1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/lldb-python.h" 11 12 #include "NativeProcessLinux.h" 13 14 // C Includes 15 #include <errno.h> 16 #include <poll.h> 17 #include <string.h> 18 #include <stdint.h> 19 #include <unistd.h> 20 #include <linux/unistd.h> 21 #if defined(__ANDROID_NDK__) && defined (__arm__) 22 #include <linux/personality.h> 23 #include <linux/user.h> 24 #else 25 #include <sys/personality.h> 26 #include <sys/user.h> 27 #endif 28 #ifndef __ANDROID__ 29 #include <sys/procfs.h> 30 #endif 31 #include <sys/ptrace.h> 32 #include <sys/uio.h> 33 #include <sys/socket.h> 34 #include <sys/syscall.h> 35 #include <sys/types.h> 36 #include <sys/wait.h> 37 38 #if defined (__arm64__) || defined (__aarch64__) 39 // NT_PRSTATUS and NT_FPREGSET definition 40 #include <elf.h> 41 #endif 42 43 // C++ Includes 44 #include <fstream> 45 #include <string> 46 47 // Other libraries and framework includes 48 #include "lldb/Core/Debugger.h" 49 #include "lldb/Core/Error.h" 50 #include "lldb/Core/Module.h" 51 #include "lldb/Core/ModuleSpec.h" 52 #include "lldb/Core/RegisterValue.h" 53 #include "lldb/Core/Scalar.h" 54 #include "lldb/Core/State.h" 55 #include "lldb/Host/Host.h" 56 #include "lldb/Host/HostInfo.h" 57 #include "lldb/Host/ThreadLauncher.h" 58 #include "lldb/Symbol/ObjectFile.h" 59 #include "lldb/Host/common/NativeRegisterContext.h" 60 #include "lldb/Target/ProcessLaunchInfo.h" 61 #include "lldb/Utility/PseudoTerminal.h" 62 63 #include "lldb/Host/common/NativeBreakpoint.h" 64 #include "Utility/StringExtractor.h" 65 66 #include "Plugins/Process/Utility/LinuxSignals.h" 67 #include "NativeThreadLinux.h" 68 #include "ProcFileReader.h" 69 #include "ThreadStateCoordinator.h" 70 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 71 72 #ifdef __ANDROID__ 73 #define __ptrace_request int 74 #define PT_DETACH PTRACE_DETACH 75 #endif 76 77 #define DEBUG_PTRACE_MAXBYTES 20 78 79 // Support ptrace extensions even when compiled without required kernel support 80 #ifndef PT_GETREGS 81 #ifndef PTRACE_GETREGS 82 #define PTRACE_GETREGS 12 83 #endif 84 #endif 85 #ifndef PT_SETREGS 86 #ifndef PTRACE_SETREGS 87 #define PTRACE_SETREGS 13 88 #endif 89 #endif 90 #ifndef PT_GETFPREGS 91 #ifndef PTRACE_GETFPREGS 92 #define PTRACE_GETFPREGS 14 93 #endif 94 #endif 95 #ifndef PT_SETFPREGS 96 #ifndef PTRACE_SETFPREGS 97 #define PTRACE_SETFPREGS 15 98 #endif 99 #endif 100 #ifndef PTRACE_GETREGSET 101 #define PTRACE_GETREGSET 0x4204 102 #endif 103 #ifndef PTRACE_SETREGSET 104 #define PTRACE_SETREGSET 0x4205 105 #endif 106 #ifndef PTRACE_GET_THREAD_AREA 107 #define PTRACE_GET_THREAD_AREA 25 108 #endif 109 #ifndef PTRACE_ARCH_PRCTL 110 #define PTRACE_ARCH_PRCTL 30 111 #endif 112 #ifndef ARCH_GET_FS 113 #define ARCH_SET_GS 0x1001 114 #define ARCH_SET_FS 0x1002 115 #define ARCH_GET_FS 0x1003 116 #define ARCH_GET_GS 0x1004 117 #endif 118 119 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS 0xffffffff 120 121 // Support hardware breakpoints in case it has not been defined 122 #ifndef TRAP_HWBKPT 123 #define TRAP_HWBKPT 4 124 #endif 125 126 // Try to define a macro to encapsulate the tgkill syscall 127 // fall back on kill() if tgkill isn't available 128 #define tgkill(pid, tid, sig) syscall(SYS_tgkill, pid, tid, sig) 129 130 // We disable the tracing of ptrace calls for integration builds to 131 // avoid the additional indirection and checks. 132 #ifndef LLDB_CONFIGURATION_BUILDANDINTEGRATION 133 #define PTRACE(req, pid, addr, data, data_size, error) \ 134 PtraceWrapper((req), (pid), (addr), (data), (data_size), (error), #req, __FILE__, __LINE__) 135 #else 136 #define PTRACE(req, pid, addr, data, data_size, error) \ 137 PtraceWrapper((req), (pid), (addr), (data), (data_size), (error)) 138 #endif 139 140 // Private bits we only need internally. 141 namespace 142 { 143 using namespace lldb; 144 using namespace lldb_private; 145 146 const UnixSignals& 147 GetUnixSignals () 148 { 149 static process_linux::LinuxSignals signals; 150 return signals; 151 } 152 153 ThreadStateCoordinator::LogFunction 154 GetThreadLoggerFunction () 155 { 156 return [](const char *format, va_list args) 157 { 158 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 159 if (log) 160 log->VAPrintf (format, args); 161 }; 162 } 163 164 void 165 CoordinatorErrorHandler (const std::string &error_message) 166 { 167 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 168 if (log) 169 log->Printf ("NativeProcessLinux::%s %s", __FUNCTION__, error_message.c_str ()); 170 assert (false && "ThreadStateCoordinator error reported"); 171 } 172 173 Error 174 ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch) 175 { 176 // Grab process info for the running process. 177 ProcessInstanceInfo process_info; 178 if (!platform.GetProcessInfo (pid, process_info)) 179 return lldb_private::Error("failed to get process info"); 180 181 // Resolve the executable module. 182 ModuleSP exe_module_sp; 183 ModuleSpec exe_module_spec(process_info.GetExecutableFile(), platform.GetSystemArchitecture ()); 184 FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ()); 185 Error error = platform.ResolveExecutable( 186 exe_module_spec, 187 exe_module_sp, 188 executable_search_paths.GetSize () ? &executable_search_paths : NULL); 189 190 if (!error.Success ()) 191 return error; 192 193 // Check if we've got our architecture from the exe_module. 194 arch = exe_module_sp->GetArchitecture (); 195 if (arch.IsValid ()) 196 return Error(); 197 else 198 return Error("failed to retrieve a valid architecture from the exe module"); 199 } 200 201 void 202 DisplayBytes (lldb_private::StreamString &s, void *bytes, uint32_t count) 203 { 204 uint8_t *ptr = (uint8_t *)bytes; 205 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 206 for(uint32_t i=0; i<loop_count; i++) 207 { 208 s.Printf ("[%x]", *ptr); 209 ptr++; 210 } 211 } 212 213 void 214 PtraceDisplayBytes(int &req, void *data, size_t data_size) 215 { 216 StreamString buf; 217 Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet ( 218 POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE)); 219 220 if (verbose_log) 221 { 222 switch(req) 223 { 224 case PTRACE_POKETEXT: 225 { 226 DisplayBytes(buf, &data, 8); 227 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData()); 228 break; 229 } 230 case PTRACE_POKEDATA: 231 { 232 DisplayBytes(buf, &data, 8); 233 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData()); 234 break; 235 } 236 case PTRACE_POKEUSER: 237 { 238 DisplayBytes(buf, &data, 8); 239 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData()); 240 break; 241 } 242 case PTRACE_SETREGS: 243 { 244 DisplayBytes(buf, data, data_size); 245 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData()); 246 break; 247 } 248 case PTRACE_SETFPREGS: 249 { 250 DisplayBytes(buf, data, data_size); 251 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData()); 252 break; 253 } 254 case PTRACE_SETSIGINFO: 255 { 256 DisplayBytes(buf, data, sizeof(siginfo_t)); 257 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData()); 258 break; 259 } 260 case PTRACE_SETREGSET: 261 { 262 // Extract iov_base from data, which is a pointer to the struct IOVEC 263 DisplayBytes(buf, *(void **)data, data_size); 264 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData()); 265 break; 266 } 267 default: 268 { 269 } 270 } 271 } 272 } 273 274 // Wrapper for ptrace to catch errors and log calls. 275 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) 276 long 277 PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error, 278 const char* reqName, const char* file, int line) 279 { 280 long int result; 281 282 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE)); 283 284 PtraceDisplayBytes(req, data, data_size); 285 286 error.Clear(); 287 errno = 0; 288 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 289 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data); 290 else 291 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data); 292 293 if (result == -1) 294 error.SetErrorToErrno(); 295 296 if (log) 297 log->Printf("ptrace(%s, %" PRIu64 ", %p, %p, %zu)=%lX called from file %s line %d", 298 reqName, pid, addr, data, data_size, result, file, line); 299 300 PtraceDisplayBytes(req, data, data_size); 301 302 if (log && error.GetError() != 0) 303 { 304 const char* str; 305 switch (error.GetError()) 306 { 307 case ESRCH: str = "ESRCH"; break; 308 case EINVAL: str = "EINVAL"; break; 309 case EBUSY: str = "EBUSY"; break; 310 case EPERM: str = "EPERM"; break; 311 default: str = error.AsCString(); 312 } 313 log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str); 314 } 315 316 return result; 317 } 318 319 #ifdef LLDB_CONFIGURATION_BUILDANDINTEGRATION 320 // Wrapper for ptrace when logging is not required. 321 // Sets errno to 0 prior to calling ptrace. 322 long 323 PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error) 324 { 325 long result = 0; 326 327 error.Clear(); 328 errno = 0; 329 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 330 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data); 331 else 332 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data); 333 334 if (result == -1) 335 error.SetErrorToErrno(); 336 return result; 337 } 338 #endif 339 340 //------------------------------------------------------------------------------ 341 // Static implementations of NativeProcessLinux::ReadMemory and 342 // NativeProcessLinux::WriteMemory. This enables mutual recursion between these 343 // functions without needed to go thru the thread funnel. 344 345 lldb::addr_t 346 DoReadMemory ( 347 lldb::pid_t pid, 348 lldb::addr_t vm_addr, 349 void *buf, 350 lldb::addr_t size, 351 Error &error) 352 { 353 // ptrace word size is determined by the host, not the child 354 static const unsigned word_size = sizeof(void*); 355 unsigned char *dst = static_cast<unsigned char*>(buf); 356 lldb::addr_t bytes_read; 357 lldb::addr_t remainder; 358 long data; 359 360 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); 361 if (log) 362 ProcessPOSIXLog::IncNestLevel(); 363 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) 364 log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__, 365 pid, word_size, (void*)vm_addr, buf, size); 366 367 assert(sizeof(data) >= word_size); 368 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) 369 { 370 data = PTRACE(PTRACE_PEEKDATA, pid, (void*)vm_addr, nullptr, 0, error); 371 if (error.Fail()) 372 { 373 if (log) 374 ProcessPOSIXLog::DecNestLevel(); 375 return bytes_read; 376 } 377 378 remainder = size - bytes_read; 379 remainder = remainder > word_size ? word_size : remainder; 380 381 // Copy the data into our buffer 382 for (unsigned i = 0; i < remainder; ++i) 383 dst[i] = ((data >> i*8) & 0xFF); 384 385 if (log && ProcessPOSIXLog::AtTopNestLevel() && 386 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 387 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 388 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 389 { 390 uintptr_t print_dst = 0; 391 // Format bytes from data by moving into print_dst for log output 392 for (unsigned i = 0; i < remainder; ++i) 393 print_dst |= (((data >> i*8) & 0xFF) << i*8); 394 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 395 (void*)vm_addr, print_dst, (unsigned long)data); 396 } 397 398 vm_addr += word_size; 399 dst += word_size; 400 } 401 402 if (log) 403 ProcessPOSIXLog::DecNestLevel(); 404 return bytes_read; 405 } 406 407 lldb::addr_t 408 DoWriteMemory( 409 lldb::pid_t pid, 410 lldb::addr_t vm_addr, 411 const void *buf, 412 lldb::addr_t size, 413 Error &error) 414 { 415 // ptrace word size is determined by the host, not the child 416 static const unsigned word_size = sizeof(void*); 417 const unsigned char *src = static_cast<const unsigned char*>(buf); 418 lldb::addr_t bytes_written = 0; 419 lldb::addr_t remainder; 420 421 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); 422 if (log) 423 ProcessPOSIXLog::IncNestLevel(); 424 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) 425 log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__, 426 pid, word_size, (void*)vm_addr, buf, size); 427 428 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) 429 { 430 remainder = size - bytes_written; 431 remainder = remainder > word_size ? word_size : remainder; 432 433 if (remainder == word_size) 434 { 435 unsigned long data = 0; 436 assert(sizeof(data) >= word_size); 437 for (unsigned i = 0; i < word_size; ++i) 438 data |= (unsigned long)src[i] << i*8; 439 440 if (log && ProcessPOSIXLog::AtTopNestLevel() && 441 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 442 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 443 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 444 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 445 (void*)vm_addr, *(unsigned long*)src, data); 446 447 if (PTRACE(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data, 0, error)) 448 { 449 if (log) 450 ProcessPOSIXLog::DecNestLevel(); 451 return bytes_written; 452 } 453 } 454 else 455 { 456 unsigned char buff[8]; 457 if (DoReadMemory(pid, vm_addr, 458 buff, word_size, error) != word_size) 459 { 460 if (log) 461 ProcessPOSIXLog::DecNestLevel(); 462 return bytes_written; 463 } 464 465 memcpy(buff, src, remainder); 466 467 if (DoWriteMemory(pid, vm_addr, 468 buff, word_size, error) != word_size) 469 { 470 if (log) 471 ProcessPOSIXLog::DecNestLevel(); 472 return bytes_written; 473 } 474 475 if (log && ProcessPOSIXLog::AtTopNestLevel() && 476 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 477 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 478 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 479 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 480 (void*)vm_addr, *(unsigned long*)src, *(unsigned long*)buff); 481 } 482 483 vm_addr += word_size; 484 src += word_size; 485 } 486 if (log) 487 ProcessPOSIXLog::DecNestLevel(); 488 return bytes_written; 489 } 490 491 //------------------------------------------------------------------------------ 492 /// @class Operation 493 /// @brief Represents a NativeProcessLinux operation. 494 /// 495 /// Under Linux, it is not possible to ptrace() from any other thread but the 496 /// one that spawned or attached to the process from the start. Therefore, when 497 /// a NativeProcessLinux is asked to deliver or change the state of an inferior 498 /// process the operation must be "funneled" to a specific thread to perform the 499 /// task. The Operation class provides an abstract base for all services the 500 /// NativeProcessLinux must perform via the single virtual function Execute, thus 501 /// encapsulating the code that needs to run in the privileged context. 502 class Operation 503 { 504 public: 505 Operation () : m_error() { } 506 507 virtual 508 ~Operation() {} 509 510 virtual void 511 Execute (NativeProcessLinux *process) = 0; 512 513 const Error & 514 GetError () const { return m_error; } 515 516 protected: 517 Error m_error; 518 }; 519 520 //------------------------------------------------------------------------------ 521 /// @class ReadOperation 522 /// @brief Implements NativeProcessLinux::ReadMemory. 