1 //===-- NativeProcessLinux.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "NativeProcessLinux.h" 10 11 #include <cerrno> 12 #include <cstdint> 13 #include <cstring> 14 #include <unistd.h> 15 16 #include <fstream> 17 #include <mutex> 18 #include <sstream> 19 #include <string> 20 #include <unordered_map> 21 22 #include "NativeThreadLinux.h" 23 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 24 #include "Plugins/Process/Utility/LinuxProcMaps.h" 25 #include "Procfs.h" 26 #include "lldb/Core/ModuleSpec.h" 27 #include "lldb/Host/Host.h" 28 #include "lldb/Host/HostProcess.h" 29 #include "lldb/Host/ProcessLaunchInfo.h" 30 #include "lldb/Host/PseudoTerminal.h" 31 #include "lldb/Host/ThreadLauncher.h" 32 #include "lldb/Host/common/NativeRegisterContext.h" 33 #include "lldb/Host/linux/Host.h" 34 #include "lldb/Host/linux/Ptrace.h" 35 #include "lldb/Host/linux/Uio.h" 36 #include "lldb/Host/posix/ProcessLauncherPosixFork.h" 37 #include "lldb/Symbol/ObjectFile.h" 38 #include "lldb/Target/Process.h" 39 #include "lldb/Target/Target.h" 40 #include "lldb/Utility/LLDBAssert.h" 41 #include "lldb/Utility/State.h" 42 #include "lldb/Utility/Status.h" 43 #include "lldb/Utility/StringExtractor.h" 44 #include "llvm/ADT/ScopeExit.h" 45 #include "llvm/Support/Errno.h" 46 #include "llvm/Support/FileSystem.h" 47 #include "llvm/Support/Threading.h" 48 49 #include <linux/unistd.h> 50 #include <sys/socket.h> 51 #include <sys/syscall.h> 52 #include <sys/types.h> 53 #include <sys/user.h> 54 #include <sys/wait.h> 55 56 #ifdef __aarch64__ 57 #include <asm/hwcap.h> 58 #include <sys/auxv.h> 59 #endif 60 61 // Support hardware breakpoints in case it has not been defined 62 #ifndef TRAP_HWBKPT 63 #define TRAP_HWBKPT 4 64 #endif 65 66 #ifndef HWCAP2_MTE 67 #define HWCAP2_MTE (1 << 18) 68 #endif 69 70 using namespace lldb; 71 using namespace lldb_private; 72 using namespace lldb_private::process_linux; 73 using namespace llvm; 74 75 // Private bits we only need internally. 76 77 static bool ProcessVmReadvSupported() { 78 static bool is_supported; 79 static llvm::once_flag flag; 80 81 llvm::call_once(flag, [] { 82 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 83 84 uint32_t source = 0x47424742; 85 uint32_t dest = 0; 86 87 struct iovec local, remote; 88 remote.iov_base = &source; 89 local.iov_base = &dest; 90 remote.iov_len = local.iov_len = sizeof source; 91 92 // We shall try if cross-process-memory reads work by attempting to read a 93 // value from our own process. 94 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); 95 is_supported = (res == sizeof(source) && source == dest); 96 if (is_supported) 97 LLDB_LOG(log, 98 "Detected kernel support for process_vm_readv syscall. " 99 "Fast memory reads enabled."); 100 else 101 LLDB_LOG(log, 102 "syscall process_vm_readv failed (error: {0}). Fast memory " 103 "reads disabled.", 104 llvm::sys::StrError()); 105 }); 106 107 return is_supported; 108 } 109 110 static void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) { 111 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 112 if (!log) 113 return; 114 115 if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO)) 116 LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec()); 117 else 118 LLDB_LOG(log, "leaving STDIN as is"); 119 120 if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO)) 121 LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec()); 122 else 123 LLDB_LOG(log, "leaving STDOUT as is"); 124 125 if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO)) 126 LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec()); 127 else 128 LLDB_LOG(log, "leaving STDERR as is"); 129 130 int i = 0; 131 for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; 132 ++args, ++i) 133 LLDB_LOG(log, "arg {0}: '{1}'", i, *args); 134 } 135 136 static void DisplayBytes(StreamString &s, void *bytes, uint32_t count) { 137 uint8_t *ptr = (uint8_t *)bytes; 138 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 139 for (uint32_t i = 0; i < loop_count; i++) { 140 s.Printf("[%x]", *ptr); 141 ptr++; 142 } 143 } 144 145 static void PtraceDisplayBytes(int &req, void *data, size_t data_size) { 146 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 147 if (!log) 148 return; 149 StreamString buf; 150 151 switch (req) { 152 case PTRACE_POKETEXT: { 153 DisplayBytes(buf, &data, 8); 154 LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData()); 155 break; 156 } 157 case PTRACE_POKEDATA: { 158 DisplayBytes(buf, &data, 8); 159 LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData()); 160 break; 161 } 162 case PTRACE_POKEUSER: { 163 DisplayBytes(buf, &data, 8); 164 LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData()); 165 break; 166 } 167 case PTRACE_SETREGS: { 168 DisplayBytes(buf, data, data_size); 169 LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData()); 170 break; 171 } 172 case PTRACE_SETFPREGS: { 173 DisplayBytes(buf, data, data_size); 174 LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData()); 175 break; 176 } 177 case PTRACE_SETSIGINFO: { 178 DisplayBytes(buf, data, sizeof(siginfo_t)); 179 LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData()); 180 break; 181 } 182 case PTRACE_SETREGSET: { 183 // Extract iov_base from data, which is a pointer to the struct iovec 184 DisplayBytes(buf, *(void **)data, data_size); 185 LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData()); 186 break; 187 } 188 default: {} 189 } 190 } 191 192 static constexpr unsigned k_ptrace_word_size = sizeof(void *); 193 static_assert(sizeof(long) >= k_ptrace_word_size, 194 "Size of long must be larger than ptrace word size"); 195 196 // Simple helper function to ensure flags are enabled on the given file 197 // descriptor. 198 static Status EnsureFDFlags(int fd, int flags) { 199 Status error; 200 201 int status = fcntl(fd, F_GETFL); 202 if (status == -1) { 203 error.SetErrorToErrno(); 204 return error; 205 } 206 207 if (fcntl(fd, F_SETFL, status | flags) == -1) { 208 error.SetErrorToErrno(); 209 return error; 210 } 211 212 return error; 213 } 214 215 // Public Static Methods 216 217 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 218 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info, 219 NativeDelegate &native_delegate, 220 MainLoop &mainloop) const { 221 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 222 223 MaybeLogLaunchInfo(launch_info); 224 225 Status status; 226 ::pid_t pid = ProcessLauncherPosixFork() 227 .LaunchProcess(launch_info, status) 228 .GetProcessId(); 229 LLDB_LOG(log, "pid = {0:x}", pid); 230 if (status.Fail()) { 231 LLDB_LOG(log, "failed to launch process: {0}", status); 232 return status.ToError(); 233 } 234 235 // Wait for the child process to trap on its call to execve. 236 int wstatus; 237 ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0); 238 assert(wpid == pid); 239 (void)wpid; 240 if (!WIFSTOPPED(wstatus)) { 241 LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}", 242 WaitStatus::Decode(wstatus)); 243 return llvm::make_error<StringError>("Could not sync with inferior process", 244 llvm::inconvertibleErrorCode()); 245 } 246 LLDB_LOG(log, "inferior started, now in stopped state"); 247 248 ProcessInstanceInfo Info; 249 if (!Host::GetProcessInfo(pid, Info)) { 250 return llvm::make_error<StringError>("Cannot get process architecture", 251 llvm::inconvertibleErrorCode()); 252 } 253 254 // Set the architecture to the exe architecture. 255 LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid, 256 Info.GetArchitecture().GetArchitectureName()); 257 258 status = SetDefaultPtraceOpts(pid); 259 if (status.Fail()) { 260 LLDB_LOG(log, "failed to set default ptrace options: {0}", status); 261 return status.ToError(); 262 } 263 264 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 265 pid, launch_info.GetPTY().ReleasePrimaryFileDescriptor(), native_delegate, 266 Info.GetArchitecture(), mainloop, {pid})); 267 } 268 269 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 270 NativeProcessLinux::Factory::Attach( 271 lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate, 272 MainLoop &mainloop) const { 273 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 274 LLDB_LOG(log, "pid = {0:x}", pid); 275 276 // Retrieve the architecture for the running process. 277 ProcessInstanceInfo Info; 278 if (!Host::GetProcessInfo(pid, Info)) { 279 return llvm::make_error<StringError>("Cannot get process architecture", 280 llvm::inconvertibleErrorCode()); 281 } 282 283 auto tids_or = NativeProcessLinux::Attach(pid); 284 if (!tids_or) 285 return tids_or.takeError(); 286 287 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 288 pid, -1, native_delegate, Info.GetArchitecture(), mainloop, *tids_or)); 289 } 290 291 NativeProcessLinux::Extension 292 NativeProcessLinux::Factory::GetSupportedExtensions() const { 293 NativeProcessLinux::Extension supported = 294 Extension::multiprocess | Extension::fork | Extension::vfork | 295 Extension::pass_signals | Extension::auxv | Extension::libraries_svr4; 296 297 #ifdef __aarch64__ 298 // At this point we do not have a process so read auxv directly. 