetMachine() == llvm::Triple::mips ||
1023              m_arch.GetMachine() == llvm::Triple::mipsel ||
1024              m_arch.GetMachine() == llvm::Triple::ppc64le)
1025     error = SetSoftwareBreakpoint(next_pc, 4);
1026   else {
1027     // No size hint is given for the next breakpoint
1028     error = SetSoftwareBreakpoint(next_pc, 0);
1029   }
1030 
1031   // If setting the breakpoint fails because next_pc is out of the address
1032   // space, ignore it and let the debugee segfault.
1033   if (error.GetError() == EIO || error.GetError() == EFAULT) {
1034     return Status();
1035   } else if (error.Fail())
1036     return error;
1037 
1038   m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc});
1039 
1040   return Status();
1041 }
1042 
1043 bool NativeProcessLinux::SupportHardwareSingleStepping() const {
1044   if (m_arch.GetMachine() == llvm::Triple::arm ||
1045       m_arch.GetMachine() == llvm::Triple::mips64 ||
1046       m_arch.GetMachine() == llvm::Triple::mips64el ||
1047       m_arch.GetMachine() == llvm::Triple::mips ||
1048       m_arch.GetMachine() == llvm::Triple::mipsel)
1049     return false;
1050   return true;
1051 }
1052 
1053 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) {
1054   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1055   LLDB_LOG(log, "pid {0}", GetID());
1056 
1057   bool software_single_step = !SupportHardwareSingleStepping();
1058 
1059   if (software_single_step) {
1060     for (const auto &thread : m_threads) {
1061       assert(thread && "thread list should not contain NULL threads");
1062 
1063       const ResumeAction *const action =
1064           resume_actions.GetActionForThread(thread->GetID(), true);
1065       if (action == nullptr)
1066         continue;
1067 
1068       if (action->state == eStateStepping) {
1069         Status error = SetupSoftwareSingleStepping(
1070             static_cast<NativeThreadLinux &>(*thread));
1071         if (error.Fail())
1072           return error;
1073       }
1074     }
1075   }
1076 
1077   for (const auto &thread : m_threads) {
1078     assert(thread && "thread list should not contain NULL threads");
1079 
1080     const ResumeAction *const action =
1081         resume_actions.GetActionForThread(thread->GetID(), true);
1082 
1083     if (action == nullptr) {
1084       LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(),
1085                thread->GetID());
1086       continue;
1087     }
1088 
1089     LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}",
1090              action->state, GetID(), thread->GetID());
1091 
1092     switch (action->state) {
1093     case eStateRunning:
1094     case eStateStepping: {
1095       // Run the thread, possibly feeding it the signal.
1096       const int signo = action->signal;
1097       ResumeThread(static_cast<NativeThreadLinux &>(*thread), action->state,
1098                    signo);
1099       break;
1100     }
1101 
1102     case eStateSuspended:
1103     case eStateStopped:
1104       llvm_unreachable("Unexpected state");
1105 
1106     default:
1107       return Status("NativeProcessLinux::%s (): unexpected state %s specified "
1108                     "for pid %" PRIu64 ", tid %" PRIu64,
1109                     __FUNCTION__, StateAsCString(action->state), GetID(),
1110                     thread->GetID());
1111     }
1112   }
1113 
1114   return Status();
1115 }
1116 
1117 Status NativeProcessLinux::Halt() {
1118   Status error;
1119 
1120   if (kill(GetID(), SIGSTOP) != 0)
1121     error.SetErrorToErrno();
1122 
1123   return error;
1124 }
1125 
1126 Status NativeProcessLinux::Detach() {
1127   Status error;
1128 
1129   // Stop monitoring the inferior.
1130   m_sigchld_handle.reset();
1131 
1132   // Tell ptrace to detach from the process.
1133   if (GetID() == LLDB_INVALID_PROCESS_ID)
1134     return error;
1135 
1136   for (const auto &thread : m_threads) {
1137     Status e = Detach(thread->GetID());
1138     if (e.Fail())
1139       error =
1140           e; // Save the error, but still attempt to detach from other threads.
1141   }
1142 
1143   m_processor_trace_monitor.clear();
1144   m_pt_proces_trace_id = LLDB_INVALID_UID;
1145 
1146   return error;
1147 }
1148 
1149 Status NativeProcessLinux::Signal(int signo) {
1150   Status error;
1151 
1152   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1153   LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo,
1154            Host::GetSignalAsCString(signo), GetID());
1155 
1156   if (kill(GetID(), signo))
1157     error.SetErrorToErrno();
1158 
1159   return error;
1160 }
1161 
1162 Status NativeProcessLinux::Interrupt() {
1163   // Pick a running thread (or if none, a not-dead stopped thread) as the
1164   // chosen thread that will be the stop-reason thread.
1165   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1166 
1167   NativeThreadProtocol *running_thread = nullptr;
1168   NativeThreadProtocol *stopped_thread = nullptr;
1169 
1170   LLDB_LOG(log, "selecting running thread for interrupt target");
1171   for (const auto &thread : m_threads) {
1172     // If we have a running or stepping thread, we'll call that the target of
1173     // the interrupt.
1174     const auto thread_state = thread->GetState();
1175     if (thread_state == eStateRunning || thread_state == eStateStepping) {
1176       running_thread = thread.get();
1177       break;
1178     } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) {
1179       // Remember the first non-dead stopped thread.  We'll use that as a
1180       // backup if there are no running threads.
1181       stopped_thread = thread.get();
1182     }
1183   }
1184 
1185   if (!running_thread && !stopped_thread) {
1186     Status error("found no running/stepping or live stopped threads as target "
1187                  "for interrupt");
1188     LLDB_LOG(log, "skipping due to error: {0}", error);
1189 
1190     return error;
1191   }
1192 
1193   NativeThreadProtocol *deferred_signal_thread =
1194       running_thread ? running_thread : stopped_thread;
1195 
1196   LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(),
1197            running_thread ? "running" : "stopped",
1198            deferred_signal_thread->GetID());
1199 
1200   StopRunningThreads(deferred_signal_thread->GetID());
1201 
1202   return Status();
1203 }
1204 
1205 Status NativeProcessLinux::Kill() {
1206   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1207   LLDB_LOG(log, "pid {0}", GetID());
1208 
1209   Status error;
1210 
1211   switch (m_state) {
1212   case StateType::eStateInvalid:
1213   case StateType::eStateExited:
1214   case StateType::eStateCrashed:
1215   case StateType::eStateDetached:
1216   case StateType::eStateUnloaded:
1217     // Nothing to do - the process is already dead.
