1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "lldb/lldb-python.h"
11 
12 #include "NativeProcessLinux.h"
13 
14 // C Includes
15 #include <errno.h>
16 #include <poll.h>
17 #include <string.h>
18 #include <stdint.h>
19 #include <unistd.h>
20 
21 // C++ Includes
22 #include <fstream>
23 #include <string>
24 
25 // Other libraries and framework includes
26 #include "lldb/Core/Debugger.h"
27 #include "lldb/Core/EmulateInstruction.h"
28 #include "lldb/Core/Error.h"
29 #include "lldb/Core/Module.h"
30 #include "lldb/Core/ModuleSpec.h"
31 #include "lldb/Core/RegisterValue.h"
32 #include "lldb/Core/Scalar.h"
33 #include "lldb/Core/State.h"
34 #include "lldb/Host/common/NativeBreakpoint.h"
35 #include "lldb/Host/common/NativeRegisterContext.h"
36 #include "lldb/Host/Host.h"
37 #include "lldb/Host/HostInfo.h"
38 #include "lldb/Host/HostNativeThread.h"
39 #include "lldb/Host/ThreadLauncher.h"
40 #include "lldb/Symbol/ObjectFile.h"
41 #include "lldb/Target/Process.h"
42 #include "lldb/Target/ProcessLaunchInfo.h"
43 #include "lldb/Utility/LLDBAssert.h"
44 #include "lldb/Utility/PseudoTerminal.h"
45 
46 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
47 #include "Plugins/Process/Utility/LinuxSignals.h"
48 #include "Utility/StringExtractor.h"
49 #include "NativeThreadLinux.h"
50 #include "ProcFileReader.h"
51 #include "Procfs.h"
52 #include "ThreadStateCoordinator.h"
53 
54 // System includes - They have to be included after framework includes because they define some
55 // macros which collide with variable names in other modules
56 #include <linux/unistd.h>
57 #include <sys/personality.h>
58 #include <sys/ptrace.h>
59 #include <sys/socket.h>
60 #include <sys/signalfd.h>
61 #include <sys/syscall.h>
62 #include <sys/types.h>
63 #include <sys/uio.h>
64 #include <sys/user.h>
65 #include <sys/wait.h>
66 
67 #if defined (__arm64__) || defined (__aarch64__)
68 // NT_PRSTATUS and NT_FPREGSET definition
69 #include <elf.h>
70 #endif
71 
72 #ifdef __ANDROID__
73 #define __ptrace_request int
74 #define PT_DETACH PTRACE_DETACH
75 #endif
76 
77 #define DEBUG_PTRACE_MAXBYTES 20
78 
79 // Support ptrace extensions even when compiled without required kernel support
80 #ifndef PT_GETREGS
81 #ifndef PTRACE_GETREGS
82   #define PTRACE_GETREGS 12
83 #endif
84 #endif
85 #ifndef PT_SETREGS
86 #ifndef PTRACE_SETREGS
87   #define PTRACE_SETREGS 13
88 #endif
89 #endif
90 #ifndef PT_GETFPREGS
91 #ifndef PTRACE_GETFPREGS
92   #define PTRACE_GETFPREGS 14
93 #endif
94 #endif
95 #ifndef PT_SETFPREGS
96 #ifndef PTRACE_SETFPREGS
97   #define PTRACE_SETFPREGS 15
98 #endif
99 #endif
100 #ifndef PTRACE_GETREGSET
101   #define PTRACE_GETREGSET 0x4204
102 #endif
103 #ifndef PTRACE_SETREGSET
104   #define PTRACE_SETREGSET 0x4205
105 #endif
106 #ifndef PTRACE_GET_THREAD_AREA
107   #define PTRACE_GET_THREAD_AREA 25
108 #endif
109 #ifndef PTRACE_ARCH_PRCTL
110   #define PTRACE_ARCH_PRCTL      30
111 #endif
112 #ifndef ARCH_GET_FS
113   #define ARCH_SET_GS 0x1001
114   #define ARCH_SET_FS 0x1002
115   #define ARCH_GET_FS 0x1003
116   #define ARCH_GET_GS 0x1004
117 #endif
118 
119 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS  0xffffffff
120 
121 // Support hardware breakpoints in case it has not been defined
122 #ifndef TRAP_HWBKPT
123   #define TRAP_HWBKPT 4
124 #endif
125 
126 // Try to define a macro to encapsulate the tgkill syscall
127 // fall back on kill() if tgkill isn't available
128 #define tgkill(pid, tid, sig) \
129     syscall(SYS_tgkill, static_cast<::pid_t>(pid), static_cast<::pid_t>(tid), sig)
130 
131 // We disable the tracing of ptrace calls for integration builds to
132 // avoid the additional indirection and checks.
133 #ifndef LLDB_CONFIGURATION_BUILDANDINTEGRATION
134 #define PTRACE(req, pid, addr, data, data_size, error) \
135     PtraceWrapper((req), (pid), (addr), (data), (data_size), (error), #req, __FILE__, __LINE__)
136 #else
137 #define PTRACE(req, pid, addr, data, data_size, error) \
138     PtraceWrapper((req), (pid), (addr), (data), (data_size), (error))
139 #endif
140 
141 using namespace lldb;
142 using namespace lldb_private;
143 using namespace lldb_private::process_linux;
144 using namespace llvm;
145 
146 // Private bits we only need internally.
147 namespace
148 {
149     const UnixSignals&
150     GetUnixSignals ()
151     {
152         static process_linux::LinuxSignals signals;
153         return signals;
154     }
155 
156     ThreadStateCoordinator::LogFunction
157     GetThreadLoggerFunction ()
158     {
159         return [](const char *format, va_list args)
160         {
161             Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
162             if (log)
163                 log->VAPrintf (format, args);
164         };
165     }
166 
167     void
168     CoordinatorErrorHandler (const std::string &error_message)
169     {
170         Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
171         if (log)
172             log->Printf ("NativeProcessLinux::%s %s", __FUNCTION__, error_message.c_str ());
173         assert (false && "ThreadStateCoordinator error reported");
174     }
175 
176     Error
177     ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch)
178     {
179         // Grab process info for the running process.
180         ProcessInstanceInfo process_info;
181         if (!platform.GetProcessInfo (pid, process_info))
182             return Error("failed to get process info");
183 
184         // Resolve the executable module.
185         ModuleSP exe_module_sp;
186         ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
187         FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ());
188         Error error = platform.ResolveExecutable(
189             exe_module_spec,
190             exe_module_sp,
191             executable_search_paths.GetSize () ? &executable_search_paths : NULL);
192 
193         if (!error.Success ())
194             return error;
195 
196         // Check if we've got our architecture from the exe_module.
197         arch = exe_module_sp->GetArchitecture ();
198         if (arch.IsValid ())
199             return Error();
200         else
201             return Error("failed to retrieve a valid architecture from the exe module");
202     }
203 
204     void
205     DisplayBytes (StreamString &s, void *bytes, uint32_t count)
206     {
207         uint8_t *ptr = (uint8_t *)bytes;
208         const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
209         for(uint32_t i=0; i<loop_count; i++)
210         {
211             s.Printf ("[%x]", *ptr);
212             ptr++;
213         }
214     }
215 
216     void
217     PtraceDisplayBytes(int &req, void *data, size_t data_size)
218     {
219         StreamString buf;
220         Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (
221                     POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE));
222 
223         if (verbose_log)
224         {
225             switch(req)
226             {
227             case PTRACE_POKETEXT:
228             {
229                 DisplayBytes(buf, &data, 8);
230                 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData());
231                 break;
232             }
233             case PTRACE_POKEDATA:
234             {
235                 DisplayBytes(buf, &data, 8);
236                 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData());
237                 break;
238             }
239             case PTRACE_POKEUSER:
240             {
241                 DisplayBytes(buf, &data, 8);
242                 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData());
243                 break;
244             }
245             case PTRACE_SETREGS:
246             {
247                 DisplayBytes(buf, data, data_size);
248                 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData());
249                 break;
250             }
251             case PTRACE_SETFPREGS:
252             {
253                 DisplayBytes(buf, data, data_size);
254                 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData());
255                 break;
256             }
257             case PTRACE_SETSIGINFO:
258             {
259                 DisplayBytes(buf, data, sizeof(siginfo_t));
260                 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData());
261                 break;
262             }
263             case PTRACE_SETREGSET:
264             {
265                 // Extract iov_base from data, which is a pointer to the struct IOVEC
266                 DisplayBytes(buf, *(void **)data, data_size);
267                 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData());
268                 break;
269             }
270             default:
271             {
272             }
273             }
274         }
275     }
276 
277     // Wrapper for ptrace to catch errors and log calls.
278     // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
279     long
280     PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error,
281                   const char* reqName, const char* file, int line)
282     {
283         long int result;
284 
285         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE));
286 
287         PtraceDisplayBytes(req, data, data_size);
288 
289         error.Clear();
290         errno = 0;
291         if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
292             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
293         else
294             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
295 
296         if (result == -1)
297             error.SetErrorToErrno();
298 
299         if (log)
300             log->Printf("ptrace(%s, %" PRIu64 ", %p, %p, %zu)=%lX called from file %s line %d",
301                     reqName, pid, addr, data, data_size, result, file, line);
302 
303         PtraceDisplayBytes(req, data, data_size);
304 
305         if (log && error.GetError() != 0)
306         {
307             const char* str;
308             switch (error.GetError())
309             {
310             case ESRCH:  str = "ESRCH"; break;
311             case EINVAL: str = "EINVAL"; break;
312             case EBUSY:  str = "EBUSY"; break;
313             case EPERM:  str = "EPERM"; break;
314             default:     str = error.AsCString();
315             }
316             log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str);
317         }
318 
319         return result;
320     }
321 
322 #ifdef LLDB_CONFIGURATION_BUILDANDINTEGRATION
323     // Wrapper for ptrace when logging is not required.
324     // Sets errno to 0 prior to calling ptrace.
325     long
326     PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error)
327     {
328         long result = 0;
329 
330         error.Clear();
331         errno = 0;
332         if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
333             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
334         else
335             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
336 
337         if (result == -1)
338             error.SetErrorToErrno();
339         return result;
340     }
341 #endif
342 
343     //------------------------------------------------------------------------------
344     // Static implementations of NativeProcessLinux::ReadMemory and
345     // NativeProcessLinux::WriteMemory.  This enables mutual recursion between these
346     // functions without needed to go thru the thread funnel.
347 
348     lldb::addr_t
349     DoReadMemory (
350         lldb::pid_t pid,
351         lldb::addr_t vm_addr,
352         void *buf,
353         lldb::addr_t size,
354         Error &error)
355     {
356         // ptrace word size is determined by the host, not the child
357         static const unsigned word_size = sizeof(void*);
358         unsigned char *dst = static_cast<unsigned char*>(buf);
359         lldb::addr_t bytes_read;
360         lldb::addr_t remainder;
361         long data;
362 
363         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
364         if (log)
365             ProcessPOSIXLog::IncNestLevel();
366         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
367             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__,
368                     pid, word_size, (void*)vm_addr, buf, size);
369 
370         assert(sizeof(data) >= word_size);
371         for (bytes_read = 0; bytes_read < size; bytes_read += remainder)
372         {
373             data = PTRACE(PTRACE_PEEKDATA, pid, (void*)vm_addr, nullptr, 0, error);
374             if (error.Fail())
375             {
376                 if (log)
377                     ProcessPOSIXLog::DecNestLevel();
378                 return bytes_read;
379             }
380 
381             remainder = size - bytes_read;
382             remainder = remainder > word_size ? word_size : remainder;
383 
384             // Copy the data into our buffer
385             for (unsigned i = 0; i < remainder; ++i)
386                 dst[i] = ((data >> i*8) & 0xFF);
387 
388             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
389                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
390                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
391                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
392             {
393                 uintptr_t print_dst = 0;
394                 // Format bytes from data by moving into print_dst for log output
395                 for (unsigned i = 0; i < remainder; ++i)
396                     print_dst |= (((data >> i*8) & 0xFF) << i*8);
397                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
398                         (void*)vm_addr, print_dst, (unsigned long)data);
399             }
400 
401             vm_addr += word_size;
402             dst += word_size;
403         }
404 
405         if (log)
406             ProcessPOSIXLog::DecNestLevel();
407         return bytes_read;
408     }
409 
410     lldb::addr_t
411     DoWriteMemory(
412         lldb::pid_t pid,
413         lldb::addr_t vm_addr,
414         const void *buf,
415         lldb::addr_t size,
416         Error &error)
417     {
418         // ptrace word size is determined by the host, not the child
419         static const unsigned word_size = sizeof(void*);
420         const unsigned char *src = static_cast<const unsigned char*>(buf);
421         lldb::addr_t bytes_written = 0;
422         lldb::addr_t remainder;
423 
424         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
425         if (log)
426             ProcessPOSIXLog::IncNestLevel();
427         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
428             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__,
429                     pid, word_size, (void*)vm_addr, buf, size);
430 
431         for (bytes_written = 0; bytes_written < size; bytes_written += remainder)
432         {
433             remainder = size - bytes_written;
434             remainder = remainder > word_size ? word_size : remainder;
435 
436             if (remainder == word_size)
437             {
438                 unsigned long data = 0;
439                 assert(sizeof(data) >= word_size);
440                 for (unsigned i = 0; i < word_size; ++i)
441                     data |= (unsigned long)src[i] << i*8;
442 
443                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
444                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
445                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
446                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
447                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
448                             (void*)vm_addr, *(const unsigned long*)src, data);
449 
450                 if (PTRACE(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data, 0, error))
451                 {
452                     if (log)
453                         ProcessPOSIXLog::DecNestLevel();
454                     return bytes_written;
455                 }
456             }
457             else
458             {
459                 unsigned char buff[8];
460                 if (DoReadMemory(pid, vm_addr,
461                                 buff, word_size, error) != word_size)
462                 {
463                     if (log)
464                         ProcessPOSIXLog::DecNestLevel();
465                     return bytes_written;
466                 }
467 
468                 memcpy(buff, src, remainder);
469 
470                 if (DoWriteMemory(pid, vm_addr,
471                                 buff, word_size, error) != word_size)
472                 {
473                     if (log)
474                         ProcessPOSIXLog::DecNestLevel();
475                     return bytes_written;
476                 }
477 
478                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
479                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
480                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
481                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
482                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
483                             (void*)vm_addr, *(const unsigned long*)src, *(unsigned long*)buff);
484             }
485 
486             vm_addr += word_size;
487             src += word_size;
488         }
489         if (log)
490             ProcessPOSIXLog::DecNestLevel();
491         return bytes_written;
492     }
493 
494     //------------------------------------------------------------------------------
495     /// @class Operation
496     /// @brief Represents a NativeProcessLinux operation.
497     ///
498     /// Under Linux, it is not possible to ptrace() from any other thread but the
499     /// one that spawned or attached to the process from the start.  Therefore, when
500     /// a NativeProcessLinux is asked to deliver or change the state of an inferior
501     /// process the operation must be "funneled" to a specific thread to perform the
502     /// task.  The Operation class provides an abstract base for all services the
503     /// NativeProcessLinux must perform via the single virtual function Execute, thus
504     /// encapsulating the code that needs to run in the privileged context.
505     class Operation
506     {
507     public:
508         Operation () : m_error() { }
509 
510         virtual
511         ~Operation() {}
512 
513         virtual void
514         Execute (NativeProcessLinux *process) = 0;
515 
516         const Error &
517         GetError () const { return m_error; }
518 
519     protected:
520         Error m_error;
521     };
522 
523     //------------------------------------------------------------------------------
524     /// @class ReadOperation
525     /// @brief Implements NativeProcessLinux::ReadMemory.
526     class ReadOperation : public Operation
527     {
528     public:
529         ReadOperation (
530             lldb::addr_t addr,
531             void *buff,
532             lldb::addr_t size,
533             lldb::addr_t &result) :
534             Operation (),
535             m_addr (addr),
536             m_buff (buff),
537             m_size (size),
538             m_result (result)
539             {
540             }
541 
542         void Execute (NativeProcessLinux *process) override;
543 
544     private:
545         lldb::addr_t m_addr;
546         void *m_buff;
547         lldb::addr_t m_size;
548         lldb::addr_t &m_result;
549     };
550 
551     void
552     ReadOperation::Execute (NativeProcessLinux *process)
553     {
554         m_result = DoReadMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
555     }
556 
557     //------------------------------------------------------------------------------
558     /// @class WriteOperation
559     /// @brief Implements NativeProcessLinux::WriteMemory.
560     class WriteOperation : public Operation
561     {
562     public:
563         WriteOperation (
564             lldb::addr_t addr,
565             const void *buff,
566             lldb::addr_t size,
567             lldb::addr_t &result) :
568             Operation (),
569             m_addr (addr),
570             m_buff (buff),
571             m_size (size),
572             m_result (result)
573             {
574             }
575 
576         void Execute (NativeProcessLinux *process) override;
577 
578     private:
579         lldb::addr_t m_addr;
580         const void *m_buff;
581         lldb::addr_t m_size;
582         lldb::addr_t &m_result;
583     };
584 
585     void
586     WriteOperation::Execute(NativeProcessLinux *process)
587     {
588         m_result = DoWriteMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
589     }
590 
591     //------------------------------------------------------------------------------
592     /// @class ReadRegOperation
593     /// @brief Implements NativeProcessLinux::ReadRegisterValue.