523 class ReadOperation : public Operation 524 { 525 public: 526 ReadOperation ( 527 lldb::addr_t addr, 528 void *buff, 529 lldb::addr_t size, 530 lldb::addr_t &result) : 531 Operation (), 532 m_addr (addr), 533 m_buff (buff), 534 m_size (size), 535 m_result (result) 536 { 537 } 538 539 void Execute (NativeProcessLinux *process) override; 540 541 private: 542 lldb::addr_t m_addr; 543 void *m_buff; 544 lldb::addr_t m_size; 545 lldb::addr_t &m_result; 546 }; 547 548 void 549 ReadOperation::Execute (NativeProcessLinux *process) 550 { 551 m_result = DoReadMemory (process->GetID (), m_addr, m_buff, m_size, m_error); 552 } 553 554 //------------------------------------------------------------------------------ 555 /// @class WriteOperation 556 /// @brief Implements NativeProcessLinux::WriteMemory. 557 class WriteOperation : public Operation 558 { 559 public: 560 WriteOperation ( 561 lldb::addr_t addr, 562 const void *buff, 563 lldb::addr_t size, 564 lldb::addr_t &result) : 565 Operation (), 566 m_addr (addr), 567 m_buff (buff), 568 m_size (size), 569 m_result (result) 570 { 571 } 572 573 void Execute (NativeProcessLinux *process) override; 574 575 private: 576 lldb::addr_t m_addr; 577 const void *m_buff; 578 lldb::addr_t m_size; 579 lldb::addr_t &m_result; 580 }; 581 582 void 583 WriteOperation::Execute(NativeProcessLinux *process) 584 { 585 m_result = DoWriteMemory (process->GetID (), m_addr, m_buff, m_size, m_error); 586 } 587 588 //------------------------------------------------------------------------------ 589 /// @class ReadRegOperation 590 /// @brief Implements NativeProcessLinux::ReadRegisterValue. 591 class ReadRegOperation : public Operation 592 { 593 public: 594 ReadRegOperation(lldb::tid_t tid, uint32_t offset, const char *reg_name, 595 RegisterValue &value) 596 : m_tid(tid), 597 m_offset(static_cast<uintptr_t> (offset)), 598 m_reg_name(reg_name), 599 m_value(value) 600 { } 601 602 void Execute(NativeProcessLinux *monitor); 603 604 private: 605 lldb::tid_t m_tid; 606 uintptr_t m_offset; 607 const char *m_reg_name; 608 RegisterValue &m_value; 609 }; 610 611 void 612 ReadRegOperation::Execute(NativeProcessLinux *monitor) 613 { 614 #if defined (__arm64__) || defined (__aarch64__) 615 if (m_offset > sizeof(struct user_pt_regs)) 616 { 617 uintptr_t offset = m_offset - sizeof(struct user_pt_regs); 618 if (offset > sizeof(struct user_fpsimd_state)) 619 { 620 m_error.SetErrorString("invalid offset value"); 621 return; 622 } 623 elf_fpregset_t regs; 624 int regset = NT_FPREGSET; 625 struct iovec ioVec; 626 627 ioVec.iov_base = ®s; 628 ioVec.iov_len = sizeof regs; 629 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 630 if (m_error.Success()) 631 { 632 lldb_private::ArchSpec arch; 633 if (monitor->GetArchitecture(arch)) 634 m_value.SetBytes((void *)(((unsigned char *)(®s)) + offset), 16, arch.GetByteOrder()); 635 else 636 m_error.SetErrorString("failed to get architecture"); 637 } 638 } 639 else 640 { 641 elf_gregset_t regs; 642 int regset = NT_PRSTATUS; 643 struct iovec ioVec; 644 645 ioVec.iov_base = ®s; 646 ioVec.iov_len = sizeof regs; 647 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 648 if (m_error.Success()) 649 { 650 lldb_private::ArchSpec arch; 651 if (monitor->GetArchitecture(arch)) 652 m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, arch.GetByteOrder()); 653 else 654 m_error.SetErrorString("failed to get architecture"); 655 } 656 } 657 #else 658 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS)); 659 660 lldb::addr_t data = PTRACE(PTRACE_PEEKUSER, m_tid, (void*)m_offset, nullptr, 0, m_error); 661 if (m_error.Success()) 662 m_value = data; 663 664 if (log) 665 log->Printf ("NativeProcessLinux::%s() reg %s: 0x%" PRIx64, __FUNCTION__, 666 m_reg_name, data); 667 #endif 668 } 669 670 //------------------------------------------------------------------------------ 671 /// @class WriteRegOperation 672 /// @brief Implements NativeProcessLinux::WriteRegisterValue. 673 class WriteRegOperation : public Operation 674 { 675 public: 676 WriteRegOperation(lldb::tid_t tid, unsigned offset, const char *reg_name, 677 const RegisterValue &value) 678 : m_tid(tid), 679 m_offset(offset), 680 m_reg_name(reg_name), 681 m_value(value) 682 { } 683 684 void Execute(NativeProcessLinux *monitor); 685 686 private: 687 lldb::tid_t m_tid; 688 uintptr_t m_offset; 689 const char *m_reg_name; 690 const RegisterValue &m_value; 691 }; 692 693 void 694 WriteRegOperation::Execute(NativeProcessLinux *monitor) 695 { 696 #if defined (__arm64__) || defined (__aarch64__) 697 if (m_offset > sizeof(struct user_pt_regs)) 698 { 699 uintptr_t offset = m_offset - sizeof(struct user_pt_regs); 700 if (offset > sizeof(struct user_fpsimd_state)) 701 { 702 m_error.SetErrorString("invalid offset value"); 703 return; 704 } 705 elf_fpregset_t regs; 706 int regset = NT_FPREGSET; 707 struct iovec ioVec; 708 709 ioVec.iov_base = ®s; 710 ioVec.iov_len = sizeof regs; 711 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 712 if (m_error.Sucess()) 713 { 714 ::memcpy((void *)(((unsigned char *)(®s)) + offset), m_value.GetBytes(), 16); 715 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 716 } 717 } 718 else 719 { 720 elf_gregset_t regs; 721 int regset = NT_PRSTATUS; 722 struct iovec ioVec; 723 724 ioVec.iov_base = ®s; 725 ioVec.iov_len = sizeof regs; 726 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 727 if (m_error.Sucess()) 728 { 729 ::memcpy((void *)(((unsigned char *)(®s)) + m_offset), m_value.GetBytes(), 8); 730 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 731 } 732 } 733 #else 734 void* buf; 735 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS)); 736 737 buf = (void*) m_value.GetAsUInt64(); 738 739 if (log) 740 log->Printf ("NativeProcessLinux::%s() reg %s: %p", __FUNCTION__, m_reg_name, buf); 741 PTRACE(PTRACE_POKEUSER, m_tid, (void*)m_offset, buf, 0, m_error); 742 #endif 743 } 744 745 //------------------------------------------------------------------------------ 746 /// @class ReadGPROperation 747 /// @brief Implements NativeProcessLinux::ReadGPR. 748 class ReadGPROperation : public Operation 749 { 750 public: 751 ReadGPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 752 : m_tid(tid), m_buf(buf), m_buf_size(buf_size) 753 { } 754 755 void Execute(NativeProcessLinux *monitor); 756 757 private: 758 lldb::tid_t m_tid; 759 void *m_buf; 760 size_t m_buf_size; 761 }; 762 763 void 764 ReadGPROperation::Execute(NativeProcessLinux *monitor) 765 { 766 #if defined (__arm64__) || defined (__aarch64__) 767 int regset = NT_PRSTATUS; 768 struct iovec ioVec; 769 770 ioVec.iov_base = m_buf; 771 ioVec.iov_len = m_buf_size; 772 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); 773 #else 774 PTRACE(PTRACE_GETREGS, m_tid, nullptr, m_buf, m_buf_size, m_error); 775 #endif 776 } 777 778 //------------------------------------------------------------------------------ 779 /// @class ReadFPROperation 780 /// @brief Implements NativeProcessLinux::ReadFPR. 781 class ReadFPROperation : public Operation 782 { 783 public: 784 ReadFPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 785 : m_tid(tid), 786 m_buf(buf), 787 m_buf_size(buf_size) 788 { } 789 790 void Execute(NativeProcessLinux *monitor); 791 792 private: 793 lldb::tid_t m_tid; 794 void *m_buf; 795 size_t m_buf_size; 796 }; 797 798 void 799 ReadFPROperation::Execute(NativeProcessLinux *monitor) 800 { 801 #if defined (__arm64__) || defined (__aarch64__) 802 int regset = NT_FPREGSET; 803 struct iovec ioVec; 804 805 ioVec.iov_base = m_buf; 806 ioVec.iov_len = m_buf_size; 807 if (PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, m_buf_size) < 0) 808 m_result = false; 809 else 810 m_result = true; 811 #else 812 PTRACE(PTRACE_GETFPREGS, m_tid, nullptr, m_buf, m_buf_size, m_error); 813 #endif 814 } 815 816 //------------------------------------------------------------------------------ 817 /// @class ReadRegisterSetOperation 818 /// @brief Implements NativeProcessLinux::ReadRegisterSet. 819 class ReadRegisterSetOperation : public Operation 820 { 821 public: 822 ReadRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 823 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset) 824 { } 825 826 void Execute(NativeProcessLinux *monitor); 827 828 private: 829 lldb::tid_t m_tid; 830 void *m_buf; 831 size_t m_buf_size; 832 const unsigned int m_regset; 833 }; 834 835 void 836 ReadRegisterSetOperation::Execute(NativeProcessLinux *monitor) 837 { 838 PTRACE(PTRACE_GETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error); 839 } 840 841 //------------------------------------------------------------------------------ 842 /// @class WriteGPROperation 843 /// @brief Implements NativeProcessLinux::WriteGPR. 844 class WriteGPROperation : public Operation 845 { 846 public: 847 WriteGPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 848 : m_tid(tid), m_buf(buf), m_buf_size(buf_size) 849 { } 850 851 void Execute(NativeProcessLinux *monitor); 852 853 private: 854 lldb::tid_t m_tid; 855 void *m_buf; 856 size_t m_buf_size; 857 }; 858 859 void 860 WriteGPROperation::Execute(NativeProcessLinux *monitor) 861 { 862 #if defined (__arm64__) || defined (__aarch64__) 863 int regset = NT_PRSTATUS; 864 struct iovec ioVec; 865 866 ioVec.iov_base = m_buf; 867 ioVec.iov_len = m_buf_size; 868 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); 869 #else 870 PTRACE(PTRACE_SETREGS, m_tid, NULL, m_buf, m_buf_size, m_error); 871 #endif 872 } 873 874 //------------------------------------------------------------------------------ 875 /// @class WriteFPROperation 876 /// @brief Implements NativeProcessLinux::WriteFPR. 877 class WriteFPROperation : public Operation 878 { 879 public: 880 WriteFPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 881 : m_tid(tid), m_buf(buf), m_buf_size(buf_size) 882 { } 883 884 void Execute(NativeProcessLinux *monitor); 885 886 private: 887 lldb::tid_t m_tid; 888 void *m_buf; 889 size_t m_buf_size; 890 }; 891 892 void 893 WriteFPROperation::Execute(NativeProcessLinux *monitor) 894 { 895 #if defined (__arm64__) || defined (__aarch64__) 896 int regset = NT_FPREGSET; 897 struct iovec ioVec; 898 899 ioVec.iov_base = m_buf; 900 ioVec.iov_len = m_buf_size; 901 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); 902 #else 903 PTRACE(PTRACE_SETFPREGS, m_tid, NULL, m_buf, m_buf_size, m_error); 904 #endif 905 } 906 907 //------------------------------------------------------------------------------ 908 /// @class WriteRegisterSetOperation 909 /// @brief Implements NativeProcessLinux::WriteRegisterSet. 910 class WriteRegisterSetOperation : public Operation 911 { 912 public: 913 WriteRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 914 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset) 915 { } 916 917 void Execute(NativeProcessLinux *monitor); 918 919 private: 920 lldb::tid_t m_tid; 921 void *m_buf; 922 size_t m_buf_size; 923 const unsigned int m_regset; 924 }; 925 926 void 927 WriteRegisterSetOperation::Execute(NativeProcessLinux *monitor) 928 { 929 PTRACE(PTRACE_SETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error); 930 } 931 932 //------------------------------------------------------------------------------ 933 /// @class ResumeOperation 934 /// @brief Implements NativeProcessLinux::Resume. 935 class ResumeOperation : public Operation 936 { 937 public: 938 ResumeOperation(lldb::tid_t tid, uint32_t signo) : 939 m_tid(tid), m_signo(signo) { } 940 941 void Execute(NativeProcessLinux *monitor); 942 943 private: 944 lldb::tid_t m_tid; 945 uint32_t m_signo; 946 }; 947 948 void 949 ResumeOperation::Execute(NativeProcessLinux *monitor) 950 { 951 intptr_t data = 0; 952 953 if (m_signo != LLDB_INVALID_SIGNAL_NUMBER) 954 data = m_signo; 955 956 PTRACE(PTRACE_CONT, m_tid, nullptr, (void*)data, 0, m_error); 957 if (m_error.Fail()) 958 { 959 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 960 961 if (log) 962 log->Printf ("ResumeOperation (%" PRIu64 ") failed: %s", m_tid, m_error.AsCString()); 963 } 964 } 965 966 //------------------------------------------------------------------------------ 967 /// @class SingleStepOperation 968 /// @brief Implements NativeProcessLinux::SingleStep. 969 class SingleStepOperation : public Operation 970 { 971 public: 972 SingleStepOperation(lldb::tid_t tid, uint32_t signo) 973 : m_tid(tid), m_signo(signo) { } 974 975 void Execute(NativeProcessLinux *monitor); 976 977 private: 978 lldb::tid_t m_tid; 979 uint32_t m_signo; 980 }; 981 982 void 983 SingleStepOperation::Execute(NativeProcessLinux *monitor) 984 { 985 intptr_t data = 0; 986 987 if (m_signo != LLDB_INVALID_SIGNAL_NUMBER) 988 data = m_signo; 989 990 PTRACE(PTRACE_SINGLESTEP, m_tid, nullptr, (void*)data, 0, m_error); 991 } 992 993 //------------------------------------------------------------------------------ 994 /// @class SiginfoOperation 995 /// @brief Implements NativeProcessLinux::GetSignalInfo. 996 class SiginfoOperation : public Operation 997 { 998 public: 999 SiginfoOperation(lldb::tid_t tid, void *info) 1000 : m_tid(tid), m_info(info) { } 1001 1002 void Execute(NativeProcessLinux *monitor); 1003 1004 private: 1005 lldb::tid_t m_tid; 1006 void *m_info; 1007 }; 1008 1009 void 1010 SiginfoOperation::Execute(NativeProcessLinux *monitor) 1011 { 1012 PTRACE(PTRACE_GETSIGINFO, m_tid, nullptr, m_info, 0, m_error); 1013 } 1014 1015 //------------------------------------------------------------------------------ 1016 /// @class EventMessageOperation 1017 /// @brief Implements NativeProcessLinux::GetEventMessage. 1018 class EventMessageOperation : public Operation 1019 { 1020 public: 1021 EventMessageOperation(lldb::tid_t tid, unsigned long *message) 1022 : m_tid(tid), m_message(message) { } 1023 1024 void Execute(NativeProcessLinux *monitor); 1025 1026 private: 1027 lldb::tid_t m_tid; 1028 unsigned long *m_message; 1029 }; 1030 1031 void 1032 EventMessageOperation::Execute(NativeProcessLinux *monitor) 1033 { 1034 PTRACE(PTRACE_GETEVENTMSG, m_tid, nullptr, m_message, 0, m_error); 1035 } 1036 1037 class DetachOperation : public Operation 1038 { 1039 public: 1040 DetachOperation(lldb::tid_t tid) : m_tid(tid) { } 1041 1042 void Execute(NativeProcessLinux *monitor); 1043 1044 private: 1045 lldb::tid_t m_tid; 1046 }; 1047 1048 void 1049 DetachOperation::Execute(NativeProcessLinux *monitor) 1050 { 1051 PTRACE(PTRACE_DETACH, m_tid, nullptr, 0, 0, m_error); 1052 } 1053 1054 } 1055 1056 using namespace lldb_private; 1057 1058 // Simple helper function to ensure flags are enabled on the given file 1059 // descriptor. 