1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "lldb/lldb-python.h"
11 
12 #include "NativeProcessLinux.h"
13 
14 // C Includes
15 #include <errno.h>
16 #include <poll.h>
17 #include <string.h>
18 #include <stdint.h>
19 #include <unistd.h>
20 
21 // C++ Includes
22 #include <fstream>
23 #include <string>
24 
25 // Other libraries and framework includes
26 #include "lldb/Core/Debugger.h"
27 #include "lldb/Core/EmulateInstruction.h"
28 #include "lldb/Core/Error.h"
29 #include "lldb/Core/Module.h"
30 #include "lldb/Core/ModuleSpec.h"
31 #include "lldb/Core/RegisterValue.h"
32 #include "lldb/Core/Scalar.h"
33 #include "lldb/Core/State.h"
34 #include "lldb/Host/common/NativeBreakpoint.h"
35 #include "lldb/Host/common/NativeRegisterContext.h"
36 #include "lldb/Host/Host.h"
37 #include "lldb/Host/HostInfo.h"
38 #include "lldb/Host/HostNativeThread.h"
39 #include "lldb/Host/ThreadLauncher.h"
40 #include "lldb/Symbol/ObjectFile.h"
41 #include "lldb/Target/Process.h"
42 #include "lldb/Target/ProcessLaunchInfo.h"
43 #include "lldb/Utility/LLDBAssert.h"
44 #include "lldb/Utility/PseudoTerminal.h"
45 
46 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
47 #include "Plugins/Process/Utility/LinuxSignals.h"
48 #include "Utility/StringExtractor.h"
49 #include "NativeThreadLinux.h"
50 #include "ProcFileReader.h"
51 #include "Procfs.h"
52 #include "ThreadStateCoordinator.h"
53 
54 // System includes - They have to be included after framework includes because they define some
55 // macros which collide with variable names in other modules
56 #include <linux/unistd.h>
57 #include <sys/personality.h>
58 #include <sys/ptrace.h>
59 #include <sys/socket.h>
60 #include <sys/signalfd.h>
61 #include <sys/syscall.h>
62 #include <sys/types.h>
63 #include <sys/uio.h>
64 #include <sys/user.h>
65 #include <sys/wait.h>
66 
67 #if defined (__arm64__) || defined (__aarch64__)
68 // NT_PRSTATUS and NT_FPREGSET definition
69 #include <elf.h>
70 #endif
71 
72 #ifdef __ANDROID__
73 #define __ptrace_request int
74 #define PT_DETACH PTRACE_DETACH
75 #endif
76 
77 #define DEBUG_PTRACE_MAXBYTES 20
78 
79 // Support ptrace extensions even when compiled without required kernel support
80 #ifndef PT_GETREGS
81 #ifndef PTRACE_GETREGS
82   #define PTRACE_GETREGS 12
83 #endif
84 #endif
85 #ifndef PT_SETREGS
86 #ifndef PTRACE_SETREGS
87   #define PTRACE_SETREGS 13
88 #endif
89 #endif
90 #ifndef PT_GETFPREGS
91 #ifndef PTRACE_GETFPREGS
92   #define PTRACE_GETFPREGS 14
93 #endif
94 #endif
95 #ifndef PT_SETFPREGS
96 #ifndef PTRACE_SETFPREGS
97   #define PTRACE_SETFPREGS 15
98 #endif
99 #endif
100 #ifndef PTRACE_GETREGSET
101   #define PTRACE_GETREGSET 0x4204
102 #endif
103 #ifndef PTRACE_SETREGSET
104   #define PTRACE_SETREGSET 0x4205
105 #endif
106 #ifndef PTRACE_GET_THREAD_AREA
107   #define PTRACE_GET_THREAD_AREA 25
108 #endif
109 #ifndef PTRACE_ARCH_PRCTL
110   #define PTRACE_ARCH_PRCTL      30
111 #endif
112 #ifndef ARCH_GET_FS
113   #define ARCH_SET_GS 0x1001
114   #define ARCH_SET_FS 0x1002
115   #define ARCH_GET_FS 0x1003
116   #define ARCH_GET_GS 0x1004
117 #endif
118 
119 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS  0xffffffff
120 
121 // Support hardware breakpoints in case it has not been defined
122 #ifndef TRAP_HWBKPT
123   #define TRAP_HWBKPT 4
124 #endif
125 
126 // Try to define a macro to encapsulate the tgkill syscall
127 // fall back on kill() if tgkill isn't available
128 #define tgkill(pid, tid, sig) \
129     syscall(SYS_tgkill, static_cast<::pid_t>(pid), static_cast<::pid_t>(tid), sig)
130 
131 // We disable the tracing of ptrace calls for integration builds to
132 // avoid the additional indirection and checks.
133 #ifndef LLDB_CONFIGURATION_BUILDANDINTEGRATION
134 #define PTRACE(req, pid, addr, data, data_size, error) \
135     PtraceWrapper((req), (pid), (addr), (data), (data_size), (error), #req, __FILE__, __LINE__)
136 #else
137 #define PTRACE(req, pid, addr, data, data_size, error) \
138     PtraceWrapper((req), (pid), (addr), (data), (data_size), (error))
139 #endif
140 
141 using namespace lldb;
142 using namespace lldb_private;
143 using namespace lldb_private::process_linux;
144 using namespace llvm;
145 
146 // Private bits we only need internally.
147 namespace
148 {
149     const UnixSignals&
150     GetUnixSignals ()
151     {
152         static process_linux::LinuxSignals signals;
153         return signals;
154     }
155 
156     ThreadStateCoordinator::LogFunction
157     GetThreadLoggerFunction ()
158     {
159         return [](const char *format, va_list args)
160         {
161             Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
162             if (log)
163                 log->VAPrintf (format, args);
164         };
165     }
166 
167     void
168     CoordinatorErrorHandler (const std::string &error_message)
169     {
170         Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
171         if (log)
172             log->Printf ("NativeProcessLinux::%s %s", __FUNCTION__, error_message.c_str ());
173         assert (false && "ThreadStateCoordinator error reported");
174     }
175 
176     Error
177     ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch)
178     {
179         // Grab process info for the running process.
180         ProcessInstanceInfo process_info;
181         if (!platform.GetProcessInfo (pid, process_info))
182             return Error("failed to get process info");
183 
184         // Resolve the executable module.
185         ModuleSP exe_module_sp;
186         ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
187         FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ());
188         Error error = platform.ResolveExecutable(
189             exe_module_spec,
190             exe_module_sp,
191             executable_search_paths.GetSize () ? &executable_search_paths : NULL);
192 
193         if (!error.Success ())
194             return error;
195 
196         // Check if we've got our architecture from the exe_module.
197         arch = exe_module_sp->GetArchitecture ();
198         if (arch.IsValid ())
199             return Error();
200         else
201             return Error("failed to retrieve a valid architecture from the exe module");
202     }
203 
204     void
205     DisplayBytes (StreamString &s, void *bytes, uint32_t count)
206     {
207         uint8_t *ptr = (uint8_t *)bytes;
208         const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
209         for(uint32_t i=0; i<loop_count; i++)
210         {
211             s.Printf ("[%x]", *ptr);
212             ptr++;
213         }
214     }
215 
216     void
217     PtraceDisplayBytes(int &req, void *data, size_t data_size)
218     {
219         StreamString buf;
220         Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (
221                     POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE));
222 
223         if (verbose_log)
224         {
225             switch(req)
226             {
227             case PTRACE_POKETEXT:
228             {
229                 DisplayBytes(buf, &data, 8);
230                 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData());
231                 break;
232             }
233             case PTRACE_POKEDATA:
234             {
235                 DisplayBytes(buf, &data, 8);
236                 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData());
237                 break;
238             }
239             case PTRACE_POKEUSER:
240             {
241                 DisplayBytes(buf, &data, 8);
242                 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData());
243                 break;
244             }
245             case PTRACE_SETREGS:
246             {
247                 DisplayBytes(buf, data, data_size);
248                 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData());
249                 break;
250             }
251             case PTRACE_SETFPREGS:
252             {
253                 DisplayBytes(buf, data, data_size);
254                 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData());
255                 break;
256             }
257             case PTRACE_SETSIGINFO:
258             {
259                 DisplayBytes(buf, data, sizeof(siginfo_t));
260                 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData());
261                 break;
262             }
263             case PTRACE_SETREGSET:
264             {
265                 // Extract iov_base from data, which is a pointer to the struct IOVEC
266                 DisplayBytes(buf, *(void **)data, data_size);
267                 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData());
268                 break;
269             }
270             default:
271             {
272             }
273             }
274         }
275     }
276 
277     // Wrapper for ptrace to catch errors and log calls.
278     // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
279     long
280     PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error,
281                   const char* reqName, const char* file, int line)
282     {
283         long int result;
284 
285         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE));
286 
287         PtraceDisplayBytes(req, data, data_size);
288 
289         error.Clear();
290         errno = 0;
291         if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
292             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
293         else
294             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
295 
296         if (result == -1)
297             error.SetErrorToErrno();
298 
299         if (log)
300             log->Printf("ptrace(%s, %" PRIu64 ", %p, %p, %zu)=%lX called from file %s line %d",
301                     reqName, pid, addr, data, data_size, result, file, line);
302 
303         PtraceDisplayBytes(req, data, data_size);
304 
305         if (log && error.GetError() != 0)
306         {
307             const char* str;
308             switch (error.GetError())
309             {
310             case ESRCH:  str = "ESRCH"; break;
311             case EINVAL: str = "EINVAL"; break;
312             case EBUSY:  str = "EBUSY"; break;
313             case EPERM:  str = "EPERM"; break;
314             default:     str = error.AsCString();
315             }
316             log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str);
317         }
318 
319         return result;
320     }
321 
322 #ifdef LLDB_CONFIGURATION_BUILDANDINTEGRATION
323     // Wrapper for ptrace when logging is not required.
324     // Sets errno to 0 prior to calling ptrace.
325     long
326     PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error)
327     {
328         long result = 0;
329 
330         error.Clear();
331         errno = 0;
332         if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
333             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
334         else
335             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
336 
337         if (result == -1)
338             error.SetErrorToErrno();
339         return result;
340     }
341 #endif
342 
343     //------------------------------------------------------------------------------
344     // Static implementations of NativeProcessLinux::ReadMemory and
345     // NativeProcessLinux::WriteMemory.  This enables mutual recursion between these
346     // functions without needed to go thru the thread funnel.
347 
348     lldb::addr_t
349     DoReadMemory (
350         lldb::pid_t pid,
351         lldb::addr_t vm_addr,
352         void *buf,
353         lldb::addr_t size,
354         Error &error)
355     {
356         // ptrace word size is determined by the host, not the child
357         static const unsigned word_size = sizeof(void*);
358         unsigned char *dst = static_cast<unsigned char*>(buf);
359         lldb::addr_t bytes_read;
360         lldb::addr_t remainder;
361         long data;
362 
363         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
364         if (log)
365             ProcessPOSIXLog::IncNestLevel();
366         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
367             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__,
368                     pid, word_size, (void*)vm_addr, buf, size);
369 
370         assert(sizeof(data) >= word_size);
371         for (bytes_read = 0; bytes_read < size; bytes_read += remainder)
372         {
373             data = PTRACE(PTRACE_PEEKDATA, pid, (void*)vm_addr, nullptr, 0, error);
374             if (error.Fail())
375             {
376                 if (log)
377                     ProcessPOSIXLog::DecNestLevel();
378                 return bytes_read;
379             }
380 
381             remainder = size - bytes_read;
382             remainder = remainder > word_size ? word_size : remainder;
383 
384             // Copy the data into our buffer
385             for (unsigned i = 0; i < remainder; ++i)
386                 dst[i] = ((data >> i*8) & 0xFF);
387 
388             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
389                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
390                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
391                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
392             {
393                 uintptr_t print_dst = 0;
394                 // Format bytes from data by moving into print_dst for log output
395                 for (unsigned i = 0; i < remainder; ++i)
396                     print_dst |= (((data >> i*8) & 0xFF) << i*8);
397                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
398                         (void*)vm_addr, print_dst, (unsigned long)data);
399             }
400 
401             vm_addr += word_size;
402             dst += word_size;
403         }
404 
405         if (log)
406             ProcessPOSIXLog::DecNestLevel();
407         return bytes_read;
408     }
409 
410     lldb::addr_t
411     DoWriteMemory(
412         lldb::pid_t pid,
413         lldb::addr_t vm_addr,
414         const void *buf,
415         lldb::addr_t size,
416         Error &error)
417     {
418         // ptrace word size is determined by the host, not the child
419         static const unsigned word_size = sizeof(void*);
420         const unsigned char *src = static_cast<const unsigned char*>(buf);
421         lldb::addr_t bytes_written = 0;
422         lldb::addr_t remainder;
423 
424         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
425         if (log)
426             ProcessPOSIXLog::IncNestLevel();
427         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
428             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__,
429                     pid, word_size, (void*)vm_addr, buf, size);
430 
431         for (bytes_written = 0; bytes_written < size; bytes_written += remainder)
432         {
433             remainder = size - bytes_written;
434             remainder = remainder > word_size ? word_size : remainder;
435 
436             if (remainder == word_size)
437             {
438                 unsigned long data = 0;
439                 assert(sizeof(data) >= word_size);
440                 for (unsigned i = 0; i < word_size; ++i)
441                     data |= (unsigned long)src[i] << i*8;
442 
443                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
444                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
445                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
446                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
447                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
448                             (void*)vm_addr, *(const unsigned long*)src, data);
449 
450                 if (PTRACE(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data, 0, error))
451                 {
452                     if (log)
453                         ProcessPOSIXLog::DecNestLevel();
454                     return bytes_written;
455                 }
456             }
457             else
458             {
459                 unsigned char buff[8];
460                 if (DoReadMemory(pid, vm_addr,
461                                 buff, word_size, error) != word_size)
462                 {
463                     if (log)
464                         ProcessPOSIXLog::DecNestLevel();
465                     return bytes_written;
466                 }
467 
468                 memcpy(buff, src, remainder);
469 
470                 if (DoWriteMemory(pid, vm_addr,
471                                 buff, word_size, error) != word_size)
472                 {
473                     if (log)
474                         ProcessPOSIXLog::DecNestLevel();
475                     return bytes_written;
476                 }
477 
478                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
479                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
480                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
481                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
482                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
483                             (void*)vm_addr, *(const unsigned long*)src, *(unsigned long*)buff);
484             }
485 
486             vm_addr += word_size;
487             src += word_size;
488         }
489         if (log)
490             ProcessPOSIXLog::DecNestLevel();
491         return bytes_written;
492     }
493 
494     //------------------------------------------------------------------------------
495     /// @class Operation
496     /// @brief Represents a NativeProcessLinux operation.
497     ///
498     /// Under Linux, it is not possible to ptrace() from any other thread but the
499     /// one that spawned or attached to the process from the start.  Therefore, when
500     /// a NativeProcessLinux is asked to deliver or change the state of an inferior
501     /// process the operation must be "funneled" to a specific thread to perform the
502     /// task.  The Operation class provides an abstract base for all services the
503     /// NativeProcessLinux must perform via the single virtual function Execute, thus
504     /// encapsulating the code that needs to run in the privileged context.
505     class Operation
506     {
507     public:
508         Operation () : m_error() { }
509 
510         virtual
511         ~Operation() {}
512 
513         virtual void
514         Execute (NativeProcessLinux *process) = 0;
515 
516         const Error &
517         GetError () const { return m_error; }
518 
519     protected:
520         Error m_error;
521     };
522 
523     //------------------------------------------------------------------------------
524     /// @class ReadOperation
525     /// @brief Implements NativeProcessLinux::ReadMemory.
526     class ReadOperation : public Operation
527     {
528     public:
529         ReadOperation (
530             lldb::addr_t addr,
531             void *buff,
532             lldb::addr_t size,
533             lldb::addr_t &result) :
534             Operation (),
535             m_addr (addr),
536             m_buff (buff),
537             m_size (size),
538             m_result (result)
539             {
540             }
541 
542         void Execute (NativeProcessLinux *process) override;
543 
544     private:
545         lldb::addr_t m_addr;
546         void *m_buff;
547         lldb::addr_t m_size;
548         lldb::addr_t &m_result;
549     };
550 
551     void
552     ReadOperation::Execute (NativeProcessLinux *process)
553     {
554         m_result = DoReadMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
555     }
556 
557     //------------------------------------------------------------------------------
558     /// @class WriteOperation
559     /// @brief Implements NativeProcessLinux::WriteMemory.
560     class WriteOperation : public Operation
561     {
562     public:
563         WriteOperation (
564             lldb::addr_t addr,
565             const void *buff,
566             lldb::addr_t size,
567             lldb::addr_t &result) :
568             Operation (),
569             m_addr (addr),
570             m_buff (buff),
571             m_size (size),
572             m_result (result)
573             {
574             }
575 
576         void Execute (NativeProcessLinux *process) override;
577 
578     private:
579         lldb::addr_t m_addr;
580         const void *m_buff;
581         lldb::addr_t m_size;
582         lldb::addr_t &m_result;
583     };
584 
585     void
586     WriteOperation::Execute(NativeProcessLinux *process)
587     {
588         m_result = DoWriteMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
589     }
590 
591     //------------------------------------------------------------------------------
592     /// @class ReadRegOperation
593     /// @brief Implements NativeProcessLinux::ReadRegisterValue.