594     class ReadRegOperation : public Operation
595     {
596     public:
597         ReadRegOperation(lldb::tid_t tid, uint32_t offset, const char *reg_name,
598                 RegisterValue &value)
599             : m_tid(tid),
600               m_offset(static_cast<uintptr_t> (offset)),
601               m_reg_name(reg_name),
602               m_value(value)
603             { }
604 
605         void Execute(NativeProcessLinux *monitor) override;
606 
607     private:
608         lldb::tid_t m_tid;
609         uintptr_t m_offset;
610         const char *m_reg_name;
611         RegisterValue &m_value;
612     };
613 
614     void
615     ReadRegOperation::Execute(NativeProcessLinux *monitor)
616     {
617 #if defined (__arm64__) || defined (__aarch64__)
618         if (m_offset > sizeof(struct user_pt_regs))
619         {
620             uintptr_t offset = m_offset - sizeof(struct user_pt_regs);
621             if (offset > sizeof(struct user_fpsimd_state))
622             {
623                 m_error.SetErrorString("invalid offset value");
624                 return;
625             }
626             elf_fpregset_t regs;
627             int regset = NT_FPREGSET;
628             struct iovec ioVec;
629 
630             ioVec.iov_base = &regs;
631             ioVec.iov_len = sizeof regs;
632             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
633             if (m_error.Success())
634             {
635                 ArchSpec arch;
636                 if (monitor->GetArchitecture(arch))
637                     m_value.SetBytes((void *)(((unsigned char *)(&regs)) + offset), 16, arch.GetByteOrder());
638                 else
639                     m_error.SetErrorString("failed to get architecture");
640             }
641         }
642         else
643         {
644             elf_gregset_t regs;
645             int regset = NT_PRSTATUS;
646             struct iovec ioVec;
647 
648             ioVec.iov_base = &regs;
649             ioVec.iov_len = sizeof regs;
650             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
651             if (m_error.Success())
652             {
653                 ArchSpec arch;
654                 if (monitor->GetArchitecture(arch))
655                     m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, arch.GetByteOrder());
656                 else
657                     m_error.SetErrorString("failed to get architecture");
658             }
659         }
660 #elif defined (__mips__)
661         elf_gregset_t regs;
662         PTRACE(PTRACE_GETREGS, m_tid, NULL, &regs, sizeof regs, m_error);
663         if (m_error.Success())
664         {
665             lldb_private::ArchSpec arch;
666             if (monitor->GetArchitecture(arch))
667                 m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, arch.GetByteOrder());
668             else
669                 m_error.SetErrorString("failed to get architecture");
670         }
671 #else
672         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS));
673 
674         lldb::addr_t data = static_cast<unsigned long>(PTRACE(PTRACE_PEEKUSER, m_tid, (void*)m_offset, nullptr, 0, m_error));
675         if (m_error.Success())
676             m_value = data;
677 
678         if (log)
679             log->Printf ("NativeProcessLinux::%s() reg %s: 0x%" PRIx64, __FUNCTION__,
680                     m_reg_name, data);
681 #endif
682     }
683 
684     //------------------------------------------------------------------------------
685     /// @class WriteRegOperation
686     /// @brief Implements NativeProcessLinux::WriteRegisterValue.
687     class WriteRegOperation : public Operation
688     {
689     public:
690         WriteRegOperation(lldb::tid_t tid, unsigned offset, const char *reg_name,
691                 const RegisterValue &value)
692             : m_tid(tid),
693               m_offset(offset),
694               m_reg_name(reg_name),
695               m_value(value)
696             { }
697 
698         void Execute(NativeProcessLinux *monitor) override;
699 
700     private:
701         lldb::tid_t m_tid;
702         uintptr_t m_offset;
703         const char *m_reg_name;
704         const RegisterValue &m_value;
705     };
706 
707     void
708     WriteRegOperation::Execute(NativeProcessLinux *monitor)
709     {
710 #if defined (__arm64__) || defined (__aarch64__)
711         if (m_offset > sizeof(struct user_pt_regs))
712         {
713             uintptr_t offset = m_offset - sizeof(struct user_pt_regs);
714             if (offset > sizeof(struct user_fpsimd_state))
715             {
716                 m_error.SetErrorString("invalid offset value");
717                 return;
718             }
719             elf_fpregset_t regs;
720             int regset = NT_FPREGSET;
721             struct iovec ioVec;
722 
723             ioVec.iov_base = &regs;
724             ioVec.iov_len = sizeof regs;
725             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
726             if (m_error.Success())
727             {
728                 ::memcpy((void *)(((unsigned char *)(&regs)) + offset), m_value.GetBytes(), 16);
729                 PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
730             }
731         }
732         else
733         {
734             elf_gregset_t regs;
735             int regset = NT_PRSTATUS;
736             struct iovec ioVec;
737 
738             ioVec.iov_base = &regs;
739             ioVec.iov_len = sizeof regs;
740             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
741             if (m_error.Success())
742             {
743                 ::memcpy((void *)(((unsigned char *)(&regs)) + m_offset), m_value.GetBytes(), 8);
744                 PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
745             }
746         }
747 #elif defined (__mips__)
748         elf_gregset_t regs;
749         PTRACE(PTRACE_GETREGS, m_tid, NULL, &regs, sizeof regs, m_error);
750         if (m_error.Success())
751         {
752             ::memcpy((void *)(((unsigned char *)(&regs)) + m_offset), m_value.GetBytes(), 8);
753             PTRACE(PTRACE_SETREGS, m_tid, NULL, &regs, sizeof regs, m_error);
754         }
755 #else
756         void* buf;
757         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS));
758 
759         buf = (void*) m_value.GetAsUInt64();
760 
761         if (log)
762             log->Printf ("NativeProcessLinux::%s() reg %s: %p", __FUNCTION__, m_reg_name, buf);
763         PTRACE(PTRACE_POKEUSER, m_tid, (void*)m_offset, buf, 0, m_error);
764 #endif
765     }
766 
767     //------------------------------------------------------------------------------
768     /// @class ReadGPROperation
769     /// @brief Implements NativeProcessLinux::ReadGPR.
770     class ReadGPROperation : public Operation
771     {
772     public:
773         ReadGPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
774             : m_tid(tid), m_buf(buf), m_buf_size(buf_size)
775             { }
776 
777         void Execute(NativeProcessLinux *monitor) override;
778 
779     private:
780         lldb::tid_t m_tid;
781         void *m_buf;
782         size_t m_buf_size;
783     };
784 
785     void
786     ReadGPROperation::Execute(NativeProcessLinux *monitor)
787     {
788 #if defined (__arm64__) || defined (__aarch64__)
789         int regset = NT_PRSTATUS;
790         struct iovec ioVec;
791 
792         ioVec.iov_base = m_buf;
793         ioVec.iov_len = m_buf_size;
794         PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
795 #else
796         PTRACE(PTRACE_GETREGS, m_tid, nullptr, m_buf, m_buf_size, m_error);
797 #endif
798     }
799 
800     //------------------------------------------------------------------------------
801     /// @class ReadFPROperation
802     /// @brief Implements NativeProcessLinux::ReadFPR.
803     class ReadFPROperation : public Operation
804     {
805     public:
806         ReadFPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
807             : m_tid(tid),
808               m_buf(buf),
809               m_buf_size(buf_size)
810             { }
811 
812         void Execute(NativeProcessLinux *monitor) override;
813 
814     private:
815         lldb::tid_t m_tid;
816         void *m_buf;
817         size_t m_buf_size;
818     };
819 
820     void
821     ReadFPROperation::Execute(NativeProcessLinux *monitor)
822     {
823 #if defined (__arm64__) || defined (__aarch64__)
824         int regset = NT_FPREGSET;
825         struct iovec ioVec;
826 
827         ioVec.iov_base = m_buf;
828         ioVec.iov_len = m_buf_size;
829         PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
830 #else
831         PTRACE(PTRACE_GETFPREGS, m_tid, nullptr, m_buf, m_buf_size, m_error);
832 #endif
833     }
834 
835     //------------------------------------------------------------------------------
836     /// @class ReadRegisterSetOperation
837     /// @brief Implements NativeProcessLinux::ReadRegisterSet.
838     class ReadRegisterSetOperation : public Operation
839     {
840     public:
841         ReadRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
842             : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset)
843             { }
844 
845         void Execute(NativeProcessLinux *monitor) override;
846 
847     private:
848         lldb::tid_t m_tid;
849         void *m_buf;
850         size_t m_buf_size;
851         const unsigned int m_regset;
852     };
853 
854     void
855     ReadRegisterSetOperation::Execute(NativeProcessLinux *monitor)
856     {
857         PTRACE(PTRACE_GETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error);
858     }
859 
860     //------------------------------------------------------------------------------
861     /// @class WriteGPROperation
862     /// @brief Implements NativeProcessLinux::WriteGPR.
863     class WriteGPROperation : public Operation
864     {
865     public:
866         WriteGPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
867             : m_tid(tid), m_buf(buf), m_buf_size(buf_size)
868             { }
869 
870         void Execute(NativeProcessLinux *monitor) override;
871 
872     private:
873         lldb::tid_t m_tid;
874         void *m_buf;
875         size_t m_buf_size;
876     };
877 
878     void
879     WriteGPROperation::Execute(NativeProcessLinux *monitor)
880     {
881 #if defined (__arm64__) || defined (__aarch64__)
882         int regset = NT_PRSTATUS;
883         struct iovec ioVec;
884 
885         ioVec.iov_base = m_buf;
886         ioVec.iov_len = m_buf_size;
887         PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
888 #else
889         PTRACE(PTRACE_SETREGS, m_tid, NULL, m_buf, m_buf_size, m_error);
890 #endif
891     }
892 
893     //------------------------------------------------------------------------------
894     /// @class WriteFPROperation
895     /// @brief Implements NativeProcessLinux::WriteFPR.
896     class WriteFPROperation : public Operation
897     {
898     public:
899         WriteFPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
900             : m_tid(tid), m_buf(buf), m_buf_size(buf_size)
901             { }
902 
903         void Execute(NativeProcessLinux *monitor) override;
904 
905     private:
906         lldb::tid_t m_tid;
907         void *m_buf;
908         size_t m_buf_size;
909     };
910 
911     void
912     WriteFPROperation::Execute(NativeProcessLinux *monitor)
913     {
914 #if defined (__arm64__) || defined (__aarch64__)
915         int regset = NT_FPREGSET;
916         struct iovec ioVec;
917 
918         ioVec.iov_base = m_buf;
919         ioVec.iov_len = m_buf_size;
920         PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
921 #else
922         PTRACE(PTRACE_SETFPREGS, m_tid, NULL, m_buf, m_buf_size, m_error);
923 #endif
924     }
925 
926     //------------------------------------------------------------------------------
927     /// @class WriteRegisterSetOperation
928     /// @brief Implements NativeProcessLinux::WriteRegisterSet.
929     class WriteRegisterSetOperation : public Operation
930     {
931     public:
932         WriteRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
933             : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset)
934             { }
935 
936         void Execute(NativeProcessLinux *monitor) override;
937 
938     private:
939         lldb::tid_t m_tid;
940         void *m_buf;
941         size_t m_buf_size;
942         const unsigned int m_regset;
943     };
944 
945     void
946     WriteRegisterSetOperation::Execute(NativeProcessLinux *monitor)
947     {
948         PTRACE(PTRACE_SETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error);
949     }
950 
951     //------------------------------------------------------------------------------
952     /// @class ResumeOperation
953     /// @brief Implements NativeProcessLinux::Resume.
954     class ResumeOperation : public Operation
955     {
956     public:
957         ResumeOperation(lldb::tid_t tid, uint32_t signo) :
958             m_tid(tid), m_signo(signo) { }
959 
960         void Execute(NativeProcessLinux *monitor) override;
961 
962     private:
963         lldb::tid_t m_tid;
964         uint32_t m_signo;
965     };
966 
967     void
968     ResumeOperation::Execute(NativeProcessLinux *monitor)
969     {
970         intptr_t data = 0;
971 
972         if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
973             data = m_signo;
974 
975         PTRACE(PTRACE_CONT, m_tid, nullptr, (void*)data, 0, m_error);
976         if (m_error.Fail())
977         {
978             Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
979 
980             if (log)
981                 log->Printf ("ResumeOperation (%"  PRIu64 ") failed: %s", m_tid, m_error.AsCString());
982         }
983     }
984 
985     //------------------------------------------------------------------------------
986     /// @class SingleStepOperation
987     /// @brief Implements NativeProcessLinux::SingleStep.
988     class SingleStepOperation : public Operation
989     {
990     public:
991         SingleStepOperation(lldb::tid_t tid, uint32_t signo)
992             : m_tid(tid), m_signo(signo) { }
993 
994         void Execute(NativeProcessLinux *monitor) override;
995 
996     private:
997         lldb::tid_t m_tid;
998         uint32_t m_signo;
999     };
1000 
1001     void
1002     SingleStepOperation::Execute(NativeProcessLinux *monitor)
1003     {
1004         intptr_t data = 0;
1005 
1006         if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
1007             data = m_signo;
1008 
1009         PTRACE(PTRACE_SINGLESTEP, m_tid, nullptr, (void*)data, 0, m_error);
1010     }
1011 
1012     //------------------------------------------------------------------------------
1013     /// @class SiginfoOperation
1014     /// @brief Implements NativeProcessLinux::GetSignalInfo.
1015     class SiginfoOperation : public Operation
1016     {
1017     public:
1018         SiginfoOperation(lldb::tid_t tid, void *info)
1019             : m_tid(tid), m_info(info) { }
1020 
1021         void Execute(NativeProcessLinux *monitor) override;
1022 
1023     private:
1024         lldb::tid_t m_tid;
1025         void *m_info;
1026     };
1027 
1028     void
1029     SiginfoOperation::Execute(NativeProcessLinux *monitor)
1030     {
1031         PTRACE(PTRACE_GETSIGINFO, m_tid, nullptr, m_info, 0, m_error);
1032     }
1033 
1034     //------------------------------------------------------------------------------
1035     /// @class EventMessageOperation
1036     /// @brief Implements NativeProcessLinux::GetEventMessage.
1037     class EventMessageOperation : public Operation
1038     {
1039     public:
1040         EventMessageOperation(lldb::tid_t tid, unsigned long *message)
1041             : m_tid(tid), m_message(message) { }
1042 
1043         void Execute(NativeProcessLinux *monitor) override;
1044 
1045     private:
1046         lldb::tid_t m_tid;
1047         unsigned long *m_message;
1048     };
1049 
1050     void
1051     EventMessageOperation::Execute(NativeProcessLinux *monitor)
1052     {
1053         PTRACE(PTRACE_GETEVENTMSG, m_tid, nullptr, m_message, 0, m_error);
1054     }
1055 
1056     class DetachOperation : public Operation
1057     {
1058     public:
1059         DetachOperation(lldb::tid_t tid) : m_tid(tid) { }
1060 
1061         void Execute(NativeProcessLinux *monitor) override;
1062 
1063     private:
1064         lldb::tid_t m_tid;
1065     };
1066 
1067     void
1068     DetachOperation::Execute(NativeProcessLinux *monitor)
1069     {
1070         PTRACE(PTRACE_DETACH, m_tid, nullptr, 0, 0, m_error);
1071     }
1072 
1073 } // end of anonymous namespace
1074 
1075 // Simple helper function to ensure flags are enabled on the given file
1076 // descriptor.
1077 static Error
1078 EnsureFDFlags(int fd, int flags)
1079 {
1080     Error error;
1081 
1082     int status = fcntl(fd, F_GETFL);
1083     if (status == -1)
1084     {
1085         error.SetErrorToErrno();
1086         return error;
1087     }
1088 
1089     if (fcntl(fd, F_SETFL, status | flags) == -1)
1090     {
1091         error.SetErrorToErrno();
1092         return error;
1093     }
1094 
1095     return error;
1096 }
1097 
1098 // This class encapsulates the privileged thread which performs all ptrace and wait operations on
1099 // the inferior. The thread consists of a main loop which waits for events and processes them
1100 //   - SIGCHLD (delivered over a signalfd file descriptor): These signals notify us of events in
1101 //     the inferior process. Upon receiving this signal we do a waitpid to get more information
1102 //     and dispatch to NativeProcessLinux::MonitorCallback.
1103 //   - requests for ptrace operations: These initiated via the DoOperation method, which funnels
1104 //     them to the Monitor thread via m_operation member. The Monitor thread is signaled over a
1105 //     pipe, and the completion of the operation is signalled over the semaphore.
1106 //   - thread exit event: this is signaled from the Monitor destructor by closing the write end
1107 //     of the command pipe.
1108 class NativeProcessLinux::Monitor {
1109 private:
1110     // The initial monitor operation (launch or attach). It returns a inferior process id.
