1 //===-- NativeProcessLinux.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "NativeProcessLinux.h" 10 11 #include <errno.h> 12 #include <stdint.h> 13 #include <string.h> 14 #include <unistd.h> 15 16 #include <fstream> 17 #include <mutex> 18 #include <sstream> 19 #include <string> 20 #include <unordered_map> 21 22 #include "NativeThreadLinux.h" 23 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 24 #include "Plugins/Process/Utility/LinuxProcMaps.h" 25 #include "Procfs.h" 26 #include "lldb/Core/EmulateInstruction.h" 27 #include "lldb/Core/ModuleSpec.h" 28 #include "lldb/Host/Host.h" 29 #include "lldb/Host/HostProcess.h" 30 #include "lldb/Host/ProcessLaunchInfo.h" 31 #include "lldb/Host/PseudoTerminal.h" 32 #include "lldb/Host/ThreadLauncher.h" 33 #include "lldb/Host/common/NativeRegisterContext.h" 34 #include "lldb/Host/linux/Ptrace.h" 35 #include "lldb/Host/linux/Uio.h" 36 #include "lldb/Host/posix/ProcessLauncherPosixFork.h" 37 #include "lldb/Symbol/ObjectFile.h" 38 #include "lldb/Target/Process.h" 39 #include "lldb/Target/Target.h" 40 #include "lldb/Utility/LLDBAssert.h" 41 #include "lldb/Utility/RegisterValue.h" 42 #include "lldb/Utility/State.h" 43 #include "lldb/Utility/Status.h" 44 #include "lldb/Utility/StringExtractor.h" 45 #include "llvm/ADT/ScopeExit.h" 46 #include "llvm/Support/Errno.h" 47 #include "llvm/Support/FileSystem.h" 48 #include "llvm/Support/Threading.h" 49 50 #include <linux/unistd.h> 51 #include <sys/socket.h> 52 #include <sys/syscall.h> 53 #include <sys/types.h> 54 #include <sys/user.h> 55 #include <sys/wait.h> 56 57 // Support hardware breakpoints in case it has not been defined 58 #ifndef TRAP_HWBKPT 59 #define TRAP_HWBKPT 4 60 #endif 61 62 using namespace lldb; 63 using namespace lldb_private; 64 using namespace lldb_private::process_linux; 65 using namespace llvm; 66 67 // Private bits we only need internally. 68 69 static bool ProcessVmReadvSupported() { 70 static bool is_supported; 71 static llvm::once_flag flag; 72 73 llvm::call_once(flag, [] { 74 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 75 76 uint32_t source = 0x47424742; 77 uint32_t dest = 0; 78 79 struct iovec local, remote; 80 remote.iov_base = &source; 81 local.iov_base = &dest; 82 remote.iov_len = local.iov_len = sizeof source; 83 84 // We shall try if cross-process-memory reads work by attempting to read a 85 // value from our own process. 86 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); 87 is_supported = (res == sizeof(source) && source == dest); 88 if (is_supported) 89 LLDB_LOG(log, 90 "Detected kernel support for process_vm_readv syscall. " 91 "Fast memory reads enabled."); 92 else 93 LLDB_LOG(log, 94 "syscall process_vm_readv failed (error: {0}). Fast memory " 95 "reads disabled.", 96 llvm::sys::StrError()); 97 }); 98 99 return is_supported; 100 } 101 102 namespace { 103 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) { 104 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 105 if (!log) 106 return; 107 108 if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO)) 109 LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec()); 110 else 111 LLDB_LOG(log, "leaving STDIN as is"); 112 113 if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO)) 114 LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec()); 115 else 116 LLDB_LOG(log, "leaving STDOUT as is"); 117 118 if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO)) 119 LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec()); 120 else 121 LLDB_LOG(log, "leaving STDERR as is"); 122 123 int i = 0; 124 for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; 125 ++args, ++i) 126 LLDB_LOG(log, "arg {0}: '{1}'", i, *args); 127 } 128 129 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) { 130 uint8_t *ptr = (uint8_t *)bytes; 131 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 132 for (uint32_t i = 0; i < loop_count; i++) { 133 s.Printf("[%x]", *ptr); 134 ptr++; 135 } 136 } 137 138 void PtraceDisplayBytes(int &req, void *data, size_t data_size) { 139 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 140 if (!log) 141 return; 142 StreamString buf; 143 144 switch (req) { 145 case PTRACE_POKETEXT: { 146 DisplayBytes(buf, &data, 8); 147 LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData()); 148 break; 149 } 150 case PTRACE_POKEDATA: { 151 DisplayBytes(buf, &data, 8); 152 LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData()); 153 break; 154 } 155 case PTRACE_POKEUSER: { 156 DisplayBytes(buf, &data, 8); 157 LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData()); 158 break; 159 } 160 case PTRACE_SETREGS: { 161 DisplayBytes(buf, data, data_size); 162 LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData()); 163 break; 164 } 165 case PTRACE_SETFPREGS: { 166 DisplayBytes(buf, data, data_size); 167 LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData()); 168 break; 169 } 170 case PTRACE_SETSIGINFO: { 171 DisplayBytes(buf, data, sizeof(siginfo_t)); 172 LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData()); 173 break; 174 } 175 case PTRACE_SETREGSET: { 176 // Extract iov_base from data, which is a pointer to the struct iovec 177 DisplayBytes(buf, *(void **)data, data_size); 178 LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData()); 179 break; 180 } 181 default: {} 182 } 183 } 184 185 static constexpr unsigned k_ptrace_word_size = sizeof(void *); 186 static_assert(sizeof(long) >= k_ptrace_word_size, 187 "Size of long must be larger than ptrace word size"); 188 } // end of anonymous namespace 189 190 // Simple helper function to ensure flags are enabled on the given file 191 // descriptor. 192 static Status EnsureFDFlags(int fd, int flags) { 193 Status error; 194 195 int status = fcntl(fd, F_GETFL); 196 if (status == -1) { 197 error.SetErrorToErrno(); 198 return error; 199 } 200 201 if (fcntl(fd, F_SETFL, status | flags) == -1) { 202 error.SetErrorToErrno(); 203 return error; 204 } 205 206 return error; 207 } 208 209 // Public Static Methods 210 211 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 212 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info, 213 NativeDelegate &native_delegate, 214 MainLoop &mainloop) const { 215 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 216 217 MaybeLogLaunchInfo(launch_info); 218 219 Status status; 220 ::pid_t pid = ProcessLauncherPosixFork() 221 .LaunchProcess(launch_info, status) 222 .GetProcessId(); 223 LLDB_LOG(log, "pid = {0:x}", pid); 224 if (status.Fail()) { 225 LLDB_LOG(log, "failed to launch process: {0}", status); 226 return status.ToError(); 227 } 228 229 // Wait for the child process to trap on its call to execve. 230 int wstatus; 231 ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0); 232 assert(wpid == pid); 233 (void)wpid; 234 if (!WIFSTOPPED(wstatus)) { 235 LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}", 236 WaitStatus::Decode(wstatus)); 237 return llvm::make_error<StringError>("Could not sync with inferior process", 238 llvm::inconvertibleErrorCode()); 239 } 240 LLDB_LOG(log, "inferior started, now in stopped state"); 241 242 ProcessInstanceInfo Info; 243 if (!Host::GetProcessInfo(pid, Info)) { 244 return llvm::make_error<StringError>("Cannot get process architecture", 245 llvm::inconvertibleErrorCode()); 246 } 247 248 // Set the architecture to the exe architecture. 249 LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid, 250 Info.GetArchitecture().GetArchitectureName()); 251 252 status = SetDefaultPtraceOpts(pid); 253 if (status.Fail()) { 254 LLDB_LOG(log, "failed to set default ptrace options: {0}", status); 255 return status.ToError(); 256 } 257 258 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 259 pid, launch_info.GetPTY().ReleasePrimaryFileDescriptor(), native_delegate, 260 Info.GetArchitecture(), mainloop, {pid})); 261 } 262 263 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 264 NativeProcessLinux::Factory::Attach( 265 lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate, 266 MainLoop &mainloop) const { 267 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 268 LLDB_LOG(log, "pid = {0:x}", pid); 269 270 // Retrieve the architecture for the running process. 271 ProcessInstanceInfo Info; 272 if (!Host::GetProcessInfo(pid, Info)) { 273 return llvm::make_error<StringError>("Cannot get process architecture", 274 llvm::inconvertibleErrorCode()); 275 } 276 277 auto tids_or = NativeProcessLinux::Attach(pid); 278 if (!tids_or) 279 return tids_or.takeError(); 280 281 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 282 pid, -1, native_delegate, Info.GetArchitecture(), mainloop, *tids_or)); 283 } 284 285 // Public Instance Methods 286 287 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd, 288 NativeDelegate &delegate, 289 const ArchSpec &arch, MainLoop &mainloop, 290 llvm::ArrayRef<::pid_t> tids) 291 : NativeProcessELF(pid, terminal_fd, delegate), m_arch(arch) { 292 if (m_terminal_fd != -1) { 293 Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 294 assert(status.Success()); 295 } 296 297 Status status; 298 m_sigchld_handle = mainloop.RegisterSignal( 299 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status); 300 assert(m_sigchld_handle && status.Success()); 301 302 for (const auto &tid : tids) { 303 NativeThreadLinux &thread = AddThread(tid); 304 thread.SetStoppedBySignal(SIGSTOP); 305 ThreadWasCreated(thread); 306 } 307 308 // Let our process instance know the thread has stopped. 