1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "lldb/lldb-python.h"
11 
12 #include "NativeProcessLinux.h"
13 
14 // C Includes
15 #include <errno.h>
16 #include <poll.h>
17 #include <string.h>
18 #include <stdint.h>
19 #include <unistd.h>
20 
21 // C++ Includes
22 #include <fstream>
23 #include <sstream>
24 #include <string>
25 
26 // Other libraries and framework includes
27 #include "lldb/Core/Debugger.h"
28 #include "lldb/Core/EmulateInstruction.h"
29 #include "lldb/Core/Error.h"
30 #include "lldb/Core/Module.h"
31 #include "lldb/Core/ModuleSpec.h"
32 #include "lldb/Core/RegisterValue.h"
33 #include "lldb/Core/Scalar.h"
34 #include "lldb/Core/State.h"
35 #include "lldb/Host/common/NativeBreakpoint.h"
36 #include "lldb/Host/common/NativeRegisterContext.h"
37 #include "lldb/Host/Host.h"
38 #include "lldb/Host/HostInfo.h"
39 #include "lldb/Host/HostNativeThread.h"
40 #include "lldb/Host/ThreadLauncher.h"
41 #include "lldb/Symbol/ObjectFile.h"
42 #include "lldb/Target/Process.h"
43 #include "lldb/Target/ProcessLaunchInfo.h"
44 #include "lldb/Utility/LLDBAssert.h"
45 #include "lldb/Utility/PseudoTerminal.h"
46 
47 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
48 #include "Plugins/Process/Utility/LinuxSignals.h"
49 #include "Utility/StringExtractor.h"
50 #include "NativeThreadLinux.h"
51 #include "ProcFileReader.h"
52 #include "Procfs.h"
53 
54 // System includes - They have to be included after framework includes because they define some
55 // macros which collide with variable names in other modules
56 #include <linux/unistd.h>
57 #include <sys/personality.h>
58 #include <sys/ptrace.h>
59 #include <sys/socket.h>
60 #include <sys/signalfd.h>
61 #include <sys/syscall.h>
62 #include <sys/types.h>
63 #include <sys/uio.h>
64 #include <sys/user.h>
65 #include <sys/wait.h>
66 
67 #if defined (__arm64__) || defined (__aarch64__)
68 // NT_PRSTATUS and NT_FPREGSET definition
69 #include <elf.h>
70 #endif
71 
72 #ifdef __ANDROID__
73 #define __ptrace_request int
74 #define PT_DETACH PTRACE_DETACH
75 #endif
76 
77 #define DEBUG_PTRACE_MAXBYTES 20
78 
79 // Support ptrace extensions even when compiled without required kernel support
80 #ifndef PT_GETREGS
81 #ifndef PTRACE_GETREGS
82   #define PTRACE_GETREGS 12
83 #endif
84 #endif
85 #ifndef PT_SETREGS
86 #ifndef PTRACE_SETREGS
87   #define PTRACE_SETREGS 13
88 #endif
89 #endif
90 #ifndef PT_GETFPREGS
91 #ifndef PTRACE_GETFPREGS
92   #define PTRACE_GETFPREGS 14
93 #endif
94 #endif
95 #ifndef PT_SETFPREGS
96 #ifndef PTRACE_SETFPREGS
97   #define PTRACE_SETFPREGS 15
98 #endif
99 #endif
100 #ifndef PTRACE_GETREGSET
101   #define PTRACE_GETREGSET 0x4204
102 #endif
103 #ifndef PTRACE_SETREGSET
104   #define PTRACE_SETREGSET 0x4205
105 #endif
106 #ifndef PTRACE_GET_THREAD_AREA
107   #define PTRACE_GET_THREAD_AREA 25
108 #endif
109 #ifndef PTRACE_ARCH_PRCTL
110   #define PTRACE_ARCH_PRCTL      30
111 #endif
112 #ifndef ARCH_GET_FS
113   #define ARCH_SET_GS 0x1001
114   #define ARCH_SET_FS 0x1002
115   #define ARCH_GET_FS 0x1003
116   #define ARCH_GET_GS 0x1004
117 #endif
118 
119 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS  0xffffffff
120 
121 // Support hardware breakpoints in case it has not been defined
122 #ifndef TRAP_HWBKPT
123   #define TRAP_HWBKPT 4
124 #endif
125 
126 // Try to define a macro to encapsulate the tgkill syscall
127 // fall back on kill() if tgkill isn't available
128 #define tgkill(pid, tid, sig) \
129     syscall(SYS_tgkill, static_cast<::pid_t>(pid), static_cast<::pid_t>(tid), sig)
130 
131 // We disable the tracing of ptrace calls for integration builds to
132 // avoid the additional indirection and checks.
133 #ifndef LLDB_CONFIGURATION_BUILDANDINTEGRATION
134 #define PTRACE(req, pid, addr, data, data_size, error) \
135     PtraceWrapper((req), (pid), (addr), (data), (data_size), (error), #req, __FILE__, __LINE__)
136 #else
137 #define PTRACE(req, pid, addr, data, data_size, error) \
138     PtraceWrapper((req), (pid), (addr), (data), (data_size), (error))
139 #endif
140 
141 using namespace lldb;
142 using namespace lldb_private;
143 using namespace lldb_private::process_linux;
144 using namespace llvm;
145 
146 // Private bits we only need internally.
147 namespace
148 {
149     const UnixSignals&
150     GetUnixSignals ()
151     {
152         static process_linux::LinuxSignals signals;
153         return signals;
154     }
155 
156     Error
157     ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch)
158     {
159         // Grab process info for the running process.
160         ProcessInstanceInfo process_info;
161         if (!platform.GetProcessInfo (pid, process_info))
162             return Error("failed to get process info");
163 
164         // Resolve the executable module.
165         ModuleSP exe_module_sp;
166         ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
167         FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ());
168         Error error = platform.ResolveExecutable(
169             exe_module_spec,
170             exe_module_sp,
171             executable_search_paths.GetSize () ? &executable_search_paths : NULL);
172 
173         if (!error.Success ())
174             return error;
175 
176         // Check if we've got our architecture from the exe_module.
177         arch = exe_module_sp->GetArchitecture ();
178         if (arch.IsValid ())
179             return Error();
180         else
181             return Error("failed to retrieve a valid architecture from the exe module");
182     }
183 
184     void
185     DisplayBytes (StreamString &s, void *bytes, uint32_t count)
186     {
187         uint8_t *ptr = (uint8_t *)bytes;
188         const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
189         for(uint32_t i=0; i<loop_count; i++)
190         {
191             s.Printf ("[%x]", *ptr);
192             ptr++;
193         }
194     }
195 
196     void
197     PtraceDisplayBytes(int &req, void *data, size_t data_size)
198     {
199         StreamString buf;
200         Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (
201                     POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE));
202 
203         if (verbose_log)
204         {
205             switch(req)
206             {
207             case PTRACE_POKETEXT:
208             {
209                 DisplayBytes(buf, &data, 8);
210                 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData());
211                 break;
212             }
213             case PTRACE_POKEDATA:
214             {
215                 DisplayBytes(buf, &data, 8);
216                 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData());
217                 break;
218             }
219             case PTRACE_POKEUSER:
220             {
221                 DisplayBytes(buf, &data, 8);
222                 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData());
223                 break;
224             }
225             case PTRACE_SETREGS:
226             {
227                 DisplayBytes(buf, data, data_size);
228                 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData());
229                 break;
230             }
231             case PTRACE_SETFPREGS:
232             {
233                 DisplayBytes(buf, data, data_size);
234                 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData());
235                 break;
236             }
237             case PTRACE_SETSIGINFO:
238             {
239                 DisplayBytes(buf, data, sizeof(siginfo_t));
240                 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData());
241                 break;
242             }
243             case PTRACE_SETREGSET:
244             {
245                 // Extract iov_base from data, which is a pointer to the struct IOVEC
246                 DisplayBytes(buf, *(void **)data, data_size);
247                 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData());
248                 break;
249             }
250             default:
251             {
252             }
253             }
254         }
255     }
256 
257     // Wrapper for ptrace to catch errors and log calls.
258     // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
259     long
260     PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error,
261                   const char* reqName, const char* file, int line)
262     {
263         long int result;
264 
265         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE));
266 
267         PtraceDisplayBytes(req, data, data_size);
268 
269         error.Clear();
270         errno = 0;
271         if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
272             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
273         else
274             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
275 
276         if (result == -1)
277             error.SetErrorToErrno();
278 
279         if (log)
280             log->Printf("ptrace(%s, %" PRIu64 ", %p, %p, %zu)=%lX called from file %s line %d",
281                     reqName, pid, addr, data, data_size, result, file, line);
282 
283         PtraceDisplayBytes(req, data, data_size);
284 
285         if (log && error.GetError() != 0)
286         {
287             const char* str;
288             switch (error.GetError())
289             {
290             case ESRCH:  str = "ESRCH"; break;
291             case EINVAL: str = "EINVAL"; break;
292             case EBUSY:  str = "EBUSY"; break;
293             case EPERM:  str = "EPERM"; break;
294             default:     str = error.AsCString();
295             }
296             log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str);
297         }
298 
299         return result;
300     }
301 
302 #ifdef LLDB_CONFIGURATION_BUILDANDINTEGRATION
303     // Wrapper for ptrace when logging is not required.
304     // Sets errno to 0 prior to calling ptrace.
305     long
306     PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error)
307     {
308         long result = 0;
309 
310         error.Clear();
311         errno = 0;
312         if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
313             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
314         else
315             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
316 
317         if (result == -1)
318             error.SetErrorToErrno();
319         return result;
320     }
321 #endif
322 
323     //------------------------------------------------------------------------------
324     // Static implementations of NativeProcessLinux::ReadMemory and
325     // NativeProcessLinux::WriteMemory.  This enables mutual recursion between these
326     // functions without needed to go thru the thread funnel.
327 
328     size_t
329     DoReadMemory(
330         lldb::pid_t pid,
331         lldb::addr_t vm_addr,
332         void *buf,
333         size_t size,
334         Error &error)
335     {
336         // ptrace word size is determined by the host, not the child
337         static const unsigned word_size = sizeof(void*);
338         unsigned char *dst = static_cast<unsigned char*>(buf);
339         size_t bytes_read;
340         size_t remainder;
341         long data;
342 
343         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
344         if (log)
345             ProcessPOSIXLog::IncNestLevel();
346         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
347             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__,
348                     pid, word_size, (void*)vm_addr, buf, size);
349 
350         assert(sizeof(data) >= word_size);
351         for (bytes_read = 0; bytes_read < size; bytes_read += remainder)
352         {
353             data = PTRACE(PTRACE_PEEKDATA, pid, (void*)vm_addr, nullptr, 0, error);
354             if (error.Fail())
355             {
356                 if (log)
357                     ProcessPOSIXLog::DecNestLevel();
358                 return bytes_read;
359             }
360 
361             remainder = size - bytes_read;
362             remainder = remainder > word_size ? word_size : remainder;
363 
364             // Copy the data into our buffer
365             for (unsigned i = 0; i < remainder; ++i)
366                 dst[i] = ((data >> i*8) & 0xFF);
367 
368             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
369                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
370                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
371                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
372             {
373                 uintptr_t print_dst = 0;
374                 // Format bytes from data by moving into print_dst for log output
375                 for (unsigned i = 0; i < remainder; ++i)
376                     print_dst |= (((data >> i*8) & 0xFF) << i*8);
377                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
378                         (void*)vm_addr, print_dst, (unsigned long)data);
379             }
380 
381             vm_addr += word_size;
382             dst += word_size;
383         }
384 
385         if (log)
386             ProcessPOSIXLog::DecNestLevel();
387         return bytes_read;
388     }
389 
390     size_t
391     DoWriteMemory(
392         lldb::pid_t pid,
393         lldb::addr_t vm_addr,
394         const void *buf,
395         size_t size,
396         Error &error)
397     {
398         // ptrace word size is determined by the host, not the child
399         static const unsigned word_size = sizeof(void*);
400         const unsigned char *src = static_cast<const unsigned char*>(buf);
401         size_t bytes_written = 0;
402         size_t remainder;
403 
404         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
405         if (log)
406             ProcessPOSIXLog::IncNestLevel();
407         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
408             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__,
409                     pid, word_size, (void*)vm_addr, buf, size);
410 
411         for (bytes_written = 0; bytes_written < size; bytes_written += remainder)
412         {
413             remainder = size - bytes_written;
414             remainder = remainder > word_size ? word_size : remainder;
415 
416             if (remainder == word_size)
417             {
418                 unsigned long data = 0;
419                 assert(sizeof(data) >= word_size);
420                 for (unsigned i = 0; i < word_size; ++i)
421                     data |= (unsigned long)src[i] << i*8;
422 
423                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
424                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
425                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
426                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
427                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
428                             (void*)vm_addr, *(const unsigned long*)src, data);
429 
430                 if (PTRACE(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data, 0, error))
431                 {
432                     if (log)
433                         ProcessPOSIXLog::DecNestLevel();
434                     return bytes_written;
435                 }
436             }
437             else
438             {
439                 unsigned char buff[8];
440                 if (DoReadMemory(pid, vm_addr,
441                                 buff, word_size, error) != word_size)
442                 {
443                     if (log)
444                         ProcessPOSIXLog::DecNestLevel();
445                     return bytes_written;
446                 }
447 
448                 memcpy(buff, src, remainder);
449 
450                 if (DoWriteMemory(pid, vm_addr,
451                                 buff, word_size, error) != word_size)
452                 {
453                     if (log)
454                         ProcessPOSIXLog::DecNestLevel();
455                     return bytes_written;
456                 }
457 
458                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
459                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
460                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
461                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
462                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
463                             (void*)vm_addr, *(const unsigned long*)src, *(unsigned long*)buff);
464             }
465 
466             vm_addr += word_size;
467             src += word_size;
468         }
469         if (log)
470             ProcessPOSIXLog::DecNestLevel();
471         return bytes_written;
472     }
473 
474     //------------------------------------------------------------------------------
475     /// @class Operation
476     /// @brief Represents a NativeProcessLinux operation.
477     ///
478     /// Under Linux, it is not possible to ptrace() from any other thread but the
479     /// one that spawned or attached to the process from the start.  Therefore, when
480     /// a NativeProcessLinux is asked to deliver or change the state of an inferior
481     /// process the operation must be "funneled" to a specific thread to perform the
482     /// task.  The Operation class provides an abstract base for all services the
483     /// NativeProcessLinux must perform via the single virtual function Execute, thus
484     /// encapsulating the code that needs to run in the privileged context.
485     class Operation
486     {
487     public:
488         Operation () : m_error() { }
489 
490         virtual
491         ~Operation() {}
492 
493         virtual void
494         Execute (NativeProcessLinux *process) = 0;
495 
496         const Error &
497         GetError () const { return m_error; }
498 
499     protected:
500         Error m_error;
501     };
502 
503     //------------------------------------------------------------------------------
504     /// @class ReadOperation
505     /// @brief Implements NativeProcessLinux::ReadMemory.
