1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/lldb-python.h" 11 12 #include "NativeProcessLinux.h" 13 14 // C Includes 15 #include <errno.h> 16 #include <poll.h> 17 #include <string.h> 18 #include <stdint.h> 19 #include <unistd.h> 20 21 // C++ Includes 22 #include <fstream> 23 #include <string> 24 25 // Other libraries and framework includes 26 #include "lldb/Core/Debugger.h" 27 #include "lldb/Core/EmulateInstruction.h" 28 #include "lldb/Core/Error.h" 29 #include "lldb/Core/Module.h" 30 #include "lldb/Core/ModuleSpec.h" 31 #include "lldb/Core/RegisterValue.h" 32 #include "lldb/Core/Scalar.h" 33 #include "lldb/Core/State.h" 34 #include "lldb/Host/common/NativeBreakpoint.h" 35 #include "lldb/Host/common/NativeRegisterContext.h" 36 #include "lldb/Host/Host.h" 37 #include "lldb/Host/HostInfo.h" 38 #include "lldb/Host/HostNativeThread.h" 39 #include "lldb/Host/ThreadLauncher.h" 40 #include "lldb/Symbol/ObjectFile.h" 41 #include "lldb/Target/Process.h" 42 #include "lldb/Target/ProcessLaunchInfo.h" 43 #include "lldb/Utility/LLDBAssert.h" 44 #include "lldb/Utility/PseudoTerminal.h" 45 46 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 47 #include "Plugins/Process/Utility/LinuxSignals.h" 48 #include "Utility/StringExtractor.h" 49 #include "NativeThreadLinux.h" 50 #include "ProcFileReader.h" 51 #include "Procfs.h" 52 #include "ThreadStateCoordinator.h" 53 54 // System includes - They have to be included after framework includes because they define some 55 // macros which collide with variable names in other modules 56 #include <linux/unistd.h> 57 #include <sys/personality.h> 58 #include <sys/ptrace.h> 59 #include <sys/socket.h> 60 #include <sys/signalfd.h> 61 #include <sys/syscall.h> 62 #include <sys/types.h> 63 #include <sys/uio.h> 64 #include <sys/user.h> 65 #include <sys/wait.h> 66 67 #if defined (__arm64__) || defined (__aarch64__) 68 // NT_PRSTATUS and NT_FPREGSET definition 69 #include <elf.h> 70 #endif 71 72 #ifdef __ANDROID__ 73 #define __ptrace_request int 74 #define PT_DETACH PTRACE_DETACH 75 #endif 76 77 #define DEBUG_PTRACE_MAXBYTES 20 78 79 // Support ptrace extensions even when compiled without required kernel support 80 #ifndef PT_GETREGS 81 #ifndef PTRACE_GETREGS 82 #define PTRACE_GETREGS 12 83 #endif 84 #endif 85 #ifndef PT_SETREGS 86 #ifndef PTRACE_SETREGS 87 #define PTRACE_SETREGS 13 88 #endif 89 #endif 90 #ifndef PT_GETFPREGS 91 #ifndef PTRACE_GETFPREGS 92 #define PTRACE_GETFPREGS 14 93 #endif 94 #endif 95 #ifndef PT_SETFPREGS 96 #ifndef PTRACE_SETFPREGS 97 #define PTRACE_SETFPREGS 15 98 #endif 99 #endif 100 #ifndef PTRACE_GETREGSET 101 #define PTRACE_GETREGSET 0x4204 102 #endif 103 #ifndef PTRACE_SETREGSET 104 #define PTRACE_SETREGSET 0x4205 105 #endif 106 #ifndef PTRACE_GET_THREAD_AREA 107 #define PTRACE_GET_THREAD_AREA 25 108 #endif 109 #ifndef PTRACE_ARCH_PRCTL 110 #define PTRACE_ARCH_PRCTL 30 111 #endif 112 #ifndef ARCH_GET_FS 113 #define ARCH_SET_GS 0x1001 114 #define ARCH_SET_FS 0x1002 115 #define ARCH_GET_FS 0x1003 116 #define ARCH_GET_GS 0x1004 117 #endif 118 119 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS 0xffffffff 120 121 // Support hardware breakpoints in case it has not been defined 122 #ifndef TRAP_HWBKPT 123 #define TRAP_HWBKPT 4 124 #endif 125 126 // Try to define a macro to encapsulate the tgkill syscall 127 // fall back on kill() if tgkill isn't available 128 #define tgkill(pid, tid, sig) \ 129 syscall(SYS_tgkill, static_cast<::pid_t>(pid), static_cast<::pid_t>(tid), sig) 130 131 // We disable the tracing of ptrace calls for integration builds to 132 // avoid the additional indirection and checks. 133 #ifndef LLDB_CONFIGURATION_BUILDANDINTEGRATION 134 #define PTRACE(req, pid, addr, data, data_size, error) \ 135 PtraceWrapper((req), (pid), (addr), (data), (data_size), (error), #req, __FILE__, __LINE__) 136 #else 137 #define PTRACE(req, pid, addr, data, data_size, error) \ 138 PtraceWrapper((req), (pid), (addr), (data), (data_size), (error)) 139 #endif 140 141 using namespace lldb; 142 using namespace lldb_private; 143 using namespace lldb_private::process_linux; 144 using namespace llvm; 145 146 // Private bits we only need internally. 147 namespace 148 { 149 const UnixSignals& 150 GetUnixSignals () 151 { 152 static process_linux::LinuxSignals signals; 153 return signals; 154 } 155 156 ThreadStateCoordinator::LogFunction 157 GetThreadLoggerFunction () 158 { 159 return [](const char *format, va_list args) 160 { 161 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 162 if (log) 163 log->VAPrintf (format, args); 164 }; 165 } 166 167 void 168 CoordinatorErrorHandler (const std::string &error_message) 169 { 170 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 171 if (log) 172 log->Printf ("NativeProcessLinux::%s %s", __FUNCTION__, error_message.c_str ()); 173 assert (false && "ThreadStateCoordinator error reported"); 174 } 175 176 Error 177 ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch) 178 { 179 // Grab process info for the running process. 180 ProcessInstanceInfo process_info; 181 if (!platform.GetProcessInfo (pid, process_info)) 182 return Error("failed to get process info"); 183 184 // Resolve the executable module. 185 ModuleSP exe_module_sp; 186 ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture()); 187 FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ()); 188 Error error = platform.ResolveExecutable( 189 exe_module_spec, 190 exe_module_sp, 191 executable_search_paths.GetSize () ? &executable_search_paths : NULL); 192 193 if (!error.Success ()) 194 return error; 195 196 // Check if we've got our architecture from the exe_module. 197 arch = exe_module_sp->GetArchitecture (); 198 if (arch.IsValid ()) 199 return Error(); 200 else 201 return Error("failed to retrieve a valid architecture from the exe module"); 202 } 203 204 void 205 DisplayBytes (StreamString &s, void *bytes, uint32_t count) 206 { 207 uint8_t *ptr = (uint8_t *)bytes; 208 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 209 for(uint32_t i=0; i<loop_count; i++) 210 { 211 s.Printf ("[%x]", *ptr); 212 ptr++; 213 } 214 } 215 216 void 217 PtraceDisplayBytes(int &req, void *data, size_t data_size) 218 { 219 StreamString buf; 220 Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet ( 221 POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE)); 222 223 if (verbose_log) 224 { 225 switch(req) 226 { 227 case PTRACE_POKETEXT: 228 { 229 DisplayBytes(buf, &data, 8); 230 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData()); 231 break; 232 } 233 case PTRACE_POKEDATA: 234 { 235 DisplayBytes(buf, &data, 8); 236 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData()); 237 break; 238 } 239 case PTRACE_POKEUSER: 240 { 241 DisplayBytes(buf, &data, 8); 242 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData()); 243 break; 244 } 245 case PTRACE_SETREGS: 246 { 247 DisplayBytes(buf, data, data_size); 248 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData()); 249 break; 250 } 251 case PTRACE_SETFPREGS: 252 { 253 DisplayBytes(buf, data, data_size); 254 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData()); 255 break; 256 } 257 case PTRACE_SETSIGINFO: 258 { 259 DisplayBytes(buf, data, sizeof(siginfo_t)); 260 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData()); 261 break; 262 } 263 case PTRACE_SETREGSET: 264 { 265 // Extract iov_base from data, which is a pointer to the struct IOVEC 266 DisplayBytes(buf, *(void **)data, data_size); 267 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData()); 268 break; 269 } 270 default: 271 { 272 } 273 } 274 } 275 } 276 277 // Wrapper for ptrace to catch errors and log calls. 278 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) 279 long 280 PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error, 281 const char* reqName, const char* file, int line) 282 { 283 long int result; 284 285 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE)); 286 287 PtraceDisplayBytes(req, data, data_size); 288 289 error.Clear(); 290 errno = 0; 291 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 292 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data); 293 else 294 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data); 295 296 if (result == -1) 297 error.SetErrorToErrno(); 298 299 if (log) 300 log->Printf("ptrace(%s, %" PRIu64 ", %p, %p, %zu)=%lX called from file %s line %d", 301 reqName, pid, addr, data, data_size, result, file, line); 302 303 PtraceDisplayBytes(req, data, data_size); 304 305 if (log && error.GetError() != 0) 306 { 307 const char* str; 308 switch (error.GetError()) 309 { 310 case ESRCH: str = "ESRCH"; break; 311 case EINVAL: str = "EINVAL"; break; 312 case EBUSY: str = "EBUSY"; break; 313 case EPERM: str = "EPERM"; break; 314 default: str = error.AsCString(); 315 } 316 log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str); 317 } 318 319 return result; 320 } 321 322 #ifdef LLDB_CONFIGURATION_BUILDANDINTEGRATION 323 // Wrapper for ptrace when logging is not required. 324 // Sets errno to 0 prior to calling ptrace. 325 long 326 PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error) 327 { 328 long result = 0; 329 330 error.Clear(); 331 errno = 0; 332 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 333 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data); 334 else 335 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data); 336 337 if (result == -1) 338 error.SetErrorToErrno(); 339 return result; 340 } 341 #endif 342 343 //------------------------------------------------------------------------------ 344 // Static implementations of NativeProcessLinux::ReadMemory and 345 // NativeProcessLinux::WriteMemory. This enables mutual recursion between these 346 // functions without needed to go thru the thread funnel. 347 348 lldb::addr_t 349 DoReadMemory ( 350 lldb::pid_t pid, 351 lldb::addr_t vm_addr, 352 void *buf, 353 lldb::addr_t size, 354 Error &error) 355 { 356 // ptrace word size is determined by the host, not the child 357 static const unsigned word_size = sizeof(void*); 358 unsigned char *dst = static_cast<unsigned char*>(buf); 359 lldb::addr_t bytes_read; 360 lldb::addr_t remainder; 361 long data; 362 363 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); 364 if (log) 365 ProcessPOSIXLog::IncNestLevel(); 366 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) 367 log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__, 368 pid, word_size, (void*)vm_addr, buf, size); 369 370 assert(sizeof(data) >= word_size); 371 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) 372 { 373 data = PTRACE(PTRACE_PEEKDATA, pid, (void*)vm_addr, nullptr, 0, error); 374 if (error.Fail()) 375 { 376 if (log) 377 ProcessPOSIXLog::DecNestLevel(); 378 return bytes_read; 379 } 380 381 remainder = size - bytes_read; 382 remainder = remainder > word_size ? word_size : remainder; 383 384 // Copy the data into our buffer 385 for (unsigned i = 0; i < remainder; ++i) 386 dst[i] = ((data >> i*8) & 0xFF); 387 388 if (log && ProcessPOSIXLog::AtTopNestLevel() && 389 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 390 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 391 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 392 { 393 uintptr_t print_dst = 0; 394 // Format bytes from data by moving into print_dst for log output 395 for (unsigned i = 0; i < remainder; ++i) 396 print_dst |= (((data >> i*8) & 0xFF) << i*8); 397 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 398 (void*)vm_addr, print_dst, (unsigned long)data); 399 } 400 401 vm_addr += word_size; 402 dst += word_size; 403 } 404 405 if (log) 406 ProcessPOSIXLog::DecNestLevel(); 407 return bytes_read; 408 } 409 410 lldb::addr_t 411 DoWriteMemory( 412 lldb::pid_t pid, 413 lldb::addr_t vm_addr, 414 const void *buf, 415 lldb::addr_t size, 416 Error &error) 417 { 418 // ptrace word size is determined by the host, not the child 419 static const unsigned word_size = sizeof(void*); 420 const unsigned char *src = static_cast<const unsigned char*>(buf); 421 lldb::addr_t bytes_written = 0; 422 lldb::addr_t remainder; 423 424 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); 425 if (log) 426 ProcessPOSIXLog::IncNestLevel(); 427 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) 428 log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__, 429 pid, word_size, (void*)vm_addr, buf, size); 430 431 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) 432 { 433 remainder = size - bytes_written; 434 remainder = remainder > word_size ? word_size : remainder; 435 436 if (remainder == word_size) 437 { 438 unsigned long data = 0; 439 assert(sizeof(data) >= word_size); 440 for (unsigned i = 0; i < word_size; ++i) 441 data |= (unsigned long)src[i] << i*8; 442 443 if (log && ProcessPOSIXLog::AtTopNestLevel() && 444 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 445 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 446 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 447 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 448 (void*)vm_addr, *(const unsigned long*)src, data); 449 450 if (PTRACE(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data, 0, error)) 451 { 452 if (log) 453 ProcessPOSIXLog::DecNestLevel(); 454 return bytes_written; 455 } 456 } 457 else 458 { 459 unsigned char buff[8]; 460 if (DoReadMemory(pid, vm_addr, 461 buff, word_size, error) != word_size) 462 { 463 if (log) 464 ProcessPOSIXLog::DecNestLevel(); 465 return bytes_written; 466 } 467 468 memcpy(buff, src, remainder); 469 470 if (DoWriteMemory(pid, vm_addr, 471 buff, word_size, error) != word_size) 472 { 473 if (log) 474 ProcessPOSIXLog::DecNestLevel(); 475 return bytes_written; 476 } 477 478 if (log && ProcessPOSIXLog::AtTopNestLevel() && 479 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 480 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 481 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 482 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 483 (void*)vm_addr, *(const unsigned long*)src, *(unsigned long*)buff); 484 } 485 486 vm_addr += word_size; 487 src += word_size; 488 } 489 if (log) 490 ProcessPOSIXLog::DecNestLevel(); 491 return bytes_written; 492 } 493 494 //------------------------------------------------------------------------------ 495 /// @class Operation 496 /// @brief Represents a NativeProcessLinux operation. 497 /// 498 /// Under Linux, it is not possible to ptrace() from any other thread but the 499 /// one that spawned or attached to the process from the start. Therefore, when 500 /// a NativeProcessLinux is asked to deliver or change the state of an inferior 501 /// process the operation must be "funneled" to a specific thread to perform the 502 /// task. The Operation class provides an abstract base for all services the 503 /// NativeProcessLinux must perform via the single virtual function Execute, thus 504 /// encapsulating the code that needs to run in the privileged context. 505 class Operation 506 { 507 public: 508 Operation () : m_error() { } 509 510 virtual 511 ~Operation() {} 512 513 virtual void 514 Execute (NativeProcessLinux *process) = 0; 515 516 const Error & 517 GetError () const { return m_error; } 518 519 protected: 520 Error m_error; 521 }; 522 523 //------------------------------------------------------------------------------ 524 /// @class ReadOperation 525 /// @brief Implements NativeProcessLinux::ReadMemory. 526 class ReadOperation : public Operation 527 { 528 public: 529 ReadOperation ( 530 lldb::addr_t addr, 531 void *buff, 532 lldb::addr_t size, 533 lldb::addr_t &result) : 534 Operation (), 535 m_addr (addr), 536 m_buff (buff), 537 m_size (size), 538 m_result (result) 539 { 540 } 541 542 void Execute (NativeProcessLinux *process) override; 543 544 private: 545 lldb::addr_t m_addr; 546 void *m_buff; 547 lldb::addr_t m_size; 548 lldb::addr_t &m_result; 549 }; 550 551 void 552 ReadOperation::Execute (NativeProcessLinux *process) 553 { 554 m_result = DoReadMemory (process->GetID (), m_addr, m_buff, m_size, m_error); 555 } 556 557 //------------------------------------------------------------------------------ 558 /// @class WriteOperation 559 /// @brief Implements NativeProcessLinux::WriteMemory. 