1060 static bool 1061 EnsureFDFlags(int fd, int flags, Error &error) 1062 { 1063 int status; 1064 1065 if ((status = fcntl(fd, F_GETFL)) == -1) 1066 { 1067 error.SetErrorToErrno(); 1068 return false; 1069 } 1070 1071 if (fcntl(fd, F_SETFL, status | flags) == -1) 1072 { 1073 error.SetErrorToErrno(); 1074 return false; 1075 } 1076 1077 return true; 1078 } 1079 1080 NativeProcessLinux::OperationArgs::OperationArgs(NativeProcessLinux *monitor) 1081 : m_monitor(monitor) 1082 { 1083 sem_init(&m_semaphore, 0, 0); 1084 } 1085 1086 NativeProcessLinux::OperationArgs::~OperationArgs() 1087 { 1088 sem_destroy(&m_semaphore); 1089 } 1090 1091 NativeProcessLinux::LaunchArgs::LaunchArgs(NativeProcessLinux *monitor, 1092 lldb_private::Module *module, 1093 char const **argv, 1094 char const **envp, 1095 const std::string &stdin_path, 1096 const std::string &stdout_path, 1097 const std::string &stderr_path, 1098 const char *working_dir, 1099 const lldb_private::ProcessLaunchInfo &launch_info) 1100 : OperationArgs(monitor), 1101 m_module(module), 1102 m_argv(argv), 1103 m_envp(envp), 1104 m_stdin_path(stdin_path), 1105 m_stdout_path(stdout_path), 1106 m_stderr_path(stderr_path), 1107 m_working_dir(working_dir), 1108 m_launch_info(launch_info) 1109 { 1110 } 1111 1112 NativeProcessLinux::LaunchArgs::~LaunchArgs() 1113 { } 1114 1115 NativeProcessLinux::AttachArgs::AttachArgs(NativeProcessLinux *monitor, 1116 lldb::pid_t pid) 1117 : OperationArgs(monitor), m_pid(pid) { } 1118 1119 NativeProcessLinux::AttachArgs::~AttachArgs() 1120 { } 1121 1122 // ----------------------------------------------------------------------------- 1123 // Public Static Methods 1124 // ----------------------------------------------------------------------------- 1125 1126 lldb_private::Error 1127 NativeProcessLinux::LaunchProcess ( 1128 lldb_private::Module *exe_module, 1129 lldb_private::ProcessLaunchInfo &launch_info, 1130 lldb_private::NativeProcessProtocol::NativeDelegate &native_delegate, 1131 NativeProcessProtocolSP &native_process_sp) 1132 { 1133 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1134 1135 Error error; 1136 1137 // Verify the working directory is valid if one was specified. 1138 const char* working_dir = launch_info.GetWorkingDirectory (); 1139 if (working_dir) 1140 { 1141 FileSpec working_dir_fs (working_dir, true); 1142 if (!working_dir_fs || working_dir_fs.GetFileType () != FileSpec::eFileTypeDirectory) 1143 { 1144 error.SetErrorStringWithFormat ("No such file or directory: %s", working_dir); 1145 return error; 1146 } 1147 } 1148 1149 const lldb_private::FileAction *file_action; 1150 1151 // Default of NULL will mean to use existing open file descriptors. 1152 std::string stdin_path; 1153 std::string stdout_path; 1154 std::string stderr_path; 1155 1156 file_action = launch_info.GetFileActionForFD (STDIN_FILENO); 1157 if (file_action) 1158 stdin_path = file_action->GetPath (); 1159 1160 file_action = launch_info.GetFileActionForFD (STDOUT_FILENO); 1161 if (file_action) 1162 stdout_path = file_action->GetPath (); 1163 1164 file_action = launch_info.GetFileActionForFD (STDERR_FILENO); 1165 if (file_action) 1166 stderr_path = file_action->GetPath (); 1167 1168 if (log) 1169 { 1170 if (!stdin_path.empty ()) 1171 log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'", __FUNCTION__, stdin_path.c_str ()); 1172 else 1173 log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__); 1174 1175 if (!stdout_path.empty ()) 1176 log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'", __FUNCTION__, stdout_path.c_str ()); 1177 else 1178 log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__); 1179 1180 if (!stderr_path.empty ()) 1181 log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'", __FUNCTION__, stderr_path.c_str ()); 1182 else 1183 log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__); 1184 } 1185 1186 // Create the NativeProcessLinux in launch mode. 1187 native_process_sp.reset (new NativeProcessLinux ()); 1188 1189 if (log) 1190 { 1191 int i = 0; 1192 for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i) 1193 { 1194 log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr"); 1195 ++i; 1196 } 1197 } 1198 1199 if (!native_process_sp->RegisterNativeDelegate (native_delegate)) 1200 { 1201 native_process_sp.reset (); 1202 error.SetErrorStringWithFormat ("failed to register the native delegate"); 1203 return error; 1204 } 1205 1206 reinterpret_cast<NativeProcessLinux*> (native_process_sp.get ())->LaunchInferior ( 1207 exe_module, 1208 launch_info.GetArguments ().GetConstArgumentVector (), 1209 launch_info.GetEnvironmentEntries ().GetConstArgumentVector (), 1210 stdin_path, 1211 stdout_path, 1212 stderr_path, 1213 working_dir, 1214 launch_info, 1215 error); 1216 1217 if (error.Fail ()) 1218 { 1219 native_process_sp.reset (); 1220 if (log) 1221 log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ()); 1222 return error; 1223 } 1224 1225 launch_info.SetProcessID (native_process_sp->GetID ()); 1226 1227 return error; 1228 } 1229 1230 lldb_private::Error 1231 NativeProcessLinux::AttachToProcess ( 1232 lldb::pid_t pid, 1233 lldb_private::NativeProcessProtocol::NativeDelegate &native_delegate, 1234 NativeProcessProtocolSP &native_process_sp) 1235 { 1236 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1237 if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE)) 1238 log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid); 1239 1240 // Grab the current platform architecture. This should be Linux, 1241 // since this code is only intended to run on a Linux host. 1242 PlatformSP platform_sp (Platform::GetHostPlatform ()); 1243 if (!platform_sp) 1244 return Error("failed to get a valid default platform"); 1245 1246 // Retrieve the architecture for the running process. 1247 ArchSpec process_arch; 1248 Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch); 1249 if (!error.Success ()) 1250 return error; 1251 1252 std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ()); 1253 1254 if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate)) 1255 { 1256 error.SetErrorStringWithFormat ("failed to register the native delegate"); 1257 return error; 1258 } 1259 1260 native_process_linux_sp->AttachToInferior (pid, error); 1261 if (!error.Success ()) 1262 return error; 1263 1264 native_process_sp = native_process_linux_sp; 1265 return error; 1266 } 1267 1268 // ----------------------------------------------------------------------------- 1269 // Public Instance Methods 1270 // ----------------------------------------------------------------------------- 1271 1272 NativeProcessLinux::NativeProcessLinux () : 1273 NativeProcessProtocol (LLDB_INVALID_PROCESS_ID), 1274 m_arch (), 1275 m_operation_thread (), 1276 m_monitor_thread (), 1277 m_operation (nullptr), 1278 m_operation_mutex (), 1279 m_operation_pending (), 1280 m_operation_done (), 1281 m_supports_mem_region (eLazyBoolCalculate), 1282 m_mem_region_cache (), 1283 m_mem_region_cache_mutex (), 1284 m_coordinator_up (new ThreadStateCoordinator (GetThreadLoggerFunction ())), 1285 m_coordinator_thread () 1286 { 1287 } 1288 1289 //------------------------------------------------------------------------------ 1290 /// The basic design of the NativeProcessLinux is built around two threads. 1291 /// 1292 /// One thread (@see SignalThread) simply blocks on a call to waitpid() looking 1293 /// for changes in the debugee state. When a change is detected a 1294 /// ProcessMessage is sent to the associated ProcessLinux instance. This thread 1295 /// "drives" state changes in the debugger. 1296 /// 1297 /// The second thread (@see OperationThread) is responsible for two things 1) 1298 /// launching or attaching to the inferior process, and then 2) servicing 1299 /// operations such as register reads/writes, stepping, etc. See the comments 1300 /// on the Operation class for more info as to why this is needed. 1301 void 1302 NativeProcessLinux::LaunchInferior ( 1303 Module *module, 1304 const char *argv[], 1305 const char *envp[], 1306 const std::string &stdin_path, 1307 const std::string &stdout_path, 1308 const std::string &stderr_path, 1309 const char *working_dir, 1310 const lldb_private::ProcessLaunchInfo &launch_info, 1311 lldb_private::Error &error) 1312 { 1313 if (module) 1314 m_arch = module->GetArchitecture (); 1315 1316 SetState (eStateLaunching); 1317 1318 std::unique_ptr<LaunchArgs> args( 1319 new LaunchArgs( 1320 this, module, argv, envp, 1321 stdin_path, stdout_path, stderr_path, 1322 working_dir, launch_info)); 1323 1324 sem_init (&m_operation_pending, 0, 0); 1325 sem_init (&m_operation_done, 0, 0); 1326 1327 StartLaunchOpThread (args.get(), error); 1328 if (!error.Success ()) 1329 return; 1330 1331 error = StartCoordinatorThread (); 1332 if (!error.Success ()) 1333 return; 1334 1335 WAIT_AGAIN: 1336 // Wait for the operation thread to initialize. 1337 if (sem_wait(&args->m_semaphore)) 1338 { 1339 if (errno == EINTR) 1340 goto WAIT_AGAIN; 1341 else 1342 { 1343 error.SetErrorToErrno(); 1344 return; 1345 } 1346 } 1347 1348 // Check that the launch was a success. 1349 if (!args->m_error.Success()) 1350 { 1351 StopOpThread(); 1352 StopCoordinatorThread (); 1353 error = args->m_error; 1354 return; 1355 } 1356 1357 // Finally, start monitoring the child process for change in state. 1358 m_monitor_thread = Host::StartMonitoringChildProcess( 1359 NativeProcessLinux::MonitorCallback, this, GetID(), true); 1360 if (!m_monitor_thread.IsJoinable()) 1361 { 1362 error.SetErrorToGenericError(); 1363 error.SetErrorString ("Process attach failed to create monitor thread for NativeProcessLinux::MonitorCallback."); 1364 return; 1365 } 1366 } 1367 1368 void 1369 NativeProcessLinux::AttachToInferior (lldb::pid_t pid, lldb_private::Error &error) 1370 { 1371 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1372 if (log) 1373 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid); 1374 1375 // We can use the Host for everything except the ResolveExecutable portion. 1376 PlatformSP platform_sp = Platform::GetHostPlatform (); 1377 if (!platform_sp) 1378 { 1379 if (log) 1380 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid); 1381 error.SetErrorString ("no default platform available"); 1382 return; 1383 } 1384 1385 // Gather info about the process. 1386 ProcessInstanceInfo process_info; 1387 if (!platform_sp->GetProcessInfo (pid, process_info)) 1388 { 1389 if (log) 1390 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid); 1391 error.SetErrorString ("failed to get process info"); 1392 return; 1393 } 1394 1395 // Resolve the executable module 1396 ModuleSP exe_module_sp; 1397 FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths()); 1398 ModuleSpec exe_module_spec(process_info.GetExecutableFile(), HostInfo::GetArchitecture()); 1399 error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp, 1400 executable_search_paths.GetSize() ? &executable_search_paths : NULL); 1401 if (!error.Success()) 1402 return; 1403 1404 // Set the architecture to the exe architecture. 1405 m_arch = exe_module_sp->GetArchitecture(); 1406 if (log) 1407 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ()); 1408 1409 m_pid = pid; 1410 SetState(eStateAttaching); 1411 1412 sem_init (&m_operation_pending, 0, 0); 1413 sem_init (&m_operation_done, 0, 0); 1414 1415 std::unique_ptr<AttachArgs> args (new AttachArgs (this, pid)); 1416 1417 StartAttachOpThread(args.get (), error); 1418 if (!error.Success ()) 1419 return; 1420 1421 error = StartCoordinatorThread (); 1422 if (!error.Success ()) 1423 return; 1424 1425 WAIT_AGAIN: 1426 // Wait for the operation thread to initialize. 1427 if (sem_wait (&args->m_semaphore)) 1428 { 1429 if (errno == EINTR) 1430 goto WAIT_AGAIN; 1431 else 1432 { 1433 error.SetErrorToErrno (); 1434 return; 1435 } 1436 } 1437 1438 // Check that the attach was a success. 1439 if (!args->m_error.Success ()) 1440 { 1441 StopOpThread (); 1442 StopCoordinatorThread (); 1443 error = args->m_error; 1444 return; 1445 } 1446 1447 // Finally, start monitoring the child process for change in state. 1448 m_monitor_thread = Host::StartMonitoringChildProcess ( 1449 NativeProcessLinux::MonitorCallback, this, GetID (), true); 1450 if (!m_monitor_thread.IsJoinable()) 1451 { 1452 error.SetErrorToGenericError (); 1453 error.SetErrorString ("Process attach failed to create monitor thread for NativeProcessLinux::MonitorCallback."); 1454 return; 1455 } 1456 } 1457 1458 NativeProcessLinux::~NativeProcessLinux() 1459 { 1460 StopMonitor(); 1461 } 1462 1463 //------------------------------------------------------------------------------ 1464 // Thread setup and tear down. 1465 1466 void 1467 NativeProcessLinux::StartLaunchOpThread(LaunchArgs *args, Error &error) 1468 { 1469 static const char *g_thread_name = "lldb.process.nativelinux.operation"; 1470 1471 if (m_operation_thread.IsJoinable()) 1472 return; 1473 1474 m_operation_thread = ThreadLauncher::LaunchThread(g_thread_name, LaunchOpThread, args, &error); 1475 } 1476 1477 void * 1478 NativeProcessLinux::LaunchOpThread(void *arg) 1479 { 1480 LaunchArgs *args = static_cast<LaunchArgs*>(arg); 1481 1482 if (!Launch(args)) { 1483 sem_post(&args->m_semaphore); 1484 return NULL; 1485 } 1486 1487 ServeOperation(args); 1488 return NULL; 1489 } 1490 1491 bool 1492 NativeProcessLinux::Launch(LaunchArgs *args) 1493 { 1494 assert (args && "null args"); 1495 if (!args) 1496 return false; 1497 1498 NativeProcessLinux *monitor = args->m_monitor; 1499 assert (monitor && "monitor is NULL"); 1500 if (!monitor) 1501 return false; 1502 1503 const char **argv = args->m_argv; 1504 const char **envp = args->m_envp; 1505 const char *working_dir = args->m_working_dir; 1506 1507 lldb_utility::PseudoTerminal terminal; 1508 const size_t err_len = 1024; 1509 char err_str[err_len]; 1510 lldb::pid_t pid; 1511 NativeThreadProtocolSP thread_sp; 1512 1513 lldb::ThreadSP inferior; 1514 1515 // Propagate the environment if one is not supplied. 1516 if (envp == NULL || envp[0] == NULL) 1517 envp = const_cast<const char **>(environ); 1518 1519 if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1)) 1520 { 1521 args->m_error.SetErrorToGenericError(); 1522 args->m_error.SetErrorString("Process fork failed."); 1523 return false; 1524 } 1525 1526 // Recognized child exit status codes. 1527 enum { 1528 ePtraceFailed = 1, 1529 eDupStdinFailed, 1530 eDupStdoutFailed, 1531 eDupStderrFailed, 1532 eChdirFailed, 1533 eExecFailed, 1534 eSetGidFailed 1535 }; 1536 1537 // Child process. 1538 if (pid == 0) 1539 { 1540 // FIXME consider opening a pipe between parent/child and have this forked child 1541 // send log info to parent re: launch status, in place of the log lines removed here. 1542 1543 // Start tracing this child that is about to exec. 1544 PTRACE(PTRACE_TRACEME, 0, nullptr, nullptr, 0, args->m_error); 1545 if (args->m_error.Fail()) 1546 exit(ePtraceFailed); 1547 1548 // Do not inherit setgid powers. 1549 if (setgid(getgid()) != 0) 1550 exit(eSetGidFailed); 1551 1552 // Attempt to have our own process group. 