1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/lldb-python.h" 11 12 #include "NativeProcessLinux.h" 13 14 // C Includes 15 #include <errno.h> 16 #include <poll.h> 17 #include <string.h> 18 #include <stdint.h> 19 #include <unistd.h> 20 21 #if defined (__arm64__) || defined (__aarch64__) 22 // NT_PRSTATUS and NT_FPREGSET definition 23 #include <elf.h> 24 #endif 25 26 // C++ Includes 27 #include <fstream> 28 #include <string> 29 30 // Other libraries and framework includes 31 #include "lldb/Core/Debugger.h" 32 #include "lldb/Core/Error.h" 33 #include "lldb/Core/Module.h" 34 #include "lldb/Core/ModuleSpec.h" 35 #include "lldb/Core/RegisterValue.h" 36 #include "lldb/Core/Scalar.h" 37 #include "lldb/Core/State.h" 38 #include "lldb/Host/Host.h" 39 #include "lldb/Host/HostInfo.h" 40 #include "lldb/Host/ThreadLauncher.h" 41 #include "lldb/Symbol/ObjectFile.h" 42 #include "lldb/Host/common/NativeRegisterContext.h" 43 #include "lldb/Target/Process.h" 44 #include "lldb/Target/ProcessLaunchInfo.h" 45 #include "lldb/Utility/PseudoTerminal.h" 46 47 #include "lldb/Host/common/NativeBreakpoint.h" 48 #include "Utility/StringExtractor.h" 49 50 #include "Plugins/Process/Utility/LinuxSignals.h" 51 #include "NativeThreadLinux.h" 52 #include "ProcFileReader.h" 53 #include "ThreadStateCoordinator.h" 54 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 55 56 // System includes - They have to be included after framework includes because they define some 57 // macros which collide with variable names in other modules 58 #include <linux/unistd.h> 59 #ifndef __ANDROID__ 60 #include <sys/procfs.h> 61 #endif 62 #include <sys/personality.h> 63 #include <sys/ptrace.h> 64 #include <sys/socket.h> 65 #include <sys/syscall.h> 66 #include <sys/types.h> 67 #include <sys/uio.h> 68 #include <sys/user.h> 69 #include <sys/wait.h> 70 71 #ifdef __ANDROID__ 72 #define __ptrace_request int 73 #define PT_DETACH PTRACE_DETACH 74 #endif 75 76 #define DEBUG_PTRACE_MAXBYTES 20 77 78 // Support ptrace extensions even when compiled without required kernel support 79 #ifndef PT_GETREGS 80 #ifndef PTRACE_GETREGS 81 #define PTRACE_GETREGS 12 82 #endif 83 #endif 84 #ifndef PT_SETREGS 85 #ifndef PTRACE_SETREGS 86 #define PTRACE_SETREGS 13 87 #endif 88 #endif 89 #ifndef PT_GETFPREGS 90 #ifndef PTRACE_GETFPREGS 91 #define PTRACE_GETFPREGS 14 92 #endif 93 #endif 94 #ifndef PT_SETFPREGS 95 #ifndef PTRACE_SETFPREGS 96 #define PTRACE_SETFPREGS 15 97 #endif 98 #endif 99 #ifndef PTRACE_GETREGSET 100 #define PTRACE_GETREGSET 0x4204 101 #endif 102 #ifndef PTRACE_SETREGSET 103 #define PTRACE_SETREGSET 0x4205 104 #endif 105 #ifndef PTRACE_GET_THREAD_AREA 106 #define PTRACE_GET_THREAD_AREA 25 107 #endif 108 #ifndef PTRACE_ARCH_PRCTL 109 #define PTRACE_ARCH_PRCTL 30 110 #endif 111 #ifndef ARCH_GET_FS 112 #define ARCH_SET_GS 0x1001 113 #define ARCH_SET_FS 0x1002 114 #define ARCH_GET_FS 0x1003 115 #define ARCH_GET_GS 0x1004 116 #endif 117 118 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS 0xffffffff 119 120 // Support hardware breakpoints in case it has not been defined 121 #ifndef TRAP_HWBKPT 122 #define TRAP_HWBKPT 4 123 #endif 124 125 // Try to define a macro to encapsulate the tgkill syscall 126 // fall back on kill() if tgkill isn't available 127 #define tgkill(pid, tid, sig) \ 128 syscall(SYS_tgkill, static_cast<::pid_t>(pid), static_cast<::pid_t>(tid), sig) 129 130 // We disable the tracing of ptrace calls for integration builds to 131 // avoid the additional indirection and checks. 132 #ifndef LLDB_CONFIGURATION_BUILDANDINTEGRATION 133 #define PTRACE(req, pid, addr, data, data_size, error) \ 134 PtraceWrapper((req), (pid), (addr), (data), (data_size), (error), #req, __FILE__, __LINE__) 135 #else 136 #define PTRACE(req, pid, addr, data, data_size, error) \ 137 PtraceWrapper((req), (pid), (addr), (data), (data_size), (error)) 138 #endif 139 140 // Private bits we only need internally. 141 namespace 142 { 143 using namespace lldb; 144 using namespace lldb_private; 145 146 static void * const EXIT_OPERATION = nullptr; 147 148 const UnixSignals& 149 GetUnixSignals () 150 { 151 static process_linux::LinuxSignals signals; 152 return signals; 153 } 154 155 ThreadStateCoordinator::LogFunction 156 GetThreadLoggerFunction () 157 { 158 return [](const char *format, va_list args) 159 { 160 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 161 if (log) 162 log->VAPrintf (format, args); 163 }; 164 } 165 166 void 167 CoordinatorErrorHandler (const std::string &error_message) 168 { 169 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 170 if (log) 171 log->Printf ("NativeProcessLinux::%s %s", __FUNCTION__, error_message.c_str ()); 172 assert (false && "ThreadStateCoordinator error reported"); 173 } 174 175 Error 176 ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch) 177 { 178 // Grab process info for the running process. 179 ProcessInstanceInfo process_info; 180 if (!platform.GetProcessInfo (pid, process_info)) 181 return lldb_private::Error("failed to get process info"); 182 183 // Resolve the executable module. 184 ModuleSP exe_module_sp; 185 ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture()); 186 FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ()); 187 Error error = platform.ResolveExecutable( 188 exe_module_spec, 189 exe_module_sp, 190 executable_search_paths.GetSize () ? &executable_search_paths : NULL); 191 192 if (!error.Success ()) 193 return error; 194 195 // Check if we've got our architecture from the exe_module. 196 arch = exe_module_sp->GetArchitecture (); 197 if (arch.IsValid ()) 198 return Error(); 199 else 200 return Error("failed to retrieve a valid architecture from the exe module"); 201 } 202 203 void 204 DisplayBytes (lldb_private::StreamString &s, void *bytes, uint32_t count) 205 { 206 uint8_t *ptr = (uint8_t *)bytes; 207 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 208 for(uint32_t i=0; i<loop_count; i++) 209 { 210 s.Printf ("[%x]", *ptr); 211 ptr++; 212 } 213 } 214 215 void 216 PtraceDisplayBytes(int &req, void *data, size_t data_size) 217 { 218 StreamString buf; 219 Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet ( 220 POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE)); 221 222 if (verbose_log) 223 { 224 switch(req) 225 { 226 case PTRACE_POKETEXT: 227 { 228 DisplayBytes(buf, &data, 8); 229 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData()); 230 break; 231 } 232 case PTRACE_POKEDATA: 233 { 234 DisplayBytes(buf, &data, 8); 235 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData()); 236 break; 237 } 238 case PTRACE_POKEUSER: 239 { 240 DisplayBytes(buf, &data, 8); 241 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData()); 242 break; 243 } 244 case PTRACE_SETREGS: 245 { 246 DisplayBytes(buf, data, data_size); 247 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData()); 248 break; 249 } 250 case PTRACE_SETFPREGS: 251 { 252 DisplayBytes(buf, data, data_size); 253 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData()); 254 break; 255 } 256 case PTRACE_SETSIGINFO: 257 { 258 DisplayBytes(buf, data, sizeof(siginfo_t)); 259 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData()); 260 break; 261 } 262 case PTRACE_SETREGSET: 263 { 264 // Extract iov_base from data, which is a pointer to the struct IOVEC 265 DisplayBytes(buf, *(void **)data, data_size); 266 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData()); 267 break; 268 } 269 default: 270 { 271 } 272 } 273 } 274 } 275 276 // Wrapper for ptrace to catch errors and log calls. 277 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) 278 long 279 PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error, 280 const char* reqName, const char* file, int line) 281 { 282 long int result; 283 284 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE)); 285 286 PtraceDisplayBytes(req, data, data_size); 287 288 error.Clear(); 289 errno = 0; 290 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 291 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data); 292 else 293 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data); 294 295 if (result == -1) 296 error.SetErrorToErrno(); 297 298 if (log) 299 log->Printf("ptrace(%s, %" PRIu64 ", %p, %p, %zu)=%lX called from file %s line %d", 300 reqName, pid, addr, data, data_size, result, file, line); 301 302 PtraceDisplayBytes(req, data, data_size); 303 304 if (log && error.GetError() != 0) 305 { 306 const char* str; 307 switch (error.GetError()) 308 { 309 case ESRCH: str = "ESRCH"; break; 310 case EINVAL: str = "EINVAL"; break; 311 case EBUSY: str = "EBUSY"; break; 312 case EPERM: str = "EPERM"; break; 313 default: str = error.AsCString(); 314 } 315 log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str); 316 } 317 318 return result; 319 } 320 321 #ifdef LLDB_CONFIGURATION_BUILDANDINTEGRATION 322 // Wrapper for ptrace when logging is not required. 323 // Sets errno to 0 prior to calling ptrace. 324 long 325 PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error) 326 { 327 long result = 0; 328 329 error.Clear(); 330 errno = 0; 331 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 332 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data); 333 else 334 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data); 335 336 if (result == -1) 337 error.SetErrorToErrno(); 338 return result; 339 } 340 #endif 341 342 //------------------------------------------------------------------------------ 343 // Static implementations of NativeProcessLinux::ReadMemory and 344 // NativeProcessLinux::WriteMemory. This enables mutual recursion between these 345 // functions without needed to go thru the thread funnel. 346 347 lldb::addr_t 348 DoReadMemory ( 349 lldb::pid_t pid, 350 lldb::addr_t vm_addr, 351 void *buf, 352 lldb::addr_t size, 353 Error &error) 354 { 355 // ptrace word size is determined by the host, not the child 356 static const unsigned word_size = sizeof(void*); 357 unsigned char *dst = static_cast<unsigned char*>(buf); 358 lldb::addr_t bytes_read; 359 lldb::addr_t remainder; 360 long data; 361 362 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); 363 if (log) 364 ProcessPOSIXLog::IncNestLevel(); 365 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) 366 log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__, 367 pid, word_size, (void*)vm_addr, buf, size); 368 369 assert(sizeof(data) >= word_size); 370 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) 371 { 372 data = PTRACE(PTRACE_PEEKDATA, pid, (void*)vm_addr, nullptr, 0, error); 373 if (error.Fail()) 374 { 375 if (log) 376 ProcessPOSIXLog::DecNestLevel(); 377 return bytes_read; 378 } 379 380 remainder = size - bytes_read; 381 remainder = remainder > word_size ? word_size : remainder; 382 383 // Copy the data into our buffer 384 for (unsigned i = 0; i < remainder; ++i) 385 dst[i] = ((data >> i*8) & 0xFF); 386 387 if (log && ProcessPOSIXLog::AtTopNestLevel() && 388 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 389 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 390 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 391 { 392 uintptr_t print_dst = 0; 393 // Format bytes from data by moving into print_dst for log output 394 for (unsigned i = 0; i < remainder; ++i) 395 print_dst |= (((data >> i*8) & 0xFF) << i*8); 396 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 397 (void*)vm_addr, print_dst, (unsigned long)data); 398 } 399 400 vm_addr += word_size; 401 dst += word_size; 402 } 403 404 if (log) 405 ProcessPOSIXLog::DecNestLevel(); 406 return bytes_read; 407 } 408 409 lldb::addr_t 410 DoWriteMemory( 411 lldb::pid_t pid, 412 lldb::addr_t vm_addr, 413 const void *buf, 414 lldb::addr_t size, 415 Error &error) 416 { 417 // ptrace word size is determined by the host, not the child 418 static const unsigned word_size = sizeof(void*); 419 const unsigned char *src = static_cast<const unsigned char*>(buf); 420 lldb::addr_t bytes_written = 0; 421 lldb::addr_t remainder; 422 423 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); 424 if (log) 425 ProcessPOSIXLog::IncNestLevel(); 426 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) 427 log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__, 428 pid, word_size, (void*)vm_addr, buf, size); 429 430 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) 431 { 432 remainder = size - bytes_written; 433 remainder = remainder > word_size ? word_size : remainder; 434 435 if (remainder == word_size) 436 { 437 unsigned long data = 0; 438 assert(sizeof(data) >= word_size); 439 for (unsigned i = 0; i < word_size; ++i) 440 data |= (unsigned long)src[i] << i*8; 441 442 if (log && ProcessPOSIXLog::AtTopNestLevel() && 443 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 444 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 445 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 446 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 447 (void*)vm_addr, *(unsigned long*)src, data); 448 449 if (PTRACE(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data, 0, error)) 450 { 451 if (log) 452 ProcessPOSIXLog::DecNestLevel(); 453 return bytes_written; 454 } 455 } 456 else 457 { 458 unsigned char buff[8]; 459 if (DoReadMemory(pid, vm_addr, 460 buff, word_size, error) != word_size) 461 { 462 if (log) 463 ProcessPOSIXLog::DecNestLevel(); 464 return bytes_written; 465 } 466 467 memcpy(buff, src, remainder); 468 469 if (DoWriteMemory(pid, vm_addr, 470 buff, word_size, error) != word_size) 471 { 472 if (log) 473 ProcessPOSIXLog::DecNestLevel(); 474 return bytes_written; 475 } 476 477 if (log && ProcessPOSIXLog::AtTopNestLevel() && 478 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 479 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 480 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 481 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 482 (void*)vm_addr, *(unsigned long*)src, *(unsigned long*)buff); 483 } 484 485 vm_addr += word_size; 486 src += word_size; 487 } 488 if (log) 489 ProcessPOSIXLog::DecNestLevel(); 490 return bytes_written; 491 } 492 493 //------------------------------------------------------------------------------ 494 /// @class Operation 495 /// @brief Represents a NativeProcessLinux operation. 496 /// 497 /// Under Linux, it is not possible to ptrace() from any other thread but the 498 /// one that spawned or attached to the process from the start. Therefore, when 499 /// a NativeProcessLinux is asked to deliver or change the state of an inferior 500 /// process the operation must be "funneled" to a specific thread to perform the 501 /// task. The Operation class provides an abstract base for all services the 502 /// NativeProcessLinux must perform via the single virtual function Execute, thus 503 /// encapsulating the code that needs to run in the privileged context. 504 class Operation 505 { 506 public: 507 Operation () : m_error() { } 508 509 virtual 510 ~Operation() {} 511 512 virtual void 513 Execute (NativeProcessLinux *process) = 0; 514 515 const Error & 516 GetError () const { return m_error; } 517 518 protected: 519 Error m_error; 520 }; 521 522 //------------------------------------------------------------------------------ 523 /// @class ReadOperation 524 /// @brief Implements NativeProcessLinux::ReadMemory. 