309 SetCurrentThreadID(tids[0]); 310 SetState(StateType::eStateStopped, false); 311 312 // Proccess any signals we received before installing our handler 313 SigchldHandler(); 314 } 315 316 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) { 317 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 318 319 Status status; 320 // Use a map to keep track of the threads which we have attached/need to 321 // attach. 322 Host::TidMap tids_to_attach; 323 while (Host::FindProcessThreads(pid, tids_to_attach)) { 324 for (Host::TidMap::iterator it = tids_to_attach.begin(); 325 it != tids_to_attach.end();) { 326 if (it->second == false) { 327 lldb::tid_t tid = it->first; 328 329 // Attach to the requested process. 330 // An attach will cause the thread to stop with a SIGSTOP. 331 if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) { 332 // No such thread. The thread may have exited. More error handling 333 // may be needed. 334 if (status.GetError() == ESRCH) { 335 it = tids_to_attach.erase(it); 336 continue; 337 } 338 return status.ToError(); 339 } 340 341 int wpid = 342 llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL); 343 // Need to use __WALL otherwise we receive an error with errno=ECHLD At 344 // this point we should have a thread stopped if waitpid succeeds. 345 if (wpid < 0) { 346 // No such thread. The thread may have exited. More error handling 347 // may be needed. 348 if (errno == ESRCH) { 349 it = tids_to_attach.erase(it); 350 continue; 351 } 352 return llvm::errorCodeToError( 353 std::error_code(errno, std::generic_category())); 354 } 355 356 if ((status = SetDefaultPtraceOpts(tid)).Fail()) 357 return status.ToError(); 358 359 LLDB_LOG(log, "adding tid = {0}", tid); 360 it->second = true; 361 } 362 363 // move the loop forward 364 ++it; 365 } 366 } 367 368 size_t tid_count = tids_to_attach.size(); 369 if (tid_count == 0) 370 return llvm::make_error<StringError>("No such process", 371 llvm::inconvertibleErrorCode()); 372 373 std::vector<::pid_t> tids; 374 tids.reserve(tid_count); 375 for (const auto &p : tids_to_attach) 376 tids.push_back(p.first); 377 return std::move(tids); 378 } 379 380 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) { 381 long ptrace_opts = 0; 382 383 // Have the child raise an event on exit. This is used to keep the child in 384 // limbo until it is destroyed. 385 ptrace_opts |= PTRACE_O_TRACEEXIT; 386 387 // Have the tracer trace threads which spawn in the inferior process. 388 // TODO: if we want to support tracing the inferiors' child, add the 389 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) 390 ptrace_opts |= PTRACE_O_TRACECLONE; 391 392 // Have the tracer notify us before execve returns (needed to disable legacy 393 // SIGTRAP generation) 394 ptrace_opts |= PTRACE_O_TRACEEXEC; 395 396 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts); 397 } 398 399 // Handles all waitpid events from the inferior process. 400 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited, 401 WaitStatus status) { 402 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 403 404 // Certain activities differ based on whether the pid is the tid of the main 405 // thread. 406 const bool is_main_thread = (pid == GetID()); 407 408 // Handle when the thread exits. 409 if (exited) { 410 LLDB_LOG(log, 411 "got exit status({0}) , tid = {1} ({2} main thread), process " 412 "state = {3}", 413 status, pid, is_main_thread ? "is" : "is not", GetState()); 414 415 // This is a thread that exited. Ensure we're not tracking it anymore. 416 StopTrackingThread(pid); 417 418 if (is_main_thread) { 419 // The main thread exited. We're done monitoring. Report to delegate. 420 SetExitStatus(status, true); 421 422 // Notify delegate that our process has exited. 423 SetState(StateType::eStateExited, true); 424 } 425 return; 426 } 427 428 siginfo_t info; 429 const auto info_err = GetSignalInfo(pid, &info); 430 auto thread_sp = GetThreadByID(pid); 431 432 if (!thread_sp) { 433 // Normally, the only situation when we cannot find the thread is if we 434 // have just received a new thread notification. This is indicated by 435 // GetSignalInfo() returning si_code == SI_USER and si_pid == 0 436 LLDB_LOG(log, "received notification about an unknown tid {0}.", pid); 437 438 if (info_err.Fail()) { 439 LLDB_LOG(log, 440 "(tid {0}) GetSignalInfo failed ({1}). " 441 "Ingoring this notification.", 442 pid, info_err); 443 return; 444 } 445 446 LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code, 447 info.si_pid); 448 449 NativeThreadLinux &thread = AddThread(pid); 450 451 // Resume the newly created thread. 452 ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 453 ThreadWasCreated(thread); 454 return; 455 } 456 457 // Get details on the signal raised. 458 if (info_err.Success()) { 459 // We have retrieved the signal info. Dispatch appropriately. 460 if (info.si_signo == SIGTRAP) 461 MonitorSIGTRAP(info, *thread_sp); 462 else 463 MonitorSignal(info, *thread_sp, exited); 464 } else { 465 if (info_err.GetError() == EINVAL) { 466 // This is a group stop reception for this tid. We can reach here if we 467 // reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the tracee, 468 // triggering the group-stop mechanism. Normally receiving these would 469 // stop the process, pending a SIGCONT. Simulating this state in a 470 // debugger is hard and is generally not needed (one use case is 471 // debugging background task being managed by a shell). For general use, 472 // it is sufficient to stop the process in a signal-delivery stop which 473 // happens before the group stop. This done by MonitorSignal and works 474 // correctly for all signals. 475 LLDB_LOG(log, 476 "received a group stop for pid {0} tid {1}. Transparent " 477 "handling of group stops not supported, resuming the " 478 "thread.", 479 GetID(), pid); 480 ResumeThread(*thread_sp, thread_sp->GetState(), 481 LLDB_INVALID_SIGNAL_NUMBER); 482 } else { 483 // ptrace(GETSIGINFO) failed (but not due to group-stop). 484 485 // A return value of ESRCH means the thread/process is no longer on the 486 // system, so it was killed somehow outside of our control. Either way, 487 // we can't do anything with it anymore. 488 489 // Stop tracking the metadata for the thread since it's entirely off the 490 // system now. 491 const bool thread_found = StopTrackingThread(pid); 492 493 LLDB_LOG(log, 494 "GetSignalInfo failed: {0}, tid = {1}, status = {2}, " 495 "status = {3}, main_thread = {4}, thread_found: {5}", 496 info_err, pid, status, status, is_main_thread, thread_found); 497 498 if (is_main_thread) { 499 // Notify the delegate - our process is not available but appears to 500 // have been killed outside our control. Is eStateExited the right 501 // exit state in this case? 502 SetExitStatus(status, true); 503 SetState(StateType::eStateExited, true); 504 } else { 505 // This thread was pulled out from underneath us. Anything to do here? 506 // Do we want to do an all stop? 507 LLDB_LOG(log, 508 "pid {0} tid {1} non-main thread exit occurred, didn't " 509 "tell delegate anything since thread disappeared out " 510 "from underneath us", 511 GetID(), pid); 512 } 513 } 514 } 515 } 516 517 void NativeProcessLinux::WaitForNewThread(::pid_t tid) { 518 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 519 520 if (GetThreadByID(tid)) { 521 // We are already tracking the thread - we got the event on the new thread 522 // (see MonitorSignal) before this one. We are done. 523 return; 524 } 525 526 // The thread is not tracked yet, let's wait for it to appear. 527 int status = -1; 528 LLDB_LOG(log, 529 "received thread creation event for tid {0}. tid not tracked " 530 "yet, waiting for thread to appear...", 531 tid); 532 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, &status, __WALL); 533 // Since we are waiting on a specific tid, this must be the creation event. 534 // But let's do some checks just in case. 535 if (wait_pid != tid) { 536 LLDB_LOG(log, 537 "waiting for tid {0} failed. Assuming the thread has " 538 "disappeared in the meantime", 539 tid); 540 // The only way I know of this could happen is if the whole process was 541 // SIGKILLed in the mean time. In any case, we can't do anything about that 542 // now. 543 return; 544 } 545 if (WIFEXITED(status)) { 546 LLDB_LOG(log, 547 "waiting for tid {0} returned an 'exited' event. Not " 548 "tracking the thread.", 549 tid); 550 // Also a very improbable event. 