560 class WriteOperation : public Operation 561 { 562 public: 563 WriteOperation ( 564 lldb::addr_t addr, 565 const void *buff, 566 lldb::addr_t size, 567 lldb::addr_t &result) : 568 Operation (), 569 m_addr (addr), 570 m_buff (buff), 571 m_size (size), 572 m_result (result) 573 { 574 } 575 576 void Execute (NativeProcessLinux *process) override; 577 578 private: 579 lldb::addr_t m_addr; 580 const void *m_buff; 581 lldb::addr_t m_size; 582 lldb::addr_t &m_result; 583 }; 584 585 void 586 WriteOperation::Execute(NativeProcessLinux *process) 587 { 588 m_result = DoWriteMemory (process->GetID (), m_addr, m_buff, m_size, m_error); 589 } 590 591 //------------------------------------------------------------------------------ 592 /// @class ReadRegOperation 593 /// @brief Implements NativeProcessLinux::ReadRegisterValue. 594 class ReadRegOperation : public Operation 595 { 596 public: 597 ReadRegOperation(lldb::tid_t tid, uint32_t offset, const char *reg_name, 598 RegisterValue &value) 599 : m_tid(tid), 600 m_offset(static_cast<uintptr_t> (offset)), 601 m_reg_name(reg_name), 602 m_value(value) 603 { } 604 605 void Execute(NativeProcessLinux *monitor) override; 606 607 private: 608 lldb::tid_t m_tid; 609 uintptr_t m_offset; 610 const char *m_reg_name; 611 RegisterValue &m_value; 612 }; 613 614 void 615 ReadRegOperation::Execute(NativeProcessLinux *monitor) 616 { 617 #if defined (__arm64__) || defined (__aarch64__) 618 if (m_offset > sizeof(struct user_pt_regs)) 619 { 620 uintptr_t offset = m_offset - sizeof(struct user_pt_regs); 621 if (offset > sizeof(struct user_fpsimd_state)) 622 { 623 m_error.SetErrorString("invalid offset value"); 624 return; 625 } 626 elf_fpregset_t regs; 627 int regset = NT_FPREGSET; 628 struct iovec ioVec; 629 630 ioVec.iov_base = ®s; 631 ioVec.iov_len = sizeof regs; 632 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 633 if (m_error.Success()) 634 { 635 ArchSpec arch; 636 if (monitor->GetArchitecture(arch)) 637 m_value.SetBytes((void *)(((unsigned char *)(®s)) + offset), 16, arch.GetByteOrder()); 638 else 639 m_error.SetErrorString("failed to get architecture"); 640 } 641 } 642 else 643 { 644 elf_gregset_t regs; 645 int regset = NT_PRSTATUS; 646 struct iovec ioVec; 647 648 ioVec.iov_base = ®s; 649 ioVec.iov_len = sizeof regs; 650 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 651 if (m_error.Success()) 652 { 653 ArchSpec arch; 654 if (monitor->GetArchitecture(arch)) 655 m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, arch.GetByteOrder()); 656 else 657 m_error.SetErrorString("failed to get architecture"); 658 } 659 } 660 #elif defined (__mips__) 661 elf_gregset_t regs; 662 PTRACE(PTRACE_GETREGS, m_tid, NULL, ®s, sizeof regs, m_error); 663 if (m_error.Success()) 664 { 665 lldb_private::ArchSpec arch; 666 if (monitor->GetArchitecture(arch)) 667 m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, arch.GetByteOrder()); 668 else 669 m_error.SetErrorString("failed to get architecture"); 670 } 671 #else 672 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS)); 673 674 lldb::addr_t data = static_cast<unsigned long>(PTRACE(PTRACE_PEEKUSER, m_tid, (void*)m_offset, nullptr, 0, m_error)); 675 if (m_error.Success()) 676 m_value = data; 677 678 if (log) 679 log->Printf ("NativeProcessLinux::%s() reg %s: 0x%" PRIx64, __FUNCTION__, 680 m_reg_name, data); 681 #endif 682 } 683 684 //------------------------------------------------------------------------------ 685 /// @class WriteRegOperation 686 /// @brief Implements NativeProcessLinux::WriteRegisterValue. 687 class WriteRegOperation : public Operation 688 { 689 public: 690 WriteRegOperation(lldb::tid_t tid, unsigned offset, const char *reg_name, 691 const RegisterValue &value) 692 : m_tid(tid), 693 m_offset(offset), 694 m_reg_name(reg_name), 695 m_value(value) 696 { } 697 698 void Execute(NativeProcessLinux *monitor) override; 699 700 private: 701 lldb::tid_t m_tid; 702 uintptr_t m_offset; 703 const char *m_reg_name; 704 const RegisterValue &m_value; 705 }; 706 707 void 708 WriteRegOperation::Execute(NativeProcessLinux *monitor) 709 { 710 #if defined (__arm64__) || defined (__aarch64__) 711 if (m_offset > sizeof(struct user_pt_regs)) 712 { 713 uintptr_t offset = m_offset - sizeof(struct user_pt_regs); 714 if (offset > sizeof(struct user_fpsimd_state)) 715 { 716 m_error.SetErrorString("invalid offset value"); 717 return; 718 } 719 elf_fpregset_t regs; 720 int regset = NT_FPREGSET; 721 struct iovec ioVec; 722 723 ioVec.iov_base = ®s; 724 ioVec.iov_len = sizeof regs; 725 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 726 if (m_error.Success()) 727 { 728 ::memcpy((void *)(((unsigned char *)(®s)) + offset), m_value.GetBytes(), 16); 729 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 730 } 731 } 732 else 733 { 734 elf_gregset_t regs; 735 int regset = NT_PRSTATUS; 736 struct iovec ioVec; 737 738 ioVec.iov_base = ®s; 739 ioVec.iov_len = sizeof regs; 740 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 741 if (m_error.Success()) 742 { 743 ::memcpy((void *)(((unsigned char *)(®s)) + m_offset), m_value.GetBytes(), 8); 744 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 745 } 746 } 747 #elif defined (__mips__) 748 elf_gregset_t regs; 749 PTRACE(PTRACE_GETREGS, m_tid, NULL, ®s, sizeof regs, m_error); 750 if (m_error.Success()) 751 { 752 ::memcpy((void *)(((unsigned char *)(®s)) + m_offset), m_value.GetBytes(), 8); 753 PTRACE(PTRACE_SETREGS, m_tid, NULL, ®s, sizeof regs, m_error); 754 } 755 #else 756 void* buf; 757 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS)); 758 759 buf = (void*) m_value.GetAsUInt64(); 760 761 if (log) 762 log->Printf ("NativeProcessLinux::%s() reg %s: %p", __FUNCTION__, m_reg_name, buf); 763 PTRACE(PTRACE_POKEUSER, m_tid, (void*)m_offset, buf, 0, m_error); 764 #endif 765 } 766 767 //------------------------------------------------------------------------------ 768 /// @class ReadGPROperation 769 /// @brief Implements NativeProcessLinux::ReadGPR. 770 class ReadGPROperation : public Operation 771 { 772 public: 773 ReadGPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 774 : m_tid(tid), m_buf(buf), m_buf_size(buf_size) 775 { } 776 777 void Execute(NativeProcessLinux *monitor) override; 778 779 private: 780 lldb::tid_t m_tid; 781 void *m_buf; 782 size_t m_buf_size; 783 }; 784 785 void 786 ReadGPROperation::Execute(NativeProcessLinux *monitor) 787 { 788 #if defined (__arm64__) || defined (__aarch64__) 789 int regset = NT_PRSTATUS; 790 struct iovec ioVec; 791 792 ioVec.iov_base = m_buf; 793 ioVec.iov_len = m_buf_size; 794 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); 795 #else 796 PTRACE(PTRACE_GETREGS, m_tid, nullptr, m_buf, m_buf_size, m_error); 797 #endif 798 } 799 800 //------------------------------------------------------------------------------ 801 /// @class ReadFPROperation 802 /// @brief Implements NativeProcessLinux::ReadFPR. 803 class ReadFPROperation : public Operation 804 { 805 public: 806 ReadFPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 807 : m_tid(tid), 808 m_buf(buf), 809 m_buf_size(buf_size) 810 { } 811 812 void Execute(NativeProcessLinux *monitor) override; 813 814 private: 815 lldb::tid_t m_tid; 816 void *m_buf; 817 size_t m_buf_size; 818 }; 819 820 void 821 ReadFPROperation::Execute(NativeProcessLinux *monitor) 822 { 823 #if defined (__arm64__) || defined (__aarch64__) 824 int regset = NT_FPREGSET; 825 struct iovec ioVec; 826 827 ioVec.iov_base = m_buf; 828 ioVec.iov_len = m_buf_size; 829 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); 830 #else 831 PTRACE(PTRACE_GETFPREGS, m_tid, nullptr, m_buf, m_buf_size, m_error); 832 #endif 833 } 834 835 //------------------------------------------------------------------------------ 836 /// @class ReadRegisterSetOperation 837 /// @brief Implements NativeProcessLinux::ReadRegisterSet. 838 class ReadRegisterSetOperation : public Operation 839 { 840 public: 841 ReadRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 842 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset) 843 { } 844 845 void Execute(NativeProcessLinux *monitor) override; 846 847 private: 848 lldb::tid_t m_tid; 849 void *m_buf; 850 size_t m_buf_size; 851 const unsigned int m_regset; 852 }; 853 854 void 855 ReadRegisterSetOperation::Execute(NativeProcessLinux *monitor) 856 { 857 PTRACE(PTRACE_GETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error); 858 } 859 860 //------------------------------------------------------------------------------ 861 /// @class WriteGPROperation 862 /// @brief Implements NativeProcessLinux::WriteGPR. 863 class WriteGPROperation : public Operation 864 { 865 public: 866 WriteGPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 867 : m_tid(tid), m_buf(buf), m_buf_size(buf_size) 868 { } 869 870 void Execute(NativeProcessLinux *monitor) override; 871 872 private: 873 lldb::tid_t m_tid; 874 void *m_buf; 875 size_t m_buf_size; 876 }; 877 878 void 879 WriteGPROperation::Execute(NativeProcessLinux *monitor) 880 { 881 #if defined (__arm64__) || defined (__aarch64__) 882 int regset = NT_PRSTATUS; 883 struct iovec ioVec; 884 885 ioVec.iov_base = m_buf; 886 ioVec.iov_len = m_buf_size; 887 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); 888 #else 889 PTRACE(PTRACE_SETREGS, m_tid, NULL, m_buf, m_buf_size, m_error); 890 #endif 891 } 892 893 //------------------------------------------------------------------------------ 894 /// @class WriteFPROperation 895 /// @brief Implements NativeProcessLinux::WriteFPR. 896 class WriteFPROperation : public Operation 897 { 898 public: 899 WriteFPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 900 : m_tid(tid), m_buf(buf), m_buf_size(buf_size) 901 { } 902 903 void Execute(NativeProcessLinux *monitor) override; 904 905 private: 906 lldb::tid_t m_tid; 907 void *m_buf; 908 size_t m_buf_size; 909 }; 910 911 void 912 WriteFPROperation::Execute(NativeProcessLinux *monitor) 913 { 914 #if defined (__arm64__) || defined (__aarch64__) 915 int regset = NT_FPREGSET; 916 struct iovec ioVec; 917 918 ioVec.iov_base = m_buf; 919 ioVec.iov_len = m_buf_size; 920 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); 921 #else 922 PTRACE(PTRACE_SETFPREGS, m_tid, NULL, m_buf, m_buf_size, m_error); 923 #endif 924 } 925 926 //------------------------------------------------------------------------------ 927 /// @class WriteRegisterSetOperation 928 /// @brief Implements NativeProcessLinux::WriteRegisterSet. 929 class WriteRegisterSetOperation : public Operation 930 { 931 public: 932 WriteRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 933 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset) 934 { } 935 936 void Execute(NativeProcessLinux *monitor) override; 937 938 private: 939 lldb::tid_t m_tid; 940 void *m_buf; 941 size_t m_buf_size; 942 const unsigned int m_regset; 943 }; 944 945 void 946 WriteRegisterSetOperation::Execute(NativeProcessLinux *monitor) 947 { 948 PTRACE(PTRACE_SETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error); 949 } 950 951 //------------------------------------------------------------------------------ 952 /// @class ResumeOperation 953 /// @brief Implements NativeProcessLinux::Resume. 954 class ResumeOperation : public Operation 955 { 956 public: 957 ResumeOperation(lldb::tid_t tid, uint32_t signo) : 958 m_tid(tid), m_signo(signo) { } 959 960 void Execute(NativeProcessLinux *monitor) override; 961 962 private: 963 lldb::tid_t m_tid; 964 uint32_t m_signo; 965 }; 966 967 void 968 ResumeOperation::Execute(NativeProcessLinux *monitor) 969 { 970 intptr_t data = 0; 971 972 if (m_signo != LLDB_INVALID_SIGNAL_NUMBER) 973 data = m_signo; 974 975 PTRACE(PTRACE_CONT, m_tid, nullptr, (void*)data, 0, m_error); 976 if (m_error.Fail()) 977 { 978 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 979 980 if (log) 981 log->Printf ("ResumeOperation (%" PRIu64 ") failed: %s", m_tid, m_error.AsCString()); 982 } 983 } 984 985 //------------------------------------------------------------------------------ 986 /// @class SingleStepOperation 987 /// @brief Implements NativeProcessLinux::SingleStep. 988 class SingleStepOperation : public Operation 989 { 990 public: 991 SingleStepOperation(lldb::tid_t tid, uint32_t signo) 992 : m_tid(tid), m_signo(signo) { } 993 994 void Execute(NativeProcessLinux *monitor) override; 995 996 private: 997 lldb::tid_t m_tid; 998 uint32_t m_signo; 999 }; 1000 1001 void 1002 SingleStepOperation::Execute(NativeProcessLinux *monitor) 1003 { 1004 intptr_t data = 0; 1005 1006 if (m_signo != LLDB_INVALID_SIGNAL_NUMBER) 1007 data = m_signo; 1008 1009 PTRACE(PTRACE_SINGLESTEP, m_tid, nullptr, (void*)data, 0, m_error); 1010 } 1011 1012 //------------------------------------------------------------------------------ 1013 /// @class SiginfoOperation 1014 /// @brief Implements NativeProcessLinux::GetSignalInfo. 1015 class SiginfoOperation : public Operation 1016 { 1017 public: 1018 SiginfoOperation(lldb::tid_t tid, void *info) 1019 : m_tid(tid), m_info(info) { } 1020 1021 void Execute(NativeProcessLinux *monitor) override; 1022 1023 private: 1024 lldb::tid_t m_tid; 1025 void *m_info; 1026 }; 1027 1028 void 1029 SiginfoOperation::Execute(NativeProcessLinux *monitor) 1030 { 1031 PTRACE(PTRACE_GETSIGINFO, m_tid, nullptr, m_info, 0, m_error); 1032 } 1033 1034 //------------------------------------------------------------------------------ 1035 /// @class EventMessageOperation 1036 /// @brief Implements NativeProcessLinux::GetEventMessage. 1037 class EventMessageOperation : public Operation 1038 { 1039 public: 1040 EventMessageOperation(lldb::tid_t tid, unsigned long *message) 1041 : m_tid(tid), m_message(message) { } 1042 1043 void Execute(NativeProcessLinux *monitor) override; 1044 1045 private: 1046 lldb::tid_t m_tid; 1047 unsigned long *m_message; 1048 }; 1049 1050 void 1051 EventMessageOperation::Execute(NativeProcessLinux *monitor) 1052 { 1053 PTRACE(PTRACE_GETEVENTMSG, m_tid, nullptr, m_message, 0, m_error); 1054 } 1055 1056 class DetachOperation : public Operation 1057 { 1058 public: 1059 DetachOperation(lldb::tid_t tid) : m_tid(tid) { } 1060 1061 void Execute(NativeProcessLinux *monitor) override; 1062 1063 private: 1064 lldb::tid_t m_tid; 1065 }; 1066 1067 void 1068 DetachOperation::Execute(NativeProcessLinux *monitor) 1069 { 1070 PTRACE(PTRACE_DETACH, m_tid, nullptr, 0, 0, m_error); 1071 } 1072 1073 } // end of anonymous namespace 1074 1075 // Simple helper function to ensure flags are enabled on the given file 1076 // descriptor. 1077 static Error 1078 EnsureFDFlags(int fd, int flags) 1079 { 1080 Error error; 1081 1082 int status = fcntl(fd, F_GETFL); 1083 if (status == -1) 1084 { 1085 error.SetErrorToErrno(); 1086 return error; 1087 } 1088 1089 if (fcntl(fd, F_SETFL, status | flags) == -1) 1090 { 1091 error.SetErrorToErrno(); 1092 return error; 1093 } 1094 1095 return error; 1096 } 1097 1098 // This class encapsulates the privileged thread which performs all ptrace and wait operations on 1099 // the inferior. The thread consists of a main loop which waits for events and processes them 1100 // - SIGCHLD (delivered over a signalfd file descriptor): These signals notify us of events in 1101 // the inferior process. Upon receiving this signal we do a waitpid to get more information 1102 // and dispatch to NativeProcessLinux::MonitorCallback. 1103 // - requests for ptrace operations: These initiated via the DoOperation method, which funnels 1104 // them to the Monitor thread via m_operation member. The Monitor thread is signaled over a 1105 // pipe, and the completion of the operation is signalled over the semaphore. 