506     class ReadOperation : public Operation
507     {
508     public:
509         ReadOperation(
510             lldb::addr_t addr,
511             void *buff,
512             size_t size,
513             size_t &result) :
514             Operation (),
515             m_addr (addr),
516             m_buff (buff),
517             m_size (size),
518             m_result (result)
519             {
520             }
521 
522         void Execute (NativeProcessLinux *process) override;
523 
524     private:
525         lldb::addr_t m_addr;
526         void *m_buff;
527         size_t m_size;
528         size_t &m_result;
529     };
530 
531     void
532     ReadOperation::Execute (NativeProcessLinux *process)
533     {
534         m_result = DoReadMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
535     }
536 
537     //------------------------------------------------------------------------------
538     /// @class WriteOperation
539     /// @brief Implements NativeProcessLinux::WriteMemory.
540     class WriteOperation : public Operation
541     {
542     public:
543         WriteOperation(
544             lldb::addr_t addr,
545             const void *buff,
546             size_t size,
547             size_t &result) :
548             Operation (),
549             m_addr (addr),
550             m_buff (buff),
551             m_size (size),
552             m_result (result)
553             {
554             }
555 
556         void Execute (NativeProcessLinux *process) override;
557 
558     private:
559         lldb::addr_t m_addr;
560         const void *m_buff;
561         size_t m_size;
562         size_t &m_result;
563     };
564 
565     void
566     WriteOperation::Execute(NativeProcessLinux *process)
567     {
568         m_result = DoWriteMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
569     }
570 
571     //------------------------------------------------------------------------------
572     /// @class ReadRegOperation
573     /// @brief Implements NativeProcessLinux::ReadRegisterValue.
574     class ReadRegOperation : public Operation
575     {
576     public:
577         ReadRegOperation(lldb::tid_t tid, uint32_t offset, const char *reg_name,
578                 RegisterValue &value)
579             : m_tid(tid),
580               m_offset(static_cast<uintptr_t> (offset)),
581               m_reg_name(reg_name),
582               m_value(value)
583             { }
584 
585         void Execute(NativeProcessLinux *monitor) override;
586 
587     private:
588         lldb::tid_t m_tid;
589         uintptr_t m_offset;
590         const char *m_reg_name;
591         RegisterValue &m_value;
592     };
593 
594     void
595     ReadRegOperation::Execute(NativeProcessLinux *monitor)
596     {
597 #if defined (__arm64__) || defined (__aarch64__)
598         if (m_offset > sizeof(struct user_pt_regs))
599         {
600             uintptr_t offset = m_offset - sizeof(struct user_pt_regs);
601             if (offset > sizeof(struct user_fpsimd_state))
602             {
603                 m_error.SetErrorString("invalid offset value");
604                 return;
605             }
606             elf_fpregset_t regs;
607             int regset = NT_FPREGSET;
608             struct iovec ioVec;
609 
610             ioVec.iov_base = &regs;
611             ioVec.iov_len = sizeof regs;
612             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
613             if (m_error.Success())
614             {
615                 ArchSpec arch;
616                 if (monitor->GetArchitecture(arch))
617                     m_value.SetBytes((void *)(((unsigned char *)(&regs)) + offset), 16, arch.GetByteOrder());
618                 else
619                     m_error.SetErrorString("failed to get architecture");
620             }
621         }
622         else
623         {
624             elf_gregset_t regs;
625             int regset = NT_PRSTATUS;
626             struct iovec ioVec;
627 
628             ioVec.iov_base = &regs;
629             ioVec.iov_len = sizeof regs;
630             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
631             if (m_error.Success())
632             {
633                 ArchSpec arch;
634                 if (monitor->GetArchitecture(arch))
635                     m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, arch.GetByteOrder());
636                 else
637                     m_error.SetErrorString("failed to get architecture");
638             }
639         }
640 #elif defined (__mips__)
641         elf_gregset_t regs;
642         PTRACE(PTRACE_GETREGS, m_tid, NULL, &regs, sizeof regs, m_error);
643         if (m_error.Success())
644         {
645             lldb_private::ArchSpec arch;
646             if (monitor->GetArchitecture(arch))
647                 m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, arch.GetByteOrder());
648             else
649                 m_error.SetErrorString("failed to get architecture");
650         }
651 #else
652         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS));
653 
654         lldb::addr_t data = static_cast<unsigned long>(PTRACE(PTRACE_PEEKUSER, m_tid, (void*)m_offset, nullptr, 0, m_error));
655         if (m_error.Success())
656             m_value = data;
657 
658         if (log)
659             log->Printf ("NativeProcessLinux::%s() reg %s: 0x%" PRIx64, __FUNCTION__,
660                     m_reg_name, data);
661 #endif
662     }
663 
664     //------------------------------------------------------------------------------
665     /// @class WriteRegOperation
666     /// @brief Implements NativeProcessLinux::WriteRegisterValue.
667     class WriteRegOperation : public Operation
668     {
669     public:
670         WriteRegOperation(lldb::tid_t tid, unsigned offset, const char *reg_name,
671                 const RegisterValue &value)
672             : m_tid(tid),
673               m_offset(offset),
674               m_reg_name(reg_name),
675               m_value(value)
676             { }
677 
678         void Execute(NativeProcessLinux *monitor) override;
679 
680     private:
681         lldb::tid_t m_tid;
682         uintptr_t m_offset;
683         const char *m_reg_name;
684         const RegisterValue &m_value;
685     };
686 
687     void
688     WriteRegOperation::Execute(NativeProcessLinux *monitor)
689     {
690 #if defined (__arm64__) || defined (__aarch64__)
691         if (m_offset > sizeof(struct user_pt_regs))
692         {
693             uintptr_t offset = m_offset - sizeof(struct user_pt_regs);
694             if (offset > sizeof(struct user_fpsimd_state))
695             {
696                 m_error.SetErrorString("invalid offset value");
697                 return;
698             }
699             elf_fpregset_t regs;
700             int regset = NT_FPREGSET;
701             struct iovec ioVec;
702 
703             ioVec.iov_base = &regs;
704             ioVec.iov_len = sizeof regs;
705             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
706             if (m_error.Success())
707             {
708                 ::memcpy((void *)(((unsigned char *)(&regs)) + offset), m_value.GetBytes(), 16);
709                 PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
710             }
711         }
712         else
713         {
714             elf_gregset_t regs;
715             int regset = NT_PRSTATUS;
716             struct iovec ioVec;
717 
718             ioVec.iov_base = &regs;
719             ioVec.iov_len = sizeof regs;
720             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
721             if (m_error.Success())
722             {
723                 ::memcpy((void *)(((unsigned char *)(&regs)) + m_offset), m_value.GetBytes(), 8);
724                 PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
725             }
726         }
727 #elif defined (__mips__)
728         elf_gregset_t regs;
729         PTRACE(PTRACE_GETREGS, m_tid, NULL, &regs, sizeof regs, m_error);
730         if (m_error.Success())
731         {
732             ::memcpy((void *)(((unsigned char *)(&regs)) + m_offset), m_value.GetBytes(), 8);
733             PTRACE(PTRACE_SETREGS, m_tid, NULL, &regs, sizeof regs, m_error);
734         }
735 #else
736         void* buf;
737         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS));
738 
739         buf = (void*) m_value.GetAsUInt64();
740 
741         if (log)
742             log->Printf ("NativeProcessLinux::%s() reg %s: %p", __FUNCTION__, m_reg_name, buf);
743         PTRACE(PTRACE_POKEUSER, m_tid, (void*)m_offset, buf, 0, m_error);
744 #endif
745     }
746 
747     //------------------------------------------------------------------------------
748     /// @class ReadGPROperation
749     /// @brief Implements NativeProcessLinux::ReadGPR.
750     class ReadGPROperation : public Operation
751     {
752     public:
753         ReadGPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
754             : m_tid(tid), m_buf(buf), m_buf_size(buf_size)
755             { }
756 
757         void Execute(NativeProcessLinux *monitor) override;
758 
759     private:
760         lldb::tid_t m_tid;
761         void *m_buf;
762         size_t m_buf_size;
763     };
764 
765     void
766     ReadGPROperation::Execute(NativeProcessLinux *monitor)
767     {
768 #if defined (__arm64__) || defined (__aarch64__)
769         int regset = NT_PRSTATUS;
770         struct iovec ioVec;
771 
772         ioVec.iov_base = m_buf;
773         ioVec.iov_len = m_buf_size;
774         PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
775 #else
776         PTRACE(PTRACE_GETREGS, m_tid, nullptr, m_buf, m_buf_size, m_error);
777 #endif
778     }
779 
780     //------------------------------------------------------------------------------
781     /// @class ReadFPROperation
782     /// @brief Implements NativeProcessLinux::ReadFPR.
783     class ReadFPROperation : public Operation
784     {
785     public:
786         ReadFPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
787             : m_tid(tid),
788               m_buf(buf),
789               m_buf_size(buf_size)
790             { }
791 
792         void Execute(NativeProcessLinux *monitor) override;
793 
794     private:
795         lldb::tid_t m_tid;
796         void *m_buf;
797         size_t m_buf_size;
798     };
799 
800     void
801     ReadFPROperation::Execute(NativeProcessLinux *monitor)
802     {
803 #if defined (__arm64__) || defined (__aarch64__)
804         int regset = NT_FPREGSET;
805         struct iovec ioVec;
806 
807         ioVec.iov_base = m_buf;
808         ioVec.iov_len = m_buf_size;
809         PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
810 #else
811         PTRACE(PTRACE_GETFPREGS, m_tid, nullptr, m_buf, m_buf_size, m_error);
812 #endif
813     }
814 
815     //------------------------------------------------------------------------------
816     /// @class ReadRegisterSetOperation
817     /// @brief Implements NativeProcessLinux::ReadRegisterSet.
818     class ReadRegisterSetOperation : public Operation
819     {
820     public:
821         ReadRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
822             : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset)
823             { }
824 
825         void Execute(NativeProcessLinux *monitor) override;
826 
827     private:
828         lldb::tid_t m_tid;
829         void *m_buf;
830         size_t m_buf_size;
831         const unsigned int m_regset;
832     };
833 
834     void
835     ReadRegisterSetOperation::Execute(NativeProcessLinux *monitor)
836     {
837         PTRACE(PTRACE_GETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error);
838     }
839 
840     //------------------------------------------------------------------------------
841     /// @class WriteGPROperation
842     /// @brief Implements NativeProcessLinux::WriteGPR.
843     class WriteGPROperation : public Operation
844     {
845     public:
846         WriteGPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
847             : m_tid(tid), m_buf(buf), m_buf_size(buf_size)
848             { }
849 
850         void Execute(NativeProcessLinux *monitor) override;
851 
852     private:
853         lldb::tid_t m_tid;
854         void *m_buf;
855         size_t m_buf_size;
856     };
857 
858     void
859     WriteGPROperation::Execute(NativeProcessLinux *monitor)
860     {
861 #if defined (__arm64__) || defined (__aarch64__)
862         int regset = NT_PRSTATUS;
863         struct iovec ioVec;
864 
865         ioVec.iov_base = m_buf;
866         ioVec.iov_len = m_buf_size;
867         PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
868 #else
869         PTRACE(PTRACE_SETREGS, m_tid, NULL, m_buf, m_buf_size, m_error);
870 #endif
871     }
872 
873     //------------------------------------------------------------------------------
874     /// @class WriteFPROperation
875     /// @brief Implements NativeProcessLinux::WriteFPR.
876     class WriteFPROperation : public Operation
877     {
878     public:
879         WriteFPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
880             : m_tid(tid), m_buf(buf), m_buf_size(buf_size)
881             { }
882 
883         void Execute(NativeProcessLinux *monitor) override;
884 
885     private:
886         lldb::tid_t m_tid;
887         void *m_buf;
888         size_t m_buf_size;
889     };
890 
891     void
892     WriteFPROperation::Execute(NativeProcessLinux *monitor)
893     {
894 #if defined (__arm64__) || defined (__aarch64__)
895         int regset = NT_FPREGSET;
896         struct iovec ioVec;
897 
898         ioVec.iov_base = m_buf;
899         ioVec.iov_len = m_buf_size;
900         PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
901 #else
902         PTRACE(PTRACE_SETFPREGS, m_tid, NULL, m_buf, m_buf_size, m_error);
903 #endif
904     }
905 
906     //------------------------------------------------------------------------------
907     /// @class WriteRegisterSetOperation
908     /// @brief Implements NativeProcessLinux::WriteRegisterSet.
909     class WriteRegisterSetOperation : public Operation
910     {
911     public:
912         WriteRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
913             : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset)
914             { }
915 
916         void Execute(NativeProcessLinux *monitor) override;
917 
918     private:
919         lldb::tid_t m_tid;
920         void *m_buf;
921         size_t m_buf_size;
922         const unsigned int m_regset;
923     };
924 
925     void
926     WriteRegisterSetOperation::Execute(NativeProcessLinux *monitor)
927     {
928         PTRACE(PTRACE_SETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error);
929     }
930 
931     //------------------------------------------------------------------------------
932     /// @class ResumeOperation
933     /// @brief Implements NativeProcessLinux::Resume.
934     class ResumeOperation : public Operation
935     {
936     public:
937         ResumeOperation(lldb::tid_t tid, uint32_t signo) :
938             m_tid(tid), m_signo(signo) { }
939 
940         void Execute(NativeProcessLinux *monitor) override;
941 
942     private:
943         lldb::tid_t m_tid;
944         uint32_t m_signo;
945     };
946 
947     void
948     ResumeOperation::Execute(NativeProcessLinux *monitor)
949     {
950         intptr_t data = 0;
951 
952         if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
953             data = m_signo;
954 
955         PTRACE(PTRACE_CONT, m_tid, nullptr, (void*)data, 0, m_error);
956         if (m_error.Fail())
957         {
958             Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
959 
960             if (log)
961                 log->Printf ("ResumeOperation (%"  PRIu64 ") failed: %s", m_tid, m_error.AsCString());
962         }
963     }
964 
965     //------------------------------------------------------------------------------
966     /// @class SingleStepOperation
967     /// @brief Implements NativeProcessLinux::SingleStep.
968     class SingleStepOperation : public Operation
969     {
970     public:
971         SingleStepOperation(lldb::tid_t tid, uint32_t signo)
972             : m_tid(tid), m_signo(signo) { }
973 
974         void Execute(NativeProcessLinux *monitor) override;
975 
976     private:
977         lldb::tid_t m_tid;
978         uint32_t m_signo;
979     };
980 
981     void
982     SingleStepOperation::Execute(NativeProcessLinux *monitor)
983     {
984         intptr_t data = 0;
985 
986         if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
987             data = m_signo;
988 
989         PTRACE(PTRACE_SINGLESTEP, m_tid, nullptr, (void*)data, 0, m_error);
990     }
991 
992     //------------------------------------------------------------------------------
993     /// @class SiginfoOperation
994     /// @brief Implements NativeProcessLinux::GetSignalInfo.
995     class SiginfoOperation : public Operation
996     {
997     public:
998         SiginfoOperation(lldb::tid_t tid, void *info)
999             : m_tid(tid), m_info(info) { }
1000 
1001         void Execute(NativeProcessLinux *monitor) override;
1002 
1003     private:
1004         lldb::tid_t m_tid;
1005         void *m_info;
1006     };
1007 
1008     void
1009     SiginfoOperation::Execute(NativeProcessLinux *monitor)
1010     {
1011         PTRACE(PTRACE_GETSIGINFO, m_tid, nullptr, m_info, 0, m_error);
1012     }
1013 
1014     //------------------------------------------------------------------------------
1015     /// @class EventMessageOperation
1016     /// @brief Implements NativeProcessLinux::GetEventMessage.