594     class ReadRegOperation : public Operation
595     {
596     public:
597         ReadRegOperation(lldb::tid_t tid, uint32_t offset, const char *reg_name,
598                 RegisterValue &value)
599             : m_tid(tid),
600               m_offset(static_cast<uintptr_t> (offset)),
601               m_reg_name(reg_name),
602               m_value(value)
603             { }
604 
605         void Execute(NativeProcessLinux *monitor) override;
606 
607     private:
608         lldb::tid_t m_tid;
609         uintptr_t m_offset;
610         const char *m_reg_name;
611         RegisterValue &m_value;
612     };
613 
614     void
615     ReadRegOperation::Execute(NativeProcessLinux *monitor)
616     {
617 #if defined (__arm64__) || defined (__aarch64__)
618         if (m_offset > sizeof(struct user_pt_regs))
619         {
620             uintptr_t offset = m_offset - sizeof(struct user_pt_regs);
621             if (offset > sizeof(struct user_fpsimd_state))
622             {
623                 m_error.SetErrorString("invalid offset value");
624                 return;
625             }
626             elf_fpregset_t regs;
627             int regset = NT_FPREGSET;
628             struct iovec ioVec;
629 
630             ioVec.iov_base = &regs;
631             ioVec.iov_len = sizeof regs;
632             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
633             if (m_error.Success())
634             {
635                 ArchSpec arch;
636                 if (monitor->GetArchitecture(arch))
637                     m_value.SetBytes((void *)(((unsigned char *)(&regs)) + offset), 16, arch.GetByteOrder());
638                 else
639                     m_error.SetErrorString("failed to get architecture");
640             }
641         }
642         else
643         {
644             elf_gregset_t regs;
645             int regset = NT_PRSTATUS;
646             struct iovec ioVec;
647 
648             ioVec.iov_base = &regs;
649             ioVec.iov_len = sizeof regs;
650             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
651             if (m_error.Success())
652             {
653                 ArchSpec arch;
654                 if (monitor->GetArchitecture(arch))
655                     m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, arch.GetByteOrder());
656                 else
657                     m_error.SetErrorString("failed to get architecture");
658             }
659         }
660 #elif defined (__mips__)
661         elf_gregset_t regs;
662         PTRACE(PTRACE_GETREGS, m_tid, NULL, &regs, sizeof regs, m_error);
663         if (m_error.Success())
664         {
665             lldb_private::ArchSpec arch;
666             if (monitor->GetArchitecture(arch))
667                 m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, arch.GetByteOrder());
668             else
669                 m_error.SetErrorString("failed to get architecture");
670         }
671 #else
672         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS));
673 
674         lldb::addr_t data = static_cast<unsigned long>(PTRACE(PTRACE_PEEKUSER, m_tid, (void*)m_offset, nullptr, 0, m_error));
675         if (m_error.Success())
676             m_value = data;
677 
678         if (log)
679             log->Printf ("NativeProcessLinux::%s() reg %s: 0x%" PRIx64, __FUNCTION__,
680                     m_reg_name, data);
681 #endif
682     }
683 
684     //------------------------------------------------------------------------------
685     /// @class WriteRegOperation
686     /// @brief Implements NativeProcessLinux::WriteRegisterValue.
687     class WriteRegOperation : public Operation
688     {
689     public:
690         WriteRegOperation(lldb::tid_t tid, unsigned offset, const char *reg_name,
691                 const RegisterValue &value)
692             : m_tid(tid),
693               m_offset(offset),
694               m_reg_name(reg_name),
695               m_value(value)
696             { }
697 
698         void Execute(NativeProcessLinux *monitor) override;
699 
700     private:
701         lldb::tid_t m_tid;
702         uintptr_t m_offset;
703         const char *m_reg_name;
704         const RegisterValue &m_value;
705     };
706 
707     void
708     WriteRegOperation::Execute(NativeProcessLinux *monitor)
709     {
710 #if defined (__arm64__) || defined (__aarch64__)
711         if (m_offset > sizeof(struct user_pt_regs))
712         {
713             uintptr_t offset = m_offset - sizeof(struct user_pt_regs);
714             if (offset > sizeof(struct user_fpsimd_state))
715             {
716                 m_error.SetErrorString("invalid offset value");
717                 return;
718             }
719             elf_fpregset_t regs;
720             int regset = NT_FPREGSET;
721             struct iovec ioVec;
722 
723             ioVec.iov_base = &regs;
724             ioVec.iov_len = sizeof regs;
725             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
726             if (m_error.Success())
727             {
728                 ::memcpy((void *)(((unsigned char *)(&regs)) + offset), m_value.GetBytes(), 16);
729                 PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
730             }
731         }
732         else
733         {
734             elf_gregset_t regs;
735             int regset = NT_PRSTATUS;
736             struct iovec ioVec;
737 
738             ioVec.iov_base = &regs;
739             ioVec.iov_len = sizeof regs;
740             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
741             if (m_error.Success())
742             {
743                 ::memcpy((void *)(((unsigned char *)(&regs)) + m_offset), m_value.GetBytes(), 8);
744                 PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
745             }
746         }
747 #elif defined (__mips__)
748         elf_gregset_t regs;
749         PTRACE(PTRACE_GETREGS, m_tid, NULL, &regs, sizeof regs, m_error);
750         if (m_error.Success())
751         {
752             ::memcpy((void *)(((unsigned char *)(&regs)) + m_offset), m_value.GetBytes(), 8);
753             PTRACE(PTRACE_SETREGS, m_tid, NULL, &regs, sizeof regs, m_error);
754         }
755 #else
756         void* buf;
757         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS));
758 
759         buf = (void*) m_value.GetAsUInt64();
760 
761         if (log)
762             log->Printf ("NativeProcessLinux::%s() reg %s: %p", __FUNCTION__, m_reg_name, buf);
763         PTRACE(PTRACE_POKEUSER, m_tid, (void*)m_offset, buf, 0, m_error);
764 #endif
765     }
766 
767     //------------------------------------------------------------------------------
768     /// @class ReadGPROperation
769     /// @brief Implements NativeProcessLinux::ReadGPR.
770     class ReadGPROperation : public Operation
771     {
772     public:
773         ReadGPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
774             : m_tid(tid), m_buf(buf), m_buf_size(buf_size)
775             { }
776 
777         void Execute(NativeProcessLinux *monitor) override;
778 
779     private:
780         lldb::tid_t m_tid;
781         void *m_buf;
782         size_t m_buf_size;
783     };
784 
785     void
786     ReadGPROperation::Execute(NativeProcessLinux *monitor)
787     {
788 #if defined (__arm64__) || defined (__aarch64__)
789         int regset = NT_PRSTATUS;
790         struct iovec ioVec;
791 
792         ioVec.iov_base = m_buf;
793         ioVec.iov_len = m_buf_size;
794         PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
795 #else
796         PTRACE(PTRACE_GETREGS, m_tid, nullptr, m_buf, m_buf_size, m_error);
797 #endif
798     }
799 
800     //------------------------------------------------------------------------------
801     /// @class ReadFPROperation
802     /// @brief Implements NativeProcessLinux::ReadFPR.
803     class ReadFPROperation : public Operation
804     {
805     public:
806         ReadFPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
807             : m_tid(tid),
808               m_buf(buf),
809               m_buf_size(buf_size)
810             { }
811 
812         void Execute(NativeProcessLinux *monitor) override;
813 
814     private:
815         lldb::tid_t m_tid;
816         void *m_buf;
817         size_t m_buf_size;
818     };
819 
820     void
821     ReadFPROperation::Execute(NativeProcessLinux *monitor)
822     {
823 #if defined (__arm64__) || defined (__aarch64__)
824         int regset = NT_FPREGSET;
825         struct iovec ioVec;
826 
827         ioVec.iov_base = m_buf;
828         ioVec.iov_len = m_buf_size;
829         PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
830 #else
831         PTRACE(PTRACE_GETFPREGS, m_tid, nullptr, m_buf, m_buf_size, m_error);
832 #endif
833     }
834 
835     //------------------------------------------------------------------------------
836     /// @class ReadRegisterSetOperation
837     /// @brief Implements NativeProcessLinux::ReadRegisterSet.
838     class ReadRegisterSetOperation : public Operation
839     {
840     public:
841         ReadRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
842             : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset)
843             { }
844 
845         void Execute(NativeProcessLinux *monitor) override;
846 
847     private:
848         lldb::tid_t m_tid;
849         void *m_buf;
850         size_t m_buf_size;
851         const unsigned int m_regset;
852     };
853 
854     void
855     ReadRegisterSetOperation::Execute(NativeProcessLinux *monitor)
856     {
857         PTRACE(PTRACE_GETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error);
858     }
859 
860     //------------------------------------------------------------------------------
861     /// @class WriteGPROperation
862     /// @brief Implements NativeProcessLinux::WriteGPR.
863     class WriteGPROperation : public Operation
864     {
865     public:
866         WriteGPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
867             : m_tid(tid), m_buf(buf), m_buf_size(buf_size)
868             { }
869 
870         void Execute(NativeProcessLinux *monitor) override;
871 
872     private:
873         lldb::tid_t m_tid;
874         void *m_buf;
875         size_t m_buf_size;
876     };
877 
878     void
879     WriteGPROperation::Execute(NativeProcessLinux *monitor)
880     {
881 #if defined (__arm64__) || defined (__aarch64__)
882         int regset = NT_PRSTATUS;
883         struct iovec ioVec;
884 
885         ioVec.iov_base = m_buf;
886         ioVec.iov_len = m_buf_size;
887         PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
888 #else
889         PTRACE(PTRACE_SETREGS, m_tid, NULL, m_buf, m_buf_size, m_error);
890 #endif
891     }
892 
893     //------------------------------------------------------------------------------
894     /// @class WriteFPROperation
895     /// @brief Implements NativeProcessLinux::WriteFPR.
896     class WriteFPROperation : public Operation
897     {
898     public:
899         WriteFPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
900             : m_tid(tid), m_buf(buf), m_buf_size(buf_size)
901             { }
902 
903         void Execute(NativeProcessLinux *monitor) override;
904 
905     private:
906         lldb::tid_t m_tid;
907         void *m_buf;
908         size_t m_buf_size;
909     };
910 
911     void
912     WriteFPROperation::Execute(NativeProcessLinux *monitor)
913     {
914 #if defined (__arm64__) || defined (__aarch64__)
915         int regset = NT_FPREGSET;
916         struct iovec ioVec;
917 
918         ioVec.iov_base = m_buf;
919         ioVec.iov_len = m_buf_size;
920         PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
921 #else
922         PTRACE(PTRACE_SETFPREGS, m_tid, NULL, m_buf, m_buf_size, m_error);
923 #endif
924     }
925 
926     //------------------------------------------------------------------------------
927     /// @class WriteRegisterSetOperation
928     /// @brief Implements NativeProcessLinux::WriteRegisterSet.
929     class WriteRegisterSetOperation : public Operation
930     {
931     public:
932         WriteRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
933             : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset)
934             { }
935 
936         void Execute(NativeProcessLinux *monitor) override;
937 
938     private:
939         lldb::tid_t m_tid;
940         void *m_buf;
941         size_t m_buf_size;
942         const unsigned int m_regset;
943     };
944 
945     void
946     WriteRegisterSetOperation::Execute(NativeProcessLinux *monitor)
947     {
948         PTRACE(PTRACE_SETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error);
949     }
950 
951     //------------------------------------------------------------------------------
952     /// @class ResumeOperation
953     /// @brief Implements NativeProcessLinux::Resume.
954     class ResumeOperation : public Operation
955     {
956     public:
957         ResumeOperation(lldb::tid_t tid, uint32_t signo) :
958             m_tid(tid), m_signo(signo) { }
959 
960         void Execute(NativeProcessLinux *monitor) override;
961 
962     private:
963         lldb::tid_t m_tid;
964         uint32_t m_signo;
965     };
966 
967     void
968     ResumeOperation::Execute(NativeProcessLinux *monitor)
969     {
970         intptr_t data = 0;
971 
972         if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
973             data = m_signo;
974 
975         PTRACE(PTRACE_CONT, m_tid, nullptr, (void*)data, 0, m_error);
976         if (m_error.Fail())
977         {
978             Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
979 
980             if (log)
981                 log->Printf ("ResumeOperation (%"  PRIu64 ") failed: %s", m_tid, m_error.AsCString());
982         }
983     }
984 
985     //------------------------------------------------------------------------------
986     /// @class SingleStepOperation
987     /// @brief Implements NativeProcessLinux::SingleStep.
988     class SingleStepOperation : public Operation
989     {
990     public:
991         SingleStepOperation(lldb::tid_t tid, uint32_t signo)
992             : m_tid(tid), m_signo(signo) { }
993 
994         void Execute(NativeProcessLinux *monitor) override;
995 
996     private:
997         lldb::tid_t m_tid;
998         uint32_t m_signo;
999     };
1000 
1001     void
1002     SingleStepOperation::Execute(NativeProcessLinux *monitor)
1003     {
1004         intptr_t data = 0;
1005 
1006         if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
1007             data = m_signo;
1008 
1009         PTRACE(PTRACE_SINGLESTEP, m_tid, nullptr, (void*)data, 0, m_error);
1010     }
1011 
1012     //------------------------------------------------------------------------------
1013     /// @class SiginfoOperation
1014     /// @brief Implements NativeProcessLinux::GetSignalInfo.
1015     class SiginfoOperation : public Operation
1016     {
1017     public:
1018         SiginfoOperation(lldb::tid_t tid, void *info)
1019             : m_tid(tid), m_info(info) { }
1020 
1021         void Execute(NativeProcessLinux *monitor) override;
1022 
1023     private:
1024         lldb::tid_t m_tid;
1025         void *m_info;
1026     };
1027 
1028     void
1029     SiginfoOperation::Execute(NativeProcessLinux *monitor)
1030     {
1031         PTRACE(PTRACE_GETSIGINFO, m_tid, nullptr, m_info, 0, m_error);
1032     }
1033 
1034     //------------------------------------------------------------------------------
1035     /// @class EventMessageOperation
1036     /// @brief Implements NativeProcessLinux::GetEventMessage.
1037     class EventMessageOperation : public Operation
1038     {
1039     public:
1040         EventMessageOperation(lldb::tid_t tid, unsigned long *message)
1041             : m_tid(tid), m_message(message) { }
1042 
1043         void Execute(NativeProcessLinux *monitor) override;
1044 
1045     private:
1046         lldb::tid_t m_tid;
1047         unsigned long *m_message;
1048     };
1049 
1050     void
1051     EventMessageOperation::Execute(NativeProcessLinux *monitor)
1052     {
1053         PTRACE(PTRACE_GETEVENTMSG, m_tid, nullptr, m_message, 0, m_error);
1054     }
1055 
1056     class DetachOperation : public Operation
1057     {
1058     public:
1059         DetachOperation(lldb::tid_t tid) : m_tid(tid) { }
1060 
1061         void Execute(NativeProcessLinux *monitor) override;
1062 
1063     private:
1064         lldb::tid_t m_tid;
1065     };
1066 
1067     void
1068     DetachOperation::Execute(NativeProcessLinux *monitor)
1069     {
1070         PTRACE(PTRACE_DETACH, m_tid, nullptr, 0, 0, m_error);
1071     }
1072 
1073 } // end of anonymous namespace
1074 
1075 // Simple helper function to ensure flags are enabled on the given file
1076 // descriptor.
1077 static Error
1078 EnsureFDFlags(int fd, int flags)
1079 {
1080     Error error;
1081 
1082     int status = fcntl(fd, F_GETFL);
1083     if (status == -1)
1084     {
1085         error.SetErrorToErrno();
1086         return error;
1087     }
1088 
1089     if (fcntl(fd, F_SETFL, status | flags) == -1)
1090     {
1091         error.SetErrorToErrno();
1092         return error;
1093     }
1094 
1095     return error;
1096 }
1097 
1098 // This class encapsulates the privileged thread which performs all ptrace and wait operations on
1099 // the inferior. The thread consists of a main loop which waits for events and processes them
1100 //   - SIGCHLD (delivered over a signalfd file descriptor): These signals notify us of events in
1101 //     the inferior process. Upon receiving this signal we do a waitpid to get more information
1102 //     and dispatch to NativeProcessLinux::MonitorCallback.
1103 //   - requests for ptrace operations: These initiated via the DoOperation method, which funnels
1104 //     them to the Monitor thread via m_operation member. The Monitor thread is signaled over a
1105 //     pipe, and the completion of the operation is signalled over the semaphore.
1106 //   - thread exit event: this is signaled from the Monitor destructor by closing the write end
1107 //     of the command pipe.