1111     std::unique_ptr<InitialOperation> m_initial_operation_up;
1112 
1113     ::pid_t                           m_child_pid = -1;
1114     NativeProcessLinux              * m_native_process;
1115 
1116     enum { READ, WRITE };
1117     int        m_pipefd[2] = {-1, -1};
1118     int        m_signal_fd = -1;
1119     HostThread m_thread;
1120 
1121     // current operation which must be executed on the priviliged thread
1122     Mutex      m_operation_mutex;
1123     Operation *m_operation = nullptr;
1124     sem_t      m_operation_sem;
1125     Error      m_operation_error;
1126 
1127     static constexpr char operation_command = 'o';
1128 
1129     void
1130     HandleSignals();
1131 
1132     void
1133     HandleWait();
1134 
1135     // Returns true if the thread should exit.
1136     bool
1137     HandleCommands();
1138 
1139     void
1140     MainLoop();
1141 
1142     static void *
1143     RunMonitor(void *arg);
1144 
1145     Error
1146     WaitForOperation();
1147 public:
1148     Monitor(const InitialOperation &initial_operation,
1149             NativeProcessLinux *native_process)
1150         : m_initial_operation_up(new InitialOperation(initial_operation)),
1151           m_native_process(native_process)
1152     {
1153         sem_init(&m_operation_sem, 0, 0);
1154     }
1155 
1156     ~Monitor();
1157 
1158     Error
1159     Initialize();
1160 
1161     void
1162     DoOperation(Operation *op);
1163 };
1164 constexpr char NativeProcessLinux::Monitor::operation_command;
1165 
1166 Error
1167 NativeProcessLinux::Monitor::Initialize()
1168 {
1169     Error error;
1170 
1171     // We get a SIGCHLD every time something interesting happens with the inferior. We shall be
1172     // listening for these signals over a signalfd file descriptors. This allows us to wait for
1173     // multiple kinds of events with select.
1174     sigset_t signals;
1175     sigemptyset(&signals);
1176     sigaddset(&signals, SIGCHLD);
1177     m_signal_fd = signalfd(-1, &signals, SFD_NONBLOCK | SFD_CLOEXEC);
1178     if (m_signal_fd < 0)
1179     {
1180         return Error("NativeProcessLinux::Monitor::%s failed due to signalfd failure. Monitoring the inferior will be impossible: %s",
1181                     __FUNCTION__, strerror(errno));
1182 
1183     }
1184 
1185     if (pipe2(m_pipefd, O_CLOEXEC) == -1)
1186     {
1187         error.SetErrorToErrno();
1188         return error;
1189     }
1190 
1191     if ((error = EnsureFDFlags(m_pipefd[READ], O_NONBLOCK)).Fail()) {
1192         return error;
1193     }
1194 
1195     static const char g_thread_name[] = "lldb.process.nativelinux.monitor";
1196     m_thread = ThreadLauncher::LaunchThread(g_thread_name, Monitor::RunMonitor, this, nullptr);
1197     if (!m_thread.IsJoinable())
1198         return Error("Failed to create monitor thread for NativeProcessLinux.");
1199 
1200     // Wait for initial operation to complete.
1201     return WaitForOperation();
1202 }
1203 
1204 void
1205 NativeProcessLinux::Monitor::DoOperation(Operation *op)
1206 {
1207     if (m_thread.EqualsThread(pthread_self())) {
1208         // If we're on the Monitor thread, we can simply execute the operation.
1209         op->Execute(m_native_process);
1210         return;
1211     }
1212 
1213     // Otherwise we need to pass the operation to the Monitor thread so it can handle it.
1214     Mutex::Locker lock(m_operation_mutex);
1215 
1216     m_operation = op;
1217 
1218     // notify the thread that an operation is ready to be processed
1219     write(m_pipefd[WRITE], &operation_command, sizeof operation_command);
1220 
1221     WaitForOperation();
1222 }
1223 
1224 NativeProcessLinux::Monitor::~Monitor()
1225 {
1226     if (m_pipefd[WRITE] >= 0)
1227         close(m_pipefd[WRITE]);
1228     if (m_thread.IsJoinable())
1229         m_thread.Join(nullptr);
1230     if (m_pipefd[READ] >= 0)
1231         close(m_pipefd[READ]);
1232     if (m_signal_fd >= 0)
1233         close(m_signal_fd);
1234     sem_destroy(&m_operation_sem);
1235 }
1236 
1237 void
1238 NativeProcessLinux::Monitor::HandleSignals()
1239 {
1240     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1241 
1242     // We don't really care about the content of the SIGCHLD siginfo structure, as we will get
1243     // all the information from waitpid(). We just need to read all the signals so that we can
1244     // sleep next time we reach select().
1245     while (true)
1246     {
1247         signalfd_siginfo info;
1248         ssize_t size = read(m_signal_fd, &info, sizeof info);
1249         if (size == -1)
1250         {
1251             if (errno == EAGAIN || errno == EWOULDBLOCK)
1252                 break; // We are done.
1253             if (errno == EINTR)
1254                 continue;
1255             if (log)
1256                 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor failed: %s",
1257                         __FUNCTION__, strerror(errno));
1258             break;
1259         }
1260         if (size != sizeof info)
1261         {
1262             // We got incomplete information structure. This should not happen, let's just log
1263             // that.
1264             if (log)
1265                 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor returned incomplete data: "
1266                         "structure size is %zd, read returned %zd bytes",
1267                         __FUNCTION__, sizeof info, size);
1268             break;
1269         }
1270         if (log)
1271             log->Printf("NativeProcessLinux::Monitor::%s received signal %s(%d).", __FUNCTION__,
1272                 Host::GetSignalAsCString(info.ssi_signo), info.ssi_signo);
1273     }
1274 }
1275 
1276 void
1277 NativeProcessLinux::Monitor::HandleWait()
1278 {
1279     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1280     // Process all pending waitpid notifications.
1281     while (true)
1282     {
1283         int status = -1;
1284         ::pid_t wait_pid = waitpid(m_child_pid, &status, __WALL | WNOHANG);
1285 
1286         if (wait_pid == 0)
1287             break; // We are done.
1288 
1289         if (wait_pid == -1)
1290         {
1291             if (errno == EINTR)
1292                 continue;
1293 
1294             if (log)
1295               log->Printf("NativeProcessLinux::Monitor::%s waitpid (pid = %" PRIi32 ", &status, __WALL | WNOHANG) failed: %s",
1296                       __FUNCTION__, m_child_pid, strerror(errno));
1297             break;
1298         }
1299 
1300         bool exited = false;
1301         int signal = 0;
1302         int exit_status = 0;
1303         const char *status_cstr = NULL;
1304         if (WIFSTOPPED(status))
1305         {
1306             signal = WSTOPSIG(status);
1307             status_cstr = "STOPPED";
1308         }
1309         else if (WIFEXITED(status))
1310         {
1311             exit_status = WEXITSTATUS(status);
1312             status_cstr = "EXITED";
1313             exited = true;
1314         }
1315         else if (WIFSIGNALED(status))
1316         {
1317             signal = WTERMSIG(status);
1318             status_cstr = "SIGNALED";
1319             if (wait_pid == abs(m_child_pid)) {
1320                 exited = true;
1321                 exit_status = -1;
1322             }
1323         }
1324         else
1325             status_cstr = "(\?\?\?)";
1326 
1327         if (log)
1328             log->Printf("NativeProcessLinux::Monitor::%s: waitpid (pid = %" PRIi32 ", &status, __WALL | WNOHANG)"
1329                 "=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i",
1330                 __FUNCTION__, m_child_pid, wait_pid, status, status_cstr, signal, exit_status);
1331 
1332         m_native_process->MonitorCallback (wait_pid, exited, signal, exit_status);
1333     }
1334 }
1335 
1336 bool
1337 NativeProcessLinux::Monitor::HandleCommands()
1338 {
1339     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1340 
1341     while (true)
1342     {
1343         char command = 0;
1344         ssize_t size = read(m_pipefd[READ], &command, sizeof command);
1345         if (size == -1)
1346         {
1347             if (errno == EAGAIN || errno == EWOULDBLOCK)
1348                 return false;
1349             if (errno == EINTR)
1350                 continue;
1351             if (log)
1352                 log->Printf("NativeProcessLinux::Monitor::%s exiting because read from command file descriptor failed: %s", __FUNCTION__, strerror(errno));
1353             return true;
1354         }
1355         if (size == 0) // end of file - write end closed
1356         {
1357             if (log)
1358                 log->Printf("NativeProcessLinux::Monitor::%s exit command received, exiting...", __FUNCTION__);
1359             return true; // We are done.
1360         }
1361 
1362         switch (command)
1363         {
1364         case operation_command:
1365             m_operation->Execute(m_native_process);
1366 
1367             // notify calling thread that operation is complete
1368             sem_post(&m_operation_sem);
1369             break;
1370         default:
1371             if (log)
1372                 log->Printf("NativeProcessLinux::Monitor::%s received unknown command '%c'",
1373                         __FUNCTION__, command);
1374         }
1375     }
1376 }
1377 
1378 void
1379 NativeProcessLinux::Monitor::MainLoop()
1380 {
1381     ::pid_t child_pid = (*m_initial_operation_up)(m_operation_error);
1382     m_initial_operation_up.reset();
1383     m_child_pid = -getpgid(child_pid),
1384     sem_post(&m_operation_sem);
1385 
1386     while (true)
1387     {
1388         fd_set fds;
1389         FD_ZERO(&fds);
1390         FD_SET(m_signal_fd, &fds);
1391         FD_SET(m_pipefd[READ], &fds);
1392 
1393         int max_fd = std::max(m_signal_fd, m_pipefd[READ]) + 1;
1394         int r = select(max_fd, &fds, nullptr, nullptr, nullptr);
1395         if (r < 0)
1396         {
1397             Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1398             if (log)
1399                 log->Printf("NativeProcessLinux::Monitor::%s exiting because select failed: %s",
1400                         __FUNCTION__, strerror(errno));
1401             return;
1402         }
1403 
1404         if (FD_ISSET(m_pipefd[READ], &fds))
1405         {
1406             if (HandleCommands())
1407                 return;
1408         }
1409 
1410         if (FD_ISSET(m_signal_fd, &fds))
1411         {
1412             HandleSignals();
1413             HandleWait();
1414         }
1415     }
1416 }
1417 
1418 Error
1419 NativeProcessLinux::Monitor::WaitForOperation()
1420 {
1421     Error error;
1422     while (sem_wait(&m_operation_sem) != 0)
1423     {
1424         if (errno == EINTR)
1425             continue;
1426 
1427         error.SetErrorToErrno();
1428         return error;
1429     }
1430 
1431     return m_operation_error;
1432 }
1433 
1434 void *
1435 NativeProcessLinux::Monitor::RunMonitor(void *arg)
1436 {
1437     static_cast<Monitor *>(arg)->MainLoop();
1438     return nullptr;
1439 }
1440 
1441 
1442 NativeProcessLinux::LaunchArgs::LaunchArgs(Module *module,
1443                                        char const **argv,
1444                                        char const **envp,
1445                                        const std::string &stdin_path,
1446                                        const std::string &stdout_path,
1447                                        const std::string &stderr_path,
1448                                        const char *working_dir,
1449                                        const ProcessLaunchInfo &launch_info)
1450     : m_module(module),
1451       m_argv(argv),
1452       m_envp(envp),
1453       m_stdin_path(stdin_path),
1454       m_stdout_path(stdout_path),
1455       m_stderr_path(stderr_path),
1456       m_working_dir(working_dir),
1457       m_launch_info(launch_info)
1458 {
1459 }
1460 
1461 NativeProcessLinux::LaunchArgs::~LaunchArgs()
1462 { }
1463 
1464 // -----------------------------------------------------------------------------
1465 // Public Static Methods
1466 // -----------------------------------------------------------------------------
1467 
1468 Error
1469 NativeProcessLinux::LaunchProcess (
1470     Module *exe_module,
1471     ProcessLaunchInfo &launch_info,
1472     NativeProcessProtocol::NativeDelegate &native_delegate,
1473     NativeProcessProtocolSP &native_process_sp)
1474 {
1475     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1476 
1477     Error error;
1478 
1479     // Verify the working directory is valid if one was specified.
1480     const char* working_dir = launch_info.GetWorkingDirectory ();
1481     if (working_dir)
1482     {
1483       FileSpec working_dir_fs (working_dir, true);
1484       if (!working_dir_fs || working_dir_fs.GetFileType () != FileSpec::eFileTypeDirectory)
1485       {
1486           error.SetErrorStringWithFormat ("No such file or directory: %s", working_dir);
1487           return error;
1488       }
1489     }
1490 
1491     const FileAction *file_action;
1492 
1493     // Default of NULL will mean to use existing open file descriptors.
1494     std::string stdin_path;
1495     std::string stdout_path;
1496     std::string stderr_path;
1497 
1498     file_action = launch_info.GetFileActionForFD (STDIN_FILENO);
1499     if (file_action)
1500         stdin_path = file_action->GetPath ();
1501 
1502     file_action = launch_info.GetFileActionForFD (STDOUT_FILENO);
1503     if (file_action)
1504         stdout_path = file_action->GetPath ();
1505 
1506     file_action = launch_info.GetFileActionForFD (STDERR_FILENO);
1507     if (file_action)
1508         stderr_path = file_action->GetPath ();
1509 
1510     if (log)
1511     {
1512         if (!stdin_path.empty ())
1513             log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'", __FUNCTION__, stdin_path.c_str ());
1514         else
1515             log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__);
1516 
1517         if (!stdout_path.empty ())
1518             log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'", __FUNCTION__, stdout_path.c_str ());
1519         else
1520             log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__);
1521 
1522         if (!stderr_path.empty ())
1523             log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'", __FUNCTION__, stderr_path.c_str ());
1524         else
1525             log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__);
1526     }
1527 
1528     // Create the NativeProcessLinux in launch mode.
1529     native_process_sp.reset (new NativeProcessLinux ());
1530 
1531     if (log)
1532     {
1533         int i = 0;
1534         for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i)
1535         {
1536             log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr");
1537             ++i;
1538         }
1539     }
1540 
1541     if (!native_process_sp->RegisterNativeDelegate (native_delegate))
1542     {
1543         native_process_sp.reset ();
1544         error.SetErrorStringWithFormat ("failed to register the native delegate");
1545         return error;
1546     }
1547 
1548     std::static_pointer_cast<NativeProcessLinux> (native_process_sp)->LaunchInferior (
1549             exe_module,
1550             launch_info.GetArguments ().GetConstArgumentVector (),
1551             launch_info.GetEnvironmentEntries ().GetConstArgumentVector (),
1552             stdin_path,
1553             stdout_path,
1554             stderr_path,
1555             working_dir,
1556             launch_info,
1557             error);
1558 
1559     if (error.Fail ())
1560     {
1561         native_process_sp.reset ();
1562         if (log)
1563             log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ());
1564         return error;
1565     }
1566 
1567     launch_info.SetProcessID (native_process_sp->GetID ());
1568 
1569     return error;
1570 }
1571 
1572 Error
1573 NativeProcessLinux::AttachToProcess (
1574     lldb::pid_t pid,
1575     NativeProcessProtocol::NativeDelegate &native_delegate,
1576     NativeProcessProtocolSP &native_process_sp)
1577 {
1578     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1579     if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE))
1580         log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid);
1581 
1582     // Grab the current platform architecture.  This should be Linux,
1583     // since this code is only intended to run on a Linux host.
1584     PlatformSP platform_sp (Platform::GetHostPlatform ());
1585     if (!platform_sp)
1586         return Error("failed to get a valid default platform");
1587 
1588     // Retrieve the architecture for the running process.
1589     ArchSpec process_arch;
1590     Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch);
1591     if (!error.Success ())
1592         return error;
1593 
1594     std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ());
1595 
1596     if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate))
1597     {
1598         error.SetErrorStringWithFormat ("failed to register the native delegate");
1599         return error;
1600     }
1601 
1602     native_process_linux_sp->AttachToInferior (pid, error);
1603     if (!error.Success ())
1604         return error;
1605 
1606     native_process_sp = native_process_linux_sp;
1607     return error;
1608 }
1609 
1610 // -----------------------------------------------------------------------------
1611 // Public Instance Methods
1612 // -----------------------------------------------------------------------------
1613 
1614 NativeProcessLinux::NativeProcessLinux () :
1615     NativeProcessProtocol (LLDB_INVALID_PROCESS_ID),
1616     m_arch (),
1617     m_supports_mem_region (eLazyBoolCalculate),
1618     m_mem_region_cache (),
1619     m_mem_region_cache_mutex (),
1620     m_coordinator_up (new ThreadStateCoordinator (GetThreadLoggerFunction ())),
1621     m_coordinator_thread ()
1622 {
1623 }
1624 
1625 //------------------------------------------------------------------------------
1626 // NativeProcessLinux spawns a new thread which performs all operations on the inferior process.
1627 // Refer to Monitor and Operation classes to see why this is necessary.