525 class ReadOperation : public Operation 526 { 527 public: 528 ReadOperation ( 529 lldb::addr_t addr, 530 void *buff, 531 lldb::addr_t size, 532 lldb::addr_t &result) : 533 Operation (), 534 m_addr (addr), 535 m_buff (buff), 536 m_size (size), 537 m_result (result) 538 { 539 } 540 541 void Execute (NativeProcessLinux *process) override; 542 543 private: 544 lldb::addr_t m_addr; 545 void *m_buff; 546 lldb::addr_t m_size; 547 lldb::addr_t &m_result; 548 }; 549 550 void 551 ReadOperation::Execute (NativeProcessLinux *process) 552 { 553 m_result = DoReadMemory (process->GetID (), m_addr, m_buff, m_size, m_error); 554 } 555 556 //------------------------------------------------------------------------------ 557 /// @class WriteOperation 558 /// @brief Implements NativeProcessLinux::WriteMemory. 559 class WriteOperation : public Operation 560 { 561 public: 562 WriteOperation ( 563 lldb::addr_t addr, 564 const void *buff, 565 lldb::addr_t size, 566 lldb::addr_t &result) : 567 Operation (), 568 m_addr (addr), 569 m_buff (buff), 570 m_size (size), 571 m_result (result) 572 { 573 } 574 575 void Execute (NativeProcessLinux *process) override; 576 577 private: 578 lldb::addr_t m_addr; 579 const void *m_buff; 580 lldb::addr_t m_size; 581 lldb::addr_t &m_result; 582 }; 583 584 void 585 WriteOperation::Execute(NativeProcessLinux *process) 586 { 587 m_result = DoWriteMemory (process->GetID (), m_addr, m_buff, m_size, m_error); 588 } 589 590 //------------------------------------------------------------------------------ 591 /// @class ReadRegOperation 592 /// @brief Implements NativeProcessLinux::ReadRegisterValue. 593 class ReadRegOperation : public Operation 594 { 595 public: 596 ReadRegOperation(lldb::tid_t tid, uint32_t offset, const char *reg_name, 597 RegisterValue &value) 598 : m_tid(tid), 599 m_offset(static_cast<uintptr_t> (offset)), 600 m_reg_name(reg_name), 601 m_value(value) 602 { } 603 604 void Execute(NativeProcessLinux *monitor); 605 606 private: 607 lldb::tid_t m_tid; 608 uintptr_t m_offset; 609 const char *m_reg_name; 610 RegisterValue &m_value; 611 }; 612 613 void 614 ReadRegOperation::Execute(NativeProcessLinux *monitor) 615 { 616 #if defined (__arm64__) || defined (__aarch64__) 617 if (m_offset > sizeof(struct user_pt_regs)) 618 { 619 uintptr_t offset = m_offset - sizeof(struct user_pt_regs); 620 if (offset > sizeof(struct user_fpsimd_state)) 621 { 622 m_error.SetErrorString("invalid offset value"); 623 return; 624 } 625 elf_fpregset_t regs; 626 int regset = NT_FPREGSET; 627 struct iovec ioVec; 628 629 ioVec.iov_base = ®s; 630 ioVec.iov_len = sizeof regs; 631 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 632 if (m_error.Success()) 633 { 634 lldb_private::ArchSpec arch; 635 if (monitor->GetArchitecture(arch)) 636 m_value.SetBytes((void *)(((unsigned char *)(®s)) + offset), 16, arch.GetByteOrder()); 637 else 638 m_error.SetErrorString("failed to get architecture"); 639 } 640 } 641 else 642 { 643 elf_gregset_t regs; 644 int regset = NT_PRSTATUS; 645 struct iovec ioVec; 646 647 ioVec.iov_base = ®s; 648 ioVec.iov_len = sizeof regs; 649 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 650 if (m_error.Success()) 651 { 652 lldb_private::ArchSpec arch; 653 if (monitor->GetArchitecture(arch)) 654 m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, arch.GetByteOrder()); 655 else 656 m_error.SetErrorString("failed to get architecture"); 657 } 658 } 659 #else 660 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS)); 661 662 lldb::addr_t data = PTRACE(PTRACE_PEEKUSER, m_tid, (void*)m_offset, nullptr, 0, m_error); 663 if (m_error.Success()) 664 m_value = data; 665 666 if (log) 667 log->Printf ("NativeProcessLinux::%s() reg %s: 0x%" PRIx64, __FUNCTION__, 668 m_reg_name, data); 669 #endif 670 } 671 672 //------------------------------------------------------------------------------ 673 /// @class WriteRegOperation 674 /// @brief Implements NativeProcessLinux::WriteRegisterValue. 675 class WriteRegOperation : public Operation 676 { 677 public: 678 WriteRegOperation(lldb::tid_t tid, unsigned offset, const char *reg_name, 679 const RegisterValue &value) 680 : m_tid(tid), 681 m_offset(offset), 682 m_reg_name(reg_name), 683 m_value(value) 684 { } 685 686 void Execute(NativeProcessLinux *monitor); 687 688 private: 689 lldb::tid_t m_tid; 690 uintptr_t m_offset; 691 const char *m_reg_name; 692 const RegisterValue &m_value; 693 }; 694 695 void 696 WriteRegOperation::Execute(NativeProcessLinux *monitor) 697 { 698 #if defined (__arm64__) || defined (__aarch64__) 699 if (m_offset > sizeof(struct user_pt_regs)) 700 { 701 uintptr_t offset = m_offset - sizeof(struct user_pt_regs); 702 if (offset > sizeof(struct user_fpsimd_state)) 703 { 704 m_error.SetErrorString("invalid offset value"); 705 return; 706 } 707 elf_fpregset_t regs; 708 int regset = NT_FPREGSET; 709 struct iovec ioVec; 710 711 ioVec.iov_base = ®s; 712 ioVec.iov_len = sizeof regs; 713 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 714 if (m_error.Sucess()) 715 { 716 ::memcpy((void *)(((unsigned char *)(®s)) + offset), m_value.GetBytes(), 16); 717 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 718 } 719 } 720 else 721 { 722 elf_gregset_t regs; 723 int regset = NT_PRSTATUS; 724 struct iovec ioVec; 725 726 ioVec.iov_base = ®s; 727 ioVec.iov_len = sizeof regs; 728 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 729 if (m_error.Sucess()) 730 { 731 ::memcpy((void *)(((unsigned char *)(®s)) + m_offset), m_value.GetBytes(), 8); 732 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 733 } 734 } 735 #else 736 void* buf; 737 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS)); 738 739 buf = (void*) m_value.GetAsUInt64(); 740 741 if (log) 742 log->Printf ("NativeProcessLinux::%s() reg %s: %p", __FUNCTION__, m_reg_name, buf); 743 PTRACE(PTRACE_POKEUSER, m_tid, (void*)m_offset, buf, 0, m_error); 744 #endif 745 } 746 747 //------------------------------------------------------------------------------ 748 /// @class ReadGPROperation 749 /// @brief Implements NativeProcessLinux::ReadGPR. 750 class ReadGPROperation : public Operation 751 { 752 public: 753 ReadGPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 754 : m_tid(tid), m_buf(buf), m_buf_size(buf_size) 755 { } 756 757 void Execute(NativeProcessLinux *monitor); 758 759 private: 760 lldb::tid_t m_tid; 761 void *m_buf; 762 size_t m_buf_size; 763 }; 764 765 void 766 ReadGPROperation::Execute(NativeProcessLinux *monitor) 767 { 768 #if defined (__arm64__) || defined (__aarch64__) 769 int regset = NT_PRSTATUS; 770 struct iovec ioVec; 771 772 ioVec.iov_base = m_buf; 773 ioVec.iov_len = m_buf_size; 774 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); 775 #else 776 PTRACE(PTRACE_GETREGS, m_tid, nullptr, m_buf, m_buf_size, m_error); 777 #endif 778 } 779 780 //------------------------------------------------------------------------------ 781 /// @class ReadFPROperation 782 /// @brief Implements NativeProcessLinux::ReadFPR. 783 class ReadFPROperation : public Operation 784 { 785 public: 786 ReadFPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 787 : m_tid(tid), 788 m_buf(buf), 789 m_buf_size(buf_size) 790 { } 791 792 void Execute(NativeProcessLinux *monitor); 793 794 private: 795 lldb::tid_t m_tid; 796 void *m_buf; 797 size_t m_buf_size; 798 }; 799 800 void 801 ReadFPROperation::Execute(NativeProcessLinux *monitor) 802 { 803 #if defined (__arm64__) || defined (__aarch64__) 804 int regset = NT_FPREGSET; 805 struct iovec ioVec; 806 807 ioVec.iov_base = m_buf; 808 ioVec.iov_len = m_buf_size; 809 if (PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, m_buf_size) < 0) 810 m_result = false; 811 else 812 m_result = true; 813 #else 814 PTRACE(PTRACE_GETFPREGS, m_tid, nullptr, m_buf, m_buf_size, m_error); 815 #endif 816 } 817 818 //------------------------------------------------------------------------------ 819 /// @class ReadRegisterSetOperation 820 /// @brief Implements NativeProcessLinux::ReadRegisterSet. 821 class ReadRegisterSetOperation : public Operation 822 { 823 public: 824 ReadRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 825 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset) 826 { } 827 828 void Execute(NativeProcessLinux *monitor); 829 830 private: 831 lldb::tid_t m_tid; 832 void *m_buf; 833 size_t m_buf_size; 834 const unsigned int m_regset; 835 }; 836 837 void 838 ReadRegisterSetOperation::Execute(NativeProcessLinux *monitor) 839 { 840 PTRACE(PTRACE_GETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error); 841 } 842 843 //------------------------------------------------------------------------------ 844 /// @class WriteGPROperation 845 /// @brief Implements NativeProcessLinux::WriteGPR. 846 class WriteGPROperation : public Operation 847 { 848 public: 849 WriteGPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 850 : m_tid(tid), m_buf(buf), m_buf_size(buf_size) 851 { } 852 853 void Execute(NativeProcessLinux *monitor); 854 855 private: 856 lldb::tid_t m_tid; 857 void *m_buf; 858 size_t m_buf_size; 859 }; 860 861 void 862 WriteGPROperation::Execute(NativeProcessLinux *monitor) 863 { 864 #if defined (__arm64__) || defined (__aarch64__) 865 int regset = NT_PRSTATUS; 866 struct iovec ioVec; 867 868 ioVec.iov_base = m_buf; 869 ioVec.iov_len = m_buf_size; 870 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); 871 #else 872 PTRACE(PTRACE_SETREGS, m_tid, NULL, m_buf, m_buf_size, m_error); 873 #endif 874 } 875 876 //------------------------------------------------------------------------------ 877 /// @class WriteFPROperation 878 /// @brief Implements NativeProcessLinux::WriteFPR. 879 class WriteFPROperation : public Operation 880 { 881 public: 882 WriteFPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 883 : m_tid(tid), m_buf(buf), m_buf_size(buf_size) 884 { } 885 886 void Execute(NativeProcessLinux *monitor); 887 888 private: 889 lldb::tid_t m_tid; 890 void *m_buf; 891 size_t m_buf_size; 892 }; 893 894 void 895 WriteFPROperation::Execute(NativeProcessLinux *monitor) 896 { 897 #if defined (__arm64__) || defined (__aarch64__) 898 int regset = NT_FPREGSET; 899 struct iovec ioVec; 900 901 ioVec.iov_base = m_buf; 902 ioVec.iov_len = m_buf_size; 903 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); 904 #else 905 PTRACE(PTRACE_SETFPREGS, m_tid, NULL, m_buf, m_buf_size, m_error); 906 #endif 907 } 908 909 //------------------------------------------------------------------------------ 910 /// @class WriteRegisterSetOperation 911 /// @brief Implements NativeProcessLinux::WriteRegisterSet. 912 class WriteRegisterSetOperation : public Operation 913 { 914 public: 915 WriteRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 916 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset) 917 { } 918 919 void Execute(NativeProcessLinux *monitor); 920 921 private: 922 lldb::tid_t m_tid; 923 void *m_buf; 924 size_t m_buf_size; 925 const unsigned int m_regset; 926 }; 927 928 void 929 WriteRegisterSetOperation::Execute(NativeProcessLinux *monitor) 930 { 931 PTRACE(PTRACE_SETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error); 932 } 933 934 //------------------------------------------------------------------------------ 935 /// @class ResumeOperation 936 /// @brief Implements NativeProcessLinux::Resume. 937 class ResumeOperation : public Operation 938 { 939 public: 940 ResumeOperation(lldb::tid_t tid, uint32_t signo) : 941 m_tid(tid), m_signo(signo) { } 942 943 void Execute(NativeProcessLinux *monitor); 944 945 private: 946 lldb::tid_t m_tid; 947 uint32_t m_signo; 948 }; 949 950 void 951 ResumeOperation::Execute(NativeProcessLinux *monitor) 952 { 953 intptr_t data = 0; 954 955 if (m_signo != LLDB_INVALID_SIGNAL_NUMBER) 956 data = m_signo; 957 958 PTRACE(PTRACE_CONT, m_tid, nullptr, (void*)data, 0, m_error); 959 if (m_error.Fail()) 960 { 961 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 962 963 if (log) 964 log->Printf ("ResumeOperation (%" PRIu64 ") failed: %s", m_tid, m_error.AsCString()); 965 } 966 } 967 968 //------------------------------------------------------------------------------ 969 /// @class SingleStepOperation 970 /// @brief Implements NativeProcessLinux::SingleStep. 971 class SingleStepOperation : public Operation 972 { 973 public: 974 SingleStepOperation(lldb::tid_t tid, uint32_t signo) 975 : m_tid(tid), m_signo(signo) { } 976 977 void Execute(NativeProcessLinux *monitor); 978 979 private: 980 lldb::tid_t m_tid; 981 uint32_t m_signo; 982 }; 983 984 void 985 SingleStepOperation::Execute(NativeProcessLinux *monitor) 986 { 987 intptr_t data = 0; 988 989 if (m_signo != LLDB_INVALID_SIGNAL_NUMBER) 990 data = m_signo; 991 992 PTRACE(PTRACE_SINGLESTEP, m_tid, nullptr, (void*)data, 0, m_error); 993 } 994 995 //------------------------------------------------------------------------------ 996 /// @class SiginfoOperation 997 /// @brief Implements NativeProcessLinux::GetSignalInfo. 998 class SiginfoOperation : public Operation 999 { 1000 public: 1001 SiginfoOperation(lldb::tid_t tid, void *info) 1002 : m_tid(tid), m_info(info) { } 1003 1004 void Execute(NativeProcessLinux *monitor); 1005 1006 private: 1007 lldb::tid_t m_tid; 1008 void *m_info; 1009 }; 1010 1011 void 1012 SiginfoOperation::Execute(NativeProcessLinux *monitor) 1013 { 1014 PTRACE(PTRACE_GETSIGINFO, m_tid, nullptr, m_info, 0, m_error); 1015 } 1016 1017 //------------------------------------------------------------------------------ 1018 /// @class EventMessageOperation 1019 /// @brief Implements NativeProcessLinux::GetEventMessage. 1020 class EventMessageOperation : public Operation 1021 { 1022 public: 1023 EventMessageOperation(lldb::tid_t tid, unsigned long *message) 1024 : m_tid(tid), m_message(message) { } 1025 1026 void Execute(NativeProcessLinux *monitor); 1027 1028 private: 1029 lldb::tid_t m_tid; 1030 unsigned long *m_message; 1031 }; 1032 1033 void 1034 EventMessageOperation::Execute(NativeProcessLinux *monitor) 1035 { 1036 PTRACE(PTRACE_GETEVENTMSG, m_tid, nullptr, m_message, 0, m_error); 1037 } 1038 1039 class DetachOperation : public Operation 1040 { 1041 public: 1042 DetachOperation(lldb::tid_t tid) : m_tid(tid) { } 1043 1044 void Execute(NativeProcessLinux *monitor); 1045 1046 private: 1047 lldb::tid_t m_tid; 1048 }; 1049 1050 void 1051 DetachOperation::Execute(NativeProcessLinux *monitor) 1052 { 1053 PTRACE(PTRACE_DETACH, m_tid, nullptr, 0, 0, m_error); 1054 } 1055 1056 } 1057 1058 using namespace lldb_private; 1059 1060 // Simple helper function to ensure flags are enabled on the given file 1061 // descriptor. 