1218     LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(),
1219              m_state);
1220     return error;
1221 
1222   case StateType::eStateConnected:
1223   case StateType::eStateAttaching:
1224   case StateType::eStateLaunching:
1225   case StateType::eStateStopped:
1226   case StateType::eStateRunning:
1227   case StateType::eStateStepping:
1228   case StateType::eStateSuspended:
1229     // We can try to kill a process in these states.
1230     break;
1231   }
1232 
1233   if (kill(GetID(), SIGKILL) != 0) {
1234     error.SetErrorToErrno();
1235     return error;
1236   }
1237 
1238   return error;
1239 }
1240 
1241 static Status
1242 ParseMemoryRegionInfoFromProcMapsLine(llvm::StringRef &maps_line,
1243                                       MemoryRegionInfo &memory_region_info) {
1244   memory_region_info.Clear();
1245 
1246   StringExtractor line_extractor(maps_line);
1247 
1248   // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode
1249   // pathname perms: rwxp   (letter is present if set, '-' if not, final
1250   // character is p=private, s=shared).
1251 
1252   // Parse out the starting address
1253   lldb::addr_t start_address = line_extractor.GetHexMaxU64(false, 0);
1254 
1255   // Parse out hyphen separating start and end address from range.
1256   if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != '-'))
1257     return Status(
1258         "malformed /proc/{pid}/maps entry, missing dash between address range");
1259 
1260   // Parse out the ending address
1261   lldb::addr_t end_address = line_extractor.GetHexMaxU64(false, start_address);
1262 
1263   // Parse out the space after the address.
1264   if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != ' '))
1265     return Status(
1266         "malformed /proc/{pid}/maps entry, missing space after range");
1267 
1268   // Save the range.
1269   memory_region_info.GetRange().SetRangeBase(start_address);
1270   memory_region_info.GetRange().SetRangeEnd(end_address);
1271 
1272   // Any memory region in /proc/{pid}/maps is by definition mapped into the
1273   // process.
1274   memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes);
1275 
1276   // Parse out each permission entry.
1277   if (line_extractor.GetBytesLeft() < 4)
1278     return Status("malformed /proc/{pid}/maps entry, missing some portion of "
1279                   "permissions");
1280 
1281   // Handle read permission.
1282   const char read_perm_char = line_extractor.GetChar();
1283   if (read_perm_char == 'r')
1284     memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eYes);
1285   else if (read_perm_char == '-')
1286     memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1287   else
1288     return Status("unexpected /proc/{pid}/maps read permission char");
1289 
1290   // Handle write permission.
1291   const char write_perm_char = line_extractor.GetChar();
1292   if (write_perm_char == 'w')
1293     memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eYes);
1294   else if (write_perm_char == '-')
1295     memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1296   else
1297     return Status("unexpected /proc/{pid}/maps write permission char");
1298 
1299   // Handle execute permission.
1300   const char exec_perm_char = line_extractor.GetChar();
1301   if (exec_perm_char == 'x')
1302     memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eYes);
1303   else if (exec_perm_char == '-')
1304     memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1305   else
1306     return Status("unexpected /proc/{pid}/maps exec permission char");
1307 
1308   line_extractor.GetChar();              // Read the private bit
1309   line_extractor.SkipSpaces();           // Skip the separator
1310   line_extractor.GetHexMaxU64(false, 0); // Read the offset
1311   line_extractor.GetHexMaxU64(false, 0); // Read the major device number
1312   line_extractor.GetChar();              // Read the device id separator
1313   line_extractor.GetHexMaxU64(false, 0); // Read the major device number
1314   line_extractor.SkipSpaces();           // Skip the separator
1315   line_extractor.GetU64(0, 10);          // Read the inode number
1316 
1317   line_extractor.SkipSpaces();
1318   const char *name = line_extractor.Peek();
1319   if (name)
1320     memory_region_info.SetName(name);
1321 
1322   return Status();
1323 }
1324 
1325 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr,
1326                                                MemoryRegionInfo &range_info) {
1327   // FIXME review that the final memory region returned extends to the end of
1328   // the virtual address space,
1329   // with no perms if it is not mapped.
1330 
1331   // Use an approach that reads memory regions from /proc/{pid}/maps. Assume
1332   // proc maps entries are in ascending order.
1333   // FIXME assert if we find differently.
1334 
1335   if (m_supports_mem_region == LazyBool::eLazyBoolNo) {
1336     // We're done.
1337     return Status("unsupported");
1338   }
1339 
1340   Status error = PopulateMemoryRegionCache();
1341   if (error.Fail()) {
1342     return error;
1343   }
1344 
1345   lldb::addr_t prev_base_address = 0;
1346 
1347   // FIXME start by finding the last region that is <= target address using
1348   // binary search.  Data is sorted.
1349   // There can be a ton of regions on pthreads apps with lots of threads.
1350   for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end();
1351        ++it) {
1352     MemoryRegionInfo &proc_entry_info = it->first;
1353 
1354     // Sanity check assumption that /proc/{pid}/maps entries are ascending.
1355     assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) &&
1356            "descending /proc/pid/maps entries detected, unexpected");
1357     prev_base_address = proc_entry_info.GetRange().GetRangeBase();
1358     UNUSED_IF_ASSERT_DISABLED(prev_base_address);
1359 
1360     // If the target address comes before this entry, indicate distance to next
1361     // region.
1362     if (load_addr < proc_entry_info.GetRange().GetRangeBase()) {
1363       range_info.GetRange().SetRangeBase(load_addr);
1364       range_info.GetRange().SetByteSize(
1365           proc_entry_info.GetRange().GetRangeBase() - load_addr);
1366       range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1367       range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1368       range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1369       range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1370 
1371       return error;
1372     } else if (proc_entry_info.GetRange().Contains(load_addr)) {
1373       // The target address is within the memory region we're processing here.
1374       range_info = proc_entry_info;
1375       return error;
1376     }
1377 
1378     // The target memory address comes somewhere after the region we just
1379     // parsed.
1380   }
1381 
1382   // If we made it here, we didn't find an entry that contained the given
1383   // address. Return the load_addr as start and the amount of bytes betwwen
1384   // load address and the end of the memory as size.
1385   range_info.GetRange().SetRangeBase(load_addr);
1386   range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS);
1387   range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1388   range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1389   range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1390   range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1391   return error;
1392 }
1393 
1394 Status NativeProcessLinux::PopulateMemoryRegionCache() {
1395   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1396 
1397   // If our cache is empty, pull the latest.  There should always be at least
1398   // one memory region if memory region handling is supported.