1553 if (setpgid(0, 0) != 0) 1554 { 1555 // FIXME log that this failed. This is common. 1556 // Don't allow this to prevent an inferior exec. 1557 } 1558 1559 // Dup file descriptors if needed. 1560 if (!args->m_stdin_path.empty ()) 1561 if (!DupDescriptor(args->m_stdin_path.c_str (), STDIN_FILENO, O_RDONLY)) 1562 exit(eDupStdinFailed); 1563 1564 if (!args->m_stdout_path.empty ()) 1565 if (!DupDescriptor(args->m_stdout_path.c_str (), STDOUT_FILENO, O_WRONLY | O_CREAT)) 1566 exit(eDupStdoutFailed); 1567 1568 if (!args->m_stderr_path.empty ()) 1569 if (!DupDescriptor(args->m_stderr_path.c_str (), STDERR_FILENO, O_WRONLY | O_CREAT)) 1570 exit(eDupStderrFailed); 1571 1572 // Change working directory 1573 if (working_dir != NULL && working_dir[0]) 1574 if (0 != ::chdir(working_dir)) 1575 exit(eChdirFailed); 1576 1577 // Disable ASLR if requested. 1578 if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR)) 1579 { 1580 const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS); 1581 if (old_personality == -1) 1582 { 1583 // Can't retrieve Linux personality. Cannot disable ASLR. 1584 } 1585 else 1586 { 1587 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality); 1588 if (new_personality == -1) 1589 { 1590 // Disabling ASLR failed. 1591 } 1592 else 1593 { 1594 // Disabling ASLR succeeded. 1595 } 1596 } 1597 } 1598 1599 // Execute. We should never return... 1600 execve(argv[0], 1601 const_cast<char *const *>(argv), 1602 const_cast<char *const *>(envp)); 1603 1604 // ...unless exec fails. In which case we definitely need to end the child here. 1605 exit(eExecFailed); 1606 } 1607 1608 // 1609 // This is the parent code here. 1610 // 1611 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1612 1613 // Wait for the child process to trap on its call to execve. 1614 ::pid_t wpid; 1615 int status; 1616 if ((wpid = waitpid(pid, &status, 0)) < 0) 1617 { 1618 args->m_error.SetErrorToErrno(); 1619 1620 if (log) 1621 log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s", __FUNCTION__, args->m_error.AsCString ()); 1622 1623 // Mark the inferior as invalid. 1624 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1625 monitor->SetState (StateType::eStateInvalid); 1626 1627 return false; 1628 } 1629 else if (WIFEXITED(status)) 1630 { 1631 // open, dup or execve likely failed for some reason. 1632 args->m_error.SetErrorToGenericError(); 1633 switch (WEXITSTATUS(status)) 1634 { 1635 case ePtraceFailed: 1636 args->m_error.SetErrorString("Child ptrace failed."); 1637 break; 1638 case eDupStdinFailed: 1639 args->m_error.SetErrorString("Child open stdin failed."); 1640 break; 1641 case eDupStdoutFailed: 1642 args->m_error.SetErrorString("Child open stdout failed."); 1643 break; 1644 case eDupStderrFailed: 1645 args->m_error.SetErrorString("Child open stderr failed."); 1646 break; 1647 case eChdirFailed: 1648 args->m_error.SetErrorString("Child failed to set working directory."); 1649 break; 1650 case eExecFailed: 1651 args->m_error.SetErrorString("Child exec failed."); 1652 break; 1653 case eSetGidFailed: 1654 args->m_error.SetErrorString("Child setgid failed."); 1655 break; 1656 default: 1657 args->m_error.SetErrorString("Child returned unknown exit status."); 1658 break; 1659 } 1660 1661 if (log) 1662 { 1663 log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP", 1664 __FUNCTION__, 1665 WEXITSTATUS(status)); 1666 } 1667 1668 // Mark the inferior as invalid. 1669 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1670 monitor->SetState (StateType::eStateInvalid); 1671 1672 return false; 1673 } 1674 assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) && 1675 "Could not sync with inferior process."); 1676 1677 if (log) 1678 log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__); 1679 1680 args->m_error = SetDefaultPtraceOpts(pid); 1681 if (args->m_error.Fail()) 1682 { 1683 if (log) 1684 log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s", 1685 __FUNCTION__, 1686 args->m_error.AsCString ()); 1687 1688 // Mark the inferior as invalid. 1689 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1690 monitor->SetState (StateType::eStateInvalid); 1691 1692 return false; 1693 } 1694 1695 // Release the master terminal descriptor and pass it off to the 1696 // NativeProcessLinux instance. Similarly stash the inferior pid. 1697 monitor->m_terminal_fd = terminal.ReleaseMasterFileDescriptor(); 1698 monitor->m_pid = pid; 1699 1700 // Set the terminal fd to be in non blocking mode (it simplifies the 1701 // implementation of ProcessLinux::GetSTDOUT to have a non-blocking 1702 // descriptor to read from). 1703 if (!EnsureFDFlags(monitor->m_terminal_fd, O_NONBLOCK, args->m_error)) 1704 { 1705 if (log) 1706 log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s", 1707 __FUNCTION__, 1708 args->m_error.AsCString ()); 1709 1710 // Mark the inferior as invalid. 1711 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1712 monitor->SetState (StateType::eStateInvalid); 1713 1714 return false; 1715 } 1716 1717 if (log) 1718 log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid); 1719 1720 thread_sp = monitor->AddThread (pid); 1721 assert (thread_sp && "AddThread() returned a nullptr thread"); 1722 monitor->NotifyThreadCreateStopped (pid); 1723 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGSTOP); 1724 1725 // Let our process instance know the thread has stopped. 1726 monitor->SetCurrentThreadID (thread_sp->GetID ()); 1727 monitor->SetState (StateType::eStateStopped); 1728 1729 if (log) 1730 { 1731 if (args->m_error.Success ()) 1732 { 1733 log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__); 1734 } 1735 else 1736 { 1737 log->Printf ("NativeProcessLinux::%s inferior launching failed: %s", 1738 __FUNCTION__, 1739 args->m_error.AsCString ()); 1740 } 1741 } 1742 return args->m_error.Success(); 1743 } 1744 1745 void 1746 NativeProcessLinux::StartAttachOpThread(AttachArgs *args, lldb_private::Error &error) 1747 { 1748 static const char *g_thread_name = "lldb.process.linux.operation"; 1749 1750 if (m_operation_thread.IsJoinable()) 1751 return; 1752 1753 m_operation_thread = ThreadLauncher::LaunchThread(g_thread_name, AttachOpThread, args, &error); 1754 } 1755 1756 void * 1757 NativeProcessLinux::AttachOpThread(void *arg) 1758 { 1759 AttachArgs *args = static_cast<AttachArgs*>(arg); 1760 1761 if (!Attach(args)) { 1762 sem_post(&args->m_semaphore); 1763 return nullptr; 1764 } 1765 1766 ServeOperation(args); 1767 return nullptr; 1768 } 1769 1770 bool 1771 NativeProcessLinux::Attach(AttachArgs *args) 1772 { 1773 lldb::pid_t pid = args->m_pid; 1774 1775 NativeProcessLinux *monitor = args->m_monitor; 1776 lldb::ThreadSP inferior; 1777 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1778 1779 // Use a map to keep track of the threads which we have attached/need to attach. 1780 Host::TidMap tids_to_attach; 1781 if (pid <= 1) 1782 { 1783 args->m_error.SetErrorToGenericError(); 1784 args->m_error.SetErrorString("Attaching to process 1 is not allowed."); 1785 goto FINISH; 1786 } 1787 1788 while (Host::FindProcessThreads(pid, tids_to_attach)) 1789 { 1790 for (Host::TidMap::iterator it = tids_to_attach.begin(); 1791 it != tids_to_attach.end();) 1792 { 1793 if (it->second == false) 1794 { 1795 lldb::tid_t tid = it->first; 1796 1797 // Attach to the requested process. 1798 // An attach will cause the thread to stop with a SIGSTOP. 1799 PTRACE(PTRACE_ATTACH, tid, nullptr, nullptr, 0, args->m_error); 1800 if (args->m_error.Fail()) 1801 { 1802 // No such thread. The thread may have exited. 1803 // More error handling may be needed. 1804 if (args->m_error.GetError() == ESRCH) 1805 { 1806 it = tids_to_attach.erase(it); 1807 continue; 1808 } 1809 else 1810 goto FINISH; 1811 } 1812 1813 int status; 1814 // Need to use __WALL otherwise we receive an error with errno=ECHLD 1815 // At this point we should have a thread stopped if waitpid succeeds. 1816 if ((status = waitpid(tid, NULL, __WALL)) < 0) 1817 { 1818 // No such thread. The thread may have exited. 1819 // More error handling may be needed. 1820 if (errno == ESRCH) 1821 { 1822 it = tids_to_attach.erase(it); 1823 continue; 1824 } 1825 else 1826 { 1827 args->m_error.SetErrorToErrno(); 1828 goto FINISH; 1829 } 1830 } 1831 1832 args->m_error = SetDefaultPtraceOpts(tid); 1833 if (args->m_error.Fail()) 1834 goto FINISH; 1835 1836 1837 if (log) 1838 log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid); 1839 1840 it->second = true; 1841 1842 // Create the thread, mark it as stopped. 1843 NativeThreadProtocolSP thread_sp (monitor->AddThread (static_cast<lldb::tid_t> (tid))); 1844 assert (thread_sp && "AddThread() returned a nullptr"); 1845 1846 // This will notify this is a new thread and tell the system it is stopped. 1847 monitor->NotifyThreadCreateStopped (tid); 1848 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGSTOP); 1849 monitor->SetCurrentThreadID (thread_sp->GetID ()); 1850 } 1851 1852 // move the loop forward 1853 ++it; 1854 } 1855 } 1856 1857 if (tids_to_attach.size() > 0) 1858 { 1859 monitor->m_pid = pid; 1860 // Let our process instance know the thread has stopped. 1861 monitor->SetState (StateType::eStateStopped); 1862 } 1863 else 1864 { 1865 args->m_error.SetErrorToGenericError(); 1866 args->m_error.SetErrorString("No such process."); 1867 } 1868 1869 FINISH: 1870 return args->m_error.Success(); 1871 } 1872 1873 Error 1874 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) 1875 { 1876 long ptrace_opts = 0; 1877 1878 // Have the child raise an event on exit. This is used to keep the child in 1879 // limbo until it is destroyed. 1880 ptrace_opts |= PTRACE_O_TRACEEXIT; 1881 1882 // Have the tracer trace threads which spawn in the inferior process. 1883 // TODO: if we want to support tracing the inferiors' child, add the 1884 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) 1885 ptrace_opts |= PTRACE_O_TRACECLONE; 1886 1887 // Have the tracer notify us before execve returns 1888 // (needed to disable legacy SIGTRAP generation) 1889 ptrace_opts |= PTRACE_O_TRACEEXEC; 1890 1891 Error error; 1892 PTRACE(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts, 0, error); 1893 return error; 1894 } 1895 1896 static ExitType convert_pid_status_to_exit_type (int status) 1897 { 1898 if (WIFEXITED (status)) 1899 return ExitType::eExitTypeExit; 1900 else if (WIFSIGNALED (status)) 1901 return ExitType::eExitTypeSignal; 1902 else if (WIFSTOPPED (status)) 1903 return ExitType::eExitTypeStop; 1904 else 1905 { 1906 // We don't know what this is. 1907 return ExitType::eExitTypeInvalid; 1908 } 1909 } 1910 1911 static int convert_pid_status_to_return_code (int status) 1912 { 1913 if (WIFEXITED (status)) 1914 return WEXITSTATUS (status); 1915 else if (WIFSIGNALED (status)) 1916 return WTERMSIG (status); 1917 else if (WIFSTOPPED (status)) 1918 return WSTOPSIG (status); 1919 else 1920 { 1921 // We don't know what this is. 1922 return ExitType::eExitTypeInvalid; 1923 } 1924 } 1925 1926 // Main process monitoring waitpid-loop handler. 1927 bool 1928 NativeProcessLinux::MonitorCallback(void *callback_baton, 1929 lldb::pid_t pid, 1930 bool exited, 1931 int signal, 1932 int status) 1933 { 1934 Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS)); 1935 1936 NativeProcessLinux *const process = static_cast<NativeProcessLinux*>(callback_baton); 1937 assert (process && "process is null"); 1938 if (!process) 1939 { 1940 if (log) 1941 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " callback_baton was null, can't determine process to use", __FUNCTION__, pid); 1942 return true; 1943 } 1944 1945 // Certain activities differ based on whether the pid is the tid of the main thread. 1946 const bool is_main_thread = (pid == process->GetID ()); 1947 1948 // Assume we keep monitoring by default. 1949 bool stop_monitoring = false; 1950 1951 // Handle when the thread exits. 1952 if (exited) 1953 { 1954 if (log) 1955 log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %" PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not"); 1956 1957 // This is a thread that exited. Ensure we're not tracking it anymore. 1958 const bool thread_found = process->StopTrackingThread (pid); 1959 1960 // Make sure the thread state coordinator knows about this. 1961 process->NotifyThreadDeath (pid); 1962 1963 if (is_main_thread) 1964 { 1965 // We only set the exit status and notify the delegate if we haven't already set the process 1966 // state to an exited state. We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8) 1967 // for the main thread. 1968 const bool already_notified = (process->GetState() == StateType::eStateExited) || (process->GetState () == StateType::eStateCrashed); 1969 if (!already_notified) 1970 { 1971 if (log) 1972 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (process->GetState ())); 1973 // The main thread exited. We're done monitoring. Report to delegate. 1974 process->SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); 1975 1976 // Notify delegate that our process has exited. 1977 process->SetState (StateType::eStateExited, true); 1978 } 1979 else 1980 { 1981 if (log) 1982 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); 1983 } 1984 return true; 1985 } 1986 else 1987 { 1988 // Do we want to report to the delegate in this case? I think not. If this was an orderly 1989 // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, 1990 // and we would have done an all-stop then. 1991 if (log) 1992 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); 1993 1994 // Not the main thread, we keep going. 1995 return false; 1996 } 1997 } 1998 1999 // Get details on the signal raised. 2000 siginfo_t info; 2001 const auto err = process->GetSignalInfo(pid, &info); 2002 if (err.Success()) 2003 { 2004 // We have retrieved the signal info. Dispatch appropriately. 2005 if (info.si_signo == SIGTRAP) 2006 process->MonitorSIGTRAP(&info, pid); 2007 else 2008 process->MonitorSignal(&info, pid, exited); 2009 2010 stop_monitoring = false; 2011 } 2012 else 2013 { 2014 if (err.GetError() == EINVAL) 2015 { 2016 // This is a group stop reception for this tid. 2017 if (log) 2018 log->Printf ("NativeThreadLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64, __FUNCTION__, process->GetID (), pid); 2019 process->NotifyThreadStop (pid); 2020 } 2021 else 2022 { 2023 // ptrace(GETSIGINFO) failed (but not due to group-stop). 2024 2025 // A return value of ESRCH means the thread/process is no longer on the system, 2026 // so it was killed somehow outside of our control. Either way, we can't do anything 2027 // with it anymore. 2028 2029 // We stop monitoring if it was the main thread. 