1062 static bool 1063 EnsureFDFlags(int fd, int flags, Error &error) 1064 { 1065 int status; 1066 1067 if ((status = fcntl(fd, F_GETFL)) == -1) 1068 { 1069 error.SetErrorToErrno(); 1070 return false; 1071 } 1072 1073 if (fcntl(fd, F_SETFL, status | flags) == -1) 1074 { 1075 error.SetErrorToErrno(); 1076 return false; 1077 } 1078 1079 return true; 1080 } 1081 1082 NativeProcessLinux::OperationArgs::OperationArgs(NativeProcessLinux *monitor) 1083 : m_monitor(monitor) 1084 { 1085 sem_init(&m_semaphore, 0, 0); 1086 } 1087 1088 NativeProcessLinux::OperationArgs::~OperationArgs() 1089 { 1090 sem_destroy(&m_semaphore); 1091 } 1092 1093 NativeProcessLinux::LaunchArgs::LaunchArgs(NativeProcessLinux *monitor, 1094 lldb_private::Module *module, 1095 char const **argv, 1096 char const **envp, 1097 const std::string &stdin_path, 1098 const std::string &stdout_path, 1099 const std::string &stderr_path, 1100 const char *working_dir, 1101 const lldb_private::ProcessLaunchInfo &launch_info) 1102 : OperationArgs(monitor), 1103 m_module(module), 1104 m_argv(argv), 1105 m_envp(envp), 1106 m_stdin_path(stdin_path), 1107 m_stdout_path(stdout_path), 1108 m_stderr_path(stderr_path), 1109 m_working_dir(working_dir), 1110 m_launch_info(launch_info) 1111 { 1112 } 1113 1114 NativeProcessLinux::LaunchArgs::~LaunchArgs() 1115 { } 1116 1117 NativeProcessLinux::AttachArgs::AttachArgs(NativeProcessLinux *monitor, 1118 lldb::pid_t pid) 1119 : OperationArgs(monitor), m_pid(pid) { } 1120 1121 NativeProcessLinux::AttachArgs::~AttachArgs() 1122 { } 1123 1124 // ----------------------------------------------------------------------------- 1125 // Public Static Methods 1126 // ----------------------------------------------------------------------------- 1127 1128 void 1129 NativeProcessLinux::Initialize() 1130 { 1131 static ConstString g_name("linux"); 1132 static bool g_initialized = false; 1133 1134 if (!g_initialized) 1135 { 1136 g_initialized = true; 1137 1138 Log::Callbacks log_callbacks = { 1139 ProcessPOSIXLog::DisableLog, 1140 ProcessPOSIXLog::EnableLog, 1141 ProcessPOSIXLog::ListLogCategories 1142 }; 1143 1144 Log::RegisterLogChannel (g_name, log_callbacks); 1145 ProcessPOSIXLog::RegisterPluginName (g_name); 1146 } 1147 } 1148 1149 lldb_private::Error 1150 NativeProcessLinux::LaunchProcess ( 1151 lldb_private::Module *exe_module, 1152 lldb_private::ProcessLaunchInfo &launch_info, 1153 lldb_private::NativeProcessProtocol::NativeDelegate &native_delegate, 1154 NativeProcessProtocolSP &native_process_sp) 1155 { 1156 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1157 1158 Error error; 1159 1160 // Verify the working directory is valid if one was specified. 1161 const char* working_dir = launch_info.GetWorkingDirectory (); 1162 if (working_dir) 1163 { 1164 FileSpec working_dir_fs (working_dir, true); 1165 if (!working_dir_fs || working_dir_fs.GetFileType () != FileSpec::eFileTypeDirectory) 1166 { 1167 error.SetErrorStringWithFormat ("No such file or directory: %s", working_dir); 1168 return error; 1169 } 1170 } 1171 1172 const lldb_private::FileAction *file_action; 1173 1174 // Default of NULL will mean to use existing open file descriptors. 1175 std::string stdin_path; 1176 std::string stdout_path; 1177 std::string stderr_path; 1178 1179 file_action = launch_info.GetFileActionForFD (STDIN_FILENO); 1180 if (file_action) 1181 stdin_path = file_action->GetPath (); 1182 1183 file_action = launch_info.GetFileActionForFD (STDOUT_FILENO); 1184 if (file_action) 1185 stdout_path = file_action->GetPath (); 1186 1187 file_action = launch_info.GetFileActionForFD (STDERR_FILENO); 1188 if (file_action) 1189 stderr_path = file_action->GetPath (); 1190 1191 if (log) 1192 { 1193 if (!stdin_path.empty ()) 1194 log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'", __FUNCTION__, stdin_path.c_str ()); 1195 else 1196 log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__); 1197 1198 if (!stdout_path.empty ()) 1199 log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'", __FUNCTION__, stdout_path.c_str ()); 1200 else 1201 log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__); 1202 1203 if (!stderr_path.empty ()) 1204 log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'", __FUNCTION__, stderr_path.c_str ()); 1205 else 1206 log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__); 1207 } 1208 1209 // Create the NativeProcessLinux in launch mode. 1210 native_process_sp.reset (new NativeProcessLinux ()); 1211 1212 if (log) 1213 { 1214 int i = 0; 1215 for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i) 1216 { 1217 log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr"); 1218 ++i; 1219 } 1220 } 1221 1222 if (!native_process_sp->RegisterNativeDelegate (native_delegate)) 1223 { 1224 native_process_sp.reset (); 1225 error.SetErrorStringWithFormat ("failed to register the native delegate"); 1226 return error; 1227 } 1228 1229 reinterpret_cast<NativeProcessLinux*> (native_process_sp.get ())->LaunchInferior ( 1230 exe_module, 1231 launch_info.GetArguments ().GetConstArgumentVector (), 1232 launch_info.GetEnvironmentEntries ().GetConstArgumentVector (), 1233 stdin_path, 1234 stdout_path, 1235 stderr_path, 1236 working_dir, 1237 launch_info, 1238 error); 1239 1240 if (error.Fail ()) 1241 { 1242 native_process_sp.reset (); 1243 if (log) 1244 log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ()); 1245 return error; 1246 } 1247 1248 launch_info.SetProcessID (native_process_sp->GetID ()); 1249 1250 return error; 1251 } 1252 1253 lldb_private::Error 1254 NativeProcessLinux::AttachToProcess ( 1255 lldb::pid_t pid, 1256 lldb_private::NativeProcessProtocol::NativeDelegate &native_delegate, 1257 NativeProcessProtocolSP &native_process_sp) 1258 { 1259 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1260 if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE)) 1261 log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid); 1262 1263 // Grab the current platform architecture. This should be Linux, 1264 // since this code is only intended to run on a Linux host. 1265 PlatformSP platform_sp (Platform::GetHostPlatform ()); 1266 if (!platform_sp) 1267 return Error("failed to get a valid default platform"); 1268 1269 // Retrieve the architecture for the running process. 1270 ArchSpec process_arch; 1271 Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch); 1272 if (!error.Success ()) 1273 return error; 1274 1275 std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ()); 1276 1277 if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate)) 1278 { 1279 error.SetErrorStringWithFormat ("failed to register the native delegate"); 1280 return error; 1281 } 1282 1283 native_process_linux_sp->AttachToInferior (pid, error); 1284 if (!error.Success ()) 1285 return error; 1286 1287 native_process_sp = native_process_linux_sp; 1288 return error; 1289 } 1290 1291 // ----------------------------------------------------------------------------- 1292 // Public Instance Methods 1293 // ----------------------------------------------------------------------------- 1294 1295 NativeProcessLinux::NativeProcessLinux () : 1296 NativeProcessProtocol (LLDB_INVALID_PROCESS_ID), 1297 m_arch (), 1298 m_operation_thread (), 1299 m_monitor_thread (), 1300 m_operation (nullptr), 1301 m_operation_mutex (), 1302 m_operation_pending (), 1303 m_operation_done (), 1304 m_supports_mem_region (eLazyBoolCalculate), 1305 m_mem_region_cache (), 1306 m_mem_region_cache_mutex (), 1307 m_coordinator_up (new ThreadStateCoordinator (GetThreadLoggerFunction ())), 1308 m_coordinator_thread () 1309 { 1310 } 1311 1312 //------------------------------------------------------------------------------ 1313 /// The basic design of the NativeProcessLinux is built around two threads. 1314 /// 1315 /// One thread (@see SignalThread) simply blocks on a call to waitpid() looking 1316 /// for changes in the debugee state. When a change is detected a 1317 /// ProcessMessage is sent to the associated ProcessLinux instance. This thread 1318 /// "drives" state changes in the debugger. 1319 /// 1320 /// The second thread (@see OperationThread) is responsible for two things 1) 1321 /// launching or attaching to the inferior process, and then 2) servicing 1322 /// operations such as register reads/writes, stepping, etc. See the comments 1323 /// on the Operation class for more info as to why this is needed. 1324 void 1325 NativeProcessLinux::LaunchInferior ( 1326 Module *module, 1327 const char *argv[], 1328 const char *envp[], 1329 const std::string &stdin_path, 1330 const std::string &stdout_path, 1331 const std::string &stderr_path, 1332 const char *working_dir, 1333 const lldb_private::ProcessLaunchInfo &launch_info, 1334 lldb_private::Error &error) 1335 { 1336 if (module) 1337 m_arch = module->GetArchitecture (); 1338 1339 SetState (eStateLaunching); 1340 1341 std::unique_ptr<LaunchArgs> args( 1342 new LaunchArgs( 1343 this, module, argv, envp, 1344 stdin_path, stdout_path, stderr_path, 1345 working_dir, launch_info)); 1346 1347 sem_init (&m_operation_pending, 0, 0); 1348 sem_init (&m_operation_done, 0, 0); 1349 1350 StartLaunchOpThread (args.get(), error); 1351 if (!error.Success ()) 1352 return; 1353 1354 error = StartCoordinatorThread (); 1355 if (!error.Success ()) 1356 return; 1357 1358 WAIT_AGAIN: 1359 // Wait for the operation thread to initialize. 1360 if (sem_wait(&args->m_semaphore)) 1361 { 1362 if (errno == EINTR) 1363 goto WAIT_AGAIN; 1364 else 1365 { 1366 error.SetErrorToErrno(); 1367 return; 1368 } 1369 } 1370 1371 // Check that the launch was a success. 1372 if (!args->m_error.Success()) 1373 { 1374 StopOpThread(); 1375 StopCoordinatorThread (); 1376 error = args->m_error; 1377 return; 1378 } 1379 1380 // Finally, start monitoring the child process for change in state. 1381 m_monitor_thread = Host::StartMonitoringChildProcess( 1382 NativeProcessLinux::MonitorCallback, this, GetID(), true); 1383 if (!m_monitor_thread.IsJoinable()) 1384 { 1385 error.SetErrorToGenericError(); 1386 error.SetErrorString ("Process attach failed to create monitor thread for NativeProcessLinux::MonitorCallback."); 1387 return; 1388 } 1389 } 1390 1391 void 1392 NativeProcessLinux::AttachToInferior (lldb::pid_t pid, lldb_private::Error &error) 1393 { 1394 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1395 if (log) 1396 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid); 1397 1398 // We can use the Host for everything except the ResolveExecutable portion. 1399 PlatformSP platform_sp = Platform::GetHostPlatform (); 1400 if (!platform_sp) 1401 { 1402 if (log) 1403 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid); 1404 error.SetErrorString ("no default platform available"); 1405 return; 1406 } 1407 1408 // Gather info about the process. 1409 ProcessInstanceInfo process_info; 1410 if (!platform_sp->GetProcessInfo (pid, process_info)) 1411 { 1412 if (log) 1413 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid); 1414 error.SetErrorString ("failed to get process info"); 1415 return; 1416 } 1417 1418 // Resolve the executable module 1419 ModuleSP exe_module_sp; 1420 FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths()); 1421 ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture()); 1422 error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp, 1423 executable_search_paths.GetSize() ? &executable_search_paths : NULL); 1424 if (!error.Success()) 1425 return; 1426 1427 // Set the architecture to the exe architecture. 1428 m_arch = exe_module_sp->GetArchitecture(); 1429 if (log) 1430 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ()); 1431 1432 m_pid = pid; 1433 SetState(eStateAttaching); 1434 1435 sem_init (&m_operation_pending, 0, 0); 1436 sem_init (&m_operation_done, 0, 0); 1437 1438 std::unique_ptr<AttachArgs> args (new AttachArgs (this, pid)); 1439 1440 StartAttachOpThread(args.get (), error); 1441 if (!error.Success ()) 1442 return; 1443 1444 error = StartCoordinatorThread (); 1445 if (!error.Success ()) 1446 return; 1447 1448 WAIT_AGAIN: 1449 // Wait for the operation thread to initialize. 1450 if (sem_wait (&args->m_semaphore)) 1451 { 1452 if (errno == EINTR) 1453 goto WAIT_AGAIN; 1454 else 1455 { 1456 error.SetErrorToErrno (); 1457 return; 1458 } 1459 } 1460 1461 // Check that the attach was a success. 1462 if (!args->m_error.Success ()) 1463 { 1464 StopOpThread (); 1465 StopCoordinatorThread (); 1466 error = args->m_error; 1467 return; 1468 } 1469 1470 // Finally, start monitoring the child process for change in state. 1471 m_monitor_thread = Host::StartMonitoringChildProcess ( 1472 NativeProcessLinux::MonitorCallback, this, GetID (), true); 1473 if (!m_monitor_thread.IsJoinable()) 1474 { 1475 error.SetErrorToGenericError (); 1476 error.SetErrorString ("Process attach failed to create monitor thread for NativeProcessLinux::MonitorCallback."); 1477 return; 1478 } 1479 } 1480 1481 void 1482 NativeProcessLinux::Terminate () 1483 { 1484 StopMonitor(); 1485 } 1486 1487 //------------------------------------------------------------------------------ 1488 // Thread setup and tear down. 1489 1490 void 1491 NativeProcessLinux::StartLaunchOpThread(LaunchArgs *args, Error &error) 1492 { 1493 static const char *g_thread_name = "lldb.process.nativelinux.operation"; 1494 1495 if (m_operation_thread.IsJoinable()) 1496 return; 1497 1498 m_operation_thread = ThreadLauncher::LaunchThread(g_thread_name, LaunchOpThread, args, &error); 1499 } 1500 1501 void * 1502 NativeProcessLinux::LaunchOpThread(void *arg) 1503 { 1504 LaunchArgs *args = static_cast<LaunchArgs*>(arg); 1505 1506 if (!Launch(args)) { 1507 sem_post(&args->m_semaphore); 1508 return NULL; 1509 } 1510 1511 ServeOperation(args); 1512 return NULL; 1513 } 1514 1515 bool 1516 NativeProcessLinux::Launch(LaunchArgs *args) 1517 { 1518 assert (args && "null args"); 1519 if (!args) 1520 return false; 1521 1522 NativeProcessLinux *monitor = args->m_monitor; 1523 assert (monitor && "monitor is NULL"); 1524 1525 const char **argv = args->m_argv; 1526 const char **envp = args->m_envp; 1527 const char *working_dir = args->m_working_dir; 1528 1529 lldb_utility::PseudoTerminal terminal; 1530 const size_t err_len = 1024; 1531 char err_str[err_len]; 1532 lldb::pid_t pid; 1533 NativeThreadProtocolSP thread_sp; 1534 1535 lldb::ThreadSP inferior; 1536 1537 // Propagate the environment if one is not supplied. 1538 if (envp == NULL || envp[0] == NULL) 1539 envp = const_cast<const char **>(environ); 1540 1541 if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1)) 1542 { 1543 args->m_error.SetErrorToGenericError(); 1544 args->m_error.SetErrorString("Process fork failed."); 1545 return false; 1546 } 1547 1548 // Recognized child exit status codes. 1549 enum { 1550 ePtraceFailed = 1, 1551 eDupStdinFailed, 1552 eDupStdoutFailed, 1553 eDupStderrFailed, 1554 eChdirFailed, 1555 eExecFailed, 1556 eSetGidFailed 1557 }; 1558 1559 // Child process. 1560 if (pid == 0) 1561 { 1562 // FIXME consider opening a pipe between parent/child and have this forked child 1563 // send log info to parent re: launch status, in place of the log lines removed here. 1564 1565 // Start tracing this child that is about to exec. 1566 PTRACE(PTRACE_TRACEME, 0, nullptr, nullptr, 0, args->m_error); 1567 if (args->m_error.Fail()) 1568 exit(ePtraceFailed); 1569 1570 // terminal has already dupped the tty descriptors to stdin/out/err. 1571 // This closes original fd from which they were copied (and avoids 1572 // leaking descriptors to the debugged process. 