1399   if (!m_mem_region_cache.empty()) {
1400     LLDB_LOG(log, "reusing {0} cached memory region entries",
1401              m_mem_region_cache.size());
1402     return Status();
1403   }
1404 
1405   auto BufferOrError = getProcFile(GetID(), "maps");
1406   if (!BufferOrError) {
1407     m_supports_mem_region = LazyBool::eLazyBoolNo;
1408     return BufferOrError.getError();
1409   }
1410   StringRef Rest = BufferOrError.get()->getBuffer();
1411   while (! Rest.empty()) {
1412     StringRef Line;
1413     std::tie(Line, Rest) = Rest.split('\n');
1414     MemoryRegionInfo info;
1415     const Status parse_error =
1416         ParseMemoryRegionInfoFromProcMapsLine(Line, info);
1417     if (parse_error.Fail()) {
1418       LLDB_LOG(log, "failed to parse proc maps line '{0}': {1}", Line,
1419                parse_error);
1420       m_supports_mem_region = LazyBool::eLazyBoolNo;
1421       return parse_error;
1422     }
1423     m_mem_region_cache.emplace_back(
1424         info, FileSpec(info.GetName().GetCString(), true));
1425   }
1426 
1427   if (m_mem_region_cache.empty()) {
1428     // No entries after attempting to read them.  This shouldn't happen if
1429     // /proc/{pid}/maps is supported. Assume we don't support map entries via
1430     // procfs.
1431     m_supports_mem_region = LazyBool::eLazyBoolNo;
1432     LLDB_LOG(log,
1433              "failed to find any procfs maps entries, assuming no support "
1434              "for memory region metadata retrieval");
1435     return Status("not supported");
1436   }
1437 
1438   LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps",
1439            m_mem_region_cache.size(), GetID());
1440 
1441   // We support memory retrieval, remember that.
1442   m_supports_mem_region = LazyBool::eLazyBoolYes;
1443   return Status();
1444 }
1445 
1446 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) {
1447   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1448   LLDB_LOG(log, "newBumpId={0}", newBumpId);
1449   LLDB_LOG(log, "clearing {0} entries from memory region cache",
1450            m_mem_region_cache.size());
1451   m_mem_region_cache.clear();
1452 }
1453 
1454 Status NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions,
1455                                           lldb::addr_t &addr) {
1456 // FIXME implementing this requires the equivalent of
1457 // InferiorCallPOSIX::InferiorCallMmap, which depends on functional ThreadPlans
1458 // working with Native*Protocol.
1459 #if 1
1460   return Status("not implemented yet");
1461 #else
1462   addr = LLDB_INVALID_ADDRESS;
1463 
1464   unsigned prot = 0;
1465   if (permissions & lldb::ePermissionsReadable)
1466     prot |= eMmapProtRead;
1467   if (permissions & lldb::ePermissionsWritable)
1468     prot |= eMmapProtWrite;
1469   if (permissions & lldb::ePermissionsExecutable)
1470     prot |= eMmapProtExec;
1471 
1472   // TODO implement this directly in NativeProcessLinux
1473   // (and lift to NativeProcessPOSIX if/when that class is refactored out).
1474   if (InferiorCallMmap(this, addr, 0, size, prot,
1475                        eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
1476     m_addr_to_mmap_size[addr] = size;
1477     return Status();
1478   } else {
1479     addr = LLDB_INVALID_ADDRESS;
1480     return Status("unable to allocate %" PRIu64
1481                   " bytes of memory with permissions %s",
1482                   size, GetPermissionsAsCString(permissions));
1483   }
1484 #endif
1485 }
1486 
1487 Status NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) {
1488   // FIXME see comments in AllocateMemory - required lower-level
1489   // bits not in place yet (ThreadPlans)
1490   return Status("not implemented");
1491 }
1492 
1493 lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress() {
1494   // punt on this for now
1495   return LLDB_INVALID_ADDRESS;
1496 }
1497 
1498 size_t NativeProcessLinux::UpdateThreads() {
1499   // The NativeProcessLinux monitoring threads are always up to date with
1500   // respect to thread state and they keep the thread list populated properly.
1501   // All this method needs to do is return the thread count.
1502   return m_threads.size();
1503 }
1504 
1505 Status NativeProcessLinux::GetSoftwareBreakpointPCOffset(
1506     uint32_t &actual_opcode_size) {
1507   // FIXME put this behind a breakpoint protocol class that can be
1508   // set per architecture.  Need ARM, MIPS support here.
1509   static const uint8_t g_i386_opcode[] = {0xCC};
1510   static const uint8_t g_s390x_opcode[] = {0x00, 0x01};
1511 
1512   switch (m_arch.GetMachine()) {
1513   case llvm::Triple::x86:
1514   case llvm::Triple::x86_64:
1515     actual_opcode_size = static_cast<uint32_t>(sizeof(g_i386_opcode));
1516     return Status();
1517 
1518   case llvm::Triple::systemz:
1519     actual_opcode_size = static_cast<uint32_t>(sizeof(g_s390x_opcode));
1520     return Status();
1521 
1522   case llvm::Triple::arm:
1523   case llvm::Triple::aarch64:
1524   case llvm::Triple::mips64:
1525   case llvm::Triple::mips64el:
1526   case llvm::Triple::mips:
1527   case llvm::Triple::mipsel:
1528   case llvm::Triple::ppc64le:
1529     // On these architectures the PC don't get updated for breakpoint hits
1530     actual_opcode_size = 0;
1531     return Status();
1532 
1533   default:
1534     assert(false && "CPU type not supported!");
1535     return Status("CPU type not supported");
1536   }
1537 }
1538 
1539 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size,
1540                                          bool hardware) {
1541   if (hardware)
1542     return SetHardwareBreakpoint(addr, size);
1543   else
1544     return SetSoftwareBreakpoint(addr, size);
1545 }
1546 
1547 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) {
1548   if (hardware)
1549     return RemoveHardwareBreakpoint(addr);
1550   else
1551     return NativeProcessProtocol::RemoveBreakpoint(addr);
1552 }
1553 
1554 Status NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(
1555     size_t trap_opcode_size_hint, size_t &actual_opcode_size,
1556     const uint8_t *&trap_opcode_bytes) {
1557   // FIXME put this behind a breakpoint protocol class that can be set per
1558   // architecture.  Need MIPS support here.
1559   static const uint8_t g_aarch64_opcode[] = {0x00, 0x00, 0x20, 0xd4};
1560   // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
1561   // linux kernel does otherwise.