1106 // - thread exit event: this is signaled from the Monitor destructor by closing the write end 1107 // of the command pipe. 1108 class NativeProcessLinux::Monitor { 1109 private: 1110 // The initial monitor operation (launch or attach). It returns a inferior process id. 1111 std::unique_ptr<InitialOperation> m_initial_operation_up; 1112 1113 ::pid_t m_child_pid = -1; 1114 NativeProcessLinux * m_native_process; 1115 1116 enum { READ, WRITE }; 1117 int m_pipefd[2] = {-1, -1}; 1118 int m_signal_fd = -1; 1119 HostThread m_thread; 1120 1121 // current operation which must be executed on the priviliged thread 1122 Mutex m_operation_mutex; 1123 Operation *m_operation = nullptr; 1124 sem_t m_operation_sem; 1125 Error m_operation_error; 1126 1127 static constexpr char operation_command = 'o'; 1128 1129 void 1130 HandleSignals(); 1131 1132 void 1133 HandleWait(); 1134 1135 // Returns true if the thread should exit. 1136 bool 1137 HandleCommands(); 1138 1139 void 1140 MainLoop(); 1141 1142 static void * 1143 RunMonitor(void *arg); 1144 1145 Error 1146 WaitForOperation(); 1147 public: 1148 Monitor(const InitialOperation &initial_operation, 1149 NativeProcessLinux *native_process) 1150 : m_initial_operation_up(new InitialOperation(initial_operation)), 1151 m_native_process(native_process) 1152 { 1153 sem_init(&m_operation_sem, 0, 0); 1154 } 1155 1156 ~Monitor(); 1157 1158 Error 1159 Initialize(); 1160 1161 void 1162 DoOperation(Operation *op); 1163 }; 1164 constexpr char NativeProcessLinux::Monitor::operation_command; 1165 1166 Error 1167 NativeProcessLinux::Monitor::Initialize() 1168 { 1169 Error error; 1170 1171 // We get a SIGCHLD every time something interesting happens with the inferior. We shall be 1172 // listening for these signals over a signalfd file descriptors. This allows us to wait for 1173 // multiple kinds of events with select. 1174 sigset_t signals; 1175 sigemptyset(&signals); 1176 sigaddset(&signals, SIGCHLD); 1177 m_signal_fd = signalfd(-1, &signals, SFD_NONBLOCK | SFD_CLOEXEC); 1178 if (m_signal_fd < 0) 1179 { 1180 return Error("NativeProcessLinux::Monitor::%s failed due to signalfd failure. Monitoring the inferior will be impossible: %s", 1181 __FUNCTION__, strerror(errno)); 1182 1183 } 1184 1185 if (pipe2(m_pipefd, O_CLOEXEC) == -1) 1186 { 1187 error.SetErrorToErrno(); 1188 return error; 1189 } 1190 1191 if ((error = EnsureFDFlags(m_pipefd[READ], O_NONBLOCK)).Fail()) { 1192 return error; 1193 } 1194 1195 static const char g_thread_name[] = "lldb.process.nativelinux.monitor"; 1196 m_thread = ThreadLauncher::LaunchThread(g_thread_name, Monitor::RunMonitor, this, nullptr); 1197 if (!m_thread.IsJoinable()) 1198 return Error("Failed to create monitor thread for NativeProcessLinux."); 1199 1200 // Wait for initial operation to complete. 1201 return WaitForOperation(); 1202 } 1203 1204 void 1205 NativeProcessLinux::Monitor::DoOperation(Operation *op) 1206 { 1207 if (m_thread.EqualsThread(pthread_self())) { 1208 // If we're on the Monitor thread, we can simply execute the operation. 1209 op->Execute(m_native_process); 1210 return; 1211 } 1212 1213 // Otherwise we need to pass the operation to the Monitor thread so it can handle it. 1214 Mutex::Locker lock(m_operation_mutex); 1215 1216 m_operation = op; 1217 1218 // notify the thread that an operation is ready to be processed 1219 write(m_pipefd[WRITE], &operation_command, sizeof operation_command); 1220 1221 WaitForOperation(); 1222 } 1223 1224 NativeProcessLinux::Monitor::~Monitor() 1225 { 1226 if (m_pipefd[WRITE] >= 0) 1227 close(m_pipefd[WRITE]); 1228 if (m_thread.IsJoinable()) 1229 m_thread.Join(nullptr); 1230 if (m_pipefd[READ] >= 0) 1231 close(m_pipefd[READ]); 1232 if (m_signal_fd >= 0) 1233 close(m_signal_fd); 1234 sem_destroy(&m_operation_sem); 1235 } 1236 1237 void 1238 NativeProcessLinux::Monitor::HandleSignals() 1239 { 1240 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1241 1242 // We don't really care about the content of the SIGCHLD siginfo structure, as we will get 1243 // all the information from waitpid(). We just need to read all the signals so that we can 1244 // sleep next time we reach select(). 1245 while (true) 1246 { 1247 signalfd_siginfo info; 1248 ssize_t size = read(m_signal_fd, &info, sizeof info); 1249 if (size == -1) 1250 { 1251 if (errno == EAGAIN || errno == EWOULDBLOCK) 1252 break; // We are done. 1253 if (errno == EINTR) 1254 continue; 1255 if (log) 1256 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor failed: %s", 1257 __FUNCTION__, strerror(errno)); 1258 break; 1259 } 1260 if (size != sizeof info) 1261 { 1262 // We got incomplete information structure. This should not happen, let's just log 1263 // that. 1264 if (log) 1265 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor returned incomplete data: " 1266 "structure size is %zd, read returned %zd bytes", 1267 __FUNCTION__, sizeof info, size); 1268 break; 1269 } 1270 if (log) 1271 log->Printf("NativeProcessLinux::Monitor::%s received signal %s(%d).", __FUNCTION__, 1272 Host::GetSignalAsCString(info.ssi_signo), info.ssi_signo); 1273 } 1274 } 1275 1276 void 1277 NativeProcessLinux::Monitor::HandleWait() 1278 { 1279 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1280 // Process all pending waitpid notifications. 1281 while (true) 1282 { 1283 int status = -1; 1284 ::pid_t wait_pid = waitpid(m_child_pid, &status, __WALL | WNOHANG); 1285 1286 if (wait_pid == 0) 1287 break; // We are done. 1288 1289 if (wait_pid == -1) 1290 { 1291 if (errno == EINTR) 1292 continue; 1293 1294 if (log) 1295 log->Printf("NativeProcessLinux::Monitor::%s waitpid (pid = %" PRIi32 ", &status, __WALL | WNOHANG) failed: %s", 1296 __FUNCTION__, m_child_pid, strerror(errno)); 1297 break; 1298 } 1299 1300 bool exited = false; 1301 int signal = 0; 1302 int exit_status = 0; 1303 const char *status_cstr = NULL; 1304 if (WIFSTOPPED(status)) 1305 { 1306 signal = WSTOPSIG(status); 1307 status_cstr = "STOPPED"; 1308 } 1309 else if (WIFEXITED(status)) 1310 { 1311 exit_status = WEXITSTATUS(status); 1312 status_cstr = "EXITED"; 1313 exited = true; 1314 } 1315 else if (WIFSIGNALED(status)) 1316 { 1317 signal = WTERMSIG(status); 1318 status_cstr = "SIGNALED"; 1319 if (wait_pid == abs(m_child_pid)) { 1320 exited = true; 1321 exit_status = -1; 1322 } 1323 } 1324 else 1325 status_cstr = "(\?\?\?)"; 1326 1327 if (log) 1328 log->Printf("NativeProcessLinux::Monitor::%s: waitpid (pid = %" PRIi32 ", &status, __WALL | WNOHANG)" 1329 "=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i", 1330 __FUNCTION__, m_child_pid, wait_pid, status, status_cstr, signal, exit_status); 1331 1332 m_native_process->MonitorCallback (wait_pid, exited, signal, exit_status); 1333 } 1334 } 1335 1336 bool 1337 NativeProcessLinux::Monitor::HandleCommands() 1338 { 1339 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1340 1341 while (true) 1342 { 1343 char command = 0; 1344 ssize_t size = read(m_pipefd[READ], &command, sizeof command); 1345 if (size == -1) 1346 { 1347 if (errno == EAGAIN || errno == EWOULDBLOCK) 1348 return false; 1349 if (errno == EINTR) 1350 continue; 1351 if (log) 1352 log->Printf("NativeProcessLinux::Monitor::%s exiting because read from command file descriptor failed: %s", __FUNCTION__, strerror(errno)); 1353 return true; 1354 } 1355 if (size == 0) // end of file - write end closed 1356 { 1357 if (log) 1358 log->Printf("NativeProcessLinux::Monitor::%s exit command received, exiting...", __FUNCTION__); 1359 return true; // We are done. 1360 } 1361 1362 switch (command) 1363 { 1364 case operation_command: 1365 m_operation->Execute(m_native_process); 1366 1367 // notify calling thread that operation is complete 1368 sem_post(&m_operation_sem); 1369 break; 1370 default: 1371 if (log) 1372 log->Printf("NativeProcessLinux::Monitor::%s received unknown command '%c'", 1373 __FUNCTION__, command); 1374 } 1375 } 1376 } 1377 1378 void 1379 NativeProcessLinux::Monitor::MainLoop() 1380 { 1381 ::pid_t child_pid = (*m_initial_operation_up)(m_operation_error); 1382 m_initial_operation_up.reset(); 1383 m_child_pid = -getpgid(child_pid), 1384 sem_post(&m_operation_sem); 1385 1386 while (true) 1387 { 1388 fd_set fds; 1389 FD_ZERO(&fds); 1390 FD_SET(m_signal_fd, &fds); 1391 FD_SET(m_pipefd[READ], &fds); 1392 1393 int max_fd = std::max(m_signal_fd, m_pipefd[READ]) + 1; 1394 int r = select(max_fd, &fds, nullptr, nullptr, nullptr); 1395 if (r < 0) 1396 { 1397 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1398 if (log) 1399 log->Printf("NativeProcessLinux::Monitor::%s exiting because select failed: %s", 1400 __FUNCTION__, strerror(errno)); 1401 return; 1402 } 1403 1404 if (FD_ISSET(m_pipefd[READ], &fds)) 1405 { 1406 if (HandleCommands()) 1407 return; 1408 } 1409 1410 if (FD_ISSET(m_signal_fd, &fds)) 1411 { 1412 HandleSignals(); 1413 HandleWait(); 1414 } 1415 } 1416 } 1417 1418 Error 1419 NativeProcessLinux::Monitor::WaitForOperation() 1420 { 1421 Error error; 1422 while (sem_wait(&m_operation_sem) != 0) 1423 { 1424 if (errno == EINTR) 1425 continue; 1426 1427 error.SetErrorToErrno(); 1428 return error; 1429 } 1430 1431 return m_operation_error; 1432 } 1433 1434 void * 1435 NativeProcessLinux::Monitor::RunMonitor(void *arg) 1436 { 1437 static_cast<Monitor *>(arg)->MainLoop(); 1438 return nullptr; 1439 } 1440 1441 1442 NativeProcessLinux::LaunchArgs::LaunchArgs(Module *module, 1443 char const **argv, 1444 char const **envp, 1445 const std::string &stdin_path, 1446 const std::string &stdout_path, 1447 const std::string &stderr_path, 1448 const char *working_dir, 1449 const ProcessLaunchInfo &launch_info) 1450 : m_module(module), 1451 m_argv(argv), 1452 m_envp(envp), 1453 m_stdin_path(stdin_path), 1454 m_stdout_path(stdout_path), 1455 m_stderr_path(stderr_path), 1456 m_working_dir(working_dir), 1457 m_launch_info(launch_info) 1458 { 1459 } 1460 1461 NativeProcessLinux::LaunchArgs::~LaunchArgs() 1462 { } 1463 1464 // ----------------------------------------------------------------------------- 1465 // Public Static Methods 1466 // ----------------------------------------------------------------------------- 1467 1468 Error 1469 NativeProcessLinux::LaunchProcess ( 1470 Module *exe_module, 1471 ProcessLaunchInfo &launch_info, 1472 NativeProcessProtocol::NativeDelegate &native_delegate, 1473 NativeProcessProtocolSP &native_process_sp) 1474 { 1475 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1476 1477 Error error; 1478 1479 // Verify the working directory is valid if one was specified. 1480 const char* working_dir = launch_info.GetWorkingDirectory (); 1481 if (working_dir) 1482 { 1483 FileSpec working_dir_fs (working_dir, true); 1484 if (!working_dir_fs || working_dir_fs.GetFileType () != FileSpec::eFileTypeDirectory) 1485 { 1486 error.SetErrorStringWithFormat ("No such file or directory: %s", working_dir); 1487 return error; 1488 } 1489 } 1490 1491 const FileAction *file_action; 1492 1493 // Default of NULL will mean to use existing open file descriptors. 1494 std::string stdin_path; 1495 std::string stdout_path; 1496 std::string stderr_path; 1497 1498 file_action = launch_info.GetFileActionForFD (STDIN_FILENO); 1499 if (file_action) 1500 stdin_path = file_action->GetPath (); 1501 1502 file_action = launch_info.GetFileActionForFD (STDOUT_FILENO); 1503 if (file_action) 1504 stdout_path = file_action->GetPath (); 1505 1506 file_action = launch_info.GetFileActionForFD (STDERR_FILENO); 1507 if (file_action) 1508 stderr_path = file_action->GetPath (); 1509 1510 if (log) 1511 { 1512 if (!stdin_path.empty ()) 1513 log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'", __FUNCTION__, stdin_path.c_str ()); 1514 else 1515 log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__); 1516 1517 if (!stdout_path.empty ()) 1518 log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'", __FUNCTION__, stdout_path.c_str ()); 1519 else 1520 log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__); 1521 1522 if (!stderr_path.empty ()) 1523 log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'", __FUNCTION__, stderr_path.c_str ()); 1524 else 1525 log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__); 1526 } 1527 1528 // Create the NativeProcessLinux in launch mode. 1529 native_process_sp.reset (new NativeProcessLinux ()); 1530 1531 if (log) 1532 { 1533 int i = 0; 1534 for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i) 1535 { 1536 log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr"); 1537 ++i; 1538 } 1539 } 1540 1541 if (!native_process_sp->RegisterNativeDelegate (native_delegate)) 1542 { 1543 native_process_sp.reset (); 1544 error.SetErrorStringWithFormat ("failed to register the native delegate"); 1545 return error; 1546 } 1547 1548 std::static_pointer_cast<NativeProcessLinux> (native_process_sp)->LaunchInferior ( 1549 exe_module, 1550 launch_info.GetArguments ().GetConstArgumentVector (), 1551 launch_info.GetEnvironmentEntries ().GetConstArgumentVector (), 1552 stdin_path, 1553 stdout_path, 1554 stderr_path, 1555 working_dir, 1556 launch_info, 1557 error); 1558 1559 if (error.Fail ()) 1560 { 1561 native_process_sp.reset (); 1562 if (log) 1563 log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ()); 1564 return error; 1565 } 1566 1567 launch_info.SetProcessID (native_process_sp->GetID ()); 1568 1569 return error; 1570 } 1571 1572 Error 1573 NativeProcessLinux::AttachToProcess ( 1574 lldb::pid_t pid, 1575 NativeProcessProtocol::NativeDelegate &native_delegate, 1576 NativeProcessProtocolSP &native_process_sp) 1577 { 1578 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1579 if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE)) 1580 log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid); 1581 1582 // Grab the current platform architecture. This should be Linux, 1583 // since this code is only intended to run on a Linux host. 1584 PlatformSP platform_sp (Platform::GetHostPlatform ()); 1585 if (!platform_sp) 1586 return Error("failed to get a valid default platform"); 1587 1588 // Retrieve the architecture for the running process. 1589 ArchSpec process_arch; 1590 Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch); 1591 if (!error.Success ()) 1592 return error; 1593 1594 std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ()); 1595 1596 if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate)) 1597 { 1598 error.SetErrorStringWithFormat ("failed to register the native delegate"); 1599 return error; 1600 } 1601 1602 native_process_linux_sp->AttachToInferior (pid, error); 1603 if (!error.Success ()) 1604 return error; 1605 1606 native_process_sp = native_process_linux_sp; 1607 return error; 1608 } 1609 1610 // ----------------------------------------------------------------------------- 1611 // Public Instance Methods 1612 // ----------------------------------------------------------------------------- 1613 1614 NativeProcessLinux::NativeProcessLinux () : 1615 NativeProcessProtocol (LLDB_INVALID_PROCESS_ID), 1616 m_arch (), 1617 m_supports_mem_region (eLazyBoolCalculate), 1618 m_mem_region_cache (), 1619 m_mem_region_cache_mutex (), 1620 m_coordinator_up (new ThreadStateCoordinator (GetThreadLoggerFunction ())), 1621 m_coordinator_thread () 1622 { 1623 } 1624 1625 //------------------------------------------------------------------------------ 1626 // NativeProcessLinux spawns a new thread which performs all operations on the inferior process. 1627 // Refer to Monitor and Operation classes to see why this is necessary. 1628 //------------------------------------------------------------------------------ 1629 void 1630 NativeProcessLinux::LaunchInferior ( 1631 Module *module, 1632 const char *argv[], 1633 const char *envp[], 1634 const std::string &stdin_path, 1635 const std::string &stdout_path, 1636 const std::string &stderr_path, 1637 const char *working_dir, 1638 const ProcessLaunchInfo &launch_info, 1639 Error &error) 1640 { 1641 if (module) 1642 m_arch = module->GetArchitecture (); 1643 1644 SetState (eStateLaunching); 1645 1646 std::unique_ptr<LaunchArgs> args( 1647 new LaunchArgs( 1648 module, argv, envp, 1649 stdin_path, stdout_path, stderr_path, 1650 working_dir, launch_info)); 1651 1652 StartMonitorThread ([&] (Error &e) { return Launch(args.get(), e); }, error); 1653 if (!error.Success ()) 1654 return; 1655 1656 error = StartCoordinatorThread (); 1657 if (!error.Success ()) 1658 return; 1659 } 1660 1661 void 1662 NativeProcessLinux::AttachToInferior (lldb::pid_t pid, Error &error) 1663 { 1664 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1665 if (log) 1666 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid); 1667 1668 // We can use the Host for everything except the ResolveExecutable portion. 1669 PlatformSP platform_sp = Platform::GetHostPlatform (); 1670 if (!platform_sp) 1671 { 1672 if (log) 1673 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid); 1674 error.SetErrorString ("no default platform available"); 1675 return; 1676 } 1677 1678 // Gather info about the process. 