551 return; 552 } 553 554 LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid); 555 NativeThreadLinux &new_thread = AddThread(tid); 556 557 ResumeThread(new_thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 558 ThreadWasCreated(new_thread); 559 } 560 561 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, 562 NativeThreadLinux &thread) { 563 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 564 const bool is_main_thread = (thread.GetID() == GetID()); 565 566 assert(info.si_signo == SIGTRAP && "Unexpected child signal!"); 567 568 switch (info.si_code) { 569 // TODO: these two cases are required if we want to support tracing of the 570 // inferiors' children. We'd need this to debug a monitor. case (SIGTRAP | 571 // (PTRACE_EVENT_FORK << 8)): case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 572 573 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { 574 // This is the notification on the parent thread which informs us of new 575 // thread creation. We don't want to do anything with the parent thread so 576 // we just resume it. In case we want to implement "break on thread 577 // creation" functionality, we would need to stop here. 578 579 unsigned long event_message = 0; 580 if (GetEventMessage(thread.GetID(), &event_message).Fail()) { 581 LLDB_LOG(log, 582 "pid {0} received thread creation event but " 583 "GetEventMessage failed so we don't know the new tid", 584 thread.GetID()); 585 } else 586 WaitForNewThread(event_message); 587 588 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 589 break; 590 } 591 592 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): { 593 LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP); 594 595 // Exec clears any pending notifications. 596 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 597 598 // Remove all but the main thread here. Linux fork creates a new process 599 // which only copies the main thread. 600 LLDB_LOG(log, "exec received, stop tracking all but main thread"); 601 602 llvm::erase_if(m_threads, [&](std::unique_ptr<NativeThreadProtocol> &t) { 603 return t->GetID() != GetID(); 604 }); 605 assert(m_threads.size() == 1); 606 auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get()); 607 608 SetCurrentThreadID(main_thread->GetID()); 609 main_thread->SetStoppedByExec(); 610 611 // Tell coordinator about about the "new" (since exec) stopped main thread. 612 ThreadWasCreated(*main_thread); 613 614 // Let our delegate know we have just exec'd. 615 NotifyDidExec(); 616 617 // Let the process know we're stopped. 618 StopRunningThreads(main_thread->GetID()); 619 620 break; 621 } 622 623 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { 624 // The inferior process or one of its threads is about to exit. We don't 625 // want to do anything with the thread so we just resume it. In case we 626 // want to implement "break on thread exit" functionality, we would need to 627 // stop here. 628 629 unsigned long data = 0; 630 if (GetEventMessage(thread.GetID(), &data).Fail()) 631 data = -1; 632 633 LLDB_LOG(log, 634 "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, " 635 "WIFSIGNALED={2}, pid = {3}, main_thread = {4}", 636 data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(), 637 is_main_thread); 638 639 640 StateType state = thread.GetState(); 641 if (!StateIsRunningState(state)) { 642 // Due to a kernel bug, we may sometimes get this stop after the inferior 643 // gets a SIGKILL. This confuses our state tracking logic in 644 // ResumeThread(), since normally, we should not be receiving any ptrace 645 // events while the inferior is stopped. This makes sure that the 646 // inferior is resumed and exits normally. 647 state = eStateRunning; 648 } 649 ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); 650 651 break; 652 } 653 654 case 0: 655 case TRAP_TRACE: // We receive this on single stepping. 656 case TRAP_HWBKPT: // We receive this on watchpoint hit 657 { 658 // If a watchpoint was hit, report it 659 uint32_t wp_index; 660 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 661 wp_index, (uintptr_t)info.si_addr); 662 if (error.Fail()) 663 LLDB_LOG(log, 664 "received error while checking for watchpoint hits, pid = " 665 "{0}, error = {1}", 666 thread.GetID(), error); 667 if (wp_index != LLDB_INVALID_INDEX32) { 668 MonitorWatchpoint(thread, wp_index); 669 break; 670 } 671 672 // If a breakpoint was hit, report it 673 uint32_t bp_index; 674 error = thread.GetRegisterContext().GetHardwareBreakHitIndex( 675 bp_index, (uintptr_t)info.si_addr); 676 if (error.Fail()) 677 LLDB_LOG(log, "received error while checking for hardware " 678 "breakpoint hits, pid = {0}, error = {1}", 679 thread.GetID(), error); 680 if (bp_index != LLDB_INVALID_INDEX32) { 681 MonitorBreakpoint(thread); 682 break; 683 } 684 685 // Otherwise, report step over 686 MonitorTrace(thread); 687 break; 688 } 689 690 case SI_KERNEL: 691 #if defined __mips__ 692 // For mips there is no special signal for watchpoint So we check for 693 // watchpoint in kernel trap 694 { 695 // If a watchpoint was hit, report it 696 uint32_t wp_index; 697 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 698 wp_index, LLDB_INVALID_ADDRESS); 699 if (error.Fail()) 700 LLDB_LOG(log, 701 "received error while checking for watchpoint hits, pid = " 702 "{0}, error = {1}", 703 thread.GetID(), error); 704 if (wp_index != LLDB_INVALID_INDEX32) { 705 MonitorWatchpoint(thread, wp_index); 706 break; 707 } 708 } 709 // NO BREAK 710 #endif 711 case TRAP_BRKPT: 712 MonitorBreakpoint(thread); 713 break; 714 715 case SIGTRAP: 716 case (SIGTRAP | 0x80): 717 LLDB_LOG( 718 log, 719 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 720 info.si_code, GetID(), thread.GetID()); 721 722 // Ignore these signals until we know more about them. 723 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 724 break; 725 726 default: 727 LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}", 728 info.si_code, GetID(), thread.GetID()); 729 MonitorSignal(info, thread, false); 730 break; 731 } 732 } 733 734 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) { 735 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 736 LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID()); 737 738 // This thread is currently stopped. 739 thread.SetStoppedByTrace(); 740 741 StopRunningThreads(thread.GetID()); 742 } 743 744 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) { 745 Log *log( 746 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 747 LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID()); 748 749 // Mark the thread as stopped at breakpoint. 750 thread.SetStoppedByBreakpoint(); 751 FixupBreakpointPCAsNeeded(thread); 752 753 if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != 754 m_threads_stepping_with_breakpoint.end()) 755 thread.SetStoppedByTrace(); 756 757 StopRunningThreads(thread.GetID()); 758 } 759 760 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, 761 uint32_t wp_index) { 762 Log *log( 763 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); 764 LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}", 765 thread.GetID(), wp_index); 766 767 // Mark the thread as stopped at watchpoint. The address is at 768 // (lldb::addr_t)info->si_addr if we need it. 769 thread.SetStoppedByWatchpoint(wp_index); 770 771 // We need to tell all other running threads before we notify the delegate 772 // about this stop. 773 StopRunningThreads(thread.GetID()); 774 } 775 776 void NativeProcessLinux::MonitorSignal(const siginfo_t &info, 777 NativeThreadLinux &thread, bool exited) { 778 const int signo = info.si_signo; 779 const bool is_from_llgs = info.si_pid == getpid(); 780 781 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 782 783 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 784 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2) 785 // or raise(3). Similarly for tgkill(2) on Linux. 786 // 787 // IOW, user generated signals never generate what we consider to be a 788 // "crash". 789 // 790 // Similarly, ACK signals generated by this monitor. 791 792 // Handle the signal. 793 LLDB_LOG(log, 794 "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, " 795 "waitpid pid = {4})", 796 Host::GetSignalAsCString(signo), signo, info.si_code, 797 thread.GetID()); 798 799 // Check for thread stop notification. 800 if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) { 801 // This is a tgkill()-based stop. 802 LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID()); 803 804 // Check that we're not already marked with a stop reason. Note this thread 805 // really shouldn't already be marked as stopped - if we were, that would 806 // imply that the kernel signaled us with the thread stopping which we 807 // handled and marked as stopped, and that, without an intervening resume, 808 // we received another stop. It is more likely that we are missing the 809 // marking of a run state somewhere if we find that the thread was marked 810 // as stopped. 811 const StateType thread_state = thread.GetState(); 812 if (!StateIsStoppedState(thread_state, false)) { 813 // An inferior thread has stopped because of a SIGSTOP we have sent it. 814 // Generally, these are not important stops and we don't want to report 815 // them as they are just used to stop other threads when one thread (the 816 // one with the *real* stop reason) hits a breakpoint (watchpoint, 817 // etc...). However, in the case of an asynchronous Interrupt(), this 818 // *is* the real stop reason, so we leave the signal intact if this is 819 // the thread that was chosen as the triggering thread. 820 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 821 if (m_pending_notification_tid == thread.GetID()) 822 thread.SetStoppedBySignal(SIGSTOP, &info); 823 else 824 thread.SetStoppedWithNoReason(); 825 826 SetCurrentThreadID(thread.GetID()); 827 SignalIfAllThreadsStopped(); 828 } else { 829 // We can end up here if stop was initiated by LLGS but by this time a 830 // thread stop has occurred - maybe initiated by another event. 