1562   static const uint8_t g_arm_breakpoint_opcode[] = {0xf0, 0x01, 0xf0, 0xe7};
1563   static const uint8_t g_i386_opcode[] = {0xCC};
1564   static const uint8_t g_mips64_opcode[] = {0x00, 0x00, 0x00, 0x0d};
1565   static const uint8_t g_mips64el_opcode[] = {0x0d, 0x00, 0x00, 0x00};
1566   static const uint8_t g_s390x_opcode[] = {0x00, 0x01};
1567   static const uint8_t g_thumb_breakpoint_opcode[] = {0x01, 0xde};
1568   static const uint8_t g_ppc64le_opcode[] = {0x08, 0x00, 0xe0, 0x7f}; // trap
1569 
1570   switch (m_arch.GetMachine()) {
1571   case llvm::Triple::aarch64:
1572     trap_opcode_bytes = g_aarch64_opcode;
1573     actual_opcode_size = sizeof(g_aarch64_opcode);
1574     return Status();
1575 
1576   case llvm::Triple::arm:
1577     switch (trap_opcode_size_hint) {
1578     case 2:
1579       trap_opcode_bytes = g_thumb_breakpoint_opcode;
1580       actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
1581       return Status();
1582     case 4:
1583       trap_opcode_bytes = g_arm_breakpoint_opcode;
1584       actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
1585       return Status();
1586     default:
1587       assert(false && "Unrecognised trap opcode size hint!");
1588       return Status("Unrecognised trap opcode size hint!");
1589     }
1590 
1591   case llvm::Triple::x86:
1592   case llvm::Triple::x86_64:
1593     trap_opcode_bytes = g_i386_opcode;
1594     actual_opcode_size = sizeof(g_i386_opcode);
1595     return Status();
1596 
1597   case llvm::Triple::mips:
1598   case llvm::Triple::mips64:
1599     trap_opcode_bytes = g_mips64_opcode;
1600     actual_opcode_size = sizeof(g_mips64_opcode);
1601     return Status();
1602 
1603   case llvm::Triple::mipsel:
1604   case llvm::Triple::mips64el:
1605     trap_opcode_bytes = g_mips64el_opcode;
1606     actual_opcode_size = sizeof(g_mips64el_opcode);
1607     return Status();
1608 
1609   case llvm::Triple::systemz:
1610     trap_opcode_bytes = g_s390x_opcode;
1611     actual_opcode_size = sizeof(g_s390x_opcode);
1612     return Status();
1613 
1614   case llvm::Triple::ppc64le:
1615     trap_opcode_bytes = g_ppc64le_opcode;
1616     actual_opcode_size = sizeof(g_ppc64le_opcode);
1617     return Status();
1618 
1619   default:
1620     assert(false && "CPU type not supported!");
1621     return Status("CPU type not supported");
1622   }
1623 }
1624 
1625 #if 0
1626 ProcessMessage::CrashReason
1627 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
1628 {
1629     ProcessMessage::CrashReason reason;
1630     assert(info->si_signo == SIGSEGV);
1631 
1632     reason = ProcessMessage::eInvalidCrashReason;
1633 
1634     switch (info->si_code)
1635     {
1636     default:
1637         assert(false && "unexpected si_code for SIGSEGV");
1638         break;
1639     case SI_KERNEL:
1640         // Linux will occasionally send spurious SI_KERNEL codes. (this is
1641         // poorly documented in sigaction) One way to get this is via unaligned
1642         // SIMD loads.
1643         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
1644         break;
1645     case SEGV_MAPERR:
1646         reason = ProcessMessage::eInvalidAddress;
1647         break;
1648     case SEGV_ACCERR:
1649         reason = ProcessMessage::ePrivilegedAddress;
1650         break;
1651     }
1652 
1653     return reason;
1654 }
1655 #endif
1656 
1657 #if 0
1658 ProcessMessage::CrashReason
1659 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
1660 {
1661     ProcessMessage::CrashReason reason;
1662     assert(info->si_signo == SIGILL);
1663 
1664     reason = ProcessMessage::eInvalidCrashReason;
1665 
1666     switch (info->si_code)
1667     {
1668     default:
1669         assert(false && "unexpected si_code for SIGILL");
1670         break;
1671     case ILL_ILLOPC:
1672         reason = ProcessMessage::eIllegalOpcode;
1673         break;
1674     case ILL_ILLOPN:
1675         reason = ProcessMessage::eIllegalOperand;
1676         break;
1677     case ILL_ILLADR:
1678         reason = ProcessMessage::eIllegalAddressingMode;
1679         break;
1680     case ILL_ILLTRP:
1681         reason = ProcessMessage::eIllegalTrap;
1682         break;
1683     case ILL_PRVOPC:
1684         reason = ProcessMessage::ePrivilegedOpcode;
1685         break;
1686     case ILL_PRVREG:
1687         reason = ProcessMessage::ePrivilegedRegister;
1688         break;
1689     case ILL_COPROC:
1690         reason = ProcessMessage::eCoprocessorError;
1691         break;
1692     case ILL_BADSTK:
1693         reason = ProcessMessage::eInternalStackError;
1694         break;
1695     }
1696 
1697     return reason;
1698 }
1699 #endif
1700 
1701 #if 0
1702 ProcessMessage::CrashReason
1703 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
1704 {
1705     ProcessMessage::CrashReason reason;
1706     assert(info->si_signo == SIGFPE);
1707 
1708     reason = ProcessMessage::eInvalidCrashReason;
1709 
1710     switch (info->si_code)
1711     {
1712     default:
1713         assert(false && "unexpected si_code for SIGFPE");
1714         break;
1715     case FPE_INTDIV:
1716         reason = ProcessMessage::eIntegerDivideByZero;
1717         break;
1718     case FPE_INTOVF:
1719         reason = ProcessMessage::eIntegerOverflow;
1720         break;
1721     case FPE_FLTDIV:
1722         reason = ProcessMessage::eFloatDivideByZero;
1723         break;
1724     case FPE_FLTOVF:
1725         reason = ProcessMessage::eFloatOverflow;
1726         break;
1727     case FPE_FLTUND:
1728         reason = ProcessMessage::eFloatUnderflow;
1729         break;
1730     case FPE_FLTRES:
1731         reason = ProcessMessage::eFloatInexactResult;
1732         break;
1733     case FPE_FLTINV:
1734         reason = ProcessMessage::eFloatInvalidOperation;
1735         break;
1736     case FPE_FLTSUB:
1737         reason = ProcessMessage::eFloatSubscriptRange;
1738         break;
1739     }
1740 
1741     return reason;
1742 }
1743 #endif
1744 
1745 #if 0
1746 ProcessMessage::CrashReason
1747 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
1748 {
1749     ProcessMessage::CrashReason reason;
1750     assert(info->si_signo == SIGBUS);
1751 
1752     reason = ProcessMessage::eInvalidCrashReason;
1753 
1754     switch (info->si_code)
1755     {
1756     default:
1757         assert(false && "unexpected si_code for SIGBUS");
1758         break;
1759     case BUS_ADRALN:
1760         reason = ProcessMessage::eIllegalAlignment;
1761         break;
1762     case BUS_ADRERR:
1763         reason = ProcessMessage::eIllegalAddress;
1764         break;
1765     case BUS_OBJERR:
1766         reason = ProcessMessage::eHardwareError;
1767         break;
1768     }
1769 
1770     return reason;
1771 }
1772 #endif
1773 
1774 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size,
1775                                       size_t &bytes_read) {
1776   if (ProcessVmReadvSupported()) {
1777     // The process_vm_readv path is about 50 times faster than ptrace api. We
1778     // want to use this syscall if it is supported.