1679 ProcessInstanceInfo process_info; 1680 if (!platform_sp->GetProcessInfo (pid, process_info)) 1681 { 1682 if (log) 1683 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid); 1684 error.SetErrorString ("failed to get process info"); 1685 return; 1686 } 1687 1688 // Resolve the executable module 1689 ModuleSP exe_module_sp; 1690 FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths()); 1691 ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture()); 1692 error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp, 1693 executable_search_paths.GetSize() ? &executable_search_paths : NULL); 1694 if (!error.Success()) 1695 return; 1696 1697 // Set the architecture to the exe architecture. 1698 m_arch = exe_module_sp->GetArchitecture(); 1699 if (log) 1700 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ()); 1701 1702 m_pid = pid; 1703 SetState(eStateAttaching); 1704 1705 StartMonitorThread ([=] (Error &e) { return Attach(pid, e); }, error); 1706 if (!error.Success ()) 1707 return; 1708 1709 error = StartCoordinatorThread (); 1710 if (!error.Success ()) 1711 return; 1712 } 1713 1714 void 1715 NativeProcessLinux::Terminate () 1716 { 1717 StopMonitor(); 1718 } 1719 1720 ::pid_t 1721 NativeProcessLinux::Launch(LaunchArgs *args, Error &error) 1722 { 1723 assert (args && "null args"); 1724 1725 const char **argv = args->m_argv; 1726 const char **envp = args->m_envp; 1727 const char *working_dir = args->m_working_dir; 1728 1729 lldb_utility::PseudoTerminal terminal; 1730 const size_t err_len = 1024; 1731 char err_str[err_len]; 1732 lldb::pid_t pid; 1733 NativeThreadProtocolSP thread_sp; 1734 1735 lldb::ThreadSP inferior; 1736 1737 // Propagate the environment if one is not supplied. 1738 if (envp == NULL || envp[0] == NULL) 1739 envp = const_cast<const char **>(environ); 1740 1741 if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1)) 1742 { 1743 error.SetErrorToGenericError(); 1744 error.SetErrorStringWithFormat("Process fork failed: %s", err_str); 1745 return -1; 1746 } 1747 1748 // Recognized child exit status codes. 1749 enum { 1750 ePtraceFailed = 1, 1751 eDupStdinFailed, 1752 eDupStdoutFailed, 1753 eDupStderrFailed, 1754 eChdirFailed, 1755 eExecFailed, 1756 eSetGidFailed 1757 }; 1758 1759 // Child process. 1760 if (pid == 0) 1761 { 1762 // FIXME consider opening a pipe between parent/child and have this forked child 1763 // send log info to parent re: launch status, in place of the log lines removed here. 1764 1765 // Start tracing this child that is about to exec. 1766 PTRACE(PTRACE_TRACEME, 0, nullptr, nullptr, 0, error); 1767 if (error.Fail()) 1768 exit(ePtraceFailed); 1769 1770 // terminal has already dupped the tty descriptors to stdin/out/err. 1771 // This closes original fd from which they were copied (and avoids 1772 // leaking descriptors to the debugged process. 1773 terminal.CloseSlaveFileDescriptor(); 1774 1775 // Do not inherit setgid powers. 1776 if (setgid(getgid()) != 0) 1777 exit(eSetGidFailed); 1778 1779 // Attempt to have our own process group. 1780 if (setpgid(0, 0) != 0) 1781 { 1782 // FIXME log that this failed. This is common. 1783 // Don't allow this to prevent an inferior exec. 1784 } 1785 1786 // Dup file descriptors if needed. 1787 if (!args->m_stdin_path.empty ()) 1788 if (!DupDescriptor(args->m_stdin_path.c_str (), STDIN_FILENO, O_RDONLY)) 1789 exit(eDupStdinFailed); 1790 1791 if (!args->m_stdout_path.empty ()) 1792 if (!DupDescriptor(args->m_stdout_path.c_str (), STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC)) 1793 exit(eDupStdoutFailed); 1794 1795 if (!args->m_stderr_path.empty ()) 1796 if (!DupDescriptor(args->m_stderr_path.c_str (), STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC)) 1797 exit(eDupStderrFailed); 1798 1799 // Change working directory 1800 if (working_dir != NULL && working_dir[0]) 1801 if (0 != ::chdir(working_dir)) 1802 exit(eChdirFailed); 1803 1804 // Disable ASLR if requested. 1805 if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR)) 1806 { 1807 const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS); 1808 if (old_personality == -1) 1809 { 1810 // Can't retrieve Linux personality. Cannot disable ASLR. 1811 } 1812 else 1813 { 1814 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality); 1815 if (new_personality == -1) 1816 { 1817 // Disabling ASLR failed. 1818 } 1819 else 1820 { 1821 // Disabling ASLR succeeded. 1822 } 1823 } 1824 } 1825 1826 // Execute. We should never return... 1827 execve(argv[0], 1828 const_cast<char *const *>(argv), 1829 const_cast<char *const *>(envp)); 1830 1831 // ...unless exec fails. In which case we definitely need to end the child here. 1832 exit(eExecFailed); 1833 } 1834 1835 // 1836 // This is the parent code here. 1837 // 1838 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1839 1840 // Wait for the child process to trap on its call to execve. 1841 ::pid_t wpid; 1842 int status; 1843 if ((wpid = waitpid(pid, &status, 0)) < 0) 1844 { 1845 error.SetErrorToErrno(); 1846 if (log) 1847 log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s", 1848 __FUNCTION__, error.AsCString ()); 1849 1850 // Mark the inferior as invalid. 1851 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1852 SetState (StateType::eStateInvalid); 1853 1854 return -1; 1855 } 1856 else if (WIFEXITED(status)) 1857 { 1858 // open, dup or execve likely failed for some reason. 1859 error.SetErrorToGenericError(); 1860 switch (WEXITSTATUS(status)) 1861 { 1862 case ePtraceFailed: 1863 error.SetErrorString("Child ptrace failed."); 1864 break; 1865 case eDupStdinFailed: 1866 error.SetErrorString("Child open stdin failed."); 1867 break; 1868 case eDupStdoutFailed: 1869 error.SetErrorString("Child open stdout failed."); 1870 break; 1871 case eDupStderrFailed: 1872 error.SetErrorString("Child open stderr failed."); 1873 break; 1874 case eChdirFailed: 1875 error.SetErrorString("Child failed to set working directory."); 1876 break; 1877 case eExecFailed: 1878 error.SetErrorString("Child exec failed."); 1879 break; 1880 case eSetGidFailed: 1881 error.SetErrorString("Child setgid failed."); 1882 break; 1883 default: 1884 error.SetErrorString("Child returned unknown exit status."); 1885 break; 1886 } 1887 1888 if (log) 1889 { 1890 log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP", 1891 __FUNCTION__, 1892 WEXITSTATUS(status)); 1893 } 1894 1895 // Mark the inferior as invalid. 1896 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1897 SetState (StateType::eStateInvalid); 1898 1899 return -1; 1900 } 1901 assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) && 1902 "Could not sync with inferior process."); 1903 1904 if (log) 1905 log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__); 1906 1907 error = SetDefaultPtraceOpts(pid); 1908 if (error.Fail()) 1909 { 1910 if (log) 1911 log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s", 1912 __FUNCTION__, error.AsCString ()); 1913 1914 // Mark the inferior as invalid. 1915 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1916 SetState (StateType::eStateInvalid); 1917 1918 return -1; 1919 } 1920 1921 // Release the master terminal descriptor and pass it off to the 1922 // NativeProcessLinux instance. Similarly stash the inferior pid. 1923 m_terminal_fd = terminal.ReleaseMasterFileDescriptor(); 1924 m_pid = pid; 1925 1926 // Set the terminal fd to be in non blocking mode (it simplifies the 1927 // implementation of ProcessLinux::GetSTDOUT to have a non-blocking 1928 // descriptor to read from). 1929 error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 1930 if (error.Fail()) 1931 { 1932 if (log) 1933 log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s", 1934 __FUNCTION__, error.AsCString ()); 1935 1936 // Mark the inferior as invalid. 1937 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1938 SetState (StateType::eStateInvalid); 1939 1940 return -1; 1941 } 1942 1943 if (log) 1944 log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid); 1945 1946 thread_sp = AddThread (pid); 1947 assert (thread_sp && "AddThread() returned a nullptr thread"); 1948 NotifyThreadCreateStopped (pid); 1949 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP); 1950 1951 // Let our process instance know the thread has stopped. 1952 SetCurrentThreadID (thread_sp->GetID ()); 1953 SetState (StateType::eStateStopped); 1954 1955 if (log) 1956 { 1957 if (error.Success ()) 1958 { 1959 log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__); 1960 } 1961 else 1962 { 1963 log->Printf ("NativeProcessLinux::%s inferior launching failed: %s", 1964 __FUNCTION__, error.AsCString ()); 1965 return -1; 1966 } 1967 } 1968 return pid; 1969 } 1970 1971 ::pid_t 1972 NativeProcessLinux::Attach(lldb::pid_t pid, Error &error) 1973 { 1974 lldb::ThreadSP inferior; 1975 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1976 1977 // Use a map to keep track of the threads which we have attached/need to attach. 1978 Host::TidMap tids_to_attach; 1979 if (pid <= 1) 1980 { 1981 error.SetErrorToGenericError(); 1982 error.SetErrorString("Attaching to process 1 is not allowed."); 1983 return -1; 1984 } 1985 1986 while (Host::FindProcessThreads(pid, tids_to_attach)) 1987 { 1988 for (Host::TidMap::iterator it = tids_to_attach.begin(); 1989 it != tids_to_attach.end();) 1990 { 1991 if (it->second == false) 1992 { 1993 lldb::tid_t tid = it->first; 1994 1995 // Attach to the requested process. 1996 // An attach will cause the thread to stop with a SIGSTOP. 1997 PTRACE(PTRACE_ATTACH, tid, nullptr, nullptr, 0, error); 1998 if (error.Fail()) 1999 { 2000 // No such thread. The thread may have exited. 2001 // More error handling may be needed. 2002 if (error.GetError() == ESRCH) 2003 { 2004 it = tids_to_attach.erase(it); 2005 continue; 2006 } 2007 else 2008 return -1; 2009 } 2010 2011 int status; 2012 // Need to use __WALL otherwise we receive an error with errno=ECHLD 2013 // At this point we should have a thread stopped if waitpid succeeds. 2014 if ((status = waitpid(tid, NULL, __WALL)) < 0) 2015 { 2016 // No such thread. The thread may have exited. 2017 // More error handling may be needed. 2018 if (errno == ESRCH) 2019 { 2020 it = tids_to_attach.erase(it); 2021 continue; 2022 } 2023 else 2024 { 2025 error.SetErrorToErrno(); 2026 return -1; 2027 } 2028 } 2029 2030 error = SetDefaultPtraceOpts(tid); 2031 if (error.Fail()) 2032 return -1; 2033 2034 if (log) 2035 log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid); 2036 2037 it->second = true; 2038 2039 // Create the thread, mark it as stopped. 2040 NativeThreadProtocolSP thread_sp (AddThread (static_cast<lldb::tid_t> (tid))); 2041 assert (thread_sp && "AddThread() returned a nullptr"); 2042 2043 // This will notify this is a new thread and tell the system it is stopped. 2044 NotifyThreadCreateStopped (tid); 2045 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP); 2046 SetCurrentThreadID (thread_sp->GetID ()); 2047 } 2048 2049 // move the loop forward 2050 ++it; 2051 } 2052 } 2053 2054 if (tids_to_attach.size() > 0) 2055 { 2056 m_pid = pid; 2057 // Let our process instance know the thread has stopped. 2058 SetState (StateType::eStateStopped); 2059 } 2060 else 2061 { 2062 error.SetErrorToGenericError(); 2063 error.SetErrorString("No such process."); 2064 return -1; 2065 } 2066 2067 return pid; 2068 } 2069 2070 Error 2071 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) 2072 { 2073 long ptrace_opts = 0; 2074 2075 // Have the child raise an event on exit. This is used to keep the child in 2076 // limbo until it is destroyed. 2077 ptrace_opts |= PTRACE_O_TRACEEXIT; 2078 2079 // Have the tracer trace threads which spawn in the inferior process. 2080 // TODO: if we want to support tracing the inferiors' child, add the 2081 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) 2082 ptrace_opts |= PTRACE_O_TRACECLONE; 2083 2084 // Have the tracer notify us before execve returns 2085 // (needed to disable legacy SIGTRAP generation) 2086 ptrace_opts |= PTRACE_O_TRACEEXEC; 2087 2088 Error error; 2089 PTRACE(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts, 0, error); 2090 return error; 2091 } 2092 2093 static ExitType convert_pid_status_to_exit_type (int status) 2094 { 2095 if (WIFEXITED (status)) 2096 return ExitType::eExitTypeExit; 2097 else if (WIFSIGNALED (status)) 2098 return ExitType::eExitTypeSignal; 2099 else if (WIFSTOPPED (status)) 2100 return ExitType::eExitTypeStop; 2101 else 2102 { 2103 // We don't know what this is. 2104 return ExitType::eExitTypeInvalid; 2105 } 2106 } 2107 2108 static int convert_pid_status_to_return_code (int status) 2109 { 2110 if (WIFEXITED (status)) 2111 return WEXITSTATUS (status); 2112 else if (WIFSIGNALED (status)) 2113 return WTERMSIG (status); 2114 else if (WIFSTOPPED (status)) 2115 return WSTOPSIG (status); 2116 else 2117 { 2118 // We don't know what this is. 2119 return ExitType::eExitTypeInvalid; 2120 } 2121 } 2122 2123 // Handles all waitpid events from the inferior process. 2124 void 2125 NativeProcessLinux::MonitorCallback(lldb::pid_t pid, 2126 bool exited, 2127 int signal, 2128 int status) 2129 { 2130 Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS)); 2131 2132 // Certain activities differ based on whether the pid is the tid of the main thread. 2133 const bool is_main_thread = (pid == GetID ()); 2134 2135 // Handle when the thread exits. 2136 if (exited) 2137 { 2138 if (log) 2139 log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %" PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not"); 2140 2141 // This is a thread that exited. Ensure we're not tracking it anymore. 2142 const bool thread_found = StopTrackingThread (pid); 2143 2144 // Make sure the thread state coordinator knows about this. 2145 NotifyThreadDeath (pid); 2146 2147 if (is_main_thread) 2148 { 2149 // We only set the exit status and notify the delegate if we haven't already set the process 2150 // state to an exited state. We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8) 2151 // for the main thread. 2152 const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed); 2153 if (!already_notified) 2154 { 2155 if (log) 2156 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ())); 2157 // The main thread exited. We're done monitoring. Report to delegate. 2158 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); 2159 2160 // Notify delegate that our process has exited. 2161 SetState (StateType::eStateExited, true); 2162 } 2163 else 2164 { 2165 if (log) 2166 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); 2167 } 2168 } 2169 else 2170 { 2171 // Do we want to report to the delegate in this case? I think not. If this was an orderly 2172 // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, 2173 // and we would have done an all-stop then. 2174 if (log) 2175 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); 2176 } 2177 return; 2178 } 2179 2180 // Get details on the signal raised. 2181 siginfo_t info; 2182 const auto err = GetSignalInfo(pid, &info); 2183 if (err.Success()) 2184 { 2185 // We have retrieved the signal info. Dispatch appropriately. 2186 if (info.si_signo == SIGTRAP) 2187 MonitorSIGTRAP(&info, pid); 2188 else 2189 MonitorSignal(&info, pid, exited); 2190 } 2191 else 2192 { 2193 if (err.GetError() == EINVAL) 2194 { 2195 // This is a group stop reception for this tid. 2196 if (log) 2197 log->Printf ("NativeThreadLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64, __FUNCTION__, GetID (), pid); 2198 NotifyThreadStop (pid); 2199 } 2200 else 2201 { 2202 // ptrace(GETSIGINFO) failed (but not due to group-stop). 2203 2204 // A return value of ESRCH means the thread/process is no longer on the system, 2205 // so it was killed somehow outside of our control. Either way, we can't do anything 2206 // with it anymore. 