1573 terminal.CloseSlaveFileDescriptor(); 1574 1575 // Do not inherit setgid powers. 1576 if (setgid(getgid()) != 0) 1577 exit(eSetGidFailed); 1578 1579 // Attempt to have our own process group. 1580 if (setpgid(0, 0) != 0) 1581 { 1582 // FIXME log that this failed. This is common. 1583 // Don't allow this to prevent an inferior exec. 1584 } 1585 1586 // Dup file descriptors if needed. 1587 if (!args->m_stdin_path.empty ()) 1588 if (!DupDescriptor(args->m_stdin_path.c_str (), STDIN_FILENO, O_RDONLY)) 1589 exit(eDupStdinFailed); 1590 1591 if (!args->m_stdout_path.empty ()) 1592 if (!DupDescriptor(args->m_stdout_path.c_str (), STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC)) 1593 exit(eDupStdoutFailed); 1594 1595 if (!args->m_stderr_path.empty ()) 1596 if (!DupDescriptor(args->m_stderr_path.c_str (), STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC)) 1597 exit(eDupStderrFailed); 1598 1599 // Change working directory 1600 if (working_dir != NULL && working_dir[0]) 1601 if (0 != ::chdir(working_dir)) 1602 exit(eChdirFailed); 1603 1604 // Disable ASLR if requested. 1605 if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR)) 1606 { 1607 const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS); 1608 if (old_personality == -1) 1609 { 1610 // Can't retrieve Linux personality. Cannot disable ASLR. 1611 } 1612 else 1613 { 1614 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality); 1615 if (new_personality == -1) 1616 { 1617 // Disabling ASLR failed. 1618 } 1619 else 1620 { 1621 // Disabling ASLR succeeded. 1622 } 1623 } 1624 } 1625 1626 // Execute. We should never return... 1627 execve(argv[0], 1628 const_cast<char *const *>(argv), 1629 const_cast<char *const *>(envp)); 1630 1631 // ...unless exec fails. In which case we definitely need to end the child here. 1632 exit(eExecFailed); 1633 } 1634 1635 // 1636 // This is the parent code here. 1637 // 1638 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1639 1640 // Wait for the child process to trap on its call to execve. 1641 ::pid_t wpid; 1642 int status; 1643 if ((wpid = waitpid(pid, &status, 0)) < 0) 1644 { 1645 args->m_error.SetErrorToErrno(); 1646 1647 if (log) 1648 log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s", __FUNCTION__, args->m_error.AsCString ()); 1649 1650 // Mark the inferior as invalid. 1651 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1652 monitor->SetState (StateType::eStateInvalid); 1653 1654 return false; 1655 } 1656 else if (WIFEXITED(status)) 1657 { 1658 // open, dup or execve likely failed for some reason. 1659 args->m_error.SetErrorToGenericError(); 1660 switch (WEXITSTATUS(status)) 1661 { 1662 case ePtraceFailed: 1663 args->m_error.SetErrorString("Child ptrace failed."); 1664 break; 1665 case eDupStdinFailed: 1666 args->m_error.SetErrorString("Child open stdin failed."); 1667 break; 1668 case eDupStdoutFailed: 1669 args->m_error.SetErrorString("Child open stdout failed."); 1670 break; 1671 case eDupStderrFailed: 1672 args->m_error.SetErrorString("Child open stderr failed."); 1673 break; 1674 case eChdirFailed: 1675 args->m_error.SetErrorString("Child failed to set working directory."); 1676 break; 1677 case eExecFailed: 1678 args->m_error.SetErrorString("Child exec failed."); 1679 break; 1680 case eSetGidFailed: 1681 args->m_error.SetErrorString("Child setgid failed."); 1682 break; 1683 default: 1684 args->m_error.SetErrorString("Child returned unknown exit status."); 1685 break; 1686 } 1687 1688 if (log) 1689 { 1690 log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP", 1691 __FUNCTION__, 1692 WEXITSTATUS(status)); 1693 } 1694 1695 // Mark the inferior as invalid. 1696 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1697 monitor->SetState (StateType::eStateInvalid); 1698 1699 return false; 1700 } 1701 assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) && 1702 "Could not sync with inferior process."); 1703 1704 if (log) 1705 log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__); 1706 1707 args->m_error = SetDefaultPtraceOpts(pid); 1708 if (args->m_error.Fail()) 1709 { 1710 if (log) 1711 log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s", 1712 __FUNCTION__, 1713 args->m_error.AsCString ()); 1714 1715 // Mark the inferior as invalid. 1716 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1717 monitor->SetState (StateType::eStateInvalid); 1718 1719 return false; 1720 } 1721 1722 // Release the master terminal descriptor and pass it off to the 1723 // NativeProcessLinux instance. Similarly stash the inferior pid. 1724 monitor->m_terminal_fd = terminal.ReleaseMasterFileDescriptor(); 1725 monitor->m_pid = pid; 1726 1727 // Set the terminal fd to be in non blocking mode (it simplifies the 1728 // implementation of ProcessLinux::GetSTDOUT to have a non-blocking 1729 // descriptor to read from). 1730 if (!EnsureFDFlags(monitor->m_terminal_fd, O_NONBLOCK, args->m_error)) 1731 { 1732 if (log) 1733 log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s", 1734 __FUNCTION__, 1735 args->m_error.AsCString ()); 1736 1737 // Mark the inferior as invalid. 1738 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1739 monitor->SetState (StateType::eStateInvalid); 1740 1741 return false; 1742 } 1743 1744 if (log) 1745 log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid); 1746 1747 thread_sp = monitor->AddThread (pid); 1748 assert (thread_sp && "AddThread() returned a nullptr thread"); 1749 monitor->NotifyThreadCreateStopped (pid); 1750 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGSTOP); 1751 1752 // Let our process instance know the thread has stopped. 1753 monitor->SetCurrentThreadID (thread_sp->GetID ()); 1754 monitor->SetState (StateType::eStateStopped); 1755 1756 if (log) 1757 { 1758 if (args->m_error.Success ()) 1759 { 1760 log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__); 1761 } 1762 else 1763 { 1764 log->Printf ("NativeProcessLinux::%s inferior launching failed: %s", 1765 __FUNCTION__, 1766 args->m_error.AsCString ()); 1767 } 1768 } 1769 return args->m_error.Success(); 1770 } 1771 1772 void 1773 NativeProcessLinux::StartAttachOpThread(AttachArgs *args, lldb_private::Error &error) 1774 { 1775 static const char *g_thread_name = "lldb.process.linux.operation"; 1776 1777 if (m_operation_thread.IsJoinable()) 1778 return; 1779 1780 m_operation_thread = ThreadLauncher::LaunchThread(g_thread_name, AttachOpThread, args, &error); 1781 } 1782 1783 void * 1784 NativeProcessLinux::AttachOpThread(void *arg) 1785 { 1786 AttachArgs *args = static_cast<AttachArgs*>(arg); 1787 1788 if (!Attach(args)) { 1789 sem_post(&args->m_semaphore); 1790 return nullptr; 1791 } 1792 1793 ServeOperation(args); 1794 return nullptr; 1795 } 1796 1797 bool 1798 NativeProcessLinux::Attach(AttachArgs *args) 1799 { 1800 lldb::pid_t pid = args->m_pid; 1801 1802 NativeProcessLinux *monitor = args->m_monitor; 1803 lldb::ThreadSP inferior; 1804 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1805 1806 // Use a map to keep track of the threads which we have attached/need to attach. 1807 Host::TidMap tids_to_attach; 1808 if (pid <= 1) 1809 { 1810 args->m_error.SetErrorToGenericError(); 1811 args->m_error.SetErrorString("Attaching to process 1 is not allowed."); 1812 goto FINISH; 1813 } 1814 1815 while (Host::FindProcessThreads(pid, tids_to_attach)) 1816 { 1817 for (Host::TidMap::iterator it = tids_to_attach.begin(); 1818 it != tids_to_attach.end();) 1819 { 1820 if (it->second == false) 1821 { 1822 lldb::tid_t tid = it->first; 1823 1824 // Attach to the requested process. 1825 // An attach will cause the thread to stop with a SIGSTOP. 1826 PTRACE(PTRACE_ATTACH, tid, nullptr, nullptr, 0, args->m_error); 1827 if (args->m_error.Fail()) 1828 { 1829 // No such thread. The thread may have exited. 1830 // More error handling may be needed. 1831 if (args->m_error.GetError() == ESRCH) 1832 { 1833 it = tids_to_attach.erase(it); 1834 continue; 1835 } 1836 else 1837 goto FINISH; 1838 } 1839 1840 int status; 1841 // Need to use __WALL otherwise we receive an error with errno=ECHLD 1842 // At this point we should have a thread stopped if waitpid succeeds. 1843 if ((status = waitpid(tid, NULL, __WALL)) < 0) 1844 { 1845 // No such thread. The thread may have exited. 1846 // More error handling may be needed. 1847 if (errno == ESRCH) 1848 { 1849 it = tids_to_attach.erase(it); 1850 continue; 1851 } 1852 else 1853 { 1854 args->m_error.SetErrorToErrno(); 1855 goto FINISH; 1856 } 1857 } 1858 1859 args->m_error = SetDefaultPtraceOpts(tid); 1860 if (args->m_error.Fail()) 1861 goto FINISH; 1862 1863 1864 if (log) 1865 log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid); 1866 1867 it->second = true; 1868 1869 // Create the thread, mark it as stopped. 1870 NativeThreadProtocolSP thread_sp (monitor->AddThread (static_cast<lldb::tid_t> (tid))); 1871 assert (thread_sp && "AddThread() returned a nullptr"); 1872 1873 // This will notify this is a new thread and tell the system it is stopped. 1874 monitor->NotifyThreadCreateStopped (tid); 1875 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGSTOP); 1876 monitor->SetCurrentThreadID (thread_sp->GetID ()); 1877 } 1878 1879 // move the loop forward 1880 ++it; 1881 } 1882 } 1883 1884 if (tids_to_attach.size() > 0) 1885 { 1886 monitor->m_pid = pid; 1887 // Let our process instance know the thread has stopped. 1888 monitor->SetState (StateType::eStateStopped); 1889 } 1890 else 1891 { 1892 args->m_error.SetErrorToGenericError(); 1893 args->m_error.SetErrorString("No such process."); 1894 } 1895 1896 FINISH: 1897 return args->m_error.Success(); 1898 } 1899 1900 Error 1901 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) 1902 { 1903 long ptrace_opts = 0; 1904 1905 // Have the child raise an event on exit. This is used to keep the child in 1906 // limbo until it is destroyed. 1907 ptrace_opts |= PTRACE_O_TRACEEXIT; 1908 1909 // Have the tracer trace threads which spawn in the inferior process. 1910 // TODO: if we want to support tracing the inferiors' child, add the 1911 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) 1912 ptrace_opts |= PTRACE_O_TRACECLONE; 1913 1914 // Have the tracer notify us before execve returns 1915 // (needed to disable legacy SIGTRAP generation) 1916 ptrace_opts |= PTRACE_O_TRACEEXEC; 1917 1918 Error error; 1919 PTRACE(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts, 0, error); 1920 return error; 1921 } 1922 1923 static ExitType convert_pid_status_to_exit_type (int status) 1924 { 1925 if (WIFEXITED (status)) 1926 return ExitType::eExitTypeExit; 1927 else if (WIFSIGNALED (status)) 1928 return ExitType::eExitTypeSignal; 1929 else if (WIFSTOPPED (status)) 1930 return ExitType::eExitTypeStop; 1931 else 1932 { 1933 // We don't know what this is. 1934 return ExitType::eExitTypeInvalid; 1935 } 1936 } 1937 1938 static int convert_pid_status_to_return_code (int status) 1939 { 1940 if (WIFEXITED (status)) 1941 return WEXITSTATUS (status); 1942 else if (WIFSIGNALED (status)) 1943 return WTERMSIG (status); 1944 else if (WIFSTOPPED (status)) 1945 return WSTOPSIG (status); 1946 else 1947 { 1948 // We don't know what this is. 1949 return ExitType::eExitTypeInvalid; 1950 } 1951 } 1952 1953 // Main process monitoring waitpid-loop handler. 1954 bool 1955 NativeProcessLinux::MonitorCallback(void *callback_baton, 1956 lldb::pid_t pid, 1957 bool exited, 1958 int signal, 1959 int status) 1960 { 1961 Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS)); 1962 1963 NativeProcessLinux *const process = static_cast<NativeProcessLinux*>(callback_baton); 1964 assert (process && "process is null"); 1965 if (!process) 1966 { 1967 if (log) 1968 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " callback_baton was null, can't determine process to use", __FUNCTION__, pid); 1969 return true; 1970 } 1971 1972 // Certain activities differ based on whether the pid is the tid of the main thread. 1973 const bool is_main_thread = (pid == process->GetID ()); 1974 1975 // Assume we keep monitoring by default. 1976 bool stop_monitoring = false; 1977 1978 // Handle when the thread exits. 1979 if (exited) 1980 { 1981 if (log) 1982 log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %" PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not"); 1983 1984 // This is a thread that exited. Ensure we're not tracking it anymore. 1985 const bool thread_found = process->StopTrackingThread (pid); 1986 1987 // Make sure the thread state coordinator knows about this. 1988 process->NotifyThreadDeath (pid); 1989 1990 if (is_main_thread) 1991 { 1992 // We only set the exit status and notify the delegate if we haven't already set the process 1993 // state to an exited state. We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8) 1994 // for the main thread. 1995 const bool already_notified = (process->GetState() == StateType::eStateExited) || (process->GetState () == StateType::eStateCrashed); 1996 if (!already_notified) 1997 { 1998 if (log) 1999 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (process->GetState ())); 2000 // The main thread exited. We're done monitoring. Report to delegate. 2001 process->SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); 2002 2003 // Notify delegate that our process has exited. 2004 process->SetState (StateType::eStateExited, true); 2005 } 2006 else 2007 { 2008 if (log) 2009 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); 2010 } 2011 return true; 2012 } 2013 else 2014 { 2015 // Do we want to report to the delegate in this case? I think not. If this was an orderly 2016 // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, 2017 // and we would have done an all-stop then. 2018 if (log) 2019 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); 2020 2021 // Not the main thread, we keep going. 2022 return false; 2023 } 2024 } 2025 2026 // Get details on the signal raised. 2027 siginfo_t info; 2028 const auto err = process->GetSignalInfo(pid, &info); 2029 if (err.Success()) 2030 { 2031 // We have retrieved the signal info. Dispatch appropriately. 2032 if (info.si_signo == SIGTRAP) 2033 process->MonitorSIGTRAP(&info, pid); 2034 else 2035 process->MonitorSignal(&info, pid, exited); 2036 2037 stop_monitoring = false; 2038 } 2039 else 2040 { 2041 if (err.GetError() == EINVAL) 2042 { 2043 // This is a group stop reception for this tid. 2044 if (log) 2045 log->Printf ("NativeThreadLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64, __FUNCTION__, process->GetID (), pid); 2046 process->NotifyThreadStop (pid); 2047 } 2048 else 2049 { 2050 // ptrace(GETSIGINFO) failed (but not due to group-stop). 2051 2052 // A return value of ESRCH means the thread/process is no longer on the system, 2053 // so it was killed somehow outside of our control. Either way, we can't do anything 2054 // with it anymore. 2055 2056 // We stop monitoring if it was the main thread. 