1779 
1780     const ::pid_t pid = GetID();
1781 
1782     struct iovec local_iov, remote_iov;
1783     local_iov.iov_base = buf;
1784     local_iov.iov_len = size;
1785     remote_iov.iov_base = reinterpret_cast<void *>(addr);
1786     remote_iov.iov_len = size;
1787 
1788     bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
1789     const bool success = bytes_read == size;
1790 
1791     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1792     LLDB_LOG(log,
1793              "using process_vm_readv to read {0} bytes from inferior "
1794              "address {1:x}: {2}",
1795              size, addr, success ? "Success" : llvm::sys::StrError(errno));
1796 
1797     if (success)
1798       return Status();
1799     // else the call failed for some reason, let's retry the read using ptrace
1800     // api.
1801   }
1802 
1803   unsigned char *dst = static_cast<unsigned char *>(buf);
1804   size_t remainder;
1805   long data;
1806 
1807   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1808   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1809 
1810   for (bytes_read = 0; bytes_read < size; bytes_read += remainder) {
1811     Status error = NativeProcessLinux::PtraceWrapper(
1812         PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data);
1813     if (error.Fail())
1814       return error;
1815 
1816     remainder = size - bytes_read;
1817     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1818 
1819     // Copy the data into our buffer
1820     memcpy(dst, &data, remainder);
1821 
1822     LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1823     addr += k_ptrace_word_size;
1824     dst += k_ptrace_word_size;
1825   }
1826   return Status();
1827 }
1828 
1829 Status NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf,
1830                                                  size_t size,
1831                                                  size_t &bytes_read) {
1832   Status error = ReadMemory(addr, buf, size, bytes_read);
1833   if (error.Fail())
1834     return error;
1835   return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size);
1836 }
1837 
1838 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf,
1839                                        size_t size, size_t &bytes_written) {
1840   const unsigned char *src = static_cast<const unsigned char *>(buf);
1841   size_t remainder;
1842   Status error;
1843 
1844   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1845   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1846 
1847   for (bytes_written = 0; bytes_written < size; bytes_written += remainder) {
1848     remainder = size - bytes_written;
1849     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1850 
1851     if (remainder == k_ptrace_word_size) {
1852       unsigned long data = 0;
1853       memcpy(&data, src, k_ptrace_word_size);
1854 
1855       LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1856       error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(),
1857                                                 (void *)addr, (void *)data);
1858       if (error.Fail())
1859         return error;
1860     } else {
1861       unsigned char buff[8];
1862       size_t bytes_read;
1863       error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
1864       if (error.Fail())
1865         return error;
1866 
1867       memcpy(buff, src, remainder);
1868 
1869       size_t bytes_written_rec;
1870       error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
1871       if (error.Fail())
1872         return error;
1873 
1874       LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src,
1875                *(unsigned long *)buff);
1876     }
1877 
1878     addr += k_ptrace_word_size;
1879     src += k_ptrace_word_size;
1880   }
1881   return error;
1882 }
1883 
1884 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) {
1885   return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
1886 }
1887 
1888 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid,
1889                                            unsigned long *message) {
1890   return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
1891 }
1892 
1893 Status NativeProcessLinux::Detach(lldb::tid_t tid) {
1894   if (tid == LLDB_INVALID_THREAD_ID)
1895     return Status();
1896 
1897   return PtraceWrapper(PTRACE_DETACH, tid);
1898 }
1899 
1900 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) {
1901   for (const auto &thread : m_threads) {
1902     assert(thread && "thread list should not contain NULL threads");
1903     if (thread->GetID() == thread_id) {
1904       // We have this thread.
1905       return true;
1906     }
1907   }
1908 
1909   // We don't have this thread.
1910   return false;
1911 }
1912 
1913 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) {
1914   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1915   LLDB_LOG(log, "tid: {0})", thread_id);
1916 
1917   bool found = false;
1918   for (auto it = m_threads.begin(); it != m_threads.end(); ++it) {
1919     if (*it && ((*it)->GetID() == thread_id)) {
1920       m_threads.erase(it);
1921       found = true;
1922       break;
1923     }
1924   }
1925 
1926   if (found)
1927     StopTracingForThread(thread_id);
1928   SignalIfAllThreadsStopped();
1929   return found;
1930 }
1931 
1932 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id) {
1933   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD));
1934   LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id);
1935 
1936   assert(!HasThreadNoLock(thread_id) &&
1937          "attempted to add a thread by id that already exists");
1938 
1939   // If this is the first thread, save it as the current thread
1940   if (m_threads.empty())
1941     SetCurrentThreadID(thread_id);
1942 
1943   m_threads.push_back(llvm::make_unique<NativeThreadLinux>(*this, thread_id));
1944 
1945   if (m_pt_proces_trace_id != LLDB_INVALID_UID) {
1946     auto traceMonitor = ProcessorTraceMonitor::Create(
1947         GetID(), thread_id, m_pt_process_trace_config, true);
1948     if (traceMonitor) {
1949       m_pt_traced_thread_group.insert(thread_id);
1950       m_processor_trace_monitor.insert(
1951           std::make_pair(thread_id, std::move(*traceMonitor)));
1952     } else {
1953       LLDB_LOG(log, "failed to start trace on thread {0}", thread_id);
1954       Status error(traceMonitor.takeError());
1955       LLDB_LOG(log, "error {0}", error);
1956     }
1957   }
1958 
1959   return static_cast<NativeThreadLinux &>(*m_threads.back());
1960 }
1961 
1962 Status
1963 NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread) {
1964   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
1965 
1966   Status error;
1967 
1968   // Find out the size of a breakpoint (might depend on where we are in the
1969   // code).