2207 2208 // Stop tracking the metadata for the thread since it's entirely off the system now. 2209 const bool thread_found = StopTrackingThread (pid); 2210 2211 // Make sure the thread state coordinator knows about this. 2212 NotifyThreadDeath (pid); 2213 2214 if (log) 2215 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)", 2216 __FUNCTION__, err.AsCString(), pid, signal, status, err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found"); 2217 2218 if (is_main_thread) 2219 { 2220 // Notify the delegate - our process is not available but appears to have been killed outside 2221 // our control. Is eStateExited the right exit state in this case? 2222 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); 2223 SetState (StateType::eStateExited, true); 2224 } 2225 else 2226 { 2227 // This thread was pulled out from underneath us. Anything to do here? Do we want to do an all stop? 2228 if (log) 2229 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid); 2230 } 2231 } 2232 } 2233 } 2234 2235 void 2236 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid) 2237 { 2238 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2239 const bool is_main_thread = (pid == GetID ()); 2240 2241 assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!"); 2242 if (!info) 2243 return; 2244 2245 Mutex::Locker locker (m_threads_mutex); 2246 2247 // See if we can find a thread for this signal. 2248 NativeThreadProtocolSP thread_sp = GetThreadByID (pid); 2249 if (!thread_sp) 2250 { 2251 if (log) 2252 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid); 2253 } 2254 2255 switch (info->si_code) 2256 { 2257 // TODO: these two cases are required if we want to support tracing of the inferiors' children. We'd need this to debug a monitor. 2258 // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 2259 // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 2260 2261 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): 2262 { 2263 // This is the notification on the parent thread which informs us of new thread 2264 // creation. We are not interested in these events at this point (an interesting use 2265 // case would be to stop the process upon thread creation), so we just resume the thread. 2266 // We will pickup the new thread when we get its SIGSTOP notification. 2267 2268 if (log) 2269 { 2270 unsigned long event_message = 0; 2271 if (GetEventMessage (pid, &event_message).Success()) 2272 { 2273 lldb::tid_t tid = static_cast<lldb::tid_t> (event_message); 2274 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event for tid %" PRIu64, __FUNCTION__, pid, tid); 2275 2276 } 2277 else 2278 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, pid); 2279 } 2280 2281 Resume (pid, LLDB_INVALID_SIGNAL_NUMBER); 2282 break; 2283 } 2284 2285 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): 2286 { 2287 NativeThreadProtocolSP main_thread_sp; 2288 if (log) 2289 log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP); 2290 2291 // The thread state coordinator needs to reset due to the exec. 2292 m_coordinator_up->ResetForExec (); 2293 2294 // Remove all but the main thread here. Linux fork creates a new process which only copies the main thread. Mutexes are in undefined state. 2295 if (log) 2296 log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__); 2297 2298 for (auto thread_sp : m_threads) 2299 { 2300 const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID (); 2301 if (is_main_thread) 2302 { 2303 main_thread_sp = thread_sp; 2304 if (log) 2305 log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ()); 2306 } 2307 else 2308 { 2309 // Tell thread coordinator this thread is dead. 2310 if (log) 2311 log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ()); 2312 } 2313 } 2314 2315 m_threads.clear (); 2316 2317 if (main_thread_sp) 2318 { 2319 m_threads.push_back (main_thread_sp); 2320 SetCurrentThreadID (main_thread_sp->GetID ()); 2321 std::static_pointer_cast<NativeThreadLinux> (main_thread_sp)->SetStoppedByExec (); 2322 } 2323 else 2324 { 2325 SetCurrentThreadID (LLDB_INVALID_THREAD_ID); 2326 if (log) 2327 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ()); 2328 } 2329 2330 // Tell coordinator about about the "new" (since exec) stopped main thread. 2331 const lldb::tid_t main_thread_tid = GetID (); 2332 NotifyThreadCreateStopped (main_thread_tid); 2333 2334 // NOTE: ideally these next statements would execute at the same time as the coordinator thread create was executed. 2335 // Consider a handler that can execute when that happens. 2336 // Let our delegate know we have just exec'd. 2337 NotifyDidExec (); 2338 2339 // If we have a main thread, indicate we are stopped. 2340 assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked"); 2341 2342 // Let the process know we're stopped. 2343 CallAfterRunningThreadsStop (pid, 2344 [=] (lldb::tid_t signaling_tid) 2345 { 2346 SetState (StateType::eStateStopped, true); 2347 }); 2348 2349 break; 2350 } 2351 2352 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): 2353 { 2354 // The inferior process or one of its threads is about to exit. 2355 2356 // This thread is currently stopped. It's not actually dead yet, just about to be. 2357 NotifyThreadStop (pid); 2358 2359 unsigned long data = 0; 2360 if (GetEventMessage(pid, &data).Fail()) 2361 data = -1; 2362 2363 if (log) 2364 { 2365 log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)", 2366 __FUNCTION__, 2367 data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false", 2368 pid, 2369 is_main_thread ? "is main thread" : "not main thread"); 2370 } 2371 2372 if (is_main_thread) 2373 { 2374 SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true); 2375 } 2376 2377 const int signo = static_cast<int> (data); 2378 m_coordinator_up->RequestThreadResume (pid, 2379 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2380 { 2381 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning (); 2382 return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo); 2383 }, 2384 CoordinatorErrorHandler); 2385 2386 break; 2387 } 2388 2389 case 0: 2390 case TRAP_TRACE: // We receive this on single stepping. 2391 case TRAP_HWBKPT: // We receive this on watchpoint hit 2392 if (thread_sp) 2393 { 2394 // If a watchpoint was hit, report it 2395 uint32_t wp_index; 2396 Error error = thread_sp->GetRegisterContext()->GetWatchpointHitIndex(wp_index); 2397 if (error.Fail() && log) 2398 log->Printf("NativeProcessLinux::%s() " 2399 "received error while checking for watchpoint hits, " 2400 "pid = %" PRIu64 " error = %s", 2401 __FUNCTION__, pid, error.AsCString()); 2402 if (wp_index != LLDB_INVALID_INDEX32) 2403 { 2404 MonitorWatchpoint(pid, thread_sp, wp_index); 2405 break; 2406 } 2407 } 2408 // Otherwise, report step over 2409 MonitorTrace(pid, thread_sp); 2410 break; 2411 2412 case SI_KERNEL: 2413 case TRAP_BRKPT: 2414 MonitorBreakpoint(pid, thread_sp); 2415 break; 2416 2417 case SIGTRAP: 2418 case (SIGTRAP | 0x80): 2419 if (log) 2420 log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), pid); 2421 2422 // This thread is currently stopped. 2423 NotifyThreadStop (pid); 2424 if (thread_sp) 2425 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGTRAP); 2426 2427 2428 // Ignore these signals until we know more about them. 2429 m_coordinator_up->RequestThreadResume (pid, 2430 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2431 { 2432 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning (); 2433 return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER); 2434 }, 2435 CoordinatorErrorHandler); 2436 break; 2437 2438 default: 2439 assert(false && "Unexpected SIGTRAP code!"); 2440 if (log) 2441 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%" PRIx64, __FUNCTION__, GetID (), pid, static_cast<uint64_t> (SIGTRAP | (PTRACE_EVENT_CLONE << 8))); 2442 break; 2443 2444 } 2445 } 2446 2447 void 2448 NativeProcessLinux::MonitorTrace(lldb::pid_t pid, NativeThreadProtocolSP thread_sp) 2449 { 2450 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2451 if (log) 2452 log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)", 2453 __FUNCTION__, pid); 2454 2455 if (thread_sp) 2456 std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace(); 2457 2458 // This thread is currently stopped. 2459 NotifyThreadStop(pid); 2460 2461 // Here we don't have to request the rest of the threads to stop or request a deferred stop. 2462 // This would have already happened at the time the Resume() with step operation was signaled. 2463 // At this point, we just need to say we stopped, and the deferred notifcation will fire off 2464 // once all running threads have checked in as stopped. 2465 SetCurrentThreadID(pid); 2466 // Tell the process we have a stop (from software breakpoint). 2467 CallAfterRunningThreadsStop(pid, 2468 [=](lldb::tid_t signaling_tid) 2469 { 2470 SetState(StateType::eStateStopped, true); 2471 }); 2472 } 2473 2474 void 2475 NativeProcessLinux::MonitorBreakpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp) 2476 { 2477 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 2478 if (log) 2479 log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64, 2480 __FUNCTION__, pid); 2481 2482 // This thread is currently stopped. 2483 NotifyThreadStop(pid); 2484 2485 // Mark the thread as stopped at breakpoint. 2486 if (thread_sp) 2487 { 2488 std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByBreakpoint(); 2489 Error error = FixupBreakpointPCAsNeeded(thread_sp); 2490 if (error.Fail()) 2491 if (log) 2492 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s", 2493 __FUNCTION__, pid, error.AsCString()); 2494 2495 auto it = m_threads_stepping_with_breakpoint.find(pid); 2496 if (it != m_threads_stepping_with_breakpoint.end()) 2497 { 2498 Error error = RemoveBreakpoint (it->second); 2499 if (error.Fail()) 2500 if (log) 2501 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s", 2502 __FUNCTION__, pid, error.AsCString()); 2503 2504 m_threads_stepping_with_breakpoint.erase(it); 2505 std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace(); 2506 } 2507 } 2508 else 2509 if (log) 2510 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 ": " 2511 "warning, cannot process software breakpoint since no thread metadata", 2512 __FUNCTION__, pid); 2513 2514 2515 // We need to tell all other running threads before we notify the delegate about this stop. 2516 CallAfterRunningThreadsStop(pid, 2517 [=](lldb::tid_t deferred_notification_tid) 2518 { 2519 SetCurrentThreadID(deferred_notification_tid); 2520 // Tell the process we have a stop (from software breakpoint). 2521 SetState(StateType::eStateStopped, true); 2522 }); 2523 } 2524 2525 void 2526 NativeProcessLinux::MonitorWatchpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp, uint32_t wp_index) 2527 { 2528 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); 2529 if (log) 2530 log->Printf("NativeProcessLinux::%s() received watchpoint event, " 2531 "pid = %" PRIu64 ", wp_index = %" PRIu32, 2532 __FUNCTION__, pid, wp_index); 2533 2534 // This thread is currently stopped. 2535 NotifyThreadStop(pid); 2536 2537 // Mark the thread as stopped at watchpoint. 2538 // The address is at (lldb::addr_t)info->si_addr if we need it. 2539 lldbassert(thread_sp && "thread_sp cannot be NULL"); 2540 std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByWatchpoint(wp_index); 2541 2542 // We need to tell all other running threads before we notify the delegate about this stop. 2543 CallAfterRunningThreadsStop(pid, 2544 [=](lldb::tid_t deferred_notification_tid) 2545 { 2546 SetCurrentThreadID(deferred_notification_tid); 2547 // Tell the process we have a stop (from watchpoint). 2548 SetState(StateType::eStateStopped, true); 2549 }); 2550 } 2551 2552 void 2553 NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited) 2554 { 2555 assert (info && "null info"); 2556 if (!info) 2557 return; 2558 2559 const int signo = info->si_signo; 2560 const bool is_from_llgs = info->si_pid == getpid (); 2561 2562 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2563 2564 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 2565 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a 2566 // kill(2) or raise(3). Similarly for tgkill(2) on Linux. 2567 // 2568 // IOW, user generated signals never generate what we consider to be a 2569 // "crash". 2570 // 2571 // Similarly, ACK signals generated by this monitor. 2572 2573 Mutex::Locker locker (m_threads_mutex); 2574 2575 // See if we can find a thread for this signal. 2576 NativeThreadProtocolSP thread_sp = GetThreadByID (pid); 2577 if (!thread_sp) 2578 { 2579 if (log) 2580 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid); 2581 } 2582 2583 // Handle the signal. 2584 if (info->si_code == SI_TKILL || info->si_code == SI_USER) 2585 { 2586 if (log) 2587 log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")", 2588 __FUNCTION__, 2589 GetUnixSignals ().GetSignalAsCString (signo), 2590 signo, 2591 (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"), 2592 info->si_pid, 2593 is_from_llgs ? "from llgs" : "not from llgs", 2594 pid); 2595 } 2596 2597 // Check for new thread notification. 2598 if ((info->si_pid == 0) && (info->si_code == SI_USER)) 2599 { 2600 // A new thread creation is being signaled. This is one of two parts that come in 2601 // a non-deterministic order. pid is the thread id. 2602 if (log) 2603 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification", 2604 __FUNCTION__, GetID (), pid); 2605 2606 thread_sp = AddThread(pid); 2607 assert (thread_sp.get() && "failed to create the tracking data for newly created inferior thread"); 2608 // We can now resume the newly created thread. 2609 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning (); 2610 Resume (pid, LLDB_INVALID_SIGNAL_NUMBER); 2611 m_coordinator_up->NotifyThreadCreate (pid, false, CoordinatorErrorHandler); 2612 // Done handling. 2613 return; 2614 } 2615 2616 // Check for thread stop notification. 2617 if (is_from_llgs && (info->si_code == SI_TKILL) && (signo == SIGSTOP)) 2618 { 2619 // This is a tgkill()-based stop. 2620 if (thread_sp) 2621 { 2622 if (log) 2623 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped", 2624 __FUNCTION__, 2625 GetID (), 2626 pid); 2627 2628 // Check that we're not already marked with a stop reason. 2629 // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that 2630 // the kernel signaled us with the thread stopping which we handled and marked as stopped, 2631 // and that, without an intervening resume, we received another stop. It is more likely 2632 // that we are missing the marking of a run state somewhere if we find that the thread was 2633 // marked as stopped. 2634 std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp); 2635 assert (linux_thread_sp && "linux_thread_sp is null!"); 2636 2637 const StateType thread_state = linux_thread_sp->GetState (); 2638 if (!StateIsStoppedState (thread_state, false)) 2639 { 2640 // An inferior thread just stopped, but was not the primary cause of the process stop. 2641 // Instead, something else (like a breakpoint or step) caused the stop. Mark the 2642 // stop signal as 0 to let lldb know this isn't the important stop. 2643 linux_thread_sp->SetStoppedBySignal (0); 2644 SetCurrentThreadID (thread_sp->GetID ()); 2645 m_coordinator_up->NotifyThreadStop (thread_sp->GetID (), true, CoordinatorErrorHandler); 2646 } 2647 else 2648 { 2649 if (log) 2650 { 2651 // Retrieve the signal name if the thread was stopped by a signal. 2652 int stop_signo = 0; 2653 const bool stopped_by_signal = linux_thread_sp->IsStopped (&stop_signo); 2654 const char *signal_name = stopped_by_signal ? GetUnixSignals ().GetSignalAsCString (stop_signo) : "<not stopped by signal>"; 2655 if (!signal_name) 2656 signal_name = "<no-signal-name>"; 2657 2658 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is", 2659 __FUNCTION__, 2660 GetID (), 2661 linux_thread_sp->GetID (), 2662 StateAsCString (thread_state), 2663 stop_signo, 2664 signal_name); 2665 } 2666 // Tell the thread state coordinator about the stop. 2667 NotifyThreadStop (thread_sp->GetID ()); 2668 } 2669 } 2670 2671 // Done handling. 2672 return; 2673 } 2674 2675 if (log) 2676 log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo)); 2677 2678 // This thread is stopped. 2679 NotifyThreadStop (pid); 2680 2681 switch (signo) 2682 { 2683 case SIGSTOP: 2684 { 2685 if (log) 2686 { 2687 if (is_from_llgs) 2688 log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from llgs, most likely an interrupt", __FUNCTION__, GetID (), pid); 2689 else 2690 log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from outside of debugger", __FUNCTION__, GetID (), pid); 2691 } 2692 2693 // Resume this thread to get the group-stop mechanism to fire off the true group stops. 