299 if ((getauxval(AT_HWCAP2) & HWCAP2_MTE)) 300 supported |= Extension::memory_tagging; 301 #endif 302 303 return supported; 304 } 305 306 // Public Instance Methods 307 308 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd, 309 NativeDelegate &delegate, 310 const ArchSpec &arch, MainLoop &mainloop, 311 llvm::ArrayRef<::pid_t> tids) 312 : NativeProcessELF(pid, terminal_fd, delegate), m_arch(arch), 313 m_main_loop(mainloop), m_intel_pt_manager(pid) { 314 if (m_terminal_fd != -1) { 315 Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 316 assert(status.Success()); 317 } 318 319 Status status; 320 m_sigchld_handle = mainloop.RegisterSignal( 321 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status); 322 assert(m_sigchld_handle && status.Success()); 323 324 for (const auto &tid : tids) { 325 NativeThreadLinux &thread = AddThread(tid, /*resume*/ false); 326 ThreadWasCreated(thread); 327 } 328 329 // Let our process instance know the thread has stopped. 330 SetCurrentThreadID(tids[0]); 331 SetState(StateType::eStateStopped, false); 332 333 // Proccess any signals we received before installing our handler 334 SigchldHandler(); 335 } 336 337 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) { 338 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 339 340 Status status; 341 // Use a map to keep track of the threads which we have attached/need to 342 // attach. 343 Host::TidMap tids_to_attach; 344 while (Host::FindProcessThreads(pid, tids_to_attach)) { 345 for (Host::TidMap::iterator it = tids_to_attach.begin(); 346 it != tids_to_attach.end();) { 347 if (it->second == false) { 348 lldb::tid_t tid = it->first; 349 350 // Attach to the requested process. 351 // An attach will cause the thread to stop with a SIGSTOP. 352 if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) { 353 // No such thread. The thread may have exited. More error handling 354 // may be needed. 355 if (status.GetError() == ESRCH) { 356 it = tids_to_attach.erase(it); 357 continue; 358 } 359 return status.ToError(); 360 } 361 362 int wpid = 363 llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL); 364 // Need to use __WALL otherwise we receive an error with errno=ECHLD At 365 // this point we should have a thread stopped if waitpid succeeds. 366 if (wpid < 0) { 367 // No such thread. The thread may have exited. More error handling 368 // may be needed. 369 if (errno == ESRCH) { 370 it = tids_to_attach.erase(it); 371 continue; 372 } 373 return llvm::errorCodeToError( 374 std::error_code(errno, std::generic_category())); 375 } 376 377 if ((status = SetDefaultPtraceOpts(tid)).Fail()) 378 return status.ToError(); 379 380 LLDB_LOG(log, "adding tid = {0}", tid); 381 it->second = true; 382 } 383 384 // move the loop forward 385 ++it; 386 } 387 } 388 389 size_t tid_count = tids_to_attach.size(); 390 if (tid_count == 0) 391 return llvm::make_error<StringError>("No such process", 392 llvm::inconvertibleErrorCode()); 393 394 std::vector<::pid_t> tids; 395 tids.reserve(tid_count); 396 for (const auto &p : tids_to_attach) 397 tids.push_back(p.first); 398 return std::move(tids); 399 } 400 401 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) { 402 long ptrace_opts = 0; 403 404 // Have the child raise an event on exit. This is used to keep the child in 405 // limbo until it is destroyed. 406 ptrace_opts |= PTRACE_O_TRACEEXIT; 407 408 // Have the tracer trace threads which spawn in the inferior process. 409 ptrace_opts |= PTRACE_O_TRACECLONE; 410 411 // Have the tracer notify us before execve returns (needed to disable legacy 412 // SIGTRAP generation) 413 ptrace_opts |= PTRACE_O_TRACEEXEC; 414 415 // Have the tracer trace forked children. 416 ptrace_opts |= PTRACE_O_TRACEFORK; 417 418 // Have the tracer trace vforks. 419 ptrace_opts |= PTRACE_O_TRACEVFORK; 420 421 // Have the tracer trace vfork-done in order to restore breakpoints after 422 // the child finishes sharing memory. 423 ptrace_opts |= PTRACE_O_TRACEVFORKDONE; 424 425 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts); 426 } 427 428 // Handles all waitpid events from the inferior process. 429 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited, 430 WaitStatus status) { 431 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 432 433 // Certain activities differ based on whether the pid is the tid of the main 434 // thread. 435 const bool is_main_thread = (pid == GetID()); 436 437 // Handle when the thread exits. 438 if (exited) { 439 LLDB_LOG(log, 440 "got exit status({0}) , tid = {1} ({2} main thread), process " 441 "state = {3}", 442 status, pid, is_main_thread ? "is" : "is not", GetState()); 443 444 // This is a thread that exited. Ensure we're not tracking it anymore. 445 StopTrackingThread(pid); 446 447 if (is_main_thread) { 448 // The main thread exited. We're done monitoring. Report to delegate. 449 SetExitStatus(status, true); 450 451 // Notify delegate that our process has exited. 452 SetState(StateType::eStateExited, true); 453 } 454 return; 455 } 456 457 siginfo_t info; 458 const auto info_err = GetSignalInfo(pid, &info); 459 auto thread_sp = GetThreadByID(pid); 460 461 if (!thread_sp) { 462 // Normally, the only situation when we cannot find the thread is if we 463 // have just received a new thread notification. This is indicated by 464 // GetSignalInfo() returning si_code == SI_USER and si_pid == 0 465 LLDB_LOG(log, "received notification about an unknown tid {0}.", pid); 466 467 if (info_err.Fail()) { 468 LLDB_LOG(log, 469 "(tid {0}) GetSignalInfo failed ({1}). " 470 "Ingoring this notification.", 471 pid, info_err); 472 return; 473 } 474 475 LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code, 476 info.si_pid); 477 478 MonitorClone(pid, llvm::None); 479 return; 480 } 481 482 // Get details on the signal raised. 483 if (info_err.Success()) { 484 // We have retrieved the signal info. Dispatch appropriately. 485 if (info.si_signo == SIGTRAP) 486 MonitorSIGTRAP(info, *thread_sp); 487 else 488 MonitorSignal(info, *thread_sp, exited); 489 } else { 490 if (info_err.GetError() == EINVAL) { 491 // This is a group stop reception for this tid. We can reach here if we 492 // reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the tracee, 493 // triggering the group-stop mechanism. Normally receiving these would 494 // stop the process, pending a SIGCONT. Simulating this state in a 495 // debugger is hard and is generally not needed (one use case is 496 // debugging background task being managed by a shell). For general use, 497 // it is sufficient to stop the process in a signal-delivery stop which 498 // happens before the group stop. This done by MonitorSignal and works 499 // correctly for all signals. 500 LLDB_LOG(log, 501 "received a group stop for pid {0} tid {1}. Transparent " 502 "handling of group stops not supported, resuming the " 503 "thread.", 504 GetID(), pid); 505 ResumeThread(*thread_sp, thread_sp->GetState(), 506 LLDB_INVALID_SIGNAL_NUMBER); 507 } else { 508 // ptrace(GETSIGINFO) failed (but not due to group-stop). 509 510 // A return value of ESRCH means the thread/process is no longer on the 511 // system, so it was killed somehow outside of our control. Either way, 512 // we can't do anything with it anymore. 513 514 // Stop tracking the metadata for the thread since it's entirely off the 515 // system now. 516 const bool thread_found = StopTrackingThread(pid); 517 518 LLDB_LOG(log, 519 "GetSignalInfo failed: {0}, tid = {1}, status = {2}, " 520 "status = {3}, main_thread = {4}, thread_found: {5}", 521 info_err, pid, status, status, is_main_thread, thread_found); 522 523 if (is_main_thread) { 524 // Notify the delegate - our process is not available but appears to 525 // have been killed outside our control. Is eStateExited the right 526 // exit state in this case? 527 SetExitStatus(status, true); 528 SetState(StateType::eStateExited, true); 529 } else { 530 // This thread was pulled out from underneath us. Anything to do here? 531 // Do we want to do an all stop? 532 LLDB_LOG(log, 533 "pid {0} tid {1} non-main thread exit occurred, didn't " 534 "tell delegate anything since thread disappeared out " 535 "from underneath us", 536 GetID(), pid); 537 } 538 } 539 } 540 } 541 542 void NativeProcessLinux::WaitForCloneNotification(::pid_t pid) { 543 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 544 545 // The PID is not tracked yet, let's wait for it to appear. 