831 Status error = ResumeThread(thread, thread.GetState(), 0); 832 if (error.Fail()) 833 LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(), 834 error); 835 } 836 } else { 837 LLDB_LOG(log, 838 "pid {0} tid {1}, thread was already marked as a stopped " 839 "state (state={2}), leaving stop signal as is", 840 GetID(), thread.GetID(), thread_state); 841 SignalIfAllThreadsStopped(); 842 } 843 844 // Done handling. 845 return; 846 } 847 848 // Check if debugger should stop at this signal or just ignore it and resume 849 // the inferior. 850 if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) { 851 ResumeThread(thread, thread.GetState(), signo); 852 return; 853 } 854 855 // This thread is stopped. 856 LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo)); 857 thread.SetStoppedBySignal(signo, &info); 858 859 // Send a stop to the debugger after we get all other threads to stop. 860 StopRunningThreads(thread.GetID()); 861 } 862 863 namespace { 864 865 struct EmulatorBaton { 866 NativeProcessLinux &m_process; 867 NativeRegisterContext &m_reg_context; 868 869 // eRegisterKindDWARF -> RegsiterValue 870 std::unordered_map<uint32_t, RegisterValue> m_register_values; 871 872 EmulatorBaton(NativeProcessLinux &process, NativeRegisterContext ®_context) 873 : m_process(process), m_reg_context(reg_context) {} 874 }; 875 876 } // anonymous namespace 877 878 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton, 879 const EmulateInstruction::Context &context, 880 lldb::addr_t addr, void *dst, size_t length) { 881 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 882 883 size_t bytes_read; 884 emulator_baton->m_process.ReadMemory(addr, dst, length, bytes_read); 885 return bytes_read; 886 } 887 888 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton, 889 const RegisterInfo *reg_info, 890 RegisterValue ®_value) { 891 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 892 893 auto it = emulator_baton->m_register_values.find( 894 reg_info->kinds[eRegisterKindDWARF]); 895 if (it != emulator_baton->m_register_values.end()) { 896 reg_value = it->second; 897 return true; 898 } 899 900 // The emulator only fill in the dwarf regsiter numbers (and in some case the 901 // generic register numbers). Get the full register info from the register 902 // context based on the dwarf register numbers. 903 const RegisterInfo *full_reg_info = 904 emulator_baton->m_reg_context.GetRegisterInfo( 905 eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]); 906 907 Status error = 908 emulator_baton->m_reg_context.ReadRegister(full_reg_info, reg_value); 909 if (error.Success()) 910 return true; 911 912 return false; 913 } 914 915 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton, 916 const EmulateInstruction::Context &context, 917 const RegisterInfo *reg_info, 918 const RegisterValue ®_value) { 919 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 920 emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = 921 reg_value; 922 return true; 923 } 924 925 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton, 926 const EmulateInstruction::Context &context, 927 lldb::addr_t addr, const void *dst, 928 size_t length) { 929 return length; 930 } 931 932 static lldb::addr_t ReadFlags(NativeRegisterContext ®siter_context) { 933 const RegisterInfo *flags_info = regsiter_context.GetRegisterInfo( 934 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 935 return regsiter_context.ReadRegisterAsUnsigned(flags_info, 936 LLDB_INVALID_ADDRESS); 937 } 938 939 Status 940 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) { 941 Status error; 942 NativeRegisterContext& register_context = thread.GetRegisterContext(); 943 944 std::unique_ptr<EmulateInstruction> emulator_up( 945 EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, 946 nullptr)); 947 948 if (emulator_up == nullptr) 949 return Status("Instruction emulator not found!"); 950 951 EmulatorBaton baton(*this, register_context); 952 emulator_up->SetBaton(&baton); 953 emulator_up->SetReadMemCallback(&ReadMemoryCallback); 954 emulator_up->SetReadRegCallback(&ReadRegisterCallback); 955 emulator_up->SetWriteMemCallback(&WriteMemoryCallback); 956 emulator_up->SetWriteRegCallback(&WriteRegisterCallback); 957 958 if (!emulator_up->ReadInstruction()) 959 return Status("Read instruction failed!"); 960 961 bool emulation_result = 962 emulator_up->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC); 963 964 const RegisterInfo *reg_info_pc = register_context.GetRegisterInfo( 965 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); 966 const RegisterInfo *reg_info_flags = register_context.GetRegisterInfo( 967 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 968 969 auto pc_it = 970 baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]); 971 auto flags_it = 972 baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]); 973 974 lldb::addr_t next_pc; 975 lldb::addr_t next_flags; 976 if (emulation_result) { 977 assert(pc_it != baton.m_register_values.end() && 978 "Emulation was successfull but PC wasn't updated"); 979 next_pc = pc_it->second.GetAsUInt64(); 980 981 if (flags_it != baton.m_register_values.end()) 982 next_flags = flags_it->second.GetAsUInt64(); 983 else 984 next_flags = ReadFlags(register_context); 985 } else if (pc_it == baton.m_register_values.end()) { 986 // Emulate instruction failed and it haven't changed PC. Advance PC with 987 // the size of the current opcode because the emulation of all 988 // PC modifying instruction should be successful. The failure most 989 // likely caused by a not supported instruction which don't modify PC. 990 next_pc = register_context.GetPC() + emulator_up->GetOpcode().GetByteSize(); 991 next_flags = ReadFlags(register_context); 992 } else { 993 // The instruction emulation failed after it modified the PC. It is an 994 // unknown error where we can't continue because the next instruction is 995 // modifying the PC but we don't know how. 996 return Status("Instruction emulation failed unexpectedly."); 997 } 998 999 if (m_arch.GetMachine() == llvm::Triple::arm) { 1000 if (next_flags & 0x20) { 1001 // Thumb mode 1002 error = SetSoftwareBreakpoint(next_pc, 2); 1003 } else { 1004 // Arm mode 1005 error = SetSoftwareBreakpoint(next_pc, 4); 1006 } 1007 } else if (m_arch.IsMIPS() || m_arch.GetTriple().isPPC64()) 1008 error = SetSoftwareBreakpoint(next_pc, 4); 1009 else { 1010 // No size hint is given for the next breakpoint 1011 error = SetSoftwareBreakpoint(next_pc, 0); 1012 } 1013 1014 // If setting the breakpoint fails because next_pc is out of the address 1015 // space, ignore it and let the debugee segfault. 1016 if (error.GetError() == EIO || error.GetError() == EFAULT) { 1017 return Status(); 1018 } else if (error.Fail()) 1019 return error; 1020 1021 m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc}); 1022 1023 return Status(); 1024 } 1025 1026 bool NativeProcessLinux::SupportHardwareSingleStepping() const { 1027 if (m_arch.GetMachine() == llvm::Triple::arm || m_arch.IsMIPS()) 1028 return false; 1029 return true; 1030 } 1031 1032 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) { 1033 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1034 LLDB_LOG(log, "pid {0}", GetID()); 1035 1036 bool software_single_step = !SupportHardwareSingleStepping(); 1037 1038 if (software_single_step) { 1039 for (const auto &thread : m_threads) { 1040 assert(thread && "thread list should not contain NULL threads"); 1041 1042 const ResumeAction *const action = 1043 resume_actions.GetActionForThread(thread->GetID(), true); 1044 if (action == nullptr) 1045 continue; 1046 1047 if (action->state == eStateStepping) { 1048 Status error = SetupSoftwareSingleStepping( 1049 static_cast<NativeThreadLinux &>(*thread)); 1050 if (error.Fail()) 1051 return error; 1052 } 1053 } 1054 } 1055 1056 for (const auto &thread : m_threads) { 1057 assert(thread && "thread list should not contain NULL threads"); 1058 1059 const ResumeAction *const action = 1060 resume_actions.GetActionForThread(thread->GetID(), true); 1061 1062 if (action == nullptr) { 1063 LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(), 1064 thread->GetID()); 1065 continue; 1066 } 1067 1068 LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}", 1069 action->state, GetID(), thread->GetID()); 1070 1071 switch (action->state) { 1072 case eStateRunning: 1073 case eStateStepping: { 1074 // Run the thread, possibly feeding it the signal. 1075 const int signo = action->signal; 1076 ResumeThread(static_cast<NativeThreadLinux &>(*thread), action->state, 1077 signo); 1078 break; 1079 } 1080 1081 case eStateSuspended: 1082 case eStateStopped: 1083 llvm_unreachable("Unexpected state"); 1084 1085 default: 1086 return Status("NativeProcessLinux::%s (): unexpected state %s specified " 1087 "for pid %" PRIu64 ", tid %" PRIu64, 1088 __FUNCTION__, StateAsCString(action->state), GetID(), 1089 thread->GetID()); 1090 } 1091 } 1092 1093 return Status(); 1094 } 1095 1096 Status NativeProcessLinux::Halt() { 1097 Status error; 1098 1099 if (kill(GetID(), SIGSTOP) != 0) 1100 error.SetErrorToErrno(); 1101 1102 return error; 1103 } 1104 1105 Status NativeProcessLinux::Detach() { 1106 Status error; 1107 1108 // Stop monitoring the inferior. 