1108 class NativeProcessLinux::Monitor {
1109 private:
1110     // The initial monitor operation (launch or attach). It returns a inferior process id.
1111     std::unique_ptr<InitialOperation> m_initial_operation_up;
1112 
1113     ::pid_t                           m_child_pid = -1;
1114     NativeProcessLinux              * m_native_process;
1115 
1116     enum { READ, WRITE };
1117     int        m_pipefd[2] = {-1, -1};
1118     int        m_signal_fd = -1;
1119     HostThread m_thread;
1120 
1121     // current operation which must be executed on the priviliged thread
1122     Mutex      m_operation_mutex;
1123     Operation *m_operation = nullptr;
1124     sem_t      m_operation_sem;
1125     Error      m_operation_error;
1126 
1127     static constexpr char operation_command = 'o';
1128 
1129     void
1130     HandleSignals();
1131 
1132     void
1133     HandleWait();
1134 
1135     // Returns true if the thread should exit.
1136     bool
1137     HandleCommands();
1138 
1139     void
1140     MainLoop();
1141 
1142     static void *
1143     RunMonitor(void *arg);
1144 
1145     Error
1146     WaitForOperation();
1147 public:
1148     Monitor(const InitialOperation &initial_operation,
1149             NativeProcessLinux *native_process)
1150         : m_initial_operation_up(new InitialOperation(initial_operation)),
1151           m_native_process(native_process)
1152     {
1153         sem_init(&m_operation_sem, 0, 0);
1154     }
1155 
1156     ~Monitor();
1157 
1158     Error
1159     Initialize();
1160 
1161     void
1162     DoOperation(Operation *op);
1163 };
1164 constexpr char NativeProcessLinux::Monitor::operation_command;
1165 
1166 Error
1167 NativeProcessLinux::Monitor::Initialize()
1168 {
1169     Error error;
1170 
1171     // We get a SIGCHLD every time something interesting happens with the inferior. We shall be
1172     // listening for these signals over a signalfd file descriptors. This allows us to wait for
1173     // multiple kinds of events with select.
1174     sigset_t signals;
1175     sigemptyset(&signals);
1176     sigaddset(&signals, SIGCHLD);
1177     m_signal_fd = signalfd(-1, &signals, SFD_NONBLOCK | SFD_CLOEXEC);
1178     if (m_signal_fd < 0)
1179     {
1180         return Error("NativeProcessLinux::Monitor::%s failed due to signalfd failure. Monitoring the inferior will be impossible: %s",
1181                     __FUNCTION__, strerror(errno));
1182 
1183     }
1184 
1185     if (pipe2(m_pipefd, O_CLOEXEC) == -1)
1186     {
1187         error.SetErrorToErrno();
1188         return error;
1189     }
1190 
1191     if ((error = EnsureFDFlags(m_pipefd[READ], O_NONBLOCK)).Fail()) {
1192         return error;
1193     }
1194 
1195     static const char g_thread_name[] = "lldb.process.nativelinux.monitor";
1196     m_thread = ThreadLauncher::LaunchThread(g_thread_name, Monitor::RunMonitor, this, nullptr);
1197     if (!m_thread.IsJoinable())
1198         return Error("Failed to create monitor thread for NativeProcessLinux.");
1199 
1200     // Wait for initial operation to complete.
1201     return WaitForOperation();
1202 }
1203 
1204 void
1205 NativeProcessLinux::Monitor::DoOperation(Operation *op)
1206 {
1207     if (m_thread.EqualsThread(pthread_self())) {
1208         // If we're on the Monitor thread, we can simply execute the operation.
1209         op->Execute(m_native_process);
1210         return;
1211     }
1212 
1213     // Otherwise we need to pass the operation to the Monitor thread so it can handle it.
1214     Mutex::Locker lock(m_operation_mutex);
1215 
1216     m_operation = op;
1217 
1218     // notify the thread that an operation is ready to be processed
1219     write(m_pipefd[WRITE], &operation_command, sizeof operation_command);
1220 
1221     WaitForOperation();
1222 }
1223 
1224 NativeProcessLinux::Monitor::~Monitor()
1225 {
1226     if (m_pipefd[WRITE] >= 0)
1227         close(m_pipefd[WRITE]);
1228     if (m_thread.IsJoinable())
1229         m_thread.Join(nullptr);
1230     if (m_pipefd[READ] >= 0)
1231         close(m_pipefd[READ]);
1232     if (m_signal_fd >= 0)
1233         close(m_signal_fd);
1234     sem_destroy(&m_operation_sem);
1235 }
1236 
1237 void
1238 NativeProcessLinux::Monitor::HandleSignals()
1239 {
1240     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1241 
1242     // We don't really care about the content of the SIGCHLD siginfo structure, as we will get
1243     // all the information from waitpid(). We just need to read all the signals so that we can
1244     // sleep next time we reach select().
1245     while (true)
1246     {
1247         signalfd_siginfo info;
1248         ssize_t size = read(m_signal_fd, &info, sizeof info);
1249         if (size == -1)
1250         {
1251             if (errno == EAGAIN || errno == EWOULDBLOCK)
1252                 break; // We are done.
1253             if (errno == EINTR)
1254                 continue;
1255             if (log)
1256                 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor failed: %s",
1257                         __FUNCTION__, strerror(errno));
1258             break;
1259         }
1260         if (size != sizeof info)
1261         {
1262             // We got incomplete information structure. This should not happen, let's just log
1263             // that.
1264             if (log)
1265                 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor returned incomplete data: "
1266                         "structure size is %zd, read returned %zd bytes",
1267                         __FUNCTION__, sizeof info, size);
1268             break;
1269         }
1270         if (log)
1271             log->Printf("NativeProcessLinux::Monitor::%s received signal %s(%d).", __FUNCTION__,
1272                 Host::GetSignalAsCString(info.ssi_signo), info.ssi_signo);
1273     }
1274 }
1275 
1276 void
1277 NativeProcessLinux::Monitor::HandleWait()
1278 {
1279     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1280     // Process all pending waitpid notifications.
1281     while (true)
1282     {
1283         int status = -1;
1284         ::pid_t wait_pid = waitpid(m_child_pid, &status, __WALL | WNOHANG);
1285 
1286         if (wait_pid == 0)
1287             break; // We are done.
1288 
1289         if (wait_pid == -1)
1290         {
1291             if (errno == EINTR)
1292                 continue;
1293 
1294             if (log)
1295               log->Printf("NativeProcessLinux::Monitor::%s waitpid (pid = %" PRIi32 ", &status, __WALL | WNOHANG) failed: %s",
1296                       __FUNCTION__, m_child_pid, strerror(errno));
1297             break;
1298         }
1299 
1300         bool exited = false;
1301         int signal = 0;
1302         int exit_status = 0;
1303         const char *status_cstr = NULL;
1304         if (WIFSTOPPED(status))
1305         {
1306             signal = WSTOPSIG(status);
1307             status_cstr = "STOPPED";
1308         }
1309         else if (WIFEXITED(status))
1310         {
1311             exit_status = WEXITSTATUS(status);
1312             status_cstr = "EXITED";
1313             exited = true;
1314         }
1315         else if (WIFSIGNALED(status))
1316         {
1317             signal = WTERMSIG(status);
1318             status_cstr = "SIGNALED";
1319             if (wait_pid == abs(m_child_pid)) {
1320                 exited = true;
1321                 exit_status = -1;
1322             }
1323         }
1324         else
1325             status_cstr = "(\?\?\?)";
1326 
1327         if (log)
1328             log->Printf("NativeProcessLinux::Monitor::%s: waitpid (pid = %" PRIi32 ", &status, __WALL | WNOHANG)"
1329                 "=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i",
1330                 __FUNCTION__, m_child_pid, wait_pid, status, status_cstr, signal, exit_status);
1331 
1332         m_native_process->MonitorCallback (wait_pid, exited, signal, exit_status);
1333     }
1334 }
1335 
1336 bool
1337 NativeProcessLinux::Monitor::HandleCommands()
1338 {
1339     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1340 
1341     while (true)
1342     {
1343         char command = 0;
1344         ssize_t size = read(m_pipefd[READ], &command, sizeof command);
1345         if (size == -1)
1346         {
1347             if (errno == EAGAIN || errno == EWOULDBLOCK)
1348                 return false;
1349             if (errno == EINTR)
1350                 continue;
1351             if (log)
1352                 log->Printf("NativeProcessLinux::Monitor::%s exiting because read from command file descriptor failed: %s", __FUNCTION__, strerror(errno));
1353             return true;
1354         }
1355         if (size == 0) // end of file - write end closed
1356         {
1357             if (log)
1358                 log->Printf("NativeProcessLinux::Monitor::%s exit command received, exiting...", __FUNCTION__);
1359             return true; // We are done.
1360         }
1361 
1362         switch (command)
1363         {
1364         case operation_command:
1365             m_operation->Execute(m_native_process);
1366 
1367             // notify calling thread that operation is complete
1368             sem_post(&m_operation_sem);
1369             break;
1370         default:
1371             if (log)
1372                 log->Printf("NativeProcessLinux::Monitor::%s received unknown command '%c'",
1373                         __FUNCTION__, command);
1374         }
1375     }
1376 }
1377 
1378 void
1379 NativeProcessLinux::Monitor::MainLoop()
1380 {
1381     ::pid_t child_pid = (*m_initial_operation_up)(m_operation_error);
1382     m_initial_operation_up.reset();
1383     m_child_pid = -getpgid(child_pid),
1384     sem_post(&m_operation_sem);
1385 
1386     while (true)
1387     {
1388         fd_set fds;
1389         FD_ZERO(&fds);
1390         FD_SET(m_signal_fd, &fds);
1391         FD_SET(m_pipefd[READ], &fds);
1392 
1393         int max_fd = std::max(m_signal_fd, m_pipefd[READ]) + 1;
1394         int r = select(max_fd, &fds, nullptr, nullptr, nullptr);
1395         if (r < 0)
1396         {
1397             Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1398             if (log)
1399                 log->Printf("NativeProcessLinux::Monitor::%s exiting because select failed: %s",
1400                         __FUNCTION__, strerror(errno));
1401             return;
1402         }
1403 
1404         if (FD_ISSET(m_pipefd[READ], &fds))
1405         {
1406             if (HandleCommands())
1407                 return;
1408         }
1409 
1410         if (FD_ISSET(m_signal_fd, &fds))
1411         {
1412             HandleSignals();
1413             HandleWait();
1414         }
1415     }
1416 }
1417 
1418 Error
1419 NativeProcessLinux::Monitor::WaitForOperation()
1420 {
1421     Error error;
1422     while (sem_wait(&m_operation_sem) != 0)
1423     {
1424         if (errno == EINTR)
1425             continue;
1426 
1427         error.SetErrorToErrno();
1428         return error;
1429     }
1430 
1431     return m_operation_error;
1432 }
1433 
1434 void *
1435 NativeProcessLinux::Monitor::RunMonitor(void *arg)
1436 {
1437     static_cast<Monitor *>(arg)->MainLoop();
1438     return nullptr;
1439 }
1440 
1441 
1442 NativeProcessLinux::LaunchArgs::LaunchArgs(Module *module,
1443                                        char const **argv,
1444                                        char const **envp,
1445                                        const std::string &stdin_path,
1446                                        const std::string &stdout_path,
1447                                        const std::string &stderr_path,
1448                                        const char *working_dir,
1449                                        const ProcessLaunchInfo &launch_info)
1450     : m_module(module),
1451       m_argv(argv),
1452       m_envp(envp),
1453       m_stdin_path(stdin_path),
1454       m_stdout_path(stdout_path),
1455       m_stderr_path(stderr_path),
1456       m_working_dir(working_dir),
1457       m_launch_info(launch_info)
1458 {
1459 }
1460 
1461 NativeProcessLinux::LaunchArgs::~LaunchArgs()
1462 { }
1463 
1464 // -----------------------------------------------------------------------------
1465 // Public Static Methods
1466 // -----------------------------------------------------------------------------
1467 
1468 Error
1469 NativeProcessLinux::LaunchProcess (
1470     Module *exe_module,
1471     ProcessLaunchInfo &launch_info,
1472     NativeProcessProtocol::NativeDelegate &native_delegate,
1473     NativeProcessProtocolSP &native_process_sp)
1474 {
1475     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1476 
1477     Error error;
1478 
1479     // Verify the working directory is valid if one was specified.
1480     const char* working_dir = launch_info.GetWorkingDirectory ();
1481     if (working_dir)
1482     {
1483       FileSpec working_dir_fs (working_dir, true);
1484       if (!working_dir_fs || working_dir_fs.GetFileType () != FileSpec::eFileTypeDirectory)
1485       {
1486           error.SetErrorStringWithFormat ("No such file or directory: %s", working_dir);
1487           return error;
1488       }
1489     }
1490 
1491     const FileAction *file_action;
1492 
1493     // Default of NULL will mean to use existing open file descriptors.
1494     std::string stdin_path;
1495     std::string stdout_path;
1496     std::string stderr_path;
1497 
1498     file_action = launch_info.GetFileActionForFD (STDIN_FILENO);
1499     if (file_action)
1500         stdin_path = file_action->GetPath ();
1501 
1502     file_action = launch_info.GetFileActionForFD (STDOUT_FILENO);
1503     if (file_action)
1504         stdout_path = file_action->GetPath ();
1505 
1506     file_action = launch_info.GetFileActionForFD (STDERR_FILENO);
1507     if (file_action)
1508         stderr_path = file_action->GetPath ();
1509 
1510     if (log)
1511     {
1512         if (!stdin_path.empty ())
1513             log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'", __FUNCTION__, stdin_path.c_str ());
1514         else
1515             log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__);
1516 
1517         if (!stdout_path.empty ())
1518             log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'", __FUNCTION__, stdout_path.c_str ());
1519         else
1520             log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__);
1521 
1522         if (!stderr_path.empty ())
1523             log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'", __FUNCTION__, stderr_path.c_str ());
1524         else
1525             log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__);
1526     }
1527 
1528     // Create the NativeProcessLinux in launch mode.
1529     native_process_sp.reset (new NativeProcessLinux ());
1530 
1531     if (log)
1532     {
1533         int i = 0;
1534         for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i)
1535         {
1536             log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr");
1537             ++i;
1538         }
1539     }
1540 
1541     if (!native_process_sp->RegisterNativeDelegate (native_delegate))
1542     {
1543         native_process_sp.reset ();
1544         error.SetErrorStringWithFormat ("failed to register the native delegate");
1545         return error;
1546     }
1547 
1548     std::static_pointer_cast<NativeProcessLinux> (native_process_sp)->LaunchInferior (
1549             exe_module,
1550             launch_info.GetArguments ().GetConstArgumentVector (),
1551             launch_info.GetEnvironmentEntries ().GetConstArgumentVector (),
1552             stdin_path,
1553             stdout_path,
1554             stderr_path,
1555             working_dir,
1556             launch_info,
1557             error);
1558 
1559     if (error.Fail ())
1560     {
1561         native_process_sp.reset ();
1562         if (log)
1563             log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ());
1564         return error;
1565     }
1566 
1567     launch_info.SetProcessID (native_process_sp->GetID ());
1568 
1569     return error;
1570 }
1571 
1572 Error
1573 NativeProcessLinux::AttachToProcess (
1574     lldb::pid_t pid,
1575     NativeProcessProtocol::NativeDelegate &native_delegate,
1576     NativeProcessProtocolSP &native_process_sp)
1577 {
1578     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1579     if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE))
1580         log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid);
1581 
1582     // Grab the current platform architecture.  This should be Linux,
1583     // since this code is only intended to run on a Linux host.
1584     PlatformSP platform_sp (Platform::GetHostPlatform ());
1585     if (!platform_sp)
1586         return Error("failed to get a valid default platform");
1587 
1588     // Retrieve the architecture for the running process.
1589     ArchSpec process_arch;
1590     Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch);
1591     if (!error.Success ())
1592         return error;
1593 
1594     std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ());
1595 
1596     if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate))
1597     {
1598         error.SetErrorStringWithFormat ("failed to register the native delegate");
1599         return error;
1600     }
1601 
1602     native_process_linux_sp->AttachToInferior (pid, error);
1603     if (!error.Success ())
1604         return error;
1605 
1606     native_process_sp = native_process_linux_sp;
1607     return error;
1608 }
1609 
1610 // -----------------------------------------------------------------------------
1611 // Public Instance Methods
1612 // -----------------------------------------------------------------------------
1613 
1614 NativeProcessLinux::NativeProcessLinux () :
1615     NativeProcessProtocol (LLDB_INVALID_PROCESS_ID),
1616     m_arch (),
1617     m_supports_mem_region (eLazyBoolCalculate),
1618     m_mem_region_cache (),
1619     m_mem_region_cache_mutex (),
1620     m_coordinator_up (new ThreadStateCoordinator (GetThreadLoggerFunction ())),
1621     m_coordinator_thread ()
1622 {
1623 }
1624 
1625 //------------------------------------------------------------------------------
1626 // NativeProcessLinux spawns a new thread which performs all operations on the inferior process.