1017     class EventMessageOperation : public Operation
1018     {
1019     public:
1020         EventMessageOperation(lldb::tid_t tid, unsigned long *message)
1021             : m_tid(tid), m_message(message) { }
1022 
1023         void Execute(NativeProcessLinux *monitor) override;
1024 
1025     private:
1026         lldb::tid_t m_tid;
1027         unsigned long *m_message;
1028     };
1029 
1030     void
1031     EventMessageOperation::Execute(NativeProcessLinux *monitor)
1032     {
1033         PTRACE(PTRACE_GETEVENTMSG, m_tid, nullptr, m_message, 0, m_error);
1034     }
1035 
1036     class DetachOperation : public Operation
1037     {
1038     public:
1039         DetachOperation(lldb::tid_t tid) : m_tid(tid) { }
1040 
1041         void Execute(NativeProcessLinux *monitor) override;
1042 
1043     private:
1044         lldb::tid_t m_tid;
1045     };
1046 
1047     void
1048     DetachOperation::Execute(NativeProcessLinux *monitor)
1049     {
1050         PTRACE(PTRACE_DETACH, m_tid, nullptr, 0, 0, m_error);
1051     }
1052 } // end of anonymous namespace
1053 
1054 // Simple helper function to ensure flags are enabled on the given file
1055 // descriptor.
1056 static Error
1057 EnsureFDFlags(int fd, int flags)
1058 {
1059     Error error;
1060 
1061     int status = fcntl(fd, F_GETFL);
1062     if (status == -1)
1063     {
1064         error.SetErrorToErrno();
1065         return error;
1066     }
1067 
1068     if (fcntl(fd, F_SETFL, status | flags) == -1)
1069     {
1070         error.SetErrorToErrno();
1071         return error;
1072     }
1073 
1074     return error;
1075 }
1076 
1077 // This class encapsulates the privileged thread which performs all ptrace and wait operations on
1078 // the inferior. The thread consists of a main loop which waits for events and processes them
1079 //   - SIGCHLD (delivered over a signalfd file descriptor): These signals notify us of events in
1080 //     the inferior process. Upon receiving this signal we do a waitpid to get more information
1081 //     and dispatch to NativeProcessLinux::MonitorCallback.
1082 //   - requests for ptrace operations: These initiated via the DoOperation method, which funnels
1083 //     them to the Monitor thread via m_operation member. The Monitor thread is signaled over a
1084 //     pipe, and the completion of the operation is signalled over the semaphore.
1085 //   - thread exit event: this is signaled from the Monitor destructor by closing the write end
1086 //     of the command pipe.
1087 class NativeProcessLinux::Monitor
1088 {
1089 private:
1090     // The initial monitor operation (launch or attach). It returns a inferior process id.
1091     std::unique_ptr<InitialOperation> m_initial_operation_up;
1092 
1093     ::pid_t                           m_child_pid = -1;
1094     NativeProcessLinux              * m_native_process;
1095 
1096     enum { READ, WRITE };
1097     int        m_pipefd[2] = {-1, -1};
1098     int        m_signal_fd = -1;
1099     HostThread m_thread;
1100 
1101     // current operation which must be executed on the priviliged thread
1102     Mutex      m_operation_mutex;
1103     Operation *m_operation = nullptr;
1104     sem_t      m_operation_sem;
1105     Error      m_operation_error;
1106 
1107     unsigned   m_operation_nesting_level = 0;
1108 
1109     static constexpr char operation_command   = 'o';
1110     static constexpr char begin_block_command = '{';
1111     static constexpr char end_block_command   = '}';
1112 
1113     void
1114     HandleSignals();
1115 
1116     void
1117     HandleWait();
1118 
1119     // Returns true if the thread should exit.
1120     bool
1121     HandleCommands();
1122 
1123     void
1124     MainLoop();
1125 
1126     static void *
1127     RunMonitor(void *arg);
1128 
1129     Error
1130     WaitForAck();
1131 
1132     void
1133     BeginOperationBlock()
1134     {
1135         write(m_pipefd[WRITE], &begin_block_command, sizeof operation_command);
1136         WaitForAck();
1137     }
1138 
1139     void
1140     EndOperationBlock()
1141     {
1142         write(m_pipefd[WRITE], &end_block_command, sizeof operation_command);
1143         WaitForAck();
1144     }
1145 
1146 public:
1147     Monitor(const InitialOperation &initial_operation,
1148             NativeProcessLinux *native_process)
1149         : m_initial_operation_up(new InitialOperation(initial_operation)),
1150           m_native_process(native_process)
1151     {
1152         sem_init(&m_operation_sem, 0, 0);
1153     }
1154 
1155     ~Monitor();
1156 
1157     Error
1158     Initialize();
1159 
1160     void
1161     Terminate();
1162 
1163     void
1164     DoOperation(Operation *op);
1165 
1166     class ScopedOperationLock {
1167         Monitor &m_monitor;
1168 
1169     public:
1170         ScopedOperationLock(Monitor &monitor)
1171             : m_monitor(monitor)
1172         { m_monitor.BeginOperationBlock(); }
1173 
1174         ~ScopedOperationLock()
1175         { m_monitor.EndOperationBlock(); }
1176     };
1177 };
1178 constexpr char NativeProcessLinux::Monitor::operation_command;
1179 constexpr char NativeProcessLinux::Monitor::begin_block_command;
1180 constexpr char NativeProcessLinux::Monitor::end_block_command;
1181 
1182 Error
1183 NativeProcessLinux::Monitor::Initialize()
1184 {
1185     Error error;
1186 
1187     // We get a SIGCHLD every time something interesting happens with the inferior. We shall be
1188     // listening for these signals over a signalfd file descriptors. This allows us to wait for
1189     // multiple kinds of events with select.
1190     sigset_t signals;
1191     sigemptyset(&signals);
1192     sigaddset(&signals, SIGCHLD);
1193     m_signal_fd = signalfd(-1, &signals, SFD_NONBLOCK | SFD_CLOEXEC);
1194     if (m_signal_fd < 0)
1195     {
1196         return Error("NativeProcessLinux::Monitor::%s failed due to signalfd failure. Monitoring the inferior will be impossible: %s",
1197                     __FUNCTION__, strerror(errno));
1198 
1199     }
1200 
1201     if (pipe2(m_pipefd, O_CLOEXEC) == -1)
1202     {
1203         error.SetErrorToErrno();
1204         return error;
1205     }
1206 
1207     if ((error = EnsureFDFlags(m_pipefd[READ], O_NONBLOCK)).Fail()) {
1208         return error;
1209     }
1210 
1211     static const char g_thread_name[] = "lldb.process.nativelinux.monitor";
1212     m_thread = ThreadLauncher::LaunchThread(g_thread_name, Monitor::RunMonitor, this, nullptr);
1213     if (!m_thread.IsJoinable())
1214         return Error("Failed to create monitor thread for NativeProcessLinux.");
1215 
1216     // Wait for initial operation to complete.
1217     return WaitForAck();
1218 }
1219 
1220 void
1221 NativeProcessLinux::Monitor::DoOperation(Operation *op)
1222 {
1223     if (m_thread.EqualsThread(pthread_self())) {
1224         // If we're on the Monitor thread, we can simply execute the operation.
1225         op->Execute(m_native_process);
1226         return;
1227     }
1228 
1229     // Otherwise we need to pass the operation to the Monitor thread so it can handle it.
1230     Mutex::Locker lock(m_operation_mutex);
1231 
1232     m_operation = op;
1233 
1234     // notify the thread that an operation is ready to be processed
1235     write(m_pipefd[WRITE], &operation_command, sizeof operation_command);
1236 
1237     WaitForAck();
1238 }
1239 
1240 void
1241 NativeProcessLinux::Monitor::Terminate()
1242 {
1243     if (m_pipefd[WRITE] >= 0)
1244     {
1245         close(m_pipefd[WRITE]);
1246         m_pipefd[WRITE] = -1;
1247     }
1248     if (m_thread.IsJoinable())
1249         m_thread.Join(nullptr);
1250 }
1251 
1252 NativeProcessLinux::Monitor::~Monitor()
1253 {
1254     Terminate();
1255     if (m_pipefd[READ] >= 0)
1256         close(m_pipefd[READ]);
1257     if (m_signal_fd >= 0)
1258         close(m_signal_fd);
1259     sem_destroy(&m_operation_sem);
1260 }
1261 
1262 void
1263 NativeProcessLinux::Monitor::HandleSignals()
1264 {
1265     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1266 
1267     // We don't really care about the content of the SIGCHLD siginfo structure, as we will get
1268     // all the information from waitpid(). We just need to read all the signals so that we can
1269     // sleep next time we reach select().
1270     while (true)
1271     {
1272         signalfd_siginfo info;
1273         ssize_t size = read(m_signal_fd, &info, sizeof info);
1274         if (size == -1)
1275         {
1276             if (errno == EAGAIN || errno == EWOULDBLOCK)
1277                 break; // We are done.
1278             if (errno == EINTR)
1279                 continue;
1280             if (log)
1281                 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor failed: %s",
1282                         __FUNCTION__, strerror(errno));
1283             break;
1284         }
1285         if (size != sizeof info)
1286         {
1287             // We got incomplete information structure. This should not happen, let's just log
1288             // that.
1289             if (log)
1290                 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor returned incomplete data: "
1291                         "structure size is %zd, read returned %zd bytes",
1292                         __FUNCTION__, sizeof info, size);
1293             break;
1294         }
1295         if (log)
1296             log->Printf("NativeProcessLinux::Monitor::%s received signal %s(%d).", __FUNCTION__,
1297                 Host::GetSignalAsCString(info.ssi_signo), info.ssi_signo);
1298     }
1299 }
1300 
1301 void
1302 NativeProcessLinux::Monitor::HandleWait()
1303 {
1304     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1305     // Process all pending waitpid notifications.
1306     while (true)
1307     {
1308         int status = -1;
1309         ::pid_t wait_pid = waitpid(m_child_pid, &status, __WALL | WNOHANG);
1310 
1311         if (wait_pid == 0)
1312             break; // We are done.
1313 
1314         if (wait_pid == -1)
1315         {
1316             if (errno == EINTR)
1317                 continue;
1318 
1319             if (log)
1320               log->Printf("NativeProcessLinux::Monitor::%s waitpid (pid = %" PRIi32 ", &status, __WALL | WNOHANG) failed: %s",
1321                       __FUNCTION__, m_child_pid, strerror(errno));
1322             break;
1323         }
1324 
1325         bool exited = false;
1326         int signal = 0;
1327         int exit_status = 0;
1328         const char *status_cstr = NULL;
1329         if (WIFSTOPPED(status))
1330         {
1331             signal = WSTOPSIG(status);
1332             status_cstr = "STOPPED";
1333         }
1334         else if (WIFEXITED(status))
1335         {
1336             exit_status = WEXITSTATUS(status);
1337             status_cstr = "EXITED";
1338             exited = true;
1339         }
1340         else if (WIFSIGNALED(status))
1341         {
1342             signal = WTERMSIG(status);
1343             status_cstr = "SIGNALED";
1344             if (wait_pid == abs(m_child_pid)) {
1345                 exited = true;
1346                 exit_status = -1;
1347             }
1348         }
1349         else
1350             status_cstr = "(\?\?\?)";
1351 
1352         if (log)
1353             log->Printf("NativeProcessLinux::Monitor::%s: waitpid (pid = %" PRIi32 ", &status, __WALL | WNOHANG)"
1354                 "=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i",
1355                 __FUNCTION__, m_child_pid, wait_pid, status, status_cstr, signal, exit_status);
1356 
1357         m_native_process->MonitorCallback (wait_pid, exited, signal, exit_status);
1358     }
1359 }
1360 
1361 bool
1362 NativeProcessLinux::Monitor::HandleCommands()
1363 {
1364     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1365 
1366     while (true)
1367     {
1368         char command = 0;
1369         ssize_t size = read(m_pipefd[READ], &command, sizeof command);
1370         if (size == -1)
1371         {
1372             if (errno == EAGAIN || errno == EWOULDBLOCK)
1373                 return false;
1374             if (errno == EINTR)
1375                 continue;
1376             if (log)
1377                 log->Printf("NativeProcessLinux::Monitor::%s exiting because read from command file descriptor failed: %s", __FUNCTION__, strerror(errno));
1378             return true;
1379         }
1380         if (size == 0) // end of file - write end closed
1381         {
1382             if (log)
1383                 log->Printf("NativeProcessLinux::Monitor::%s exit command received, exiting...", __FUNCTION__);
1384             assert(m_operation_nesting_level == 0 && "Unbalanced begin/end block commands detected");
1385             return true; // We are done.
1386         }
1387 
1388         switch (command)
1389         {
1390         case operation_command:
1391             m_operation->Execute(m_native_process);
1392             break;
1393         case begin_block_command:
1394             ++m_operation_nesting_level;
1395             break;
1396         case end_block_command:
1397             assert(m_operation_nesting_level > 0);
1398             --m_operation_nesting_level;
1399             break;
1400         default:
1401             if (log)
1402                 log->Printf("NativeProcessLinux::Monitor::%s received unknown command '%c'",
1403                         __FUNCTION__, command);
1404         }
1405 
1406         // notify calling thread that the command has been processed
1407         sem_post(&m_operation_sem);
1408     }
1409 }
1410 
1411 void
1412 NativeProcessLinux::Monitor::MainLoop()
1413 {
1414     ::pid_t child_pid = (*m_initial_operation_up)(m_operation_error);
1415     m_initial_operation_up.reset();
1416     m_child_pid = -getpgid(child_pid),
1417     sem_post(&m_operation_sem);
1418 
1419     while (true)
1420     {
1421         fd_set fds;
1422         FD_ZERO(&fds);
1423         // Only process waitpid events if we are outside of an operation block. Any pending
1424         // events will be processed after we leave the block.
1425         if (m_operation_nesting_level == 0)
1426             FD_SET(m_signal_fd, &fds);
1427         FD_SET(m_pipefd[READ], &fds);
1428 
1429         int max_fd = std::max(m_signal_fd, m_pipefd[READ]) + 1;
1430         int r = select(max_fd, &fds, nullptr, nullptr, nullptr);
1431         if (r < 0)
1432         {
1433             Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1434             if (log)
1435                 log->Printf("NativeProcessLinux::Monitor::%s exiting because select failed: %s",
1436                         __FUNCTION__, strerror(errno));
1437             return;
1438         }
1439 
1440         if (FD_ISSET(m_pipefd[READ], &fds))
1441         {
1442             if (HandleCommands())
1443                 return;
1444         }
1445 
1446         if (FD_ISSET(m_signal_fd, &fds))
1447         {
1448             HandleSignals();
1449             HandleWait();
1450         }
1451     }
1452 }
1453 
1454 Error
1455 NativeProcessLinux::Monitor::WaitForAck()
1456 {
1457     Error error;
1458     while (sem_wait(&m_operation_sem) != 0)
1459     {
1460         if (errno == EINTR)
1461             continue;
1462 
1463         error.SetErrorToErrno();
1464         return error;
1465     }
1466 
1467     return m_operation_error;
1468 }
1469 
1470 void *
1471 NativeProcessLinux::Monitor::RunMonitor(void *arg)
1472 {
1473     static_cast<Monitor *>(arg)->MainLoop();
1474     return nullptr;
1475 }
1476 
1477 
1478 NativeProcessLinux::LaunchArgs::LaunchArgs(Module *module,
1479                                        char const **argv,
1480                                        char const **envp,
1481                                        const std::string &stdin_path,
1482                                        const std::string &stdout_path,
1483                                        const std::string &stderr_path,
1484                                        const char *working_dir,
1485                                        const ProcessLaunchInfo &launch_info)
1486     : m_module(module),
1487       m_argv(argv),
1488       m_envp(envp),
1489       m_stdin_path(stdin_path),
1490       m_stdout_path(stdout_path),
1491       m_stderr_path(stderr_path),
1492       m_working_dir(working_dir),
1493       m_launch_info(launch_info)
1494 {
1495 }
1496 
1497 NativeProcessLinux::LaunchArgs::~LaunchArgs()
1498 { }
1499 
1500 // -----------------------------------------------------------------------------
1501 // Public Static Methods
1502 // -----------------------------------------------------------------------------
1503 
1504 Error
1505 NativeProcessLinux::LaunchProcess (
1506     Module *exe_module,
1507     ProcessLaunchInfo &launch_info,
1508     NativeProcessProtocol::NativeDelegate &native_delegate,
1509     NativeProcessProtocolSP &native_process_sp)
1510 {
1511     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1512 
1513     Error error;
1514 
1515     // Verify the working directory is valid if one was specified.