1628 //------------------------------------------------------------------------------
1629 void
1630 NativeProcessLinux::LaunchInferior (
1631     Module *module,
1632     const char *argv[],
1633     const char *envp[],
1634     const std::string &stdin_path,
1635     const std::string &stdout_path,
1636     const std::string &stderr_path,
1637     const char *working_dir,
1638     const ProcessLaunchInfo &launch_info,
1639     Error &error)
1640 {
1641     if (module)
1642         m_arch = module->GetArchitecture ();
1643 
1644     SetState (eStateLaunching);
1645 
1646     std::unique_ptr<LaunchArgs> args(
1647         new LaunchArgs(
1648             module, argv, envp,
1649             stdin_path, stdout_path, stderr_path,
1650             working_dir, launch_info));
1651 
1652     StartMonitorThread ([&] (Error &e) { return Launch(args.get(), e); }, error);
1653     if (!error.Success ())
1654         return;
1655 
1656     error = StartCoordinatorThread ();
1657     if (!error.Success ())
1658         return;
1659 }
1660 
1661 void
1662 NativeProcessLinux::AttachToInferior (lldb::pid_t pid, Error &error)
1663 {
1664     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1665     if (log)
1666         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid);
1667 
1668     // We can use the Host for everything except the ResolveExecutable portion.
1669     PlatformSP platform_sp = Platform::GetHostPlatform ();
1670     if (!platform_sp)
1671     {
1672         if (log)
1673             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid);
1674         error.SetErrorString ("no default platform available");
1675         return;
1676     }
1677 
1678     // Gather info about the process.
1679     ProcessInstanceInfo process_info;
1680     if (!platform_sp->GetProcessInfo (pid, process_info))
1681     {
1682         if (log)
1683             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid);
1684         error.SetErrorString ("failed to get process info");
1685         return;
1686     }
1687 
1688     // Resolve the executable module
1689     ModuleSP exe_module_sp;
1690     FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths());
1691     ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
1692     error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp,
1693                                            executable_search_paths.GetSize() ? &executable_search_paths : NULL);
1694     if (!error.Success())
1695         return;
1696 
1697     // Set the architecture to the exe architecture.
1698     m_arch = exe_module_sp->GetArchitecture();
1699     if (log)
1700         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ());
1701 
1702     m_pid = pid;
1703     SetState(eStateAttaching);
1704 
1705     StartMonitorThread ([=] (Error &e) { return Attach(pid, e); }, error);
1706     if (!error.Success ())
1707         return;
1708 
1709     error = StartCoordinatorThread ();
1710     if (!error.Success ())
1711         return;
1712 }
1713 
1714 void
1715 NativeProcessLinux::Terminate ()
1716 {
1717     StopMonitor();
1718 }
1719 
1720 ::pid_t
1721 NativeProcessLinux::Launch(LaunchArgs *args, Error &error)
1722 {
1723     assert (args && "null args");
1724 
1725     const char **argv = args->m_argv;
1726     const char **envp = args->m_envp;
1727     const char *working_dir = args->m_working_dir;
1728 
1729     lldb_utility::PseudoTerminal terminal;
1730     const size_t err_len = 1024;
1731     char err_str[err_len];
1732     lldb::pid_t pid;
1733     NativeThreadProtocolSP thread_sp;
1734 
1735     lldb::ThreadSP inferior;
1736 
1737     // Propagate the environment if one is not supplied.
1738     if (envp == NULL || envp[0] == NULL)
1739         envp = const_cast<const char **>(environ);
1740 
1741     if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1))
1742     {
1743         error.SetErrorToGenericError();
1744         error.SetErrorStringWithFormat("Process fork failed: %s", err_str);
1745         return -1;
1746     }
1747 
1748     // Recognized child exit status codes.
1749     enum {
1750         ePtraceFailed = 1,
1751         eDupStdinFailed,
1752         eDupStdoutFailed,
1753         eDupStderrFailed,
1754         eChdirFailed,
1755         eExecFailed,
1756         eSetGidFailed
1757     };
1758 
1759     // Child process.
1760     if (pid == 0)
1761     {
1762         // FIXME consider opening a pipe between parent/child and have this forked child
1763         // send log info to parent re: launch status, in place of the log lines removed here.
1764 
1765         // Start tracing this child that is about to exec.
1766         PTRACE(PTRACE_TRACEME, 0, nullptr, nullptr, 0, error);
1767         if (error.Fail())
1768             exit(ePtraceFailed);
1769 
1770         // terminal has already dupped the tty descriptors to stdin/out/err.
1771         // This closes original fd from which they were copied (and avoids
1772         // leaking descriptors to the debugged process.
1773         terminal.CloseSlaveFileDescriptor();
1774 
1775         // Do not inherit setgid powers.
1776         if (setgid(getgid()) != 0)
1777             exit(eSetGidFailed);
1778 
1779         // Attempt to have our own process group.
1780         if (setpgid(0, 0) != 0)
1781         {
1782             // FIXME log that this failed. This is common.
1783             // Don't allow this to prevent an inferior exec.
1784         }
1785 
1786         // Dup file descriptors if needed.
1787         if (!args->m_stdin_path.empty ())
1788             if (!DupDescriptor(args->m_stdin_path.c_str (), STDIN_FILENO, O_RDONLY))
1789                 exit(eDupStdinFailed);
1790 
1791         if (!args->m_stdout_path.empty ())
1792             if (!DupDescriptor(args->m_stdout_path.c_str (), STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
1793                 exit(eDupStdoutFailed);
1794 
1795         if (!args->m_stderr_path.empty ())
1796             if (!DupDescriptor(args->m_stderr_path.c_str (), STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
1797                 exit(eDupStderrFailed);
1798 
1799         // Close everything besides stdin, stdout, and stderr that has no file
1800         // action to avoid leaking
1801         for (int fd = 3; fd < sysconf(_SC_OPEN_MAX); ++fd)
1802             if (!args->m_launch_info.GetFileActionForFD(fd))
1803                 close(fd);
1804 
1805         // Change working directory
1806         if (working_dir != NULL && working_dir[0])
1807           if (0 != ::chdir(working_dir))
1808               exit(eChdirFailed);
1809 
1810         // Disable ASLR if requested.
1811         if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR))
1812         {
1813             const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS);
1814             if (old_personality == -1)
1815             {
1816                 // Can't retrieve Linux personality.  Cannot disable ASLR.
1817             }
1818             else
1819             {
1820                 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality);
1821                 if (new_personality == -1)
1822                 {
1823                     // Disabling ASLR failed.
1824                 }
1825                 else
1826                 {
1827                     // Disabling ASLR succeeded.
1828                 }
1829             }
1830         }
1831 
1832         // Execute.  We should never return...
1833         execve(argv[0],
1834                const_cast<char *const *>(argv),
1835                const_cast<char *const *>(envp));
1836 
1837         // ...unless exec fails.  In which case we definitely need to end the child here.
1838         exit(eExecFailed);
1839     }
1840 
1841     //
1842     // This is the parent code here.
1843     //
1844     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1845 
1846     // Wait for the child process to trap on its call to execve.
1847     ::pid_t wpid;
1848     int status;
1849     if ((wpid = waitpid(pid, &status, 0)) < 0)
1850     {
1851         error.SetErrorToErrno();
1852         if (log)
1853             log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s",
1854                     __FUNCTION__, error.AsCString ());
1855 
1856         // Mark the inferior as invalid.
1857         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1858         SetState (StateType::eStateInvalid);
1859 
1860         return -1;
1861     }
1862     else if (WIFEXITED(status))
1863     {
1864         // open, dup or execve likely failed for some reason.
1865         error.SetErrorToGenericError();
1866         switch (WEXITSTATUS(status))
1867         {
1868             case ePtraceFailed:
1869                 error.SetErrorString("Child ptrace failed.");
1870                 break;
1871             case eDupStdinFailed:
1872                 error.SetErrorString("Child open stdin failed.");
1873                 break;
1874             case eDupStdoutFailed:
1875                 error.SetErrorString("Child open stdout failed.");
1876                 break;
1877             case eDupStderrFailed:
1878                 error.SetErrorString("Child open stderr failed.");
1879                 break;
1880             case eChdirFailed:
1881                 error.SetErrorString("Child failed to set working directory.");
1882                 break;
1883             case eExecFailed:
1884                 error.SetErrorString("Child exec failed.");
1885                 break;
1886             case eSetGidFailed:
1887                 error.SetErrorString("Child setgid failed.");
1888                 break;
1889             default:
1890                 error.SetErrorString("Child returned unknown exit status.");
1891                 break;
1892         }
1893 
1894         if (log)
1895         {
1896             log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP",
1897                     __FUNCTION__,
1898                     WEXITSTATUS(status));
1899         }
1900 
1901         // Mark the inferior as invalid.
1902         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1903         SetState (StateType::eStateInvalid);
1904 
1905         return -1;
1906     }
1907     assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) &&
1908            "Could not sync with inferior process.");
1909 
1910     if (log)
1911         log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__);
1912 
1913     error = SetDefaultPtraceOpts(pid);
1914     if (error.Fail())
1915     {
1916         if (log)
1917             log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s",
1918                     __FUNCTION__, error.AsCString ());
1919 
1920         // Mark the inferior as invalid.
1921         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1922         SetState (StateType::eStateInvalid);
1923 
1924         return -1;
1925     }
1926 
1927     // Release the master terminal descriptor and pass it off to the
1928     // NativeProcessLinux instance.  Similarly stash the inferior pid.
1929     m_terminal_fd = terminal.ReleaseMasterFileDescriptor();
1930     m_pid = pid;
1931 
1932     // Set the terminal fd to be in non blocking mode (it simplifies the
1933     // implementation of ProcessLinux::GetSTDOUT to have a non-blocking
1934     // descriptor to read from).
1935     error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
1936     if (error.Fail())
1937     {
1938         if (log)
1939             log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s",
1940                     __FUNCTION__, error.AsCString ());
1941 
1942         // Mark the inferior as invalid.
1943         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1944         SetState (StateType::eStateInvalid);
1945 
1946         return -1;
1947     }
1948 
1949     if (log)
1950         log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid);
1951 
1952     thread_sp = AddThread (pid);
1953     assert (thread_sp && "AddThread() returned a nullptr thread");
1954     NotifyThreadCreateStopped (pid);
1955     std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP);
1956 
1957     // Let our process instance know the thread has stopped.
1958     SetCurrentThreadID (thread_sp->GetID ());
1959     SetState (StateType::eStateStopped);
1960 
1961     if (log)
1962     {
1963         if (error.Success ())
1964         {
1965             log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__);
1966         }
1967         else
1968         {
1969             log->Printf ("NativeProcessLinux::%s inferior launching failed: %s",
1970                 __FUNCTION__, error.AsCString ());
1971             return -1;
1972         }
1973     }
1974     return pid;
1975 }
1976 
1977 ::pid_t
1978 NativeProcessLinux::Attach(lldb::pid_t pid, Error &error)
1979 {
1980     lldb::ThreadSP inferior;
1981     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1982 
1983     // Use a map to keep track of the threads which we have attached/need to attach.
1984     Host::TidMap tids_to_attach;
1985     if (pid <= 1)
1986     {
1987         error.SetErrorToGenericError();
1988         error.SetErrorString("Attaching to process 1 is not allowed.");
1989         return -1;
1990     }
1991 
1992     while (Host::FindProcessThreads(pid, tids_to_attach))
1993     {
1994         for (Host::TidMap::iterator it = tids_to_attach.begin();
1995              it != tids_to_attach.end();)
1996         {
1997             if (it->second == false)
1998             {
1999                 lldb::tid_t tid = it->first;
2000 
2001                 // Attach to the requested process.
2002                 // An attach will cause the thread to stop with a SIGSTOP.
2003                 PTRACE(PTRACE_ATTACH, tid, nullptr, nullptr, 0, error);
2004                 if (error.Fail())
2005                 {
2006                     // No such thread. The thread may have exited.
2007                     // More error handling may be needed.
2008                     if (error.GetError() == ESRCH)
2009                     {
2010                         it = tids_to_attach.erase(it);
2011                         continue;
2012                     }
2013                     else
2014                         return -1;
2015                 }
2016 
2017                 int status;
2018                 // Need to use __WALL otherwise we receive an error with errno=ECHLD
2019                 // At this point we should have a thread stopped if waitpid succeeds.
2020                 if ((status = waitpid(tid, NULL, __WALL)) < 0)
2021                 {
2022                     // No such thread. The thread may have exited.
2023                     // More error handling may be needed.
2024                     if (errno == ESRCH)
2025                     {
2026                         it = tids_to_attach.erase(it);
2027                         continue;
2028                     }
2029                     else
2030                     {
2031                         error.SetErrorToErrno();
2032                         return -1;
2033                     }
2034                 }
2035 
2036                 error = SetDefaultPtraceOpts(tid);
2037                 if (error.Fail())
2038                     return -1;
2039 
2040                 if (log)
2041                     log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid);
2042 
2043                 it->second = true;
2044 
2045                 // Create the thread, mark it as stopped.
2046                 NativeThreadProtocolSP thread_sp (AddThread (static_cast<lldb::tid_t> (tid)));
2047                 assert (thread_sp && "AddThread() returned a nullptr");
2048 
2049                 // This will notify this is a new thread and tell the system it is stopped.
2050                 NotifyThreadCreateStopped (tid);
2051                 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP);
2052                 SetCurrentThreadID (thread_sp->GetID ());
2053             }
2054 
2055             // move the loop forward
2056             ++it;
2057         }
2058     }
2059 
2060     if (tids_to_attach.size() > 0)
2061     {
2062         m_pid = pid;
2063         // Let our process instance know the thread has stopped.
2064         SetState (StateType::eStateStopped);
2065     }
2066     else
2067     {
2068         error.SetErrorToGenericError();
2069         error.SetErrorString("No such process.");
2070         return -1;
2071     }
2072 
2073     return pid;
2074 }
2075 
2076 Error
2077 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid)
2078 {
2079     long ptrace_opts = 0;
2080 
2081     // Have the child raise an event on exit.  This is used to keep the child in
2082     // limbo until it is destroyed.
2083     ptrace_opts |= PTRACE_O_TRACEEXIT;
2084 
2085     // Have the tracer trace threads which spawn in the inferior process.
2086     // TODO: if we want to support tracing the inferiors' child, add the
2087     // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
2088     ptrace_opts |= PTRACE_O_TRACECLONE;
2089 
2090     // Have the tracer notify us before execve returns
2091     // (needed to disable legacy SIGTRAP generation)
2092     ptrace_opts |= PTRACE_O_TRACEEXEC;
2093 
2094     Error error;
2095     PTRACE(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts, 0, error);
2096     return error;
2097 }
2098 
2099 static ExitType convert_pid_status_to_exit_type (int status)
2100 {
2101     if (WIFEXITED (status))
2102         return ExitType::eExitTypeExit;
2103     else if (WIFSIGNALED (status))
2104         return ExitType::eExitTypeSignal;
2105     else if (WIFSTOPPED (status))
2106         return ExitType::eExitTypeStop;
2107     else
2108     {
2109         // We don't know what this is.
2110         return ExitType::eExitTypeInvalid;
2111     }
2112 }
2113 
2114 static int convert_pid_status_to_return_code (int status)
2115 {
2116     if (WIFEXITED (status))
2117         return WEXITSTATUS (status);
2118     else if (WIFSIGNALED (status))
2119         return WTERMSIG (status);
2120     else if (WIFSTOPPED (status))
2121         return WSTOPSIG (status);
2122     else
2123     {
2124         // We don't know what this is.
2125         return ExitType::eExitTypeInvalid;
2126     }
2127 }
2128 
2129 // Handles all waitpid events from the inferior process.
2130 void
2131 NativeProcessLinux::MonitorCallback(lldb::pid_t pid,
2132                                     bool exited,
2133                                     int signal,
2134                                     int status)
2135 {
2136     Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS));
2137 
2138     // Certain activities differ based on whether the pid is the tid of the main thread.
2139     const bool is_main_thread = (pid == GetID ());
2140 
2141     // Handle when the thread exits.
2142     if (exited)
2143     {
2144         if (log)
2145             log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %"  PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not");
2146 
2147         // This is a thread that exited.  Ensure we're not tracking it anymore.
2148         const bool thread_found = StopTrackingThread (pid);
2149 
2150         // Make sure the thread state coordinator knows about this.
2151         NotifyThreadDeath (pid);
2152 
2153         if (is_main_thread)
2154         {
2155             // We only set the exit status and notify the delegate if we haven't already set the process
2156             // state to an exited state.  We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8)
2157             // for the main thread.
2158             const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed);
2159             if (!already_notified)
2160             {
2161                 if (log)
2162                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ()));
2163                 // The main thread exited.  We're done monitoring.  Report to delegate.
2164                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
2165 
2166                 // Notify delegate that our process has exited.
2167                 SetState (StateType::eStateExited, true);
2168             }
2169             else
2170             {
2171                 if (log)
2172                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
2173             }
2174         }
2175         else
2176         {
2177             // Do we want to report to the delegate in this case?  I think not.  If this was an orderly
2178             // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal,
2179             // and we would have done an all-stop then.