2030 stop_monitoring = is_main_thread; 2031 2032 // Stop tracking the metadata for the thread since it's entirely off the system now. 2033 const bool thread_found = process->StopTrackingThread (pid); 2034 2035 // Make sure the thread state coordinator knows about this. 2036 process->NotifyThreadDeath (pid); 2037 2038 if (log) 2039 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)", 2040 __FUNCTION__, err.AsCString(), pid, signal, status, err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found"); 2041 2042 if (is_main_thread) 2043 { 2044 // Notify the delegate - our process is not available but appears to have been killed outside 2045 // our control. Is eStateExited the right exit state in this case? 2046 process->SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); 2047 process->SetState (StateType::eStateExited, true); 2048 } 2049 else 2050 { 2051 // This thread was pulled out from underneath us. Anything to do here? Do we want to do an all stop? 2052 if (log) 2053 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, process->GetID (), pid); 2054 } 2055 } 2056 } 2057 2058 return stop_monitoring; 2059 } 2060 2061 void 2062 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid) 2063 { 2064 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2065 const bool is_main_thread = (pid == GetID ()); 2066 2067 assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!"); 2068 if (!info) 2069 return; 2070 2071 // See if we can find a thread for this signal. 2072 NativeThreadProtocolSP thread_sp = GetThreadByID (pid); 2073 if (!thread_sp) 2074 { 2075 if (log) 2076 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid); 2077 } 2078 2079 switch (info->si_code) 2080 { 2081 // TODO: these two cases are required if we want to support tracing of the inferiors' children. We'd need this to debug a monitor. 2082 // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 2083 // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 2084 2085 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): 2086 { 2087 lldb::tid_t tid = LLDB_INVALID_THREAD_ID; 2088 2089 // The main thread is stopped here. 2090 if (thread_sp) 2091 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGTRAP); 2092 NotifyThreadStop (pid); 2093 2094 unsigned long event_message = 0; 2095 if (GetEventMessage (pid, &event_message).Success()) 2096 { 2097 tid = static_cast<lldb::tid_t> (event_message); 2098 if (log) 2099 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event for tid %" PRIu64, __FUNCTION__, pid, tid); 2100 2101 // If we don't track the thread yet: create it, mark as stopped. 2102 // If we do track it, this is the wait we needed. Now resume the new thread. 2103 // In all cases, resume the current (i.e. main process) thread. 2104 bool created_now = false; 2105 NativeThreadProtocolSP new_thread_sp = GetOrCreateThread (tid, created_now); 2106 assert (new_thread_sp.get() && "failed to get or create the tracking data for newly created inferior thread"); 2107 2108 // If the thread was already tracked, it means the created thread already received its SI_USER notification of creation. 2109 if (!created_now) 2110 { 2111 // We can now resume the newly created thread since it is fully created. 2112 NotifyThreadCreateStopped (tid); 2113 m_coordinator_up->RequestThreadResume (tid, 2114 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2115 { 2116 reinterpret_cast<NativeThreadLinux*> (new_thread_sp.get ())->SetRunning (); 2117 return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER); 2118 }, 2119 CoordinatorErrorHandler); 2120 } 2121 else 2122 { 2123 // Mark the thread as currently launching. Need to wait for SIGTRAP clone on the main thread before 2124 // this thread is ready to go. 2125 reinterpret_cast<NativeThreadLinux*> (new_thread_sp.get ())->SetLaunching (); 2126 } 2127 } 2128 else 2129 { 2130 if (log) 2131 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, pid); 2132 } 2133 2134 // In all cases, we can resume the main thread here. 2135 m_coordinator_up->RequestThreadResume (pid, 2136 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2137 { 2138 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning (); 2139 return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER); 2140 }, 2141 CoordinatorErrorHandler); 2142 2143 break; 2144 } 2145 2146 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): 2147 { 2148 NativeThreadProtocolSP main_thread_sp; 2149 if (log) 2150 log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP); 2151 2152 // The thread state coordinator needs to reset due to the exec. 2153 m_coordinator_up->ResetForExec (); 2154 2155 // Remove all but the main thread here. Linux fork creates a new process which only copies the main thread. Mutexes are in undefined state. 2156 { 2157 Mutex::Locker locker (m_threads_mutex); 2158 2159 if (log) 2160 log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__); 2161 2162 for (auto thread_sp : m_threads) 2163 { 2164 const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID (); 2165 if (is_main_thread) 2166 { 2167 main_thread_sp = thread_sp; 2168 if (log) 2169 log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ()); 2170 } 2171 else 2172 { 2173 // Tell thread coordinator this thread is dead. 2174 if (log) 2175 log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ()); 2176 } 2177 } 2178 2179 m_threads.clear (); 2180 2181 if (main_thread_sp) 2182 { 2183 m_threads.push_back (main_thread_sp); 2184 SetCurrentThreadID (main_thread_sp->GetID ()); 2185 reinterpret_cast<NativeThreadLinux*>(main_thread_sp.get())->SetStoppedByExec (); 2186 } 2187 else 2188 { 2189 SetCurrentThreadID (LLDB_INVALID_THREAD_ID); 2190 if (log) 2191 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ()); 2192 } 2193 } 2194 2195 // Tell coordinator about about the "new" (since exec) stopped main thread. 2196 const lldb::tid_t main_thread_tid = GetID (); 2197 NotifyThreadCreateStopped (main_thread_tid); 2198 2199 // NOTE: ideally these next statements would execute at the same time as the coordinator thread create was executed. 2200 // Consider a handler that can execute when that happens. 2201 // Let our delegate know we have just exec'd. 2202 NotifyDidExec (); 2203 2204 // If we have a main thread, indicate we are stopped. 2205 assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked"); 2206 2207 // Let the process know we're stopped. 2208 SetState (StateType::eStateStopped); 2209 2210 break; 2211 } 2212 2213 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): 2214 { 2215 // The inferior process or one of its threads is about to exit. 2216 2217 // This thread is currently stopped. It's not actually dead yet, just about to be. 2218 NotifyThreadStop (pid); 2219 2220 unsigned long data = 0; 2221 if (GetEventMessage(pid, &data).Fail()) 2222 data = -1; 2223 2224 if (log) 2225 { 2226 log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)", 2227 __FUNCTION__, 2228 data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false", 2229 pid, 2230 is_main_thread ? "is main thread" : "not main thread"); 2231 } 2232 2233 if (is_main_thread) 2234 { 2235 SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true); 2236 } 2237 2238 const int signo = static_cast<int> (data); 2239 m_coordinator_up->RequestThreadResume (pid, 2240 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2241 { 2242 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning (); 2243 return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo); 2244 }, 2245 CoordinatorErrorHandler); 2246 2247 break; 2248 } 2249 2250 case 0: 2251 case TRAP_TRACE: 2252 // We receive this on single stepping. 2253 if (log) 2254 log->Printf ("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)", __FUNCTION__, pid); 2255 2256 if (thread_sp) 2257 { 2258 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedByTrace (); 2259 } 2260 2261 // This thread is currently stopped. 2262 NotifyThreadStop (pid); 2263 2264 // Here we don't have to request the rest of the threads to stop or request a deferred stop. 2265 // This would have already happened at the time the Resume() with step operation was signaled. 2266 // At this point, we just need to say we stopped, and the deferred notifcation will fire off 2267 // once all running threads have checked in as stopped. 2268 SetCurrentThreadID (pid); 2269 // Tell the process we have a stop (from software breakpoint). 2270 SetState (StateType::eStateStopped, true); 2271 break; 2272 2273 case SI_KERNEL: 2274 case TRAP_BRKPT: 2275 if (log) 2276 log->Printf ("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64, __FUNCTION__, pid); 2277 2278 // This thread is currently stopped. 2279 NotifyThreadStop (pid); 2280 2281 // Mark the thread as stopped at breakpoint. 2282 if (thread_sp) 2283 { 2284 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedByBreakpoint (); 2285 Error error = FixupBreakpointPCAsNeeded (thread_sp); 2286 if (error.Fail ()) 2287 { 2288 if (log) 2289 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s", __FUNCTION__, pid, error.AsCString ()); 2290 } 2291 } 2292 else 2293 { 2294 if (log) 2295 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": warning, cannot process software breakpoint since no thread metadata", __FUNCTION__, pid); 2296 } 2297 2298 2299 // We need to tell all other running threads before we notify the delegate about this stop. 2300 CallAfterRunningThreadsStop (pid, 2301 [=](lldb::tid_t deferred_notification_tid) 2302 { 2303 SetCurrentThreadID (deferred_notification_tid); 2304 // Tell the process we have a stop (from software breakpoint). 2305 SetState (StateType::eStateStopped, true); 2306 }); 2307 break; 2308 2309 case TRAP_HWBKPT: 2310 if (log) 2311 log->Printf ("NativeProcessLinux::%s() received watchpoint event, pid = %" PRIu64, __FUNCTION__, pid); 2312 2313 // This thread is currently stopped. 2314 NotifyThreadStop (pid); 2315 2316 // Mark the thread as stopped at watchpoint. 2317 // The address is at (lldb::addr_t)info->si_addr if we need it. 2318 if (thread_sp) 2319 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedByWatchpoint (); 2320 else 2321 { 2322 if (log) 2323 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ": warning, cannot process hardware breakpoint since no thread metadata", __FUNCTION__, GetID (), pid); 2324 } 2325 2326 // We need to tell all other running threads before we notify the delegate about this stop. 2327 CallAfterRunningThreadsStop (pid, 2328 [=](lldb::tid_t deferred_notification_tid) 2329 { 2330 SetCurrentThreadID (deferred_notification_tid); 2331 // Tell the process we have a stop (from hardware breakpoint). 2332 SetState (StateType::eStateStopped, true); 2333 }); 2334 break; 2335 2336 case SIGTRAP: 2337 case (SIGTRAP | 0x80): 2338 if (log) 2339 log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), pid); 2340 2341 // This thread is currently stopped. 2342 NotifyThreadStop (pid); 2343 if (thread_sp) 2344 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGTRAP); 2345 2346 2347 // Ignore these signals until we know more about them. 2348 m_coordinator_up->RequestThreadResume (pid, 2349 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2350 { 2351 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning (); 2352 return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER); 2353 }, 2354 CoordinatorErrorHandler); 2355 break; 2356 2357 default: 2358 assert(false && "Unexpected SIGTRAP code!"); 2359 if (log) 2360 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%" PRIx64, __FUNCTION__, GetID (), pid, static_cast<uint64_t> (SIGTRAP | (PTRACE_EVENT_CLONE << 8))); 2361 break; 2362 2363 } 2364 } 2365 2366 void 2367 NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited) 2368 { 2369 assert (info && "null info"); 2370 if (!info) 2371 return; 2372 2373 const int signo = info->si_signo; 2374 const bool is_from_llgs = info->si_pid == getpid (); 2375 2376 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2377 2378 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 2379 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a 2380 // kill(2) or raise(3). Similarly for tgkill(2) on Linux. 2381 // 2382 // IOW, user generated signals never generate what we consider to be a 2383 // "crash". 2384 // 2385 // Similarly, ACK signals generated by this monitor. 2386 2387 // See if we can find a thread for this signal. 2388 NativeThreadProtocolSP thread_sp = GetThreadByID (pid); 2389 if (!thread_sp) 2390 { 2391 if (log) 2392 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid); 2393 } 2394 2395 // Handle the signal. 2396 if (info->si_code == SI_TKILL || info->si_code == SI_USER) 2397 { 2398 if (log) 2399 log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")", 2400 __FUNCTION__, 2401 GetUnixSignals ().GetSignalAsCString (signo), 2402 signo, 2403 (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"), 2404 info->si_pid, 2405 is_from_llgs ? "from llgs" : "not from llgs", 2406 pid); 2407 } 2408 2409 // Check for new thread notification. 2410 if ((info->si_pid == 0) && (info->si_code == SI_USER)) 2411 { 2412 // A new thread creation is being signaled. This is one of two parts that come in 2413 // a non-deterministic order. pid is the thread id. 2414 if (log) 2415 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification", 2416 __FUNCTION__, GetID (), pid); 2417 2418 // Did we already create the thread? 2419 bool created_now = false; 2420 thread_sp = GetOrCreateThread (pid, created_now); 2421 assert (thread_sp.get() && "failed to get or create the tracking data for newly created inferior thread"); 2422 2423 // If the thread was already tracked, it means the main thread already received its SIGTRAP for the create. 2424 if (!created_now) 2425 { 2426 // We can now resume the newly created thread since it is fully created. 2427 NotifyThreadCreateStopped (pid); 2428 m_coordinator_up->RequestThreadResume (pid, 2429 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2430 { 2431 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning (); 2432 return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER); 2433 }, 2434 CoordinatorErrorHandler); 2435 } 2436 else 2437 { 2438 // Mark the thread as currently launching. Need to wait for SIGTRAP clone on the main thread before 2439 // this thread is ready to go. 2440 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetLaunching (); 2441 } 2442 2443 // Done handling. 2444 return; 2445 } 2446 2447 // Check for thread stop notification. 2448 if (is_from_llgs && (info->si_code == SI_TKILL) && (signo == SIGSTOP)) 2449 { 2450 // This is a tgkill()-based stop. 2451 if (thread_sp) 2452 { 2453 if (log) 2454 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped", 2455 __FUNCTION__, 2456 GetID (), 2457 pid); 2458 2459 // Check that we're not already marked with a stop reason. 2460 // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that 2461 // the kernel signaled us with the thread stopping which we handled and marked as stopped, 2462 // and that, without an intervening resume, we received another stop. It is more likely 2463 // that we are missing the marking of a run state somewhere if we find that the thread was 2464 // marked as stopped. 