1516     const char* working_dir = launch_info.GetWorkingDirectory ();
1517     if (working_dir)
1518     {
1519       FileSpec working_dir_fs (working_dir, true);
1520       if (!working_dir_fs || working_dir_fs.GetFileType () != FileSpec::eFileTypeDirectory)
1521       {
1522           error.SetErrorStringWithFormat ("No such file or directory: %s", working_dir);
1523           return error;
1524       }
1525     }
1526 
1527     const FileAction *file_action;
1528 
1529     // Default of NULL will mean to use existing open file descriptors.
1530     std::string stdin_path;
1531     std::string stdout_path;
1532     std::string stderr_path;
1533 
1534     file_action = launch_info.GetFileActionForFD (STDIN_FILENO);
1535     if (file_action)
1536         stdin_path = file_action->GetPath ();
1537 
1538     file_action = launch_info.GetFileActionForFD (STDOUT_FILENO);
1539     if (file_action)
1540         stdout_path = file_action->GetPath ();
1541 
1542     file_action = launch_info.GetFileActionForFD (STDERR_FILENO);
1543     if (file_action)
1544         stderr_path = file_action->GetPath ();
1545 
1546     if (log)
1547     {
1548         if (!stdin_path.empty ())
1549             log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'", __FUNCTION__, stdin_path.c_str ());
1550         else
1551             log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__);
1552 
1553         if (!stdout_path.empty ())
1554             log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'", __FUNCTION__, stdout_path.c_str ());
1555         else
1556             log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__);
1557 
1558         if (!stderr_path.empty ())
1559             log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'", __FUNCTION__, stderr_path.c_str ());
1560         else
1561             log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__);
1562     }
1563 
1564     // Create the NativeProcessLinux in launch mode.
1565     native_process_sp.reset (new NativeProcessLinux ());
1566 
1567     if (log)
1568     {
1569         int i = 0;
1570         for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i)
1571         {
1572             log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr");
1573             ++i;
1574         }
1575     }
1576 
1577     if (!native_process_sp->RegisterNativeDelegate (native_delegate))
1578     {
1579         native_process_sp.reset ();
1580         error.SetErrorStringWithFormat ("failed to register the native delegate");
1581         return error;
1582     }
1583 
1584     std::static_pointer_cast<NativeProcessLinux> (native_process_sp)->LaunchInferior (
1585             exe_module,
1586             launch_info.GetArguments ().GetConstArgumentVector (),
1587             launch_info.GetEnvironmentEntries ().GetConstArgumentVector (),
1588             stdin_path,
1589             stdout_path,
1590             stderr_path,
1591             working_dir,
1592             launch_info,
1593             error);
1594 
1595     if (error.Fail ())
1596     {
1597         native_process_sp.reset ();
1598         if (log)
1599             log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ());
1600         return error;
1601     }
1602 
1603     launch_info.SetProcessID (native_process_sp->GetID ());
1604 
1605     return error;
1606 }
1607 
1608 Error
1609 NativeProcessLinux::AttachToProcess (
1610     lldb::pid_t pid,
1611     NativeProcessProtocol::NativeDelegate &native_delegate,
1612     NativeProcessProtocolSP &native_process_sp)
1613 {
1614     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1615     if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE))
1616         log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid);
1617 
1618     // Grab the current platform architecture.  This should be Linux,
1619     // since this code is only intended to run on a Linux host.
1620     PlatformSP platform_sp (Platform::GetHostPlatform ());
1621     if (!platform_sp)
1622         return Error("failed to get a valid default platform");
1623 
1624     // Retrieve the architecture for the running process.
1625     ArchSpec process_arch;
1626     Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch);
1627     if (!error.Success ())
1628         return error;
1629 
1630     std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ());
1631 
1632     if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate))
1633     {
1634         error.SetErrorStringWithFormat ("failed to register the native delegate");
1635         return error;
1636     }
1637 
1638     native_process_linux_sp->AttachToInferior (pid, error);
1639     if (!error.Success ())
1640         return error;
1641 
1642     native_process_sp = native_process_linux_sp;
1643     return error;
1644 }
1645 
1646 // -----------------------------------------------------------------------------
1647 // Public Instance Methods
1648 // -----------------------------------------------------------------------------
1649 
1650 NativeProcessLinux::NativeProcessLinux () :
1651     NativeProcessProtocol (LLDB_INVALID_PROCESS_ID),
1652     m_arch (),
1653     m_supports_mem_region (eLazyBoolCalculate),
1654     m_mem_region_cache (),
1655     m_mem_region_cache_mutex (),
1656     m_tid_map ()
1657 {
1658 }
1659 
1660 //------------------------------------------------------------------------------
1661 // NativeProcessLinux spawns a new thread which performs all operations on the inferior process.
1662 // Refer to Monitor and Operation classes to see why this is necessary.
1663 //------------------------------------------------------------------------------
1664 void
1665 NativeProcessLinux::LaunchInferior (
1666     Module *module,
1667     const char *argv[],
1668     const char *envp[],
1669     const std::string &stdin_path,
1670     const std::string &stdout_path,
1671     const std::string &stderr_path,
1672     const char *working_dir,
1673     const ProcessLaunchInfo &launch_info,
1674     Error &error)
1675 {
1676     if (module)
1677         m_arch = module->GetArchitecture ();
1678 
1679     SetState (eStateLaunching);
1680 
1681     std::unique_ptr<LaunchArgs> args(
1682         new LaunchArgs(
1683             module, argv, envp,
1684             stdin_path, stdout_path, stderr_path,
1685             working_dir, launch_info));
1686 
1687     StartMonitorThread ([&] (Error &e) { return Launch(args.get(), e); }, error);
1688     if (!error.Success ())
1689         return;
1690 }
1691 
1692 void
1693 NativeProcessLinux::AttachToInferior (lldb::pid_t pid, Error &error)
1694 {
1695     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1696     if (log)
1697         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid);
1698 
1699     // We can use the Host for everything except the ResolveExecutable portion.
1700     PlatformSP platform_sp = Platform::GetHostPlatform ();
1701     if (!platform_sp)
1702     {
1703         if (log)
1704             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid);
1705         error.SetErrorString ("no default platform available");
1706         return;
1707     }
1708 
1709     // Gather info about the process.
1710     ProcessInstanceInfo process_info;
1711     if (!platform_sp->GetProcessInfo (pid, process_info))
1712     {
1713         if (log)
1714             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid);
1715         error.SetErrorString ("failed to get process info");
1716         return;
1717     }
1718 
1719     // Resolve the executable module
1720     ModuleSP exe_module_sp;
1721     FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths());
1722     ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
1723     error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp,
1724                                            executable_search_paths.GetSize() ? &executable_search_paths : NULL);
1725     if (!error.Success())
1726         return;
1727 
1728     // Set the architecture to the exe architecture.
1729     m_arch = exe_module_sp->GetArchitecture();
1730     if (log)
1731         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ());
1732 
1733     m_pid = pid;
1734     SetState(eStateAttaching);
1735 
1736     StartMonitorThread ([=] (Error &e) { return Attach(pid, e); }, error);
1737     if (!error.Success ())
1738         return;
1739 }
1740 
1741 void
1742 NativeProcessLinux::Terminate ()
1743 {
1744     m_monitor_up->Terminate();
1745 }
1746 
1747 ::pid_t
1748 NativeProcessLinux::Launch(LaunchArgs *args, Error &error)
1749 {
1750     assert (args && "null args");
1751 
1752     const char **argv = args->m_argv;
1753     const char **envp = args->m_envp;
1754     const char *working_dir = args->m_working_dir;
1755 
1756     lldb_utility::PseudoTerminal terminal;
1757     const size_t err_len = 1024;
1758     char err_str[err_len];
1759     lldb::pid_t pid;
1760     NativeThreadProtocolSP thread_sp;
1761 
1762     lldb::ThreadSP inferior;
1763 
1764     // Propagate the environment if one is not supplied.
1765     if (envp == NULL || envp[0] == NULL)
1766         envp = const_cast<const char **>(environ);
1767 
1768     if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1))
1769     {
1770         error.SetErrorToGenericError();
1771         error.SetErrorStringWithFormat("Process fork failed: %s", err_str);
1772         return -1;
1773     }
1774 
1775     // Recognized child exit status codes.
1776     enum {
1777         ePtraceFailed = 1,
1778         eDupStdinFailed,
1779         eDupStdoutFailed,
1780         eDupStderrFailed,
1781         eChdirFailed,
1782         eExecFailed,
1783         eSetGidFailed
1784     };
1785 
1786     // Child process.
1787     if (pid == 0)
1788     {
1789         // FIXME consider opening a pipe between parent/child and have this forked child
1790         // send log info to parent re: launch status, in place of the log lines removed here.
1791 
1792         // Start tracing this child that is about to exec.
1793         PTRACE(PTRACE_TRACEME, 0, nullptr, nullptr, 0, error);
1794         if (error.Fail())
1795             exit(ePtraceFailed);
1796 
1797         // terminal has already dupped the tty descriptors to stdin/out/err.
1798         // This closes original fd from which they were copied (and avoids
1799         // leaking descriptors to the debugged process.
1800         terminal.CloseSlaveFileDescriptor();
1801 
1802         // Do not inherit setgid powers.
1803         if (setgid(getgid()) != 0)
1804             exit(eSetGidFailed);
1805 
1806         // Attempt to have our own process group.
1807         if (setpgid(0, 0) != 0)
1808         {
1809             // FIXME log that this failed. This is common.
1810             // Don't allow this to prevent an inferior exec.
1811         }
1812 
1813         // Dup file descriptors if needed.
1814         if (!args->m_stdin_path.empty ())
1815             if (!DupDescriptor(args->m_stdin_path.c_str (), STDIN_FILENO, O_RDONLY))
1816                 exit(eDupStdinFailed);
1817 
1818         if (!args->m_stdout_path.empty ())
1819             if (!DupDescriptor(args->m_stdout_path.c_str (), STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
1820                 exit(eDupStdoutFailed);
1821 
1822         if (!args->m_stderr_path.empty ())
1823             if (!DupDescriptor(args->m_stderr_path.c_str (), STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
1824                 exit(eDupStderrFailed);
1825 
1826         // Close everything besides stdin, stdout, and stderr that has no file
1827         // action to avoid leaking
1828         for (int fd = 3; fd < sysconf(_SC_OPEN_MAX); ++fd)
1829             if (!args->m_launch_info.GetFileActionForFD(fd))
1830                 close(fd);
1831 
1832         // Change working directory
1833         if (working_dir != NULL && working_dir[0])
1834           if (0 != ::chdir(working_dir))
1835               exit(eChdirFailed);
1836 
1837         // Disable ASLR if requested.
1838         if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR))
1839         {
1840             const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS);
1841             if (old_personality == -1)
1842             {
1843                 // Can't retrieve Linux personality.  Cannot disable ASLR.
1844             }
1845             else
1846             {
1847                 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality);
1848                 if (new_personality == -1)
1849                 {
1850                     // Disabling ASLR failed.
1851                 }
1852                 else
1853                 {
1854                     // Disabling ASLR succeeded.
1855                 }
1856             }
1857         }
1858 
1859         // Execute.  We should never return...
1860         execve(argv[0],
1861                const_cast<char *const *>(argv),
1862                const_cast<char *const *>(envp));
1863 
1864         // ...unless exec fails.  In which case we definitely need to end the child here.
1865         exit(eExecFailed);
1866     }
1867 
1868     //
1869     // This is the parent code here.
1870     //
1871     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1872 
1873     // Wait for the child process to trap on its call to execve.
1874     ::pid_t wpid;
1875     int status;
1876     if ((wpid = waitpid(pid, &status, 0)) < 0)
1877     {
1878         error.SetErrorToErrno();
1879         if (log)
1880             log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s",
1881                     __FUNCTION__, error.AsCString ());
1882 
1883         // Mark the inferior as invalid.
1884         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1885         SetState (StateType::eStateInvalid);
1886 
1887         return -1;
1888     }
1889     else if (WIFEXITED(status))
1890     {
1891         // open, dup or execve likely failed for some reason.
1892         error.SetErrorToGenericError();
1893         switch (WEXITSTATUS(status))
1894         {
1895             case ePtraceFailed:
1896                 error.SetErrorString("Child ptrace failed.");
1897                 break;
1898             case eDupStdinFailed:
1899                 error.SetErrorString("Child open stdin failed.");
1900                 break;
1901             case eDupStdoutFailed:
1902                 error.SetErrorString("Child open stdout failed.");
1903                 break;
1904             case eDupStderrFailed:
1905                 error.SetErrorString("Child open stderr failed.");
1906                 break;
1907             case eChdirFailed:
1908                 error.SetErrorString("Child failed to set working directory.");
1909                 break;
1910             case eExecFailed:
1911                 error.SetErrorString("Child exec failed.");
1912                 break;
1913             case eSetGidFailed:
1914                 error.SetErrorString("Child setgid failed.");
1915                 break;
1916             default:
1917                 error.SetErrorString("Child returned unknown exit status.");
1918                 break;
1919         }
1920 
1921         if (log)
1922         {
1923             log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP",
1924                     __FUNCTION__,
1925                     WEXITSTATUS(status));
1926         }
1927 
1928         // Mark the inferior as invalid.
1929         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1930         SetState (StateType::eStateInvalid);
1931 
1932         return -1;
1933     }
1934     assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) &&
1935            "Could not sync with inferior process.");
1936 
1937     if (log)
1938         log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__);
1939 
1940     error = SetDefaultPtraceOpts(pid);
1941     if (error.Fail())
1942     {
1943         if (log)
1944             log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s",
1945                     __FUNCTION__, error.AsCString ());
1946 
1947         // Mark the inferior as invalid.
1948         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1949         SetState (StateType::eStateInvalid);
1950 
1951         return -1;
1952     }
1953 
1954     // Release the master terminal descriptor and pass it off to the
1955     // NativeProcessLinux instance.  Similarly stash the inferior pid.