1109 m_sigchld_handle.reset(); 1110 1111 // Tell ptrace to detach from the process. 1112 if (GetID() == LLDB_INVALID_PROCESS_ID) 1113 return error; 1114 1115 for (const auto &thread : m_threads) { 1116 Status e = Detach(thread->GetID()); 1117 if (e.Fail()) 1118 error = 1119 e; // Save the error, but still attempt to detach from other threads. 1120 } 1121 1122 m_processor_trace_monitor.clear(); 1123 m_pt_proces_trace_id = LLDB_INVALID_UID; 1124 1125 return error; 1126 } 1127 1128 Status NativeProcessLinux::Signal(int signo) { 1129 Status error; 1130 1131 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1132 LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo, 1133 Host::GetSignalAsCString(signo), GetID()); 1134 1135 if (kill(GetID(), signo)) 1136 error.SetErrorToErrno(); 1137 1138 return error; 1139 } 1140 1141 Status NativeProcessLinux::Interrupt() { 1142 // Pick a running thread (or if none, a not-dead stopped thread) as the 1143 // chosen thread that will be the stop-reason thread. 1144 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1145 1146 NativeThreadProtocol *running_thread = nullptr; 1147 NativeThreadProtocol *stopped_thread = nullptr; 1148 1149 LLDB_LOG(log, "selecting running thread for interrupt target"); 1150 for (const auto &thread : m_threads) { 1151 // If we have a running or stepping thread, we'll call that the target of 1152 // the interrupt. 1153 const auto thread_state = thread->GetState(); 1154 if (thread_state == eStateRunning || thread_state == eStateStepping) { 1155 running_thread = thread.get(); 1156 break; 1157 } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) { 1158 // Remember the first non-dead stopped thread. We'll use that as a 1159 // backup if there are no running threads. 1160 stopped_thread = thread.get(); 1161 } 1162 } 1163 1164 if (!running_thread && !stopped_thread) { 1165 Status error("found no running/stepping or live stopped threads as target " 1166 "for interrupt"); 1167 LLDB_LOG(log, "skipping due to error: {0}", error); 1168 1169 return error; 1170 } 1171 1172 NativeThreadProtocol *deferred_signal_thread = 1173 running_thread ? running_thread : stopped_thread; 1174 1175 LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(), 1176 running_thread ? "running" : "stopped", 1177 deferred_signal_thread->GetID()); 1178 1179 StopRunningThreads(deferred_signal_thread->GetID()); 1180 1181 return Status(); 1182 } 1183 1184 Status NativeProcessLinux::Kill() { 1185 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1186 LLDB_LOG(log, "pid {0}", GetID()); 1187 1188 Status error; 1189 1190 switch (m_state) { 1191 case StateType::eStateInvalid: 1192 case StateType::eStateExited: 1193 case StateType::eStateCrashed: 1194 case StateType::eStateDetached: 1195 case StateType::eStateUnloaded: 1196 // Nothing to do - the process is already dead. 1197 LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(), 1198 m_state); 1199 return error; 1200 1201 case StateType::eStateConnected: 1202 case StateType::eStateAttaching: 1203 case StateType::eStateLaunching: 1204 case StateType::eStateStopped: 1205 case StateType::eStateRunning: 1206 case StateType::eStateStepping: 1207 case StateType::eStateSuspended: 1208 // We can try to kill a process in these states. 1209 break; 1210 } 1211 1212 if (kill(GetID(), SIGKILL) != 0) { 1213 error.SetErrorToErrno(); 1214 return error; 1215 } 1216 1217 return error; 1218 } 1219 1220 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr, 1221 MemoryRegionInfo &range_info) { 1222 // FIXME review that the final memory region returned extends to the end of 1223 // the virtual address space, 1224 // with no perms if it is not mapped. 1225 1226 // Use an approach that reads memory regions from /proc/{pid}/maps. Assume 1227 // proc maps entries are in ascending order. 1228 // FIXME assert if we find differently. 1229 1230 if (m_supports_mem_region == LazyBool::eLazyBoolNo) { 1231 // We're done. 1232 return Status("unsupported"); 1233 } 1234 1235 Status error = PopulateMemoryRegionCache(); 1236 if (error.Fail()) { 1237 return error; 1238 } 1239 1240 lldb::addr_t prev_base_address = 0; 1241 1242 // FIXME start by finding the last region that is <= target address using 1243 // binary search. Data is sorted. 1244 // There can be a ton of regions on pthreads apps with lots of threads. 1245 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end(); 1246 ++it) { 1247 MemoryRegionInfo &proc_entry_info = it->first; 1248 1249 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 1250 assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) && 1251 "descending /proc/pid/maps entries detected, unexpected"); 1252 prev_base_address = proc_entry_info.GetRange().GetRangeBase(); 1253 UNUSED_IF_ASSERT_DISABLED(prev_base_address); 1254 1255 // If the target address comes before this entry, indicate distance to next 1256 // region. 1257 if (load_addr < proc_entry_info.GetRange().GetRangeBase()) { 1258 range_info.GetRange().SetRangeBase(load_addr); 1259 range_info.GetRange().SetByteSize( 1260 proc_entry_info.GetRange().GetRangeBase() - load_addr); 1261 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1262 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1263 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1264 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1265 1266 return error; 1267 } else if (proc_entry_info.GetRange().Contains(load_addr)) { 1268 // The target address is within the memory region we're processing here. 1269 range_info = proc_entry_info; 1270 return error; 1271 } 1272 1273 // The target memory address comes somewhere after the region we just 1274 // parsed. 1275 } 1276 1277 // If we made it here, we didn't find an entry that contained the given 1278 // address. Return the load_addr as start and the amount of bytes betwwen 1279 // load address and the end of the memory as size. 1280 range_info.GetRange().SetRangeBase(load_addr); 1281 range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS); 1282 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1283 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1284 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1285 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1286 return error; 1287 } 1288 1289 Status NativeProcessLinux::PopulateMemoryRegionCache() { 1290 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1291 1292 // If our cache is empty, pull the latest. There should always be at least 1293 // one memory region if memory region handling is supported. 1294 if (!m_mem_region_cache.empty()) { 1295 LLDB_LOG(log, "reusing {0} cached memory region entries", 1296 m_mem_region_cache.size()); 1297 return Status(); 1298 } 1299 1300 Status Result; 1301 LinuxMapCallback callback = [&](llvm::Expected<MemoryRegionInfo> Info) { 1302 if (Info) { 1303 FileSpec file_spec(Info->GetName().GetCString()); 1304 FileSystem::Instance().Resolve(file_spec); 1305 m_mem_region_cache.emplace_back(*Info, file_spec); 1306 return true; 1307 } 1308 1309 Result = Info.takeError(); 1310 m_supports_mem_region = LazyBool::eLazyBoolNo; 1311 LLDB_LOG(log, "failed to parse proc maps: {0}", Result); 1312 return false; 1313 }; 1314 1315 // Linux kernel since 2.6.14 has /proc/{pid}/smaps 1316 // if CONFIG_PROC_PAGE_MONITOR is enabled 1317 auto BufferOrError = getProcFile(GetID(), "smaps"); 1318 if (BufferOrError) 1319 ParseLinuxSMapRegions(BufferOrError.get()->getBuffer(), callback); 1320 else { 1321 BufferOrError = getProcFile(GetID(), "maps"); 1322 if (!BufferOrError) { 1323 m_supports_mem_region = LazyBool::eLazyBoolNo; 1324 return BufferOrError.getError(); 1325 } 1326 1327 ParseLinuxMapRegions(BufferOrError.get()->getBuffer(), callback); 1328 } 1329 1330 if (Result.Fail()) 1331 return Result; 1332 1333 if (m_mem_region_cache.empty()) { 1334 // No entries after attempting to read them. This shouldn't happen if 1335 // /proc/{pid}/maps is supported. Assume we don't support map entries via 1336 // procfs. 