2465 NativeThreadLinux *const linux_thread_p = reinterpret_cast<NativeThreadLinux*> (thread_sp.get ()); 2466 assert (linux_thread_p && "linux_thread_p is null!"); 2467 2468 const StateType thread_state = linux_thread_p->GetState (); 2469 if (!StateIsStoppedState (thread_state, false)) 2470 { 2471 // An inferior thread just stopped, but was not the primary cause of the process stop. 2472 // Instead, something else (like a breakpoint or step) caused the stop. Mark the 2473 // stop signal as 0 to let lldb know this isn't the important stop. 2474 linux_thread_p->SetStoppedBySignal (0); 2475 SetCurrentThreadID (thread_sp->GetID ()); 2476 m_coordinator_up->NotifyThreadStop (thread_sp->GetID (), true, CoordinatorErrorHandler); 2477 } 2478 else 2479 { 2480 if (log) 2481 { 2482 // Retrieve the signal name if the thread was stopped by a signal. 2483 int stop_signo = 0; 2484 const bool stopped_by_signal = linux_thread_p->IsStopped (&stop_signo); 2485 const char *signal_name = stopped_by_signal ? GetUnixSignals ().GetSignalAsCString (stop_signo) : "<not stopped by signal>"; 2486 if (!signal_name) 2487 signal_name = "<no-signal-name>"; 2488 2489 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is", 2490 __FUNCTION__, 2491 GetID (), 2492 linux_thread_p->GetID (), 2493 StateAsCString (thread_state), 2494 stop_signo, 2495 signal_name); 2496 } 2497 // Tell the thread state coordinator about the stop. 2498 NotifyThreadStop (thread_sp->GetID ()); 2499 } 2500 } 2501 2502 // Done handling. 2503 return; 2504 } 2505 2506 if (log) 2507 log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo)); 2508 2509 // This thread is stopped. 2510 NotifyThreadStop (pid); 2511 2512 switch (signo) 2513 { 2514 case SIGSTOP: 2515 { 2516 if (log) 2517 { 2518 if (is_from_llgs) 2519 log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from llgs, most likely an interrupt", __FUNCTION__, GetID (), pid); 2520 else 2521 log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from outside of debugger", __FUNCTION__, GetID (), pid); 2522 } 2523 2524 // Resume this thread to get the group-stop mechanism to fire off the true group stops. 2525 // This thread will get stopped again as part of the group-stop completion. 2526 m_coordinator_up->RequestThreadResume (pid, 2527 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2528 { 2529 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning (); 2530 // Pass this signal number on to the inferior to handle. 2531 return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo); 2532 }, 2533 CoordinatorErrorHandler); 2534 } 2535 break; 2536 case SIGSEGV: 2537 case SIGILL: 2538 case SIGFPE: 2539 case SIGBUS: 2540 if (thread_sp) 2541 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetCrashedWithException (*info); 2542 break; 2543 default: 2544 // This is just a pre-signal-delivery notification of the incoming signal. 2545 if (thread_sp) 2546 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (signo); 2547 2548 break; 2549 } 2550 2551 // Send a stop to the debugger after we get all other threads to stop. 2552 CallAfterRunningThreadsStop (pid, 2553 [=] (lldb::tid_t signaling_tid) 2554 { 2555 SetCurrentThreadID (signaling_tid); 2556 SetState (StateType::eStateStopped, true); 2557 }); 2558 } 2559 2560 Error 2561 NativeProcessLinux::Resume (const ResumeActionList &resume_actions) 2562 { 2563 Error error; 2564 2565 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD)); 2566 if (log) 2567 log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ()); 2568 2569 lldb::tid_t deferred_signal_tid = LLDB_INVALID_THREAD_ID; 2570 lldb::tid_t deferred_signal_skip_tid = LLDB_INVALID_THREAD_ID; 2571 int deferred_signo = 0; 2572 NativeThreadProtocolSP deferred_signal_thread_sp; 2573 int resume_count = 0; 2574 bool stepping = false; 2575 2576 2577 // std::vector<NativeThreadProtocolSP> new_stop_threads; 2578 2579 // Scope for threads mutex. 2580 { 2581 Mutex::Locker locker (m_threads_mutex); 2582 for (auto thread_sp : m_threads) 2583 { 2584 assert (thread_sp && "thread list should not contain NULL threads"); 2585 2586 const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true); 2587 2588 if (action == nullptr) 2589 { 2590 if (log) 2591 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64, 2592 __FUNCTION__, GetID (), thread_sp->GetID ()); 2593 continue; 2594 } 2595 2596 if (log) 2597 { 2598 log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64, 2599 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); 2600 } 2601 2602 switch (action->state) 2603 { 2604 case eStateRunning: 2605 { 2606 // Run the thread, possibly feeding it the signal. 2607 const int signo = action->signal; 2608 m_coordinator_up->RequestThreadResumeAsNeeded (thread_sp->GetID (), 2609 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2610 { 2611 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning (); 2612 // Pass this signal number on to the inferior to handle. 2613 return Resume (tid_to_resume, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER); 2614 }, 2615 CoordinatorErrorHandler); 2616 ++resume_count; 2617 break; 2618 } 2619 2620 case eStateStepping: 2621 { 2622 // Request the step. 2623 const int signo = action->signal; 2624 m_coordinator_up->RequestThreadResume (thread_sp->GetID (), 2625 [=](lldb::tid_t tid_to_step, bool supress_signal) 2626 { 2627 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStepping (); 2628 const auto step_result = SingleStep (tid_to_step,(signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER); 2629 assert (step_result.Success() && "SingleStep() failed"); 2630 return step_result; 2631 }, 2632 CoordinatorErrorHandler); 2633 stepping = true; 2634 break; 2635 } 2636 2637 case eStateSuspended: 2638 case eStateStopped: 2639 // if we haven't chosen a deferred signal tid yet, use this one. 2640 if (deferred_signal_tid == LLDB_INVALID_THREAD_ID) 2641 { 2642 deferred_signal_tid = thread_sp->GetID (); 2643 deferred_signal_thread_sp = thread_sp; 2644 deferred_signo = SIGSTOP; 2645 } 2646 break; 2647 2648 default: 2649 return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64, 2650 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); 2651 } 2652 } 2653 } 2654 2655 // If we had any thread stopping, then do a deferred notification of the chosen stop thread id and signal 2656 // after all other running threads have stopped. 2657 // If there is a stepping thread involved we'll be eventually stopped by SIGTRAP trace signal. 2658 if (deferred_signal_tid != LLDB_INVALID_THREAD_ID && !stepping) 2659 { 2660 CallAfterRunningThreadsStopWithSkipTID (deferred_signal_tid, 2661 deferred_signal_skip_tid, 2662 [=](lldb::tid_t deferred_notification_tid) 2663 { 2664 // Set the signal thread to the current thread. 2665 SetCurrentThreadID (deferred_notification_tid); 2666 2667 // Set the thread state as stopped by the deferred signo. 2668 reinterpret_cast<NativeThreadLinux*> (deferred_signal_thread_sp.get ())->SetStoppedBySignal (deferred_signo); 2669 2670 // Tell the process delegate that the process is in a stopped state. 2671 SetState (StateType::eStateStopped, true); 2672 }); 2673 } 2674 2675 return error; 2676 } 2677 2678 Error 2679 NativeProcessLinux::Halt () 2680 { 2681 Error error; 2682 2683 if (kill (GetID (), SIGSTOP) != 0) 2684 error.SetErrorToErrno (); 2685 2686 return error; 2687 } 2688 2689 Error 2690 NativeProcessLinux::Detach () 2691 { 2692 Error error; 2693 2694 // Tell ptrace to detach from the process. 2695 if (GetID () != LLDB_INVALID_PROCESS_ID) 2696 error = Detach (GetID ()); 2697 2698 // Stop monitoring the inferior. 2699 StopMonitor (); 2700 2701 // No error. 2702 return error; 2703 } 2704 2705 Error 2706 NativeProcessLinux::Signal (int signo) 2707 { 2708 Error error; 2709 2710 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2711 if (log) 2712 log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64, 2713 __FUNCTION__, signo, GetUnixSignals ().GetSignalAsCString (signo), GetID ()); 2714 2715 if (kill(GetID(), signo)) 2716 error.SetErrorToErrno(); 2717 2718 return error; 2719 } 2720 2721 Error 2722 NativeProcessLinux::Interrupt () 2723 { 2724 // Pick a running thread (or if none, a not-dead stopped thread) as 2725 // the chosen thread that will be the stop-reason thread. 2726 Error error; 2727 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2728 2729 NativeThreadProtocolSP running_thread_sp; 2730 NativeThreadProtocolSP stopped_thread_sp; 2731 { 2732 Mutex::Locker locker (m_threads_mutex); 2733 2734 if (log) 2735 log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__); 2736 2737 for (auto thread_sp : m_threads) 2738 { 2739 // The thread shouldn't be null but lets just cover that here. 2740 if (!thread_sp) 2741 continue; 2742 2743 // If we have a running or stepping thread, we'll call that the 2744 // target of the interrupt. 2745 const auto thread_state = thread_sp->GetState (); 2746 if (thread_state == eStateRunning || 2747 thread_state == eStateStepping) 2748 { 2749 running_thread_sp = thread_sp; 2750 break; 2751 } 2752 else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true)) 2753 { 2754 // Remember the first non-dead stopped thread. We'll use that as a backup if there are no running threads. 2755 stopped_thread_sp = thread_sp; 2756 } 2757 } 2758 } 2759 2760 if (!running_thread_sp && !stopped_thread_sp) 2761 { 2762 error.SetErrorString ("found no running/stepping or live stopped threads as target for interrupt"); 2763 if (log) 2764 { 2765 log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ()); 2766 } 2767 return error; 2768 } 2769 2770 NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp; 2771 2772 if (log) 2773 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target", 2774 __FUNCTION__, 2775 GetID (), 2776 running_thread_sp ? "running" : "stopped", 2777 deferred_signal_thread_sp->GetID ()); 2778 2779 CallAfterRunningThreadsStop (deferred_signal_thread_sp->GetID (), 2780 [=](lldb::tid_t deferred_notification_tid) 2781 { 2782 // Set the signal thread to the current thread. 2783 SetCurrentThreadID (deferred_notification_tid); 2784 2785 // Set the thread state as stopped by the deferred signo. 2786 reinterpret_cast<NativeThreadLinux*> (deferred_signal_thread_sp.get ())->SetStoppedBySignal (SIGSTOP); 2787 2788 // Tell the process delegate that the process is in a stopped state. 2789 SetState (StateType::eStateStopped, true); 2790 }); 2791 return error; 2792 } 2793 2794 Error 2795 NativeProcessLinux::Kill () 2796 { 2797 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2798 if (log) 2799 log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ()); 2800 2801 Error error; 2802 2803 switch (m_state) 2804 { 2805 case StateType::eStateInvalid: 2806 case StateType::eStateExited: 2807 case StateType::eStateCrashed: 2808 case StateType::eStateDetached: 2809 case StateType::eStateUnloaded: 2810 // Nothing to do - the process is already dead. 2811 if (log) 2812 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state)); 2813 return error; 2814 2815 case StateType::eStateConnected: 2816 case StateType::eStateAttaching: 2817 case StateType::eStateLaunching: 2818 case StateType::eStateStopped: 2819 case StateType::eStateRunning: 2820 case StateType::eStateStepping: 2821 case StateType::eStateSuspended: 2822 // We can try to kill a process in these states. 2823 break; 2824 } 2825 2826 if (kill (GetID (), SIGKILL) != 0) 2827 { 2828 error.SetErrorToErrno (); 2829 return error; 2830 } 2831 2832 return error; 2833 } 2834 2835 static Error 2836 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info) 2837 { 2838 memory_region_info.Clear(); 2839 2840 StringExtractor line_extractor (maps_line.c_str ()); 2841 2842 // Format: {address_start_hex}-{address_end_hex} perms offset dev inode pathname 2843 // perms: rwxp (letter is present if set, '-' if not, final character is p=private, s=shared). 2844 2845 // Parse out the starting address 2846 lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0); 2847 2848 // Parse out hyphen separating start and end address from range. 2849 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-')) 2850 return Error ("malformed /proc/{pid}/maps entry, missing dash between address range"); 2851 2852 // Parse out the ending address 2853 lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address); 2854 2855 // Parse out the space after the address. 2856 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' ')) 2857 return Error ("malformed /proc/{pid}/maps entry, missing space after range"); 2858 2859 // Save the range. 2860 memory_region_info.GetRange ().SetRangeBase (start_address); 2861 memory_region_info.GetRange ().SetRangeEnd (end_address); 2862 2863 // Parse out each permission entry. 2864 if (line_extractor.GetBytesLeft () < 4) 2865 return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions"); 2866 2867 // Handle read permission. 2868 const char read_perm_char = line_extractor.GetChar (); 2869 if (read_perm_char == 'r') 2870 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes); 2871 else 2872 { 2873 assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" ); 2874 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 2875 } 2876 2877 // Handle write permission. 2878 const char write_perm_char = line_extractor.GetChar (); 2879 if (write_perm_char == 'w') 2880 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes); 2881 else 2882 { 2883 assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" ); 2884 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 2885 } 2886 2887 // Handle execute permission. 2888 const char exec_perm_char = line_extractor.GetChar (); 2889 if (exec_perm_char == 'x') 2890 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes); 2891 else 2892 { 2893 assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" ); 2894 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 2895 } 2896 2897 return Error (); 2898 } 2899 2900 Error 2901 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info) 2902 { 2903 // FIXME review that the final memory region returned extends to the end of the virtual address space, 2904 // with no perms if it is not mapped. 2905 2906 // Use an approach that reads memory regions from /proc/{pid}/maps. 2907 // Assume proc maps entries are in ascending order. 2908 // FIXME assert if we find differently. 2909 Mutex::Locker locker (m_mem_region_cache_mutex); 2910 2911 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2912 Error error; 2913 2914 if (m_supports_mem_region == LazyBool::eLazyBoolNo) 2915 { 2916 // We're done. 2917 error.SetErrorString ("unsupported"); 2918 return error; 2919 } 2920 2921 // If our cache is empty, pull the latest. There should always be at least one memory region 2922 // if memory region handling is supported. 