1627 // Refer to Monitor and Operation classes to see why this is necessary.
1628 //------------------------------------------------------------------------------
1629 void
1630 NativeProcessLinux::LaunchInferior (
1631     Module *module,
1632     const char *argv[],
1633     const char *envp[],
1634     const std::string &stdin_path,
1635     const std::string &stdout_path,
1636     const std::string &stderr_path,
1637     const char *working_dir,
1638     const ProcessLaunchInfo &launch_info,
1639     Error &error)
1640 {
1641     if (module)
1642         m_arch = module->GetArchitecture ();
1643 
1644     SetState (eStateLaunching);
1645 
1646     std::unique_ptr<LaunchArgs> args(
1647         new LaunchArgs(
1648             module, argv, envp,
1649             stdin_path, stdout_path, stderr_path,
1650             working_dir, launch_info));
1651 
1652     StartMonitorThread ([&] (Error &e) { return Launch(args.get(), e); }, error);
1653     if (!error.Success ())
1654         return;
1655 
1656     error = StartCoordinatorThread ();
1657     if (!error.Success ())
1658         return;
1659 }
1660 
1661 void
1662 NativeProcessLinux::AttachToInferior (lldb::pid_t pid, Error &error)
1663 {
1664     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1665     if (log)
1666         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid);
1667 
1668     // We can use the Host for everything except the ResolveExecutable portion.
1669     PlatformSP platform_sp = Platform::GetHostPlatform ();
1670     if (!platform_sp)
1671     {
1672         if (log)
1673             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid);
1674         error.SetErrorString ("no default platform available");
1675         return;
1676     }
1677 
1678     // Gather info about the process.
1679     ProcessInstanceInfo process_info;
1680     if (!platform_sp->GetProcessInfo (pid, process_info))
1681     {
1682         if (log)
1683             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid);
1684         error.SetErrorString ("failed to get process info");
1685         return;
1686     }
1687 
1688     // Resolve the executable module
1689     ModuleSP exe_module_sp;
1690     FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths());
1691     ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
1692     error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp,
1693                                            executable_search_paths.GetSize() ? &executable_search_paths : NULL);
1694     if (!error.Success())
1695         return;
1696 
1697     // Set the architecture to the exe architecture.
1698     m_arch = exe_module_sp->GetArchitecture();
1699     if (log)
1700         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ());
1701 
1702     m_pid = pid;
1703     SetState(eStateAttaching);
1704 
1705     StartMonitorThread ([=] (Error &e) { return Attach(pid, e); }, error);
1706     if (!error.Success ())
1707         return;
1708 
1709     error = StartCoordinatorThread ();
1710     if (!error.Success ())
1711         return;
1712 }
1713 
1714 void
1715 NativeProcessLinux::Terminate ()
1716 {
1717     StopMonitor();
1718 }
1719 
1720 ::pid_t
1721 NativeProcessLinux::Launch(LaunchArgs *args, Error &error)
1722 {
1723     assert (args && "null args");
1724 
1725     const char **argv = args->m_argv;
1726     const char **envp = args->m_envp;
1727     const char *working_dir = args->m_working_dir;
1728 
1729     lldb_utility::PseudoTerminal terminal;
1730     const size_t err_len = 1024;
1731     char err_str[err_len];
1732     lldb::pid_t pid;
1733     NativeThreadProtocolSP thread_sp;
1734 
1735     lldb::ThreadSP inferior;
1736 
1737     // Propagate the environment if one is not supplied.
1738     if (envp == NULL || envp[0] == NULL)
1739         envp = const_cast<const char **>(environ);
1740 
1741     if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1))
1742     {
1743         error.SetErrorToGenericError();
1744         error.SetErrorStringWithFormat("Process fork failed: %s", err_str);
1745         return -1;
1746     }
1747 
1748     // Recognized child exit status codes.
1749     enum {
1750         ePtraceFailed = 1,
1751         eDupStdinFailed,
1752         eDupStdoutFailed,
1753         eDupStderrFailed,
1754         eChdirFailed,
1755         eExecFailed,
1756         eSetGidFailed
1757     };
1758 
1759     // Child process.
1760     if (pid == 0)
1761     {
1762         // FIXME consider opening a pipe between parent/child and have this forked child
1763         // send log info to parent re: launch status, in place of the log lines removed here.
1764 
1765         // Start tracing this child that is about to exec.
1766         PTRACE(PTRACE_TRACEME, 0, nullptr, nullptr, 0, error);
1767         if (error.Fail())
1768             exit(ePtraceFailed);
1769 
1770         // terminal has already dupped the tty descriptors to stdin/out/err.
1771         // This closes original fd from which they were copied (and avoids
1772         // leaking descriptors to the debugged process.
1773         terminal.CloseSlaveFileDescriptor();
1774 
1775         // Do not inherit setgid powers.
1776         if (setgid(getgid()) != 0)
1777             exit(eSetGidFailed);
1778 
1779         // Attempt to have our own process group.
1780         if (setpgid(0, 0) != 0)
1781         {
1782             // FIXME log that this failed. This is common.
1783             // Don't allow this to prevent an inferior exec.
1784         }
1785 
1786         // Dup file descriptors if needed.
1787         if (!args->m_stdin_path.empty ())
1788             if (!DupDescriptor(args->m_stdin_path.c_str (), STDIN_FILENO, O_RDONLY))
1789                 exit(eDupStdinFailed);
1790 
1791         if (!args->m_stdout_path.empty ())
1792             if (!DupDescriptor(args->m_stdout_path.c_str (), STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
1793                 exit(eDupStdoutFailed);
1794 
1795         if (!args->m_stderr_path.empty ())
1796             if (!DupDescriptor(args->m_stderr_path.c_str (), STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
1797                 exit(eDupStderrFailed);
1798 
1799         // Change working directory
1800         if (working_dir != NULL && working_dir[0])
1801           if (0 != ::chdir(working_dir))
1802               exit(eChdirFailed);
1803 
1804         // Disable ASLR if requested.
1805         if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR))
1806         {
1807             const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS);
1808             if (old_personality == -1)
1809             {
1810                 // Can't retrieve Linux personality.  Cannot disable ASLR.
1811             }
1812             else
1813             {
1814                 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality);
1815                 if (new_personality == -1)
1816                 {
1817                     // Disabling ASLR failed.
1818                 }
1819                 else
1820                 {
1821                     // Disabling ASLR succeeded.
1822                 }
1823             }
1824         }
1825 
1826         // Execute.  We should never return...
1827         execve(argv[0],
1828                const_cast<char *const *>(argv),
1829                const_cast<char *const *>(envp));
1830 
1831         // ...unless exec fails.  In which case we definitely need to end the child here.
1832         exit(eExecFailed);
1833     }
1834 
1835     //
1836     // This is the parent code here.
1837     //
1838     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1839 
1840     // Wait for the child process to trap on its call to execve.
1841     ::pid_t wpid;
1842     int status;
1843     if ((wpid = waitpid(pid, &status, 0)) < 0)
1844     {
1845         error.SetErrorToErrno();
1846         if (log)
1847             log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s",
1848                     __FUNCTION__, error.AsCString ());
1849 
1850         // Mark the inferior as invalid.
1851         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1852         SetState (StateType::eStateInvalid);
1853 
1854         return -1;
1855     }
1856     else if (WIFEXITED(status))
1857     {
1858         // open, dup or execve likely failed for some reason.
1859         error.SetErrorToGenericError();
1860         switch (WEXITSTATUS(status))
1861         {
1862             case ePtraceFailed:
1863                 error.SetErrorString("Child ptrace failed.");
1864                 break;
1865             case eDupStdinFailed:
1866                 error.SetErrorString("Child open stdin failed.");
1867                 break;
1868             case eDupStdoutFailed:
1869                 error.SetErrorString("Child open stdout failed.");
1870                 break;
1871             case eDupStderrFailed:
1872                 error.SetErrorString("Child open stderr failed.");
1873                 break;
1874             case eChdirFailed:
1875                 error.SetErrorString("Child failed to set working directory.");
1876                 break;
1877             case eExecFailed:
1878                 error.SetErrorString("Child exec failed.");
1879                 break;
1880             case eSetGidFailed:
1881                 error.SetErrorString("Child setgid failed.");
1882                 break;
1883             default:
1884                 error.SetErrorString("Child returned unknown exit status.");
1885                 break;
1886         }
1887 
1888         if (log)
1889         {
1890             log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP",
1891                     __FUNCTION__,
1892                     WEXITSTATUS(status));
1893         }
1894 
1895         // Mark the inferior as invalid.
1896         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1897         SetState (StateType::eStateInvalid);
1898 
1899         return -1;
1900     }
1901     assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) &&
1902            "Could not sync with inferior process.");
1903 
1904     if (log)
1905         log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__);
1906 
1907     error = SetDefaultPtraceOpts(pid);
1908     if (error.Fail())
1909     {
1910         if (log)
1911             log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s",
1912                     __FUNCTION__, error.AsCString ());
1913 
1914         // Mark the inferior as invalid.
1915         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1916         SetState (StateType::eStateInvalid);
1917 
1918         return -1;
1919     }
1920 
1921     // Release the master terminal descriptor and pass it off to the
1922     // NativeProcessLinux instance.  Similarly stash the inferior pid.
1923     m_terminal_fd = terminal.ReleaseMasterFileDescriptor();
1924     m_pid = pid;
1925 
1926     // Set the terminal fd to be in non blocking mode (it simplifies the
1927     // implementation of ProcessLinux::GetSTDOUT to have a non-blocking
1928     // descriptor to read from).
1929     error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
1930     if (error.Fail())
1931     {
1932         if (log)
1933             log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s",
1934                     __FUNCTION__, error.AsCString ());
1935 
1936         // Mark the inferior as invalid.
1937         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1938         SetState (StateType::eStateInvalid);
1939 
1940         return -1;
1941     }
1942 
1943     if (log)
1944         log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid);
1945 
1946     thread_sp = AddThread (pid);
1947     assert (thread_sp && "AddThread() returned a nullptr thread");
1948     NotifyThreadCreateStopped (pid);
1949     std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP);
1950 
1951     // Let our process instance know the thread has stopped.
1952     SetCurrentThreadID (thread_sp->GetID ());
1953     SetState (StateType::eStateStopped);
1954 
1955     if (log)
1956     {
1957         if (error.Success ())
1958         {
1959             log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__);
1960         }
1961         else
1962         {
1963             log->Printf ("NativeProcessLinux::%s inferior launching failed: %s",
1964                 __FUNCTION__, error.AsCString ());
1965             return -1;
1966         }
1967     }
1968     return pid;
1969 }
1970 
1971 ::pid_t
1972 NativeProcessLinux::Attach(lldb::pid_t pid, Error &error)
1973 {
1974     lldb::ThreadSP inferior;
1975     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1976 
1977     // Use a map to keep track of the threads which we have attached/need to attach.
1978     Host::TidMap tids_to_attach;
1979     if (pid <= 1)
1980     {
1981         error.SetErrorToGenericError();
1982         error.SetErrorString("Attaching to process 1 is not allowed.");
1983         return -1;
1984     }
1985 
1986     while (Host::FindProcessThreads(pid, tids_to_attach))
1987     {
1988         for (Host::TidMap::iterator it = tids_to_attach.begin();
1989              it != tids_to_attach.end();)
1990         {
1991             if (it->second == false)
1992             {
1993                 lldb::tid_t tid = it->first;
1994 
1995                 // Attach to the requested process.
1996                 // An attach will cause the thread to stop with a SIGSTOP.
1997                 PTRACE(PTRACE_ATTACH, tid, nullptr, nullptr, 0, error);
1998                 if (error.Fail())
1999                 {
2000                     // No such thread. The thread may have exited.
2001                     // More error handling may be needed.
2002                     if (error.GetError() == ESRCH)
2003                     {
2004                         it = tids_to_attach.erase(it);
2005                         continue;
2006                     }
2007                     else
2008                         return -1;
2009                 }
2010 
2011                 int status;
2012                 // Need to use __WALL otherwise we receive an error with errno=ECHLD
2013                 // At this point we should have a thread stopped if waitpid succeeds.
2014                 if ((status = waitpid(tid, NULL, __WALL)) < 0)
2015                 {
2016                     // No such thread. The thread may have exited.
2017                     // More error handling may be needed.
2018                     if (errno == ESRCH)
2019                     {
2020                         it = tids_to_attach.erase(it);
2021                         continue;
2022                     }
2023                     else
2024                     {
2025                         error.SetErrorToErrno();
2026                         return -1;
2027                     }
2028                 }
2029 
2030                 error = SetDefaultPtraceOpts(tid);
2031                 if (error.Fail())
2032                     return -1;
2033 
2034                 if (log)
2035                     log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid);
2036 
2037                 it->second = true;
2038 
2039                 // Create the thread, mark it as stopped.
2040                 NativeThreadProtocolSP thread_sp (AddThread (static_cast<lldb::tid_t> (tid)));
2041                 assert (thread_sp && "AddThread() returned a nullptr");
2042 
2043                 // This will notify this is a new thread and tell the system it is stopped.
2044                 NotifyThreadCreateStopped (tid);
2045                 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP);
2046                 SetCurrentThreadID (thread_sp->GetID ());
2047             }
2048 
2049             // move the loop forward
2050             ++it;
2051         }
2052     }
2053 
2054     if (tids_to_attach.size() > 0)
2055     {
2056         m_pid = pid;
2057         // Let our process instance know the thread has stopped.
2058         SetState (StateType::eStateStopped);
2059     }
2060     else
2061     {
2062         error.SetErrorToGenericError();
2063         error.SetErrorString("No such process.");
2064         return -1;
2065     }
2066 
2067     return pid;
2068 }
2069 
2070 Error
2071 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid)
2072 {
2073     long ptrace_opts = 0;
2074 
2075     // Have the child raise an event on exit.  This is used to keep the child in
2076     // limbo until it is destroyed.
2077     ptrace_opts |= PTRACE_O_TRACEEXIT;
2078 
2079     // Have the tracer trace threads which spawn in the inferior process.
2080     // TODO: if we want to support tracing the inferiors' child, add the
2081     // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
2082     ptrace_opts |= PTRACE_O_TRACECLONE;
2083 
2084     // Have the tracer notify us before execve returns
2085     // (needed to disable legacy SIGTRAP generation)
2086     ptrace_opts |= PTRACE_O_TRACEEXEC;
2087 
2088     Error error;
2089     PTRACE(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts, 0, error);
2090     return error;
2091 }
2092 
2093 static ExitType convert_pid_status_to_exit_type (int status)
2094 {
2095     if (WIFEXITED (status))
2096         return ExitType::eExitTypeExit;
2097     else if (WIFSIGNALED (status))
2098         return ExitType::eExitTypeSignal;
2099     else if (WIFSTOPPED (status))
2100         return ExitType::eExitTypeStop;
2101     else
2102     {
2103         // We don't know what this is.
2104         return ExitType::eExitTypeInvalid;
2105     }
2106 }
2107 
2108 static int convert_pid_status_to_return_code (int status)
2109 {
2110     if (WIFEXITED (status))
2111         return WEXITSTATUS (status);
2112     else if (WIFSIGNALED (status))
2113         return WTERMSIG (status);
2114     else if (WIFSTOPPED (status))
2115         return WSTOPSIG (status);
2116     else
2117     {
2118         // We don't know what this is.
2119         return ExitType::eExitTypeInvalid;
2120     }
2121 }
2122 
2123 // Handles all waitpid events from the inferior process.
2124 void
2125 NativeProcessLinux::MonitorCallback(lldb::pid_t pid,
2126                                     bool exited,
2127                                     int signal,
2128                                     int status)
2129 {
2130     Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS));
2131 
2132     // Certain activities differ based on whether the pid is the tid of the main thread.
2133     const bool is_main_thread = (pid == GetID ());
2134 
2135     // Handle when the thread exits.
2136     if (exited)
2137     {
2138         if (log)
2139             log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %"  PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not");
2140 
2141         // This is a thread that exited.  Ensure we're not tracking it anymore.
2142         const bool thread_found = StopTrackingThread (pid);
2143 
2144         // Make sure the thread state coordinator knows about this.
2145         NotifyThreadDeath (pid);
2146 
2147         if (is_main_thread)
2148         {
2149             // We only set the exit status and notify the delegate if we haven't already set the process
2150             // state to an exited state.  We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8)
2151             // for the main thread.
2152             const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed);
2153             if (!already_notified)
2154             {
2155                 if (log)
2156                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ()));
2157                 // The main thread exited.  We're done monitoring.  Report to delegate.
2158                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
2159 
2160                 // Notify delegate that our process has exited.
2161                 SetState (StateType::eStateExited, true);
2162             }
2163             else
2164             {
2165                 if (log)
2166                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
2167             }
2168         }
2169         else
2170         {
2171             // Do we want to report to the delegate in this case?  I think not.  If this was an orderly
2172             // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal,
2173             // and we would have done an all-stop then.