1970   NativeRegisterContext &context = thread.GetRegisterContext();
1971 
1972   uint32_t breakpoint_size = 0;
1973   error = GetSoftwareBreakpointPCOffset(breakpoint_size);
1974   if (error.Fail()) {
1975     LLDB_LOG(log, "GetBreakpointSize() failed: {0}", error);
1976     return error;
1977   } else
1978     LLDB_LOG(log, "breakpoint size: {0}", breakpoint_size);
1979 
1980   // First try probing for a breakpoint at a software breakpoint location: PC -
1981   // breakpoint size.
1982   const lldb::addr_t initial_pc_addr = context.GetPCfromBreakpointLocation();
1983   lldb::addr_t breakpoint_addr = initial_pc_addr;
1984   if (breakpoint_size > 0) {
1985     // Do not allow breakpoint probe to wrap around.
1986     if (breakpoint_addr >= breakpoint_size)
1987       breakpoint_addr -= breakpoint_size;
1988   }
1989 
1990   // Check if we stopped because of a breakpoint.
1991   NativeBreakpointSP breakpoint_sp;
1992   error = m_breakpoint_list.GetBreakpoint(breakpoint_addr, breakpoint_sp);
1993   if (!error.Success() || !breakpoint_sp) {
1994     // We didn't find one at a software probe location.  Nothing to do.
1995     LLDB_LOG(log,
1996              "pid {0} no lldb breakpoint found at current pc with "
1997              "adjustment: {1}",
1998              GetID(), breakpoint_addr);
1999     return Status();
2000   }
2001 
2002   // If the breakpoint is not a software breakpoint, nothing to do.
2003   if (!breakpoint_sp->IsSoftwareBreakpoint()) {
2004     LLDB_LOG(
2005         log,
2006         "pid {0} breakpoint found at {1:x}, not software, nothing to adjust",
2007         GetID(), breakpoint_addr);
2008     return Status();
2009   }
2010 
2011   //
2012   // We have a software breakpoint and need to adjust the PC.
2013   //
2014 
2015   // Sanity check.
2016   if (breakpoint_size == 0) {
2017     // Nothing to do!  How did we get here?
2018     LLDB_LOG(log,
2019              "pid {0} breakpoint found at {1:x}, it is software, but the "
2020              "size is zero, nothing to do (unexpected)",
2021              GetID(), breakpoint_addr);
2022     return Status();
2023   }
2024 
2025   // Change the program counter.
2026   LLDB_LOG(log, "pid {0} tid {1}: changing PC from {2:x} to {3:x}", GetID(),
2027            thread.GetID(), initial_pc_addr, breakpoint_addr);
2028 
2029   error = context.SetPC(breakpoint_addr);
2030   if (error.Fail()) {
2031     LLDB_LOG(log, "pid {0} tid {1}: failed to set PC: {2}", GetID(),
2032              thread.GetID(), error);
2033     return error;
2034   }
2035 
2036   return error;
2037 }
2038 
2039 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path,
2040                                                    FileSpec &file_spec) {
2041   Status error = PopulateMemoryRegionCache();
2042   if (error.Fail())
2043     return error;
2044 
2045   FileSpec module_file_spec(module_path, true);
2046 
2047   file_spec.Clear();
2048   for (const auto &it : m_mem_region_cache) {
2049     if (it.second.GetFilename() == module_file_spec.GetFilename()) {
2050       file_spec = it.second;
2051       return Status();
2052     }
2053   }
2054   return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
2055                 module_file_spec.GetFilename().AsCString(), GetID());
2056 }
2057 
2058 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name,
2059                                               lldb::addr_t &load_addr) {
2060   load_addr = LLDB_INVALID_ADDRESS;
2061   Status error = PopulateMemoryRegionCache();
2062   if (error.Fail())
2063     return error;
2064 
2065   FileSpec file(file_name, false);
2066   for (const auto &it : m_mem_region_cache) {
2067     if (it.second == file) {
2068       load_addr = it.first.GetRange().GetRangeBase();
2069       return Status();
2070     }
2071   }
2072   return Status("No load address found for specified file.");
2073 }
2074 
2075 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) {
2076   return static_cast<NativeThreadLinux *>(
2077       NativeProcessProtocol::GetThreadByID(tid));
2078 }
2079 
2080 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread,
2081                                         lldb::StateType state, int signo) {
2082   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2083   LLDB_LOG(log, "tid: {0}", thread.GetID());
2084 
2085   // Before we do the resume below, first check if we have a pending stop
2086   // notification that is currently waiting for all threads to stop.  This is
2087   // potentially a buggy situation since we're ostensibly waiting for threads
2088   // to stop before we send out the pending notification, and here we are
2089   // resuming one before we send out the pending stop notification.
2090   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
2091     LLDB_LOG(log,
2092              "about to resume tid {0} per explicit request but we have a "
2093              "pending stop notification (tid {1}) that is actively "
2094              "waiting for this thread to stop. Valid sequence of events?",
2095              thread.GetID(), m_pending_notification_tid);
2096   }
2097 
2098   // Request a resume.  We expect this to be synchronous and the system to
2099   // reflect it is running after this completes.
2100   switch (state) {
2101   case eStateRunning: {
2102     const auto resume_result = thread.Resume(signo);
2103     if (resume_result.Success())
2104       SetState(eStateRunning, true);
2105     return resume_result;
2106   }
2107   case eStateStepping: {
2108     const auto step_result = thread.SingleStep(signo);
2109     if (step_result.Success())
2110       SetState(eStateRunning, true);
2111     return step_result;
2112   }
2113   default:
2114     LLDB_LOG(log, "Unhandled state {0}.", state);
2115     llvm_unreachable("Unhandled state for resume");
2116   }
2117 }
2118 
2119 //===----------------------------------------------------------------------===//
2120 
2121 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) {
2122   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2123   LLDB_LOG(log, "about to process event: (triggering_tid: {0})",
2124            triggering_tid);
2125 
2126   m_pending_notification_tid = triggering_tid;
2127 
2128   // Request a stop for all the thread stops that need to be stopped and are
2129   // not already known to be stopped.
2130   for (const auto &thread : m_threads) {
2131     if (StateIsRunningState(thread->GetState()))
2132       static_cast<NativeThreadLinux *>(thread.get())->RequestStop();
2133   }
2134 
2135   SignalIfAllThreadsStopped();
2136   LLDB_LOG(log, "event processing done");
2137 }
2138 
2139 void NativeProcessLinux::SignalIfAllThreadsStopped() {
2140   if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
2141     return; // No pending notification. Nothing to do.
2142 
2143   for (const auto &thread_sp : m_threads) {
2144     if (StateIsRunningState(thread_sp->GetState()))
2145       return; // Some threads are still running. Don't signal yet.
2146   }
2147 
2148   // We have a pending notification and all threads have stopped.