2180             if (log)
2181                 log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
2182         }
2183         return;
2184     }
2185 
2186     // Get details on the signal raised.
2187     siginfo_t info;
2188     const auto err = GetSignalInfo(pid, &info);
2189     if (err.Success())
2190     {
2191         // We have retrieved the signal info.  Dispatch appropriately.
2192         if (info.si_signo == SIGTRAP)
2193             MonitorSIGTRAP(&info, pid);
2194         else
2195             MonitorSignal(&info, pid, exited);
2196     }
2197     else
2198     {
2199         if (err.GetError() == EINVAL)
2200         {
2201             // This is a group stop reception for this tid.
2202             if (log)
2203                 log->Printf ("NativeThreadLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64, __FUNCTION__, GetID (), pid);
2204             NotifyThreadStop (pid);
2205         }
2206         else
2207         {
2208             // ptrace(GETSIGINFO) failed (but not due to group-stop).
2209 
2210             // A return value of ESRCH means the thread/process is no longer on the system,
2211             // so it was killed somehow outside of our control.  Either way, we can't do anything
2212             // with it anymore.
2213 
2214             // Stop tracking the metadata for the thread since it's entirely off the system now.
2215             const bool thread_found = StopTrackingThread (pid);
2216 
2217             // Make sure the thread state coordinator knows about this.
2218             NotifyThreadDeath (pid);
2219 
2220             if (log)
2221                 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)",
2222                              __FUNCTION__, err.AsCString(), pid, signal, status, err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found");
2223 
2224             if (is_main_thread)
2225             {
2226                 // Notify the delegate - our process is not available but appears to have been killed outside
2227                 // our control.  Is eStateExited the right exit state in this case?
2228                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
2229                 SetState (StateType::eStateExited, true);
2230             }
2231             else
2232             {
2233                 // This thread was pulled out from underneath us.  Anything to do here? Do we want to do an all stop?
2234                 if (log)
2235                     log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid);
2236             }
2237         }
2238     }
2239 }
2240 
2241 void
2242 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid)
2243 {
2244     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2245     const bool is_main_thread = (pid == GetID ());
2246 
2247     assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!");
2248     if (!info)
2249         return;
2250 
2251     Mutex::Locker locker (m_threads_mutex);
2252 
2253     // See if we can find a thread for this signal.
2254     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
2255     if (!thread_sp)
2256     {
2257         if (log)
2258             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
2259     }
2260 
2261     switch (info->si_code)
2262     {
2263     // TODO: these two cases are required if we want to support tracing of the inferiors' children.  We'd need this to debug a monitor.
2264     // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
2265     // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
2266 
2267     case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)):
2268     {
2269         // This is the notification on the parent thread which informs us of new thread
2270         // creation. We are not interested in these events at this point (an interesting use
2271         // case would be to stop the process upon thread creation), so we just resume the thread.
2272         // We will pickup the new thread when we get its SIGSTOP notification.
2273 
2274         if (log)
2275         {
2276             unsigned long event_message = 0;
2277             if (GetEventMessage (pid, &event_message).Success())
2278             {
2279                 lldb::tid_t tid = static_cast<lldb::tid_t> (event_message);
2280                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event for tid %" PRIu64, __FUNCTION__, pid, tid);
2281 
2282             }
2283             else
2284                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, pid);
2285         }
2286 
2287         Resume (pid, LLDB_INVALID_SIGNAL_NUMBER);
2288         break;
2289     }
2290 
2291     case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)):
2292     {
2293         NativeThreadProtocolSP main_thread_sp;
2294         if (log)
2295             log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP);
2296 
2297         // The thread state coordinator needs to reset due to the exec.
2298         m_coordinator_up->ResetForExec ();
2299 
2300         // Remove all but the main thread here.  Linux fork creates a new process which only copies the main thread.  Mutexes are in undefined state.
2301         if (log)
2302             log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__);
2303 
2304         for (auto thread_sp : m_threads)
2305         {
2306             const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID ();
2307             if (is_main_thread)
2308             {
2309                 main_thread_sp = thread_sp;
2310                 if (log)
2311                     log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ());
2312             }
2313             else
2314             {
2315                 // Tell thread coordinator this thread is dead.
2316                 if (log)
2317                     log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ());
2318             }
2319         }
2320 
2321         m_threads.clear ();
2322 
2323         if (main_thread_sp)
2324         {
2325             m_threads.push_back (main_thread_sp);
2326             SetCurrentThreadID (main_thread_sp->GetID ());
2327             std::static_pointer_cast<NativeThreadLinux> (main_thread_sp)->SetStoppedByExec ();
2328         }
2329         else
2330         {
2331             SetCurrentThreadID (LLDB_INVALID_THREAD_ID);
2332             if (log)
2333                 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ());
2334         }
2335 
2336         // Tell coordinator about about the "new" (since exec) stopped main thread.
2337         const lldb::tid_t main_thread_tid = GetID ();
2338         NotifyThreadCreateStopped (main_thread_tid);
2339 
2340         // NOTE: ideally these next statements would execute at the same time as the coordinator thread create was executed.
2341         // Consider a handler that can execute when that happens.
2342         // Let our delegate know we have just exec'd.
2343         NotifyDidExec ();
2344 
2345         // If we have a main thread, indicate we are stopped.
2346         assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked");
2347 
2348         // Let the process know we're stopped.
2349         CallAfterRunningThreadsStop (pid,
2350                                      [=] (lldb::tid_t signaling_tid)
2351                                      {
2352                                          SetState (StateType::eStateStopped, true);
2353                                      });
2354 
2355         break;
2356     }
2357 
2358     case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)):
2359     {
2360         // The inferior process or one of its threads is about to exit.
2361 
2362         // This thread is currently stopped.  It's not actually dead yet, just about to be.
2363         NotifyThreadStop (pid);
2364 
2365         unsigned long data = 0;
2366         if (GetEventMessage(pid, &data).Fail())
2367             data = -1;
2368 
2369         if (log)
2370         {
2371             log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)",
2372                          __FUNCTION__,
2373                          data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false",
2374                          pid,
2375                     is_main_thread ? "is main thread" : "not main thread");
2376         }
2377 
2378         if (is_main_thread)
2379         {
2380             SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true);
2381         }
2382 
2383         const int signo = static_cast<int> (data);
2384         m_coordinator_up->RequestThreadResume (pid,
2385                                                [=](lldb::tid_t tid_to_resume, bool supress_signal)
2386                                                {
2387                                                    std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2388                                                    return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo);
2389                                                },
2390                                                CoordinatorErrorHandler);
2391 
2392         break;
2393     }
2394 
2395     case 0:
2396     case TRAP_TRACE:  // We receive this on single stepping.
2397     case TRAP_HWBKPT: // We receive this on watchpoint hit
2398         if (thread_sp)
2399         {
2400             // If a watchpoint was hit, report it
2401             uint32_t wp_index;
2402             Error error = thread_sp->GetRegisterContext()->GetWatchpointHitIndex(wp_index);
2403             if (error.Fail() && log)
2404                 log->Printf("NativeProcessLinux::%s() "
2405                             "received error while checking for watchpoint hits, "
2406                             "pid = %" PRIu64 " error = %s",
2407                             __FUNCTION__, pid, error.AsCString());
2408             if (wp_index != LLDB_INVALID_INDEX32)
2409             {
2410                 MonitorWatchpoint(pid, thread_sp, wp_index);
2411                 break;
2412             }
2413         }
2414         // Otherwise, report step over
2415         MonitorTrace(pid, thread_sp);
2416         break;
2417 
2418     case SI_KERNEL:
2419     case TRAP_BRKPT:
2420         MonitorBreakpoint(pid, thread_sp);
2421         break;
2422 
2423     case SIGTRAP:
2424     case (SIGTRAP | 0x80):
2425         if (log)
2426             log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), pid);
2427 
2428         // This thread is currently stopped.
2429         NotifyThreadStop (pid);
2430         if (thread_sp)
2431             std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGTRAP);
2432 
2433 
2434         // Ignore these signals until we know more about them.
2435         m_coordinator_up->RequestThreadResume (pid,
2436                                                [=](lldb::tid_t tid_to_resume, bool supress_signal)
2437                                                {
2438                                                    std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2439                                                    return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER);
2440                                                },
2441                                                CoordinatorErrorHandler);
2442         break;
2443 
2444     default:
2445         assert(false && "Unexpected SIGTRAP code!");
2446         if (log)
2447             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%" PRIx64, __FUNCTION__, GetID (), pid, static_cast<uint64_t> (SIGTRAP | (PTRACE_EVENT_CLONE << 8)));
2448         break;
2449 
2450     }
2451 }
2452 
2453 void
2454 NativeProcessLinux::MonitorTrace(lldb::pid_t pid, NativeThreadProtocolSP thread_sp)
2455 {
2456     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2457     if (log)
2458         log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)",
2459                 __FUNCTION__, pid);
2460 
2461     if (thread_sp)
2462         std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace();
2463 
2464     // This thread is currently stopped.
2465     NotifyThreadStop(pid);
2466 
2467     // Here we don't have to request the rest of the threads to stop or request a deferred stop.
2468     // This would have already happened at the time the Resume() with step operation was signaled.
2469     // At this point, we just need to say we stopped, and the deferred notifcation will fire off
2470     // once all running threads have checked in as stopped.
2471     SetCurrentThreadID(pid);
2472     // Tell the process we have a stop (from software breakpoint).
2473     CallAfterRunningThreadsStop(pid,
2474                                 [=](lldb::tid_t signaling_tid)
2475                                 {
2476                                    SetState(StateType::eStateStopped, true);
2477                                 });
2478 }
2479 
2480 void
2481 NativeProcessLinux::MonitorBreakpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp)
2482 {
2483     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
2484     if (log)
2485         log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64,
2486                 __FUNCTION__, pid);
2487 
2488     // This thread is currently stopped.
2489     NotifyThreadStop(pid);
2490 
2491     // Mark the thread as stopped at breakpoint.
2492     if (thread_sp)
2493     {
2494         std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByBreakpoint();
2495         Error error = FixupBreakpointPCAsNeeded(thread_sp);
2496         if (error.Fail())
2497             if (log)
2498                 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s",
2499                         __FUNCTION__, pid, error.AsCString());
2500 
2501         auto it = m_threads_stepping_with_breakpoint.find(pid);
2502         if (it != m_threads_stepping_with_breakpoint.end())
2503         {
2504             Error error = RemoveBreakpoint (it->second);
2505             if (error.Fail())
2506                 if (log)
2507                     log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s",
2508                             __FUNCTION__, pid, error.AsCString());
2509 
2510             m_threads_stepping_with_breakpoint.erase(it);
2511             std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace();
2512         }
2513     }
2514     else
2515         if (log)
2516             log->Printf("NativeProcessLinux::%s()  pid = %" PRIu64 ": "
2517                     "warning, cannot process software breakpoint since no thread metadata",
2518                     __FUNCTION__, pid);
2519 
2520 
2521     // We need to tell all other running threads before we notify the delegate about this stop.
2522     CallAfterRunningThreadsStop(pid,
2523                                 [=](lldb::tid_t deferred_notification_tid)
2524                                 {
2525                                     SetCurrentThreadID(deferred_notification_tid);
2526                                     // Tell the process we have a stop (from software breakpoint).
2527                                     SetState(StateType::eStateStopped, true);
2528                                 });
2529 }
2530 
2531 void
2532 NativeProcessLinux::MonitorWatchpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp, uint32_t wp_index)
2533 {
2534     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
2535     if (log)
2536         log->Printf("NativeProcessLinux::%s() received watchpoint event, "
2537                     "pid = %" PRIu64 ", wp_index = %" PRIu32,
2538                     __FUNCTION__, pid, wp_index);
2539 
2540     // This thread is currently stopped.
2541     NotifyThreadStop(pid);
2542 
2543     // Mark the thread as stopped at watchpoint.
2544     // The address is at (lldb::addr_t)info->si_addr if we need it.
2545     lldbassert(thread_sp && "thread_sp cannot be NULL");
2546     std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByWatchpoint(wp_index);
2547 
2548     // We need to tell all other running threads before we notify the delegate about this stop.
2549     CallAfterRunningThreadsStop(pid,
2550                                 [=](lldb::tid_t deferred_notification_tid)
2551                                 {
2552                                     SetCurrentThreadID(deferred_notification_tid);
2553                                     // Tell the process we have a stop (from watchpoint).
2554                                     SetState(StateType::eStateStopped, true);
2555                                 });
2556 }
2557 
2558 void
2559 NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited)
2560 {
2561     assert (info && "null info");
2562     if (!info)
2563         return;
2564 
2565     const int signo = info->si_signo;
2566     const bool is_from_llgs = info->si_pid == getpid ();
2567 
2568     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2569 
2570     // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
2571     // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
2572     // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
2573     //
2574     // IOW, user generated signals never generate what we consider to be a
2575     // "crash".
2576     //
2577     // Similarly, ACK signals generated by this monitor.
2578 
2579     Mutex::Locker locker (m_threads_mutex);
2580 
2581     // See if we can find a thread for this signal.
2582     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
2583     if (!thread_sp)
2584     {
2585         if (log)
2586             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
2587     }
2588 
2589     // Handle the signal.
2590     if (info->si_code == SI_TKILL || info->si_code == SI_USER)
2591     {
2592         if (log)
2593             log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")",
2594                             __FUNCTION__,
2595                             GetUnixSignals ().GetSignalAsCString (signo),
2596                             signo,
2597                             (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"),
2598                             info->si_pid,
2599                             is_from_llgs ? "from llgs" : "not from llgs",
2600                             pid);
2601     }
2602 
2603     // Check for new thread notification.
2604     if ((info->si_pid == 0) && (info->si_code == SI_USER))
2605     {
2606         // A new thread creation is being signaled.  This is one of two parts that come in
2607         // a non-deterministic order.  pid is the thread id.
2608         if (log)
2609             log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification",
2610                      __FUNCTION__, GetID (), pid);
2611 
2612         thread_sp = AddThread(pid);
2613         assert (thread_sp.get() && "failed to create the tracking data for newly created inferior thread");
2614         // We can now resume the newly created thread.
2615         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2616         Resume (pid, LLDB_INVALID_SIGNAL_NUMBER);
2617         m_coordinator_up->NotifyThreadCreate (pid, false, CoordinatorErrorHandler);
2618         // Done handling.
2619         return;
2620     }
2621 
2622     // Check for thread stop notification.
2623     if (is_from_llgs && (info->si_code == SI_TKILL) && (signo == SIGSTOP))
2624     {
2625         // This is a tgkill()-based stop.
2626         if (thread_sp)
2627         {
2628             if (log)
2629                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped",
2630                              __FUNCTION__,
2631                              GetID (),
2632                              pid);
2633 
2634             // Check that we're not already marked with a stop reason.
2635             // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that
2636             // the kernel signaled us with the thread stopping which we handled and marked as stopped,
2637             // and that, without an intervening resume, we received another stop.  It is more likely
2638             // that we are missing the marking of a run state somewhere if we find that the thread was
2639             // marked as stopped.
2640             std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp);
2641             assert (linux_thread_sp && "linux_thread_sp is null!");
2642 
2643             const StateType thread_state = linux_thread_sp->GetState ();
2644             if (!StateIsStoppedState (thread_state, false))
2645             {
2646                 // An inferior thread just stopped, but was not the primary cause of the process stop.
2647                 // Instead, something else (like a breakpoint or step) caused the stop.  Mark the
2648                 // stop signal as 0 to let lldb know this isn't the important stop.
2649                 linux_thread_sp->SetStoppedBySignal (0);
2650                 SetCurrentThreadID (thread_sp->GetID ());
2651                 m_coordinator_up->NotifyThreadStop (thread_sp->GetID (), true, CoordinatorErrorHandler);
2652             }
2653             else
2654             {
2655                 if (log)
2656                 {
2657                     // Retrieve the signal name if the thread was stopped by a signal.
2658                     int stop_signo = 0;
2659                     const bool stopped_by_signal = linux_thread_sp->IsStopped (&stop_signo);
2660                     const char *signal_name = stopped_by_signal ? GetUnixSignals ().GetSignalAsCString (stop_signo) : "<not stopped by signal>";
2661                     if (!signal_name)
2662                         signal_name = "<no-signal-name>";
2663 
2664                     log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is",
2665                                  __FUNCTION__,
2666                                  GetID (),
2667                                  linux_thread_sp->GetID (),
2668                                  StateAsCString (thread_state),
2669                                  stop_signo,
2670                                  signal_name);
2671                 }
2672                 // Tell the thread state coordinator about the stop.
2673                 NotifyThreadStop (thread_sp->GetID ());
2674             }
2675         }
2676 
2677         // Done handling.
2678         return;
2679     }
2680 
2681     if (log)
2682         log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo));
2683 
2684     // This thread is stopped.