1956     m_terminal_fd = terminal.ReleaseMasterFileDescriptor();
1957     m_pid = pid;
1958 
1959     // Set the terminal fd to be in non blocking mode (it simplifies the
1960     // implementation of ProcessLinux::GetSTDOUT to have a non-blocking
1961     // descriptor to read from).
1962     error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
1963     if (error.Fail())
1964     {
1965         if (log)
1966             log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s",
1967                     __FUNCTION__, error.AsCString ());
1968 
1969         // Mark the inferior as invalid.
1970         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1971         SetState (StateType::eStateInvalid);
1972 
1973         return -1;
1974     }
1975 
1976     if (log)
1977         log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid);
1978 
1979     thread_sp = AddThread (pid);
1980     assert (thread_sp && "AddThread() returned a nullptr thread");
1981     NotifyThreadCreateStopped (pid);
1982     std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP);
1983 
1984     // Let our process instance know the thread has stopped.
1985     SetCurrentThreadID (thread_sp->GetID ());
1986     SetState (StateType::eStateStopped);
1987 
1988     if (log)
1989     {
1990         if (error.Success ())
1991         {
1992             log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__);
1993         }
1994         else
1995         {
1996             log->Printf ("NativeProcessLinux::%s inferior launching failed: %s",
1997                 __FUNCTION__, error.AsCString ());
1998             return -1;
1999         }
2000     }
2001     return pid;
2002 }
2003 
2004 ::pid_t
2005 NativeProcessLinux::Attach(lldb::pid_t pid, Error &error)
2006 {
2007     lldb::ThreadSP inferior;
2008     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2009 
2010     // Use a map to keep track of the threads which we have attached/need to attach.
2011     Host::TidMap tids_to_attach;
2012     if (pid <= 1)
2013     {
2014         error.SetErrorToGenericError();
2015         error.SetErrorString("Attaching to process 1 is not allowed.");
2016         return -1;
2017     }
2018 
2019     while (Host::FindProcessThreads(pid, tids_to_attach))
2020     {
2021         for (Host::TidMap::iterator it = tids_to_attach.begin();
2022              it != tids_to_attach.end();)
2023         {
2024             if (it->second == false)
2025             {
2026                 lldb::tid_t tid = it->first;
2027 
2028                 // Attach to the requested process.
2029                 // An attach will cause the thread to stop with a SIGSTOP.
2030                 PTRACE(PTRACE_ATTACH, tid, nullptr, nullptr, 0, error);
2031                 if (error.Fail())
2032                 {
2033                     // No such thread. The thread may have exited.
2034                     // More error handling may be needed.
2035                     if (error.GetError() == ESRCH)
2036                     {
2037                         it = tids_to_attach.erase(it);
2038                         continue;
2039                     }
2040                     else
2041                         return -1;
2042                 }
2043 
2044                 int status;
2045                 // Need to use __WALL otherwise we receive an error with errno=ECHLD
2046                 // At this point we should have a thread stopped if waitpid succeeds.
2047                 if ((status = waitpid(tid, NULL, __WALL)) < 0)
2048                 {
2049                     // No such thread. The thread may have exited.
2050                     // More error handling may be needed.
2051                     if (errno == ESRCH)
2052                     {
2053                         it = tids_to_attach.erase(it);
2054                         continue;
2055                     }
2056                     else
2057                     {
2058                         error.SetErrorToErrno();
2059                         return -1;
2060                     }
2061                 }
2062 
2063                 error = SetDefaultPtraceOpts(tid);
2064                 if (error.Fail())
2065                     return -1;
2066 
2067                 if (log)
2068                     log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid);
2069 
2070                 it->second = true;
2071 
2072                 // Create the thread, mark it as stopped.
2073                 NativeThreadProtocolSP thread_sp (AddThread (static_cast<lldb::tid_t> (tid)));
2074                 assert (thread_sp && "AddThread() returned a nullptr");
2075 
2076                 // This will notify this is a new thread and tell the system it is stopped.
2077                 NotifyThreadCreateStopped (tid);
2078                 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP);
2079                 SetCurrentThreadID (thread_sp->GetID ());
2080             }
2081 
2082             // move the loop forward
2083             ++it;
2084         }
2085     }
2086 
2087     if (tids_to_attach.size() > 0)
2088     {
2089         m_pid = pid;
2090         // Let our process instance know the thread has stopped.
2091         SetState (StateType::eStateStopped);
2092     }
2093     else
2094     {
2095         error.SetErrorToGenericError();
2096         error.SetErrorString("No such process.");
2097         return -1;
2098     }
2099 
2100     return pid;
2101 }
2102 
2103 Error
2104 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid)
2105 {
2106     long ptrace_opts = 0;
2107 
2108     // Have the child raise an event on exit.  This is used to keep the child in
2109     // limbo until it is destroyed.
2110     ptrace_opts |= PTRACE_O_TRACEEXIT;
2111 
2112     // Have the tracer trace threads which spawn in the inferior process.
2113     // TODO: if we want to support tracing the inferiors' child, add the
2114     // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
2115     ptrace_opts |= PTRACE_O_TRACECLONE;
2116 
2117     // Have the tracer notify us before execve returns
2118     // (needed to disable legacy SIGTRAP generation)
2119     ptrace_opts |= PTRACE_O_TRACEEXEC;
2120 
2121     Error error;
2122     PTRACE(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts, 0, error);
2123     return error;
2124 }
2125 
2126 static ExitType convert_pid_status_to_exit_type (int status)
2127 {
2128     if (WIFEXITED (status))
2129         return ExitType::eExitTypeExit;
2130     else if (WIFSIGNALED (status))
2131         return ExitType::eExitTypeSignal;
2132     else if (WIFSTOPPED (status))
2133         return ExitType::eExitTypeStop;
2134     else
2135     {
2136         // We don't know what this is.
2137         return ExitType::eExitTypeInvalid;
2138     }
2139 }
2140 
2141 static int convert_pid_status_to_return_code (int status)
2142 {
2143     if (WIFEXITED (status))
2144         return WEXITSTATUS (status);
2145     else if (WIFSIGNALED (status))
2146         return WTERMSIG (status);
2147     else if (WIFSTOPPED (status))
2148         return WSTOPSIG (status);
2149     else
2150     {
2151         // We don't know what this is.
2152         return ExitType::eExitTypeInvalid;
2153     }
2154 }
2155 
2156 // Handles all waitpid events from the inferior process.
2157 void
2158 NativeProcessLinux::MonitorCallback(lldb::pid_t pid,
2159                                     bool exited,
2160                                     int signal,
2161                                     int status)
2162 {
2163     Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS));
2164 
2165     // Certain activities differ based on whether the pid is the tid of the main thread.
2166     const bool is_main_thread = (pid == GetID ());
2167 
2168     // Handle when the thread exits.
2169     if (exited)
2170     {
2171         if (log)
2172             log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %"  PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not");
2173 
2174         // This is a thread that exited.  Ensure we're not tracking it anymore.
2175         const bool thread_found = StopTrackingThread (pid);
2176 
2177         // Make sure the thread state coordinator knows about this.
2178         NotifyThreadDeath (pid);
2179 
2180         if (is_main_thread)
2181         {
2182             // We only set the exit status and notify the delegate if we haven't already set the process
2183             // state to an exited state.  We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8)
2184             // for the main thread.
2185             const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed);
2186             if (!already_notified)
2187             {
2188                 if (log)
2189                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ()));
2190                 // The main thread exited.  We're done monitoring.  Report to delegate.
2191                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
2192 
2193                 // Notify delegate that our process has exited.
2194                 SetState (StateType::eStateExited, true);
2195             }
2196             else
2197             {
2198                 if (log)
2199                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
2200             }
2201         }
2202         else
2203         {
2204             // Do we want to report to the delegate in this case?  I think not.  If this was an orderly
2205             // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal,
2206             // and we would have done an all-stop then.
2207             if (log)
2208                 log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
2209         }
2210         return;
2211     }
2212 
2213     // Get details on the signal raised.
2214     siginfo_t info;
2215     const auto err = GetSignalInfo(pid, &info);
2216     if (err.Success())
2217     {
2218         // We have retrieved the signal info.  Dispatch appropriately.
2219         if (info.si_signo == SIGTRAP)
2220             MonitorSIGTRAP(&info, pid);
2221         else
2222             MonitorSignal(&info, pid, exited);
2223     }
2224     else
2225     {
2226         if (err.GetError() == EINVAL)
2227         {
2228             // This is a group stop reception for this tid.
2229             if (log)
2230                 log->Printf ("NativeThreadLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64, __FUNCTION__, GetID (), pid);
2231             NotifyThreadStop (pid, false);
2232         }
2233         else
2234         {
2235             // ptrace(GETSIGINFO) failed (but not due to group-stop).
2236 
2237             // A return value of ESRCH means the thread/process is no longer on the system,
2238             // so it was killed somehow outside of our control.  Either way, we can't do anything
2239             // with it anymore.
2240 
2241             // Stop tracking the metadata for the thread since it's entirely off the system now.
2242             const bool thread_found = StopTrackingThread (pid);
2243 
2244             // Make sure the thread state coordinator knows about this.
2245             NotifyThreadDeath (pid);
2246 
2247             if (log)
2248                 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)",
2249                              __FUNCTION__, err.AsCString(), pid, signal, status, err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found");
2250 
2251             if (is_main_thread)
2252             {
2253                 // Notify the delegate - our process is not available but appears to have been killed outside
2254                 // our control.  Is eStateExited the right exit state in this case?
2255                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
2256                 SetState (StateType::eStateExited, true);
2257             }
2258             else
2259             {
2260                 // This thread was pulled out from underneath us.  Anything to do here? Do we want to do an all stop?
2261                 if (log)
2262                     log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid);
2263             }
2264         }
2265     }
2266 }
2267 
2268 void
2269 NativeProcessLinux::WaitForNewThread(::pid_t tid)
2270 {
2271     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2272 
2273     NativeThreadProtocolSP new_thread_sp = GetThreadByID(tid);
2274 
2275     if (new_thread_sp)
2276     {
2277         // We are already tracking the thread - we got the event on the new thread (see
2278         // MonitorSignal) before this one. We are done.
2279         return;
2280     }
2281 
2282     // The thread is not tracked yet, let's wait for it to appear.
2283     int status = -1;
2284     ::pid_t wait_pid;
2285     do
2286     {
2287         if (log)
2288             log->Printf ("NativeProcessLinux::%s() received thread creation event for tid %" PRIu32 ". tid not tracked yet, waiting for thread to appear...", __FUNCTION__, tid);
2289         wait_pid = waitpid(tid, &status, __WALL);
2290     }
2291     while (wait_pid == -1 && errno == EINTR);
2292     // Since we are waiting on a specific tid, this must be the creation event. But let's do
2293     // some checks just in case.
2294     if (wait_pid != tid) {
2295         if (log)
2296             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime", __FUNCTION__, tid);
2297         // The only way I know of this could happen is if the whole process was
2298         // SIGKILLed in the mean time. In any case, we can't do anything about that now.
2299         return;
2300     }
2301     if (WIFEXITED(status))
2302     {
2303         if (log)
2304             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " returned an 'exited' event. Not tracking the thread.", __FUNCTION__, tid);
2305         // Also a very improbable event.
2306         return;
2307     }
2308 
2309     siginfo_t info;
2310     Error error = GetSignalInfo(tid, &info);
2311     if (error.Fail())
2312     {
2313         if (log)
2314             log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime.", __FUNCTION__, tid);
2315         return;
2316     }
2317 
2318     if (((info.si_pid != 0) || (info.si_code != SI_USER)) && log)
2319     {
2320         // We should be getting a thread creation signal here, but we received something
2321         // else. There isn't much we can do about it now, so we will just log that. Since the
2322         // thread is alive and we are receiving events from it, we shall pretend that it was
2323         // created properly.
2324         log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " received unexpected signal with code %d from pid %d.", __FUNCTION__, tid, info.si_code, info.si_pid);
2325     }
2326 
2327     if (log)
2328         log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": tracking new thread tid %" PRIu32,
2329                  __FUNCTION__, GetID (), tid);
2330 
2331     new_thread_sp = AddThread(tid);
2332     std::static_pointer_cast<NativeThreadLinux> (new_thread_sp)->SetRunning ();
2333     Resume (tid, LLDB_INVALID_SIGNAL_NUMBER);
2334     NotifyThreadCreate (tid, false);
2335 }
2336 
2337 void
2338 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid)
2339 {
2340     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2341     const bool is_main_thread = (pid == GetID ());
2342 
2343     assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!");
2344     if (!info)
2345         return;
2346 
2347     Mutex::Locker locker (m_threads_mutex);
2348 
2349     // See if we can find a thread for this signal.
2350     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
2351     if (!thread_sp)
2352     {
2353         if (log)
2354             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
2355     }
2356 
2357     switch (info->si_code)
2358     {
2359     // TODO: these two cases are required if we want to support tracing of the inferiors' children.  We'd need this to debug a monitor.
2360     // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
2361     // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
2362 
2363     case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)):
2364     {
2365         // This is the notification on the parent thread which informs us of new thread
2366         // creation.
2367         // We don't want to do anything with the parent thread so we just resume it. In case we
2368         // want to implement "break on thread creation" functionality, we would need to stop
2369         // here.
2370 
2371         unsigned long event_message = 0;
2372         if (GetEventMessage (pid, &event_message).Fail())
2373         {
2374             if (log)
2375                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, pid);
2376         } else
2377             WaitForNewThread(event_message);
2378 
2379         Resume (pid, LLDB_INVALID_SIGNAL_NUMBER);
2380         break;
2381     }
2382 
2383     case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)):
2384     {
2385         NativeThreadProtocolSP main_thread_sp;
2386         if (log)
2387             log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP);
2388 
2389         // The thread state coordinator needs to reset due to the exec.
2390         ResetForExec ();
2391 
2392         // Remove all but the main thread here.  Linux fork creates a new process which only copies the main thread.  Mutexes are in undefined state.
2393         if (log)
2394             log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__);
2395 
2396         for (auto thread_sp : m_threads)
2397         {
2398             const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID ();
2399             if (is_main_thread)
2400             {
2401                 main_thread_sp = thread_sp;
2402                 if (log)
2403                     log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ());
2404             }
2405             else
2406             {
2407                 // Tell thread coordinator this thread is dead.
2408                 if (log)
2409                     log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ());
2410             }
2411         }
2412 
2413         m_threads.clear ();
2414 
2415         if (main_thread_sp)
2416         {
2417             m_threads.push_back (main_thread_sp);
2418             SetCurrentThreadID (main_thread_sp->GetID ());
2419             std::static_pointer_cast<NativeThreadLinux> (main_thread_sp)->SetStoppedByExec ();
2420         }
2421         else
2422         {
2423             SetCurrentThreadID (LLDB_INVALID_THREAD_ID);
2424             if (log)
2425                 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ());
2426         }
2427 
2428         // Tell coordinator about about the "new" (since exec) stopped main thread.
2429         const lldb::tid_t main_thread_tid = GetID ();
2430         NotifyThreadCreateStopped (main_thread_tid);
2431 
2432         // NOTE: ideally these next statements would execute at the same time as the coordinator thread create was executed.
2433         // Consider a handler that can execute when that happens.
2434         // Let our delegate know we have just exec'd.
2435         NotifyDidExec ();
2436 
2437         // If we have a main thread, indicate we are stopped.