2174             if (log)
2175                 log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
2176         }
2177         return;
2178     }
2179 
2180     // Get details on the signal raised.
2181     siginfo_t info;
2182     const auto err = GetSignalInfo(pid, &info);
2183     if (err.Success())
2184     {
2185         // We have retrieved the signal info.  Dispatch appropriately.
2186         if (info.si_signo == SIGTRAP)
2187             MonitorSIGTRAP(&info, pid);
2188         else
2189             MonitorSignal(&info, pid, exited);
2190     }
2191     else
2192     {
2193         if (err.GetError() == EINVAL)
2194         {
2195             // This is a group stop reception for this tid.
2196             if (log)
2197                 log->Printf ("NativeThreadLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64, __FUNCTION__, GetID (), pid);
2198             NotifyThreadStop (pid);
2199         }
2200         else
2201         {
2202             // ptrace(GETSIGINFO) failed (but not due to group-stop).
2203 
2204             // A return value of ESRCH means the thread/process is no longer on the system,
2205             // so it was killed somehow outside of our control.  Either way, we can't do anything
2206             // with it anymore.
2207 
2208             // Stop tracking the metadata for the thread since it's entirely off the system now.
2209             const bool thread_found = StopTrackingThread (pid);
2210 
2211             // Make sure the thread state coordinator knows about this.
2212             NotifyThreadDeath (pid);
2213 
2214             if (log)
2215                 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)",
2216                              __FUNCTION__, err.AsCString(), pid, signal, status, err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found");
2217 
2218             if (is_main_thread)
2219             {
2220                 // Notify the delegate - our process is not available but appears to have been killed outside
2221                 // our control.  Is eStateExited the right exit state in this case?
2222                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
2223                 SetState (StateType::eStateExited, true);
2224             }
2225             else
2226             {
2227                 // This thread was pulled out from underneath us.  Anything to do here? Do we want to do an all stop?
2228                 if (log)
2229                     log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid);
2230             }
2231         }
2232     }
2233 }
2234 
2235 void
2236 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid)
2237 {
2238     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2239     const bool is_main_thread = (pid == GetID ());
2240 
2241     assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!");
2242     if (!info)
2243         return;
2244 
2245     Mutex::Locker locker (m_threads_mutex);
2246 
2247     // See if we can find a thread for this signal.
2248     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
2249     if (!thread_sp)
2250     {
2251         if (log)
2252             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
2253     }
2254 
2255     switch (info->si_code)
2256     {
2257     // TODO: these two cases are required if we want to support tracing of the inferiors' children.  We'd need this to debug a monitor.
2258     // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
2259     // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
2260 
2261     case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)):
2262     {
2263         // This is the notification on the parent thread which informs us of new thread
2264         // creation. We are not interested in these events at this point (an interesting use
2265         // case would be to stop the process upon thread creation), so we just resume the thread.
2266         // We will pickup the new thread when we get its SIGSTOP notification.
2267 
2268         if (log)
2269         {
2270             unsigned long event_message = 0;
2271             if (GetEventMessage (pid, &event_message).Success())
2272             {
2273                 lldb::tid_t tid = static_cast<lldb::tid_t> (event_message);
2274                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event for tid %" PRIu64, __FUNCTION__, pid, tid);
2275 
2276             }
2277             else
2278                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, pid);
2279         }
2280 
2281         Resume (pid, LLDB_INVALID_SIGNAL_NUMBER);
2282         break;
2283     }
2284 
2285     case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)):
2286     {
2287         NativeThreadProtocolSP main_thread_sp;
2288         if (log)
2289             log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP);
2290 
2291         // The thread state coordinator needs to reset due to the exec.
2292         m_coordinator_up->ResetForExec ();
2293 
2294         // Remove all but the main thread here.  Linux fork creates a new process which only copies the main thread.  Mutexes are in undefined state.
2295         if (log)
2296             log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__);
2297 
2298         for (auto thread_sp : m_threads)
2299         {
2300             const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID ();
2301             if (is_main_thread)
2302             {
2303                 main_thread_sp = thread_sp;
2304                 if (log)
2305                     log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ());
2306             }
2307             else
2308             {
2309                 // Tell thread coordinator this thread is dead.
2310                 if (log)
2311                     log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ());
2312             }
2313         }
2314 
2315         m_threads.clear ();
2316 
2317         if (main_thread_sp)
2318         {
2319             m_threads.push_back (main_thread_sp);
2320             SetCurrentThreadID (main_thread_sp->GetID ());
2321             std::static_pointer_cast<NativeThreadLinux> (main_thread_sp)->SetStoppedByExec ();
2322         }
2323         else
2324         {
2325             SetCurrentThreadID (LLDB_INVALID_THREAD_ID);
2326             if (log)
2327                 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ());
2328         }
2329 
2330         // Tell coordinator about about the "new" (since exec) stopped main thread.
2331         const lldb::tid_t main_thread_tid = GetID ();
2332         NotifyThreadCreateStopped (main_thread_tid);
2333 
2334         // NOTE: ideally these next statements would execute at the same time as the coordinator thread create was executed.
2335         // Consider a handler that can execute when that happens.
2336         // Let our delegate know we have just exec'd.
2337         NotifyDidExec ();
2338 
2339         // If we have a main thread, indicate we are stopped.
2340         assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked");
2341 
2342         // Let the process know we're stopped.
2343         CallAfterRunningThreadsStop (pid,
2344                                      [=] (lldb::tid_t signaling_tid)
2345                                      {
2346                                          SetState (StateType::eStateStopped, true);
2347                                      });
2348 
2349         break;
2350     }
2351 
2352     case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)):
2353     {
2354         // The inferior process or one of its threads is about to exit.
2355 
2356         // This thread is currently stopped.  It's not actually dead yet, just about to be.
2357         NotifyThreadStop (pid);
2358 
2359         unsigned long data = 0;
2360         if (GetEventMessage(pid, &data).Fail())
2361             data = -1;
2362 
2363         if (log)
2364         {
2365             log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)",
2366                          __FUNCTION__,
2367                          data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false",
2368                          pid,
2369                     is_main_thread ? "is main thread" : "not main thread");
2370         }
2371 
2372         if (is_main_thread)
2373         {
2374             SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true);
2375         }
2376 
2377         const int signo = static_cast<int> (data);
2378         m_coordinator_up->RequestThreadResume (pid,
2379                                                [=](lldb::tid_t tid_to_resume, bool supress_signal)
2380                                                {
2381                                                    std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2382                                                    return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo);
2383                                                },
2384                                                CoordinatorErrorHandler);
2385 
2386         break;
2387     }
2388 
2389     case 0:
2390     case TRAP_TRACE:  // We receive this on single stepping.
2391     case TRAP_HWBKPT: // We receive this on watchpoint hit
2392         if (thread_sp)
2393         {
2394             // If a watchpoint was hit, report it
2395             uint32_t wp_index;
2396             Error error = thread_sp->GetRegisterContext()->GetWatchpointHitIndex(wp_index);
2397             if (error.Fail() && log)
2398                 log->Printf("NativeProcessLinux::%s() "
2399                             "received error while checking for watchpoint hits, "
2400                             "pid = %" PRIu64 " error = %s",
2401                             __FUNCTION__, pid, error.AsCString());
2402             if (wp_index != LLDB_INVALID_INDEX32)
2403             {
2404                 MonitorWatchpoint(pid, thread_sp, wp_index);
2405                 break;
2406             }
2407         }
2408         // Otherwise, report step over
2409         MonitorTrace(pid, thread_sp);
2410         break;
2411 
2412     case SI_KERNEL:
2413     case TRAP_BRKPT:
2414         MonitorBreakpoint(pid, thread_sp);
2415         break;
2416 
2417     case SIGTRAP:
2418     case (SIGTRAP | 0x80):
2419         if (log)
2420             log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), pid);
2421 
2422         // This thread is currently stopped.
2423         NotifyThreadStop (pid);
2424         if (thread_sp)
2425             std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGTRAP);
2426 
2427 
2428         // Ignore these signals until we know more about them.
2429         m_coordinator_up->RequestThreadResume (pid,
2430                                                [=](lldb::tid_t tid_to_resume, bool supress_signal)
2431                                                {
2432                                                    std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2433                                                    return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER);
2434                                                },
2435                                                CoordinatorErrorHandler);
2436         break;
2437 
2438     default:
2439         assert(false && "Unexpected SIGTRAP code!");
2440         if (log)
2441             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%" PRIx64, __FUNCTION__, GetID (), pid, static_cast<uint64_t> (SIGTRAP | (PTRACE_EVENT_CLONE << 8)));
2442         break;
2443 
2444     }
2445 }
2446 
2447 void
2448 NativeProcessLinux::MonitorTrace(lldb::pid_t pid, NativeThreadProtocolSP thread_sp)
2449 {
2450     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2451     if (log)
2452         log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)",
2453                 __FUNCTION__, pid);
2454 
2455     if (thread_sp)
2456         std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace();
2457 
2458     // This thread is currently stopped.
2459     NotifyThreadStop(pid);
2460 
2461     // Here we don't have to request the rest of the threads to stop or request a deferred stop.
2462     // This would have already happened at the time the Resume() with step operation was signaled.
2463     // At this point, we just need to say we stopped, and the deferred notifcation will fire off
2464     // once all running threads have checked in as stopped.
2465     SetCurrentThreadID(pid);
2466     // Tell the process we have a stop (from software breakpoint).
2467     CallAfterRunningThreadsStop(pid,
2468                                 [=](lldb::tid_t signaling_tid)
2469                                 {
2470                                    SetState(StateType::eStateStopped, true);
2471                                 });
2472 }
2473 
2474 void
2475 NativeProcessLinux::MonitorBreakpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp)
2476 {
2477     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
2478     if (log)
2479         log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64,
2480                 __FUNCTION__, pid);
2481 
2482     // This thread is currently stopped.
2483     NotifyThreadStop(pid);
2484 
2485     // Mark the thread as stopped at breakpoint.
2486     if (thread_sp)
2487     {
2488         std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByBreakpoint();
2489         Error error = FixupBreakpointPCAsNeeded(thread_sp);
2490         if (error.Fail())
2491             if (log)
2492                 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s",
2493                         __FUNCTION__, pid, error.AsCString());
2494 
2495         auto it = m_threads_stepping_with_breakpoint.find(pid);
2496         if (it != m_threads_stepping_with_breakpoint.end())
2497         {
2498             Error error = RemoveBreakpoint (it->second);
2499             if (error.Fail())
2500                 if (log)
2501                     log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s",
2502                             __FUNCTION__, pid, error.AsCString());
2503 
2504             m_threads_stepping_with_breakpoint.erase(it);
2505             std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace();
2506         }
2507     }
2508     else
2509         if (log)
2510             log->Printf("NativeProcessLinux::%s()  pid = %" PRIu64 ": "
2511                     "warning, cannot process software breakpoint since no thread metadata",
2512                     __FUNCTION__, pid);
2513 
2514 
2515     // We need to tell all other running threads before we notify the delegate about this stop.
2516     CallAfterRunningThreadsStop(pid,
2517                                 [=](lldb::tid_t deferred_notification_tid)
2518                                 {
2519                                     SetCurrentThreadID(deferred_notification_tid);
2520                                     // Tell the process we have a stop (from software breakpoint).
2521                                     SetState(StateType::eStateStopped, true);
2522                                 });
2523 }
2524 
2525 void
2526 NativeProcessLinux::MonitorWatchpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp, uint32_t wp_index)
2527 {
2528     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
2529     if (log)
2530         log->Printf("NativeProcessLinux::%s() received watchpoint event, "
2531                     "pid = %" PRIu64 ", wp_index = %" PRIu32,
2532                     __FUNCTION__, pid, wp_index);
2533 
2534     // This thread is currently stopped.
2535     NotifyThreadStop(pid);
2536 
2537     // Mark the thread as stopped at watchpoint.
2538     // The address is at (lldb::addr_t)info->si_addr if we need it.
2539     lldbassert(thread_sp && "thread_sp cannot be NULL");
2540     std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByWatchpoint(wp_index);
2541 
2542     // We need to tell all other running threads before we notify the delegate about this stop.
2543     CallAfterRunningThreadsStop(pid,
2544                                 [=](lldb::tid_t deferred_notification_tid)
2545                                 {
2546                                     SetCurrentThreadID(deferred_notification_tid);
2547                                     // Tell the process we have a stop (from watchpoint).
2548                                     SetState(StateType::eStateStopped, true);
2549                                 });
2550 }
2551 
2552 void
2553 NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited)
2554 {
2555     assert (info && "null info");
2556     if (!info)
2557         return;
2558 
2559     const int signo = info->si_signo;
2560     const bool is_from_llgs = info->si_pid == getpid ();
2561 
2562     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2563 
2564     // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
2565     // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
2566     // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
2567     //
2568     // IOW, user generated signals never generate what we consider to be a
2569     // "crash".
2570     //
2571     // Similarly, ACK signals generated by this monitor.
2572 
2573     Mutex::Locker locker (m_threads_mutex);
2574 
2575     // See if we can find a thread for this signal.
2576     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
2577     if (!thread_sp)
2578     {
2579         if (log)
2580             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
2581     }
2582 
2583     // Handle the signal.
2584     if (info->si_code == SI_TKILL || info->si_code == SI_USER)
2585     {
2586         if (log)
2587             log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")",
2588                             __FUNCTION__,
2589                             GetUnixSignals ().GetSignalAsCString (signo),
2590                             signo,
2591                             (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"),
2592                             info->si_pid,
2593                             is_from_llgs ? "from llgs" : "not from llgs",
2594                             pid);
2595     }
2596 
2597     // Check for new thread notification.
2598     if ((info->si_pid == 0) && (info->si_code == SI_USER))
2599     {
2600         // A new thread creation is being signaled.  This is one of two parts that come in
2601         // a non-deterministic order.  pid is the thread id.
2602         if (log)
2603             log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification",
2604                      __FUNCTION__, GetID (), pid);
2605 
2606         thread_sp = AddThread(pid);
2607         assert (thread_sp.get() && "failed to create the tracking data for newly created inferior thread");
2608         // We can now resume the newly created thread.
2609         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2610         Resume (pid, LLDB_INVALID_SIGNAL_NUMBER);
2611         m_coordinator_up->NotifyThreadCreate (pid, false, CoordinatorErrorHandler);
2612         // Done handling.
2613         return;
2614     }
2615 
2616     // Check for thread stop notification.
2617     if (is_from_llgs && (info->si_code == SI_TKILL) && (signo == SIGSTOP))
2618     {
2619         // This is a tgkill()-based stop.
2620         if (thread_sp)
2621         {
2622             if (log)
2623                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped",
2624                              __FUNCTION__,
2625                              GetID (),
2626                              pid);
2627 
2628             // Check that we're not already marked with a stop reason.
2629             // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that
2630             // the kernel signaled us with the thread stopping which we handled and marked as stopped,
2631             // and that, without an intervening resume, we received another stop.  It is more likely
2632             // that we are missing the marking of a run state somewhere if we find that the thread was
2633             // marked as stopped.
2634             std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp);
2635             assert (linux_thread_sp && "linux_thread_sp is null!");
2636 
2637             const StateType thread_state = linux_thread_sp->GetState ();
2638             if (!StateIsStoppedState (thread_state, false))
2639             {
2640                 // An inferior thread just stopped, but was not the primary cause of the process stop.
2641                 // Instead, something else (like a breakpoint or step) caused the stop.  Mark the
2642                 // stop signal as 0 to let lldb know this isn't the important stop.
2643                 linux_thread_sp->SetStoppedBySignal (0);
2644                 SetCurrentThreadID (thread_sp->GetID ());
2645                 m_coordinator_up->NotifyThreadStop (thread_sp->GetID (), true, CoordinatorErrorHandler);
2646             }
2647             else
2648             {
2649                 if (log)
2650                 {
2651                     // Retrieve the signal name if the thread was stopped by a signal.
2652                     int stop_signo = 0;
2653                     const bool stopped_by_signal = linux_thread_sp->IsStopped (&stop_signo);
2654                     const char *signal_name = stopped_by_signal ? GetUnixSignals ().GetSignalAsCString (stop_signo) : "<not stopped by signal>";
2655                     if (!signal_name)
2656                         signal_name = "<no-signal-name>";
2657 
2658                     log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is",
2659                                  __FUNCTION__,
2660                                  GetID (),
2661                                  linux_thread_sp->GetID (),
2662                                  StateAsCString (thread_state),
2663                                  stop_signo,
2664                                  signal_name);
2665                 }
2666                 // Tell the thread state coordinator about the stop.
2667                 NotifyThreadStop (thread_sp->GetID ());
2668             }
2669         }
2670 
2671         // Done handling.
2672         return;
2673     }
2674 
2675     if (log)
2676         log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo));
2677 
2678     // This thread is stopped.