2057 stop_monitoring = is_main_thread; 2058 2059 // Stop tracking the metadata for the thread since it's entirely off the system now. 2060 const bool thread_found = process->StopTrackingThread (pid); 2061 2062 // Make sure the thread state coordinator knows about this. 2063 process->NotifyThreadDeath (pid); 2064 2065 if (log) 2066 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)", 2067 __FUNCTION__, err.AsCString(), pid, signal, status, err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found"); 2068 2069 if (is_main_thread) 2070 { 2071 // Notify the delegate - our process is not available but appears to have been killed outside 2072 // our control. Is eStateExited the right exit state in this case? 2073 process->SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); 2074 process->SetState (StateType::eStateExited, true); 2075 } 2076 else 2077 { 2078 // This thread was pulled out from underneath us. Anything to do here? Do we want to do an all stop? 2079 if (log) 2080 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, process->GetID (), pid); 2081 } 2082 } 2083 } 2084 2085 return stop_monitoring; 2086 } 2087 2088 void 2089 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid) 2090 { 2091 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2092 const bool is_main_thread = (pid == GetID ()); 2093 2094 assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!"); 2095 if (!info) 2096 return; 2097 2098 Mutex::Locker locker (m_threads_mutex); 2099 2100 // See if we can find a thread for this signal. 2101 NativeThreadProtocolSP thread_sp = GetThreadByID (pid); 2102 if (!thread_sp) 2103 { 2104 if (log) 2105 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid); 2106 } 2107 2108 switch (info->si_code) 2109 { 2110 // TODO: these two cases are required if we want to support tracing of the inferiors' children. We'd need this to debug a monitor. 2111 // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 2112 // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 2113 2114 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): 2115 { 2116 lldb::tid_t tid = LLDB_INVALID_THREAD_ID; 2117 2118 // The main thread is stopped here. 2119 if (thread_sp) 2120 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGTRAP); 2121 NotifyThreadStop (pid); 2122 2123 unsigned long event_message = 0; 2124 if (GetEventMessage (pid, &event_message).Success()) 2125 { 2126 tid = static_cast<lldb::tid_t> (event_message); 2127 if (log) 2128 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event for tid %" PRIu64, __FUNCTION__, pid, tid); 2129 2130 // If we don't track the thread yet: create it, mark as stopped. 2131 // If we do track it, this is the wait we needed. Now resume the new thread. 2132 // In all cases, resume the current (i.e. main process) thread. 2133 bool created_now = false; 2134 NativeThreadProtocolSP new_thread_sp = GetOrCreateThread (tid, created_now); 2135 assert (new_thread_sp.get() && "failed to get or create the tracking data for newly created inferior thread"); 2136 2137 // If the thread was already tracked, it means the created thread already received its SI_USER notification of creation. 2138 if (!created_now) 2139 { 2140 // We can now resume the newly created thread since it is fully created. 2141 NotifyThreadCreateStopped (tid); 2142 m_coordinator_up->RequestThreadResume (tid, 2143 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2144 { 2145 reinterpret_cast<NativeThreadLinux*> (new_thread_sp.get ())->SetRunning (); 2146 return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER); 2147 }, 2148 CoordinatorErrorHandler); 2149 } 2150 else 2151 { 2152 // Mark the thread as currently launching. Need to wait for SIGTRAP clone on the main thread before 2153 // this thread is ready to go. 2154 reinterpret_cast<NativeThreadLinux*> (new_thread_sp.get ())->SetLaunching (); 2155 } 2156 } 2157 else 2158 { 2159 if (log) 2160 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, pid); 2161 } 2162 2163 // In all cases, we can resume the main thread here. 2164 m_coordinator_up->RequestThreadResume (pid, 2165 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2166 { 2167 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning (); 2168 return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER); 2169 }, 2170 CoordinatorErrorHandler); 2171 2172 break; 2173 } 2174 2175 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): 2176 { 2177 NativeThreadProtocolSP main_thread_sp; 2178 if (log) 2179 log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP); 2180 2181 // The thread state coordinator needs to reset due to the exec. 2182 m_coordinator_up->ResetForExec (); 2183 2184 // Remove all but the main thread here. Linux fork creates a new process which only copies the main thread. Mutexes are in undefined state. 2185 if (log) 2186 log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__); 2187 2188 for (auto thread_sp : m_threads) 2189 { 2190 const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID (); 2191 if (is_main_thread) 2192 { 2193 main_thread_sp = thread_sp; 2194 if (log) 2195 log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ()); 2196 } 2197 else 2198 { 2199 // Tell thread coordinator this thread is dead. 2200 if (log) 2201 log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ()); 2202 } 2203 } 2204 2205 m_threads.clear (); 2206 2207 if (main_thread_sp) 2208 { 2209 m_threads.push_back (main_thread_sp); 2210 SetCurrentThreadID (main_thread_sp->GetID ()); 2211 reinterpret_cast<NativeThreadLinux*>(main_thread_sp.get())->SetStoppedByExec (); 2212 } 2213 else 2214 { 2215 SetCurrentThreadID (LLDB_INVALID_THREAD_ID); 2216 if (log) 2217 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ()); 2218 } 2219 2220 // Tell coordinator about about the "new" (since exec) stopped main thread. 2221 const lldb::tid_t main_thread_tid = GetID (); 2222 NotifyThreadCreateStopped (main_thread_tid); 2223 2224 // NOTE: ideally these next statements would execute at the same time as the coordinator thread create was executed. 2225 // Consider a handler that can execute when that happens. 2226 // Let our delegate know we have just exec'd. 2227 NotifyDidExec (); 2228 2229 // If we have a main thread, indicate we are stopped. 2230 assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked"); 2231 2232 // Let the process know we're stopped. 2233 CallAfterRunningThreadsStop (pid, 2234 [=] (lldb::tid_t signaling_tid) 2235 { 2236 SetState (StateType::eStateStopped, true); 2237 }); 2238 2239 break; 2240 } 2241 2242 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): 2243 { 2244 // The inferior process or one of its threads is about to exit. 2245 2246 // This thread is currently stopped. It's not actually dead yet, just about to be. 2247 NotifyThreadStop (pid); 2248 2249 unsigned long data = 0; 2250 if (GetEventMessage(pid, &data).Fail()) 2251 data = -1; 2252 2253 if (log) 2254 { 2255 log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)", 2256 __FUNCTION__, 2257 data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false", 2258 pid, 2259 is_main_thread ? "is main thread" : "not main thread"); 2260 } 2261 2262 if (is_main_thread) 2263 { 2264 SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true); 2265 } 2266 2267 const int signo = static_cast<int> (data); 2268 m_coordinator_up->RequestThreadResume (pid, 2269 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2270 { 2271 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning (); 2272 return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo); 2273 }, 2274 CoordinatorErrorHandler); 2275 2276 break; 2277 } 2278 2279 case 0: 2280 case TRAP_TRACE: 2281 // We receive this on single stepping. 2282 if (log) 2283 log->Printf ("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)", __FUNCTION__, pid); 2284 2285 if (thread_sp) 2286 { 2287 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedByTrace (); 2288 } 2289 2290 // This thread is currently stopped. 2291 NotifyThreadStop (pid); 2292 2293 // Here we don't have to request the rest of the threads to stop or request a deferred stop. 2294 // This would have already happened at the time the Resume() with step operation was signaled. 2295 // At this point, we just need to say we stopped, and the deferred notifcation will fire off 2296 // once all running threads have checked in as stopped. 2297 SetCurrentThreadID (pid); 2298 // Tell the process we have a stop (from software breakpoint). 2299 CallAfterRunningThreadsStop (pid, 2300 [=] (lldb::tid_t signaling_tid) 2301 { 2302 SetState (StateType::eStateStopped, true); 2303 }); 2304 break; 2305 2306 case SI_KERNEL: 2307 case TRAP_BRKPT: 2308 if (log) 2309 log->Printf ("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64, __FUNCTION__, pid); 2310 2311 // This thread is currently stopped. 2312 NotifyThreadStop (pid); 2313 2314 // Mark the thread as stopped at breakpoint. 2315 if (thread_sp) 2316 { 2317 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedByBreakpoint (); 2318 Error error = FixupBreakpointPCAsNeeded (thread_sp); 2319 if (error.Fail ()) 2320 { 2321 if (log) 2322 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s", __FUNCTION__, pid, error.AsCString ()); 2323 } 2324 } 2325 else 2326 { 2327 if (log) 2328 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": warning, cannot process software breakpoint since no thread metadata", __FUNCTION__, pid); 2329 } 2330 2331 2332 // We need to tell all other running threads before we notify the delegate about this stop. 2333 CallAfterRunningThreadsStop (pid, 2334 [=](lldb::tid_t deferred_notification_tid) 2335 { 2336 SetCurrentThreadID (deferred_notification_tid); 2337 // Tell the process we have a stop (from software breakpoint). 2338 SetState (StateType::eStateStopped, true); 2339 }); 2340 break; 2341 2342 case TRAP_HWBKPT: 2343 if (log) 2344 log->Printf ("NativeProcessLinux::%s() received watchpoint event, pid = %" PRIu64, __FUNCTION__, pid); 2345 2346 // This thread is currently stopped. 2347 NotifyThreadStop (pid); 2348 2349 // Mark the thread as stopped at watchpoint. 2350 // The address is at (lldb::addr_t)info->si_addr if we need it. 2351 if (thread_sp) 2352 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedByWatchpoint (); 2353 else 2354 { 2355 if (log) 2356 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ": warning, cannot process hardware breakpoint since no thread metadata", __FUNCTION__, GetID (), pid); 2357 } 2358 2359 // We need to tell all other running threads before we notify the delegate about this stop. 2360 CallAfterRunningThreadsStop (pid, 2361 [=](lldb::tid_t deferred_notification_tid) 2362 { 2363 SetCurrentThreadID (deferred_notification_tid); 2364 // Tell the process we have a stop (from hardware breakpoint). 2365 SetState (StateType::eStateStopped, true); 2366 }); 2367 break; 2368 2369 case SIGTRAP: 2370 case (SIGTRAP | 0x80): 2371 if (log) 2372 log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), pid); 2373 2374 // This thread is currently stopped. 2375 NotifyThreadStop (pid); 2376 if (thread_sp) 2377 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGTRAP); 2378 2379 2380 // Ignore these signals until we know more about them. 2381 m_coordinator_up->RequestThreadResume (pid, 2382 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2383 { 2384 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning (); 2385 return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER); 2386 }, 2387 CoordinatorErrorHandler); 2388 break; 2389 2390 default: 2391 assert(false && "Unexpected SIGTRAP code!"); 2392 if (log) 2393 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%" PRIx64, __FUNCTION__, GetID (), pid, static_cast<uint64_t> (SIGTRAP | (PTRACE_EVENT_CLONE << 8))); 2394 break; 2395 2396 } 2397 } 2398 2399 void 2400 NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited) 2401 { 2402 assert (info && "null info"); 2403 if (!info) 2404 return; 2405 2406 const int signo = info->si_signo; 2407 const bool is_from_llgs = info->si_pid == getpid (); 2408 2409 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2410 2411 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 2412 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a 2413 // kill(2) or raise(3). Similarly for tgkill(2) on Linux. 2414 // 2415 // IOW, user generated signals never generate what we consider to be a 2416 // "crash". 2417 // 2418 // Similarly, ACK signals generated by this monitor. 2419 2420 Mutex::Locker locker (m_threads_mutex); 2421 2422 // See if we can find a thread for this signal. 2423 NativeThreadProtocolSP thread_sp = GetThreadByID (pid); 2424 if (!thread_sp) 2425 { 2426 if (log) 2427 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid); 2428 } 2429 2430 // Handle the signal. 2431 if (info->si_code == SI_TKILL || info->si_code == SI_USER) 2432 { 2433 if (log) 2434 log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")", 2435 __FUNCTION__, 2436 GetUnixSignals ().GetSignalAsCString (signo), 2437 signo, 2438 (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"), 2439 info->si_pid, 2440 is_from_llgs ? "from llgs" : "not from llgs", 2441 pid); 2442 } 2443 2444 // Check for new thread notification. 2445 if ((info->si_pid == 0) && (info->si_code == SI_USER)) 2446 { 2447 // A new thread creation is being signaled. This is one of two parts that come in 2448 // a non-deterministic order. pid is the thread id. 2449 if (log) 2450 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification", 2451 __FUNCTION__, GetID (), pid); 2452 2453 // Did we already create the thread? 2454 bool created_now = false; 2455 thread_sp = GetOrCreateThread (pid, created_now); 2456 assert (thread_sp.get() && "failed to get or create the tracking data for newly created inferior thread"); 2457 2458 // If the thread was already tracked, it means the main thread already received its SIGTRAP for the create. 2459 if (!created_now) 2460 { 2461 // We can now resume the newly created thread since it is fully created. 2462 NotifyThreadCreateStopped (pid); 2463 m_coordinator_up->RequestThreadResume (pid, 2464 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2465 { 2466 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning (); 2467 return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER); 2468 }, 2469 CoordinatorErrorHandler); 2470 } 2471 else 2472 { 2473 // Mark the thread as currently launching. Need to wait for SIGTRAP clone on the main thread before 2474 // this thread is ready to go. 2475 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetLaunching (); 2476 } 2477 2478 // Done handling. 2479 return; 2480 } 2481 2482 // Check for thread stop notification. 2483 if (is_from_llgs && (info->si_code == SI_TKILL) && (signo == SIGSTOP)) 2484 { 2485 // This is a tgkill()-based stop. 2486 if (thread_sp) 2487 { 2488 if (log) 2489 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped", 2490 __FUNCTION__, 2491 GetID (), 2492 pid); 2493 2494 // Check that we're not already marked with a stop reason. 2495 // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that 2496 // the kernel signaled us with the thread stopping which we handled and marked as stopped, 2497 // and that, without an intervening resume, we received another stop. It is more likely 2498 // that we are missing the marking of a run state somewhere if we find that the thread was 2499 // marked as stopped. 