2438         assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked");
2439 
2440         // Let the process know we're stopped.
2441         StopRunningThreads (pid);
2442 
2443         break;
2444     }
2445 
2446     case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)):
2447     {
2448         // The inferior process or one of its threads is about to exit.
2449 
2450         // This thread is currently stopped.  It's not actually dead yet, just about to be.
2451         NotifyThreadStop (pid, false);
2452 
2453         unsigned long data = 0;
2454         if (GetEventMessage(pid, &data).Fail())
2455             data = -1;
2456 
2457         if (log)
2458         {
2459             log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)",
2460                          __FUNCTION__,
2461                          data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false",
2462                          pid,
2463                     is_main_thread ? "is main thread" : "not main thread");
2464         }
2465 
2466         if (is_main_thread)
2467         {
2468             SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true);
2469         }
2470 
2471         const int signo = static_cast<int> (data);
2472         RequestThreadResume (pid,
2473                 [=](lldb::tid_t tid_to_resume, bool supress_signal)
2474                 {
2475                     std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2476                     return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo);
2477                 });
2478 
2479         break;
2480     }
2481 
2482     case 0:
2483     case TRAP_TRACE:  // We receive this on single stepping.
2484     case TRAP_HWBKPT: // We receive this on watchpoint hit
2485         if (thread_sp)
2486         {
2487             // If a watchpoint was hit, report it
2488             uint32_t wp_index;
2489             Error error = thread_sp->GetRegisterContext()->GetWatchpointHitIndex(wp_index);
2490             if (error.Fail() && log)
2491                 log->Printf("NativeProcessLinux::%s() "
2492                             "received error while checking for watchpoint hits, "
2493                             "pid = %" PRIu64 " error = %s",
2494                             __FUNCTION__, pid, error.AsCString());
2495             if (wp_index != LLDB_INVALID_INDEX32)
2496             {
2497                 MonitorWatchpoint(pid, thread_sp, wp_index);
2498                 break;
2499             }
2500         }
2501         // Otherwise, report step over
2502         MonitorTrace(pid, thread_sp);
2503         break;
2504 
2505     case SI_KERNEL:
2506     case TRAP_BRKPT:
2507         MonitorBreakpoint(pid, thread_sp);
2508         break;
2509 
2510     case SIGTRAP:
2511     case (SIGTRAP | 0x80):
2512         if (log)
2513             log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), pid);
2514 
2515         // This thread is currently stopped.
2516         NotifyThreadStop (pid, false);
2517         if (thread_sp)
2518             std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGTRAP);
2519 
2520 
2521         // Ignore these signals until we know more about them.
2522         RequestThreadResume (pid,
2523                 [=](lldb::tid_t tid_to_resume, bool supress_signal)
2524                 {
2525                     std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2526                     return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER);
2527                 });
2528         break;
2529 
2530     default:
2531         assert(false && "Unexpected SIGTRAP code!");
2532         if (log)
2533             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%" PRIx64, __FUNCTION__, GetID (), pid, static_cast<uint64_t> (SIGTRAP | (PTRACE_EVENT_CLONE << 8)));
2534         break;
2535 
2536     }
2537 }
2538 
2539 void
2540 NativeProcessLinux::MonitorTrace(lldb::pid_t pid, NativeThreadProtocolSP thread_sp)
2541 {
2542     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2543     if (log)
2544         log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)",
2545                 __FUNCTION__, pid);
2546 
2547     if (thread_sp)
2548         std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace();
2549 
2550     // This thread is currently stopped.
2551     NotifyThreadStop(pid, false);
2552 
2553     // Here we don't have to request the rest of the threads to stop or request a deferred stop.
2554     // This would have already happened at the time the Resume() with step operation was signaled.
2555     // At this point, we just need to say we stopped, and the deferred notifcation will fire off
2556     // once all running threads have checked in as stopped.
2557     SetCurrentThreadID(pid);
2558     // Tell the process we have a stop (from software breakpoint).
2559     StopRunningThreads(pid);
2560 }
2561 
2562 void
2563 NativeProcessLinux::MonitorBreakpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp)
2564 {
2565     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
2566     if (log)
2567         log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64,
2568                 __FUNCTION__, pid);
2569 
2570     // This thread is currently stopped.
2571     NotifyThreadStop(pid, false);
2572 
2573     // Mark the thread as stopped at breakpoint.
2574     if (thread_sp)
2575     {
2576         std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByBreakpoint();
2577         Error error = FixupBreakpointPCAsNeeded(thread_sp);
2578         if (error.Fail())
2579             if (log)
2580                 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s",
2581                         __FUNCTION__, pid, error.AsCString());
2582 
2583         auto it = m_threads_stepping_with_breakpoint.find(pid);
2584         if (it != m_threads_stepping_with_breakpoint.end())
2585         {
2586             Error error = RemoveBreakpoint (it->second);
2587             if (error.Fail())
2588                 if (log)
2589                     log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s",
2590                             __FUNCTION__, pid, error.AsCString());
2591 
2592             m_threads_stepping_with_breakpoint.erase(it);
2593             std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace();
2594         }
2595     }
2596     else
2597         if (log)
2598             log->Printf("NativeProcessLinux::%s()  pid = %" PRIu64 ": "
2599                     "warning, cannot process software breakpoint since no thread metadata",
2600                     __FUNCTION__, pid);
2601 
2602 
2603     // We need to tell all other running threads before we notify the delegate about this stop.
2604     StopRunningThreads(pid);
2605 }
2606 
2607 void
2608 NativeProcessLinux::MonitorWatchpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp, uint32_t wp_index)
2609 {
2610     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
2611     if (log)
2612         log->Printf("NativeProcessLinux::%s() received watchpoint event, "
2613                     "pid = %" PRIu64 ", wp_index = %" PRIu32,
2614                     __FUNCTION__, pid, wp_index);
2615 
2616     // This thread is currently stopped.
2617     NotifyThreadStop(pid, false);
2618 
2619     // Mark the thread as stopped at watchpoint.
2620     // The address is at (lldb::addr_t)info->si_addr if we need it.
2621     lldbassert(thread_sp && "thread_sp cannot be NULL");
2622     std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByWatchpoint(wp_index);
2623 
2624     // We need to tell all other running threads before we notify the delegate about this stop.
2625     StopRunningThreads(pid);
2626 }
2627 
2628 void
2629 NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited)
2630 {
2631     assert (info && "null info");
2632     if (!info)
2633         return;
2634 
2635     const int signo = info->si_signo;
2636     const bool is_from_llgs = info->si_pid == getpid ();
2637 
2638     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2639 
2640     // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
2641     // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
2642     // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
2643     //
2644     // IOW, user generated signals never generate what we consider to be a
2645     // "crash".
2646     //
2647     // Similarly, ACK signals generated by this monitor.
2648 
2649     Mutex::Locker locker (m_threads_mutex);
2650 
2651     // See if we can find a thread for this signal.
2652     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
2653     if (!thread_sp)
2654     {
2655         if (log)
2656             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
2657     }
2658 
2659     // Handle the signal.
2660     if (info->si_code == SI_TKILL || info->si_code == SI_USER)
2661     {
2662         if (log)
2663             log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")",
2664                             __FUNCTION__,
2665                             GetUnixSignals ().GetSignalAsCString (signo),
2666                             signo,
2667                             (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"),
2668                             info->si_pid,
2669                             is_from_llgs ? "from llgs" : "not from llgs",
2670                             pid);
2671     }
2672 
2673     // Check for new thread notification.
2674     if ((info->si_pid == 0) && (info->si_code == SI_USER))
2675     {
2676         // A new thread creation is being signaled. This is one of two parts that come in
2677         // a non-deterministic order. This code handles the case where the new thread event comes
2678         // before the event on the parent thread. For the opposite case see code in
2679         // MonitorSIGTRAP.
2680         if (log)
2681             log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification",
2682                      __FUNCTION__, GetID (), pid);
2683 
2684         thread_sp = AddThread(pid);
2685         assert (thread_sp.get() && "failed to create the tracking data for newly created inferior thread");
2686         // We can now resume the newly created thread.
2687         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2688         Resume (pid, LLDB_INVALID_SIGNAL_NUMBER);
2689         NotifyThreadCreate (pid, false);
2690         // Done handling.
2691         return;
2692     }
2693 
2694     // Check for thread stop notification.
2695     if (is_from_llgs && (info->si_code == SI_TKILL) && (signo == SIGSTOP))
2696     {
2697         // This is a tgkill()-based stop.
2698         if (thread_sp)
2699         {
2700             if (log)
2701                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped",
2702                              __FUNCTION__,
2703                              GetID (),
2704                              pid);
2705 
2706             // Check that we're not already marked with a stop reason.
2707             // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that
2708             // the kernel signaled us with the thread stopping which we handled and marked as stopped,
2709             // and that, without an intervening resume, we received another stop.  It is more likely
2710             // that we are missing the marking of a run state somewhere if we find that the thread was
2711             // marked as stopped.
2712             std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp);
2713             assert (linux_thread_sp && "linux_thread_sp is null!");
2714 
2715             const StateType thread_state = linux_thread_sp->GetState ();
2716             if (!StateIsStoppedState (thread_state, false))
2717             {
2718                 // An inferior thread has stopped because of a SIGSTOP we have sent it.
2719                 // Generally, these are not important stops and we don't want to report them as
2720                 // they are just used to stop other threads when one thread (the one with the
2721                 // *real* stop reason) hits a breakpoint (watchpoint, etc...). However, in the
2722                 // case of an asynchronous Interrupt(), this *is* the real stop reason, so we
2723                 // leave the signal intact if this is the thread that was chosen as the
2724                 // triggering thread.
2725                 if (m_pending_notification_up && m_pending_notification_up->triggering_tid == pid)
2726                     linux_thread_sp->SetStoppedBySignal(SIGSTOP);
2727                 else
2728                     linux_thread_sp->SetStoppedBySignal(0);
2729 
2730                 SetCurrentThreadID (thread_sp->GetID ());
2731                 NotifyThreadStop (thread_sp->GetID (), true);
2732             }
2733             else
2734             {
2735                 if (log)
2736                 {
2737                     // Retrieve the signal name if the thread was stopped by a signal.
2738                     int stop_signo = 0;
2739                     const bool stopped_by_signal = linux_thread_sp->IsStopped (&stop_signo);
2740                     const char *signal_name = stopped_by_signal ? GetUnixSignals ().GetSignalAsCString (stop_signo) : "<not stopped by signal>";
2741                     if (!signal_name)
2742                         signal_name = "<no-signal-name>";
2743 
2744                     log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is",
2745                                  __FUNCTION__,
2746                                  GetID (),
2747                                  linux_thread_sp->GetID (),
2748                                  StateAsCString (thread_state),
2749                                  stop_signo,
2750                                  signal_name);
2751                 }
2752                 // Tell the thread state coordinator about the stop.
2753                 NotifyThreadStop (thread_sp->GetID (), false);
2754             }
2755         }
2756 
2757         // Done handling.
2758         return;
2759     }
2760 
2761     if (log)
2762         log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo));
2763 
2764     // This thread is stopped.
2765     NotifyThreadStop (pid, false);
2766 
2767     switch (signo)
2768     {
2769     case SIGSTOP:
2770         {
2771             if (log)
2772             {
2773                 if (is_from_llgs)
2774                     log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from llgs, most likely an interrupt", __FUNCTION__, GetID (), pid);
2775                 else
2776                     log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from outside of debugger", __FUNCTION__, GetID (), pid);
2777             }
2778 
2779             // Resume this thread to get the group-stop mechanism to fire off the true group stops.
2780             // This thread will get stopped again as part of the group-stop completion.
2781             RequestThreadResume (pid,
2782                     [=](lldb::tid_t tid_to_resume, bool supress_signal)
2783                     {
2784                         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2785                         // Pass this signal number on to the inferior to handle.
2786                         return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo);
2787                     });
2788         }
2789         break;
2790     case SIGSEGV:
2791     case SIGILL:
2792     case SIGFPE:
2793     case SIGBUS:
2794         if (thread_sp)
2795             std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetCrashedWithException (*info);
2796         break;
2797     default:
2798         // This is just a pre-signal-delivery notification of the incoming signal.
2799         if (thread_sp)
2800             std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (signo);
2801 
2802         break;
2803     }
2804 
2805     // Send a stop to the debugger after we get all other threads to stop.
2806     StopRunningThreads (pid);
2807 }
2808 
2809 namespace {
2810 
2811 struct EmulatorBaton
2812 {
2813     NativeProcessLinux* m_process;
2814     NativeRegisterContext* m_reg_context;
2815 
2816     // eRegisterKindDWARF -> RegsiterValue
2817     std::unordered_map<uint32_t, RegisterValue> m_register_values;
2818 
2819     EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) :
2820             m_process(process), m_reg_context(reg_context) {}
2821 };
2822 
2823 } // anonymous namespace
2824 
2825 static size_t
2826 ReadMemoryCallback (EmulateInstruction *instruction,
2827                     void *baton,
2828                     const EmulateInstruction::Context &context,
2829                     lldb::addr_t addr,
2830                     void *dst,
2831                     size_t length)
2832 {
2833     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2834 
2835     size_t bytes_read;
2836     emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read);
2837     return bytes_read;
2838 }
2839 
2840 static bool
2841 ReadRegisterCallback (EmulateInstruction *instruction,
2842                       void *baton,
2843                       const RegisterInfo *reg_info,
2844                       RegisterValue &reg_value)
2845 {
2846     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2847 
2848     auto it = emulator_baton->m_register_values.find(reg_info->kinds[eRegisterKindDWARF]);
2849     if (it != emulator_baton->m_register_values.end())
2850     {
2851         reg_value = it->second;
2852         return true;
2853     }
2854 
2855     // The emulator only fill in the dwarf regsiter numbers (and in some case
2856     // the generic register numbers). Get the full register info from the
2857     // register context based on the dwarf register numbers.
2858     const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo(
2859             eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
2860 
2861     Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value);
2862     if (error.Success())
2863         return true;
2864 
2865     return false;
2866 }
2867 
2868 static bool
2869 WriteRegisterCallback (EmulateInstruction *instruction,
2870                        void *baton,
2871                        const EmulateInstruction::Context &context,
2872                        const RegisterInfo *reg_info,
2873                        const RegisterValue &reg_value)
2874 {
2875     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2876     emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value;
2877     return true;
2878 }
2879 
2880 static size_t
2881 WriteMemoryCallback (EmulateInstruction *instruction,
2882                      void *baton,
2883                      const EmulateInstruction::Context &context,
2884                      lldb::addr_t addr,
2885                      const void *dst,
2886                      size_t length)
2887 {
2888     return length;
2889 }
2890 
2891 static lldb::addr_t
2892 ReadFlags (NativeRegisterContext* regsiter_context)
2893 {
2894     const RegisterInfo* flags_info = regsiter_context->GetRegisterInfo(
2895             eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
2896     return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS);
2897 }
2898 
2899 Error
2900 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadProtocolSP thread_sp)
2901 {
2902     Error error;
2903     NativeRegisterContextSP register_context_sp = thread_sp->GetRegisterContext();
2904 
2905     std::unique_ptr<EmulateInstruction> emulator_ap(
2906         EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr));
2907 
2908     if (emulator_ap == nullptr)
2909         return Error("Instruction emulator not found!");
2910 
2911     EmulatorBaton baton(this, register_context_sp.get());
2912     emulator_ap->SetBaton(&baton);
2913     emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
2914     emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
2915     emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
2916     emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
2917 
2918     if (!emulator_ap->ReadInstruction())
2919         return Error("Read instruction failed!");
2920 
2921     bool emulation_result = emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
2922 
2923     const RegisterInfo* reg_info_pc = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
2924     const RegisterInfo* reg_info_flags = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
2925 
2926     auto pc_it = baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
2927     auto flags_it = baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
2928 
2929     lldb::addr_t next_pc;
2930     lldb::addr_t next_flags;
2931     if (emulation_result)
2932     {
2933         assert(pc_it != baton.m_register_values.end() && "Emulation was successfull but PC wasn't updated");
2934         next_pc = pc_it->second.GetAsUInt64();
2935 
2936         if (flags_it != baton.m_register_values.end())
2937             next_flags = flags_it->second.GetAsUInt64();
2938         else
2939             next_flags = ReadFlags (register_context_sp.get());
2940     }
2941     else if (pc_it == baton.m_register_values.end())
2942     {
2943         // Emulate instruction failed and it haven't changed PC. Advance PC
2944         // with the size of the current opcode because the emulation of all
2945         // PC modifying instruction should be successful. The failure most
2946         // likely caused by a not supported instruction which don't modify PC.