2149   Log *log(
2150       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
2151 
2152   // Clear any temporary breakpoints we used to implement software single
2153   // stepping.
2154   for (const auto &thread_info : m_threads_stepping_with_breakpoint) {
2155     Status error = RemoveBreakpoint(thread_info.second);
2156     if (error.Fail())
2157       LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}",
2158                thread_info.first, error);
2159   }
2160   m_threads_stepping_with_breakpoint.clear();
2161 
2162   // Notify the delegate about the stop
2163   SetCurrentThreadID(m_pending_notification_tid);
2164   SetState(StateType::eStateStopped, true);
2165   m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
2166 }
2167 
2168 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) {
2169   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2170   LLDB_LOG(log, "tid: {0}", thread.GetID());
2171 
2172   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID &&
2173       StateIsRunningState(thread.GetState())) {
2174     // We will need to wait for this new thread to stop as well before firing
2175     // the notification.
2176     thread.RequestStop();
2177   }
2178 }
2179 
2180 void NativeProcessLinux::SigchldHandler() {
2181   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
2182   // Process all pending waitpid notifications.
2183   while (true) {
2184     int status = -1;
2185     ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, -1, &status,
2186                                           __WALL | __WNOTHREAD | WNOHANG);
2187 
2188     if (wait_pid == 0)
2189       break; // We are done.
2190 
2191     if (wait_pid == -1) {
2192       Status error(errno, eErrorTypePOSIX);
2193       LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error);
2194       break;
2195     }
2196 
2197     WaitStatus wait_status = WaitStatus::Decode(status);
2198     bool exited = wait_status.type == WaitStatus::Exit ||
2199                   (wait_status.type == WaitStatus::Signal &&
2200                    wait_pid == static_cast<::pid_t>(GetID()));
2201 
2202     LLDB_LOG(
2203         log,
2204         "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}",
2205         wait_pid, wait_status, exited);
2206 
2207     MonitorCallback(wait_pid, exited, wait_status);
2208   }
2209 }
2210 
2211 // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets
2212 // errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
2213 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr,
2214                                          void *data, size_t data_size,
2215                                          long *result) {
2216   Status error;
2217   long int ret;
2218 
2219   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2220 
2221   PtraceDisplayBytes(req, data, data_size);
2222 
2223   errno = 0;
2224   if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
2225     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
2226                  *(unsigned int *)addr, data);
2227   else
2228     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
2229                  addr, data);
2230 
2231   if (ret == -1)
2232     error.SetErrorToErrno();
2233 
2234   if (result)
2235     *result = ret;
2236 
2237   LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data,
2238            data_size, ret);
2239 
2240   PtraceDisplayBytes(req, data, data_size);
2241 
2242   if (error.Fail())
2243     LLDB_LOG(log, "ptrace() failed: {0}", error);
2244 
2245   return error;
2246 }
2247 
2248 llvm::Expected<ProcessorTraceMonitor &>
2249 NativeProcessLinux::LookupProcessorTraceInstance(lldb::user_id_t traceid,
2250                                                  lldb::tid_t thread) {
2251   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2252   if (thread == LLDB_INVALID_THREAD_ID && traceid == m_pt_proces_trace_id) {
2253     LLDB_LOG(log, "thread not specified: {0}", traceid);
2254     return Status("tracing not active thread not specified").ToError();
2255   }
2256 
2257   for (auto& iter : m_processor_trace_monitor) {
2258     if (traceid == iter.second->GetTraceID() &&
2259         (thread == iter.first || thread == LLDB_INVALID_THREAD_ID))
2260       return *(iter.second);
2261   }
2262 
2263   LLDB_LOG(log, "traceid not being traced: {0}", traceid);
2264   return Status("tracing not active for this thread").ToError();
2265 }
2266 
2267 Status NativeProcessLinux::GetMetaData(lldb::user_id_t traceid,
2268                                        lldb::tid_t thread,
2269                                        llvm::MutableArrayRef<uint8_t> &buffer,
2270                                        size_t offset) {
2271   TraceOptions trace_options;
2272   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2273   Status error;
2274 
2275   LLDB_LOG(log, "traceid {0}", traceid);
2276 
2277   auto perf_monitor = LookupProcessorTraceInstance(traceid, thread);
2278   if (!perf_monitor) {
2279     LLDB_LOG(log, "traceid not being traced: {0}", traceid);
2280     buffer = buffer.slice(buffer.size());
2281     error = perf_monitor.takeError();
2282     return error;
2283   }
2284   return (*perf_monitor).ReadPerfTraceData(buffer, offset);
2285 }
2286 
2287 Status NativeProcessLinux::GetData(lldb::user_id_t traceid, lldb::tid_t thread,
2288                                    llvm::MutableArrayRef<uint8_t> &buffer,
2289                                    size_t offset) {
2290   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2291   Status error;
2292 
2293   LLDB_LOG(log, "traceid {0}", traceid);
2294 
2295   auto perf_monitor = LookupProcessorTraceInstance(traceid, thread);
2296   if (!perf_monitor) {
2297     LLDB_LOG(log, "traceid not being traced: {0}", traceid);
2298     buffer = buffer.slice(buffer.size());
2299     error = perf_monitor.takeError();
2300     return error;
2301   }
2302   return (*perf_monitor).ReadPerfTraceAux(buffer, offset);
2303 }
2304 
2305 Status NativeProcessLinux::GetTraceConfig(lldb::user_id_t traceid,
2306                                           TraceOptions &config) {
2307   Status error;
2308   if (config.getThreadID() == LLDB_INVALID_THREAD_ID &&
2309       m_pt_proces_trace_id == traceid) {
2310     if (m_pt_proces_trace_id == LLDB_INVALID_UID) {
2311       error.SetErrorString("tracing not active for this process");
2312       return error;
2313     }
2314     config = m_pt_process_trace_config;
2315   } else {
2316     auto perf_monitor =
2317         LookupProcessorTraceInstance(traceid, config.getThreadID());
2318     if (!perf_monitor) {
2319       error = perf_monitor.takeError();
2320       return error;
2321     }
2322     error = (*perf_monitor).GetTraceConfig(config);
2323   }
2324   return error;
2325 }
2326 
2327 lldb::user_id_t
2328 NativeProcessLinux::StartTraceGroup(const TraceOptions &config,
2329                                            Status &error) {
2330 
2331   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2332   if (config.getType() != TraceType::eTraceTypeProcessorTrace)
2333     return LLDB_INVALID_UID;
2334 
2335   if (m_pt_proces_trace_id != LLDB_INVALID_UID) {
2336     error.SetErrorString("tracing already active on this process");
2337     return m_pt_proces_trace_id;
2338   }
2339 
2340   for (const auto &thread_sp : m_threads) {
2341     if (auto traceInstance = ProcessorTraceMonitor::Create(
2342             GetID(), thread_sp->GetID(), config, true)) {
2343       m_pt_traced_thread_group.insert(thread_sp->GetID());
2344       m_processor_trace_monitor.insert(
2345           std::make_pair(thread_sp->GetID(), std::move(*traceInstance)));
2346     }
2347   }
2348 
2349   m_pt_process_trace_config = config;
2350   error = ProcessorTraceMonitor::GetCPUType(m_pt_process_trace_config);
2351 
2352   // Trace on Complete process will have traceid of 0
2353   m_pt_proces_trace_id = 0;
2354 
2355   LLDB_LOG(log, "Process Trace ID {0}", m_pt_proces_trace_id);
2356   return m_pt_proces_trace_id;
2357 }
2358 
2359 lldb::user_id_t NativeProcessLinux::StartTrace(const TraceOptions &config,
2360                                                Status &error) {
2361   if (config.getType() != TraceType::eTraceTypeProcessorTrace)
2362     return NativeProcessProtocol::StartTrace(config, error);
2363 
2364   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2365 
2366   lldb::tid_t threadid = config.getThreadID();
2367 
2368   if (threadid == LLDB_INVALID_THREAD_ID)
2369     return StartTraceGroup(config, error);
2370 
2371   auto thread_sp = GetThreadByID(threadid);
2372   if (!thread_sp) {
2373     // Thread not tracked by lldb so don't trace.