546 int status = -1; 547 LLDB_LOG(log, 548 "received clone event for pid {0}. pid not tracked yet, " 549 "waiting for it to appear...", 550 pid); 551 ::pid_t wait_pid = 552 llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &status, __WALL); 553 // Since we are waiting on a specific pid, this must be the creation event. 554 // But let's do some checks just in case. 555 if (wait_pid != pid) { 556 LLDB_LOG(log, 557 "waiting for pid {0} failed. Assuming the pid has " 558 "disappeared in the meantime", 559 pid); 560 // The only way I know of this could happen is if the whole process was 561 // SIGKILLed in the mean time. In any case, we can't do anything about that 562 // now. 563 return; 564 } 565 if (WIFEXITED(status)) { 566 LLDB_LOG(log, 567 "waiting for pid {0} returned an 'exited' event. Not " 568 "tracking it.", 569 pid); 570 // Also a very improbable event. 571 m_pending_pid_map.erase(pid); 572 return; 573 } 574 575 MonitorClone(pid, llvm::None); 576 } 577 578 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, 579 NativeThreadLinux &thread) { 580 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 581 const bool is_main_thread = (thread.GetID() == GetID()); 582 583 assert(info.si_signo == SIGTRAP && "Unexpected child signal!"); 584 585 switch (info.si_code) { 586 case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 587 case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 588 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { 589 // This can either mean a new thread or a new process spawned via 590 // clone(2) without SIGCHLD or CLONE_VFORK flag. Note that clone(2) 591 // can also cause PTRACE_EVENT_FORK and PTRACE_EVENT_VFORK if one 592 // of these flags are passed. 593 594 unsigned long event_message = 0; 595 if (GetEventMessage(thread.GetID(), &event_message).Fail()) { 596 LLDB_LOG(log, 597 "pid {0} received clone() event but GetEventMessage failed " 598 "so we don't know the new pid/tid", 599 thread.GetID()); 600 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 601 } else { 602 if (!MonitorClone(event_message, {{(info.si_code >> 8), thread.GetID()}})) 603 WaitForCloneNotification(event_message); 604 } 605 606 break; 607 } 608 609 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): { 610 LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP); 611 612 // Exec clears any pending notifications. 613 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 614 615 // Remove all but the main thread here. Linux fork creates a new process 616 // which only copies the main thread. 617 LLDB_LOG(log, "exec received, stop tracking all but main thread"); 618 619 llvm::erase_if(m_threads, [&](std::unique_ptr<NativeThreadProtocol> &t) { 620 return t->GetID() != GetID(); 621 }); 622 assert(m_threads.size() == 1); 623 auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get()); 624 625 SetCurrentThreadID(main_thread->GetID()); 626 main_thread->SetStoppedByExec(); 627 628 // Tell coordinator about about the "new" (since exec) stopped main thread. 629 ThreadWasCreated(*main_thread); 630 631 // Let our delegate know we have just exec'd. 632 NotifyDidExec(); 633 634 // Let the process know we're stopped. 635 StopRunningThreads(main_thread->GetID()); 636 637 break; 638 } 639 640 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { 641 // The inferior process or one of its threads is about to exit. We don't 642 // want to do anything with the thread so we just resume it. In case we 643 // want to implement "break on thread exit" functionality, we would need to 644 // stop here. 645 646 unsigned long data = 0; 647 if (GetEventMessage(thread.GetID(), &data).Fail()) 648 data = -1; 649 650 LLDB_LOG(log, 651 "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, " 652 "WIFSIGNALED={2}, pid = {3}, main_thread = {4}", 653 data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(), 654 is_main_thread); 655 656 657 StateType state = thread.GetState(); 658 if (!StateIsRunningState(state)) { 659 // Due to a kernel bug, we may sometimes get this stop after the inferior 660 // gets a SIGKILL. This confuses our state tracking logic in 661 // ResumeThread(), since normally, we should not be receiving any ptrace 662 // events while the inferior is stopped. This makes sure that the 663 // inferior is resumed and exits normally. 664 state = eStateRunning; 665 } 666 ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); 667 668 break; 669 } 670 671 case (SIGTRAP | (PTRACE_EVENT_VFORK_DONE << 8)): { 672 if (bool(m_enabled_extensions & Extension::vfork)) { 673 thread.SetStoppedByVForkDone(); 674 StopRunningThreads(thread.GetID()); 675 } 676 else 677 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 678 break; 679 } 680 681 case 0: 682 case TRAP_TRACE: // We receive this on single stepping. 683 case TRAP_HWBKPT: // We receive this on watchpoint hit 684 { 685 // If a watchpoint was hit, report it 686 uint32_t wp_index; 687 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 688 wp_index, (uintptr_t)info.si_addr); 689 if (error.Fail()) 690 LLDB_LOG(log, 691 "received error while checking for watchpoint hits, pid = " 692 "{0}, error = {1}", 693 thread.GetID(), error); 694 if (wp_index != LLDB_INVALID_INDEX32) { 695 MonitorWatchpoint(thread, wp_index); 696 break; 697 } 698 699 // If a breakpoint was hit, report it 700 uint32_t bp_index; 701 error = thread.GetRegisterContext().GetHardwareBreakHitIndex( 702 bp_index, (uintptr_t)info.si_addr); 703 if (error.Fail()) 704 LLDB_LOG(log, "received error while checking for hardware " 705 "breakpoint hits, pid = {0}, error = {1}", 706 thread.GetID(), error); 707 if (bp_index != LLDB_INVALID_INDEX32) { 708 MonitorBreakpoint(thread); 709 break; 710 } 711 712 // Otherwise, report step over 713 MonitorTrace(thread); 714 break; 715 } 716 717 case SI_KERNEL: 718 #if defined __mips__ 719 // For mips there is no special signal for watchpoint So we check for 720 // watchpoint in kernel trap 721 { 722 // If a watchpoint was hit, report it 723 uint32_t wp_index; 724 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 725 wp_index, LLDB_INVALID_ADDRESS); 726 if (error.Fail()) 727 LLDB_LOG(log, 728 "received error while checking for watchpoint hits, pid = " 729 "{0}, error = {1}", 730 thread.GetID(), error); 731 if (wp_index != LLDB_INVALID_INDEX32) { 732 MonitorWatchpoint(thread, wp_index); 733 break; 734 } 735 } 736 // NO BREAK 737 #endif 738 case TRAP_BRKPT: 739 MonitorBreakpoint(thread); 740 break; 741 742 case SIGTRAP: 743 case (SIGTRAP | 0x80): 744 LLDB_LOG( 745 log, 746 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 747 info.si_code, GetID(), thread.GetID()); 748 749 // Ignore these signals until we know more about them. 750 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 751 break; 752 753 default: 754 LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}", 755 info.si_code, GetID(), thread.GetID()); 756 MonitorSignal(info, thread, false); 757 break; 758 } 759 } 760 761 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) { 762 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 763 LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID()); 764 765 // This thread is currently stopped. 766 thread.SetStoppedByTrace(); 767 768 StopRunningThreads(thread.GetID()); 769 } 770 771 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) { 772 Log *log( 773 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 774 LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID()); 775 776 // Mark the thread as stopped at breakpoint. 777 thread.SetStoppedByBreakpoint(); 778 FixupBreakpointPCAsNeeded(thread); 779 780 if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != 781 m_threads_stepping_with_breakpoint.end()) 782 thread.SetStoppedByTrace(); 783 784 StopRunningThreads(thread.GetID()); 785 } 786 787 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, 788 uint32_t wp_index) { 789 Log *log( 790 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); 791 LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}", 792 thread.GetID(), wp_index); 793 794 // Mark the thread as stopped at watchpoint. The address is at 795 // (lldb::addr_t)info->si_addr if we need it. 796 thread.SetStoppedByWatchpoint(wp_index); 797 798 // We need to tell all other running threads before we notify the delegate 799 // about this stop. 800 StopRunningThreads(thread.GetID()); 801 } 802 803 void NativeProcessLinux::MonitorSignal(const siginfo_t &info, 804 NativeThreadLinux &thread, bool exited) { 805 const int signo = info.si_signo; 806 const bool is_from_llgs = info.si_pid == getpid(); 807 808 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 809 810 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 811 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2) 812 // or raise(3). Similarly for tgkill(2) on Linux. 