2947         next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize();
2948         next_flags = ReadFlags (register_context_sp.get());
2949     }
2950     else
2951     {
2952         // The instruction emulation failed after it modified the PC. It is an
2953         // unknown error where we can't continue because the next instruction is
2954         // modifying the PC but we don't  know how.
2955         return Error ("Instruction emulation failed unexpectedly.");
2956     }
2957 
2958     if (m_arch.GetMachine() == llvm::Triple::arm)
2959     {
2960         if (next_flags & 0x20)
2961         {
2962             // Thumb mode
2963             error = SetSoftwareBreakpoint(next_pc, 2);
2964         }
2965         else
2966         {
2967             // Arm mode
2968             error = SetSoftwareBreakpoint(next_pc, 4);
2969         }
2970     }
2971     else if (m_arch.GetMachine() == llvm::Triple::mips64
2972             || m_arch.GetMachine() == llvm::Triple::mips64el)
2973         error = SetSoftwareBreakpoint(next_pc, 4);
2974     else
2975     {
2976         // No size hint is given for the next breakpoint
2977         error = SetSoftwareBreakpoint(next_pc, 0);
2978     }
2979 
2980     if (error.Fail())
2981         return error;
2982 
2983     m_threads_stepping_with_breakpoint.insert({thread_sp->GetID(), next_pc});
2984 
2985     return Error();
2986 }
2987 
2988 bool
2989 NativeProcessLinux::SupportHardwareSingleStepping() const
2990 {
2991     if (m_arch.GetMachine() == llvm::Triple::arm
2992         || m_arch.GetMachine() == llvm::Triple::mips64 || m_arch.GetMachine() == llvm::Triple::mips64el)
2993         return false;
2994     return true;
2995 }
2996 
2997 Error
2998 NativeProcessLinux::Resume (const ResumeActionList &resume_actions)
2999 {
3000     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD));
3001     if (log)
3002         log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ());
3003 
3004     lldb::tid_t deferred_signal_tid = LLDB_INVALID_THREAD_ID;
3005     lldb::tid_t deferred_signal_skip_tid = LLDB_INVALID_THREAD_ID;
3006     int deferred_signo = 0;
3007     NativeThreadProtocolSP deferred_signal_thread_sp;
3008     bool stepping = false;
3009     bool software_single_step = !SupportHardwareSingleStepping();
3010 
3011     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
3012     Mutex::Locker locker (m_threads_mutex);
3013 
3014     if (software_single_step)
3015     {
3016         for (auto thread_sp : m_threads)
3017         {
3018             assert (thread_sp && "thread list should not contain NULL threads");
3019 
3020             const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
3021             if (action == nullptr)
3022                 continue;
3023 
3024             if (action->state == eStateStepping)
3025             {
3026                 Error error = SetupSoftwareSingleStepping(thread_sp);
3027                 if (error.Fail())
3028                     return error;
3029             }
3030         }
3031     }
3032 
3033     for (auto thread_sp : m_threads)
3034     {
3035         assert (thread_sp && "thread list should not contain NULL threads");
3036 
3037         const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
3038 
3039         if (action == nullptr)
3040         {
3041             if (log)
3042                 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64,
3043                     __FUNCTION__, GetID (), thread_sp->GetID ());
3044             continue;
3045         }
3046 
3047         if (log)
3048         {
3049             log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64,
3050                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
3051         }
3052 
3053         switch (action->state)
3054         {
3055         case eStateRunning:
3056         {
3057             // Run the thread, possibly feeding it the signal.
3058             const int signo = action->signal;
3059             RequestThreadResumeAsNeeded (thread_sp->GetID (),
3060                     [=](lldb::tid_t tid_to_resume, bool supress_signal)
3061                     {
3062                         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
3063                         // Pass this signal number on to the inferior to handle.
3064                         const auto resume_result = Resume (tid_to_resume, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
3065                         if (resume_result.Success())
3066                             SetState(eStateRunning, true);
3067                         return resume_result;
3068                     });
3069             break;
3070         }
3071 
3072         case eStateStepping:
3073         {
3074             // Request the step.
3075             const int signo = action->signal;
3076             RequestThreadResume (thread_sp->GetID (),
3077                     [=](lldb::tid_t tid_to_step, bool supress_signal)
3078                     {
3079                         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStepping ();
3080 
3081                         Error step_result;
3082                         if (software_single_step)
3083                             step_result = Resume (tid_to_step, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
3084                         else
3085                             step_result = SingleStep (tid_to_step,(signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
3086 
3087                         assert (step_result.Success() && "SingleStep() failed");
3088                         if (step_result.Success())
3089                             SetState(eStateStepping, true);
3090                         return step_result;
3091                     });
3092             stepping = true;
3093             break;
3094         }
3095 
3096         case eStateSuspended:
3097         case eStateStopped:
3098             // if we haven't chosen a deferred signal tid yet, use this one.
3099             if (deferred_signal_tid == LLDB_INVALID_THREAD_ID)
3100             {
3101                 deferred_signal_tid = thread_sp->GetID ();
3102                 deferred_signal_thread_sp = thread_sp;
3103                 deferred_signo = SIGSTOP;
3104             }
3105             break;
3106 
3107         default:
3108             return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64,
3109                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
3110         }
3111     }
3112 
3113     // If we had any thread stopping, then do a deferred notification of the chosen stop thread id and signal
3114     // after all other running threads have stopped.
3115     // If there is a stepping thread involved we'll be eventually stopped by SIGTRAP trace signal.
3116     if (deferred_signal_tid != LLDB_INVALID_THREAD_ID && !stepping)
3117         StopRunningThreadsWithSkipTID(deferred_signal_tid, deferred_signal_skip_tid);
3118 
3119     return Error();
3120 }
3121 
3122 Error
3123 NativeProcessLinux::Halt ()
3124 {
3125     Error error;
3126 
3127     if (kill (GetID (), SIGSTOP) != 0)
3128         error.SetErrorToErrno ();
3129 
3130     return error;
3131 }
3132 
3133 Error
3134 NativeProcessLinux::Detach ()
3135 {
3136     Error error;
3137 
3138     // Tell ptrace to detach from the process.
3139     if (GetID () != LLDB_INVALID_PROCESS_ID)
3140         error = Detach (GetID ());
3141 
3142     // Stop monitoring the inferior.
3143     m_monitor_up->Terminate();
3144 
3145     // No error.
3146     return error;
3147 }
3148 
3149 Error
3150 NativeProcessLinux::Signal (int signo)
3151 {
3152     Error error;
3153 
3154     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3155     if (log)
3156         log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64,
3157                 __FUNCTION__, signo,  GetUnixSignals ().GetSignalAsCString (signo), GetID ());
3158 
3159     if (kill(GetID(), signo))
3160         error.SetErrorToErrno();
3161 
3162     return error;
3163 }
3164 
3165 Error
3166 NativeProcessLinux::Interrupt ()
3167 {
3168     // Pick a running thread (or if none, a not-dead stopped thread) as
3169     // the chosen thread that will be the stop-reason thread.
3170     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3171 
3172     NativeThreadProtocolSP running_thread_sp;
3173     NativeThreadProtocolSP stopped_thread_sp;
3174 
3175     if (log)
3176         log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__);
3177 
3178     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
3179     Mutex::Locker locker (m_threads_mutex);
3180 
3181     for (auto thread_sp : m_threads)
3182     {
3183         // The thread shouldn't be null but lets just cover that here.
3184         if (!thread_sp)
3185             continue;
3186 
3187         // If we have a running or stepping thread, we'll call that the
3188         // target of the interrupt.
3189         const auto thread_state = thread_sp->GetState ();
3190         if (thread_state == eStateRunning ||
3191             thread_state == eStateStepping)
3192         {
3193             running_thread_sp = thread_sp;
3194             break;
3195         }
3196         else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true))
3197         {
3198             // Remember the first non-dead stopped thread.  We'll use that as a backup if there are no running threads.
3199             stopped_thread_sp = thread_sp;
3200         }
3201     }
3202 
3203     if (!running_thread_sp && !stopped_thread_sp)
3204     {
3205         Error error("found no running/stepping or live stopped threads as target for interrupt");
3206         if (log)
3207             log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ());
3208 
3209         return error;
3210     }
3211 
3212     NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp;
3213 
3214     if (log)
3215         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target",
3216                      __FUNCTION__,
3217                      GetID (),
3218                      running_thread_sp ? "running" : "stopped",
3219                      deferred_signal_thread_sp->GetID ());
3220 
3221     StopRunningThreads(deferred_signal_thread_sp->GetID());
3222 
3223     return Error();
3224 }
3225 
3226 Error
3227 NativeProcessLinux::Kill ()
3228 {
3229     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3230     if (log)
3231         log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ());
3232 
3233     Error error;
3234 
3235     switch (m_state)
3236     {
3237         case StateType::eStateInvalid:
3238         case StateType::eStateExited:
3239         case StateType::eStateCrashed:
3240         case StateType::eStateDetached:
3241         case StateType::eStateUnloaded:
3242             // Nothing to do - the process is already dead.
3243             if (log)
3244                 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state));
3245             return error;
3246 
3247         case StateType::eStateConnected:
3248         case StateType::eStateAttaching:
3249         case StateType::eStateLaunching:
3250         case StateType::eStateStopped:
3251         case StateType::eStateRunning:
3252         case StateType::eStateStepping:
3253         case StateType::eStateSuspended:
3254             // We can try to kill a process in these states.
3255             break;
3256     }
3257 
3258     if (kill (GetID (), SIGKILL) != 0)
3259     {
3260         error.SetErrorToErrno ();
3261         return error;
3262     }
3263 
3264     return error;
3265 }
3266 
3267 static Error
3268 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info)
3269 {
3270     memory_region_info.Clear();
3271 
3272     StringExtractor line_extractor (maps_line.c_str ());
3273 
3274     // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode   pathname
3275     // perms: rwxp   (letter is present if set, '-' if not, final character is p=private, s=shared).
3276 
3277     // Parse out the starting address
3278     lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0);
3279 
3280     // Parse out hyphen separating start and end address from range.
3281     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-'))
3282         return Error ("malformed /proc/{pid}/maps entry, missing dash between address range");
3283 
3284     // Parse out the ending address
3285     lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address);
3286 
3287     // Parse out the space after the address.
3288     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' '))
3289         return Error ("malformed /proc/{pid}/maps entry, missing space after range");
3290 
3291     // Save the range.
3292     memory_region_info.GetRange ().SetRangeBase (start_address);
3293     memory_region_info.GetRange ().SetRangeEnd (end_address);
3294 
3295     // Parse out each permission entry.
3296     if (line_extractor.GetBytesLeft () < 4)
3297         return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions");
3298 
3299     // Handle read permission.
3300     const char read_perm_char = line_extractor.GetChar ();
3301     if (read_perm_char == 'r')
3302         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes);
3303     else
3304     {
3305         assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" );
3306         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
3307     }
3308 
3309     // Handle write permission.
3310     const char write_perm_char = line_extractor.GetChar ();
3311     if (write_perm_char == 'w')
3312         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes);
3313     else
3314     {
3315         assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" );
3316         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
3317     }
3318 
3319     // Handle execute permission.
3320     const char exec_perm_char = line_extractor.GetChar ();
3321     if (exec_perm_char == 'x')
3322         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes);
3323     else
3324     {
3325         assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" );
3326         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
3327     }
3328 
3329     return Error ();
3330 }
3331 
3332 Error
3333 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info)
3334 {
3335     // FIXME review that the final memory region returned extends to the end of the virtual address space,
3336     // with no perms if it is not mapped.
3337 
3338     // Use an approach that reads memory regions from /proc/{pid}/maps.
3339     // Assume proc maps entries are in ascending order.
3340     // FIXME assert if we find differently.
3341     Mutex::Locker locker (m_mem_region_cache_mutex);
3342 
3343     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3344     Error error;
3345 
3346     if (m_supports_mem_region == LazyBool::eLazyBoolNo)
3347     {
3348         // We're done.
3349         error.SetErrorString ("unsupported");
3350         return error;
3351     }
3352 
3353     // If our cache is empty, pull the latest.  There should always be at least one memory region
3354     // if memory region handling is supported.
3355     if (m_mem_region_cache.empty ())
3356     {
3357         error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
3358              [&] (const std::string &line) -> bool
3359              {
3360                  MemoryRegionInfo info;
3361                  const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info);
3362                  if (parse_error.Success ())
3363                  {
3364                      m_mem_region_cache.push_back (info);
3365                      return true;
3366                  }
3367                  else
3368                  {
3369                      if (log)
3370                          log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ());
3371                      return false;
3372                  }
3373              });
3374 
3375         // If we had an error, we'll mark unsupported.
3376         if (error.Fail ())
3377         {
3378             m_supports_mem_region = LazyBool::eLazyBoolNo;
3379             return error;
3380         }
3381         else if (m_mem_region_cache.empty ())
3382         {
3383             // No entries after attempting to read them.  This shouldn't happen if /proc/{pid}/maps
3384             // is supported.  Assume we don't support map entries via procfs.
3385             if (log)
3386                 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__);
3387             m_supports_mem_region = LazyBool::eLazyBoolNo;
3388             error.SetErrorString ("not supported");
3389             return error;
3390         }
3391 
3392         if (log)
3393             log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ());
3394 
3395         // We support memory retrieval, remember that.
3396         m_supports_mem_region = LazyBool::eLazyBoolYes;
3397     }
3398     else
3399     {
3400         if (log)
3401             log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
3402     }
3403 
3404     lldb::addr_t prev_base_address = 0;
3405 
3406     // FIXME start by finding the last region that is <= target address using binary search.  Data is sorted.
3407     // There can be a ton of regions on pthreads apps with lots of threads.
3408     for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it)
3409     {
3410         MemoryRegionInfo &proc_entry_info = *it;
3411 
3412         // Sanity check assumption that /proc/{pid}/maps entries are ascending.
3413         assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected");
3414         prev_base_address = proc_entry_info.GetRange ().GetRangeBase ();
3415 
3416         // If the target address comes before this entry, indicate distance to next region.