2694 // This thread will get stopped again as part of the group-stop completion. 2695 m_coordinator_up->RequestThreadResume (pid, 2696 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2697 { 2698 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning (); 2699 // Pass this signal number on to the inferior to handle. 2700 return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo); 2701 }, 2702 CoordinatorErrorHandler); 2703 } 2704 break; 2705 case SIGSEGV: 2706 case SIGILL: 2707 case SIGFPE: 2708 case SIGBUS: 2709 if (thread_sp) 2710 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetCrashedWithException (*info); 2711 break; 2712 default: 2713 // This is just a pre-signal-delivery notification of the incoming signal. 2714 if (thread_sp) 2715 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (signo); 2716 2717 break; 2718 } 2719 2720 // Send a stop to the debugger after we get all other threads to stop. 2721 CallAfterRunningThreadsStop (pid, 2722 [=] (lldb::tid_t signaling_tid) 2723 { 2724 SetCurrentThreadID (signaling_tid); 2725 SetState (StateType::eStateStopped, true); 2726 }); 2727 } 2728 2729 namespace { 2730 2731 struct EmulatorBaton 2732 { 2733 NativeProcessLinux* m_process; 2734 NativeRegisterContext* m_reg_context; 2735 RegisterValue m_pc; 2736 RegisterValue m_flags; 2737 2738 EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) : 2739 m_process(process), m_reg_context(reg_context) {} 2740 }; 2741 2742 } // anonymous namespace 2743 2744 static size_t 2745 ReadMemoryCallback (EmulateInstruction *instruction, 2746 void *baton, 2747 const EmulateInstruction::Context &context, 2748 lldb::addr_t addr, 2749 void *dst, 2750 size_t length) 2751 { 2752 EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton); 2753 2754 lldb::addr_t bytes_read; 2755 emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read); 2756 return bytes_read; 2757 } 2758 2759 static bool 2760 ReadRegisterCallback (EmulateInstruction *instruction, 2761 void *baton, 2762 const RegisterInfo *reg_info, 2763 RegisterValue ®_value) 2764 { 2765 EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton); 2766 2767 // The emulator only fill in the dwarf regsiter numbers (and in some case 2768 // the generic register numbers). Get the full register info from the 2769 // register context based on the dwarf register numbers. 2770 const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo( 2771 eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]); 2772 2773 Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value); 2774 return error.Success(); 2775 } 2776 2777 static bool 2778 WriteRegisterCallback (EmulateInstruction *instruction, 2779 void *baton, 2780 const EmulateInstruction::Context &context, 2781 const RegisterInfo *reg_info, 2782 const RegisterValue ®_value) 2783 { 2784 EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton); 2785 2786 switch (reg_info->kinds[eRegisterKindGeneric]) 2787 { 2788 case LLDB_REGNUM_GENERIC_PC: 2789 emulator_baton->m_pc = reg_value; 2790 break; 2791 case LLDB_REGNUM_GENERIC_FLAGS: 2792 emulator_baton->m_flags = reg_value; 2793 break; 2794 } 2795 2796 return true; 2797 } 2798 2799 static size_t 2800 WriteMemoryCallback (EmulateInstruction *instruction, 2801 void *baton, 2802 const EmulateInstruction::Context &context, 2803 lldb::addr_t addr, 2804 const void *dst, 2805 size_t length) 2806 { 2807 return length; 2808 } 2809 2810 static lldb::addr_t 2811 ReadFlags (NativeRegisterContext* regsiter_context) 2812 { 2813 const RegisterInfo* flags_info = regsiter_context->GetRegisterInfo( 2814 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 2815 return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS); 2816 } 2817 2818 Error 2819 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadProtocolSP thread_sp) 2820 { 2821 Error error; 2822 NativeRegisterContextSP register_context_sp = thread_sp->GetRegisterContext(); 2823 2824 std::unique_ptr<EmulateInstruction> emulator_ap( 2825 EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr)); 2826 2827 if (emulator_ap == nullptr) 2828 return Error("Instruction emulator not found!"); 2829 2830 EmulatorBaton baton(this, register_context_sp.get()); 2831 emulator_ap->SetBaton(&baton); 2832 emulator_ap->SetReadMemCallback(&ReadMemoryCallback); 2833 emulator_ap->SetReadRegCallback(&ReadRegisterCallback); 2834 emulator_ap->SetWriteMemCallback(&WriteMemoryCallback); 2835 emulator_ap->SetWriteRegCallback(&WriteRegisterCallback); 2836 2837 if (!emulator_ap->ReadInstruction()) 2838 return Error("Read instruction failed!"); 2839 2840 lldb::addr_t next_pc; 2841 lldb::addr_t next_flags; 2842 if (emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC)) 2843 { 2844 next_pc = baton.m_pc.GetAsUInt64(); 2845 if (baton.m_flags.GetType() != RegisterValue::eTypeInvalid) 2846 next_flags = baton.m_flags.GetAsUInt32(); 2847 else 2848 next_flags = ReadFlags (register_context_sp.get()); 2849 } 2850 else if (baton.m_pc.GetType() == RegisterValue::eTypeInvalid) 2851 { 2852 // Emulate instruction failed and it haven't changed PC. Advance PC 2853 // with the size of the current opcode because the emulation of all 2854 // PC modifying instruction should be successful. The failure most 2855 // likely caused by a not supported instruction which don't modify PC. 2856 next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize(); 2857 next_flags = ReadFlags (register_context_sp.get()); 2858 } 2859 else 2860 { 2861 // The instruction emulation failed after it modified the PC. It is an 2862 // unknown error where we can't continue because the next instruction is 2863 // modifying the PC but we don't know how. 2864 return Error ("Instruction emulation failed unexpectedly."); 2865 } 2866 2867 if (m_arch.GetMachine() == llvm::Triple::arm) 2868 { 2869 if (next_flags & 0x20) 2870 { 2871 // Thumb mode 2872 error = SetSoftwareBreakpoint(next_pc, 2); 2873 } 2874 else 2875 { 2876 // Arm mode 2877 error = SetSoftwareBreakpoint(next_pc, 4); 2878 } 2879 } 2880 else 2881 { 2882 // No size hint is given for the next breakpoint 2883 error = SetSoftwareBreakpoint(next_pc, 0); 2884 } 2885 2886 2887 if (error.Fail()) 2888 return error; 2889 2890 m_threads_stepping_with_breakpoint.insert({thread_sp->GetID(), next_pc}); 2891 2892 return Error(); 2893 } 2894 2895 bool 2896 NativeProcessLinux::SupportHardwareSingleStepping() const 2897 { 2898 return m_arch.GetMachine() != llvm::Triple::arm; 2899 } 2900 2901 Error 2902 NativeProcessLinux::Resume (const ResumeActionList &resume_actions) 2903 { 2904 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD)); 2905 if (log) 2906 log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ()); 2907 2908 lldb::tid_t deferred_signal_tid = LLDB_INVALID_THREAD_ID; 2909 lldb::tid_t deferred_signal_skip_tid = LLDB_INVALID_THREAD_ID; 2910 int deferred_signo = 0; 2911 NativeThreadProtocolSP deferred_signal_thread_sp; 2912 bool stepping = false; 2913 bool software_single_step = !SupportHardwareSingleStepping(); 2914 2915 Mutex::Locker locker (m_threads_mutex); 2916 2917 if (software_single_step) 2918 { 2919 for (auto thread_sp : m_threads) 2920 { 2921 assert (thread_sp && "thread list should not contain NULL threads"); 2922 2923 const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true); 2924 if (action == nullptr) 2925 continue; 2926 2927 if (action->state == eStateStepping) 2928 { 2929 Error error = SetupSoftwareSingleStepping(thread_sp); 2930 if (error.Fail()) 2931 return error; 2932 } 2933 } 2934 } 2935 2936 for (auto thread_sp : m_threads) 2937 { 2938 assert (thread_sp && "thread list should not contain NULL threads"); 2939 2940 const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true); 2941 2942 if (action == nullptr) 2943 { 2944 if (log) 2945 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64, 2946 __FUNCTION__, GetID (), thread_sp->GetID ()); 2947 continue; 2948 } 2949 2950 if (log) 2951 { 2952 log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64, 2953 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); 2954 } 2955 2956 switch (action->state) 2957 { 2958 case eStateRunning: 2959 { 2960 // Run the thread, possibly feeding it the signal. 2961 const int signo = action->signal; 2962 m_coordinator_up->RequestThreadResumeAsNeeded (thread_sp->GetID (), 2963 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2964 { 2965 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning (); 2966 // Pass this signal number on to the inferior to handle. 2967 const auto resume_result = Resume (tid_to_resume, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER); 2968 if (resume_result.Success()) 2969 SetState(eStateRunning, true); 2970 return resume_result; 2971 }, 2972 CoordinatorErrorHandler); 2973 break; 2974 } 2975 2976 case eStateStepping: 2977 { 2978 // Request the step. 2979 const int signo = action->signal; 2980 m_coordinator_up->RequestThreadResume (thread_sp->GetID (), 2981 [=](lldb::tid_t tid_to_step, bool supress_signal) 2982 { 2983 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStepping (); 2984 2985 Error step_result; 2986 if (software_single_step) 2987 step_result = Resume (tid_to_step, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER); 2988 else 2989 step_result = SingleStep (tid_to_step,(signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER); 2990 2991 assert (step_result.Success() && "SingleStep() failed"); 2992 if (step_result.Success()) 2993 SetState(eStateStepping, true); 2994 return step_result; 2995 }, 2996 CoordinatorErrorHandler); 2997 stepping = true; 2998 break; 2999 } 3000 3001 case eStateSuspended: 3002 case eStateStopped: 3003 // if we haven't chosen a deferred signal tid yet, use this one. 3004 if (deferred_signal_tid == LLDB_INVALID_THREAD_ID) 3005 { 3006 deferred_signal_tid = thread_sp->GetID (); 3007 deferred_signal_thread_sp = thread_sp; 3008 deferred_signo = SIGSTOP; 3009 } 3010 break; 3011 3012 default: 3013 return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64, 3014 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); 3015 } 3016 } 3017 3018 // If we had any thread stopping, then do a deferred notification of the chosen stop thread id and signal 3019 // after all other running threads have stopped. 3020 // If there is a stepping thread involved we'll be eventually stopped by SIGTRAP trace signal. 3021 if (deferred_signal_tid != LLDB_INVALID_THREAD_ID && !stepping) 3022 { 3023 CallAfterRunningThreadsStopWithSkipTID (deferred_signal_tid, 3024 deferred_signal_skip_tid, 3025 [=](lldb::tid_t deferred_notification_tid) 3026 { 3027 // Set the signal thread to the current thread. 3028 SetCurrentThreadID (deferred_notification_tid); 3029 3030 // Set the thread state as stopped by the deferred signo. 3031 std::static_pointer_cast<NativeThreadLinux> (deferred_signal_thread_sp)->SetStoppedBySignal (deferred_signo); 3032 3033 // Tell the process delegate that the process is in a stopped state. 3034 SetState (StateType::eStateStopped, true); 3035 }); 3036 } 3037 3038 return Error(); 3039 } 3040 3041 Error 3042 NativeProcessLinux::Halt () 3043 { 3044 Error error; 3045 3046 if (kill (GetID (), SIGSTOP) != 0) 3047 error.SetErrorToErrno (); 3048 3049 return error; 3050 } 3051 3052 Error 3053 NativeProcessLinux::Detach () 3054 { 3055 Error error; 3056 3057 // Tell ptrace to detach from the process. 3058 if (GetID () != LLDB_INVALID_PROCESS_ID) 3059 error = Detach (GetID ()); 3060 3061 // Stop monitoring the inferior. 3062 StopMonitor (); 3063 3064 // No error. 3065 return error; 3066 } 3067 3068 Error 3069 NativeProcessLinux::Signal (int signo) 3070 { 3071 Error error; 3072 3073 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3074 if (log) 3075 log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64, 3076 __FUNCTION__, signo, GetUnixSignals ().GetSignalAsCString (signo), GetID ()); 3077 3078 if (kill(GetID(), signo)) 3079 error.SetErrorToErrno(); 3080 3081 return error; 3082 } 3083 3084 Error 3085 NativeProcessLinux::Interrupt () 3086 { 3087 // Pick a running thread (or if none, a not-dead stopped thread) as 3088 // the chosen thread that will be the stop-reason thread. 3089 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3090 3091 NativeThreadProtocolSP running_thread_sp; 3092 NativeThreadProtocolSP stopped_thread_sp; 3093 3094 if (log) 3095 log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__); 3096 3097 Mutex::Locker locker (m_threads_mutex); 3098 3099 for (auto thread_sp : m_threads) 3100 { 3101 // The thread shouldn't be null but lets just cover that here. 3102 if (!thread_sp) 3103 continue; 3104 3105 // If we have a running or stepping thread, we'll call that the 3106 // target of the interrupt. 3107 const auto thread_state = thread_sp->GetState (); 3108 if (thread_state == eStateRunning || 3109 thread_state == eStateStepping) 3110 { 3111 running_thread_sp = thread_sp; 3112 break; 3113 } 3114 else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true)) 3115 { 3116 // Remember the first non-dead stopped thread. We'll use that as a backup if there are no running threads. 3117 stopped_thread_sp = thread_sp; 3118 } 3119 } 3120 3121 if (!running_thread_sp && !stopped_thread_sp) 3122 { 3123 Error error("found no running/stepping or live stopped threads as target for interrupt"); 3124 if (log) 3125 log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ()); 3126 3127 return error; 3128 } 3129 3130 NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp; 3131 3132 if (log) 3133 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target", 3134 __FUNCTION__, 3135 GetID (), 3136 running_thread_sp ? "running" : "stopped", 3137 deferred_signal_thread_sp->GetID ()); 3138 3139 CallAfterRunningThreadsStop (deferred_signal_thread_sp->GetID (), 3140 [=](lldb::tid_t deferred_notification_tid) 3141 { 3142 // Set the signal thread to the current thread. 3143 SetCurrentThreadID (deferred_notification_tid); 3144 3145 // Set the thread state as stopped by the deferred signo. 3146 std::static_pointer_cast<NativeThreadLinux> (deferred_signal_thread_sp)->SetStoppedBySignal (SIGSTOP); 3147 3148 // Tell the process delegate that the process is in a stopped state. 3149 SetState (StateType::eStateStopped, true); 3150 }); 3151 return Error(); 3152 } 3153 3154 Error 3155 NativeProcessLinux::Kill () 3156 { 3157 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3158 if (log) 3159 log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ()); 3160 3161 Error error; 3162 3163 switch (m_state) 3164 { 3165 case StateType::eStateInvalid: 3166 case StateType::eStateExited: 3167 case StateType::eStateCrashed: 3168 case StateType::eStateDetached: 3169 case StateType::eStateUnloaded: 3170 // Nothing to do - the process is already dead. 3171 if (log) 3172 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state)); 3173 return error; 3174 3175 case StateType::eStateConnected: 3176 case StateType::eStateAttaching: 3177 case StateType::eStateLaunching: 3178 case StateType::eStateStopped: 3179 case StateType::eStateRunning: 3180 case StateType::eStateStepping: 3181 case StateType::eStateSuspended: 3182 // We can try to kill a process in these states. 3183 break; 3184 } 3185 3186 if (kill (GetID (), SIGKILL) != 0) 3187 { 3188 error.SetErrorToErrno (); 3189 return error; 3190 } 3191 3192 return error; 3193 } 3194 3195 static Error 3196 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info) 3197 { 3198 memory_region_info.Clear(); 3199 3200 StringExtractor line_extractor (maps_line.c_str ()); 3201 3202 // Format: {address_start_hex}-{address_end_hex} perms offset dev inode pathname 3203 // perms: rwxp (letter is present if set, '-' if not, final character is p=private, s=shared). 3204 3205 // Parse out the starting address 3206 lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0); 3207 3208 // Parse out hyphen separating start and end address from range. 3209 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-')) 3210 return Error ("malformed /proc/{pid}/maps entry, missing dash between address range"); 3211 3212 // Parse out the ending address 3213 lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address); 3214 3215 // Parse out the space after the address. 