2685     NotifyThreadStop (pid);
2686 
2687     switch (signo)
2688     {
2689     case SIGSTOP:
2690         {
2691             if (log)
2692             {
2693                 if (is_from_llgs)
2694                     log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from llgs, most likely an interrupt", __FUNCTION__, GetID (), pid);
2695                 else
2696                     log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from outside of debugger", __FUNCTION__, GetID (), pid);
2697             }
2698 
2699             // Resume this thread to get the group-stop mechanism to fire off the true group stops.
2700             // This thread will get stopped again as part of the group-stop completion.
2701             m_coordinator_up->RequestThreadResume (pid,
2702                                                    [=](lldb::tid_t tid_to_resume, bool supress_signal)
2703                                                    {
2704                                                        std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2705                                                        // Pass this signal number on to the inferior to handle.
2706                                                        return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo);
2707                                                    },
2708                                                    CoordinatorErrorHandler);
2709         }
2710         break;
2711     case SIGSEGV:
2712     case SIGILL:
2713     case SIGFPE:
2714     case SIGBUS:
2715         if (thread_sp)
2716             std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetCrashedWithException (*info);
2717         break;
2718     default:
2719         // This is just a pre-signal-delivery notification of the incoming signal.
2720         if (thread_sp)
2721             std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (signo);
2722 
2723         break;
2724     }
2725 
2726     // Send a stop to the debugger after we get all other threads to stop.
2727     CallAfterRunningThreadsStop (pid,
2728                                  [=] (lldb::tid_t signaling_tid)
2729                                  {
2730                                      SetCurrentThreadID (signaling_tid);
2731                                      SetState (StateType::eStateStopped, true);
2732                                  });
2733 }
2734 
2735 namespace {
2736 
2737 struct EmulatorBaton
2738 {
2739     NativeProcessLinux* m_process;
2740     NativeRegisterContext* m_reg_context;
2741 
2742     // eRegisterKindDWARF -> RegsiterValue
2743     std::unordered_map<uint32_t, RegisterValue> m_register_values;
2744 
2745     EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) :
2746             m_process(process), m_reg_context(reg_context) {}
2747 };
2748 
2749 } // anonymous namespace
2750 
2751 static size_t
2752 ReadMemoryCallback (EmulateInstruction *instruction,
2753                     void *baton,
2754                     const EmulateInstruction::Context &context,
2755                     lldb::addr_t addr,
2756                     void *dst,
2757                     size_t length)
2758 {
2759     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2760 
2761     lldb::addr_t bytes_read;
2762     emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read);
2763     return bytes_read;
2764 }
2765 
2766 static bool
2767 ReadRegisterCallback (EmulateInstruction *instruction,
2768                       void *baton,
2769                       const RegisterInfo *reg_info,
2770                       RegisterValue &reg_value)
2771 {
2772     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2773 
2774     auto it = emulator_baton->m_register_values.find(reg_info->kinds[eRegisterKindDWARF]);
2775     if (it != emulator_baton->m_register_values.end())
2776     {
2777         reg_value = it->second;
2778         return true;
2779     }
2780 
2781     // The emulator only fill in the dwarf regsiter numbers (and in some case
2782     // the generic register numbers). Get the full register info from the
2783     // register context based on the dwarf register numbers.
2784     const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo(
2785             eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
2786 
2787     Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value);
2788     if (error.Success())
2789     {
2790         emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value;
2791         return true;
2792     }
2793     return false;
2794 }
2795 
2796 static bool
2797 WriteRegisterCallback (EmulateInstruction *instruction,
2798                        void *baton,
2799                        const EmulateInstruction::Context &context,
2800                        const RegisterInfo *reg_info,
2801                        const RegisterValue &reg_value)
2802 {
2803     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2804     emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value;
2805     return true;
2806 }
2807 
2808 static size_t
2809 WriteMemoryCallback (EmulateInstruction *instruction,
2810                      void *baton,
2811                      const EmulateInstruction::Context &context,
2812                      lldb::addr_t addr,
2813                      const void *dst,
2814                      size_t length)
2815 {
2816     return length;
2817 }
2818 
2819 static lldb::addr_t
2820 ReadFlags (NativeRegisterContext* regsiter_context)
2821 {
2822     const RegisterInfo* flags_info = regsiter_context->GetRegisterInfo(
2823             eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
2824     return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS);
2825 }
2826 
2827 Error
2828 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadProtocolSP thread_sp)
2829 {
2830     Error error;
2831     NativeRegisterContextSP register_context_sp = thread_sp->GetRegisterContext();
2832 
2833     std::unique_ptr<EmulateInstruction> emulator_ap(
2834         EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr));
2835 
2836     if (emulator_ap == nullptr)
2837         return Error("Instruction emulator not found!");
2838 
2839     EmulatorBaton baton(this, register_context_sp.get());
2840     emulator_ap->SetBaton(&baton);
2841     emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
2842     emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
2843     emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
2844     emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
2845 
2846     if (!emulator_ap->ReadInstruction())
2847         return Error("Read instruction failed!");
2848 
2849     bool emulation_result = emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
2850 
2851     const RegisterInfo* reg_info_pc = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
2852     const RegisterInfo* reg_info_flags = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
2853 
2854     auto pc_it = baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
2855     auto flags_it = baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
2856 
2857     lldb::addr_t next_pc;
2858     lldb::addr_t next_flags;
2859     if (emulation_result)
2860     {
2861         assert(pc_it != baton.m_register_values.end() && "Emulation was successfull but PC wasn't updated");
2862         next_pc = pc_it->second.GetAsUInt64();
2863 
2864         if (flags_it != baton.m_register_values.end())
2865             next_flags = flags_it->second.GetAsUInt64();
2866         else
2867             next_flags = ReadFlags (register_context_sp.get());
2868     }
2869     else if (pc_it == baton.m_register_values.end())
2870     {
2871         // Emulate instruction failed and it haven't changed PC. Advance PC
2872         // with the size of the current opcode because the emulation of all
2873         // PC modifying instruction should be successful. The failure most
2874         // likely caused by a not supported instruction which don't modify PC.
2875         next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize();
2876         next_flags = ReadFlags (register_context_sp.get());
2877     }
2878     else
2879     {
2880         // The instruction emulation failed after it modified the PC. It is an
2881         // unknown error where we can't continue because the next instruction is
2882         // modifying the PC but we don't  know how.
2883         return Error ("Instruction emulation failed unexpectedly.");
2884     }
2885 
2886     if (m_arch.GetMachine() == llvm::Triple::arm)
2887     {
2888         if (next_flags & 0x20)
2889         {
2890             // Thumb mode
2891             error = SetSoftwareBreakpoint(next_pc, 2);
2892         }
2893         else
2894         {
2895             // Arm mode
2896             error = SetSoftwareBreakpoint(next_pc, 4);
2897         }
2898     }
2899     else
2900     {
2901         // No size hint is given for the next breakpoint
2902         error = SetSoftwareBreakpoint(next_pc, 0);
2903     }
2904 
2905     if (error.Fail())
2906         return error;
2907 
2908     m_threads_stepping_with_breakpoint.insert({thread_sp->GetID(), next_pc});
2909 
2910     return Error();
2911 }
2912 
2913 bool
2914 NativeProcessLinux::SupportHardwareSingleStepping() const
2915 {
2916     return m_arch.GetMachine() != llvm::Triple::arm;
2917 }
2918 
2919 Error
2920 NativeProcessLinux::Resume (const ResumeActionList &resume_actions)
2921 {
2922     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD));
2923     if (log)
2924         log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ());
2925 
2926     lldb::tid_t deferred_signal_tid = LLDB_INVALID_THREAD_ID;
2927     lldb::tid_t deferred_signal_skip_tid = LLDB_INVALID_THREAD_ID;
2928     int deferred_signo = 0;
2929     NativeThreadProtocolSP deferred_signal_thread_sp;
2930     bool stepping = false;
2931     bool software_single_step = !SupportHardwareSingleStepping();
2932 
2933     Mutex::Locker locker (m_threads_mutex);
2934 
2935     if (software_single_step)
2936     {
2937         for (auto thread_sp : m_threads)
2938         {
2939             assert (thread_sp && "thread list should not contain NULL threads");
2940 
2941             const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
2942             if (action == nullptr)
2943                 continue;
2944 
2945             if (action->state == eStateStepping)
2946             {
2947                 Error error = SetupSoftwareSingleStepping(thread_sp);
2948                 if (error.Fail())
2949                     return error;
2950             }
2951         }
2952     }
2953 
2954     for (auto thread_sp : m_threads)
2955     {
2956         assert (thread_sp && "thread list should not contain NULL threads");
2957 
2958         const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
2959 
2960         if (action == nullptr)
2961         {
2962             if (log)
2963                 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64,
2964                     __FUNCTION__, GetID (), thread_sp->GetID ());
2965             continue;
2966         }
2967 
2968         if (log)
2969         {
2970             log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64,
2971                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
2972         }
2973 
2974         switch (action->state)
2975         {
2976         case eStateRunning:
2977         {
2978             // Run the thread, possibly feeding it the signal.
2979             const int signo = action->signal;
2980             m_coordinator_up->RequestThreadResumeAsNeeded (thread_sp->GetID (),
2981                                                            [=](lldb::tid_t tid_to_resume, bool supress_signal)
2982                                                            {
2983                                                                std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2984                                                                // Pass this signal number on to the inferior to handle.
2985                                                                const auto resume_result = Resume (tid_to_resume, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
2986                                                                if (resume_result.Success())
2987                                                                    SetState(eStateRunning, true);
2988                                                                return resume_result;
2989                                                            },
2990                                                            CoordinatorErrorHandler);
2991             break;
2992         }
2993 
2994         case eStateStepping:
2995         {
2996             // Request the step.
2997             const int signo = action->signal;
2998             m_coordinator_up->RequestThreadResume (thread_sp->GetID (),
2999                                                    [=](lldb::tid_t tid_to_step, bool supress_signal)
3000                                                    {
3001                                                        std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStepping ();
3002 
3003                                                        Error step_result;
3004                                                        if (software_single_step)
3005                                                            step_result = Resume (tid_to_step, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
3006                                                        else
3007                                                            step_result = SingleStep (tid_to_step,(signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
3008 
3009                                                        assert (step_result.Success() && "SingleStep() failed");
3010                                                        if (step_result.Success())
3011                                                            SetState(eStateStepping, true);
3012                                                        return step_result;
3013                                                    },
3014                                                    CoordinatorErrorHandler);
3015             stepping = true;
3016             break;
3017         }
3018 
3019         case eStateSuspended:
3020         case eStateStopped:
3021             // if we haven't chosen a deferred signal tid yet, use this one.
3022             if (deferred_signal_tid == LLDB_INVALID_THREAD_ID)
3023             {
3024                 deferred_signal_tid = thread_sp->GetID ();
3025                 deferred_signal_thread_sp = thread_sp;
3026                 deferred_signo = SIGSTOP;
3027             }
3028             break;
3029 
3030         default:
3031             return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64,
3032                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
3033         }
3034     }
3035 
3036     // If we had any thread stopping, then do a deferred notification of the chosen stop thread id and signal
3037     // after all other running threads have stopped.
3038     // If there is a stepping thread involved we'll be eventually stopped by SIGTRAP trace signal.
3039     if (deferred_signal_tid != LLDB_INVALID_THREAD_ID && !stepping)
3040     {
3041         CallAfterRunningThreadsStopWithSkipTID (deferred_signal_tid,
3042                                                 deferred_signal_skip_tid,
3043                                      [=](lldb::tid_t deferred_notification_tid)
3044                                      {
3045                                          // Set the signal thread to the current thread.
3046                                          SetCurrentThreadID (deferred_notification_tid);
3047 
3048                                          // Set the thread state as stopped by the deferred signo.
3049                                          std::static_pointer_cast<NativeThreadLinux> (deferred_signal_thread_sp)->SetStoppedBySignal (deferred_signo);
3050 
3051                                          // Tell the process delegate that the process is in a stopped state.
3052                                          SetState (StateType::eStateStopped, true);
3053                                      });
3054     }
3055 
3056     return Error();
3057 }
3058 
3059 Error
3060 NativeProcessLinux::Halt ()
3061 {
3062     Error error;
3063 
3064     if (kill (GetID (), SIGSTOP) != 0)
3065         error.SetErrorToErrno ();
3066 
3067     return error;
3068 }
3069 
3070 Error
3071 NativeProcessLinux::Detach ()
3072 {
3073     Error error;
3074 
3075     // Tell ptrace to detach from the process.
3076     if (GetID () != LLDB_INVALID_PROCESS_ID)
3077         error = Detach (GetID ());
3078 
3079     // Stop monitoring the inferior.
3080     StopMonitor ();
3081 
3082     // No error.
3083     return error;
3084 }
3085 
3086 Error
3087 NativeProcessLinux::Signal (int signo)
3088 {
3089     Error error;
3090 
3091     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3092     if (log)
3093         log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64,
3094                 __FUNCTION__, signo,  GetUnixSignals ().GetSignalAsCString (signo), GetID ());
3095 
3096     if (kill(GetID(), signo))
3097         error.SetErrorToErrno();
3098 
3099     return error;
3100 }
3101 
3102 Error
3103 NativeProcessLinux::Interrupt ()
3104 {
3105     // Pick a running thread (or if none, a not-dead stopped thread) as
3106     // the chosen thread that will be the stop-reason thread.
3107     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3108 
3109     NativeThreadProtocolSP running_thread_sp;
3110     NativeThreadProtocolSP stopped_thread_sp;
3111 
3112     if (log)
3113         log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__);
3114 
3115     Mutex::Locker locker (m_threads_mutex);
3116 
3117     for (auto thread_sp : m_threads)
3118     {
3119         // The thread shouldn't be null but lets just cover that here.
3120         if (!thread_sp)
3121             continue;
3122 
3123         // If we have a running or stepping thread, we'll call that the
3124         // target of the interrupt.
3125         const auto thread_state = thread_sp->GetState ();
3126         if (thread_state == eStateRunning ||
3127             thread_state == eStateStepping)
3128         {
3129             running_thread_sp = thread_sp;
3130             break;
3131         }
3132         else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true))
3133         {
3134             // Remember the first non-dead stopped thread.  We'll use that as a backup if there are no running threads.
3135             stopped_thread_sp = thread_sp;
3136         }
3137     }
3138 
3139     if (!running_thread_sp && !stopped_thread_sp)
3140     {
3141         Error error("found no running/stepping or live stopped threads as target for interrupt");
3142         if (log)
3143             log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ());
3144 
3145         return error;
3146     }
3147 
3148     NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp;
3149 
3150     if (log)
3151         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target",
3152                      __FUNCTION__,
3153                      GetID (),
3154                      running_thread_sp ? "running" : "stopped",
3155                      deferred_signal_thread_sp->GetID ());
3156 
3157     CallAfterRunningThreadsStop (deferred_signal_thread_sp->GetID (),
3158                                  [=](lldb::tid_t deferred_notification_tid)
3159                                  {
3160                                      // Set the signal thread to the current thread.
3161                                      SetCurrentThreadID (deferred_notification_tid);
3162 
3163                                      // Set the thread state as stopped by the deferred signo.
3164                                      std::static_pointer_cast<NativeThreadLinux> (deferred_signal_thread_sp)->SetStoppedBySignal (SIGSTOP);
3165 
3166                                      // Tell the process delegate that the process is in a stopped state.
3167                                      SetState (StateType::eStateStopped, true);
3168                                  });
3169     return Error();
3170 }
3171 
3172 Error
3173 NativeProcessLinux::Kill ()
3174 {
3175     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3176     if (log)
3177         log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ());
3178 
3179     Error error;
3180 
3181     switch (m_state)
3182     {
3183         case StateType::eStateInvalid:
3184         case StateType::eStateExited:
3185         case StateType::eStateCrashed:
3186         case StateType::eStateDetached:
3187         case StateType::eStateUnloaded:
3188             // Nothing to do - the process is already dead.
3189             if (log)
3190                 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state));
3191             return error;
3192 
3193         case StateType::eStateConnected:
3194         case StateType::eStateAttaching:
3195         case StateType::eStateLaunching:
3196         case StateType::eStateStopped:
3197         case StateType::eStateRunning:
3198         case StateType::eStateStepping:
3199         case StateType::eStateSuspended:
3200             // We can try to kill a process in these states.
3201             break;
3202     }
3203 
3204     if (kill (GetID (), SIGKILL) != 0)
3205     {
3206         error.SetErrorToErrno ();
3207         return error;
3208     }
3209 
3210     return error;
3211 }
3212 
3213 static Error
3214 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info)
3215 {
3216     memory_region_info.Clear();
3217 
3218     StringExtractor line_extractor (maps_line.c_str ());
3219 
3220     // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode   pathname
3221     // perms: rwxp   (letter is present if set, '-' if not, final character is p=private, s=shared).
3222 
3223     // Parse out the starting address
3224     lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0);
3225 
3226     // Parse out hyphen separating start and end address from range.
3227     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-'))
3228         return Error ("malformed /proc/{pid}/maps entry, missing dash between address range");
3229 
3230     // Parse out the ending address
3231     lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address);
3232 
3233     // Parse out the space after the address.
3234     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' '))
3235         return Error ("malformed /proc/{pid}/maps entry, missing space after range");
3236 
3237     // Save the range.