813 // 814 // IOW, user generated signals never generate what we consider to be a 815 // "crash". 816 // 817 // Similarly, ACK signals generated by this monitor. 818 819 // Handle the signal. 820 LLDB_LOG(log, 821 "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, " 822 "waitpid pid = {4})", 823 Host::GetSignalAsCString(signo), signo, info.si_code, 824 thread.GetID()); 825 826 // Check for thread stop notification. 827 if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) { 828 // This is a tgkill()-based stop. 829 LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID()); 830 831 // Check that we're not already marked with a stop reason. Note this thread 832 // really shouldn't already be marked as stopped - if we were, that would 833 // imply that the kernel signaled us with the thread stopping which we 834 // handled and marked as stopped, and that, without an intervening resume, 835 // we received another stop. It is more likely that we are missing the 836 // marking of a run state somewhere if we find that the thread was marked 837 // as stopped. 838 const StateType thread_state = thread.GetState(); 839 if (!StateIsStoppedState(thread_state, false)) { 840 // An inferior thread has stopped because of a SIGSTOP we have sent it. 841 // Generally, these are not important stops and we don't want to report 842 // them as they are just used to stop other threads when one thread (the 843 // one with the *real* stop reason) hits a breakpoint (watchpoint, 844 // etc...). However, in the case of an asynchronous Interrupt(), this 845 // *is* the real stop reason, so we leave the signal intact if this is 846 // the thread that was chosen as the triggering thread. 847 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 848 if (m_pending_notification_tid == thread.GetID()) 849 thread.SetStoppedBySignal(SIGSTOP, &info); 850 else 851 thread.SetStoppedWithNoReason(); 852 853 SetCurrentThreadID(thread.GetID()); 854 SignalIfAllThreadsStopped(); 855 } else { 856 // We can end up here if stop was initiated by LLGS but by this time a 857 // thread stop has occurred - maybe initiated by another event. 858 Status error = ResumeThread(thread, thread.GetState(), 0); 859 if (error.Fail()) 860 LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(), 861 error); 862 } 863 } else { 864 LLDB_LOG(log, 865 "pid {0} tid {1}, thread was already marked as a stopped " 866 "state (state={2}), leaving stop signal as is", 867 GetID(), thread.GetID(), thread_state); 868 SignalIfAllThreadsStopped(); 869 } 870 871 // Done handling. 872 return; 873 } 874 875 // Check if debugger should stop at this signal or just ignore it and resume 876 // the inferior. 877 if (m_signals_to_ignore.contains(signo)) { 878 ResumeThread(thread, thread.GetState(), signo); 879 return; 880 } 881 882 // This thread is stopped. 883 LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo)); 884 thread.SetStoppedBySignal(signo, &info); 885 886 // Send a stop to the debugger after we get all other threads to stop. 887 StopRunningThreads(thread.GetID()); 888 } 889 890 bool NativeProcessLinux::MonitorClone( 891 lldb::pid_t child_pid, 892 llvm::Optional<NativeProcessLinux::CloneInfo> clone_info) { 893 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 894 LLDB_LOG(log, "clone, child_pid={0}, clone info?={1}", child_pid, 895 clone_info.hasValue()); 896 897 auto find_it = m_pending_pid_map.find(child_pid); 898 if (find_it == m_pending_pid_map.end()) { 899 // not in the map, so this is the first signal for the PID 900 m_pending_pid_map.insert({child_pid, clone_info}); 901 return false; 902 } 903 m_pending_pid_map.erase(find_it); 904 905 // second signal for the pid 906 assert(clone_info.hasValue() != find_it->second.hasValue()); 907 if (!clone_info) { 908 // child signal does not indicate the event, so grab the one stored 909 // earlier 910 clone_info = find_it->second; 911 } 912 913 LLDB_LOG(log, "second signal for child_pid={0}, parent_tid={1}, event={2}", 914 child_pid, clone_info->parent_tid, clone_info->event); 915 916 auto *parent_thread = GetThreadByID(clone_info->parent_tid); 917 assert(parent_thread); 918 919 switch (clone_info->event) { 920 case PTRACE_EVENT_CLONE: { 921 // PTRACE_EVENT_CLONE can either mean a new thread or a new process. 922 // Try to grab the new process' PGID to figure out which one it is. 923 // If PGID is the same as the PID, then it's a new process. Otherwise, 924 // it's a thread. 925 auto tgid_ret = getPIDForTID(child_pid); 926 if (tgid_ret != child_pid) { 927 // A new thread should have PGID matching our process' PID. 928 assert(!tgid_ret || tgid_ret.getValue() == GetID()); 929 930 NativeThreadLinux &child_thread = AddThread(child_pid, /*resume*/ true); 931 ThreadWasCreated(child_thread); 932 933 // Resume the parent. 934 ResumeThread(*parent_thread, parent_thread->GetState(), 935 LLDB_INVALID_SIGNAL_NUMBER); 936 break; 937 } 938 } 939 LLVM_FALLTHROUGH; 940 case PTRACE_EVENT_FORK: 941 case PTRACE_EVENT_VFORK: { 942 bool is_vfork = clone_info->event == PTRACE_EVENT_VFORK; 943 std::unique_ptr<NativeProcessLinux> child_process{new NativeProcessLinux( 944 static_cast<::pid_t>(child_pid), m_terminal_fd, m_delegate, m_arch, 945 m_main_loop, {static_cast<::pid_t>(child_pid)})}; 946 if (!is_vfork) 947 child_process->m_software_breakpoints = m_software_breakpoints; 948 949 Extension expected_ext = is_vfork ? Extension::vfork : Extension::fork; 950 if (bool(m_enabled_extensions & expected_ext)) { 951 m_delegate.NewSubprocess(this, std::move(child_process)); 952 // NB: non-vfork clone() is reported as fork 953 parent_thread->SetStoppedByFork(is_vfork, child_pid); 954 StopRunningThreads(parent_thread->GetID()); 955 } else { 956 child_process->Detach(); 957 ResumeThread(*parent_thread, parent_thread->GetState(), 958 LLDB_INVALID_SIGNAL_NUMBER); 959 } 960 break; 961 } 962 default: 963 llvm_unreachable("unknown clone_info.event"); 964 } 965 966 return true; 967 } 968 969 bool NativeProcessLinux::SupportHardwareSingleStepping() const { 970 if (m_arch.GetMachine() == llvm::Triple::arm || m_arch.IsMIPS()) 971 return false; 972 return true; 973 } 974 975 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) { 976 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 977 LLDB_LOG(log, "pid {0}", GetID()); 978 979 bool software_single_step = !SupportHardwareSingleStepping(); 980 981 if (software_single_step) { 982 for (const auto &thread : m_threads) { 983 assert(thread && "thread list should not contain NULL threads"); 984 985 const ResumeAction *const action = 986 resume_actions.GetActionForThread(thread->GetID(), true); 987 if (action == nullptr) 988 continue; 989 990 if (action->state == eStateStepping) { 991 Status error = SetupSoftwareSingleStepping( 992 static_cast<NativeThreadLinux &>(*thread)); 993 if (error.Fail()) 994 return error; 995 } 996 } 997 } 998 999 for (const auto &thread : m_threads) { 1000 assert(thread && "thread list should not contain NULL threads"); 1001 1002 const ResumeAction *const action = 1003 resume_actions.GetActionForThread(thread->GetID(), true); 1004 1005 if (action == nullptr) { 1006 LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(), 1007 thread->GetID()); 1008 continue; 1009 } 1010 1011 LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}", 1012 action->state, GetID(), thread->GetID()); 1013 1014 switch (action->state) { 1015 case eStateRunning: 1016 case eStateStepping: { 1017 // Run the thread, possibly feeding it the signal. 1018 const int signo = action->signal; 1019 ResumeThread(static_cast<NativeThreadLinux &>(*thread), action->state, 1020 signo); 1021 break; 1022 } 1023 1024 case eStateSuspended: 1025 case eStateStopped: 1026 llvm_unreachable("Unexpected state"); 1027 1028 default: 1029 return Status("NativeProcessLinux::%s (): unexpected state %s specified " 1030 "for pid %" PRIu64 ", tid %" PRIu64, 1031 __FUNCTION__, StateAsCString(action->state), GetID(), 1032 thread->GetID()); 1033 } 1034 } 1035 1036 return Status(); 1037 } 1038 1039 Status NativeProcessLinux::Halt() { 1040 Status error; 1041 1042 if (kill(GetID(), SIGSTOP) != 0) 1043 error.SetErrorToErrno(); 1044 1045 return error; 1046 } 1047 1048 Status NativeProcessLinux::Detach() { 1049 Status error; 1050 1051 // Stop monitoring the inferior. 1052 m_sigchld_handle.reset(); 1053 1054 // Tell ptrace to detach from the process. 