2500 NativeThreadLinux *const linux_thread_p = reinterpret_cast<NativeThreadLinux*> (thread_sp.get ()); 2501 assert (linux_thread_p && "linux_thread_p is null!"); 2502 2503 const StateType thread_state = linux_thread_p->GetState (); 2504 if (!StateIsStoppedState (thread_state, false)) 2505 { 2506 // An inferior thread just stopped, but was not the primary cause of the process stop. 2507 // Instead, something else (like a breakpoint or step) caused the stop. Mark the 2508 // stop signal as 0 to let lldb know this isn't the important stop. 2509 linux_thread_p->SetStoppedBySignal (0); 2510 SetCurrentThreadID (thread_sp->GetID ()); 2511 m_coordinator_up->NotifyThreadStop (thread_sp->GetID (), true, CoordinatorErrorHandler); 2512 } 2513 else 2514 { 2515 if (log) 2516 { 2517 // Retrieve the signal name if the thread was stopped by a signal. 2518 int stop_signo = 0; 2519 const bool stopped_by_signal = linux_thread_p->IsStopped (&stop_signo); 2520 const char *signal_name = stopped_by_signal ? GetUnixSignals ().GetSignalAsCString (stop_signo) : "<not stopped by signal>"; 2521 if (!signal_name) 2522 signal_name = "<no-signal-name>"; 2523 2524 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is", 2525 __FUNCTION__, 2526 GetID (), 2527 linux_thread_p->GetID (), 2528 StateAsCString (thread_state), 2529 stop_signo, 2530 signal_name); 2531 } 2532 // Tell the thread state coordinator about the stop. 2533 NotifyThreadStop (thread_sp->GetID ()); 2534 } 2535 } 2536 2537 // Done handling. 2538 return; 2539 } 2540 2541 if (log) 2542 log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo)); 2543 2544 // This thread is stopped. 2545 NotifyThreadStop (pid); 2546 2547 switch (signo) 2548 { 2549 case SIGSTOP: 2550 { 2551 if (log) 2552 { 2553 if (is_from_llgs) 2554 log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from llgs, most likely an interrupt", __FUNCTION__, GetID (), pid); 2555 else 2556 log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from outside of debugger", __FUNCTION__, GetID (), pid); 2557 } 2558 2559 // Resume this thread to get the group-stop mechanism to fire off the true group stops. 2560 // This thread will get stopped again as part of the group-stop completion. 2561 m_coordinator_up->RequestThreadResume (pid, 2562 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2563 { 2564 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning (); 2565 // Pass this signal number on to the inferior to handle. 2566 return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo); 2567 }, 2568 CoordinatorErrorHandler); 2569 } 2570 break; 2571 case SIGSEGV: 2572 case SIGILL: 2573 case SIGFPE: 2574 case SIGBUS: 2575 if (thread_sp) 2576 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetCrashedWithException (*info); 2577 break; 2578 default: 2579 // This is just a pre-signal-delivery notification of the incoming signal. 2580 if (thread_sp) 2581 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (signo); 2582 2583 break; 2584 } 2585 2586 // Send a stop to the debugger after we get all other threads to stop. 2587 CallAfterRunningThreadsStop (pid, 2588 [=] (lldb::tid_t signaling_tid) 2589 { 2590 SetCurrentThreadID (signaling_tid); 2591 SetState (StateType::eStateStopped, true); 2592 }); 2593 } 2594 2595 Error 2596 NativeProcessLinux::Resume (const ResumeActionList &resume_actions) 2597 { 2598 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD)); 2599 if (log) 2600 log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ()); 2601 2602 lldb::tid_t deferred_signal_tid = LLDB_INVALID_THREAD_ID; 2603 lldb::tid_t deferred_signal_skip_tid = LLDB_INVALID_THREAD_ID; 2604 int deferred_signo = 0; 2605 NativeThreadProtocolSP deferred_signal_thread_sp; 2606 bool stepping = false; 2607 2608 Mutex::Locker locker (m_threads_mutex); 2609 2610 for (auto thread_sp : m_threads) 2611 { 2612 assert (thread_sp && "thread list should not contain NULL threads"); 2613 2614 const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true); 2615 2616 if (action == nullptr) 2617 { 2618 if (log) 2619 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64, 2620 __FUNCTION__, GetID (), thread_sp->GetID ()); 2621 continue; 2622 } 2623 2624 if (log) 2625 { 2626 log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64, 2627 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); 2628 } 2629 2630 switch (action->state) 2631 { 2632 case eStateRunning: 2633 { 2634 // Run the thread, possibly feeding it the signal. 2635 const int signo = action->signal; 2636 m_coordinator_up->RequestThreadResumeAsNeeded (thread_sp->GetID (), 2637 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2638 { 2639 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning (); 2640 // Pass this signal number on to the inferior to handle. 2641 const auto resume_result = Resume (tid_to_resume, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER); 2642 if (resume_result.Success()) 2643 SetState(eStateRunning, true); 2644 return resume_result; 2645 }, 2646 CoordinatorErrorHandler); 2647 break; 2648 } 2649 2650 case eStateStepping: 2651 { 2652 // Request the step. 2653 const int signo = action->signal; 2654 m_coordinator_up->RequestThreadResume (thread_sp->GetID (), 2655 [=](lldb::tid_t tid_to_step, bool supress_signal) 2656 { 2657 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStepping (); 2658 const auto step_result = SingleStep (tid_to_step,(signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER); 2659 assert (step_result.Success() && "SingleStep() failed"); 2660 if (step_result.Success()) 2661 SetState(eStateStepping, true); 2662 return step_result; 2663 }, 2664 CoordinatorErrorHandler); 2665 stepping = true; 2666 break; 2667 } 2668 2669 case eStateSuspended: 2670 case eStateStopped: 2671 // if we haven't chosen a deferred signal tid yet, use this one. 2672 if (deferred_signal_tid == LLDB_INVALID_THREAD_ID) 2673 { 2674 deferred_signal_tid = thread_sp->GetID (); 2675 deferred_signal_thread_sp = thread_sp; 2676 deferred_signo = SIGSTOP; 2677 } 2678 break; 2679 2680 default: 2681 return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64, 2682 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); 2683 } 2684 } 2685 2686 // If we had any thread stopping, then do a deferred notification of the chosen stop thread id and signal 2687 // after all other running threads have stopped. 2688 // If there is a stepping thread involved we'll be eventually stopped by SIGTRAP trace signal. 2689 if (deferred_signal_tid != LLDB_INVALID_THREAD_ID && !stepping) 2690 { 2691 CallAfterRunningThreadsStopWithSkipTID (deferred_signal_tid, 2692 deferred_signal_skip_tid, 2693 [=](lldb::tid_t deferred_notification_tid) 2694 { 2695 // Set the signal thread to the current thread. 2696 SetCurrentThreadID (deferred_notification_tid); 2697 2698 // Set the thread state as stopped by the deferred signo. 2699 reinterpret_cast<NativeThreadLinux*> (deferred_signal_thread_sp.get ())->SetStoppedBySignal (deferred_signo); 2700 2701 // Tell the process delegate that the process is in a stopped state. 2702 SetState (StateType::eStateStopped, true); 2703 }); 2704 } 2705 2706 return Error(); 2707 } 2708 2709 Error 2710 NativeProcessLinux::Halt () 2711 { 2712 Error error; 2713 2714 if (kill (GetID (), SIGSTOP) != 0) 2715 error.SetErrorToErrno (); 2716 2717 return error; 2718 } 2719 2720 Error 2721 NativeProcessLinux::Detach () 2722 { 2723 Error error; 2724 2725 // Tell ptrace to detach from the process. 2726 if (GetID () != LLDB_INVALID_PROCESS_ID) 2727 error = Detach (GetID ()); 2728 2729 // Stop monitoring the inferior. 2730 StopMonitor (); 2731 2732 // No error. 2733 return error; 2734 } 2735 2736 Error 2737 NativeProcessLinux::Signal (int signo) 2738 { 2739 Error error; 2740 2741 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2742 if (log) 2743 log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64, 2744 __FUNCTION__, signo, GetUnixSignals ().GetSignalAsCString (signo), GetID ()); 2745 2746 if (kill(GetID(), signo)) 2747 error.SetErrorToErrno(); 2748 2749 return error; 2750 } 2751 2752 Error 2753 NativeProcessLinux::Interrupt () 2754 { 2755 // Pick a running thread (or if none, a not-dead stopped thread) as 2756 // the chosen thread that will be the stop-reason thread. 2757 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2758 2759 NativeThreadProtocolSP running_thread_sp; 2760 NativeThreadProtocolSP stopped_thread_sp; 2761 2762 if (log) 2763 log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__); 2764 2765 Mutex::Locker locker (m_threads_mutex); 2766 2767 for (auto thread_sp : m_threads) 2768 { 2769 // The thread shouldn't be null but lets just cover that here. 2770 if (!thread_sp) 2771 continue; 2772 2773 // If we have a running or stepping thread, we'll call that the 2774 // target of the interrupt. 2775 const auto thread_state = thread_sp->GetState (); 2776 if (thread_state == eStateRunning || 2777 thread_state == eStateStepping) 2778 { 2779 running_thread_sp = thread_sp; 2780 break; 2781 } 2782 else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true)) 2783 { 2784 // Remember the first non-dead stopped thread. We'll use that as a backup if there are no running threads. 2785 stopped_thread_sp = thread_sp; 2786 } 2787 } 2788 2789 if (!running_thread_sp && !stopped_thread_sp) 2790 { 2791 Error error("found no running/stepping or live stopped threads as target for interrupt"); 2792 if (log) 2793 log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ()); 2794 2795 return error; 2796 } 2797 2798 NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp; 2799 2800 if (log) 2801 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target", 2802 __FUNCTION__, 2803 GetID (), 2804 running_thread_sp ? "running" : "stopped", 2805 deferred_signal_thread_sp->GetID ()); 2806 2807 CallAfterRunningThreadsStop (deferred_signal_thread_sp->GetID (), 2808 [=](lldb::tid_t deferred_notification_tid) 2809 { 2810 // Set the signal thread to the current thread. 2811 SetCurrentThreadID (deferred_notification_tid); 2812 2813 // Set the thread state as stopped by the deferred signo. 2814 reinterpret_cast<NativeThreadLinux*> (deferred_signal_thread_sp.get ())->SetStoppedBySignal (SIGSTOP); 2815 2816 // Tell the process delegate that the process is in a stopped state. 2817 SetState (StateType::eStateStopped, true); 2818 }); 2819 return Error(); 2820 } 2821 2822 Error 2823 NativeProcessLinux::Kill () 2824 { 2825 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2826 if (log) 2827 log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ()); 2828 2829 Error error; 2830 2831 switch (m_state) 2832 { 2833 case StateType::eStateInvalid: 2834 case StateType::eStateExited: 2835 case StateType::eStateCrashed: 2836 case StateType::eStateDetached: 2837 case StateType::eStateUnloaded: 2838 // Nothing to do - the process is already dead. 2839 if (log) 2840 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state)); 2841 return error; 2842 2843 case StateType::eStateConnected: 2844 case StateType::eStateAttaching: 2845 case StateType::eStateLaunching: 2846 case StateType::eStateStopped: 2847 case StateType::eStateRunning: 2848 case StateType::eStateStepping: 2849 case StateType::eStateSuspended: 2850 // We can try to kill a process in these states. 2851 break; 2852 } 2853 2854 if (kill (GetID (), SIGKILL) != 0) 2855 { 2856 error.SetErrorToErrno (); 2857 return error; 2858 } 2859 2860 return error; 2861 } 2862 2863 static Error 2864 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info) 2865 { 2866 memory_region_info.Clear(); 2867 2868 StringExtractor line_extractor (maps_line.c_str ()); 2869 2870 // Format: {address_start_hex}-{address_end_hex} perms offset dev inode pathname 2871 // perms: rwxp (letter is present if set, '-' if not, final character is p=private, s=shared). 2872 2873 // Parse out the starting address 2874 lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0); 2875 2876 // Parse out hyphen separating start and end address from range. 2877 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-')) 2878 return Error ("malformed /proc/{pid}/maps entry, missing dash between address range"); 2879 2880 // Parse out the ending address 2881 lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address); 2882 2883 // Parse out the space after the address. 2884 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' ')) 2885 return Error ("malformed /proc/{pid}/maps entry, missing space after range"); 2886 2887 // Save the range. 2888 memory_region_info.GetRange ().SetRangeBase (start_address); 2889 memory_region_info.GetRange ().SetRangeEnd (end_address); 2890 2891 // Parse out each permission entry. 2892 if (line_extractor.GetBytesLeft () < 4) 2893 return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions"); 2894 2895 // Handle read permission. 2896 const char read_perm_char = line_extractor.GetChar (); 2897 if (read_perm_char == 'r') 2898 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes); 2899 else 2900 { 2901 assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" ); 2902 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 2903 } 2904 2905 // Handle write permission. 2906 const char write_perm_char = line_extractor.GetChar (); 2907 if (write_perm_char == 'w') 2908 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes); 2909 else 2910 { 2911 assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" ); 2912 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 2913 } 2914 2915 // Handle execute permission. 2916 const char exec_perm_char = line_extractor.GetChar (); 2917 if (exec_perm_char == 'x') 2918 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes); 2919 else 2920 { 2921 assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" ); 2922 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 2923 } 2924 2925 return Error (); 2926 } 2927 2928 Error 2929 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info) 2930 { 2931 // FIXME review that the final memory region returned extends to the end of the virtual address space, 2932 // with no perms if it is not mapped. 2933 2934 // Use an approach that reads memory regions from /proc/{pid}/maps. 2935 // Assume proc maps entries are in ascending order. 2936 // FIXME assert if we find differently. 2937 Mutex::Locker locker (m_mem_region_cache_mutex); 2938 2939 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2940 Error error; 2941 2942 if (m_supports_mem_region == LazyBool::eLazyBoolNo) 2943 { 2944 // We're done. 2945 error.SetErrorString ("unsupported"); 2946 return error; 2947 } 2948 2949 // If our cache is empty, pull the latest. There should always be at least one memory region 2950 // if memory region handling is supported. 2951 if (m_mem_region_cache.empty ()) 2952 { 2953 error = ProcFileReader::ProcessLineByLine (GetID (), "maps", 2954 [&] (const std::string &line) -> bool 2955 { 2956 MemoryRegionInfo info; 2957 const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info); 2958 if (parse_error.Success ()) 2959 { 2960 m_mem_region_cache.push_back (info); 2961 return true; 2962 } 2963 else 2964 { 2965 if (log) 2966 log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ()); 2967 return false; 2968 } 2969 }); 2970 2971 // If we had an error, we'll mark unsupported. 