3216 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' ')) 3217 return Error ("malformed /proc/{pid}/maps entry, missing space after range"); 3218 3219 // Save the range. 3220 memory_region_info.GetRange ().SetRangeBase (start_address); 3221 memory_region_info.GetRange ().SetRangeEnd (end_address); 3222 3223 // Parse out each permission entry. 3224 if (line_extractor.GetBytesLeft () < 4) 3225 return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions"); 3226 3227 // Handle read permission. 3228 const char read_perm_char = line_extractor.GetChar (); 3229 if (read_perm_char == 'r') 3230 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes); 3231 else 3232 { 3233 assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" ); 3234 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 3235 } 3236 3237 // Handle write permission. 3238 const char write_perm_char = line_extractor.GetChar (); 3239 if (write_perm_char == 'w') 3240 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes); 3241 else 3242 { 3243 assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" ); 3244 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 3245 } 3246 3247 // Handle execute permission. 3248 const char exec_perm_char = line_extractor.GetChar (); 3249 if (exec_perm_char == 'x') 3250 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes); 3251 else 3252 { 3253 assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" ); 3254 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 3255 } 3256 3257 return Error (); 3258 } 3259 3260 Error 3261 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info) 3262 { 3263 // FIXME review that the final memory region returned extends to the end of the virtual address space, 3264 // with no perms if it is not mapped. 3265 3266 // Use an approach that reads memory regions from /proc/{pid}/maps. 3267 // Assume proc maps entries are in ascending order. 3268 // FIXME assert if we find differently. 3269 Mutex::Locker locker (m_mem_region_cache_mutex); 3270 3271 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3272 Error error; 3273 3274 if (m_supports_mem_region == LazyBool::eLazyBoolNo) 3275 { 3276 // We're done. 3277 error.SetErrorString ("unsupported"); 3278 return error; 3279 } 3280 3281 // If our cache is empty, pull the latest. There should always be at least one memory region 3282 // if memory region handling is supported. 3283 if (m_mem_region_cache.empty ()) 3284 { 3285 error = ProcFileReader::ProcessLineByLine (GetID (), "maps", 3286 [&] (const std::string &line) -> bool 3287 { 3288 MemoryRegionInfo info; 3289 const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info); 3290 if (parse_error.Success ()) 3291 { 3292 m_mem_region_cache.push_back (info); 3293 return true; 3294 } 3295 else 3296 { 3297 if (log) 3298 log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ()); 3299 return false; 3300 } 3301 }); 3302 3303 // If we had an error, we'll mark unsupported. 3304 if (error.Fail ()) 3305 { 3306 m_supports_mem_region = LazyBool::eLazyBoolNo; 3307 return error; 3308 } 3309 else if (m_mem_region_cache.empty ()) 3310 { 3311 // No entries after attempting to read them. This shouldn't happen if /proc/{pid}/maps 3312 // is supported. Assume we don't support map entries via procfs. 3313 if (log) 3314 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__); 3315 m_supports_mem_region = LazyBool::eLazyBoolNo; 3316 error.SetErrorString ("not supported"); 3317 return error; 3318 } 3319 3320 if (log) 3321 log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ()); 3322 3323 // We support memory retrieval, remember that. 3324 m_supports_mem_region = LazyBool::eLazyBoolYes; 3325 } 3326 else 3327 { 3328 if (log) 3329 log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ())); 3330 } 3331 3332 lldb::addr_t prev_base_address = 0; 3333 3334 // FIXME start by finding the last region that is <= target address using binary search. Data is sorted. 3335 // There can be a ton of regions on pthreads apps with lots of threads. 3336 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it) 3337 { 3338 MemoryRegionInfo &proc_entry_info = *it; 3339 3340 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 3341 assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected"); 3342 prev_base_address = proc_entry_info.GetRange ().GetRangeBase (); 3343 3344 // If the target address comes before this entry, indicate distance to next region. 3345 if (load_addr < proc_entry_info.GetRange ().GetRangeBase ()) 3346 { 3347 range_info.GetRange ().SetRangeBase (load_addr); 3348 range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr); 3349 range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 3350 range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 3351 range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 3352 3353 return error; 3354 } 3355 else if (proc_entry_info.GetRange ().Contains (load_addr)) 3356 { 3357 // The target address is within the memory region we're processing here. 3358 range_info = proc_entry_info; 3359 return error; 3360 } 3361 3362 // The target memory address comes somewhere after the region we just parsed. 3363 } 3364 3365 // If we made it here, we didn't find an entry that contained the given address. 3366 error.SetErrorString ("address comes after final region"); 3367 3368 if (log) 3369 log->Printf ("NativeProcessLinux::%s failed to find map entry for address 0x%" PRIx64 ": %s", __FUNCTION__, load_addr, error.AsCString ()); 3370 3371 return error; 3372 } 3373 3374 void 3375 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId) 3376 { 3377 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3378 if (log) 3379 log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId); 3380 3381 { 3382 Mutex::Locker locker (m_mem_region_cache_mutex); 3383 if (log) 3384 log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ())); 3385 m_mem_region_cache.clear (); 3386 } 3387 } 3388 3389 Error 3390 NativeProcessLinux::AllocateMemory ( 3391 lldb::addr_t size, 3392 uint32_t permissions, 3393 lldb::addr_t &addr) 3394 { 3395 // FIXME implementing this requires the equivalent of 3396 // InferiorCallPOSIX::InferiorCallMmap, which depends on 3397 // functional ThreadPlans working with Native*Protocol. 3398 #if 1 3399 return Error ("not implemented yet"); 3400 #else 3401 addr = LLDB_INVALID_ADDRESS; 3402 3403 unsigned prot = 0; 3404 if (permissions & lldb::ePermissionsReadable) 3405 prot |= eMmapProtRead; 3406 if (permissions & lldb::ePermissionsWritable) 3407 prot |= eMmapProtWrite; 3408 if (permissions & lldb::ePermissionsExecutable) 3409 prot |= eMmapProtExec; 3410 3411 // TODO implement this directly in NativeProcessLinux 3412 // (and lift to NativeProcessPOSIX if/when that class is 3413 // refactored out). 3414 if (InferiorCallMmap(this, addr, 0, size, prot, 3415 eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { 3416 m_addr_to_mmap_size[addr] = size; 3417 return Error (); 3418 } else { 3419 addr = LLDB_INVALID_ADDRESS; 3420 return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions)); 3421 } 3422 #endif 3423 } 3424 3425 Error 3426 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr) 3427 { 3428 // FIXME see comments in AllocateMemory - required lower-level 3429 // bits not in place yet (ThreadPlans) 3430 return Error ("not implemented"); 3431 } 3432 3433 lldb::addr_t 3434 NativeProcessLinux::GetSharedLibraryInfoAddress () 3435 { 3436 #if 1 3437 // punt on this for now 3438 return LLDB_INVALID_ADDRESS; 3439 #else 3440 // Return the image info address for the exe module 3441 #if 1 3442 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3443 3444 ModuleSP module_sp; 3445 Error error = GetExeModuleSP (module_sp); 3446 if (error.Fail ()) 3447 { 3448 if (log) 3449 log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ()); 3450 return LLDB_INVALID_ADDRESS; 3451 } 3452 3453 if (module_sp == nullptr) 3454 { 3455 if (log) 3456 log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__); 3457 return LLDB_INVALID_ADDRESS; 3458 } 3459 3460 ObjectFileSP object_file_sp = module_sp->GetObjectFile (); 3461 if (object_file_sp == nullptr) 3462 { 3463 if (log) 3464 log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__); 3465 return LLDB_INVALID_ADDRESS; 3466 } 3467 3468 return obj_file_sp->GetImageInfoAddress(); 3469 #else 3470 Target *target = &GetTarget(); 3471 ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile(); 3472 Address addr = obj_file->GetImageInfoAddress(target); 3473 3474 if (addr.IsValid()) 3475 return addr.GetLoadAddress(target); 3476 return LLDB_INVALID_ADDRESS; 3477 #endif 3478 #endif // punt on this for now 3479 } 3480 3481 size_t 3482 NativeProcessLinux::UpdateThreads () 3483 { 3484 // The NativeProcessLinux monitoring threads are always up to date 3485 // with respect to thread state and they keep the thread list 3486 // populated properly. All this method needs to do is return the 3487 // thread count. 3488 Mutex::Locker locker (m_threads_mutex); 3489 return m_threads.size (); 3490 } 3491 3492 bool 3493 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const 3494 { 3495 arch = m_arch; 3496 return true; 3497 } 3498 3499 Error 3500 NativeProcessLinux::GetSoftwareBreakpointPCOffset (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size) 3501 { 3502 // FIXME put this behind a breakpoint protocol class that can be 3503 // set per architecture. Need ARM, MIPS support here. 3504 static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 }; 3505 static const uint8_t g_i386_opcode [] = { 0xCC }; 3506 static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d }; 3507 3508 switch (m_arch.GetMachine ()) 3509 { 3510 case llvm::Triple::aarch64: 3511 actual_opcode_size = static_cast<uint32_t> (sizeof(g_aarch64_opcode)); 3512 return Error (); 3513 3514 case llvm::Triple::arm: 3515 actual_opcode_size = 0; // On arm the PC don't get updated for breakpoint hits 3516 return Error (); 3517 3518 case llvm::Triple::x86: 3519 case llvm::Triple::x86_64: 3520 actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode)); 3521 return Error (); 3522 3523 case llvm::Triple::mips64: 3524 case llvm::Triple::mips64el: 3525 actual_opcode_size = static_cast<uint32_t> (sizeof(g_mips64_opcode)); 3526 return Error (); 3527 3528 default: 3529 assert(false && "CPU type not supported!"); 3530 return Error ("CPU type not supported"); 3531 } 3532 } 3533 3534 Error 3535 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware) 3536 { 3537 if (hardware) 3538 return Error ("NativeProcessLinux does not support hardware breakpoints"); 3539 else 3540 return SetSoftwareBreakpoint (addr, size); 3541 } 3542 3543 Error 3544 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint, 3545 size_t &actual_opcode_size, 3546 const uint8_t *&trap_opcode_bytes) 3547 { 3548 // FIXME put this behind a breakpoint protocol class that can be set per 3549 // architecture. Need MIPS support here. 3550 static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 }; 3551 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 3552 // linux kernel does otherwise. 3553 static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 }; 3554 static const uint8_t g_i386_opcode [] = { 0xCC }; 3555 static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d }; 3556 static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 }; 3557 static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde }; 3558 3559 switch (m_arch.GetMachine ()) 3560 { 3561 case llvm::Triple::aarch64: 3562 trap_opcode_bytes = g_aarch64_opcode; 3563 actual_opcode_size = sizeof(g_aarch64_opcode); 3564 return Error (); 3565 3566 case llvm::Triple::arm: 3567 switch (trap_opcode_size_hint) 3568 { 3569 case 2: 3570 trap_opcode_bytes = g_thumb_breakpoint_opcode; 3571 actual_opcode_size = sizeof(g_thumb_breakpoint_opcode); 3572 return Error (); 3573 case 4: 3574 trap_opcode_bytes = g_arm_breakpoint_opcode; 3575 actual_opcode_size = sizeof(g_arm_breakpoint_opcode); 3576 return Error (); 3577 default: 3578 assert(false && "Unrecognised trap opcode size hint!"); 3579 return Error ("Unrecognised trap opcode size hint!"); 3580 } 3581 3582 case llvm::Triple::x86: 3583 case llvm::Triple::x86_64: 3584 trap_opcode_bytes = g_i386_opcode; 3585 actual_opcode_size = sizeof(g_i386_opcode); 3586 return Error (); 3587 3588 case llvm::Triple::mips64: 3589 trap_opcode_bytes = g_mips64_opcode; 3590 actual_opcode_size = sizeof(g_mips64_opcode); 3591 return Error (); 3592 3593 case llvm::Triple::mips64el: 3594 trap_opcode_bytes = g_mips64el_opcode; 3595 actual_opcode_size = sizeof(g_mips64el_opcode); 3596 return Error (); 3597 3598 default: 3599 assert(false && "CPU type not supported!"); 3600 return Error ("CPU type not supported"); 3601 } 3602 } 3603 3604 #if 0 3605 ProcessMessage::CrashReason 3606 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info) 3607 { 3608 ProcessMessage::CrashReason reason; 3609 assert(info->si_signo == SIGSEGV); 3610 3611 reason = ProcessMessage::eInvalidCrashReason; 3612 3613 switch (info->si_code) 3614 { 3615 default: 3616 assert(false && "unexpected si_code for SIGSEGV"); 3617 break; 3618 case SI_KERNEL: 3619 // Linux will occasionally send spurious SI_KERNEL codes. 3620 // (this is poorly documented in sigaction) 3621 // One way to get this is via unaligned SIMD loads. 3622 reason = ProcessMessage::eInvalidAddress; // for lack of anything better 3623 break; 3624 case SEGV_MAPERR: 3625 reason = ProcessMessage::eInvalidAddress; 3626 break; 3627 case SEGV_ACCERR: 3628 reason = ProcessMessage::ePrivilegedAddress; 3629 break; 3630 } 3631 3632 return reason; 3633 } 3634 #endif 3635 3636 3637 #if 0 3638 ProcessMessage::CrashReason 3639 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info) 3640 { 3641 ProcessMessage::CrashReason reason; 3642 assert(info->si_signo == SIGILL); 3643 3644 reason = ProcessMessage::eInvalidCrashReason; 3645 3646 switch (info->si_code) 3647 { 3648 default: 3649 assert(false && "unexpected si_code for SIGILL"); 3650 break; 3651 case ILL_ILLOPC: 3652 reason = ProcessMessage::eIllegalOpcode; 3653 break; 3654 case ILL_ILLOPN: 3655 reason = ProcessMessage::eIllegalOperand; 3656 break; 3657 case ILL_ILLADR: 3658 reason = ProcessMessage::eIllegalAddressingMode; 3659 break; 3660 case ILL_ILLTRP: 3661 reason = ProcessMessage::eIllegalTrap; 3662 break; 3663 case ILL_PRVOPC: 3664 reason = ProcessMessage::ePrivilegedOpcode; 3665 break; 3666 case ILL_PRVREG: 3667 reason = ProcessMessage::ePrivilegedRegister; 3668 break; 3669 case ILL_COPROC: 3670 reason = ProcessMessage::eCoprocessorError; 3671 break; 3672 case ILL_BADSTK: 3673 reason = ProcessMessage::eInternalStackError; 3674 break; 3675 } 3676 3677 return reason; 3678 } 3679 #endif 3680 3681 #if 0 3682 ProcessMessage::CrashReason 3683 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info) 3684 { 3685 ProcessMessage::CrashReason reason; 3686 assert(info->si_signo == SIGFPE); 3687 3688 reason = ProcessMessage::eInvalidCrashReason; 3689 3690 switch (info->si_code) 3691 { 3692 default: 3693 assert(false && "unexpected si_code for SIGFPE"); 3694 break; 3695 case FPE_INTDIV: 3696 reason = ProcessMessage::eIntegerDivideByZero; 3697 break; 3698 case FPE_INTOVF: 3699 reason = ProcessMessage::eIntegerOverflow; 3700 break; 3701 case FPE_FLTDIV: 3702 reason = ProcessMessage::eFloatDivideByZero; 3703 break; 3704 case FPE_FLTOVF: 3705 reason = ProcessMessage::eFloatOverflow; 3706 break; 3707 case FPE_FLTUND: 3708 reason = ProcessMessage::eFloatUnderflow; 3709 break; 3710 case FPE_FLTRES: 3711 reason = ProcessMessage::eFloatInexactResult; 3712 break; 3713 case FPE_FLTINV: 3714 reason = ProcessMessage::eFloatInvalidOperation; 3715 break; 3716 case FPE_FLTSUB: 3717 reason = ProcessMessage::eFloatSubscriptRange; 3718 break; 3719 } 3720 3721 return reason; 3722 } 3723 #endif 3724 3725 #if 0 3726 ProcessMessage::CrashReason 3727 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info) 3728 { 3729 ProcessMessage::CrashReason reason; 3730 assert(info->si_signo == SIGBUS); 3731 3732 reason = ProcessMessage::eInvalidCrashReason; 3733 3734 switch (info->si_code) 3735 { 3736 default: 3737 assert(false && "unexpected si_code