2679     NotifyThreadStop (pid);
2680 
2681     switch (signo)
2682     {
2683     case SIGSTOP:
2684         {
2685             if (log)
2686             {
2687                 if (is_from_llgs)
2688                     log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from llgs, most likely an interrupt", __FUNCTION__, GetID (), pid);
2689                 else
2690                     log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from outside of debugger", __FUNCTION__, GetID (), pid);
2691             }
2692 
2693             // Resume this thread to get the group-stop mechanism to fire off the true group stops.
2694             // This thread will get stopped again as part of the group-stop completion.
2695             m_coordinator_up->RequestThreadResume (pid,
2696                                                    [=](lldb::tid_t tid_to_resume, bool supress_signal)
2697                                                    {
2698                                                        std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2699                                                        // Pass this signal number on to the inferior to handle.
2700                                                        return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo);
2701                                                    },
2702                                                    CoordinatorErrorHandler);
2703         }
2704         break;
2705     case SIGSEGV:
2706     case SIGILL:
2707     case SIGFPE:
2708     case SIGBUS:
2709         if (thread_sp)
2710             std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetCrashedWithException (*info);
2711         break;
2712     default:
2713         // This is just a pre-signal-delivery notification of the incoming signal.
2714         if (thread_sp)
2715             std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (signo);
2716 
2717         break;
2718     }
2719 
2720     // Send a stop to the debugger after we get all other threads to stop.
2721     CallAfterRunningThreadsStop (pid,
2722                                  [=] (lldb::tid_t signaling_tid)
2723                                  {
2724                                      SetCurrentThreadID (signaling_tid);
2725                                      SetState (StateType::eStateStopped, true);
2726                                  });
2727 }
2728 
2729 namespace {
2730 
2731 struct EmulatorBaton
2732 {
2733     NativeProcessLinux* m_process;
2734     NativeRegisterContext* m_reg_context;
2735     RegisterValue m_pc;
2736     RegisterValue m_flags;
2737 
2738     EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) :
2739             m_process(process), m_reg_context(reg_context) {}
2740 };
2741 
2742 } // anonymous namespace
2743 
2744 static size_t
2745 ReadMemoryCallback (EmulateInstruction *instruction,
2746                     void *baton,
2747                     const EmulateInstruction::Context &context,
2748                     lldb::addr_t addr,
2749                     void *dst,
2750                     size_t length)
2751 {
2752     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2753 
2754     lldb::addr_t bytes_read;
2755     emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read);
2756     return bytes_read;
2757 }
2758 
2759 static bool
2760 ReadRegisterCallback (EmulateInstruction *instruction,
2761                       void *baton,
2762                       const RegisterInfo *reg_info,
2763                       RegisterValue &reg_value)
2764 {
2765     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2766 
2767     // The emulator only fill in the dwarf regsiter numbers (and in some case
2768     // the generic register numbers). Get the full register info from the
2769     // register context based on the dwarf register numbers.
2770     const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo(
2771             eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
2772 
2773     Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value);
2774     return error.Success();
2775 }
2776 
2777 static bool
2778 WriteRegisterCallback (EmulateInstruction *instruction,
2779                        void *baton,
2780                        const EmulateInstruction::Context &context,
2781                        const RegisterInfo *reg_info,
2782                        const RegisterValue &reg_value)
2783 {
2784     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2785 
2786     switch (reg_info->kinds[eRegisterKindGeneric])
2787     {
2788     case LLDB_REGNUM_GENERIC_PC:
2789         emulator_baton->m_pc = reg_value;
2790         break;
2791     case LLDB_REGNUM_GENERIC_FLAGS:
2792         emulator_baton->m_flags = reg_value;
2793         break;
2794     }
2795 
2796     return true;
2797 }
2798 
2799 static size_t
2800 WriteMemoryCallback (EmulateInstruction *instruction,
2801                      void *baton,
2802                      const EmulateInstruction::Context &context,
2803                      lldb::addr_t addr,
2804                      const void *dst,
2805                      size_t length)
2806 {
2807     return length;
2808 }
2809 
2810 static lldb::addr_t
2811 ReadFlags (NativeRegisterContext* regsiter_context)
2812 {
2813     const RegisterInfo* flags_info = regsiter_context->GetRegisterInfo(
2814             eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
2815     return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS);
2816 }
2817 
2818 Error
2819 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadProtocolSP thread_sp)
2820 {
2821     Error error;
2822     NativeRegisterContextSP register_context_sp = thread_sp->GetRegisterContext();
2823 
2824     std::unique_ptr<EmulateInstruction> emulator_ap(
2825         EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr));
2826 
2827     if (emulator_ap == nullptr)
2828         return Error("Instruction emulator not found!");
2829 
2830     EmulatorBaton baton(this, register_context_sp.get());
2831     emulator_ap->SetBaton(&baton);
2832     emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
2833     emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
2834     emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
2835     emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
2836 
2837     if (!emulator_ap->ReadInstruction())
2838         return Error("Read instruction failed!");
2839 
2840     lldb::addr_t next_pc;
2841     lldb::addr_t next_flags;
2842     if (emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC))
2843     {
2844         next_pc = baton.m_pc.GetAsUInt64();
2845         if (baton.m_flags.GetType() != RegisterValue::eTypeInvalid)
2846             next_flags = baton.m_flags.GetAsUInt32();
2847         else
2848             next_flags = ReadFlags (register_context_sp.get());
2849     }
2850     else if (baton.m_pc.GetType() == RegisterValue::eTypeInvalid)
2851     {
2852         // Emulate instruction failed and it haven't changed PC. Advance PC
2853         // with the size of the current opcode because the emulation of all
2854         // PC modifying instruction should be successful. The failure most
2855         // likely caused by a not supported instruction which don't modify PC.
2856         next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize();
2857         next_flags = ReadFlags (register_context_sp.get());
2858     }
2859     else
2860     {
2861         // The instruction emulation failed after it modified the PC. It is an
2862         // unknown error where we can't continue because the next instruction is
2863         // modifying the PC but we don't  know how.
2864         return Error ("Instruction emulation failed unexpectedly.");
2865     }
2866 
2867     if (m_arch.GetMachine() == llvm::Triple::arm)
2868     {
2869         if (next_flags & 0x20)
2870         {
2871             // Thumb mode
2872             error = SetSoftwareBreakpoint(next_pc, 2);
2873         }
2874         else
2875         {
2876             // Arm mode
2877             error = SetSoftwareBreakpoint(next_pc, 4);
2878         }
2879     }
2880     else
2881     {
2882         // No size hint is given for the next breakpoint
2883         error = SetSoftwareBreakpoint(next_pc, 0);
2884     }
2885 
2886 
2887     if (error.Fail())
2888         return error;
2889 
2890     m_threads_stepping_with_breakpoint.insert({thread_sp->GetID(), next_pc});
2891 
2892     return Error();
2893 }
2894 
2895 bool
2896 NativeProcessLinux::SupportHardwareSingleStepping() const
2897 {
2898     return m_arch.GetMachine() != llvm::Triple::arm;
2899 }
2900 
2901 Error
2902 NativeProcessLinux::Resume (const ResumeActionList &resume_actions)
2903 {
2904     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD));
2905     if (log)
2906         log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ());
2907 
2908     lldb::tid_t deferred_signal_tid = LLDB_INVALID_THREAD_ID;
2909     lldb::tid_t deferred_signal_skip_tid = LLDB_INVALID_THREAD_ID;
2910     int deferred_signo = 0;
2911     NativeThreadProtocolSP deferred_signal_thread_sp;
2912     bool stepping = false;
2913     bool software_single_step = !SupportHardwareSingleStepping();
2914 
2915     Mutex::Locker locker (m_threads_mutex);
2916 
2917     if (software_single_step)
2918     {
2919         for (auto thread_sp : m_threads)
2920         {
2921             assert (thread_sp && "thread list should not contain NULL threads");
2922 
2923             const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
2924             if (action == nullptr)
2925                 continue;
2926 
2927             if (action->state == eStateStepping)
2928             {
2929                 Error error = SetupSoftwareSingleStepping(thread_sp);
2930                 if (error.Fail())
2931                     return error;
2932             }
2933         }
2934     }
2935 
2936     for (auto thread_sp : m_threads)
2937     {
2938         assert (thread_sp && "thread list should not contain NULL threads");
2939 
2940         const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
2941 
2942         if (action == nullptr)
2943         {
2944             if (log)
2945                 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64,
2946                     __FUNCTION__, GetID (), thread_sp->GetID ());
2947             continue;
2948         }
2949 
2950         if (log)
2951         {
2952             log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64,
2953                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
2954         }
2955 
2956         switch (action->state)
2957         {
2958         case eStateRunning:
2959         {
2960             // Run the thread, possibly feeding it the signal.
2961             const int signo = action->signal;
2962             m_coordinator_up->RequestThreadResumeAsNeeded (thread_sp->GetID (),
2963                                                            [=](lldb::tid_t tid_to_resume, bool supress_signal)
2964                                                            {
2965                                                                std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2966                                                                // Pass this signal number on to the inferior to handle.
2967                                                                const auto resume_result = Resume (tid_to_resume, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
2968                                                                if (resume_result.Success())
2969                                                                    SetState(eStateRunning, true);
2970                                                                return resume_result;
2971                                                            },
2972                                                            CoordinatorErrorHandler);
2973             break;
2974         }
2975 
2976         case eStateStepping:
2977         {
2978             // Request the step.
2979             const int signo = action->signal;
2980             m_coordinator_up->RequestThreadResume (thread_sp->GetID (),
2981                                                    [=](lldb::tid_t tid_to_step, bool supress_signal)
2982                                                    {
2983                                                        std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStepping ();
2984 
2985                                                        Error step_result;
2986                                                        if (software_single_step)
2987                                                            step_result = Resume (tid_to_step, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
2988                                                        else
2989                                                            step_result = SingleStep (tid_to_step,(signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
2990 
2991                                                        assert (step_result.Success() && "SingleStep() failed");
2992                                                        if (step_result.Success())
2993                                                            SetState(eStateStepping, true);
2994                                                        return step_result;
2995                                                    },
2996                                                    CoordinatorErrorHandler);
2997             stepping = true;
2998             break;
2999         }
3000 
3001         case eStateSuspended:
3002         case eStateStopped:
3003             // if we haven't chosen a deferred signal tid yet, use this one.
3004             if (deferred_signal_tid == LLDB_INVALID_THREAD_ID)
3005             {
3006                 deferred_signal_tid = thread_sp->GetID ();
3007                 deferred_signal_thread_sp = thread_sp;
3008                 deferred_signo = SIGSTOP;
3009             }
3010             break;
3011 
3012         default:
3013             return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64,
3014                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
3015         }
3016     }
3017 
3018     // If we had any thread stopping, then do a deferred notification of the chosen stop thread id and signal
3019     // after all other running threads have stopped.
3020     // If there is a stepping thread involved we'll be eventually stopped by SIGTRAP trace signal.
3021     if (deferred_signal_tid != LLDB_INVALID_THREAD_ID && !stepping)
3022     {
3023         CallAfterRunningThreadsStopWithSkipTID (deferred_signal_tid,
3024                                                 deferred_signal_skip_tid,
3025                                      [=](lldb::tid_t deferred_notification_tid)
3026                                      {
3027                                          // Set the signal thread to the current thread.
3028                                          SetCurrentThreadID (deferred_notification_tid);
3029 
3030                                          // Set the thread state as stopped by the deferred signo.
3031                                          std::static_pointer_cast<NativeThreadLinux> (deferred_signal_thread_sp)->SetStoppedBySignal (deferred_signo);
3032 
3033                                          // Tell the process delegate that the process is in a stopped state.
3034                                          SetState (StateType::eStateStopped, true);
3035                                      });
3036     }
3037 
3038     return Error();
3039 }
3040 
3041 Error
3042 NativeProcessLinux::Halt ()
3043 {
3044     Error error;
3045 
3046     if (kill (GetID (), SIGSTOP) != 0)
3047         error.SetErrorToErrno ();
3048 
3049     return error;
3050 }
3051 
3052 Error
3053 NativeProcessLinux::Detach ()
3054 {
3055     Error error;
3056 
3057     // Tell ptrace to detach from the process.
3058     if (GetID () != LLDB_INVALID_PROCESS_ID)
3059         error = Detach (GetID ());
3060 
3061     // Stop monitoring the inferior.
3062     StopMonitor ();
3063 
3064     // No error.
3065     return error;
3066 }
3067 
3068 Error
3069 NativeProcessLinux::Signal (int signo)
3070 {
3071     Error error;
3072 
3073     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3074     if (log)
3075         log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64,
3076                 __FUNCTION__, signo,  GetUnixSignals ().GetSignalAsCString (signo), GetID ());
3077 
3078     if (kill(GetID(), signo))
3079         error.SetErrorToErrno();
3080 
3081     return error;
3082 }
3083 
3084 Error
3085 NativeProcessLinux::Interrupt ()
3086 {
3087     // Pick a running thread (or if none, a not-dead stopped thread) as
3088     // the chosen thread that will be the stop-reason thread.
3089     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3090 
3091     NativeThreadProtocolSP running_thread_sp;
3092     NativeThreadProtocolSP stopped_thread_sp;
3093 
3094     if (log)
3095         log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__);
3096 
3097     Mutex::Locker locker (m_threads_mutex);
3098 
3099     for (auto thread_sp : m_threads)
3100     {
3101         // The thread shouldn't be null but lets just cover that here.
3102         if (!thread_sp)
3103             continue;
3104 
3105         // If we have a running or stepping thread, we'll call that the
3106         // target of the interrupt.
3107         const auto thread_state = thread_sp->GetState ();
3108         if (thread_state == eStateRunning ||
3109             thread_state == eStateStepping)
3110         {
3111             running_thread_sp = thread_sp;
3112             break;
3113         }
3114         else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true))
3115         {
3116             // Remember the first non-dead stopped thread.  We'll use that as a backup if there are no running threads.
3117             stopped_thread_sp = thread_sp;
3118         }
3119     }
3120 
3121     if (!running_thread_sp && !stopped_thread_sp)
3122     {
3123         Error error("found no running/stepping or live stopped threads as target for interrupt");
3124         if (log)
3125             log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ());
3126 
3127         return error;
3128     }
3129 
3130     NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp;
3131 
3132     if (log)
3133         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target",
3134                      __FUNCTION__,
3135                      GetID (),
3136                      running_thread_sp ? "running" : "stopped",
3137                      deferred_signal_thread_sp->GetID ());
3138 
3139     CallAfterRunningThreadsStop (deferred_signal_thread_sp->GetID (),
3140                                  [=](lldb::tid_t deferred_notification_tid)
3141                                  {
3142                                      // Set the signal thread to the current thread.
3143                                      SetCurrentThreadID (deferred_notification_tid);
3144 
3145                                      // Set the thread state as stopped by the deferred signo.
3146                                      std::static_pointer_cast<NativeThreadLinux> (deferred_signal_thread_sp)->SetStoppedBySignal (SIGSTOP);
3147 
3148                                      // Tell the process delegate that the process is in a stopped state.
3149                                      SetState (StateType::eStateStopped, true);
3150                                  });
3151     return Error();
3152 }
3153 
3154 Error
3155 NativeProcessLinux::Kill ()
3156 {
3157     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3158     if (log)
3159         log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ());
3160 
3161     Error error;
3162 
3163     switch (m_state)
3164     {
3165         case StateType::eStateInvalid:
3166         case StateType::eStateExited:
3167         case StateType::eStateCrashed:
3168         case StateType::eStateDetached:
3169         case StateType::eStateUnloaded:
3170             // Nothing to do - the process is already dead.
3171             if (log)
3172                 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state));
3173             return error;
3174 
3175         case StateType::eStateConnected:
3176         case StateType::eStateAttaching:
3177         case StateType::eStateLaunching:
3178         case StateType::eStateStopped:
3179         case StateType::eStateRunning:
3180         case StateType::eStateStepping:
3181         case StateType::eStateSuspended:
3182             // We can try to kill a process in these states.
3183             break;
3184     }
3185 
3186     if (kill (GetID (), SIGKILL) != 0)
3187     {
3188         error.SetErrorToErrno ();
3189         return error;
3190     }
3191 
3192     return error;
3193 }
3194 
3195 static Error
3196 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info)
3197 {
3198     memory_region_info.Clear();
3199 
3200     StringExtractor line_extractor (maps_line.c_str ());
3201 
3202     // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode   pathname
3203     // perms: rwxp   (letter is present if set, '-' if not, final character is p=private, s=shared).
3204 
3205     // Parse out the starting address
3206     lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0);
3207 
3208     // Parse out hyphen separating start and end address from range.
3209     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-'))
3210         return Error ("malformed /proc/{pid}/maps entry, missing dash between address range");
3211 
3212     // Parse out the ending address
3213     lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address);
3214 
3215     // Parse out the space after the address.
3216     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' '))
3217         return Error ("malformed /proc/{pid}/maps entry, missing space after range");
3218 
3219     // Save the range.
3220     memory_region_info.GetRange ().SetRangeBase (start_address);
3221     memory_region_info.GetRange ().SetRangeEnd (end_address);
3222 
3223     // Parse out each permission entry.