1337 m_supports_mem_region = LazyBool::eLazyBoolNo; 1338 LLDB_LOG(log, 1339 "failed to find any procfs maps entries, assuming no support " 1340 "for memory region metadata retrieval"); 1341 return Status("not supported"); 1342 } 1343 1344 LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps", 1345 m_mem_region_cache.size(), GetID()); 1346 1347 // We support memory retrieval, remember that. 1348 m_supports_mem_region = LazyBool::eLazyBoolYes; 1349 return Status(); 1350 } 1351 1352 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) { 1353 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1354 LLDB_LOG(log, "newBumpId={0}", newBumpId); 1355 LLDB_LOG(log, "clearing {0} entries from memory region cache", 1356 m_mem_region_cache.size()); 1357 m_mem_region_cache.clear(); 1358 } 1359 1360 llvm::Expected<uint64_t> 1361 NativeProcessLinux::Syscall(llvm::ArrayRef<uint64_t> args) { 1362 PopulateMemoryRegionCache(); 1363 auto region_it = llvm::find_if(m_mem_region_cache, [](const auto &pair) { 1364 return pair.first.GetExecutable() == MemoryRegionInfo::eYes; 1365 }); 1366 if (region_it == m_mem_region_cache.end()) 1367 return llvm::createStringError(llvm::inconvertibleErrorCode(), 1368 "No executable memory region found!"); 1369 1370 addr_t exe_addr = region_it->first.GetRange().GetRangeBase(); 1371 1372 NativeThreadLinux &thread = *GetThreadByID(GetID()); 1373 assert(thread.GetState() == eStateStopped); 1374 NativeRegisterContextLinux ®_ctx = thread.GetRegisterContext(); 1375 1376 NativeRegisterContextLinux::SyscallData syscall_data = 1377 *reg_ctx.GetSyscallData(); 1378 1379 DataBufferSP registers_sp; 1380 if (llvm::Error Err = reg_ctx.ReadAllRegisterValues(registers_sp).ToError()) 1381 return std::move(Err); 1382 auto restore_regs = llvm::make_scope_exit( 1383 [&] { reg_ctx.WriteAllRegisterValues(registers_sp); }); 1384 1385 llvm::SmallVector<uint8_t, 8> memory(syscall_data.Insn.size()); 1386 size_t bytes_read; 1387 if (llvm::Error Err = 1388 ReadMemory(exe_addr, memory.data(), memory.size(), bytes_read) 1389 .ToError()) { 1390 return std::move(Err); 1391 } 1392 1393 auto restore_mem = llvm::make_scope_exit( 1394 [&] { WriteMemory(exe_addr, memory.data(), memory.size(), bytes_read); }); 1395 1396 if (llvm::Error Err = reg_ctx.SetPC(exe_addr).ToError()) 1397 return std::move(Err); 1398 1399 for (const auto &zip : llvm::zip_first(args, syscall_data.Args)) { 1400 if (llvm::Error Err = 1401 reg_ctx 1402 .WriteRegisterFromUnsigned(std::get<1>(zip), std::get<0>(zip)) 1403 .ToError()) { 1404 return std::move(Err); 1405 } 1406 } 1407 if (llvm::Error Err = WriteMemory(exe_addr, syscall_data.Insn.data(), 1408 syscall_data.Insn.size(), bytes_read) 1409 .ToError()) 1410 return std::move(Err); 1411 1412 m_mem_region_cache.clear(); 1413 1414 // With software single stepping the syscall insn buffer must also include a 1415 // trap instruction to stop the process. 1416 int req = SupportHardwareSingleStepping() ? PTRACE_SINGLESTEP : PTRACE_CONT; 1417 if (llvm::Error Err = 1418 PtraceWrapper(req, thread.GetID(), nullptr, nullptr).ToError()) 1419 return std::move(Err); 1420 1421 int status; 1422 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, thread.GetID(), 1423 &status, __WALL); 1424 if (wait_pid == -1) { 1425 return llvm::errorCodeToError( 1426 std::error_code(errno, std::generic_category())); 1427 } 1428 assert((unsigned)wait_pid == thread.GetID()); 1429 1430 uint64_t result = reg_ctx.ReadRegisterAsUnsigned(syscall_data.Result, -ESRCH); 1431 1432 // Values larger than this are actually negative errno numbers. 1433 uint64_t errno_threshold = 1434 (uint64_t(-1) >> (64 - 8 * m_arch.GetAddressByteSize())) - 0x1000; 1435 if (result > errno_threshold) { 1436 return llvm::errorCodeToError( 1437 std::error_code(-result & 0xfff, std::generic_category())); 1438 } 1439 1440 return result; 1441 } 1442 1443 llvm::Expected<addr_t> 1444 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions) { 1445 1446 llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data = 1447 GetCurrentThread()->GetRegisterContext().GetMmapData(); 1448 if (!mmap_data) 1449 return llvm::make_error<UnimplementedError>(); 1450 1451 unsigned prot = PROT_NONE; 1452 assert((permissions & (ePermissionsReadable | ePermissionsWritable | 1453 ePermissionsExecutable)) == permissions && 1454 "Unknown permission!"); 1455 if (permissions & ePermissionsReadable) 1456 prot |= PROT_READ; 1457 if (permissions & ePermissionsWritable) 1458 prot |= PROT_WRITE; 1459 if (permissions & ePermissionsExecutable) 1460 prot |= PROT_EXEC; 1461 1462 llvm::Expected<uint64_t> Result = 1463 Syscall({mmap_data->SysMmap, 0, size, prot, MAP_ANONYMOUS | MAP_PRIVATE, 1464 uint64_t(-1), 0}); 1465 if (Result) 1466 m_allocated_memory.try_emplace(*Result, size); 1467 return Result; 1468 } 1469 1470 llvm::Error NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) { 1471 llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data = 1472 GetCurrentThread()->GetRegisterContext().GetMmapData(); 1473 if (!mmap_data) 1474 return llvm::make_error<UnimplementedError>(); 1475 1476 auto it = m_allocated_memory.find(addr); 1477 if (it == m_allocated_memory.end()) 1478 return llvm::createStringError(llvm::errc::invalid_argument, 1479 "Memory not allocated by the debugger."); 1480 1481 llvm::Expected<uint64_t> Result = 1482 Syscall({mmap_data->SysMunmap, addr, it->second}); 1483 if (!Result) 1484 return Result.takeError(); 1485 1486 m_allocated_memory.erase(it); 1487 return llvm::Error::success(); 1488 } 1489 1490 size_t NativeProcessLinux::UpdateThreads() { 1491 // The NativeProcessLinux monitoring threads are always up to date with 1492 // respect to thread state and they keep the thread list populated properly. 1493 // All this method needs to do is return the thread count. 1494 return m_threads.size(); 1495 } 1496 1497 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size, 1498 bool hardware) { 1499 if (hardware) 1500 return SetHardwareBreakpoint(addr, size); 1501 else 1502 return SetSoftwareBreakpoint(addr, size); 1503 } 1504 1505 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) { 1506 if (hardware) 1507 return RemoveHardwareBreakpoint(addr); 1508 else 1509 return NativeProcessProtocol::RemoveBreakpoint(addr); 1510 } 1511 1512 llvm::Expected<llvm::ArrayRef<uint8_t>> 1513 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(size_t size_hint) { 1514 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 1515 // linux kernel does otherwise. 1516 static const uint8_t g_arm_opcode[] = {0xf0, 0x01, 0xf0, 0xe7}; 1517 static const uint8_t g_thumb_opcode[] = {0x01, 0xde}; 1518 1519 switch (GetArchitecture().GetMachine()) { 1520 case llvm::Triple::arm: 1521 switch (size_hint) { 1522 case 2: 1523 return llvm::makeArrayRef(g_thumb_opcode); 1524 case 4: 1525 return llvm::makeArrayRef(g_arm_opcode); 1526 default: 1527 return llvm::createStringError(llvm::inconvertibleErrorCode(), 1528 "Unrecognised trap opcode size hint!"); 1529 } 1530 default: 1531 return NativeProcessProtocol::GetSoftwareBreakpointTrapOpcode(size_hint); 1532 } 1533 } 1534 1535 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size, 1536 size_t &bytes_read) { 1537 if (ProcessVmReadvSupported()) { 1538 // The process_vm_readv path is about 50 times faster than ptrace api. We 1539 // want to use this syscall if it is supported. 1540 1541 const ::pid_t pid = GetID(); 1542 1543 struct iovec local_iov, remote_iov; 1544 local_iov.iov_base = buf; 1545 local_iov.iov_len = size; 1546 remote_iov.iov_base = reinterpret_cast<void *>(addr); 1547 remote_iov.iov_len = size; 1548 1549 bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0); 1550 const bool success = bytes_read == size; 1551 1552 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1553 LLDB_LOG(log, 1554 "using process_vm_readv to read {0} bytes from inferior " 1555 "address {1:x}: {2}", 1556 size, addr, success ? "Success" : llvm::sys::StrError(errno)); 1557 1558 if (success) 1559 return Status(); 1560 // else the call failed for some reason, let's retry the read using ptrace 1561 // api. 1562 } 1563 1564 unsigned char *dst = static_cast<unsigned char *>(buf); 1565 size_t remainder; 1566 long data; 1567 1568 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1569 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1570 1571 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { 1572 Status error = NativeProcessLinux::PtraceWrapper( 1573 PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data); 1574 if (error.Fail()) 1575 return error; 1576 1577 remainder = size - bytes_read; 1578 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1579 1580 // Copy the data into our buffer 1581 memcpy(dst, &data, remainder); 1582 1583 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1584 addr += k_ptrace_word_size; 1585 dst += k_ptrace_word_size; 1586 } 1587 return Status(); 1588 } 1589 1590 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, 1591 size_t size, size_t &bytes_written) { 1592 const unsigned char *src = static_cast<const unsigned char *>(buf); 1593 size_t remainder; 1594 Status error; 1595 1596 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1597 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1598 1599 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { 1600 remainder = size - bytes_written; 1601 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1602 1603 if (remainder == k_ptrace_word_size) { 1604 unsigned long data = 0; 1605 memcpy(&data, src, k_ptrace_word_size); 1606 1607 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1608 error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), 1609 (void *)addr, (void *)data); 1610 if (error.Fail()) 1611 return error; 1612 } else { 1613 unsigned char buff[8]; 1614 size_t bytes_read; 1615 error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read); 1616 if (error.Fail()) 1617 return error; 1618 1619 memcpy(buff, src, remainder); 1620 1621 size_t bytes_written_rec; 1622 error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec); 1623 if (error.Fail()) 1624 return error; 1625 1626 LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src, 1627 *(unsigned long *)buff); 1628 } 1629 1630 addr += k_ptrace_word_size; 1631 src += k_ptrace_word_size; 1632 } 1633 return error; 1634 } 1635 1636 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) { 1637 return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); 1638 } 1639 1640 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid, 1641 unsigned long *message) { 1642 return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); 1643 } 1644 1645 Status NativeProcessLinux::Detach(lldb::tid_t tid) { 1646 if (tid == LLDB_INVALID_THREAD_ID) 1647 return Status(); 1648 1649 return PtraceWrapper(PTRACE_DETACH, tid); 1650 } 1651 1652 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) { 1653 for (const auto &thread : m_threads) { 1654 assert(thread && "thread list should not contain NULL threads"); 1655 if (thread->GetID() == thread_id) { 1656 // We have this thread. 