for SIGBUS"); 3738 break; 3739 case BUS_ADRALN: 3740 reason = ProcessMessage::eIllegalAlignment; 3741 break; 3742 case BUS_ADRERR: 3743 reason = ProcessMessage::eIllegalAddress; 3744 break; 3745 case BUS_OBJERR: 3746 reason = ProcessMessage::eHardwareError; 3747 break; 3748 } 3749 3750 return reason; 3751 } 3752 #endif 3753 3754 Error 3755 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, lldb::addr_t size, lldb::addr_t &bytes_read) 3756 { 3757 ReadOperation op(addr, buf, size, bytes_read); 3758 m_monitor_up->DoOperation(&op); 3759 return op.GetError (); 3760 } 3761 3762 Error 3763 NativeProcessLinux::WriteMemory (lldb::addr_t addr, const void *buf, lldb::addr_t size, lldb::addr_t &bytes_written) 3764 { 3765 WriteOperation op(addr, buf, size, bytes_written); 3766 m_monitor_up->DoOperation(&op); 3767 return op.GetError (); 3768 } 3769 3770 Error 3771 NativeProcessLinux::ReadRegisterValue(lldb::tid_t tid, uint32_t offset, const char* reg_name, 3772 uint32_t size, RegisterValue &value) 3773 { 3774 ReadRegOperation op(tid, offset, reg_name, value); 3775 m_monitor_up->DoOperation(&op); 3776 return op.GetError(); 3777 } 3778 3779 Error 3780 NativeProcessLinux::WriteRegisterValue(lldb::tid_t tid, unsigned offset, 3781 const char* reg_name, const RegisterValue &value) 3782 { 3783 WriteRegOperation op(tid, offset, reg_name, value); 3784 m_monitor_up->DoOperation(&op); 3785 return op.GetError(); 3786 } 3787 3788 Error 3789 NativeProcessLinux::ReadGPR(lldb::tid_t tid, void *buf, size_t buf_size) 3790 { 3791 ReadGPROperation op(tid, buf, buf_size); 3792 m_monitor_up->DoOperation(&op); 3793 return op.GetError(); 3794 } 3795 3796 Error 3797 NativeProcessLinux::ReadFPR(lldb::tid_t tid, void *buf, size_t buf_size) 3798 { 3799 ReadFPROperation op(tid, buf, buf_size); 3800 m_monitor_up->DoOperation(&op); 3801 return op.GetError(); 3802 } 3803 3804 Error 3805 NativeProcessLinux::ReadRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 3806 { 3807 ReadRegisterSetOperation op(tid, buf, buf_size, regset); 3808 m_monitor_up->DoOperation(&op); 3809 return op.GetError(); 3810 } 3811 3812 Error 3813 NativeProcessLinux::WriteGPR(lldb::tid_t tid, void *buf, size_t buf_size) 3814 { 3815 WriteGPROperation op(tid, buf, buf_size); 3816 m_monitor_up->DoOperation(&op); 3817 return op.GetError(); 3818 } 3819 3820 Error 3821 NativeProcessLinux::WriteFPR(lldb::tid_t tid, void *buf, size_t buf_size) 3822 { 3823 WriteFPROperation op(tid, buf, buf_size); 3824 m_monitor_up->DoOperation(&op); 3825 return op.GetError(); 3826 } 3827 3828 Error 3829 NativeProcessLinux::WriteRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 3830 { 3831 WriteRegisterSetOperation op(tid, buf, buf_size, regset); 3832 m_monitor_up->DoOperation(&op); 3833 return op.GetError(); 3834 } 3835 3836 Error 3837 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo) 3838 { 3839 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3840 3841 if (log) 3842 log->Printf ("NativeProcessLinux::%s() resuming thread = %" PRIu64 " with signal %s", __FUNCTION__, tid, 3843 GetUnixSignals().GetSignalAsCString (signo)); 3844 ResumeOperation op (tid, signo); 3845 m_monitor_up->DoOperation (&op); 3846 if (log) 3847 log->Printf ("NativeProcessLinux::%s() resuming thread = %" PRIu64 " result = %s", __FUNCTION__, tid, op.GetError().Success() ? "true" : "false"); 3848 return op.GetError(); 3849 } 3850 3851 Error 3852 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo) 3853 { 3854 SingleStepOperation op(tid, signo); 3855 m_monitor_up->DoOperation(&op); 3856 return op.GetError(); 3857 } 3858 3859 Error 3860 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) 3861 { 3862 SiginfoOperation op(tid, siginfo); 3863 m_monitor_up->DoOperation(&op); 3864 return op.GetError(); 3865 } 3866 3867 Error 3868 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message) 3869 { 3870 EventMessageOperation op(tid, message); 3871 m_monitor_up->DoOperation(&op); 3872 return op.GetError(); 3873 } 3874 3875 Error 3876 NativeProcessLinux::Detach(lldb::tid_t tid) 3877 { 3878 if (tid == LLDB_INVALID_THREAD_ID) 3879 return Error(); 3880 3881 DetachOperation op(tid); 3882 m_monitor_up->DoOperation(&op); 3883 return op.GetError(); 3884 } 3885 3886 bool 3887 NativeProcessLinux::DupDescriptor(const char *path, int fd, int flags) 3888 { 3889 int target_fd = open(path, flags, 0666); 3890 3891 if (target_fd == -1) 3892 return false; 3893 3894 if (dup2(target_fd, fd) == -1) 3895 return false; 3896 3897 return (close(target_fd) == -1) ? false : true; 3898 } 3899 3900 void 3901 NativeProcessLinux::StartMonitorThread(const InitialOperation &initial_operation, Error &error) 3902 { 3903 m_monitor_up.reset(new Monitor(initial_operation, this)); 3904 error = m_monitor_up->Initialize(); 3905 if (error.Fail()) { 3906 m_monitor_up.reset(); 3907 } 3908 } 3909 3910 void 3911 NativeProcessLinux::StopMonitor() 3912 { 3913 StopCoordinatorThread (); 3914 m_monitor_up.reset(); 3915 } 3916 3917 Error 3918 NativeProcessLinux::StartCoordinatorThread () 3919 { 3920 Error error; 3921 static const char *g_thread_name = "lldb.process.linux.ts_coordinator"; 3922 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3923 3924 // Skip if thread is already running 3925 if (m_coordinator_thread.IsJoinable()) 3926 { 3927 error.SetErrorString ("ThreadStateCoordinator's run loop is already running"); 3928 if (log) 3929 log->Printf ("NativeProcessLinux::%s %s", __FUNCTION__, error.AsCString ()); 3930 return error; 3931 } 3932 3933 // Enable verbose logging if lldb thread logging is enabled. 3934 m_coordinator_up->LogEnableEventProcessing (log != nullptr); 3935 3936 if (log) 3937 log->Printf ("NativeProcessLinux::%s launching ThreadStateCoordinator thread for pid %" PRIu64, __FUNCTION__, GetID ()); 3938 m_coordinator_thread = ThreadLauncher::LaunchThread(g_thread_name, CoordinatorThread, this, &error); 3939 return error; 3940 } 3941 3942 void * 3943 NativeProcessLinux::CoordinatorThread (void *arg) 3944 { 3945 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3946 3947 NativeProcessLinux *const process = static_cast<NativeProcessLinux*> (arg); 3948 assert (process && "null process passed to CoordinatorThread"); 3949 if (!process) 3950 { 3951 if (log) 3952 log->Printf ("NativeProcessLinux::%s null process, exiting ThreadStateCoordinator processing loop", __FUNCTION__); 3953 return nullptr; 3954 } 3955 3956 // Run the thread state coordinator loop until it is done. This call uses 3957 // efficient waiting for an event to be ready. 3958 while (process->m_coordinator_up->ProcessNextEvent () == ThreadStateCoordinator::eventLoopResultContinue) 3959 { 3960 } 3961 3962 if (log) 3963 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " exiting ThreadStateCoordinator processing loop due to coordinator indicating completion", __FUNCTION__, process->GetID ()); 3964 3965 return nullptr; 3966 } 3967 3968 void 3969 NativeProcessLinux::StopCoordinatorThread() 3970 { 3971 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3972 if (log) 3973 log->Printf ("NativeProcessLinux::%s requesting ThreadStateCoordinator stop for pid %" PRIu64, __FUNCTION__, GetID ()); 3974 3975 // Tell the coordinator we're done. This will cause the coordinator 3976 // run loop thread to exit when the processing queue hits this message. 3977 m_coordinator_up->StopCoordinator (); 3978 m_coordinator_thread.Join (nullptr); 3979 } 3980 3981 bool 3982 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id) 3983 { 3984 for (auto thread_sp : m_threads) 3985 { 3986 assert (thread_sp && "thread list should not contain NULL threads"); 3987 if (thread_sp->GetID () == thread_id) 3988 { 3989 // We have this thread. 3990 return true; 3991 } 3992 } 3993 3994 // We don't have this thread. 3995 return false; 3996 } 3997 3998 NativeThreadProtocolSP 3999 NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id) 4000 { 4001 // CONSIDER organize threads by map - we can do better than linear. 4002 for (auto thread_sp : m_threads) 4003 { 4004 if (thread_sp->GetID () == thread_id) 4005 return thread_sp; 4006 } 4007 4008 // We don't have this thread. 4009 return NativeThreadProtocolSP (); 4010 } 4011 4012 bool 4013 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id) 4014 { 4015 Mutex::Locker locker (m_threads_mutex); 4016 for (auto it = m_threads.begin (); it != m_threads.end (); ++it) 4017 { 4018 if (*it && ((*it)->GetID () == thread_id)) 4019 { 4020 m_threads.erase (it); 4021 return true; 4022 } 4023 } 4024 4025 // Didn't find it. 4026 return false; 4027 } 4028 4029 NativeThreadProtocolSP 4030 NativeProcessLinux::AddThread (lldb::tid_t thread_id) 4031 { 4032 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 4033 4034 Mutex::Locker locker (m_threads_mutex); 4035 4036 if (log) 4037 { 4038 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64, 4039 __FUNCTION__, 4040 GetID (), 4041 thread_id); 4042 } 4043 4044 assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists"); 4045 4046 // If this is the first thread, save it as the current thread 4047 if (m_threads.empty ()) 4048 SetCurrentThreadID (thread_id); 4049 4050 NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id)); 4051 m_threads.push_back (thread_sp); 4052 4053 return thread_sp; 4054 } 4055 4056 Error 4057 NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp) 4058 { 4059 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS)); 4060 4061 Error error; 4062 4063 // Get a linux thread pointer. 4064 if (!thread_sp) 4065 { 4066 error.SetErrorString ("null thread_sp"); 4067 if (log) 4068 log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); 4069 return error; 4070 } 4071 std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp); 4072 4073 // Find out the size of a breakpoint (might depend on where we are in the code). 4074 NativeRegisterContextSP context_sp = linux_thread_sp->GetRegisterContext (); 4075 if (!context_sp) 4076 { 4077 error.SetErrorString ("cannot get a NativeRegisterContext for the thread"); 4078 if (log) 4079 log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); 4080 return error; 4081 } 4082 4083 uint32_t breakpoint_size = 0; 4084 error = GetSoftwareBreakpointPCOffset (context_sp, breakpoint_size); 4085 if (error.Fail ()) 4086 { 4087 if (log) 4088 log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ()); 4089 return error; 4090 } 4091 else 4092 { 4093 if (log) 4094 log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size); 4095 } 4096 4097 // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size. 4098 const lldb::addr_t initial_pc_addr = context_sp->GetPC (); 4099 lldb::addr_t breakpoint_addr = initial_pc_addr; 4100 if (breakpoint_size > static_cast<lldb::addr_t> (0)) 4101 { 4102 // Do not allow breakpoint probe to wrap around. 4103 if (breakpoint_addr >= static_cast<lldb::addr_t> (breakpoint_size)) 4104 breakpoint_addr -= static_cast<lldb::addr_t> (breakpoint_size); 4105 } 4106 4107 // Check if we stopped because of a breakpoint. 4108 NativeBreakpointSP breakpoint_sp; 4109 error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp); 4110 if (!error.Success () || !breakpoint_sp) 4111 { 4112 // We didn't find one at a software probe location. Nothing to do. 4113 if (log) 4114 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr); 4115 return Error (); 4116 } 4117 4118 // If the breakpoint is not a software breakpoint, nothing to do. 4119 if (!breakpoint_sp->IsSoftwareBreakpoint ()) 4120 { 4121 if (log) 4122 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr); 4123 return Error (); 4124 } 4125 4126 // 4127 // We have a software breakpoint and need to adjust the PC. 4128 // 4129 4130 // Sanity check. 4131 if (breakpoint_size == 0) 4132 { 4133 // Nothing to do! How did we get here? 4134 if (log) 4135 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr); 4136 return Error (); 4137 } 4138 4139 // Change the program counter. 4140 if (log) 4141 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_sp->GetID (), initial_pc_addr, breakpoint_addr); 4142 4143 error = context_sp->SetPC (breakpoint_addr); 4144 if (error.Fail ()) 4145 { 4146 if (log) 4147 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_sp->GetID (), error.AsCString ()); 4148 return error; 4149 } 4150 4151 return error; 4152 } 4153 4154 void 4155 NativeProcessLinux::NotifyThreadCreateStopped (lldb::tid_t tid) 4156 { 4157 const bool is_stopped = true; 4158 m_coordinator_up->NotifyThreadCreate (tid, is_stopped, CoordinatorErrorHandler); 4159 } 4160 4161 void 4162 NativeProcessLinux::NotifyThreadDeath (lldb::tid_t tid) 4163 { 4164 m_coordinator_up->NotifyThreadDeath (tid, CoordinatorErrorHandler); 4165 } 4166 4167 void 4168 NativeProcessLinux::NotifyThreadStop (lldb::tid_t tid) 4169 { 4170 m_coordinator_up->NotifyThreadStop (tid, false, CoordinatorErrorHandler); 4171 } 4172 4173 void 4174 NativeProcessLinux::CallAfterRunningThreadsStop (lldb::tid_t tid, 4175 const std::function<void (lldb::tid_t tid)> &call_after_function) 4176 { 4177 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 4178 if (log) 4179 log->Printf("NativeProcessLinux::%s tid %" PRIu64, __FUNCTION__, tid); 4180 4181 const lldb::pid_t pid = GetID (); 4182 m_coordinator_up->CallAfterRunningThreadsStop (tid, 4183 [=](lldb::tid_t request_stop_tid) 4184 { 4185 return RequestThreadStop(pid, request_stop_tid); 4186 }, 4187 call_after_function, 4188 CoordinatorErrorHandler); 4189 } 4190 4191 void 4192 NativeProcessLinux::CallAfterRunningThreadsStopWithSkipTID (lldb::tid_t deferred_signal_tid, 4193 lldb::tid_t skip_stop_request_tid, 4194 const std::function<void (lldb::tid_t tid)> &call_after_function) 4195 { 4196 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 4197 if (log) 4198 log->Printf("NativeProcessLinux::%s deferred_signal_tid %" PRIu64 ", skip_stop_request_tid %" PRIu64, __FUNCTION__, deferred_signal_tid, skip_stop_request_tid); 4199 4200 const lldb::pid_t pid = GetID (); 4201 m_coordinator_up->CallAfterRunningThreadsStopWithSkipTIDs (deferred_signal_tid, 4202 skip_stop_request_tid != LLDB_INVALID_THREAD_ID ? ThreadStateCoordinator::ThreadIDSet {skip_stop_request_tid} : ThreadStateCoordinator::ThreadIDSet (), 4203 [=](lldb::tid_t request_stop_tid) 4204 { 4205 return RequestThreadStop(pid, request_stop_tid); 4206 }, 4207 call_after_function, 4208 CoordinatorErrorHandler); 4209 } 4210 4211 Error 4212 NativeProcessLinux::RequestThreadStop (const lldb::pid_t pid, const lldb::tid_t tid) 4213 { 4214 Log* log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 4215 if (log) 4216 log->Printf ("NativeProcessLinux::%s requesting thread stop(pid: %" PRIu64 ", tid: %" PRIu64 ")", __FUNCTION__, pid, tid); 4217 4218 Error err; 4219 errno = 0; 4220 if (::tgkill (pid, tid, SIGSTOP) != 0) 4221 { 4222 err.SetErrorToErrno (); 4223 if (log) 4224 log->Printf ("NativeProcessLinux::%s tgkill(%" PRIu64 ", %" PRIu64 ", SIGSTOP) failed: %s", __FUNCTION__, pid, tid, err.AsCString ()); 4225 } 4226 4227 return err; 4228 } 4229 4230 Error 4231 NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec) 4232 { 4233 char maps_file_name[32]; 4234 snprintf(maps_file_name, sizeof(maps_file_name), "/proc/%" PRIu64 "/maps", GetID()); 4235 4236 FileSpec maps_file_spec(maps_file_name, false); 4237 if (!maps_file_spec.Exists()) { 4238 file_spec.Clear(); 4239 return Error("/proc/%" PRIu64 "/maps file doesn't exists!", GetID()); 4240 } 4241 4242 FileSpec module_file_spec(module_path, true); 4243 4244 std::ifstream maps_file(maps_file_name); 4245 std::string maps_data_str((std::istreambuf_iterator<char>(maps_file)), std::istreambuf_iterator<char>()); 4246 StringRef maps_data(maps_data_str.c_str()); 4247 4248 while (!maps_data.empty()) 4249 { 4250 StringRef maps_row; 4251 std::tie(maps_row, maps_data) = maps_data.split('\n'); 4252 4253 SmallVector<StringRef, 16> maps_columns; 4254 maps_row.split(maps_columns, StringRef(" "), -1, false); 4255 4256 if (maps_columns.size() >= 6) 4257 { 4258 file_spec.SetFile(maps_columns[5].str().c_str(), false); 4259 if (file_spec.GetFilename() == module_file_spec.GetFilename()) 4260 return Error(); 4261 } 4262 } 4263 4264 file_spec.Clear(); 4265 return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 4266 module_file_spec.GetFilename().AsCString(), GetID()); 4267 } 4268