1055 if (GetID() == LLDB_INVALID_PROCESS_ID) 1056 return error; 1057 1058 for (const auto &thread : m_threads) { 1059 Status e = Detach(thread->GetID()); 1060 if (e.Fail()) 1061 error = 1062 e; // Save the error, but still attempt to detach from other threads. 1063 } 1064 1065 m_intel_pt_manager.Clear(); 1066 1067 return error; 1068 } 1069 1070 Status NativeProcessLinux::Signal(int signo) { 1071 Status error; 1072 1073 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1074 LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo, 1075 Host::GetSignalAsCString(signo), GetID()); 1076 1077 if (kill(GetID(), signo)) 1078 error.SetErrorToErrno(); 1079 1080 return error; 1081 } 1082 1083 Status NativeProcessLinux::Interrupt() { 1084 // Pick a running thread (or if none, a not-dead stopped thread) as the 1085 // chosen thread that will be the stop-reason thread. 1086 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1087 1088 NativeThreadProtocol *running_thread = nullptr; 1089 NativeThreadProtocol *stopped_thread = nullptr; 1090 1091 LLDB_LOG(log, "selecting running thread for interrupt target"); 1092 for (const auto &thread : m_threads) { 1093 // If we have a running or stepping thread, we'll call that the target of 1094 // the interrupt. 1095 const auto thread_state = thread->GetState(); 1096 if (thread_state == eStateRunning || thread_state == eStateStepping) { 1097 running_thread = thread.get(); 1098 break; 1099 } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) { 1100 // Remember the first non-dead stopped thread. We'll use that as a 1101 // backup if there are no running threads. 1102 stopped_thread = thread.get(); 1103 } 1104 } 1105 1106 if (!running_thread && !stopped_thread) { 1107 Status error("found no running/stepping or live stopped threads as target " 1108 "for interrupt"); 1109 LLDB_LOG(log, "skipping due to error: {0}", error); 1110 1111 return error; 1112 } 1113 1114 NativeThreadProtocol *deferred_signal_thread = 1115 running_thread ? running_thread : stopped_thread; 1116 1117 LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(), 1118 running_thread ? "running" : "stopped", 1119 deferred_signal_thread->GetID()); 1120 1121 StopRunningThreads(deferred_signal_thread->GetID()); 1122 1123 return Status(); 1124 } 1125 1126 Status NativeProcessLinux::Kill() { 1127 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1128 LLDB_LOG(log, "pid {0}", GetID()); 1129 1130 Status error; 1131 1132 switch (m_state) { 1133 case StateType::eStateInvalid: 1134 case StateType::eStateExited: 1135 case StateType::eStateCrashed: 1136 case StateType::eStateDetached: 1137 case StateType::eStateUnloaded: 1138 // Nothing to do - the process is already dead. 1139 LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(), 1140 m_state); 1141 return error; 1142 1143 case StateType::eStateConnected: 1144 case StateType::eStateAttaching: 1145 case StateType::eStateLaunching: 1146 case StateType::eStateStopped: 1147 case StateType::eStateRunning: 1148 case StateType::eStateStepping: 1149 case StateType::eStateSuspended: 1150 // We can try to kill a process in these states. 1151 break; 1152 } 1153 1154 if (kill(GetID(), SIGKILL) != 0) { 1155 error.SetErrorToErrno(); 1156 return error; 1157 } 1158 1159 return error; 1160 } 1161 1162 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr, 1163 MemoryRegionInfo &range_info) { 1164 // FIXME review that the final memory region returned extends to the end of 1165 // the virtual address space, 1166 // with no perms if it is not mapped. 1167 1168 // Use an approach that reads memory regions from /proc/{pid}/maps. Assume 1169 // proc maps entries are in ascending order. 1170 // FIXME assert if we find differently. 1171 1172 if (m_supports_mem_region == LazyBool::eLazyBoolNo) { 1173 // We're done. 1174 return Status("unsupported"); 1175 } 1176 1177 Status error = PopulateMemoryRegionCache(); 1178 if (error.Fail()) { 1179 return error; 1180 } 1181 1182 lldb::addr_t prev_base_address = 0; 1183 1184 // FIXME start by finding the last region that is <= target address using 1185 // binary search. Data is sorted. 1186 // There can be a ton of regions on pthreads apps with lots of threads. 1187 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end(); 1188 ++it) { 1189 MemoryRegionInfo &proc_entry_info = it->first; 1190 1191 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 1192 assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) && 1193 "descending /proc/pid/maps entries detected, unexpected"); 1194 prev_base_address = proc_entry_info.GetRange().GetRangeBase(); 1195 UNUSED_IF_ASSERT_DISABLED(prev_base_address); 1196 1197 // If the target address comes before this entry, indicate distance to next 1198 // region. 1199 if (load_addr < proc_entry_info.GetRange().GetRangeBase()) { 1200 range_info.GetRange().SetRangeBase(load_addr); 1201 range_info.GetRange().SetByteSize( 1202 proc_entry_info.GetRange().GetRangeBase() - load_addr); 1203 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1204 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1205 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1206 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1207 1208 return error; 1209 } else if (proc_entry_info.GetRange().Contains(load_addr)) { 1210 // The target address is within the memory region we're processing here. 1211 range_info = proc_entry_info; 1212 return error; 1213 } 1214 1215 // The target memory address comes somewhere after the region we just 1216 // parsed. 1217 } 1218 1219 // If we made it here, we didn't find an entry that contained the given 1220 // address. Return the load_addr as start and the amount of bytes betwwen 1221 // load address and the end of the memory as size. 1222 range_info.GetRange().SetRangeBase(load_addr); 1223 range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS); 1224 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1225 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1226 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1227 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1228 return error; 1229 } 1230 1231 Status NativeProcessLinux::PopulateMemoryRegionCache() { 1232 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1233 1234 // If our cache is empty, pull the latest. There should always be at least 1235 // one memory region if memory region handling is supported. 1236 if (!m_mem_region_cache.empty()) { 1237 LLDB_LOG(log, "reusing {0} cached memory region entries", 1238 m_mem_region_cache.size()); 1239 return Status(); 1240 } 1241 1242 Status Result; 1243 LinuxMapCallback callback = [&](llvm::Expected<MemoryRegionInfo> Info) { 1244 if (Info) { 1245 FileSpec file_spec(Info->GetName().GetCString()); 1246 FileSystem::Instance().Resolve(file_spec); 1247 m_mem_region_cache.emplace_back(*Info, file_spec); 1248 return true; 1249 } 1250 1251 Result = Info.takeError(); 1252 m_supports_mem_region = LazyBool::eLazyBoolNo; 1253 LLDB_LOG(log, "failed to parse proc maps: {0}", Result); 1254 return false; 1255 }; 1256 1257 // Linux kernel since 2.6.14 has /proc/{pid}/smaps 1258 // if CONFIG_PROC_PAGE_MONITOR is enabled 1259 auto BufferOrError = getProcFile(GetID(), "smaps"); 1260 if (BufferOrError) 1261 ParseLinuxSMapRegions(BufferOrError.get()->getBuffer(), callback); 1262 else { 1263 BufferOrError = getProcFile(GetID(), "maps"); 1264 if (!BufferOrError) { 1265 m_supports_mem_region = LazyBool::eLazyBoolNo; 1266 return BufferOrError.getError(); 1267 } 1268 1269 ParseLinuxMapRegions(BufferOrError.get()->getBuffer(), callback); 1270 } 1271 1272 if (Result.Fail()) 1273 return Result; 1274 1275 if (m_mem_region_cache.empty()) { 1276 // No entries after attempting to read them. This shouldn't happen if 1277 // /proc/{pid}/maps is supported. Assume we don't support map entries via 1278 // procfs. 