3224     if (line_extractor.GetBytesLeft () < 4)
3225         return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions");
3226 
3227     // Handle read permission.
3228     const char read_perm_char = line_extractor.GetChar ();
3229     if (read_perm_char == 'r')
3230         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes);
3231     else
3232     {
3233         assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" );
3234         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
3235     }
3236 
3237     // Handle write permission.
3238     const char write_perm_char = line_extractor.GetChar ();
3239     if (write_perm_char == 'w')
3240         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes);
3241     else
3242     {
3243         assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" );
3244         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
3245     }
3246 
3247     // Handle execute permission.
3248     const char exec_perm_char = line_extractor.GetChar ();
3249     if (exec_perm_char == 'x')
3250         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes);
3251     else
3252     {
3253         assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" );
3254         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
3255     }
3256 
3257     return Error ();
3258 }
3259 
3260 Error
3261 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info)
3262 {
3263     // FIXME review that the final memory region returned extends to the end of the virtual address space,
3264     // with no perms if it is not mapped.
3265 
3266     // Use an approach that reads memory regions from /proc/{pid}/maps.
3267     // Assume proc maps entries are in ascending order.
3268     // FIXME assert if we find differently.
3269     Mutex::Locker locker (m_mem_region_cache_mutex);
3270 
3271     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3272     Error error;
3273 
3274     if (m_supports_mem_region == LazyBool::eLazyBoolNo)
3275     {
3276         // We're done.
3277         error.SetErrorString ("unsupported");
3278         return error;
3279     }
3280 
3281     // If our cache is empty, pull the latest.  There should always be at least one memory region
3282     // if memory region handling is supported.
3283     if (m_mem_region_cache.empty ())
3284     {
3285         error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
3286              [&] (const std::string &line) -> bool
3287              {
3288                  MemoryRegionInfo info;
3289                  const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info);
3290                  if (parse_error.Success ())
3291                  {
3292                      m_mem_region_cache.push_back (info);
3293                      return true;
3294                  }
3295                  else
3296                  {
3297                      if (log)
3298                          log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ());
3299                      return false;
3300                  }
3301              });
3302 
3303         // If we had an error, we'll mark unsupported.
3304         if (error.Fail ())
3305         {
3306             m_supports_mem_region = LazyBool::eLazyBoolNo;
3307             return error;
3308         }
3309         else if (m_mem_region_cache.empty ())
3310         {
3311             // No entries after attempting to read them.  This shouldn't happen if /proc/{pid}/maps
3312             // is supported.  Assume we don't support map entries via procfs.
3313             if (log)
3314                 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__);
3315             m_supports_mem_region = LazyBool::eLazyBoolNo;
3316             error.SetErrorString ("not supported");
3317             return error;
3318         }
3319 
3320         if (log)
3321             log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ());
3322 
3323         // We support memory retrieval, remember that.
3324         m_supports_mem_region = LazyBool::eLazyBoolYes;
3325     }
3326     else
3327     {
3328         if (log)
3329             log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
3330     }
3331 
3332     lldb::addr_t prev_base_address = 0;
3333 
3334     // FIXME start by finding the last region that is <= target address using binary search.  Data is sorted.
3335     // There can be a ton of regions on pthreads apps with lots of threads.
3336     for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it)
3337     {
3338         MemoryRegionInfo &proc_entry_info = *it;
3339 
3340         // Sanity check assumption that /proc/{pid}/maps entries are ascending.
3341         assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected");
3342         prev_base_address = proc_entry_info.GetRange ().GetRangeBase ();
3343 
3344         // If the target address comes before this entry, indicate distance to next region.
3345         if (load_addr < proc_entry_info.GetRange ().GetRangeBase ())
3346         {
3347             range_info.GetRange ().SetRangeBase (load_addr);
3348             range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr);
3349             range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
3350             range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
3351             range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
3352 
3353             return error;
3354         }
3355         else if (proc_entry_info.GetRange ().Contains (load_addr))
3356         {
3357             // The target address is within the memory region we're processing here.
3358             range_info = proc_entry_info;
3359             return error;
3360         }
3361 
3362         // The target memory address comes somewhere after the region we just parsed.
3363     }
3364 
3365     // If we made it here, we didn't find an entry that contained the given address.
3366     error.SetErrorString ("address comes after final region");
3367 
3368     if (log)
3369         log->Printf ("NativeProcessLinux::%s failed to find map entry for address 0x%" PRIx64 ": %s", __FUNCTION__, load_addr, error.AsCString ());
3370 
3371     return error;
3372 }
3373 
3374 void
3375 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId)
3376 {
3377     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3378     if (log)
3379         log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId);
3380 
3381     {
3382         Mutex::Locker locker (m_mem_region_cache_mutex);
3383         if (log)
3384             log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
3385         m_mem_region_cache.clear ();
3386     }
3387 }
3388 
3389 Error
3390 NativeProcessLinux::AllocateMemory (
3391     lldb::addr_t size,
3392     uint32_t permissions,
3393     lldb::addr_t &addr)
3394 {
3395     // FIXME implementing this requires the equivalent of
3396     // InferiorCallPOSIX::InferiorCallMmap, which depends on
3397     // functional ThreadPlans working with Native*Protocol.
3398 #if 1
3399     return Error ("not implemented yet");
3400 #else
3401     addr = LLDB_INVALID_ADDRESS;
3402 
3403     unsigned prot = 0;
3404     if (permissions & lldb::ePermissionsReadable)
3405         prot |= eMmapProtRead;
3406     if (permissions & lldb::ePermissionsWritable)
3407         prot |= eMmapProtWrite;
3408     if (permissions & lldb::ePermissionsExecutable)
3409         prot |= eMmapProtExec;
3410 
3411     // TODO implement this directly in NativeProcessLinux
3412     // (and lift to NativeProcessPOSIX if/when that class is
3413     // refactored out).
3414     if (InferiorCallMmap(this, addr, 0, size, prot,
3415                          eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
3416         m_addr_to_mmap_size[addr] = size;
3417         return Error ();
3418     } else {
3419         addr = LLDB_INVALID_ADDRESS;
3420         return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions));
3421     }
3422 #endif
3423 }
3424 
3425 Error
3426 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr)
3427 {
3428     // FIXME see comments in AllocateMemory - required lower-level
3429     // bits not in place yet (ThreadPlans)
3430     return Error ("not implemented");
3431 }
3432 
3433 lldb::addr_t
3434 NativeProcessLinux::GetSharedLibraryInfoAddress ()
3435 {
3436 #if 1
3437     // punt on this for now
3438     return LLDB_INVALID_ADDRESS;
3439 #else
3440     // Return the image info address for the exe module
3441 #if 1
3442     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3443 
3444     ModuleSP module_sp;
3445     Error error = GetExeModuleSP (module_sp);
3446     if (error.Fail ())
3447     {
3448          if (log)
3449             log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ());
3450         return LLDB_INVALID_ADDRESS;
3451     }
3452 
3453     if (module_sp == nullptr)
3454     {
3455          if (log)
3456             log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__);
3457          return LLDB_INVALID_ADDRESS;
3458     }
3459 
3460     ObjectFileSP object_file_sp = module_sp->GetObjectFile ();
3461     if (object_file_sp == nullptr)
3462     {
3463          if (log)
3464             log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__);
3465          return LLDB_INVALID_ADDRESS;
3466     }
3467 
3468     return obj_file_sp->GetImageInfoAddress();
3469 #else
3470     Target *target = &GetTarget();
3471     ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile();
3472     Address addr = obj_file->GetImageInfoAddress(target);
3473 
3474     if (addr.IsValid())
3475         return addr.GetLoadAddress(target);
3476     return LLDB_INVALID_ADDRESS;
3477 #endif
3478 #endif // punt on this for now
3479 }
3480 
3481 size_t
3482 NativeProcessLinux::UpdateThreads ()
3483 {
3484     // The NativeProcessLinux monitoring threads are always up to date
3485     // with respect to thread state and they keep the thread list
3486     // populated properly. All this method needs to do is return the
3487     // thread count.
3488     Mutex::Locker locker (m_threads_mutex);
3489     return m_threads.size ();
3490 }
3491 
3492 bool
3493 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const
3494 {
3495     arch = m_arch;
3496     return true;
3497 }
3498 
3499 Error
3500 NativeProcessLinux::GetSoftwareBreakpointPCOffset (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size)
3501 {
3502     // FIXME put this behind a breakpoint protocol class that can be
3503     // set per architecture.  Need ARM, MIPS support here.
3504     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
3505     static const uint8_t g_i386_opcode [] = { 0xCC };
3506     static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d };
3507 
3508     switch (m_arch.GetMachine ())
3509     {
3510         case llvm::Triple::aarch64:
3511             actual_opcode_size = static_cast<uint32_t> (sizeof(g_aarch64_opcode));
3512             return Error ();
3513 
3514         case llvm::Triple::arm:
3515             actual_opcode_size = 0; // On arm the PC don't get updated for breakpoint hits
3516             return Error ();
3517 
3518         case llvm::Triple::x86:
3519         case llvm::Triple::x86_64:
3520             actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode));
3521             return Error ();
3522 
3523         case llvm::Triple::mips64:
3524         case llvm::Triple::mips64el:
3525             actual_opcode_size = static_cast<uint32_t> (sizeof(g_mips64_opcode));
3526             return Error ();
3527 
3528         default:
3529             assert(false && "CPU type not supported!");
3530             return Error ("CPU type not supported");
3531     }
3532 }
3533 
3534 Error
3535 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware)
3536 {
3537     if (hardware)
3538         return Error ("NativeProcessLinux does not support hardware breakpoints");
3539     else
3540         return SetSoftwareBreakpoint (addr, size);
3541 }
3542 
3543 Error
3544 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint,
3545                                                      size_t &actual_opcode_size,
3546                                                      const uint8_t *&trap_opcode_bytes)
3547 {
3548     // FIXME put this behind a breakpoint protocol class that can be set per
3549     // architecture.  Need MIPS support here.
3550     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
3551     // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
3552     // linux kernel does otherwise.
3553     static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 };
3554     static const uint8_t g_i386_opcode [] = { 0xCC };
3555     static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d };
3556     static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 };
3557     static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde };
3558 
3559     switch (m_arch.GetMachine ())
3560     {
3561     case llvm::Triple::aarch64:
3562         trap_opcode_bytes = g_aarch64_opcode;
3563         actual_opcode_size = sizeof(g_aarch64_opcode);
3564         return Error ();
3565 
3566     case llvm::Triple::arm:
3567         switch (trap_opcode_size_hint)
3568         {
3569         case 2:
3570             trap_opcode_bytes = g_thumb_breakpoint_opcode;
3571             actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
3572             return Error ();
3573         case 4:
3574             trap_opcode_bytes = g_arm_breakpoint_opcode;
3575             actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
3576             return Error ();
3577         default:
3578             assert(false && "Unrecognised trap opcode size hint!");
3579             return Error ("Unrecognised trap opcode size hint!");
3580         }
3581 
3582     case llvm::Triple::x86:
3583     case llvm::Triple::x86_64:
3584         trap_opcode_bytes = g_i386_opcode;
3585         actual_opcode_size = sizeof(g_i386_opcode);
3586         return Error ();
3587 
3588     case llvm::Triple::mips64:
3589         trap_opcode_bytes = g_mips64_opcode;
3590         actual_opcode_size = sizeof(g_mips64_opcode);
3591         return Error ();
3592 
3593     case llvm::Triple::mips64el:
3594         trap_opcode_bytes = g_mips64el_opcode;
3595         actual_opcode_size = sizeof(g_mips64el_opcode);
3596         return Error ();
3597 
3598     default:
3599         assert(false && "CPU type not supported!");
3600         return Error ("CPU type not supported");
3601     }
3602 }
3603 
3604 #if 0
3605 ProcessMessage::CrashReason
3606 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
3607 {
3608     ProcessMessage::CrashReason reason;
3609     assert(info->si_signo == SIGSEGV);
3610 
3611     reason = ProcessMessage::eInvalidCrashReason;
3612 
3613     switch (info->si_code)
3614     {
3615     default:
3616         assert(false && "unexpected si_code for SIGSEGV");
3617         break;
3618     case SI_KERNEL:
3619         // Linux will occasionally send spurious SI_KERNEL codes.
3620         // (this is poorly documented in sigaction)
3621         // One way to get this is via unaligned SIMD loads.