2374     error.SetErrorString("invalid thread id");
2375     return LLDB_INVALID_UID;
2376   }
2377 
2378   const auto &iter = m_processor_trace_monitor.find(threadid);
2379   if (iter != m_processor_trace_monitor.end()) {
2380     LLDB_LOG(log, "Thread already being traced");
2381     error.SetErrorString("tracing already active on this thread");
2382     return LLDB_INVALID_UID;
2383   }
2384 
2385   auto traceMonitor =
2386       ProcessorTraceMonitor::Create(GetID(), threadid, config, false);
2387   if (!traceMonitor) {
2388     error = traceMonitor.takeError();
2389     LLDB_LOG(log, "error {0}", error);
2390     return LLDB_INVALID_UID;
2391   }
2392   lldb::user_id_t ret_trace_id = (*traceMonitor)->GetTraceID();
2393   m_processor_trace_monitor.insert(
2394       std::make_pair(threadid, std::move(*traceMonitor)));
2395   return ret_trace_id;
2396 }
2397 
2398 Status NativeProcessLinux::StopTracingForThread(lldb::tid_t thread) {
2399   Status error;
2400   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2401   LLDB_LOG(log, "Thread {0}", thread);
2402 
2403   const auto& iter = m_processor_trace_monitor.find(thread);
2404   if (iter == m_processor_trace_monitor.end()) {
2405     error.SetErrorString("tracing not active for this thread");
2406     return error;
2407   }
2408 
2409   if (iter->second->GetTraceID() == m_pt_proces_trace_id) {
2410     // traceid maps to the whole process so we have to erase it from the thread
2411     // group.
2412     LLDB_LOG(log, "traceid maps to process");
2413     m_pt_traced_thread_group.erase(thread);
2414   }
2415   m_processor_trace_monitor.erase(iter);
2416 
2417   return error;
2418 }
2419 
2420 Status NativeProcessLinux::StopTrace(lldb::user_id_t traceid,
2421                                      lldb::tid_t thread) {
2422   Status error;
2423 
2424   TraceOptions trace_options;
2425   trace_options.setThreadID(thread);
2426   error = NativeProcessLinux::GetTraceConfig(traceid, trace_options);
2427 
2428   if (error.Fail())
2429     return error;
2430 
2431   switch (trace_options.getType()) {
2432   case lldb::TraceType::eTraceTypeProcessorTrace:
2433     if (traceid == m_pt_proces_trace_id &&
2434         thread == LLDB_INVALID_THREAD_ID)
2435       StopProcessorTracingOnProcess();
2436     else
2437       error = StopProcessorTracingOnThread(traceid, thread);
2438     break;
2439   default:
2440     error.SetErrorString("trace not supported");
2441     break;
2442   }
2443 
2444   return error;
2445 }
2446 
2447 void NativeProcessLinux::StopProcessorTracingOnProcess() {
2448   for (auto thread_id_iter : m_pt_traced_thread_group)
2449     m_processor_trace_monitor.erase(thread_id_iter);
2450   m_pt_traced_thread_group.clear();
2451   m_pt_proces_trace_id = LLDB_INVALID_UID;
2452 }
2453 
2454 Status NativeProcessLinux::StopProcessorTracingOnThread(lldb::user_id_t traceid,
2455                                                         lldb::tid_t thread) {
2456   Status error;
2457   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2458 
2459   if (thread == LLDB_INVALID_THREAD_ID) {
2460     for (auto& iter : m_processor_trace_monitor) {
2461       if (iter.second->GetTraceID() == traceid) {
2462         // Stopping a trace instance for an individual thread hence there will
2463         // only be one traceid that can match.
2464         m_processor_trace_monitor.erase(iter.first);
2465         return error;
2466       }
2467       LLDB_LOG(log, "Trace ID {0}", iter.second->GetTraceID());
2468     }
2469 
2470     LLDB_LOG(log, "Invalid TraceID");
2471     error.SetErrorString("invalid trace id");
2472     return error;
2473   }
2474 
2475   // thread is specified so we can use find function on the map.
2476   const auto& iter = m_processor_trace_monitor.find(thread);
2477   if (iter == m_processor_trace_monitor.end()) {
2478     // thread not found in our map.
2479     LLDB_LOG(log, "thread not being traced");
2480     error.SetErrorString("tracing not active for this thread");
2481     return error;
2482   }
2483   if (iter->second->GetTraceID() != traceid) {
2484     // traceid did not match so it has to be invalid.
2485     LLDB_LOG(log, "Invalid TraceID");
2486     error.SetErrorString("invalid trace id");
2487     return error;
2488   }
2489 
2490   LLDB_LOG(log, "UID - {0} , Thread -{1}", traceid, thread);
2491 
2492   if (traceid == m_pt_proces_trace_id) {
2493     // traceid maps to the whole process so we have to erase it from the thread
2494     // group.
2495     LLDB_LOG(log, "traceid maps to process");
2496     m_pt_traced_thread_group.erase(thread);
2497   }
2498   m_processor_trace_monitor.erase(iter);
2499 
2500   return error;
2501 }
2502