1279 m_supports_mem_region = LazyBool::eLazyBoolNo; 1280 LLDB_LOG(log, 1281 "failed to find any procfs maps entries, assuming no support " 1282 "for memory region metadata retrieval"); 1283 return Status("not supported"); 1284 } 1285 1286 LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps", 1287 m_mem_region_cache.size(), GetID()); 1288 1289 // We support memory retrieval, remember that. 1290 m_supports_mem_region = LazyBool::eLazyBoolYes; 1291 return Status(); 1292 } 1293 1294 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) { 1295 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1296 LLDB_LOG(log, "newBumpId={0}", newBumpId); 1297 LLDB_LOG(log, "clearing {0} entries from memory region cache", 1298 m_mem_region_cache.size()); 1299 m_mem_region_cache.clear(); 1300 } 1301 1302 llvm::Expected<uint64_t> 1303 NativeProcessLinux::Syscall(llvm::ArrayRef<uint64_t> args) { 1304 PopulateMemoryRegionCache(); 1305 auto region_it = llvm::find_if(m_mem_region_cache, [](const auto &pair) { 1306 return pair.first.GetExecutable() == MemoryRegionInfo::eYes; 1307 }); 1308 if (region_it == m_mem_region_cache.end()) 1309 return llvm::createStringError(llvm::inconvertibleErrorCode(), 1310 "No executable memory region found!"); 1311 1312 addr_t exe_addr = region_it->first.GetRange().GetRangeBase(); 1313 1314 NativeThreadLinux &thread = *GetThreadByID(GetID()); 1315 assert(thread.GetState() == eStateStopped); 1316 NativeRegisterContextLinux ®_ctx = thread.GetRegisterContext(); 1317 1318 NativeRegisterContextLinux::SyscallData syscall_data = 1319 *reg_ctx.GetSyscallData(); 1320 1321 DataBufferSP registers_sp; 1322 if (llvm::Error Err = reg_ctx.ReadAllRegisterValues(registers_sp).ToError()) 1323 return std::move(Err); 1324 auto restore_regs = llvm::make_scope_exit( 1325 [&] { reg_ctx.WriteAllRegisterValues(registers_sp); }); 1326 1327 llvm::SmallVector<uint8_t, 8> memory(syscall_data.Insn.size()); 1328 size_t bytes_read; 1329 if (llvm::Error Err = 1330 ReadMemory(exe_addr, memory.data(), memory.size(), bytes_read) 1331 .ToError()) { 1332 return std::move(Err); 1333 } 1334 1335 auto restore_mem = llvm::make_scope_exit( 1336 [&] { WriteMemory(exe_addr, memory.data(), memory.size(), bytes_read); }); 1337 1338 if (llvm::Error Err = reg_ctx.SetPC(exe_addr).ToError()) 1339 return std::move(Err); 1340 1341 for (const auto &zip : llvm::zip_first(args, syscall_data.Args)) { 1342 if (llvm::Error Err = 1343 reg_ctx 1344 .WriteRegisterFromUnsigned(std::get<1>(zip), std::get<0>(zip)) 1345 .ToError()) { 1346 return std::move(Err); 1347 } 1348 } 1349 if (llvm::Error Err = WriteMemory(exe_addr, syscall_data.Insn.data(), 1350 syscall_data.Insn.size(), bytes_read) 1351 .ToError()) 1352 return std::move(Err); 1353 1354 m_mem_region_cache.clear(); 1355 1356 // With software single stepping the syscall insn buffer must also include a 1357 // trap instruction to stop the process. 1358 int req = SupportHardwareSingleStepping() ? PTRACE_SINGLESTEP : PTRACE_CONT; 1359 if (llvm::Error Err = 1360 PtraceWrapper(req, thread.GetID(), nullptr, nullptr).ToError()) 1361 return std::move(Err); 1362 1363 int status; 1364 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, thread.GetID(), 1365 &status, __WALL); 1366 if (wait_pid == -1) { 1367 return llvm::errorCodeToError( 1368 std::error_code(errno, std::generic_category())); 1369 } 1370 assert((unsigned)wait_pid == thread.GetID()); 1371 1372 uint64_t result = reg_ctx.ReadRegisterAsUnsigned(syscall_data.Result, -ESRCH); 1373 1374 // Values larger than this are actually negative errno numbers. 1375 uint64_t errno_threshold = 1376 (uint64_t(-1) >> (64 - 8 * m_arch.GetAddressByteSize())) - 0x1000; 1377 if (result > errno_threshold) { 1378 return llvm::errorCodeToError( 1379 std::error_code(-result & 0xfff, std::generic_category())); 1380 } 1381 1382 return result; 1383 } 1384 1385 llvm::Expected<addr_t> 1386 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions) { 1387 1388 llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data = 1389 GetCurrentThread()->GetRegisterContext().GetMmapData(); 1390 if (!mmap_data) 1391 return llvm::make_error<UnimplementedError>(); 1392 1393 unsigned prot = PROT_NONE; 1394 assert((permissions & (ePermissionsReadable | ePermissionsWritable | 1395 ePermissionsExecutable)) == permissions && 1396 "Unknown permission!"); 1397 if (permissions & ePermissionsReadable) 1398 prot |= PROT_READ; 1399 if (permissions & ePermissionsWritable) 1400 prot |= PROT_WRITE; 1401 if (permissions & ePermissionsExecutable) 1402 prot |= PROT_EXEC; 1403 1404 llvm::Expected<uint64_t> Result = 1405 Syscall({mmap_data->SysMmap, 0, size, prot, MAP_ANONYMOUS | MAP_PRIVATE, 1406 uint64_t(-1), 0}); 1407 if (Result) 1408 m_allocated_memory.try_emplace(*Result, size); 1409 return Result; 1410 } 1411 1412 llvm::Error NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) { 1413 llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data = 1414 GetCurrentThread()->GetRegisterContext().GetMmapData(); 1415 if (!mmap_data) 1416 return llvm::make_error<UnimplementedError>(); 1417 1418 auto it = m_allocated_memory.find(addr); 1419 if (it == m_allocated_memory.end()) 1420 return llvm::createStringError(llvm::errc::invalid_argument, 1421 "Memory not allocated by the debugger."); 1422 1423 llvm::Expected<uint64_t> Result = 1424 Syscall({mmap_data->SysMunmap, addr, it->second}); 1425 if (!Result) 1426 return Result.takeError(); 1427 1428 m_allocated_memory.erase(it); 1429 return llvm::Error::success(); 1430 } 1431 1432 Status NativeProcessLinux::ReadMemoryTags(int32_t type, lldb::addr_t addr, 1433 size_t len, 1434 std::vector<uint8_t> &tags) { 1435 llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details = 1436 GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type); 1437 if (!details) 1438 return Status(details.takeError()); 1439 1440 // Ignore 0 length read 1441 if (!len) 1442 return Status(); 1443 1444 // lldb will align the range it requests but it is not required to by 1445 // the protocol so we'll do it again just in case. 1446 // Remove non address bits too. Ptrace calls may work regardless but that 1447 // is not a guarantee. 1448 MemoryTagManager::TagRange range(details->manager->RemoveNonAddressBits(addr), 1449 len); 1450 range = details->manager->ExpandToGranule(range); 1451 1452 // Allocate enough space for all tags to be read 1453 size_t num_tags = range.GetByteSize() / details->manager->GetGranuleSize(); 1454 tags.resize(num_tags * details->manager->GetTagSizeInBytes()); 1455 1456 struct iovec tags_iovec; 1457 uint8_t *dest = tags.data(); 1458 lldb::addr_t read_addr = range.GetRangeBase(); 1459 1460 // This call can return partial data so loop until we error or 1461 // get all tags back. 1462 while (num_tags) { 1463 tags_iovec.iov_base = dest; 1464 tags_iovec.iov_len = num_tags; 1465 1466 Status error = NativeProcessLinux::PtraceWrapper( 1467 details->ptrace_read_req, GetID(), reinterpret_cast<void *>(read_addr), 1468 static_cast<void *>(&tags_iovec), 0, nullptr); 1469 1470 if (error.Fail()) { 1471 // Discard partial reads 1472 tags.resize(0); 1473 return error; 1474 } 1475 1476 size_t tags_read = tags_iovec.iov_len; 1477 assert(tags_read && (tags_read <= num_tags)); 1478 1479 dest += tags_read * details->manager->GetTagSizeInBytes(); 1480 read_addr += details->manager->GetGranuleSize() * tags_read; 1481 num_tags -= tags_read; 1482 } 1483 1484 return Status(); 1485 } 1486 1487 Status NativeProcessLinux::WriteMemoryTags(int32_t type, lldb::addr_t addr, 1488 size_t len, 1489 const std::vector<uint8_t> &tags) { 1490 llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details = 1491 GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type); 1492 if (!details) 1493 return Status(details.takeError()); 1494 1495 // Ignore 0 length write 1496 if (!len) 1497 return Status(); 1498 1499 // lldb will align the range it requests but it is not required to by 1500 // the protocol so we'll do it again just in case. 1501 // Remove non address bits too. Ptrace calls may work regardless but that 1502 // is not a guarantee. 1503 MemoryTagManager::TagRange range(details->manager->RemoveNonAddressBits(addr), 1504 len); 1505 range = details->manager->ExpandToGranule(range); 1506 1507 // Not checking number of tags here, we may repeat them below 1508 llvm::Expected<std::vector<lldb::addr_t>> unpacked_tags_or_err = 1509 details->manager->UnpackTagsData(tags); 1510 if (!unpacked_tags_or_err) 1511 return Status(unpacked_tags_or_err.takeError()); 1512 1513 llvm::Expected<std::vector<lldb::addr_t>> repeated_tags_or_err = 1514 details->manager->RepeatTagsForRange(*unpacked_tags_or_err, range); 1515 if (!repeated_tags_or_err) 1516 return Status(repeated_tags_or_err.takeError()); 1517 1518 // Repack them for ptrace to use 1519 llvm::Expected<std::vector<uint8_t>> final_tag_data = 1520 details->manager->PackTags(*repeated_tags_or_err); 1521 if (!final_tag_data) 1522 return Status(final_tag_data.takeError()); 1523 1524 struct iovec tags_vec; 1525 uint8_t *src = final_tag_data->data(); 1526 lldb::addr_t write_addr = range.GetRangeBase(); 1527 // unpacked tags size because the number of bytes per tag might not be 1 1528 size_t num_tags = repeated_tags_or_err->size(); 1529 1530 // This call can partially write tags, so we loop until we 1531 // error or all tags have been written. 