3622         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
3623         break;
3624     case SEGV_MAPERR:
3625         reason = ProcessMessage::eInvalidAddress;
3626         break;
3627     case SEGV_ACCERR:
3628         reason = ProcessMessage::ePrivilegedAddress;
3629         break;
3630     }
3631 
3632     return reason;
3633 }
3634 #endif
3635 
3636 
3637 #if 0
3638 ProcessMessage::CrashReason
3639 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
3640 {
3641     ProcessMessage::CrashReason reason;
3642     assert(info->si_signo == SIGILL);
3643 
3644     reason = ProcessMessage::eInvalidCrashReason;
3645 
3646     switch (info->si_code)
3647     {
3648     default:
3649         assert(false && "unexpected si_code for SIGILL");
3650         break;
3651     case ILL_ILLOPC:
3652         reason = ProcessMessage::eIllegalOpcode;
3653         break;
3654     case ILL_ILLOPN:
3655         reason = ProcessMessage::eIllegalOperand;
3656         break;
3657     case ILL_ILLADR:
3658         reason = ProcessMessage::eIllegalAddressingMode;
3659         break;
3660     case ILL_ILLTRP:
3661         reason = ProcessMessage::eIllegalTrap;
3662         break;
3663     case ILL_PRVOPC:
3664         reason = ProcessMessage::ePrivilegedOpcode;
3665         break;
3666     case ILL_PRVREG:
3667         reason = ProcessMessage::ePrivilegedRegister;
3668         break;
3669     case ILL_COPROC:
3670         reason = ProcessMessage::eCoprocessorError;
3671         break;
3672     case ILL_BADSTK:
3673         reason = ProcessMessage::eInternalStackError;
3674         break;
3675     }
3676 
3677     return reason;
3678 }
3679 #endif
3680 
3681 #if 0
3682 ProcessMessage::CrashReason
3683 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
3684 {
3685     ProcessMessage::CrashReason reason;
3686     assert(info->si_signo == SIGFPE);
3687 
3688     reason = ProcessMessage::eInvalidCrashReason;
3689 
3690     switch (info->si_code)
3691     {
3692     default:
3693         assert(false && "unexpected si_code for SIGFPE");
3694         break;
3695     case FPE_INTDIV:
3696         reason = ProcessMessage::eIntegerDivideByZero;
3697         break;
3698     case FPE_INTOVF:
3699         reason = ProcessMessage::eIntegerOverflow;
3700         break;
3701     case FPE_FLTDIV:
3702         reason = ProcessMessage::eFloatDivideByZero;
3703         break;
3704     case FPE_FLTOVF:
3705         reason = ProcessMessage::eFloatOverflow;
3706         break;
3707     case FPE_FLTUND:
3708         reason = ProcessMessage::eFloatUnderflow;
3709         break;
3710     case FPE_FLTRES:
3711         reason = ProcessMessage::eFloatInexactResult;
3712         break;
3713     case FPE_FLTINV:
3714         reason = ProcessMessage::eFloatInvalidOperation;
3715         break;
3716     case FPE_FLTSUB:
3717         reason = ProcessMessage::eFloatSubscriptRange;
3718         break;
3719     }
3720 
3721     return reason;
3722 }
3723 #endif
3724 
3725 #if 0
3726 ProcessMessage::CrashReason
3727 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
3728 {
3729     ProcessMessage::CrashReason reason;
3730     assert(info->si_signo == SIGBUS);
3731 
3732     reason = ProcessMessage::eInvalidCrashReason;
3733 
3734     switch (info->si_code)
3735     {
3736     default:
3737         assert(false && "unexpected si_code for SIGBUS");
3738         break;
3739     case BUS_ADRALN:
3740         reason = ProcessMessage::eIllegalAlignment;
3741         break;
3742     case BUS_ADRERR:
3743         reason = ProcessMessage::eIllegalAddress;
3744         break;
3745     case BUS_OBJERR:
3746         reason = ProcessMessage::eHardwareError;
3747         break;
3748     }
3749 
3750     return reason;
3751 }
3752 #endif
3753 
3754 Error
3755 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, lldb::addr_t size, lldb::addr_t &bytes_read)
3756 {
3757     ReadOperation op(addr, buf, size, bytes_read);
3758     m_monitor_up->DoOperation(&op);
3759     return op.GetError ();
3760 }
3761 
3762 Error
3763 NativeProcessLinux::WriteMemory (lldb::addr_t addr, const void *buf, lldb::addr_t size, lldb::addr_t &bytes_written)
3764 {
3765     WriteOperation op(addr, buf, size, bytes_written);
3766     m_monitor_up->DoOperation(&op);
3767     return op.GetError ();
3768 }
3769 
3770 Error
3771 NativeProcessLinux::ReadRegisterValue(lldb::tid_t tid, uint32_t offset, const char* reg_name,
3772                                       uint32_t size, RegisterValue &value)
3773 {
3774     ReadRegOperation op(tid, offset, reg_name, value);
3775     m_monitor_up->DoOperation(&op);
3776     return op.GetError();
3777 }
3778 
3779 Error
3780 NativeProcessLinux::WriteRegisterValue(lldb::tid_t tid, unsigned offset,
3781                                    const char* reg_name, const RegisterValue &value)
3782 {
3783     WriteRegOperation op(tid, offset, reg_name, value);
3784     m_monitor_up->DoOperation(&op);
3785     return op.GetError();
3786 }
3787 
3788 Error
3789 NativeProcessLinux::ReadGPR(lldb::tid_t tid, void *buf, size_t buf_size)
3790 {
3791     ReadGPROperation op(tid, buf, buf_size);
3792     m_monitor_up->DoOperation(&op);
3793     return op.GetError();
3794 }
3795 
3796 Error
3797 NativeProcessLinux::ReadFPR(lldb::tid_t tid, void *buf, size_t buf_size)
3798 {
3799     ReadFPROperation op(tid, buf, buf_size);
3800     m_monitor_up->DoOperation(&op);
3801     return op.GetError();
3802 }
3803 
3804 Error
3805 NativeProcessLinux::ReadRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
3806 {
3807     ReadRegisterSetOperation op(tid, buf, buf_size, regset);
3808     m_monitor_up->DoOperation(&op);
3809     return op.GetError();
3810 }
3811 
3812 Error
3813 NativeProcessLinux::WriteGPR(lldb::tid_t tid, void *buf, size_t buf_size)
3814 {
3815     WriteGPROperation op(tid, buf, buf_size);
3816     m_monitor_up->DoOperation(&op);
3817     return op.GetError();
3818 }
3819 
3820 Error
3821 NativeProcessLinux::WriteFPR(lldb::tid_t tid, void *buf, size_t buf_size)
3822 {
3823     WriteFPROperation op(tid, buf, buf_size);
3824     m_monitor_up->DoOperation(&op);
3825     return op.GetError();
3826 }
3827 
3828 Error
3829 NativeProcessLinux::WriteRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
3830 {
3831     WriteRegisterSetOperation op(tid, buf, buf_size, regset);
3832     m_monitor_up->DoOperation(&op);
3833     return op.GetError();
3834 }
3835 
3836 Error
3837 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo)
3838 {
3839     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3840 
3841     if (log)
3842         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " with signal %s", __FUNCTION__, tid,
3843                                  GetUnixSignals().GetSignalAsCString (signo));
3844     ResumeOperation op (tid, signo);
3845     m_monitor_up->DoOperation (&op);
3846     if (log)
3847         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " result = %s", __FUNCTION__, tid, op.GetError().Success() ? "true" : "false");
3848     return op.GetError();
3849 }
3850 
3851 Error
3852 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo)
3853 {
3854     SingleStepOperation op(tid, signo);
3855     m_monitor_up->DoOperation(&op);
3856     return op.GetError();
3857 }
3858 
3859 Error
3860 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo)
3861 {
3862     SiginfoOperation op(tid, siginfo);
3863     m_monitor_up->DoOperation(&op);
3864     return op.GetError();
3865 }
3866 
3867 Error
3868 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message)
3869 {
3870     EventMessageOperation op(tid, message);
3871     m_monitor_up->DoOperation(&op);
3872     return op.GetError();
3873 }
3874 
3875 Error
3876 NativeProcessLinux::Detach(lldb::tid_t tid)
3877 {
3878     if (tid == LLDB_INVALID_THREAD_ID)
3879         return Error();
3880 
3881     DetachOperation op(tid);
3882     m_monitor_up->DoOperation(&op);
3883     return op.GetError();
3884 }
3885 
3886 bool
3887 NativeProcessLinux::DupDescriptor(const char *path, int fd, int flags)
3888 {
3889     int target_fd = open(path, flags, 0666);
3890 
3891     if (target_fd == -1)
3892         return false;
3893 
3894     if (dup2(target_fd, fd) == -1)
3895         return false;
3896 
3897     return (close(target_fd) == -1) ? false : true;
3898 }
3899 
3900 void
3901 NativeProcessLinux::StartMonitorThread(const InitialOperation &initial_operation, Error &error)
3902 {
3903     m_monitor_up.reset(new Monitor(initial_operation, this));
3904     error = m_monitor_up->Initialize();
3905     if (error.Fail()) {
3906         m_monitor_up.reset();
3907     }
3908 }
3909 
3910 void
3911 NativeProcessLinux::StopMonitor()
3912 {
3913     StopCoordinatorThread ();
3914     m_monitor_up.reset();
3915 }
3916 
3917 Error
3918 NativeProcessLinux::StartCoordinatorThread ()
3919 {
3920     Error error;
3921     static const char *g_thread_name = "lldb.process.linux.ts_coordinator";
3922     Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3923 
3924     // Skip if thread is already running
3925     if (m_coordinator_thread.IsJoinable())
3926     {
3927         error.SetErrorString ("ThreadStateCoordinator's run loop is already running");
3928         if (log)
3929             log->Printf ("NativeProcessLinux::%s %s", __FUNCTION__, error.AsCString ());
3930         return error;
3931     }
3932 
3933     // Enable verbose logging if lldb thread logging is enabled.
3934     m_coordinator_up->LogEnableEventProcessing (log != nullptr);
3935 
3936     if (log)
3937         log->Printf ("NativeProcessLinux::%s launching ThreadStateCoordinator thread for pid %" PRIu64, __FUNCTION__, GetID ());
3938     m_coordinator_thread = ThreadLauncher::LaunchThread(g_thread_name, CoordinatorThread, this, &error);
3939     return error;
3940 }
3941 
3942 void *
3943 NativeProcessLinux::CoordinatorThread (void *arg)
3944 {
3945     Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3946 
3947     NativeProcessLinux *const process = static_cast<NativeProcessLinux*> (arg);
3948     assert (process && "null process passed to CoordinatorThread");
3949     if (!process)
3950     {
3951         if (log)
3952             log->Printf ("NativeProcessLinux::%s null process, exiting ThreadStateCoordinator processing loop", __FUNCTION__);
3953         return nullptr;
3954     }
3955 
3956     // Run the thread state coordinator loop until it is done.  This call uses
3957     // efficient waiting for an event to be ready.
3958     while (process->m_coordinator_up->ProcessNextEvent () == ThreadStateCoordinator::eventLoopResultContinue)
3959     {
3960     }
3961 
3962     if (log)
3963         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " exiting ThreadStateCoordinator processing loop due to coordinator indicating completion", __FUNCTION__, process->GetID ());
3964 
3965     return nullptr;
3966 }
3967 
3968 void
3969 NativeProcessLinux::StopCoordinatorThread()
3970 {
3971     Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3972     if (log)
3973         log->Printf ("NativeProcessLinux::%s requesting ThreadStateCoordinator stop for pid %" PRIu64, __FUNCTION__, GetID ());
3974 
3975     // Tell the coordinator we're done.  This will cause the coordinator
3976     // run loop thread to exit when the processing queue hits this message.
3977     m_coordinator_up->StopCoordinator ();
3978     m_coordinator_thread.Join (nullptr);
3979 }
3980 
3981 bool
3982 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id)
3983 {
3984     for (auto thread_sp : m_threads)
3985     {
3986         assert (thread_sp && "thread list should not contain NULL threads");
3987         if (thread_sp->GetID () == thread_id)
3988         {
3989             // We have this thread.
3990             return true;
3991         }
3992     }
3993 
3994     // We don't have this thread.
3995     return false;
3996 }
3997 
3998 NativeThreadProtocolSP
3999 NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id)
4000 {
4001     // CONSIDER organize threads by map - we can do better than linear.
4002     for (auto thread_sp : m_threads)
4003     {
4004         if (thread_sp->GetID () == thread_id)
4005             return thread_sp;
4006     }
4007 
4008     // We don't have this thread.
4009     return NativeThreadProtocolSP ();
4010 }
4011 
4012 bool
4013 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id)
4014 {
4015     Mutex::Locker locker (m_threads_mutex);
4016     for (auto it = m_threads.begin (); it != m_threads.end (); ++it)
4017     {
4018         if (*it && ((*it)->GetID () == thread_id))
4019         {
4020             m_threads.erase (it);
4021             return true;
4022         }
4023     }
4024 
4025     // Didn't find it.
4026     return false;
4027 }
4028 
4029 NativeThreadProtocolSP
4030 NativeProcessLinux::AddThread (lldb::tid_t thread_id)
4031 {
4032     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
4033 
4034     Mutex::Locker locker (m_threads_mutex);
4035 
4036     if (log)
4037     {
4038         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64,
4039                 __FUNCTION__,
4040                 GetID (),
4041                 thread_id);
4042     }
4043 
4044     assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists");
4045 
4046     // If this is the first thread, save it as the current thread
4047     if (m_threads.empty ())
4048         SetCurrentThreadID (thread_id);
4049 
4050     NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id));
4051     m_threads.push_back (thread_sp);
4052 
4053     return thread_sp;
4054 }
4055 
4056 Error
4057 NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp)
4058 {
4059     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS));
4060 
4061     Error error;
4062 
4063     // Get a linux thread pointer.
4064     if (!thread_sp)
4065     {
4066         error.SetErrorString ("null thread_sp");
4067         if (log)
4068             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
4069         return error;
4070     }
4071     std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp);
4072 
4073     // Find out the size of a breakpoint (might depend on where we are in the code).
4074     NativeRegisterContextSP context_sp = linux_thread_sp->GetRegisterContext ();
4075     if (!context_sp)
4076     {
4077         error.SetErrorString ("cannot get a NativeRegisterContext for the thread");
4078         if (log)
4079             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
4080         return error;
4081     }
4082 
4083     uint32_t breakpoint_size = 0;
4084     error = GetSoftwareBreakpointPCOffset (context_sp, breakpoint_size);
4085     if (error.Fail ())
4086     {
4087         if (log)
4088             log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ());
4089         return error;
4090     }
4091     else
4092     {
4093         if (log)
4094             log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size);
4095     }
4096 
4097     // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size.
4098     const lldb::addr_t initial_pc_addr = context_sp->GetPC ();
4099     lldb::addr_t breakpoint_addr = initial_pc_addr;
4100     if (breakpoint_size > static_cast<lldb::addr_t> (0))
4101     {
4102         // Do not allow breakpoint probe to wrap around.
4103         if (breakpoint_addr >= static_cast<lldb::addr_t> (breakpoint_size))
4104             breakpoint_addr -= static_cast<lldb::addr_t> (breakpoint_size);
4105     }
4106 
4107     // Check if we stopped because of a breakpoint.
4108     NativeBreakpointSP breakpoint_sp;
4109     error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp);
4110     if (!error.Success () || !breakpoint_sp)
4111     {
4112         // We didn't find one at a software probe location.  Nothing to do.
4113         if (log)
4114             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr);
4115         return Error ();
4116     }
4117 
4118     // If the breakpoint is not a software breakpoint, nothing to do.
4119     if (!breakpoint_sp->IsSoftwareBreakpoint ())
4120     {
4121         if (log)
4122             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr);
4123         return Error ();
4124     }
4125 
4126     //
4127     // We have a software breakpoint and need to adjust the PC.
4128     //
4129 
4130     // Sanity check.
4131     if (breakpoint_size == 0)
4132     {
4133         // Nothing to do!  How did we get here?
4134         if (log)
4135             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr);
4136         return Error ();
4137     }
4138 
4139     // Change the program counter.
4140     if (log)
4141         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_sp->GetID (), initial_pc_addr, breakpoint_addr);
4142 
4143     error = context_sp->SetPC (breakpoint_addr);
4144     if (error.Fail ())
4145     {
4146         if (log)
4147             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_sp->GetID (), error.AsCString ());
4148         return error;
4149     }
4150 
4151     return error;
4152 }
4153 
4154 void
4155 NativeProcessLinux::NotifyThreadCreateStopped (lldb::tid_t tid)
4156 {
4157     const bool is_stopped = true;
4158     m_coordinator_up->NotifyThreadCreate (tid, is_stopped, CoordinatorErrorHandler);
4159 }
4160 
4161 void
4162 NativeProcessLinux::NotifyThreadDeath (lldb::tid_t tid)
4163 {
4164     m_coordinator_up->NotifyThreadDeath (tid, CoordinatorErrorHandler);
4165 }
4166 
4167 void
4168 NativeProcessLinux::NotifyThreadStop (lldb::tid_t tid)
4169 {
4170     m_coordinator_up->NotifyThreadStop (tid, false, CoordinatorErrorHandler);
4171 }
4172 
4173 void
4174 NativeProcessLinux::CallAfterRunningThreadsStop (lldb::tid_t tid,
4175                                                  const std::function<void (lldb::tid_t tid)> &call_after_function)
4176 {
4177     Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
4178     if (log)
4179         log->Printf("NativeProcessLinux::%s tid %" PRIu64, __FUNCTION__, tid);
4180 
4181     const lldb::pid_t pid = GetID ();
4182     m_coordinator_up->CallAfterRunningThreadsStop (tid,
4183                                                    [=](lldb::tid_t request_stop_tid)
4184                                                    {
4185                                                        return RequestThreadStop(pid, request_stop_tid);
4186                                                    },
4187                                                    call_after_function,
4188                                                    CoordinatorErrorHandler);
4189 }
4190 
4191 void
4192 NativeProcessLinux::CallAfterRunningThreadsStopWithSkipTID (lldb::tid_t deferred_signal_tid,
4193                                                             lldb::tid_t skip_stop_request_tid,
4194                                                             const std::function<void (lldb::tid_t tid)> &call_after_function)
4195 {
4196     Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
4197     if (log)
4198         log->Printf("NativeProcessLinux::%s deferred_signal_tid %" PRIu64 ", skip_stop_request_tid %" PRIu64, __FUNCTION__, deferred_signal_tid, skip_stop_request_tid);
4199 
4200     const lldb::pid_t pid = GetID ();
4201     m_coordinator_up->CallAfterRunningThreadsStopWithSkipTIDs (deferred_signal_tid,
4202                                                                skip_stop_request_tid != LLDB_INVALID_THREAD_ID ? ThreadStateCoordinator::ThreadIDSet {skip_stop_request_tid} : ThreadStateCoordinator::ThreadIDSet (),
4203                                                                [=](lldb::tid_t request_stop_tid)
4204                                                                {
4205                                                                    return RequestThreadStop(pid, request_stop_tid);
4206                                                                },
4207                                                                call_after_function,
4208                                                                CoordinatorErrorHandler);
4209 }
4210 
4211 Error
4212 NativeProcessLinux::RequestThreadStop (const lldb::pid_t pid, const lldb::tid_t tid)
4213 {
4214     Log* log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
4215     if (log)
4216         log->Printf ("NativeProcessLinux::%s requesting thread stop(pid: %" PRIu64 ", tid: %" PRIu64 ")", __FUNCTION__, pid, tid);
4217 
4218     Error err;
4219     errno = 0;
4220     if (::tgkill (pid, tid, SIGSTOP) != 0)
4221     {
4222         err.SetErrorToErrno ();
4223         if (log)
4224             log->Printf ("NativeProcessLinux::%s tgkill(%" PRIu64 ", %" PRIu64 ", SIGSTOP) failed: %s", __FUNCTION__, pid, tid, err.AsCString ());
4225     }
4226 
4227     return err;
4228 }
4229 
4230 Error
4231 NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec)
4232 {
4233     char maps_file_name[32];
4234     snprintf(maps_file_name, sizeof(maps_file_name), "/proc/%" PRIu64 "/maps", GetID());
4235 
4236     FileSpec maps_file_spec(maps_file_name, false);
4237     if (!maps_file_spec.Exists()) {
4238         file_spec.Clear();
4239         return Error("/proc/%" PRIu64 "/maps file doesn't exists!", GetID());
4240     }
4241 
4242     FileSpec module_file_spec(module_path, true);
4243 
4244     std::ifstream maps_file(maps_file_name);
4245     std::string maps_data_str((std::istreambuf_iterator<char>(maps_file)), std::istreambuf_iterator<char>());
4246     StringRef maps_data(maps_data_str.c_str());
4247 
4248     while (!maps_data.empty())
4249     {
4250         StringRef maps_row;
4251         std::tie(maps_row, maps_data) = maps_data.split('\n');
4252 
4253         SmallVector<StringRef, 16> maps_columns;
4254         maps_row.split(maps_columns, StringRef(" "), -1, false);
4255 
4256         if (maps_columns.size() >= 6)
4257         {
4258             file_spec.SetFile(maps_columns[5].str().c_str(), false);
4259             if (file_spec.GetFilename() == module_file_spec.GetFilename())
4260                 return Error();
4261         }
4262     }
4263 
4264     file_spec.Clear();
4265     return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
4266                  module_file_spec.GetFilename().AsCString(), GetID());
4267 }
4268