2923 if (m_mem_region_cache.empty ()) 2924 { 2925 error = ProcFileReader::ProcessLineByLine (GetID (), "maps", 2926 [&] (const std::string &line) -> bool 2927 { 2928 MemoryRegionInfo info; 2929 const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info); 2930 if (parse_error.Success ()) 2931 { 2932 m_mem_region_cache.push_back (info); 2933 return true; 2934 } 2935 else 2936 { 2937 if (log) 2938 log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ()); 2939 return false; 2940 } 2941 }); 2942 2943 // If we had an error, we'll mark unsupported. 2944 if (error.Fail ()) 2945 { 2946 m_supports_mem_region = LazyBool::eLazyBoolNo; 2947 return error; 2948 } 2949 else if (m_mem_region_cache.empty ()) 2950 { 2951 // No entries after attempting to read them. This shouldn't happen if /proc/{pid}/maps 2952 // is supported. Assume we don't support map entries via procfs. 2953 if (log) 2954 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__); 2955 m_supports_mem_region = LazyBool::eLazyBoolNo; 2956 error.SetErrorString ("not supported"); 2957 return error; 2958 } 2959 2960 if (log) 2961 log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ()); 2962 2963 // We support memory retrieval, remember that. 2964 m_supports_mem_region = LazyBool::eLazyBoolYes; 2965 } 2966 else 2967 { 2968 if (log) 2969 log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ())); 2970 } 2971 2972 lldb::addr_t prev_base_address = 0; 2973 2974 // FIXME start by finding the last region that is <= target address using binary search. Data is sorted. 2975 // There can be a ton of regions on pthreads apps with lots of threads. 2976 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it) 2977 { 2978 MemoryRegionInfo &proc_entry_info = *it; 2979 2980 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 2981 assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected"); 2982 prev_base_address = proc_entry_info.GetRange ().GetRangeBase (); 2983 2984 // If the target address comes before this entry, indicate distance to next region. 2985 if (load_addr < proc_entry_info.GetRange ().GetRangeBase ()) 2986 { 2987 range_info.GetRange ().SetRangeBase (load_addr); 2988 range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr); 2989 range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 2990 range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 2991 range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 2992 2993 return error; 2994 } 2995 else if (proc_entry_info.GetRange ().Contains (load_addr)) 2996 { 2997 // The target address is within the memory region we're processing here. 2998 range_info = proc_entry_info; 2999 return error; 3000 } 3001 3002 // The target memory address comes somewhere after the region we just parsed. 3003 } 3004 3005 // If we made it here, we didn't find an entry that contained the given address. 3006 error.SetErrorString ("address comes after final region"); 3007 3008 if (log) 3009 log->Printf ("NativeProcessLinux::%s failed to find map entry for address 0x%" PRIx64 ": %s", __FUNCTION__, load_addr, error.AsCString ()); 3010 3011 return error; 3012 } 3013 3014 void 3015 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId) 3016 { 3017 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3018 if (log) 3019 log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId); 3020 3021 { 3022 Mutex::Locker locker (m_mem_region_cache_mutex); 3023 if (log) 3024 log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ())); 3025 m_mem_region_cache.clear (); 3026 } 3027 } 3028 3029 Error 3030 NativeProcessLinux::AllocateMemory ( 3031 lldb::addr_t size, 3032 uint32_t permissions, 3033 lldb::addr_t &addr) 3034 { 3035 // FIXME implementing this requires the equivalent of 3036 // InferiorCallPOSIX::InferiorCallMmap, which depends on 3037 // functional ThreadPlans working with Native*Protocol. 3038 #if 1 3039 return Error ("not implemented yet"); 3040 #else 3041 addr = LLDB_INVALID_ADDRESS; 3042 3043 unsigned prot = 0; 3044 if (permissions & lldb::ePermissionsReadable) 3045 prot |= eMmapProtRead; 3046 if (permissions & lldb::ePermissionsWritable) 3047 prot |= eMmapProtWrite; 3048 if (permissions & lldb::ePermissionsExecutable) 3049 prot |= eMmapProtExec; 3050 3051 // TODO implement this directly in NativeProcessLinux 3052 // (and lift to NativeProcessPOSIX if/when that class is 3053 // refactored out). 3054 if (InferiorCallMmap(this, addr, 0, size, prot, 3055 eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { 3056 m_addr_to_mmap_size[addr] = size; 3057 return Error (); 3058 } else { 3059 addr = LLDB_INVALID_ADDRESS; 3060 return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions)); 3061 } 3062 #endif 3063 } 3064 3065 Error 3066 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr) 3067 { 3068 // FIXME see comments in AllocateMemory - required lower-level 3069 // bits not in place yet (ThreadPlans) 3070 return Error ("not implemented"); 3071 } 3072 3073 lldb::addr_t 3074 NativeProcessLinux::GetSharedLibraryInfoAddress () 3075 { 3076 #if 1 3077 // punt on this for now 3078 return LLDB_INVALID_ADDRESS; 3079 #else 3080 // Return the image info address for the exe module 3081 #if 1 3082 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3083 3084 ModuleSP module_sp; 3085 Error error = GetExeModuleSP (module_sp); 3086 if (error.Fail ()) 3087 { 3088 if (log) 3089 log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ()); 3090 return LLDB_INVALID_ADDRESS; 3091 } 3092 3093 if (module_sp == nullptr) 3094 { 3095 if (log) 3096 log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__); 3097 return LLDB_INVALID_ADDRESS; 3098 } 3099 3100 ObjectFileSP object_file_sp = module_sp->GetObjectFile (); 3101 if (object_file_sp == nullptr) 3102 { 3103 if (log) 3104 log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__); 3105 return LLDB_INVALID_ADDRESS; 3106 } 3107 3108 return obj_file_sp->GetImageInfoAddress(); 3109 #else 3110 Target *target = &GetTarget(); 3111 ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile(); 3112 Address addr = obj_file->GetImageInfoAddress(target); 3113 3114 if (addr.IsValid()) 3115 return addr.GetLoadAddress(target); 3116 return LLDB_INVALID_ADDRESS; 3117 #endif 3118 #endif // punt on this for now 3119 } 3120 3121 size_t 3122 NativeProcessLinux::UpdateThreads () 3123 { 3124 // The NativeProcessLinux monitoring threads are always up to date 3125 // with respect to thread state and they keep the thread list 3126 // populated properly. All this method needs to do is return the 3127 // thread count. 3128 Mutex::Locker locker (m_threads_mutex); 3129 return m_threads.size (); 3130 } 3131 3132 bool 3133 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const 3134 { 3135 arch = m_arch; 3136 return true; 3137 } 3138 3139 Error 3140 NativeProcessLinux::GetSoftwareBreakpointSize (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size) 3141 { 3142 // FIXME put this behind a breakpoint protocol class that can be 3143 // set per architecture. Need ARM, MIPS support here. 3144 static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 }; 3145 static const uint8_t g_i386_opcode [] = { 0xCC }; 3146 3147 switch (m_arch.GetMachine ()) 3148 { 3149 case llvm::Triple::aarch64: 3150 actual_opcode_size = static_cast<uint32_t> (sizeof(g_aarch64_opcode)); 3151 return Error (); 3152 3153 case llvm::Triple::x86: 3154 case llvm::Triple::x86_64: 3155 actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode)); 3156 return Error (); 3157 3158 default: 3159 assert(false && "CPU type not supported!"); 3160 return Error ("CPU type not supported"); 3161 } 3162 } 3163 3164 Error 3165 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware) 3166 { 3167 if (hardware) 3168 return Error ("NativeProcessLinux does not support hardware breakpoints"); 3169 else 3170 return SetSoftwareBreakpoint (addr, size); 3171 } 3172 3173 Error 3174 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint, size_t &actual_opcode_size, const uint8_t *&trap_opcode_bytes) 3175 { 3176 // FIXME put this behind a breakpoint protocol class that can be 3177 // set per architecture. Need ARM, MIPS support here. 3178 static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 }; 3179 static const uint8_t g_i386_opcode [] = { 0xCC }; 3180 3181 switch (m_arch.GetMachine ()) 3182 { 3183 case llvm::Triple::aarch64: 3184 trap_opcode_bytes = g_aarch64_opcode; 3185 actual_opcode_size = sizeof(g_aarch64_opcode); 3186 return Error (); 3187 3188 case llvm::Triple::x86: 3189 case llvm::Triple::x86_64: 3190 trap_opcode_bytes = g_i386_opcode; 3191 actual_opcode_size = sizeof(g_i386_opcode); 3192 return Error (); 3193 3194 default: 3195 assert(false && "CPU type not supported!"); 3196 return Error ("CPU type not supported"); 3197 } 3198 } 3199 3200 #if 0 3201 ProcessMessage::CrashReason 3202 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info) 3203 { 3204 ProcessMessage::CrashReason reason; 3205 assert(info->si_signo == SIGSEGV); 3206 3207 reason = ProcessMessage::eInvalidCrashReason; 3208 3209 switch (info->si_code) 3210 { 3211 default: 3212 assert(false && "unexpected si_code for SIGSEGV"); 3213 break; 3214 case SI_KERNEL: 3215 // Linux will occasionally send spurious SI_KERNEL codes. 3216 // (this is poorly documented in sigaction) 3217 // One way to get this is via unaligned SIMD loads. 3218 reason = ProcessMessage::eInvalidAddress; // for lack of anything better 3219 break; 3220 case SEGV_MAPERR: 3221 reason = ProcessMessage::eInvalidAddress; 3222 break; 3223 case SEGV_ACCERR: 3224 reason = ProcessMessage::ePrivilegedAddress; 3225 break; 3226 } 3227 3228 return reason; 3229 } 3230 #endif 3231 3232 3233 #if 0 3234 ProcessMessage::CrashReason 3235 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info) 3236 { 3237 ProcessMessage::CrashReason reason; 3238 assert(info->si_signo == SIGILL); 3239 3240 reason = ProcessMessage::eInvalidCrashReason; 3241 3242 switch (info->si_code) 3243 { 3244 default: 3245 assert(false && "unexpected si_code for SIGILL"); 3246 break; 3247 case ILL_ILLOPC: 3248 reason = ProcessMessage::eIllegalOpcode; 3249 break; 3250 case ILL_ILLOPN: 3251 reason = ProcessMessage::eIllegalOperand; 3252 break; 3253 case ILL_ILLADR: 3254 reason = ProcessMessage::eIllegalAddressingMode; 3255 break; 3256 case ILL_ILLTRP: 3257 reason = ProcessMessage::eIllegalTrap; 3258 break; 3259 case ILL_PRVOPC: 3260 reason = ProcessMessage::ePrivilegedOpcode; 3261 break; 3262 case ILL_PRVREG: 3263 reason = ProcessMessage::ePrivilegedRegister; 3264 break; 3265 case ILL_COPROC: 3266 reason = ProcessMessage::eCoprocessorError; 3267 break; 3268 case ILL_BADSTK: 3269 reason = ProcessMessage::eInternalStackError; 3270 break; 3271 } 3272 3273 return reason; 3274 } 3275 #endif 3276 3277 #if 0 3278 ProcessMessage::CrashReason 3279 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info) 3280 { 3281 ProcessMessage::CrashReason reason; 3282 assert(info->si_signo == SIGFPE); 3283 3284 reason = ProcessMessage::eInvalidCrashReason; 3285 3286 switch (info->si_code) 3287 { 3288 default: 3289 assert(false && "unexpected si_code for SIGFPE"); 3290 break; 3291 case FPE_INTDIV: 3292 reason = ProcessMessage::eIntegerDivideByZero; 3293 break; 3294 case FPE_INTOVF: 3295 reason = ProcessMessage::eIntegerOverflow; 3296 break; 3297 case FPE_FLTDIV: 3298 reason = ProcessMessage::eFloatDivideByZero; 3299 break; 3300 case FPE_FLTOVF: 3301 reason = ProcessMessage::eFloatOverflow; 3302 break; 3303 case FPE_FLTUND: 3304 reason = ProcessMessage::eFloatUnderflow; 3305 break; 3306 case FPE_FLTRES: 3307 reason = ProcessMessage::eFloatInexactResult; 3308 break; 3309 case FPE_FLTINV: 3310 reason = ProcessMessage::eFloatInvalidOperation; 3311 break; 3312 case FPE_FLTSUB: 3313 reason = ProcessMessage::eFloatSubscriptRange; 3314 break; 3315 } 3316 3317 return reason; 3318 } 3319 #endif 3320 3321 #if 0 3322 ProcessMessage::CrashReason 3323 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info) 3324 { 3325 ProcessMessage::CrashReason reason; 3326 assert(info->si_signo == SIGBUS); 3327 3328 reason = ProcessMessage::eInvalidCrashReason; 3329 3330 switch (info->si_code) 3331 { 3332 default: 3333 assert(false && "unexpected si_code for SIGBUS"); 3334 break; 3335 case BUS_ADRALN: 3336 reason = ProcessMessage::eIllegalAlignment; 3337 break; 3338 case BUS_ADRERR: 3339 reason = ProcessMessage::eIllegalAddress; 3340 break; 3341 case BUS_OBJERR: 3342 reason = ProcessMessage::eHardwareError; 3343 break; 3344 } 3345 3346 return reason; 3347 } 3348 #endif 3349 3350 void 3351 NativeProcessLinux::ServeOperation(OperationArgs *args) 3352 { 3353 NativeProcessLinux *monitor = args->m_monitor; 3354 3355 // We are finised with the arguments and are ready to go. Sync with the 3356 // parent thread and start serving operations on the inferior. 