1532 while (num_tags > 0) { 1533 tags_vec.iov_base = src; 1534 tags_vec.iov_len = num_tags; 1535 1536 Status error = NativeProcessLinux::PtraceWrapper( 1537 details->ptrace_write_req, GetID(), 1538 reinterpret_cast<void *>(write_addr), static_cast<void *>(&tags_vec), 0, 1539 nullptr); 1540 1541 if (error.Fail()) { 1542 // Don't attempt to restore the original values in the case of a partial 1543 // write 1544 return error; 1545 } 1546 1547 size_t tags_written = tags_vec.iov_len; 1548 assert(tags_written && (tags_written <= num_tags)); 1549 1550 src += tags_written * details->manager->GetTagSizeInBytes(); 1551 write_addr += details->manager->GetGranuleSize() * tags_written; 1552 num_tags -= tags_written; 1553 } 1554 1555 return Status(); 1556 } 1557 1558 size_t NativeProcessLinux::UpdateThreads() { 1559 // The NativeProcessLinux monitoring threads are always up to date with 1560 // respect to thread state and they keep the thread list populated properly. 1561 // All this method needs to do is return the thread count. 1562 return m_threads.size(); 1563 } 1564 1565 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size, 1566 bool hardware) { 1567 if (hardware) 1568 return SetHardwareBreakpoint(addr, size); 1569 else 1570 return SetSoftwareBreakpoint(addr, size); 1571 } 1572 1573 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) { 1574 if (hardware) 1575 return RemoveHardwareBreakpoint(addr); 1576 else 1577 return NativeProcessProtocol::RemoveBreakpoint(addr); 1578 } 1579 1580 llvm::Expected<llvm::ArrayRef<uint8_t>> 1581 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(size_t size_hint) { 1582 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 1583 // linux kernel does otherwise. 1584 static const uint8_t g_arm_opcode[] = {0xf0, 0x01, 0xf0, 0xe7}; 1585 static const uint8_t g_thumb_opcode[] = {0x01, 0xde}; 1586 1587 switch (GetArchitecture().GetMachine()) { 1588 case llvm::Triple::arm: 1589 switch (size_hint) { 1590 case 2: 1591 return llvm::makeArrayRef(g_thumb_opcode); 1592 case 4: 1593 return llvm::makeArrayRef(g_arm_opcode); 1594 default: 1595 return llvm::createStringError(llvm::inconvertibleErrorCode(), 1596 "Unrecognised trap opcode size hint!"); 1597 } 1598 default: 1599 return NativeProcessProtocol::GetSoftwareBreakpointTrapOpcode(size_hint); 1600 } 1601 } 1602 1603 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size, 1604 size_t &bytes_read) { 1605 if (ProcessVmReadvSupported()) { 1606 // The process_vm_readv path is about 50 times faster than ptrace api. We 1607 // want to use this syscall if it is supported. 1608 1609 const ::pid_t pid = GetID(); 1610 1611 struct iovec local_iov, remote_iov; 1612 local_iov.iov_base = buf; 1613 local_iov.iov_len = size; 1614 remote_iov.iov_base = reinterpret_cast<void *>(addr); 1615 remote_iov.iov_len = size; 1616 1617 bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0); 1618 const bool success = bytes_read == size; 1619 1620 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1621 LLDB_LOG(log, 1622 "using process_vm_readv to read {0} bytes from inferior " 1623 "address {1:x}: {2}", 1624 size, addr, success ? "Success" : llvm::sys::StrError(errno)); 1625 1626 if (success) 1627 return Status(); 1628 // else the call failed for some reason, let's retry the read using ptrace 1629 // api. 1630 } 1631 1632 unsigned char *dst = static_cast<unsigned char *>(buf); 1633 size_t remainder; 1634 long data; 1635 1636 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1637 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1638 1639 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { 1640 Status error = NativeProcessLinux::PtraceWrapper( 1641 PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data); 1642 if (error.Fail()) 1643 return error; 1644 1645 remainder = size - bytes_read; 1646 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1647 1648 // Copy the data into our buffer 1649 memcpy(dst, &data, remainder); 1650 1651 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1652 addr += k_ptrace_word_size; 1653 dst += k_ptrace_word_size; 1654 } 1655 return Status(); 1656 } 1657 1658 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, 1659 size_t size, size_t &bytes_written) { 1660 const unsigned char *src = static_cast<const unsigned char *>(buf); 1661 size_t remainder; 1662 Status error; 1663 1664 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1665 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1666 1667 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { 1668 remainder = size - bytes_written; 1669 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1670 1671 if (remainder == k_ptrace_word_size) { 1672 unsigned long data = 0; 1673 memcpy(&data, src, k_ptrace_word_size); 1674 1675 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1676 error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), 1677 (void *)addr, (void *)data); 1678 if (error.Fail()) 1679 return error; 1680 } else { 1681 unsigned char buff[8]; 1682 size_t bytes_read; 1683 error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read); 1684 if (error.Fail()) 1685 return error; 1686 1687 memcpy(buff, src, remainder); 1688 1689 size_t bytes_written_rec; 1690 error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec); 1691 if (error.Fail()) 1692 return error; 1693 1694 LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src, 1695 *(unsigned long *)buff); 1696 } 1697 1698 addr += k_ptrace_word_size; 1699 src += k_ptrace_word_size; 1700 } 1701 return error; 1702 } 1703 1704 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) { 1705 return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); 1706 } 1707 1708 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid, 1709 unsigned long *message) { 1710 return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); 1711 } 1712 1713 Status NativeProcessLinux::Detach(lldb::tid_t tid) { 1714 if (tid == LLDB_INVALID_THREAD_ID) 1715 return Status(); 1716 1717 return PtraceWrapper(PTRACE_DETACH, tid); 1718 } 1719 1720 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) { 1721 for (const auto &thread : m_threads) { 1722 assert(thread && "thread list should not contain NULL threads"); 1723 if (thread->GetID() == thread_id) { 1724 // We have this thread. 1725 return true; 1726 } 1727 } 1728 1729 // We don't have this thread. 1730 return false; 1731 } 1732 1733 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) { 1734 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1735 LLDB_LOG(log, "tid: {0})", thread_id); 1736 1737 bool found = false; 1738 for (auto it = m_threads.begin(); it != m_threads.end(); ++it) { 1739 if (*it && ((*it)->GetID() == thread_id)) { 1740 m_threads.erase(it); 1741 found = true; 1742 break; 1743 } 1744 } 1745 1746 if (found) 1747 NotifyTracersOfThreadDestroyed(thread_id); 1748 1749 SignalIfAllThreadsStopped(); 1750 return found; 1751 } 1752 1753 Status NativeProcessLinux::NotifyTracersOfNewThread(lldb::tid_t tid) { 1754 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD)); 1755 Status error(m_intel_pt_manager.OnThreadCreated(tid)); 1756 if (error.Fail()) 1757 LLDB_LOG(log, "Failed to trace a new thread with intel-pt, tid = {0}. {1}", 1758 tid, error.AsCString()); 1759 return error; 1760 } 1761 1762 Status NativeProcessLinux::NotifyTracersOfThreadDestroyed(lldb::tid_t tid) { 1763 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD)); 1764 Status error(m_intel_pt_manager.OnThreadDestroyed(tid)); 1765 if (error.Fail()) 1766 LLDB_LOG(log, 1767 "Failed to stop a destroyed thread with intel-pt, tid = {0}. {1}", 1768 tid, error.AsCString()); 1769 return error; 1770 } 1771 1772 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id, 1773 bool resume) { 1774 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD)); 1775 LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id); 1776 1777 assert(!HasThreadNoLock(thread_id) && 1778 "attempted to add a thread by id that already exists"); 1779 1780 // If this is the first thread, save it as the current thread 1781 if (m_threads.empty()) 1782 SetCurrentThreadID(thread_id); 1783 1784 m_threads.push_back(std::make_unique<NativeThreadLinux>(*this, thread_id)); 1785 NativeThreadLinux &thread = 1786 static_cast<NativeThreadLinux &>(*m_threads.back()); 1787 1788 Status tracing_error = NotifyTracersOfNewThread(thread.GetID()); 1789 if (tracing_error.Fail()) { 1790 thread.SetStoppedByProcessorTrace(tracing_error.AsCString()); 1791 StopRunningThreads(thread.GetID()); 1792 } else if (resume) 1793 ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 1794 else 1795 thread.SetStoppedBySignal(SIGSTOP); 1796 1797 return thread; 1798 } 1799 1800 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path, 1801 FileSpec &file_spec) { 1802 Status error = PopulateMemoryRegionCache(); 1803 if (error.Fail()) 1804 return error; 1805 1806 FileSpec module_file_spec(module_path); 1807 FileSystem::Instance().Resolve(module_file_spec); 