1657 return true; 1658 } 1659 } 1660 1661 // We don't have this thread. 1662 return false; 1663 } 1664 1665 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) { 1666 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1667 LLDB_LOG(log, "tid: {0})", thread_id); 1668 1669 bool found = false; 1670 for (auto it = m_threads.begin(); it != m_threads.end(); ++it) { 1671 if (*it && ((*it)->GetID() == thread_id)) { 1672 m_threads.erase(it); 1673 found = true; 1674 break; 1675 } 1676 } 1677 1678 if (found) 1679 StopTracingForThread(thread_id); 1680 SignalIfAllThreadsStopped(); 1681 return found; 1682 } 1683 1684 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id) { 1685 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD)); 1686 LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id); 1687 1688 assert(!HasThreadNoLock(thread_id) && 1689 "attempted to add a thread by id that already exists"); 1690 1691 // If this is the first thread, save it as the current thread 1692 if (m_threads.empty()) 1693 SetCurrentThreadID(thread_id); 1694 1695 m_threads.push_back(std::make_unique<NativeThreadLinux>(*this, thread_id)); 1696 1697 if (m_pt_proces_trace_id != LLDB_INVALID_UID) { 1698 auto traceMonitor = ProcessorTraceMonitor::Create( 1699 GetID(), thread_id, m_pt_process_trace_config, true); 1700 if (traceMonitor) { 1701 m_pt_traced_thread_group.insert(thread_id); 1702 m_processor_trace_monitor.insert( 1703 std::make_pair(thread_id, std::move(*traceMonitor))); 1704 } else { 1705 LLDB_LOG(log, "failed to start trace on thread {0}", thread_id); 1706 Status error(traceMonitor.takeError()); 1707 LLDB_LOG(log, "error {0}", error); 1708 } 1709 } 1710 1711 return static_cast<NativeThreadLinux &>(*m_threads.back()); 1712 } 1713 1714 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path, 1715 FileSpec &file_spec) { 1716 Status error = PopulateMemoryRegionCache(); 1717 if (error.Fail()) 1718 return error; 1719 1720 FileSpec module_file_spec(module_path); 1721 FileSystem::Instance().Resolve(module_file_spec); 1722 1723 file_spec.Clear(); 1724 for (const auto &it : m_mem_region_cache) { 1725 if (it.second.GetFilename() == module_file_spec.GetFilename()) { 1726 file_spec = it.second; 1727 return Status(); 1728 } 1729 } 1730 return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 1731 module_file_spec.GetFilename().AsCString(), GetID()); 1732 } 1733 1734 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name, 1735 lldb::addr_t &load_addr) { 1736 load_addr = LLDB_INVALID_ADDRESS; 1737 Status error = PopulateMemoryRegionCache(); 1738 if (error.Fail()) 1739 return error; 1740 1741 FileSpec file(file_name); 1742 for (const auto &it : m_mem_region_cache) { 1743 if (it.second == file) { 1744 load_addr = it.first.GetRange().GetRangeBase(); 1745 return Status(); 1746 } 1747 } 1748 return Status("No load address found for specified file."); 1749 } 1750 1751 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) { 1752 return static_cast<NativeThreadLinux *>( 1753 NativeProcessProtocol::GetThreadByID(tid)); 1754 } 1755 1756 NativeThreadLinux *NativeProcessLinux::GetCurrentThread() { 1757 return static_cast<NativeThreadLinux *>( 1758 NativeProcessProtocol::GetCurrentThread()); 1759 } 1760 1761 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, 1762 lldb::StateType state, int signo) { 1763 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1764 LLDB_LOG(log, "tid: {0}", thread.GetID()); 1765 1766 // Before we do the resume below, first check if we have a pending stop 1767 // notification that is currently waiting for all threads to stop. This is 1768 // potentially a buggy situation since we're ostensibly waiting for threads 1769 // to stop before we send out the pending notification, and here we are 1770 // resuming one before we send out the pending stop notification. 1771 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 1772 LLDB_LOG(log, 1773 "about to resume tid {0} per explicit request but we have a " 1774 "pending stop notification (tid {1}) that is actively " 1775 "waiting for this thread to stop. Valid sequence of events?", 1776 thread.GetID(), m_pending_notification_tid); 1777 } 1778 1779 // Request a resume. We expect this to be synchronous and the system to 1780 // reflect it is running after this completes. 1781 switch (state) { 1782 case eStateRunning: { 1783 const auto resume_result = thread.Resume(signo); 1784 if (resume_result.Success()) 1785 SetState(eStateRunning, true); 1786 return resume_result; 1787 } 1788 case eStateStepping: { 1789 const auto step_result = thread.SingleStep(signo); 1790 if (step_result.Success()) 1791 SetState(eStateRunning, true); 1792 return step_result; 1793 } 1794 default: 1795 LLDB_LOG(log, "Unhandled state {0}.", state); 1796 llvm_unreachable("Unhandled state for resume"); 1797 } 1798 } 1799 1800 //===----------------------------------------------------------------------===// 1801 1802 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) { 1803 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1804 LLDB_LOG(log, "about to process event: (triggering_tid: {0})", 1805 triggering_tid); 1806 1807 m_pending_notification_tid = triggering_tid; 1808 1809 // Request a stop for all the thread stops that need to be stopped and are 1810 // not already known to be stopped. 1811 for (const auto &thread : m_threads) { 1812 if (StateIsRunningState(thread->GetState())) 1813 static_cast<NativeThreadLinux *>(thread.get())->RequestStop(); 1814 } 1815 1816 SignalIfAllThreadsStopped(); 1817 LLDB_LOG(log, "event processing done"); 1818 } 1819 1820 void NativeProcessLinux::SignalIfAllThreadsStopped() { 1821 if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) 1822 return; // No pending notification. Nothing to do. 1823 1824 for (const auto &thread_sp : m_threads) { 1825 if (StateIsRunningState(thread_sp->GetState())) 1826 return; // Some threads are still running. Don't signal yet. 1827 } 1828 1829 // We have a pending notification and all threads have stopped. 1830 Log *log( 1831 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 1832 1833 // Clear any temporary breakpoints we used to implement software single 1834 // stepping. 1835 for (const auto &thread_info : m_threads_stepping_with_breakpoint) { 1836 Status error = RemoveBreakpoint(thread_info.second); 1837 if (error.Fail()) 1838 LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}", 1839 thread_info.first, error); 1840 } 1841 m_threads_stepping_with_breakpoint.clear(); 1842 1843 // Notify the delegate about the stop 1844 SetCurrentThreadID(m_pending_notification_tid); 1845 SetState(StateType::eStateStopped, true); 1846 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 1847 } 1848 1849 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) { 1850 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1851 LLDB_LOG(log, "tid: {0}", thread.GetID()); 1852 1853 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && 1854 StateIsRunningState(thread.GetState())) { 1855 // We will need to wait for this new thread to stop as well before firing 1856 // the notification. 1857 thread.RequestStop(); 1858 } 1859 } 1860 1861 void NativeProcessLinux::SigchldHandler() { 1862 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1863 // Process all pending waitpid notifications. 1864 while (true) { 1865 int status = -1; 1866 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, -1, &status, 1867 __WALL | __WNOTHREAD | WNOHANG); 1868 1869 if (wait_pid == 0) 1870 break; // We are done. 1871 1872 if (wait_pid == -1) { 1873 Status error(errno, eErrorTypePOSIX); 1874 LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error); 1875 break; 1876 } 1877 1878 WaitStatus wait_status = WaitStatus::Decode(status); 1879 bool exited = wait_status.type == WaitStatus::Exit || 1880 (wait_status.type == WaitStatus::Signal && 1881 wait_pid == static_cast<::pid_t>(GetID())); 1882 1883 LLDB_LOG( 1884 log, 1885 "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}", 1886 wait_pid, wait_status, exited); 1887 1888 MonitorCallback(wait_pid, exited, wait_status); 1889 } 1890 } 1891 1892 // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets 1893 // errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) 1894 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, 1895 void *data, size_t data_size, 1896 long *result) { 1897 Status error; 1898 long int ret; 1899 1900 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 1901 1902 PtraceDisplayBytes(req, data, data_size); 1903 1904 errno = 0; 1905 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 1906 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 1907 *(unsigned int *)addr, data); 1908 else 1909 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 1910 addr, data); 1911 1912 if (ret == -1) 1913 error.SetErrorToErrno(); 