3357 sem_post(&args->m_semaphore); 3358 3359 for(;;) 3360 { 3361 // wait for next pending operation 3362 if (sem_wait(&monitor->m_operation_pending)) 3363 { 3364 if (errno == EINTR) 3365 continue; 3366 assert(false && "Unexpected errno from sem_wait"); 3367 } 3368 3369 reinterpret_cast<Operation*>(monitor->m_operation)->Execute(monitor); 3370 3371 // notify calling thread that operation is complete 3372 sem_post(&monitor->m_operation_done); 3373 } 3374 } 3375 3376 void 3377 NativeProcessLinux::DoOperation(void *op) 3378 { 3379 Mutex::Locker lock(m_operation_mutex); 3380 3381 m_operation = op; 3382 3383 // notify operation thread that an operation is ready to be processed 3384 sem_post(&m_operation_pending); 3385 3386 // wait for operation to complete 3387 while (sem_wait(&m_operation_done)) 3388 { 3389 if (errno == EINTR) 3390 continue; 3391 assert(false && "Unexpected errno from sem_wait"); 3392 } 3393 } 3394 3395 Error 3396 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, lldb::addr_t size, lldb::addr_t &bytes_read) 3397 { 3398 ReadOperation op(addr, buf, size, bytes_read); 3399 DoOperation(&op); 3400 return op.GetError (); 3401 } 3402 3403 Error 3404 NativeProcessLinux::WriteMemory (lldb::addr_t addr, const void *buf, lldb::addr_t size, lldb::addr_t &bytes_written) 3405 { 3406 WriteOperation op(addr, buf, size, bytes_written); 3407 DoOperation(&op); 3408 return op.GetError (); 3409 } 3410 3411 Error 3412 NativeProcessLinux::ReadRegisterValue(lldb::tid_t tid, uint32_t offset, const char* reg_name, 3413 uint32_t size, RegisterValue &value) 3414 { 3415 ReadRegOperation op(tid, offset, reg_name, value); 3416 DoOperation(&op); 3417 return op.GetError(); 3418 } 3419 3420 Error 3421 NativeProcessLinux::WriteRegisterValue(lldb::tid_t tid, unsigned offset, 3422 const char* reg_name, const RegisterValue &value) 3423 { 3424 WriteRegOperation op(tid, offset, reg_name, value); 3425 DoOperation(&op); 3426 return op.GetError(); 3427 } 3428 3429 Error 3430 NativeProcessLinux::ReadGPR(lldb::tid_t tid, void *buf, size_t buf_size) 3431 { 3432 ReadGPROperation op(tid, buf, buf_size); 3433 DoOperation(&op); 3434 return op.GetError(); 3435 } 3436 3437 Error 3438 NativeProcessLinux::ReadFPR(lldb::tid_t tid, void *buf, size_t buf_size) 3439 { 3440 ReadFPROperation op(tid, buf, buf_size); 3441 DoOperation(&op); 3442 return op.GetError(); 3443 } 3444 3445 Error 3446 NativeProcessLinux::ReadRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 3447 { 3448 ReadRegisterSetOperation op(tid, buf, buf_size, regset); 3449 DoOperation(&op); 3450 return op.GetError(); 3451 } 3452 3453 Error 3454 NativeProcessLinux::WriteGPR(lldb::tid_t tid, void *buf, size_t buf_size) 3455 { 3456 WriteGPROperation op(tid, buf, buf_size); 3457 DoOperation(&op); 3458 return op.GetError(); 3459 } 3460 3461 Error 3462 NativeProcessLinux::WriteFPR(lldb::tid_t tid, void *buf, size_t buf_size) 3463 { 3464 WriteFPROperation op(tid, buf, buf_size); 3465 DoOperation(&op); 3466 return op.GetError(); 3467 } 3468 3469 Error 3470 NativeProcessLinux::WriteRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 3471 { 3472 WriteRegisterSetOperation op(tid, buf, buf_size, regset); 3473 DoOperation(&op); 3474 return op.GetError(); 3475 } 3476 3477 Error 3478 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo) 3479 { 3480 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3481 3482 if (log) 3483 log->Printf ("NativeProcessLinux::%s() resuming thread = %" PRIu64 " with signal %s", __FUNCTION__, tid, 3484 GetUnixSignals().GetSignalAsCString (signo)); 3485 ResumeOperation op (tid, signo); 3486 DoOperation (&op); 3487 if (log) 3488 log->Printf ("NativeProcessLinux::%s() resuming thread = %" PRIu64 " result = %s", __FUNCTION__, tid, op.GetError().Success() ? "true" : "false"); 3489 return op.GetError(); 3490 } 3491 3492 Error 3493 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo) 3494 { 3495 SingleStepOperation op(tid, signo); 3496 DoOperation(&op); 3497 return op.GetError(); 3498 } 3499 3500 Error 3501 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) 3502 { 3503 SiginfoOperation op(tid, siginfo); 3504 DoOperation(&op); 3505 return op.GetError(); 3506 } 3507 3508 Error 3509 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message) 3510 { 3511 EventMessageOperation op(tid, message); 3512 DoOperation(&op); 3513 return op.GetError(); 3514 } 3515 3516 lldb_private::Error 3517 NativeProcessLinux::Detach(lldb::tid_t tid) 3518 { 3519 if (tid == LLDB_INVALID_THREAD_ID) 3520 return Error(); 3521 3522 DetachOperation op(tid); 3523 DoOperation(&op); 3524 return op.GetError(); 3525 } 3526 3527 bool 3528 NativeProcessLinux::DupDescriptor(const char *path, int fd, int flags) 3529 { 3530 int target_fd = open(path, flags, 0666); 3531 3532 if (target_fd == -1) 3533 return false; 3534 3535 return (dup2(target_fd, fd) == -1) ? false : true; 3536 } 3537 3538 void 3539 NativeProcessLinux::StopMonitoringChildProcess() 3540 { 3541 if (m_monitor_thread.IsJoinable()) 3542 { 3543 m_monitor_thread.Cancel(); 3544 m_monitor_thread.Join(nullptr); 3545 } 3546 } 3547 3548 void 3549 NativeProcessLinux::StopMonitor() 3550 { 3551 StopMonitoringChildProcess(); 3552 StopOpThread(); 3553 StopCoordinatorThread (); 3554 sem_destroy(&m_operation_pending); 3555 sem_destroy(&m_operation_done); 3556 3557 // TODO: validate whether this still holds, fix up comment. 3558 // Note: ProcessPOSIX passes the m_terminal_fd file descriptor to 3559 // Process::SetSTDIOFileDescriptor, which in turn transfers ownership of 3560 // the descriptor to a ConnectionFileDescriptor object. Consequently 3561 // even though still has the file descriptor, we shouldn't close it here. 3562 } 3563 3564 void 3565 NativeProcessLinux::StopOpThread() 3566 { 3567 if (!m_operation_thread.IsJoinable()) 3568 return; 3569 3570 m_operation_thread.Cancel(); 3571 m_operation_thread.Join(nullptr); 3572 } 3573 3574 Error 3575 NativeProcessLinux::StartCoordinatorThread () 3576 { 3577 Error error; 3578 static const char *g_thread_name = "lldb.process.linux.ts_coordinator"; 3579 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3580 3581 // Skip if thread is already running 3582 if (m_coordinator_thread.IsJoinable()) 3583 { 3584 error.SetErrorString ("ThreadStateCoordinator's run loop is already running"); 3585 if (log) 3586 log->Printf ("NativeProcessLinux::%s %s", __FUNCTION__, error.AsCString ()); 3587 return error; 3588 } 3589 3590 // Enable verbose logging if lldb thread logging is enabled. 3591 m_coordinator_up->LogEnableEventProcessing (log != nullptr); 3592 3593 if (log) 3594 log->Printf ("NativeProcessLinux::%s launching ThreadStateCoordinator thread for pid %" PRIu64, __FUNCTION__, GetID ()); 3595 m_coordinator_thread = ThreadLauncher::LaunchThread(g_thread_name, CoordinatorThread, this, &error); 3596 return error; 3597 } 3598 3599 void * 3600 NativeProcessLinux::CoordinatorThread (void *arg) 3601 { 3602 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3603 3604 NativeProcessLinux *const process = static_cast<NativeProcessLinux*> (arg); 3605 assert (process && "null process passed to CoordinatorThread"); 3606 if (!process) 3607 { 3608 if (log) 3609 log->Printf ("NativeProcessLinux::%s null process, exiting ThreadStateCoordinator processing loop", __FUNCTION__); 3610 return nullptr; 3611 } 3612 3613 // Run the thread state coordinator loop until it is done. This call uses 3614 // efficient waiting for an event to be ready. 3615 while (process->m_coordinator_up->ProcessNextEvent () == ThreadStateCoordinator::eventLoopResultContinue) 3616 { 3617 } 3618 3619 if (log) 3620 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " exiting ThreadStateCoordinator processing loop due to coordinator indicating completion", __FUNCTION__, process->GetID ()); 3621 3622 return nullptr; 3623 } 3624 3625 void 3626 NativeProcessLinux::StopCoordinatorThread() 3627 { 3628 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3629 if (log) 3630 log->Printf ("NativeProcessLinux::%s requesting ThreadStateCoordinator stop for pid %" PRIu64, __FUNCTION__, GetID ()); 3631 3632 // Tell the coordinator we're done. This will cause the coordinator 3633 // run loop thread to exit when the processing queue hits this message. 3634 m_coordinator_up->StopCoordinator (); 3635 } 3636 3637 bool 3638 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id) 3639 { 3640 for (auto thread_sp : m_threads) 3641 { 3642 assert (thread_sp && "thread list should not contain NULL threads"); 3643 if (thread_sp->GetID () == thread_id) 3644 { 3645 // We have this thread. 3646 return true; 3647 } 3648 } 3649 3650 // We don't have this thread. 3651 return false; 3652 } 3653 3654 NativeThreadProtocolSP 3655 NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id) 3656 { 3657 // CONSIDER organize threads by map - we can do better than linear. 3658 for (auto thread_sp : m_threads) 3659 { 3660 if (thread_sp->GetID () == thread_id) 3661 return thread_sp; 3662 } 3663 3664 // We don't have this thread. 3665 return NativeThreadProtocolSP (); 3666 } 3667 3668 bool 3669 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id) 3670 { 3671 Mutex::Locker locker (m_threads_mutex); 3672 for (auto it = m_threads.begin (); it != m_threads.end (); ++it) 3673 { 3674 if (*it && ((*it)->GetID () == thread_id)) 3675 { 3676 m_threads.erase (it); 3677 return true; 3678 } 3679 } 3680 3681 // Didn't find it. 3682 return false; 3683 } 3684 3685 NativeThreadProtocolSP 3686 NativeProcessLinux::AddThread (lldb::tid_t thread_id) 3687 { 3688 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3689 3690 Mutex::Locker locker (m_threads_mutex); 3691 3692 if (log) 3693 { 3694 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64, 3695 __FUNCTION__, 3696 GetID (), 3697 thread_id); 3698 } 3699 3700 assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists"); 3701 3702 // If this is the first thread, save it as the current thread 3703 if (m_threads.empty ()) 3704 SetCurrentThreadID (thread_id); 3705 3706 NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id)); 3707 m_threads.push_back (thread_sp); 3708 3709 return thread_sp; 3710 } 3711 3712 NativeThreadProtocolSP 3713 NativeProcessLinux::GetOrCreateThread (lldb::tid_t thread_id, bool &created) 3714 { 3715 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3716 3717 Mutex::Locker locker (m_threads_mutex); 3718 if (log) 3719 { 3720 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " get/create thread with tid %" PRIu64, 3721 __FUNCTION__, 3722 GetID (), 3723 thread_id); 3724 } 3725 3726 // Retrieve the thread if it is already getting tracked. 3727 NativeThreadProtocolSP thread_sp = MaybeGetThreadNoLock (thread_id); 3728 if (thread_sp) 3729 { 3730 if (log) 3731 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": thread already tracked, returning", 3732 __FUNCTION__, 3733 GetID (), 3734 thread_id); 3735 created = false; 3736 return thread_sp; 3737 3738 } 3739 3740 // Create the thread metadata since it isn't being tracked. 3741 if (log) 3742 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": thread didn't exist, tracking now", 3743 __FUNCTION__, 3744 GetID (), 3745 thread_id); 3746 3747 thread_sp.reset (new NativeThreadLinux (this, thread_id)); 3748 m_threads.push_back (thread_sp); 3749 created = true; 3750 3751 return thread_sp; 3752 } 3753 3754 Error 3755 NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp) 3756 { 3757 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS)); 3758 3759 Error error; 3760 3761 // Get a linux thread pointer. 3762 if (!thread_sp) 3763 { 3764 error.SetErrorString ("null thread_sp"); 3765 if (log) 3766 log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); 3767 return error; 3768 } 3769 NativeThreadLinux *const linux_thread_p = reinterpret_cast<NativeThreadLinux*> (thread_sp.get()); 3770 3771 // Find out the size of a breakpoint (might depend on where we are in the code). 3772 NativeRegisterContextSP context_sp = linux_thread_p->GetRegisterContext (); 3773 if (!context_sp) 3774 { 3775 error.SetErrorString ("cannot get a NativeRegisterContext for the thread"); 3776 if (log) 3777 log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); 3778 return error; 3779 } 3780 3781 uint32_t breakpoint_size = 0; 3782 error = GetSoftwareBreakpointSize (context_sp, breakpoint_size); 3783 if (error.Fail ()) 3784 { 3785 if (log) 3786 log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ()); 3787 return error; 3788 } 3789 else 3790 { 3791 if (log) 3792 log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size); 3793 } 3794 3795 // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size. 3796 const lldb::addr_t initial_pc_addr = context_sp->GetPC (); 3797 lldb::addr_t breakpoint_addr = initial_pc_addr; 3798 if (breakpoint_size > static_cast<lldb::addr_t> (0)) 3799 { 3800 // Do not allow breakpoint probe to wrap around. 3801 if (breakpoint_addr >= static_cast<lldb::addr_t> (breakpoint_size)) 3802 breakpoint_addr -= static_cast<lldb::addr_t> (breakpoint_size); 3803 } 3804 3805 // Check if we stopped because of a breakpoint. 3806 NativeBreakpointSP breakpoint_sp; 3807 error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp); 3808 if (!error.Success () || !breakpoint_sp) 3809 { 3810 // We didn't find one at a software probe location. Nothing to do. 3811 if (log) 3812 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr); 3813 return Error (); 3814 } 3815 3816 // If the breakpoint is not a software breakpoint, nothing to do. 3817 if (!breakpoint_sp->IsSoftwareBreakpoint ()) 3818 { 3819 if (log) 3820 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr); 3821 return Error (); 3822 } 3823 3824 // 3825 // We have a software breakpoint and need to adjust the PC. 3826 // 3827 3828 // Sanity check. 3829 if (breakpoint_size == 0) 3830 { 3831 // Nothing to do! How did we get here? 3832 if (log) 3833 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr); 3834 return Error (); 3835 } 3836 3837 // Change the program counter. 3838 if (log) 3839 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_p->GetID (), initial_pc_addr, breakpoint_addr); 3840 3841 error = context_sp->SetPC (breakpoint_addr); 3842 if (error.Fail ()) 3843 { 3844 if (log) 3845 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_p->GetID (), error.AsCString ()); 3846 return error; 3847 } 3848 3849 return error; 3850 } 3851 3852 void 3853 NativeProcessLinux::NotifyThreadCreateStopped (lldb::tid_t tid) 3854 { 3855 const bool is_stopped = true; 3856 m_coordinator_up->NotifyThreadCreate (tid, is_stopped, CoordinatorErrorHandler); 3857 } 3858 3859 void 3860 NativeProcessLinux::NotifyThreadDeath (lldb::tid_t tid) 3861 { 3862 m_coordinator_up->NotifyThreadDeath (tid, CoordinatorErrorHandler); 3863 } 3864 3865 void 3866 NativeProcessLinux::NotifyThreadStop (lldb::tid_t tid) 3867 { 3868 m_coordinator_up->NotifyThreadStop (tid, false, CoordinatorErrorHandler); 3869 } 3870 3871 void 3872 NativeProcessLinux::CallAfterRunningThreadsStop (lldb::tid_t tid, 3873 const std::function<void (lldb::tid_t tid)> &call_after_function) 3874 { 3875 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3876 if (log) 3877 log->Printf("NativeProcessLinux::%s tid %" PRIu64, __FUNCTION__, tid); 3878 3879 const lldb::pid_t pid = GetID (); 3880 m_coordinator_up->CallAfterRunningThreadsStop (tid, 3881 [=](lldb::tid_t request_stop_tid) 3882 { 3883 return RequestThreadStop(pid, request_stop_tid); 3884 }, 3885 call_after_function, 3886 CoordinatorErrorHandler); 3887 } 3888 3889 void 3890 NativeProcessLinux::CallAfterRunningThreadsStopWithSkipTID (lldb::tid_t deferred_signal_tid, 3891 lldb::tid_t skip_stop_request_tid, 3892 const std::function<void (lldb::tid_t tid)> &call_after_function) 3893 { 3894 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3895 if (log) 3896 log->Printf("NativeProcessLinux::%s deferred_signal_tid %" PRIu64 ", skip_stop_request_tid %" PRIu64, __FUNCTION__, deferred_signal_tid, skip_stop_request_tid); 3897 3898 const lldb::pid_t pid = GetID (); 3899 m_coordinator_up->CallAfterRunningThreadsStopWithSkipTIDs (deferred_signal_tid, 3900 skip_stop_request_tid != LLDB_INVALID_THREAD_ID ? ThreadStateCoordinator::ThreadIDSet {skip_stop_request_tid} : ThreadStateCoordinator::ThreadIDSet (), 3901 [=](lldb::tid_t request_stop_tid) 3902 { 3903 return RequestThreadStop(pid, request_stop_tid); 3904 }, 3905 call_after_function, 3906 CoordinatorErrorHandler); 3907 } 3908 3909 lldb_private::Error 3910 NativeProcessLinux::RequestThreadStop (const lldb::pid_t pid, const lldb::tid_t tid) 3911 { 3912 Log* log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3913 if (log) 3914 log->Printf ("NativeProcessLinux::%s requesting thread stop(pid: %" PRIu64 ", tid: %" PRIu64 ")", __FUNCTION__, pid, tid); 3915 3916 Error err; 3917 errno = 0; 3918 if (::tgkill (pid, tid, SIGSTOP) != 0) 3919 { 3920 err.SetErrorToErrno (); 3921 if (log) 3922 log->Printf ("NativeProcessLinux::%s tgkill(%" PRIu64 ", %" PRIu64 ", SIGSTOP) failed: %s", __FUNCTION__, pid, tid, err.AsCString ()); 3923 } 3924 3925 return err; 3926 } 3927