1808 1809 file_spec.Clear(); 1810 for (const auto &it : m_mem_region_cache) { 1811 if (it.second.GetFilename() == module_file_spec.GetFilename()) { 1812 file_spec = it.second; 1813 return Status(); 1814 } 1815 } 1816 return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 1817 module_file_spec.GetFilename().AsCString(), GetID()); 1818 } 1819 1820 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name, 1821 lldb::addr_t &load_addr) { 1822 load_addr = LLDB_INVALID_ADDRESS; 1823 Status error = PopulateMemoryRegionCache(); 1824 if (error.Fail()) 1825 return error; 1826 1827 FileSpec file(file_name); 1828 for (const auto &it : m_mem_region_cache) { 1829 if (it.second == file) { 1830 load_addr = it.first.GetRange().GetRangeBase(); 1831 return Status(); 1832 } 1833 } 1834 return Status("No load address found for specified file."); 1835 } 1836 1837 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) { 1838 return static_cast<NativeThreadLinux *>( 1839 NativeProcessProtocol::GetThreadByID(tid)); 1840 } 1841 1842 NativeThreadLinux *NativeProcessLinux::GetCurrentThread() { 1843 return static_cast<NativeThreadLinux *>( 1844 NativeProcessProtocol::GetCurrentThread()); 1845 } 1846 1847 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, 1848 lldb::StateType state, int signo) { 1849 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1850 LLDB_LOG(log, "tid: {0}", thread.GetID()); 1851 1852 // Before we do the resume below, first check if we have a pending stop 1853 // notification that is currently waiting for all threads to stop. This is 1854 // potentially a buggy situation since we're ostensibly waiting for threads 1855 // to stop before we send out the pending notification, and here we are 1856 // resuming one before we send out the pending stop notification. 1857 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 1858 LLDB_LOG(log, 1859 "about to resume tid {0} per explicit request but we have a " 1860 "pending stop notification (tid {1}) that is actively " 1861 "waiting for this thread to stop. Valid sequence of events?", 1862 thread.GetID(), m_pending_notification_tid); 1863 } 1864 1865 // Request a resume. We expect this to be synchronous and the system to 1866 // reflect it is running after this completes. 1867 switch (state) { 1868 case eStateRunning: { 1869 const auto resume_result = thread.Resume(signo); 1870 if (resume_result.Success()) 1871 SetState(eStateRunning, true); 1872 return resume_result; 1873 } 1874 case eStateStepping: { 1875 const auto step_result = thread.SingleStep(signo); 1876 if (step_result.Success()) 1877 SetState(eStateRunning, true); 1878 return step_result; 1879 } 1880 default: 1881 LLDB_LOG(log, "Unhandled state {0}.", state); 1882 llvm_unreachable("Unhandled state for resume"); 1883 } 1884 } 1885 1886 //===----------------------------------------------------------------------===// 1887 1888 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) { 1889 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1890 LLDB_LOG(log, "about to process event: (triggering_tid: {0})", 1891 triggering_tid); 1892 1893 m_pending_notification_tid = triggering_tid; 1894 1895 // Request a stop for all the thread stops that need to be stopped and are 1896 // not already known to be stopped. 1897 for (const auto &thread : m_threads) { 1898 if (StateIsRunningState(thread->GetState())) 1899 static_cast<NativeThreadLinux *>(thread.get())->RequestStop(); 1900 } 1901 1902 SignalIfAllThreadsStopped(); 1903 LLDB_LOG(log, "event processing done"); 1904 } 1905 1906 void NativeProcessLinux::SignalIfAllThreadsStopped() { 1907 if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) 1908 return; // No pending notification. Nothing to do. 1909 1910 for (const auto &thread_sp : m_threads) { 1911 if (StateIsRunningState(thread_sp->GetState())) 1912 return; // Some threads are still running. Don't signal yet. 1913 } 1914 1915 // We have a pending notification and all threads have stopped. 1916 Log *log( 1917 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 1918 1919 // Clear any temporary breakpoints we used to implement software single 1920 // stepping. 1921 for (const auto &thread_info : m_threads_stepping_with_breakpoint) { 1922 Status error = RemoveBreakpoint(thread_info.second); 1923 if (error.Fail()) 1924 LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}", 1925 thread_info.first, error); 1926 } 1927 m_threads_stepping_with_breakpoint.clear(); 1928 1929 // Notify the delegate about the stop 1930 SetCurrentThreadID(m_pending_notification_tid); 1931 SetState(StateType::eStateStopped, true); 1932 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 1933 } 1934 1935 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) { 1936 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1937 LLDB_LOG(log, "tid: {0}", thread.GetID()); 1938 1939 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && 1940 StateIsRunningState(thread.GetState())) { 1941 // We will need to wait for this new thread to stop as well before firing 1942 // the notification. 1943 thread.RequestStop(); 1944 } 1945 } 1946 1947 void NativeProcessLinux::SigchldHandler() { 1948 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1949 // Process all pending waitpid notifications. 1950 while (true) { 1951 int status = -1; 1952 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, -1, &status, 1953 __WALL | __WNOTHREAD | WNOHANG); 1954 1955 if (wait_pid == 0) 1956 break; // We are done. 1957 1958 if (wait_pid == -1) { 1959 Status error(errno, eErrorTypePOSIX); 1960 LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error); 1961 break; 1962 } 1963 1964 WaitStatus wait_status = WaitStatus::Decode(status); 1965 bool exited = wait_status.type == WaitStatus::Exit || 1966 (wait_status.type == WaitStatus::Signal && 1967 wait_pid == static_cast<::pid_t>(GetID())); 1968 1969 LLDB_LOG( 1970 log, 1971 "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}", 1972 wait_pid, wait_status, exited); 1973 1974 MonitorCallback(wait_pid, exited, wait_status); 1975 } 1976 } 1977 1978 // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets 1979 // errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) 1980 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, 1981 void *data, size_t data_size, 1982 long *result) { 1983 Status error; 1984 long int ret; 1985 1986 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 1987 1988 PtraceDisplayBytes(req, data, data_size); 1989 1990 errno = 0; 1991 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 1992 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 1993 *(unsigned int *)addr, data); 1994 else 1995 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 1996 addr, data); 1997 1998 if (ret == -1) 1999 error.SetErrorToErrno(); 2000 2001 if (result) 2002 *result = ret; 2003 2004 LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data, 2005 data_size, ret); 2006 2007 PtraceDisplayBytes(req, data, data_size); 2008 2009 if (error.Fail()) 2010 LLDB_LOG(log, "ptrace() failed: {0}", error); 2011 2012 return error; 2013 } 2014 2015 llvm::Expected<TraceSupportedResponse> NativeProcessLinux::TraceSupported() { 2016 if (IntelPTManager::IsSupported()) 2017 return TraceSupportedResponse{"intel-pt", "Intel Processor Trace"}; 2018 return NativeProcessProtocol::TraceSupported(); 2019 } 2020 2021 Error NativeProcessLinux::TraceStart(StringRef json_request, StringRef type) { 2022 if (type == "intel-pt") { 2023 if (Expected<TraceIntelPTStartRequest> request = 2024 json::parse<TraceIntelPTStartRequest>(json_request, 2025 "TraceIntelPTStartRequest")) { 2026 std::vector<lldb::tid_t> process_threads; 2027 for (auto &thread : m_threads) 2028 process_threads.push_back(thread->GetID()); 2029 return m_intel_pt_manager.TraceStart(*request, process_threads); 2030 } else 2031 return request.takeError(); 2032 } 2033 2034 return NativeProcessProtocol::TraceStart(json_request, type); 2035 } 2036 2037 Error NativeProcessLinux::TraceStop(const TraceStopRequest &request) { 2038 if (request.type == "intel-pt") 2039 return m_intel_pt_manager.TraceStop(request); 2040 return NativeProcessProtocol::TraceStop(request); 2041 } 2042 2043 Expected<json::Value> NativeProcessLinux::TraceGetState(StringRef type) { 2044 if (type == "intel-pt") 2045 return m_intel_pt_manager.GetState(); 2046 return NativeProcessProtocol::TraceGetState(type); 2047 } 2048 2049 Expected<std::vector<uint8_t>> NativeProcessLinux::TraceGetBinaryData( 2050 const TraceGetBinaryDataRequest &request) { 2051 if (request.type == "intel-pt") 2052 return m_intel_pt_manager.GetBinaryData(request); 2053 return NativeProcessProtocol::TraceGetBinaryData(request); 2054 } 2055