1914 1915 if (result) 1916 *result = ret; 1917 1918 LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data, 1919 data_size, ret); 1920 1921 PtraceDisplayBytes(req, data, data_size); 1922 1923 if (error.Fail()) 1924 LLDB_LOG(log, "ptrace() failed: {0}", error); 1925 1926 return error; 1927 } 1928 1929 llvm::Expected<ProcessorTraceMonitor &> 1930 NativeProcessLinux::LookupProcessorTraceInstance(lldb::user_id_t traceid, 1931 lldb::tid_t thread) { 1932 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 1933 if (thread == LLDB_INVALID_THREAD_ID && traceid == m_pt_proces_trace_id) { 1934 LLDB_LOG(log, "thread not specified: {0}", traceid); 1935 return Status("tracing not active thread not specified").ToError(); 1936 } 1937 1938 for (auto& iter : m_processor_trace_monitor) { 1939 if (traceid == iter.second->GetTraceID() && 1940 (thread == iter.first || thread == LLDB_INVALID_THREAD_ID)) 1941 return *(iter.second); 1942 } 1943 1944 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 1945 return Status("tracing not active for this thread").ToError(); 1946 } 1947 1948 Status NativeProcessLinux::GetMetaData(lldb::user_id_t traceid, 1949 lldb::tid_t thread, 1950 llvm::MutableArrayRef<uint8_t> &buffer, 1951 size_t offset) { 1952 TraceOptions trace_options; 1953 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 1954 Status error; 1955 1956 LLDB_LOG(log, "traceid {0}", traceid); 1957 1958 auto perf_monitor = LookupProcessorTraceInstance(traceid, thread); 1959 if (!perf_monitor) { 1960 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 1961 buffer = buffer.slice(buffer.size()); 1962 error = perf_monitor.takeError(); 1963 return error; 1964 } 1965 return (*perf_monitor).ReadPerfTraceData(buffer, offset); 1966 } 1967 1968 Status NativeProcessLinux::GetData(lldb::user_id_t traceid, lldb::tid_t thread, 1969 llvm::MutableArrayRef<uint8_t> &buffer, 1970 size_t offset) { 1971 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 1972 Status error; 1973 1974 LLDB_LOG(log, "traceid {0}", traceid); 1975 1976 auto perf_monitor = LookupProcessorTraceInstance(traceid, thread); 1977 if (!perf_monitor) { 1978 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 1979 buffer = buffer.slice(buffer.size()); 1980 error = perf_monitor.takeError(); 1981 return error; 1982 } 1983 return (*perf_monitor).ReadPerfTraceAux(buffer, offset); 1984 } 1985 1986 Status NativeProcessLinux::GetTraceConfig(lldb::user_id_t traceid, 1987 TraceOptions &config) { 1988 Status error; 1989 if (config.getThreadID() == LLDB_INVALID_THREAD_ID && 1990 m_pt_proces_trace_id == traceid) { 1991 if (m_pt_proces_trace_id == LLDB_INVALID_UID) { 1992 error.SetErrorString("tracing not active for this process"); 1993 return error; 1994 } 1995 config = m_pt_process_trace_config; 1996 } else { 1997 auto perf_monitor = 1998 LookupProcessorTraceInstance(traceid, config.getThreadID()); 1999 if (!perf_monitor) { 2000 error = perf_monitor.takeError(); 2001 return error; 2002 } 2003 error = (*perf_monitor).GetTraceConfig(config); 2004 } 2005 return error; 2006 } 2007 2008 llvm::Expected<TraceTypeInfo> NativeProcessLinux::GetSupportedTraceType() { 2009 if (ProcessorTraceMonitor::IsSupported()) 2010 return TraceTypeInfo{"intel-pt", "Intel Processor Trace"}; 2011 return NativeProcessProtocol::GetSupportedTraceType(); 2012 } 2013 2014 lldb::user_id_t 2015 NativeProcessLinux::StartTraceGroup(const TraceOptions &config, 2016 Status &error) { 2017 2018 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2019 if (config.getType() != TraceType::eTraceTypeProcessorTrace) 2020 return LLDB_INVALID_UID; 2021 2022 if (m_pt_proces_trace_id != LLDB_INVALID_UID) { 2023 error.SetErrorString("tracing already active on this process"); 2024 return m_pt_proces_trace_id; 2025 } 2026 2027 for (const auto &thread_sp : m_threads) { 2028 if (auto traceInstance = ProcessorTraceMonitor::Create( 2029 GetID(), thread_sp->GetID(), config, true)) { 2030 m_pt_traced_thread_group.insert(thread_sp->GetID()); 2031 m_processor_trace_monitor.insert( 2032 std::make_pair(thread_sp->GetID(), std::move(*traceInstance))); 2033 } 2034 } 2035 2036 m_pt_process_trace_config = config; 2037 error = ProcessorTraceMonitor::GetCPUType(m_pt_process_trace_config); 2038 2039 // Trace on Complete process will have traceid of 0 2040 m_pt_proces_trace_id = 0; 2041 2042 LLDB_LOG(log, "Process Trace ID {0}", m_pt_proces_trace_id); 2043 return m_pt_proces_trace_id; 2044 } 2045 2046 lldb::user_id_t NativeProcessLinux::StartTrace(const TraceOptions &config, 2047 Status &error) { 2048 if (config.getType() != TraceType::eTraceTypeProcessorTrace) 2049 return NativeProcessProtocol::StartTrace(config, error); 2050 2051 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2052 2053 lldb::tid_t threadid = config.getThreadID(); 2054 2055 if (threadid == LLDB_INVALID_THREAD_ID) 2056 return StartTraceGroup(config, error); 2057 2058 auto thread_sp = GetThreadByID(threadid); 2059 if (!thread_sp) { 2060 // Thread not tracked by lldb so don't trace. 2061 error.SetErrorString("invalid thread id"); 2062 return LLDB_INVALID_UID; 2063 } 2064 2065 const auto &iter = m_processor_trace_monitor.find(threadid); 2066 if (iter != m_processor_trace_monitor.end()) { 2067 LLDB_LOG(log, "Thread already being traced"); 2068 error.SetErrorString("tracing already active on this thread"); 2069 return LLDB_INVALID_UID; 2070 } 2071 2072 auto traceMonitor = 2073 ProcessorTraceMonitor::Create(GetID(), threadid, config, false); 2074 if (!traceMonitor) { 2075 error = traceMonitor.takeError(); 2076 LLDB_LOG(log, "error {0}", error); 2077 return LLDB_INVALID_UID; 2078 } 2079 lldb::user_id_t ret_trace_id = (*traceMonitor)->GetTraceID(); 2080 m_processor_trace_monitor.insert( 2081 std::make_pair(threadid, std::move(*traceMonitor))); 2082 return ret_trace_id; 2083 } 2084 2085 Status NativeProcessLinux::StopTracingForThread(lldb::tid_t thread) { 2086 Status error; 2087 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2088 LLDB_LOG(log, "Thread {0}", thread); 2089 2090 const auto& iter = m_processor_trace_monitor.find(thread); 2091 if (iter == m_processor_trace_monitor.end()) { 2092 error.SetErrorString("tracing not active for this thread"); 2093 return error; 2094 } 2095 2096 if (iter->second->GetTraceID() == m_pt_proces_trace_id) { 2097 // traceid maps to the whole process so we have to erase it from the thread 2098 // group. 2099 LLDB_LOG(log, "traceid maps to process"); 2100 m_pt_traced_thread_group.erase(thread); 2101 } 2102 m_processor_trace_monitor.erase(iter); 2103 2104 return error; 2105 } 2106 2107 Status NativeProcessLinux::StopTrace(lldb::user_id_t traceid, 2108 lldb::tid_t thread) { 2109 Status error; 2110 2111 TraceOptions trace_options; 2112 trace_options.setThreadID(thread); 2113 error = NativeProcessLinux::GetTraceConfig(traceid, trace_options); 2114 2115 if (error.Fail()) 2116 return error; 2117 2118 switch (trace_options.getType()) { 2119 case lldb::TraceType::eTraceTypeProcessorTrace: 2120 if (traceid == m_pt_proces_trace_id && 2121 thread == LLDB_INVALID_THREAD_ID) 2122 StopProcessorTracingOnProcess(); 2123 else 2124 error = StopProcessorTracingOnThread(traceid, thread); 2125 break; 2126 default: 2127 error.SetErrorString("trace not supported"); 2128 break; 2129 } 2130 2131 return error; 2132 } 2133 2134 void NativeProcessLinux::StopProcessorTracingOnProcess() { 2135 for (auto thread_id_iter : m_pt_traced_thread_group) 2136 m_processor_trace_monitor.erase(thread_id_iter); 2137 m_pt_traced_thread_group.clear(); 2138 m_pt_proces_trace_id = LLDB_INVALID_UID; 2139 } 2140 2141 Status NativeProcessLinux::StopProcessorTracingOnThread(lldb::user_id_t traceid, 2142 lldb::tid_t thread) { 2143 Status error; 2144 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2145 2146 if (thread == LLDB_INVALID_THREAD_ID) { 2147 for (auto& iter : m_processor_trace_monitor) { 2148 if (iter.second->GetTraceID() == traceid) { 2149 // Stopping a trace instance for an individual thread hence there will 2150 // only be one traceid that can match. 2151 m_processor_trace_monitor.erase(iter.first); 2152 return error; 2153 } 2154 LLDB_LOG(log, "Trace ID {0}", iter.second->GetTraceID()); 2155 } 2156 2157 LLDB_LOG(log, "Invalid TraceID"); 2158 error.SetErrorString("invalid trace id"); 2159 return error; 2160 } 2161 2162 // thread is specified so we can use find function on the map. 2163 const auto& iter = m_processor_trace_monitor.find(thread); 2164 if (iter == m_processor_trace_monitor.end()) { 2165 // thread not found in our map. 2166 LLDB_LOG(log, "thread not being traced"); 2167 error.SetErrorString("tracing not active for this thread"); 2168 return error; 2169 } 2170 if (iter->second->GetTraceID() != traceid) { 2171 // traceid did not match so it has to be invalid. 2172 LLDB_LOG(log, "Invalid TraceID"); 2173 error.SetErrorString("invalid trace id"); 2174 return error; 2175 } 2176 2177 LLDB_LOG(log, "UID - {0} , Thread -{1}", traceid, thread); 2178 2179 if (traceid == m_pt_proces_trace_id) { 2180 // traceid maps to the whole process so we have to erase it from the thread 2181 // group. 2182 LLDB_LOG(log, "traceid maps to process"); 2183 m_pt_traced_thread_group.erase(thread); 2184 } 2185 m_processor_trace_monitor.erase(iter); 2186 2187 return error; 2188 } 2189