3238     memory_region_info.GetRange ().SetRangeBase (start_address);
3239     memory_region_info.GetRange ().SetRangeEnd (end_address);
3240 
3241     // Parse out each permission entry.
3242     if (line_extractor.GetBytesLeft () < 4)
3243         return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions");
3244 
3245     // Handle read permission.
3246     const char read_perm_char = line_extractor.GetChar ();
3247     if (read_perm_char == 'r')
3248         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes);
3249     else
3250     {
3251         assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" );
3252         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
3253     }
3254 
3255     // Handle write permission.
3256     const char write_perm_char = line_extractor.GetChar ();
3257     if (write_perm_char == 'w')
3258         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes);
3259     else
3260     {
3261         assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" );
3262         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
3263     }
3264 
3265     // Handle execute permission.
3266     const char exec_perm_char = line_extractor.GetChar ();
3267     if (exec_perm_char == 'x')
3268         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes);
3269     else
3270     {
3271         assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" );
3272         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
3273     }
3274 
3275     return Error ();
3276 }
3277 
3278 Error
3279 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info)
3280 {
3281     // FIXME review that the final memory region returned extends to the end of the virtual address space,
3282     // with no perms if it is not mapped.
3283 
3284     // Use an approach that reads memory regions from /proc/{pid}/maps.
3285     // Assume proc maps entries are in ascending order.
3286     // FIXME assert if we find differently.
3287     Mutex::Locker locker (m_mem_region_cache_mutex);
3288 
3289     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3290     Error error;
3291 
3292     if (m_supports_mem_region == LazyBool::eLazyBoolNo)
3293     {
3294         // We're done.
3295         error.SetErrorString ("unsupported");
3296         return error;
3297     }
3298 
3299     // If our cache is empty, pull the latest.  There should always be at least one memory region
3300     // if memory region handling is supported.
3301     if (m_mem_region_cache.empty ())
3302     {
3303         error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
3304              [&] (const std::string &line) -> bool
3305              {
3306                  MemoryRegionInfo info;
3307                  const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info);
3308                  if (parse_error.Success ())
3309                  {
3310                      m_mem_region_cache.push_back (info);
3311                      return true;
3312                  }
3313                  else
3314                  {
3315                      if (log)
3316                          log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ());
3317                      return false;
3318                  }
3319              });
3320 
3321         // If we had an error, we'll mark unsupported.
3322         if (error.Fail ())
3323         {
3324             m_supports_mem_region = LazyBool::eLazyBoolNo;
3325             return error;
3326         }
3327         else if (m_mem_region_cache.empty ())
3328         {
3329             // No entries after attempting to read them.  This shouldn't happen if /proc/{pid}/maps
3330             // is supported.  Assume we don't support map entries via procfs.
3331             if (log)
3332                 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__);
3333             m_supports_mem_region = LazyBool::eLazyBoolNo;
3334             error.SetErrorString ("not supported");
3335             return error;
3336         }
3337 
3338         if (log)
3339             log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ());
3340 
3341         // We support memory retrieval, remember that.
3342         m_supports_mem_region = LazyBool::eLazyBoolYes;
3343     }
3344     else
3345     {
3346         if (log)
3347             log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
3348     }
3349 
3350     lldb::addr_t prev_base_address = 0;
3351 
3352     // FIXME start by finding the last region that is <= target address using binary search.  Data is sorted.
3353     // There can be a ton of regions on pthreads apps with lots of threads.
3354     for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it)
3355     {
3356         MemoryRegionInfo &proc_entry_info = *it;
3357 
3358         // Sanity check assumption that /proc/{pid}/maps entries are ascending.
3359         assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected");
3360         prev_base_address = proc_entry_info.GetRange ().GetRangeBase ();
3361 
3362         // If the target address comes before this entry, indicate distance to next region.
3363         if (load_addr < proc_entry_info.GetRange ().GetRangeBase ())
3364         {
3365             range_info.GetRange ().SetRangeBase (load_addr);
3366             range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr);
3367             range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
3368             range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
3369             range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
3370 
3371             return error;
3372         }
3373         else if (proc_entry_info.GetRange ().Contains (load_addr))
3374         {
3375             // The target address is within the memory region we're processing here.
3376             range_info = proc_entry_info;
3377             return error;
3378         }
3379 
3380         // The target memory address comes somewhere after the region we just parsed.
3381     }
3382 
3383     // If we made it here, we didn't find an entry that contained the given address.
3384     error.SetErrorString ("address comes after final region");
3385 
3386     if (log)
3387         log->Printf ("NativeProcessLinux::%s failed to find map entry for address 0x%" PRIx64 ": %s", __FUNCTION__, load_addr, error.AsCString ());
3388 
3389     return error;
3390 }
3391 
3392 void
3393 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId)
3394 {
3395     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3396     if (log)
3397         log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId);
3398 
3399     {
3400         Mutex::Locker locker (m_mem_region_cache_mutex);
3401         if (log)
3402             log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
3403         m_mem_region_cache.clear ();
3404     }
3405 }
3406 
3407 Error
3408 NativeProcessLinux::AllocateMemory (
3409     lldb::addr_t size,
3410     uint32_t permissions,
3411     lldb::addr_t &addr)
3412 {
3413     // FIXME implementing this requires the equivalent of
3414     // InferiorCallPOSIX::InferiorCallMmap, which depends on
3415     // functional ThreadPlans working with Native*Protocol.
3416 #if 1
3417     return Error ("not implemented yet");
3418 #else
3419     addr = LLDB_INVALID_ADDRESS;
3420 
3421     unsigned prot = 0;
3422     if (permissions & lldb::ePermissionsReadable)
3423         prot |= eMmapProtRead;
3424     if (permissions & lldb::ePermissionsWritable)
3425         prot |= eMmapProtWrite;
3426     if (permissions & lldb::ePermissionsExecutable)
3427         prot |= eMmapProtExec;
3428 
3429     // TODO implement this directly in NativeProcessLinux
3430     // (and lift to NativeProcessPOSIX if/when that class is
3431     // refactored out).
3432     if (InferiorCallMmap(this, addr, 0, size, prot,
3433                          eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
3434         m_addr_to_mmap_size[addr] = size;
3435         return Error ();
3436     } else {
3437         addr = LLDB_INVALID_ADDRESS;
3438         return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions));
3439     }
3440 #endif
3441 }
3442 
3443 Error
3444 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr)
3445 {
3446     // FIXME see comments in AllocateMemory - required lower-level
3447     // bits not in place yet (ThreadPlans)
3448     return Error ("not implemented");
3449 }
3450 
3451 lldb::addr_t
3452 NativeProcessLinux::GetSharedLibraryInfoAddress ()
3453 {
3454 #if 1
3455     // punt on this for now
3456     return LLDB_INVALID_ADDRESS;
3457 #else
3458     // Return the image info address for the exe module
3459 #if 1
3460     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3461 
3462     ModuleSP module_sp;
3463     Error error = GetExeModuleSP (module_sp);
3464     if (error.Fail ())
3465     {
3466          if (log)
3467             log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ());
3468         return LLDB_INVALID_ADDRESS;
3469     }
3470 
3471     if (module_sp == nullptr)
3472     {
3473          if (log)
3474             log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__);
3475          return LLDB_INVALID_ADDRESS;
3476     }
3477 
3478     ObjectFileSP object_file_sp = module_sp->GetObjectFile ();
3479     if (object_file_sp == nullptr)
3480     {
3481          if (log)
3482             log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__);
3483          return LLDB_INVALID_ADDRESS;
3484     }
3485 
3486     return obj_file_sp->GetImageInfoAddress();
3487 #else
3488     Target *target = &GetTarget();
3489     ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile();
3490     Address addr = obj_file->GetImageInfoAddress(target);
3491 
3492     if (addr.IsValid())
3493         return addr.GetLoadAddress(target);
3494     return LLDB_INVALID_ADDRESS;
3495 #endif
3496 #endif // punt on this for now
3497 }
3498 
3499 size_t
3500 NativeProcessLinux::UpdateThreads ()
3501 {
3502     // The NativeProcessLinux monitoring threads are always up to date
3503     // with respect to thread state and they keep the thread list
3504     // populated properly. All this method needs to do is return the
3505     // thread count.
3506     Mutex::Locker locker (m_threads_mutex);
3507     return m_threads.size ();
3508 }
3509 
3510 bool
3511 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const
3512 {
3513     arch = m_arch;
3514     return true;
3515 }
3516 
3517 Error
3518 NativeProcessLinux::GetSoftwareBreakpointPCOffset (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size)
3519 {
3520     // FIXME put this behind a breakpoint protocol class that can be
3521     // set per architecture.  Need ARM, MIPS support here.
3522     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
3523     static const uint8_t g_i386_opcode [] = { 0xCC };
3524     static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d };
3525 
3526     switch (m_arch.GetMachine ())
3527     {
3528         case llvm::Triple::aarch64:
3529             actual_opcode_size = static_cast<uint32_t> (sizeof(g_aarch64_opcode));
3530             return Error ();
3531 
3532         case llvm::Triple::arm:
3533             actual_opcode_size = 0; // On arm the PC don't get updated for breakpoint hits
3534             return Error ();
3535 
3536         case llvm::Triple::x86:
3537         case llvm::Triple::x86_64:
3538             actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode));
3539             return Error ();
3540 
3541         case llvm::Triple::mips64:
3542         case llvm::Triple::mips64el:
3543             actual_opcode_size = static_cast<uint32_t> (sizeof(g_mips64_opcode));
3544             return Error ();
3545 
3546         default:
3547             assert(false && "CPU type not supported!");
3548             return Error ("CPU type not supported");
3549     }
3550 }
3551 
3552 Error
3553 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware)
3554 {
3555     if (hardware)
3556         return Error ("NativeProcessLinux does not support hardware breakpoints");
3557     else
3558         return SetSoftwareBreakpoint (addr, size);
3559 }
3560 
3561 Error
3562 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint,
3563                                                      size_t &actual_opcode_size,
3564                                                      const uint8_t *&trap_opcode_bytes)
3565 {
3566     // FIXME put this behind a breakpoint protocol class that can be set per
3567     // architecture.  Need MIPS support here.
3568     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
3569     // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
3570     // linux kernel does otherwise.
3571     static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 };
3572     static const uint8_t g_i386_opcode [] = { 0xCC };
3573     static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d };
3574     static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 };
3575     static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde };
3576 
3577     switch (m_arch.GetMachine ())
3578     {
3579     case llvm::Triple::aarch64:
3580         trap_opcode_bytes = g_aarch64_opcode;
3581         actual_opcode_size = sizeof(g_aarch64_opcode);
3582         return Error ();
3583 
3584     case llvm::Triple::arm:
3585         switch (trap_opcode_size_hint)
3586         {
3587         case 2:
3588             trap_opcode_bytes = g_thumb_breakpoint_opcode;
3589             actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
3590             return Error ();
3591         case 4:
3592             trap_opcode_bytes = g_arm_breakpoint_opcode;
3593             actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
3594             return Error ();
3595         default:
3596             assert(false && "Unrecognised trap opcode size hint!");
3597             return Error ("Unrecognised trap opcode size hint!");
3598         }
3599 
3600     case llvm::Triple::x86:
3601     case llvm::Triple::x86_64:
3602         trap_opcode_bytes = g_i386_opcode;
3603         actual_opcode_size = sizeof(g_i386_opcode);
3604         return Error ();
3605 
3606     case llvm::Triple::mips64:
3607         trap_opcode_bytes = g_mips64_opcode;
3608         actual_opcode_size = sizeof(g_mips64_opcode);
3609         return Error ();
3610 
3611     case llvm::Triple::mips64el:
3612         trap_opcode_bytes = g_mips64el_opcode;
3613         actual_opcode_size = sizeof(g_mips64el_opcode);
3614         return Error ();
3615 
3616     default:
3617         assert(false && "CPU type not supported!");
3618         return Error ("CPU type not supported");
3619     }
3620 }
3621 
3622 #if 0
3623 ProcessMessage::CrashReason
3624 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
3625 {
3626     ProcessMessage::CrashReason reason;
3627     assert(info->si_signo == SIGSEGV);
3628 
3629     reason = ProcessMessage::eInvalidCrashReason;
3630 
3631     switch (info->si_code)
3632     {
3633     default:
3634         assert(false && "unexpected si_code for SIGSEGV");
3635         break;
3636     case SI_KERNEL:
3637         // Linux will occasionally send spurious SI_KERNEL codes.
3638         // (this is poorly documented in sigaction)
3639         // One way to get this is via unaligned SIMD loads.