2972 if (error.Fail ()) 2973 { 2974 m_supports_mem_region = LazyBool::eLazyBoolNo; 2975 return error; 2976 } 2977 else if (m_mem_region_cache.empty ()) 2978 { 2979 // No entries after attempting to read them. This shouldn't happen if /proc/{pid}/maps 2980 // is supported. Assume we don't support map entries via procfs. 2981 if (log) 2982 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__); 2983 m_supports_mem_region = LazyBool::eLazyBoolNo; 2984 error.SetErrorString ("not supported"); 2985 return error; 2986 } 2987 2988 if (log) 2989 log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ()); 2990 2991 // We support memory retrieval, remember that. 2992 m_supports_mem_region = LazyBool::eLazyBoolYes; 2993 } 2994 else 2995 { 2996 if (log) 2997 log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ())); 2998 } 2999 3000 lldb::addr_t prev_base_address = 0; 3001 3002 // FIXME start by finding the last region that is <= target address using binary search. Data is sorted. 3003 // There can be a ton of regions on pthreads apps with lots of threads. 3004 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it) 3005 { 3006 MemoryRegionInfo &proc_entry_info = *it; 3007 3008 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 3009 assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected"); 3010 prev_base_address = proc_entry_info.GetRange ().GetRangeBase (); 3011 3012 // If the target address comes before this entry, indicate distance to next region. 3013 if (load_addr < proc_entry_info.GetRange ().GetRangeBase ()) 3014 { 3015 range_info.GetRange ().SetRangeBase (load_addr); 3016 range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr); 3017 range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 3018 range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 3019 range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 3020 3021 return error; 3022 } 3023 else if (proc_entry_info.GetRange ().Contains (load_addr)) 3024 { 3025 // The target address is within the memory region we're processing here. 3026 range_info = proc_entry_info; 3027 return error; 3028 } 3029 3030 // The target memory address comes somewhere after the region we just parsed. 3031 } 3032 3033 // If we made it here, we didn't find an entry that contained the given address. 3034 error.SetErrorString ("address comes after final region"); 3035 3036 if (log) 3037 log->Printf ("NativeProcessLinux::%s failed to find map entry for address 0x%" PRIx64 ": %s", __FUNCTION__, load_addr, error.AsCString ()); 3038 3039 return error; 3040 } 3041 3042 void 3043 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId) 3044 { 3045 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3046 if (log) 3047 log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId); 3048 3049 { 3050 Mutex::Locker locker (m_mem_region_cache_mutex); 3051 if (log) 3052 log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ())); 3053 m_mem_region_cache.clear (); 3054 } 3055 } 3056 3057 Error 3058 NativeProcessLinux::AllocateMemory ( 3059 lldb::addr_t size, 3060 uint32_t permissions, 3061 lldb::addr_t &addr) 3062 { 3063 // FIXME implementing this requires the equivalent of 3064 // InferiorCallPOSIX::InferiorCallMmap, which depends on 3065 // functional ThreadPlans working with Native*Protocol. 3066 #if 1 3067 return Error ("not implemented yet"); 3068 #else 3069 addr = LLDB_INVALID_ADDRESS; 3070 3071 unsigned prot = 0; 3072 if (permissions & lldb::ePermissionsReadable) 3073 prot |= eMmapProtRead; 3074 if (permissions & lldb::ePermissionsWritable) 3075 prot |= eMmapProtWrite; 3076 if (permissions & lldb::ePermissionsExecutable) 3077 prot |= eMmapProtExec; 3078 3079 // TODO implement this directly in NativeProcessLinux 3080 // (and lift to NativeProcessPOSIX if/when that class is 3081 // refactored out). 3082 if (InferiorCallMmap(this, addr, 0, size, prot, 3083 eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { 3084 m_addr_to_mmap_size[addr] = size; 3085 return Error (); 3086 } else { 3087 addr = LLDB_INVALID_ADDRESS; 3088 return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions)); 3089 } 3090 #endif 3091 } 3092 3093 Error 3094 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr) 3095 { 3096 // FIXME see comments in AllocateMemory - required lower-level 3097 // bits not in place yet (ThreadPlans) 3098 return Error ("not implemented"); 3099 } 3100 3101 lldb::addr_t 3102 NativeProcessLinux::GetSharedLibraryInfoAddress () 3103 { 3104 #if 1 3105 // punt on this for now 3106 return LLDB_INVALID_ADDRESS; 3107 #else 3108 // Return the image info address for the exe module 3109 #if 1 3110 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3111 3112 ModuleSP module_sp; 3113 Error error = GetExeModuleSP (module_sp); 3114 if (error.Fail ()) 3115 { 3116 if (log) 3117 log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ()); 3118 return LLDB_INVALID_ADDRESS; 3119 } 3120 3121 if (module_sp == nullptr) 3122 { 3123 if (log) 3124 log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__); 3125 return LLDB_INVALID_ADDRESS; 3126 } 3127 3128 ObjectFileSP object_file_sp = module_sp->GetObjectFile (); 3129 if (object_file_sp == nullptr) 3130 { 3131 if (log) 3132 log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__); 3133 return LLDB_INVALID_ADDRESS; 3134 } 3135 3136 return obj_file_sp->GetImageInfoAddress(); 3137 #else 3138 Target *target = &GetTarget(); 3139 ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile(); 3140 Address addr = obj_file->GetImageInfoAddress(target); 3141 3142 if (addr.IsValid()) 3143 return addr.GetLoadAddress(target); 3144 return LLDB_INVALID_ADDRESS; 3145 #endif 3146 #endif // punt on this for now 3147 } 3148 3149 size_t 3150 NativeProcessLinux::UpdateThreads () 3151 { 3152 // The NativeProcessLinux monitoring threads are always up to date 3153 // with respect to thread state and they keep the thread list 3154 // populated properly. All this method needs to do is return the 3155 // thread count. 3156 Mutex::Locker locker (m_threads_mutex); 3157 return m_threads.size (); 3158 } 3159 3160 bool 3161 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const 3162 { 3163 arch = m_arch; 3164 return true; 3165 } 3166 3167 Error 3168 NativeProcessLinux::GetSoftwareBreakpointSize (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size) 3169 { 3170 // FIXME put this behind a breakpoint protocol class that can be 3171 // set per architecture. Need ARM, MIPS support here. 3172 static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 }; 3173 static const uint8_t g_i386_opcode [] = { 0xCC }; 3174 3175 switch (m_arch.GetMachine ()) 3176 { 3177 case llvm::Triple::aarch64: 3178 actual_opcode_size = static_cast<uint32_t> (sizeof(g_aarch64_opcode)); 3179 return Error (); 3180 3181 case llvm::Triple::x86: 3182 case llvm::Triple::x86_64: 3183 actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode)); 3184 return Error (); 3185 3186 default: 3187 assert(false && "CPU type not supported!"); 3188 return Error ("CPU type not supported"); 3189 } 3190 } 3191 3192 Error 3193 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware) 3194 { 3195 if (hardware) 3196 return Error ("NativeProcessLinux does not support hardware breakpoints"); 3197 else 3198 return SetSoftwareBreakpoint (addr, size); 3199 } 3200 3201 Error 3202 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint, size_t &actual_opcode_size, const uint8_t *&trap_opcode_bytes) 3203 { 3204 // FIXME put this behind a breakpoint protocol class that can be 3205 // set per architecture. Need ARM, MIPS support here. 3206 static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 }; 3207 static const uint8_t g_i386_opcode [] = { 0xCC }; 3208 3209 switch (m_arch.GetMachine ()) 3210 { 3211 case llvm::Triple::aarch64: 3212 trap_opcode_bytes = g_aarch64_opcode; 3213 actual_opcode_size = sizeof(g_aarch64_opcode); 3214 return Error (); 3215 3216 case llvm::Triple::x86: 3217 case llvm::Triple::x86_64: 3218 trap_opcode_bytes = g_i386_opcode; 3219 actual_opcode_size = sizeof(g_i386_opcode); 3220 return Error (); 3221 3222 default: 3223 assert(false && "CPU type not supported!"); 3224 return Error ("CPU type not supported"); 3225 } 3226 } 3227 3228 #if 0 3229 ProcessMessage::CrashReason 3230 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info) 3231 { 3232 ProcessMessage::CrashReason reason; 3233 assert(info->si_signo == SIGSEGV); 3234 3235 reason = ProcessMessage::eInvalidCrashReason; 3236 3237 switch (info->si_code) 3238 { 3239 default: 3240 assert(false && "unexpected si_code for SIGSEGV"); 3241 break; 3242 case SI_KERNEL: 3243 // Linux will occasionally send spurious SI_KERNEL codes. 3244 // (this is poorly documented in sigaction) 3245 // One way to get this is via unaligned SIMD loads. 3246 reason = ProcessMessage::eInvalidAddress; // for lack of anything better 3247 break; 3248 case SEGV_MAPERR: 3249 reason = ProcessMessage::eInvalidAddress; 3250 break; 3251 case SEGV_ACCERR: 3252 reason = ProcessMessage::ePrivilegedAddress; 3253 break; 3254 } 3255 3256 return reason; 3257 } 3258 #endif 3259 3260 3261 #if 0 3262 ProcessMessage::CrashReason 3263 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info) 3264 { 3265 ProcessMessage::CrashReason reason; 3266 assert(info->si_signo == SIGILL); 3267 3268 reason = ProcessMessage::eInvalidCrashReason; 3269 3270 switch (info->si_code) 3271 { 3272 default: 3273 assert(false && "unexpected si_code for SIGILL"); 3274 break; 3275 case ILL_ILLOPC: 3276 reason = ProcessMessage::eIllegalOpcode; 3277 break; 3278 case ILL_ILLOPN: 3279 reason = ProcessMessage::eIllegalOperand; 3280 break; 3281 case ILL_ILLADR: 3282 reason = ProcessMessage::eIllegalAddressingMode; 3283 break; 3284 case ILL_ILLTRP: 3285 reason = ProcessMessage::eIllegalTrap; 3286 break; 3287 case ILL_PRVOPC: 3288 reason = ProcessMessage::ePrivilegedOpcode; 3289 break; 3290 case ILL_PRVREG: 3291 reason = ProcessMessage::ePrivilegedRegister; 3292 break; 3293 case ILL_COPROC: 3294 reason = ProcessMessage::eCoprocessorError; 3295 break; 3296 case ILL_BADSTK: 3297 reason = ProcessMessage::eInternalStackError; 3298 break; 3299 } 3300 3301 return reason; 3302 } 3303 #endif 3304 3305 #if 0 3306 ProcessMessage::CrashReason 3307 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info) 3308 { 3309 ProcessMessage::CrashReason reason; 3310 assert(info->si_signo == SIGFPE); 3311 3312 reason = ProcessMessage::eInvalidCrashReason; 3313 3314 switch (info->si_code) 3315 { 3316 default: 3317 assert(false && "unexpected si_code for SIGFPE"); 3318 break; 3319 case FPE_INTDIV: 3320 reason = ProcessMessage::eIntegerDivideByZero; 3321 break; 3322 case FPE_INTOVF: 3323 reason = ProcessMessage::eIntegerOverflow; 3324 break; 3325 case FPE_FLTDIV: 3326 reason = ProcessMessage::eFloatDivideByZero; 3327 break; 3328 case FPE_FLTOVF: 3329 reason = ProcessMessage::eFloatOverflow; 3330 break; 3331 case FPE_FLTUND: 3332 reason = ProcessMessage::eFloatUnderflow; 3333 break; 3334 case FPE_FLTRES: 3335 reason = ProcessMessage::eFloatInexactResult; 3336 break; 3337 case FPE_FLTINV: 3338 reason = ProcessMessage::eFloatInvalidOperation; 3339 break; 3340 case FPE_FLTSUB: 3341 reason = ProcessMessage::eFloatSubscriptRange; 3342 break; 3343 } 3344 3345 return reason; 3346 } 3347 #endif 3348 3349 #if 0 3350 ProcessMessage::CrashReason 3351 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info) 3352 { 3353 ProcessMessage::CrashReason reason; 3354 assert(info->si_signo == SIGBUS); 3355 3356 reason = ProcessMessage::eInvalidCrashReason; 3357 3358 switch (info->si_code) 3359 { 3360 default: 3361 assert(false && "unexpected si_code for SIGBUS"); 3362 break; 3363 case BUS_ADRALN: 3364 reason = ProcessMessage::eIllegalAlignment; 3365 break; 3366 case BUS_ADRERR: 3367 reason = ProcessMessage::eIllegalAddress; 3368 break; 3369 case BUS_OBJERR: 3370 reason = ProcessMessage::eHardwareError; 3371 break; 3372 } 3373 3374 return reason; 3375 } 3376 #endif 3377 3378 void 3379 NativeProcessLinux::ServeOperation(OperationArgs *args) 3380 { 3381 NativeProcessLinux *monitor = args->m_monitor; 3382 3383 // We are finised with the arguments and are ready to go. Sync with the 3384 // parent thread and start serving operations on the inferior. 3385 sem_post(&args->m_semaphore); 3386 3387 for(;;) 3388 { 3389 // wait for next pending operation 3390 if (sem_wait(&monitor->m_operation_pending)) 3391 { 3392 if (errno == EINTR) 3393 continue; 3394 assert(false && "Unexpected errno from sem_wait"); 3395 } 3396 3397 // EXIT_OPERATION used to stop the operation thread because Cancel() isn't supported on 3398 // android. We don't have to send a post to the m_operation_done semaphore because in this 3399 // case the synchronization is achieved by a Join() call 3400 if (monitor->m_operation == EXIT_OPERATION) 3401 break; 3402 3403 reinterpret_cast<Operation*>(monitor->m_operation)->Execute(monitor); 3404 3405 // notify calling thread that operation is complete 3406 sem_post(&monitor->m_operation_done); 3407 } 3408 } 3409 3410 void 3411 NativeProcessLinux::DoOperation(void *op) 3412 { 3413 Mutex::Locker lock(m_operation_mutex); 3414 3415 m_operation = op; 3416 3417 // notify operation thread that an operation is ready to be processed 3418 sem_post(&m_operation_pending); 3419 3420 // Don't wait for the operation to complete in case of an exit operation. The operation thread 3421 // will exit without posting to the semaphore 3422 if (m_operation == EXIT_OPERATION) 3423 return; 3424 3425 // wait for operation to complete 3426 while (sem_wait(&m_operation_done)) 3427 { 3428 if (errno == EINTR) 3429 continue; 3430 assert(false && "Unexpected errno from sem_wait"); 3431 } 3432 } 3433 3434 Error 3435 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, lldb::addr_t size, lldb::addr_t &bytes_read) 3436 { 3437 ReadOperation op(addr, buf, size, bytes_read); 3438 DoOperation(&op); 3439 return op.GetError (); 3440 } 3441 3442 Error 3443 NativeProcessLinux::WriteMemory (lldb::addr_t addr, const void *buf, lldb::addr_t size, lldb::addr_t &bytes_written) 3444 { 3445 WriteOperation op(addr, buf, size, bytes_written); 3446 DoOperation(&op); 3447 return op.GetError (); 3448 } 3449 3450 Error 3451 NativeProcessLinux::ReadRegisterValue(lldb::tid_t tid, uint32_t offset, const char* reg_name, 3452 uint32_t size, RegisterValue &value) 3453 { 3454 ReadRegOperation op(tid, offset, reg_name, value); 3455 DoOperation(&op); 3456 return op.GetError(); 3457 } 3458 3459 Error 3460 NativeProcessLinux::WriteRegisterValue(lldb::tid_t tid, unsigned offset, 3461 const char* reg_name, const RegisterValue &value) 3462 { 3463 WriteRegOperation op(tid, offset, reg_name, value); 3464 DoOperation(&op); 3465 return op.GetError(); 3466 } 3467 3468 Error 3469 NativeProcessLinux::ReadGPR(lldb::tid_t tid, void *buf, size_t buf_size) 3470 { 3471 ReadGPROperation op(tid, buf, buf_size); 3472 DoOperation(&op); 3473 return op.GetError(); 3474 } 3475 3476 Error 3477 NativeProcessLinux::ReadFPR(lldb::tid_t tid, void *buf, size_t buf_size) 3478 { 3479 ReadFPROperation op(tid, buf, buf_size); 3480 DoOperation(&op); 3481 return op.GetError(); 3482 } 3483 3484 Error 3485 NativeProcessLinux::ReadRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 3486 { 3487 ReadRegisterSetOperation op(tid, buf, buf_size, regset); 3488 DoOperation(&op); 3489 return op.GetError(); 3490 } 3491 3492 Error 3493 NativeProcessLinux::WriteGPR(lldb::tid_t tid, void *buf, size_t buf_size) 3494 { 3495 WriteGPROperation op(tid, buf, buf_size); 3496 DoOperation(&op); 3497 return op.GetError(); 3498 } 3499 3500 Error 3501 NativeProcessLinux::WriteFPR(lldb::tid_t tid, void *buf, size_t buf_size) 3502 { 3503 WriteFPROperation op(tid, buf, buf_size); 3504 DoOperation(&op); 3505 return op.GetError(); 3506 } 3507 3508 Error 3509 NativeProcessLinux::WriteRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 3510 { 3511 WriteRegisterSetOperation op(tid, buf, buf_size, regset); 3512 DoOperation(&op); 3513 return op.GetError(); 3514 } 3515 3516 Error 3517 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo) 3518 { 3519 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3520 3521 if (log) 3522 log->Printf ("NativeProcessLinux::%s() resuming thread = %" PRIu64 " with signal %s", __FUNCTION__, tid, 3523 GetUnixSignals().GetSignalAsCString (signo)); 3524 ResumeOperation op (tid, signo); 3525 DoOperation (&op); 3526 if (log) 3527 log->Printf ("NativeProcessLinux::%s() resuming thread = %" PRIu64 " result = %s", __FUNCTION__, tid, op.GetError().Success() ? "true" : "false"); 3528 return op.GetError(); 3529 } 3530 3531 Error 3532 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo) 3533 { 3534 SingleStepOperation op(tid, signo); 3535 DoOperation(&op); 3536 return op.GetError(); 3537 } 3538 3539 Error 3540 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) 3541 { 3542 SiginfoOperation op(tid, siginfo); 3543 DoOperation(&op); 3544 return op.GetError(); 3545 } 3546 3547 Error 3548 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message) 3549 { 3550 EventMessageOperation op(tid, message); 3551 DoOperation(&op); 3552 return op.GetError(); 3553 } 3554 3555 lldb_private::Error 3556 NativeProcessLinux::Detach(lldb::tid_t tid) 3557 { 3558 if (tid == LLDB_INVALID_THREAD_ID) 3559 return Error(); 3560 3561 DetachOperation op(tid); 3562 DoOperation(&op); 3563 return op.GetError(); 3564 } 3565 3566 bool 3567 NativeProcessLinux::DupDescriptor(const char *path, int fd, int flags) 3568 { 3569 int target_fd = open(path, flags, 0666); 3570 3571 if (target_fd == -1) 3572 return false; 3573 3574 if (dup2(target_fd, fd) == -1) 3575 return false; 3576 3577 return (close(target_fd) == -1) ? false : true; 3578 } 3579 3580 void 3581 NativeProcessLinux::StopMonitoringChildProcess() 3582 { 3583 if (m_monitor_thread.IsJoinable()) 3584 { 3585 m_monitor_thread.Cancel(); 3586 m_monitor_thread.Join(nullptr); 3587 } 3588 } 3589 3590 void 3591 NativeProcessLinux::StopMonitor() 3592 { 3593 StopMonitoringChildProcess(); 3594 StopCoordinatorThread (); 3595 StopOpThread(); 3596 sem_destroy(&m_operation_pending); 3597 sem_destroy(&m_operation_done); 3598 3599 // TODO: validate whether this still holds, fix up comment. 3600 // Note: ProcessPOSIX passes the m_terminal_fd file descriptor to 3601 // Process::SetSTDIOFileDescriptor, which in turn transfers ownership of 3602 // the descriptor to a ConnectionFileDescriptor object. Consequently 3603 // even though still has the file descriptor, we shouldn't close it here. 3604 } 3605 3606 void 3607 NativeProcessLinux::StopOpThread() 3608 { 3609 if (!m_operation_thread.IsJoinable()) 3610 return; 3611 3612 DoOperation(EXIT_OPERATION); 3613 m_operation_thread.Join(nullptr); 3614 } 3615 3616 Error 3617 NativeProcessLinux::StartCoordinatorThread () 3618 { 3619 Error error; 3620 static const char *g_thread_name = "lldb.process.linux.ts_coordinator"; 3621 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3622 3623 // Skip if thread is already running 3624 if (m_coordinator_thread.IsJoinable()) 3625 { 3626 error.SetErrorString ("ThreadStateCoordinator's run loop is already running"); 3627 if (log) 3628 log->Printf ("NativeProcessLinux::%s %s", __FUNCTION__, error.AsCString ()); 3629 return error; 3630 } 3631 3632 // Enable verbose logging if lldb thread logging is enabled. 3633 m_coordinator_up->LogEnableEventProcessing (log != nullptr); 3634 3635 if (log) 3636 log->Printf ("NativeProcessLinux::%s launching ThreadStateCoordinator thread for pid %" PRIu64, __FUNCTION__, GetID ()); 3637 m_coordinator_thread = ThreadLauncher::LaunchThread(g_thread_name, CoordinatorThread, this, &error); 3638 return error; 3639 } 3640 3641 void * 3642 NativeProcessLinux::CoordinatorThread (void *arg) 3643 { 3644 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3645 3646 NativeProcessLinux *const process = static_cast<NativeProcessLinux*> (arg); 3647 assert (process && "null process passed to CoordinatorThread"); 3648 if (!process) 3649 { 3650 if (log) 3651 log->Printf ("NativeProcessLinux::%s null process, exiting ThreadStateCoordinator processing loop", __FUNCTION__); 3652 return nullptr; 3653 } 3654 3655 // Run the thread state coordinator loop until it is done. This call uses 3656 // efficient waiting for an event to be ready. 3657 while (process->m_coordinator_up->ProcessNextEvent () == ThreadStateCoordinator::eventLoopResultContinue) 3658 { 3659 } 3660 3661 if (log) 3662 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " exiting ThreadStateCoordinator processing loop due to coordinator indicating completion", __FUNCTION__, process->GetID ()); 3663 3664 return nullptr; 3665 } 3666 3667 void 3668 NativeProcessLinux::StopCoordinatorThread() 3669 { 3670 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3671 if (log) 3672 log->Printf ("NativeProcessLinux::%s requesting ThreadStateCoordinator stop for pid %" PRIu64, __FUNCTION__, GetID ()); 3673 3674 // Tell the coordinator we're done. This will cause the coordinator 3675 // run loop thread to exit when the processing queue hits this message. 3676 m_coordinator_up->StopCoordinator (); 3677 m_coordinator_thread.Join (nullptr); 3678 } 3679 3680 bool 3681 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id) 3682 { 3683 for (auto thread_sp : m_threads) 3684 { 3685 assert (thread_sp && "thread list should not contain NULL threads"); 3686 if (thread_sp->GetID () == thread_id) 3687 { 3688 // We have this thread. 3689 return true; 3690 } 3691 } 3692 3693 // We don't have this thread. 3694 return false; 3695 } 3696 3697 NativeThreadProtocolSP 3698 NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id) 3699 { 3700 // CONSIDER organize threads by map - we can do better than linear. 3701 for (auto thread_sp : m_threads) 3702 { 3703 if (thread_sp->GetID () == thread_id) 3704 return thread_sp; 3705 } 3706 3707 // We don't have this thread. 3708 return NativeThreadProtocolSP (); 3709 } 3710 3711 bool 3712 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id) 3713 { 3714 Mutex::Locker locker (m_threads_mutex); 3715 for (auto it = m_threads.begin (); it != m_threads.end (); ++it) 3716 { 3717 if (*it && ((*it)->GetID () == thread_id)) 3718 { 3719 m_threads.erase (it); 3720 return true; 3721 } 3722 } 3723 3724 // Didn't find it. 3725 return false; 3726 } 3727 3728 NativeThreadProtocolSP 3729 NativeProcessLinux::AddThread (lldb::tid_t thread_id) 3730 { 3731 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3732 3733 Mutex::Locker locker (m_threads_mutex); 3734 3735 if (log) 3736 { 3737 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64, 3738 __FUNCTION__, 3739 GetID (), 3740 thread_id); 3741 } 3742 3743 assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists"); 3744 3745 // If this is the first thread, save it as the current thread 3746 if (m_threads.empty ()) 3747 SetCurrentThreadID (thread_id); 3748 3749 NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id)); 3750 m_threads.push_back (thread_sp); 3751 3752 return thread_sp; 3753 } 3754 3755 NativeThreadProtocolSP 3756 NativeProcessLinux::GetOrCreateThread (lldb::tid_t thread_id, bool &created) 3757 { 3758 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3759 3760 Mutex::Locker locker (m_threads_mutex); 3761 if (log) 3762 { 3763 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " get/create thread with tid %" PRIu64, 3764 __FUNCTION__, 3765 GetID (), 3766 thread_id); 3767 } 3768 3769 // Retrieve the thread if it is already getting tracked. 3770 NativeThreadProtocolSP thread_sp = MaybeGetThreadNoLock (thread_id); 3771 if (thread_sp) 3772 { 3773 if (log) 3774 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": thread already tracked, returning", 3775 __FUNCTION__, 3776 GetID (), 3777 thread_id); 3778 created = false; 3779 return thread_sp; 3780 3781 } 3782 3783 // Create the thread metadata since it isn't being tracked. 3784 if (log) 3785 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": thread didn't exist, tracking now", 3786 __FUNCTION__, 3787 GetID (), 3788 thread_id); 3789 3790 thread_sp.reset (new NativeThreadLinux (this, thread_id)); 3791 m_threads.push_back (thread_sp); 3792 created = true; 3793 3794 return thread_sp; 3795 } 3796 3797 Error 3798 NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp) 3799 { 3800 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS)); 3801 3802 Error error; 3803 3804 // Get a linux thread pointer. 3805 if (!thread_sp) 3806 { 3807 error.SetErrorString ("null thread_sp"); 3808 if (log) 3809 log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); 3810 return error; 3811 } 3812 NativeThreadLinux *const linux_thread_p = reinterpret_cast<NativeThreadLinux*> (thread_sp.get()); 3813 3814 // Find out the size of a breakpoint (might depend on where we are in the code). 3815 NativeRegisterContextSP context_sp = linux_thread_p->GetRegisterContext (); 3816 if (!context_sp) 3817 { 3818 error.SetErrorString ("cannot get a NativeRegisterContext for the thread"); 3819 if (log) 3820 log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); 3821 return error; 3822 } 3823 3824 uint32_t breakpoint_size = 0; 3825 error = GetSoftwareBreakpointSize (context_sp, breakpoint_size); 3826 if (error.Fail ()) 3827 { 3828 if (log) 3829 log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ()); 3830 return error; 3831 } 3832 else 3833 { 3834 if (log) 3835 log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size); 3836 } 3837 3838 // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size. 3839 const lldb::addr_t initial_pc_addr = context_sp->GetPC (); 3840 lldb::addr_t breakpoint_addr = initial_pc_addr; 3841 if (breakpoint_size > static_cast<lldb::addr_t> (0)) 3842 { 3843 // Do not allow breakpoint probe to wrap around. 3844 if (breakpoint_addr >= static_cast<lldb::addr_t> (breakpoint_size)) 3845 breakpoint_addr -= static_cast<lldb::addr_t> (breakpoint_size); 3846 } 3847 3848 // Check if we stopped because of a breakpoint. 3849 NativeBreakpointSP breakpoint_sp; 3850 error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp); 3851 if (!error.Success () || !breakpoint_sp) 3852 { 3853 // We didn't find one at a software probe location. Nothing to do. 3854 if (log) 3855 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr); 3856 return Error (); 3857 } 3858 3859 // If the breakpoint is not a software breakpoint, nothing to do. 3860 if (!breakpoint_sp->IsSoftwareBreakpoint ()) 3861 { 3862 if (log) 3863 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr); 3864 return Error (); 3865 } 3866 3867 // 3868 // We have a software breakpoint and need to adjust the PC. 3869 // 3870 3871 // Sanity check. 3872 if (breakpoint_size == 0) 3873 { 3874 // Nothing to do! How did we get here? 3875 if (log) 3876 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr); 3877 return Error (); 3878 } 3879 3880 // Change the program counter. 3881 if (log) 3882 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_p->GetID (), initial_pc_addr, breakpoint_addr); 3883 3884 error = context_sp->SetPC (breakpoint_addr); 3885 if (error.Fail ()) 3886 { 3887 if (log) 3888 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_p->GetID (), error.AsCString ()); 3889 return error; 3890 } 3891 3892 return error; 3893 } 3894 3895 void 3896 NativeProcessLinux::NotifyThreadCreateStopped (lldb::tid_t tid) 3897 { 3898 const bool is_stopped = true; 3899 m_coordinator_up->NotifyThreadCreate (tid, is_stopped, CoordinatorErrorHandler); 3900 } 3901 3902 void 3903 NativeProcessLinux::NotifyThreadDeath (lldb::tid_t tid) 3904 { 3905 m_coordinator_up->NotifyThreadDeath (tid, CoordinatorErrorHandler); 3906 } 3907 3908 void 3909 NativeProcessLinux::NotifyThreadStop (lldb::tid_t tid) 3910 { 3911 m_coordinator_up->NotifyThreadStop (tid, false, CoordinatorErrorHandler); 3912 } 3913 3914 void 3915 NativeProcessLinux::CallAfterRunningThreadsStop (lldb::tid_t tid, 3916 const std::function<void (lldb::tid_t tid)> &call_after_function) 3917 { 3918 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3919 if (log) 3920 log->Printf("NativeProcessLinux::%s tid %" PRIu64, __FUNCTION__, tid); 3921 3922 const lldb::pid_t pid = GetID (); 3923 m_coordinator_up->CallAfterRunningThreadsStop (tid, 3924 [=](lldb::tid_t request_stop_tid) 3925 { 3926 return RequestThreadStop(pid, request_stop_tid); 3927 }, 3928 call_after_function, 3929 CoordinatorErrorHandler); 3930 } 3931 3932 void 3933 NativeProcessLinux::CallAfterRunningThreadsStopWithSkipTID (lldb::tid_t deferred_signal_tid, 3934 lldb::tid_t skip_stop_request_tid, 3935 const std::function<void (lldb::tid_t tid)> &call_after_function) 3936 { 3937 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3938 if (log) 3939 log->Printf("NativeProcessLinux::%s deferred_signal_tid %" PRIu64 ", skip_stop_request_tid %" PRIu64, __FUNCTION__, deferred_signal_tid, skip_stop_request_tid); 3940 3941 const lldb::pid_t pid = GetID (); 3942 m_coordinator_up->CallAfterRunningThreadsStopWithSkipTIDs (deferred_signal_tid, 3943 skip_stop_request_tid != LLDB_INVALID_THREAD_ID ? ThreadStateCoordinator::ThreadIDSet {skip_stop_request_tid} : ThreadStateCoordinator::ThreadIDSet (), 3944 [=](lldb::tid_t request_stop_tid) 3945 { 3946 return RequestThreadStop(pid, request_stop_tid); 3947 }, 3948 call_after_function, 3949 CoordinatorErrorHandler); 3950 } 3951 3952 lldb_private::Error 3953 NativeProcessLinux::RequestThreadStop (const lldb::pid_t pid, const lldb::tid_t tid) 3954 { 3955 Log* log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3956 if (log) 3957 log->Printf ("NativeProcessLinux::%s requesting thread stop(pid: %" PRIu64 ", tid: %" PRIu64 ")", __FUNCTION__, pid, tid); 3958 3959 Error err; 3960 errno = 0; 3961 if (::tgkill (pid, tid, SIGSTOP) != 0) 3962 { 3963 err.SetErrorToErrno (); 3964 if (log) 3965 log->Printf ("NativeProcessLinux::%s tgkill(%" PRIu64 ", %" PRIu64 ", SIGSTOP) failed: %s", __FUNCTION__, pid, tid, err.AsCString ()); 3966 } 3967 3968 return err; 3969 } 3970