3640         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
3641         break;
3642     case SEGV_MAPERR:
3643         reason = ProcessMessage::eInvalidAddress;
3644         break;
3645     case SEGV_ACCERR:
3646         reason = ProcessMessage::ePrivilegedAddress;
3647         break;
3648     }
3649 
3650     return reason;
3651 }
3652 #endif
3653 
3654 
3655 #if 0
3656 ProcessMessage::CrashReason
3657 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
3658 {
3659     ProcessMessage::CrashReason reason;
3660     assert(info->si_signo == SIGILL);
3661 
3662     reason = ProcessMessage::eInvalidCrashReason;
3663 
3664     switch (info->si_code)
3665     {
3666     default:
3667         assert(false && "unexpected si_code for SIGILL");
3668         break;
3669     case ILL_ILLOPC:
3670         reason = ProcessMessage::eIllegalOpcode;
3671         break;
3672     case ILL_ILLOPN:
3673         reason = ProcessMessage::eIllegalOperand;
3674         break;
3675     case ILL_ILLADR:
3676         reason = ProcessMessage::eIllegalAddressingMode;
3677         break;
3678     case ILL_ILLTRP:
3679         reason = ProcessMessage::eIllegalTrap;
3680         break;
3681     case ILL_PRVOPC:
3682         reason = ProcessMessage::ePrivilegedOpcode;
3683         break;
3684     case ILL_PRVREG:
3685         reason = ProcessMessage::ePrivilegedRegister;
3686         break;
3687     case ILL_COPROC:
3688         reason = ProcessMessage::eCoprocessorError;
3689         break;
3690     case ILL_BADSTK:
3691         reason = ProcessMessage::eInternalStackError;
3692         break;
3693     }
3694 
3695     return reason;
3696 }
3697 #endif
3698 
3699 #if 0
3700 ProcessMessage::CrashReason
3701 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
3702 {
3703     ProcessMessage::CrashReason reason;
3704     assert(info->si_signo == SIGFPE);
3705 
3706     reason = ProcessMessage::eInvalidCrashReason;
3707 
3708     switch (info->si_code)
3709     {
3710     default:
3711         assert(false && "unexpected si_code for SIGFPE");
3712         break;
3713     case FPE_INTDIV:
3714         reason = ProcessMessage::eIntegerDivideByZero;
3715         break;
3716     case FPE_INTOVF:
3717         reason = ProcessMessage::eIntegerOverflow;
3718         break;
3719     case FPE_FLTDIV:
3720         reason = ProcessMessage::eFloatDivideByZero;
3721         break;
3722     case FPE_FLTOVF:
3723         reason = ProcessMessage::eFloatOverflow;
3724         break;
3725     case FPE_FLTUND:
3726         reason = ProcessMessage::eFloatUnderflow;
3727         break;
3728     case FPE_FLTRES:
3729         reason = ProcessMessage::eFloatInexactResult;
3730         break;
3731     case FPE_FLTINV:
3732         reason = ProcessMessage::eFloatInvalidOperation;
3733         break;
3734     case FPE_FLTSUB:
3735         reason = ProcessMessage::eFloatSubscriptRange;
3736         break;
3737     }
3738 
3739     return reason;
3740 }
3741 #endif
3742 
3743 #if 0
3744 ProcessMessage::CrashReason
3745 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
3746 {
3747     ProcessMessage::CrashReason reason;
3748     assert(info->si_signo == SIGBUS);
3749 
3750     reason = ProcessMessage::eInvalidCrashReason;
3751 
3752     switch (info->si_code)
3753     {
3754     default:
3755         assert(false && "unexpected si_code for SIGBUS");
3756         break;
3757     case BUS_ADRALN:
3758         reason = ProcessMessage::eIllegalAlignment;
3759         break;
3760     case BUS_ADRERR:
3761         reason = ProcessMessage::eIllegalAddress;
3762         break;
3763     case BUS_OBJERR:
3764         reason = ProcessMessage::eHardwareError;
3765         break;
3766     }
3767 
3768     return reason;
3769 }
3770 #endif
3771 
3772 Error
3773 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, lldb::addr_t size, lldb::addr_t &bytes_read)
3774 {
3775     ReadOperation op(addr, buf, size, bytes_read);
3776     m_monitor_up->DoOperation(&op);
3777     return op.GetError ();
3778 }
3779 
3780 Error
3781 NativeProcessLinux::WriteMemory (lldb::addr_t addr, const void *buf, lldb::addr_t size, lldb::addr_t &bytes_written)
3782 {
3783     WriteOperation op(addr, buf, size, bytes_written);
3784     m_monitor_up->DoOperation(&op);
3785     return op.GetError ();
3786 }
3787 
3788 Error
3789 NativeProcessLinux::ReadRegisterValue(lldb::tid_t tid, uint32_t offset, const char* reg_name,
3790                                       uint32_t size, RegisterValue &value)
3791 {
3792     ReadRegOperation op(tid, offset, reg_name, value);
3793     m_monitor_up->DoOperation(&op);
3794     return op.GetError();
3795 }
3796 
3797 Error
3798 NativeProcessLinux::WriteRegisterValue(lldb::tid_t tid, unsigned offset,
3799                                    const char* reg_name, const RegisterValue &value)
3800 {
3801     WriteRegOperation op(tid, offset, reg_name, value);
3802     m_monitor_up->DoOperation(&op);
3803     return op.GetError();
3804 }
3805 
3806 Error
3807 NativeProcessLinux::ReadGPR(lldb::tid_t tid, void *buf, size_t buf_size)
3808 {
3809     ReadGPROperation op(tid, buf, buf_size);
3810     m_monitor_up->DoOperation(&op);
3811     return op.GetError();
3812 }
3813 
3814 Error
3815 NativeProcessLinux::ReadFPR(lldb::tid_t tid, void *buf, size_t buf_size)
3816 {
3817     ReadFPROperation op(tid, buf, buf_size);
3818     m_monitor_up->DoOperation(&op);
3819     return op.GetError();
3820 }
3821 
3822 Error
3823 NativeProcessLinux::ReadRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
3824 {
3825     ReadRegisterSetOperation op(tid, buf, buf_size, regset);
3826     m_monitor_up->DoOperation(&op);
3827     return op.GetError();
3828 }
3829 
3830 Error
3831 NativeProcessLinux::WriteGPR(lldb::tid_t tid, void *buf, size_t buf_size)
3832 {
3833     WriteGPROperation op(tid, buf, buf_size);
3834     m_monitor_up->DoOperation(&op);
3835     return op.GetError();
3836 }
3837 
3838 Error
3839 NativeProcessLinux::WriteFPR(lldb::tid_t tid, void *buf, size_t buf_size)
3840 {
3841     WriteFPROperation op(tid, buf, buf_size);
3842     m_monitor_up->DoOperation(&op);
3843     return op.GetError();
3844 }
3845 
3846 Error
3847 NativeProcessLinux::WriteRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
3848 {
3849     WriteRegisterSetOperation op(tid, buf, buf_size, regset);
3850     m_monitor_up->DoOperation(&op);
3851     return op.GetError();
3852 }
3853 
3854 Error
3855 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo)
3856 {
3857     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3858 
3859     if (log)
3860         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " with signal %s", __FUNCTION__, tid,
3861                                  GetUnixSignals().GetSignalAsCString (signo));
3862     ResumeOperation op (tid, signo);
3863     m_monitor_up->DoOperation (&op);
3864     if (log)
3865         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " result = %s", __FUNCTION__, tid, op.GetError().Success() ? "true" : "false");
3866     return op.GetError();
3867 }
3868 
3869 Error
3870 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo)
3871 {
3872     SingleStepOperation op(tid, signo);
3873     m_monitor_up->DoOperation(&op);
3874     return op.GetError();
3875 }
3876 
3877 Error
3878 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo)
3879 {
3880     SiginfoOperation op(tid, siginfo);
3881     m_monitor_up->DoOperation(&op);
3882     return op.GetError();
3883 }
3884 
3885 Error
3886 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message)
3887 {
3888     EventMessageOperation op(tid, message);
3889     m_monitor_up->DoOperation(&op);
3890     return op.GetError();
3891 }
3892 
3893 Error
3894 NativeProcessLinux::Detach(lldb::tid_t tid)
3895 {
3896     if (tid == LLDB_INVALID_THREAD_ID)
3897         return Error();
3898 
3899     DetachOperation op(tid);
3900     m_monitor_up->DoOperation(&op);
3901     return op.GetError();
3902 }
3903 
3904 bool
3905 NativeProcessLinux::DupDescriptor(const char *path, int fd, int flags)
3906 {
3907     int target_fd = open(path, flags, 0666);
3908 
3909     if (target_fd == -1)
3910         return false;
3911 
3912     if (dup2(target_fd, fd) == -1)
3913         return false;
3914 
3915     return (close(target_fd) == -1) ? false : true;
3916 }
3917 
3918 void
3919 NativeProcessLinux::StartMonitorThread(const InitialOperation &initial_operation, Error &error)
3920 {
3921     m_monitor_up.reset(new Monitor(initial_operation, this));
3922     error = m_monitor_up->Initialize();
3923     if (error.Fail()) {
3924         m_monitor_up.reset();
3925     }
3926 }
3927 
3928 void
3929 NativeProcessLinux::StopMonitor()
3930 {
3931     StopCoordinatorThread ();
3932     m_monitor_up.reset();
3933 }
3934 
3935 Error
3936 NativeProcessLinux::StartCoordinatorThread ()
3937 {
3938     Error error;
3939     static const char *g_thread_name = "lldb.process.linux.ts_coordinator";
3940     Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3941 
3942     // Skip if thread is already running
3943     if (m_coordinator_thread.IsJoinable())
3944     {
3945         error.SetErrorString ("ThreadStateCoordinator's run loop is already running");
3946         if (log)
3947             log->Printf ("NativeProcessLinux::%s %s", __FUNCTION__, error.AsCString ());
3948         return error;
3949     }
3950 
3951     // Enable verbose logging if lldb thread logging is enabled.
3952     m_coordinator_up->LogEnableEventProcessing (log != nullptr);
3953 
3954     if (log)
3955         log->Printf ("NativeProcessLinux::%s launching ThreadStateCoordinator thread for pid %" PRIu64, __FUNCTION__, GetID ());
3956     m_coordinator_thread = ThreadLauncher::LaunchThread(g_thread_name, CoordinatorThread, this, &error);
3957     return error;
3958 }
3959 
3960 void *
3961 NativeProcessLinux::CoordinatorThread (void *arg)
3962 {
3963     Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3964 
3965     NativeProcessLinux *const process = static_cast<NativeProcessLinux*> (arg);
3966     assert (process && "null process passed to CoordinatorThread");
3967     if (!process)
3968     {
3969         if (log)
3970             log->Printf ("NativeProcessLinux::%s null process, exiting ThreadStateCoordinator processing loop", __FUNCTION__);
3971         return nullptr;
3972     }
3973 
3974     // Run the thread state coordinator loop until it is done.  This call uses
3975     // efficient waiting for an event to be ready.
3976     while (process->m_coordinator_up->ProcessNextEvent () == ThreadStateCoordinator::eventLoopResultContinue)
3977     {
3978     }
3979 
3980     if (log)
3981         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " exiting ThreadStateCoordinator processing loop due to coordinator indicating completion", __FUNCTION__, process->GetID ());
3982 
3983     return nullptr;
3984 }
3985 
3986 void
3987 NativeProcessLinux::StopCoordinatorThread()
3988 {
3989     Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3990     if (log)
3991         log->Printf ("NativeProcessLinux::%s requesting ThreadStateCoordinator stop for pid %" PRIu64, __FUNCTION__, GetID ());
3992 
3993     // Tell the coordinator we're done.  This will cause the coordinator
3994     // run loop thread to exit when the processing queue hits this message.
3995     m_coordinator_up->StopCoordinator ();
3996     m_coordinator_thread.Join (nullptr);
3997 }
3998 
3999 bool
4000 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id)
4001 {
4002     for (auto thread_sp : m_threads)
4003     {
4004         assert (thread_sp && "thread list should not contain NULL threads");
4005         if (thread_sp->GetID () == thread_id)
4006         {
4007             // We have this thread.
4008             return true;
4009         }
4010     }
4011 
4012     // We don't have this thread.
4013     return false;
4014 }
4015 
4016 NativeThreadProtocolSP
4017 NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id)
4018 {
4019     // CONSIDER organize threads by map - we can do better than linear.
4020     for (auto thread_sp : m_threads)
4021     {
4022         if (thread_sp->GetID () == thread_id)
4023             return thread_sp;
4024     }
4025 
4026     // We don't have this thread.
4027     return NativeThreadProtocolSP ();
4028 }
4029 
4030 bool
4031 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id)
4032 {
4033     Mutex::Locker locker (m_threads_mutex);
4034     for (auto it = m_threads.begin (); it != m_threads.end (); ++it)
4035     {
4036         if (*it && ((*it)->GetID () == thread_id))
4037         {
4038             m_threads.erase (it);
4039             return true;
4040         }
4041     }
4042 
4043     // Didn't find it.
4044     return false;
4045 }
4046 
4047 NativeThreadProtocolSP
4048 NativeProcessLinux::AddThread (lldb::tid_t thread_id)
4049 {
4050     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
4051 
4052     Mutex::Locker locker (m_threads_mutex);
4053 
4054     if (log)
4055     {
4056         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64,
4057                 __FUNCTION__,
4058                 GetID (),
4059                 thread_id);
4060     }
4061 
4062     assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists");
4063 
4064     // If this is the first thread, save it as the current thread
4065     if (m_threads.empty ())
4066         SetCurrentThreadID (thread_id);
4067 
4068     NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id));
4069     m_threads.push_back (thread_sp);
4070 
4071     return thread_sp;
4072 }
4073 
4074 Error
4075 NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp)
4076 {
4077     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS));
4078 
4079     Error error;
4080 
4081     // Get a linux thread pointer.
4082     if (!thread_sp)
4083     {
4084         error.SetErrorString ("null thread_sp");
4085         if (log)
4086             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
4087         return error;
4088     }
4089     std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp);
4090 
4091     // Find out the size of a breakpoint (might depend on where we are in the code).
4092     NativeRegisterContextSP context_sp = linux_thread_sp->GetRegisterContext ();
4093     if (!context_sp)
4094     {
4095         error.SetErrorString ("cannot get a NativeRegisterContext for the thread");
4096         if (log)
4097             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
4098         return error;
4099     }
4100 
4101     uint32_t breakpoint_size = 0;
4102     error = GetSoftwareBreakpointPCOffset (context_sp, breakpoint_size);
4103     if (error.Fail ())
4104     {
4105         if (log)
4106             log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ());
4107         return error;
4108     }
4109     else
4110     {
4111         if (log)
4112             log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size);
4113     }
4114 
4115     // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size.
4116     const lldb::addr_t initial_pc_addr = context_sp->GetPC ();
4117     lldb::addr_t breakpoint_addr = initial_pc_addr;
4118     if (breakpoint_size > static_cast<lldb::addr_t> (0))
4119     {
4120         // Do not allow breakpoint probe to wrap around.
4121         if (breakpoint_addr >= static_cast<lldb::addr_t> (breakpoint_size))
4122             breakpoint_addr -= static_cast<lldb::addr_t> (breakpoint_size);
4123     }
4124 
4125     // Check if we stopped because of a breakpoint.
4126     NativeBreakpointSP breakpoint_sp;
4127     error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp);
4128     if (!error.Success () || !breakpoint_sp)
4129     {
4130         // We didn't find one at a software probe location.  Nothing to do.
4131         if (log)
4132             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr);
4133         return Error ();
4134     }
4135 
4136     // If the breakpoint is not a software breakpoint, nothing to do.
4137     if (!breakpoint_sp->IsSoftwareBreakpoint ())
4138     {
4139         if (log)
4140             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr);
4141         return Error ();
4142     }
4143 
4144     //
4145     // We have a software breakpoint and need to adjust the PC.
4146     //
4147 
4148     // Sanity check.
4149     if (breakpoint_size == 0)
4150     {
4151         // Nothing to do!  How did we get here?
4152         if (log)
4153             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr);
4154         return Error ();
4155     }
4156 
4157     // Change the program counter.
4158     if (log)
4159         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_sp->GetID (), initial_pc_addr, breakpoint_addr);
4160 
4161     error = context_sp->SetPC (breakpoint_addr);
4162     if (error.Fail ())
4163     {
4164         if (log)
4165             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_sp->GetID (), error.AsCString ());
4166         return error;
4167     }
4168 
4169     return error;
4170 }
4171 
4172 void
4173 NativeProcessLinux::NotifyThreadCreateStopped (lldb::tid_t tid)
4174 {
4175     const bool is_stopped = true;
4176     m_coordinator_up->NotifyThreadCreate (tid, is_stopped, CoordinatorErrorHandler);
4177 }
4178 
4179 void
4180 NativeProcessLinux::NotifyThreadDeath (lldb::tid_t tid)
4181 {
4182     m_coordinator_up->NotifyThreadDeath (tid, CoordinatorErrorHandler);
4183 }
4184 
4185 void
4186 NativeProcessLinux::NotifyThreadStop (lldb::tid_t tid)
4187 {
4188     m_coordinator_up->NotifyThreadStop (tid, false, CoordinatorErrorHandler);
4189 }
4190 
4191 void
4192 NativeProcessLinux::CallAfterRunningThreadsStop (lldb::tid_t tid,
4193                                                  const std::function<void (lldb::tid_t tid)> &call_after_function)
4194 {
4195     Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
4196     if (log)
4197         log->Printf("NativeProcessLinux::%s tid %" PRIu64, __FUNCTION__, tid);
4198 
4199     const lldb::pid_t pid = GetID ();
4200     m_coordinator_up->CallAfterRunningThreadsStop (tid,
4201                                                    [=](lldb::tid_t request_stop_tid)
4202                                                    {
4203                                                        return RequestThreadStop(pid, request_stop_tid);
4204                                                    },
4205                                                    call_after_function,
4206                                                    CoordinatorErrorHandler);
4207 }
4208 
4209 void
4210 NativeProcessLinux::CallAfterRunningThreadsStopWithSkipTID (lldb::tid_t deferred_signal_tid,
4211                                                             lldb::tid_t skip_stop_request_tid,
4212                                                             const std::function<void (lldb::tid_t tid)> &call_after_function)
4213 {
4214     Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
4215     if (log)
4216         log->Printf("NativeProcessLinux::%s deferred_signal_tid %" PRIu64 ", skip_stop_request_tid %" PRIu64, __FUNCTION__, deferred_signal_tid, skip_stop_request_tid);
4217 
4218     const lldb::pid_t pid = GetID ();
4219     m_coordinator_up->CallAfterRunningThreadsStopWithSkipTIDs (deferred_signal_tid,
4220                                                                skip_stop_request_tid != LLDB_INVALID_THREAD_ID ? ThreadStateCoordinator::ThreadIDSet {skip_stop_request_tid} : ThreadStateCoordinator::ThreadIDSet (),
4221                                                                [=](lldb::tid_t request_stop_tid)
4222                                                                {
4223                                                                    return RequestThreadStop(pid, request_stop_tid);
4224                                                                },
4225                                                                call_after_function,
4226                                                                CoordinatorErrorHandler);
4227 }
4228 
4229 Error
4230 NativeProcessLinux::RequestThreadStop (const lldb::pid_t pid, const lldb::tid_t tid)
4231 {
4232     Log* log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
4233     if (log)
4234         log->Printf ("NativeProcessLinux::%s requesting thread stop(pid: %" PRIu64 ", tid: %" PRIu64 ")", __FUNCTION__, pid, tid);
4235 
4236     Error err;
4237     errno = 0;
4238     if (::tgkill (pid, tid, SIGSTOP) != 0)
4239     {
4240         err.SetErrorToErrno ();
4241         if (log)
4242             log->Printf ("NativeProcessLinux::%s tgkill(%" PRIu64 ", %" PRIu64 ", SIGSTOP) failed: %s", __FUNCTION__, pid, tid, err.AsCString ());
4243     }
4244 
4245     return err;
4246 }
4247 
4248 Error
4249 NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec)
4250 {
4251     char maps_file_name[32];
4252     snprintf(maps_file_name, sizeof(maps_file_name), "/proc/%" PRIu64 "/maps", GetID());
4253 
4254     FileSpec maps_file_spec(maps_file_name, false);
4255     if (!maps_file_spec.Exists()) {
4256         file_spec.Clear();
4257         return Error("/proc/%" PRIu64 "/maps file doesn't exists!", GetID());
4258     }
4259 
4260     FileSpec module_file_spec(module_path, true);
4261 
4262     std::ifstream maps_file(maps_file_name);
4263     std::string maps_data_str((std::istreambuf_iterator<char>(maps_file)), std::istreambuf_iterator<char>());
4264     StringRef maps_data(maps_data_str.c_str());
4265 
4266     while (!maps_data.empty())
4267     {
4268         StringRef maps_row;
4269         std::tie(maps_row, maps_data) = maps_data.split('\n');
4270 
4271         SmallVector<StringRef, 16> maps_columns;
4272         maps_row.split(maps_columns, StringRef(" "), -1, false);
4273 
4274         if (maps_columns.size() >= 6)
4275         {
4276             file_spec.SetFile(maps_columns[5].str().c_str(), false);
4277             if (file_spec.GetFilename() == module_file_spec.GetFilename())
4278                 return Error();
4279         }
4280     }
4281 
4282     file_spec.Clear();
4283     return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
4284                  module_file_spec.GetFilename().AsCString(), GetID());
4285 }
4286