3417         if (load_addr < proc_entry_info.GetRange ().GetRangeBase ())
3418         {
3419             range_info.GetRange ().SetRangeBase (load_addr);
3420             range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr);
3421             range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
3422             range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
3423             range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
3424 
3425             return error;
3426         }
3427         else if (proc_entry_info.GetRange ().Contains (load_addr))
3428         {
3429             // The target address is within the memory region we're processing here.
3430             range_info = proc_entry_info;
3431             return error;
3432         }
3433 
3434         // The target memory address comes somewhere after the region we just parsed.
3435     }
3436 
3437     // If we made it here, we didn't find an entry that contained the given address.
3438     error.SetErrorString ("address comes after final region");
3439 
3440     if (log)
3441         log->Printf ("NativeProcessLinux::%s failed to find map entry for address 0x%" PRIx64 ": %s", __FUNCTION__, load_addr, error.AsCString ());
3442 
3443     return error;
3444 }
3445 
3446 void
3447 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId)
3448 {
3449     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3450     if (log)
3451         log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId);
3452 
3453     {
3454         Mutex::Locker locker (m_mem_region_cache_mutex);
3455         if (log)
3456             log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
3457         m_mem_region_cache.clear ();
3458     }
3459 }
3460 
3461 Error
3462 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, lldb::addr_t &addr)
3463 {
3464     // FIXME implementing this requires the equivalent of
3465     // InferiorCallPOSIX::InferiorCallMmap, which depends on
3466     // functional ThreadPlans working with Native*Protocol.
3467 #if 1
3468     return Error ("not implemented yet");
3469 #else
3470     addr = LLDB_INVALID_ADDRESS;
3471 
3472     unsigned prot = 0;
3473     if (permissions & lldb::ePermissionsReadable)
3474         prot |= eMmapProtRead;
3475     if (permissions & lldb::ePermissionsWritable)
3476         prot |= eMmapProtWrite;
3477     if (permissions & lldb::ePermissionsExecutable)
3478         prot |= eMmapProtExec;
3479 
3480     // TODO implement this directly in NativeProcessLinux
3481     // (and lift to NativeProcessPOSIX if/when that class is
3482     // refactored out).
3483     if (InferiorCallMmap(this, addr, 0, size, prot,
3484                          eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
3485         m_addr_to_mmap_size[addr] = size;
3486         return Error ();
3487     } else {
3488         addr = LLDB_INVALID_ADDRESS;
3489         return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions));
3490     }
3491 #endif
3492 }
3493 
3494 Error
3495 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr)
3496 {
3497     // FIXME see comments in AllocateMemory - required lower-level
3498     // bits not in place yet (ThreadPlans)
3499     return Error ("not implemented");
3500 }
3501 
3502 lldb::addr_t
3503 NativeProcessLinux::GetSharedLibraryInfoAddress ()
3504 {
3505 #if 1
3506     // punt on this for now
3507     return LLDB_INVALID_ADDRESS;
3508 #else
3509     // Return the image info address for the exe module
3510 #if 1
3511     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3512 
3513     ModuleSP module_sp;
3514     Error error = GetExeModuleSP (module_sp);
3515     if (error.Fail ())
3516     {
3517          if (log)
3518             log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ());
3519         return LLDB_INVALID_ADDRESS;
3520     }
3521 
3522     if (module_sp == nullptr)
3523     {
3524          if (log)
3525             log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__);
3526          return LLDB_INVALID_ADDRESS;
3527     }
3528 
3529     ObjectFileSP object_file_sp = module_sp->GetObjectFile ();
3530     if (object_file_sp == nullptr)
3531     {
3532          if (log)
3533             log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__);
3534          return LLDB_INVALID_ADDRESS;
3535     }
3536 
3537     return obj_file_sp->GetImageInfoAddress();
3538 #else
3539     Target *target = &GetTarget();
3540     ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile();
3541     Address addr = obj_file->GetImageInfoAddress(target);
3542 
3543     if (addr.IsValid())
3544         return addr.GetLoadAddress(target);
3545     return LLDB_INVALID_ADDRESS;
3546 #endif
3547 #endif // punt on this for now
3548 }
3549 
3550 size_t
3551 NativeProcessLinux::UpdateThreads ()
3552 {
3553     // The NativeProcessLinux monitoring threads are always up to date
3554     // with respect to thread state and they keep the thread list
3555     // populated properly. All this method needs to do is return the
3556     // thread count.
3557     Mutex::Locker locker (m_threads_mutex);
3558     return m_threads.size ();
3559 }
3560 
3561 bool
3562 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const
3563 {
3564     arch = m_arch;
3565     return true;
3566 }
3567 
3568 Error
3569 NativeProcessLinux::GetSoftwareBreakpointPCOffset (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size)
3570 {
3571     // FIXME put this behind a breakpoint protocol class that can be
3572     // set per architecture.  Need ARM, MIPS support here.
3573     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
3574     static const uint8_t g_i386_opcode [] = { 0xCC };
3575     static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d };
3576 
3577     switch (m_arch.GetMachine ())
3578     {
3579         case llvm::Triple::aarch64:
3580             actual_opcode_size = static_cast<uint32_t> (sizeof(g_aarch64_opcode));
3581             return Error ();
3582 
3583         case llvm::Triple::arm:
3584             actual_opcode_size = 0; // On arm the PC don't get updated for breakpoint hits
3585             return Error ();
3586 
3587         case llvm::Triple::x86:
3588         case llvm::Triple::x86_64:
3589             actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode));
3590             return Error ();
3591 
3592         case llvm::Triple::mips64:
3593         case llvm::Triple::mips64el:
3594             actual_opcode_size = static_cast<uint32_t> (sizeof(g_mips64_opcode));
3595             return Error ();
3596 
3597         default:
3598             assert(false && "CPU type not supported!");
3599             return Error ("CPU type not supported");
3600     }
3601 }
3602 
3603 Error
3604 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware)
3605 {
3606     if (hardware)
3607         return Error ("NativeProcessLinux does not support hardware breakpoints");
3608     else
3609         return SetSoftwareBreakpoint (addr, size);
3610 }
3611 
3612 Error
3613 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint,
3614                                                      size_t &actual_opcode_size,
3615                                                      const uint8_t *&trap_opcode_bytes)
3616 {
3617     // FIXME put this behind a breakpoint protocol class that can be set per
3618     // architecture.  Need MIPS support here.
3619     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
3620     // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
3621     // linux kernel does otherwise.
3622     static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 };
3623     static const uint8_t g_i386_opcode [] = { 0xCC };
3624     static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d };
3625     static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 };
3626     static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde };
3627 
3628     switch (m_arch.GetMachine ())
3629     {
3630     case llvm::Triple::aarch64:
3631         trap_opcode_bytes = g_aarch64_opcode;
3632         actual_opcode_size = sizeof(g_aarch64_opcode);
3633         return Error ();
3634 
3635     case llvm::Triple::arm:
3636         switch (trap_opcode_size_hint)
3637         {
3638         case 2:
3639             trap_opcode_bytes = g_thumb_breakpoint_opcode;
3640             actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
3641             return Error ();
3642         case 4:
3643             trap_opcode_bytes = g_arm_breakpoint_opcode;
3644             actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
3645             return Error ();
3646         default:
3647             assert(false && "Unrecognised trap opcode size hint!");
3648             return Error ("Unrecognised trap opcode size hint!");
3649         }
3650 
3651     case llvm::Triple::x86:
3652     case llvm::Triple::x86_64:
3653         trap_opcode_bytes = g_i386_opcode;
3654         actual_opcode_size = sizeof(g_i386_opcode);
3655         return Error ();
3656 
3657     case llvm::Triple::mips64:
3658         trap_opcode_bytes = g_mips64_opcode;
3659         actual_opcode_size = sizeof(g_mips64_opcode);
3660         return Error ();
3661 
3662     case llvm::Triple::mips64el:
3663         trap_opcode_bytes = g_mips64el_opcode;
3664         actual_opcode_size = sizeof(g_mips64el_opcode);
3665         return Error ();
3666 
3667     default:
3668         assert(false && "CPU type not supported!");
3669         return Error ("CPU type not supported");
3670     }
3671 }
3672 
3673 #if 0
3674 ProcessMessage::CrashReason
3675 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
3676 {
3677     ProcessMessage::CrashReason reason;
3678     assert(info->si_signo == SIGSEGV);
3679 
3680     reason = ProcessMessage::eInvalidCrashReason;
3681 
3682     switch (info->si_code)
3683     {
3684     default:
3685         assert(false && "unexpected si_code for SIGSEGV");
3686         break;
3687     case SI_KERNEL:
3688         // Linux will occasionally send spurious SI_KERNEL codes.
3689         // (this is poorly documented in sigaction)
3690         // One way to get this is via unaligned SIMD loads.
3691         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
3692         break;
3693     case SEGV_MAPERR:
3694         reason = ProcessMessage::eInvalidAddress;
3695         break;
3696     case SEGV_ACCERR:
3697         reason = ProcessMessage::ePrivilegedAddress;
3698         break;
3699     }
3700 
3701     return reason;
3702 }
3703 #endif
3704 
3705 
3706 #if 0
3707 ProcessMessage::CrashReason
3708 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
3709 {
3710     ProcessMessage::CrashReason reason;
3711     assert(info->si_signo == SIGILL);
3712 
3713     reason = ProcessMessage::eInvalidCrashReason;
3714 
3715     switch (info->si_code)
3716     {
3717     default:
3718         assert(false && "unexpected si_code for SIGILL");
3719         break;
3720     case ILL_ILLOPC:
3721         reason = ProcessMessage::eIllegalOpcode;
3722         break;
3723     case ILL_ILLOPN:
3724         reason = ProcessMessage::eIllegalOperand;
3725         break;
3726     case ILL_ILLADR:
3727         reason = ProcessMessage::eIllegalAddressingMode;
3728         break;
3729     case ILL_ILLTRP:
3730         reason = ProcessMessage::eIllegalTrap;
3731         break;
3732     case ILL_PRVOPC:
3733         reason = ProcessMessage::ePrivilegedOpcode;
3734         break;
3735     case ILL_PRVREG:
3736         reason = ProcessMessage::ePrivilegedRegister;
3737         break;
3738     case ILL_COPROC:
3739         reason = ProcessMessage::eCoprocessorError;
3740         break;
3741     case ILL_BADSTK:
3742         reason = ProcessMessage::eInternalStackError;
3743         break;
3744     }
3745 
3746     return reason;
3747 }
3748 #endif
3749 
3750 #if 0
3751 ProcessMessage::CrashReason
3752 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
3753 {
3754     ProcessMessage::CrashReason reason;
3755     assert(info->si_signo == SIGFPE);
3756 
3757     reason = ProcessMessage::eInvalidCrashReason;
3758 
3759     switch (info->si_code)
3760     {
3761     default:
3762         assert(false && "unexpected si_code for SIGFPE");
3763         break;
3764     case FPE_INTDIV:
3765         reason = ProcessMessage::eIntegerDivideByZero;
3766         break;
3767     case FPE_INTOVF:
3768         reason = ProcessMessage::eIntegerOverflow;
3769         break;
3770     case FPE_FLTDIV:
3771         reason = ProcessMessage::eFloatDivideByZero;
3772         break;
3773     case FPE_FLTOVF:
3774         reason = ProcessMessage::eFloatOverflow;
3775         break;
3776     case FPE_FLTUND:
3777         reason = ProcessMessage::eFloatUnderflow;
3778         break;
3779     case FPE_FLTRES:
3780         reason = ProcessMessage::eFloatInexactResult;
3781         break;
3782     case FPE_FLTINV:
3783         reason = ProcessMessage::eFloatInvalidOperation;
3784         break;
3785     case FPE_FLTSUB:
3786         reason = ProcessMessage::eFloatSubscriptRange;
3787         break;
3788     }
3789 
3790     return reason;
3791 }
3792 #endif
3793 
3794 #if 0
3795 ProcessMessage::CrashReason
3796 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
3797 {
3798     ProcessMessage::CrashReason reason;
3799     assert(info->si_signo == SIGBUS);
3800 
3801     reason = ProcessMessage::eInvalidCrashReason;
3802 
3803     switch (info->si_code)
3804     {
3805     default:
3806         assert(false && "unexpected si_code for SIGBUS");
3807         break;
3808     case BUS_ADRALN:
3809         reason = ProcessMessage::eIllegalAlignment;
3810         break;
3811     case BUS_ADRERR:
3812         reason = ProcessMessage::eIllegalAddress;
3813         break;
3814     case BUS_OBJERR:
3815         reason = ProcessMessage::eHardwareError;
3816         break;
3817     }
3818 
3819     return reason;
3820 }
3821 #endif
3822 
3823 Error
3824 NativeProcessLinux::SetWatchpoint (lldb::addr_t addr, size_t size, uint32_t watch_flags, bool hardware)
3825 {
3826     // The base SetWatchpoint will end up executing monitor operations. Let's lock the monitor
3827     // for it.
3828     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
3829     return NativeProcessProtocol::SetWatchpoint(addr, size, watch_flags, hardware);
3830 }
3831 
3832 Error
3833 NativeProcessLinux::RemoveWatchpoint (lldb::addr_t addr)
3834 {
3835     // The base RemoveWatchpoint will end up executing monitor operations. Let's lock the monitor
3836     // for it.
3837     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
3838     return NativeProcessProtocol::RemoveWatchpoint(addr);
3839 }
3840 
3841 Error
3842 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
3843 {
3844     ReadOperation op(addr, buf, size, bytes_read);
3845     m_monitor_up->DoOperation(&op);
3846     return op.GetError ();
3847 }
3848 
3849 Error
3850 NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
3851 {
3852     Error error = ReadMemory(addr, buf, size, bytes_read);
3853     if (error.Fail()) return error;
3854     return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size);
3855 }
3856 
3857 Error
3858 NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, size_t size, size_t &bytes_written)
3859 {
3860     WriteOperation op(addr, buf, size, bytes_written);
3861     m_monitor_up->DoOperation(&op);
3862     return op.GetError ();
3863 }
3864 
3865 Error
3866 NativeProcessLinux::ReadRegisterValue(lldb::tid_t tid, uint32_t offset, const char* reg_name,
3867                                       uint32_t size, RegisterValue &value)
3868 {
3869     ReadRegOperation op(tid, offset, reg_name, value);
3870     m_monitor_up->DoOperation(&op);
3871     return op.GetError();
3872 }
3873 
3874 Error
3875 NativeProcessLinux::WriteRegisterValue(lldb::tid_t tid, unsigned offset,
3876                                    const char* reg_name, const RegisterValue &value)
3877 {
3878     WriteRegOperation op(tid, offset, reg_name, value);
3879     m_monitor_up->DoOperation(&op);
3880     return op.GetError();
3881 }
3882 
3883 Error
3884 NativeProcessLinux::ReadGPR(lldb::tid_t tid, void *buf, size_t buf_size)
3885 {
3886     ReadGPROperation op(tid, buf, buf_size);
3887     m_monitor_up->DoOperation(&op);
3888     return op.GetError();
3889 }
3890 
3891 Error
3892 NativeProcessLinux::ReadFPR(lldb::tid_t tid, void *buf, size_t buf_size)
3893 {
3894     ReadFPROperation op(tid, buf, buf_size);
3895     m_monitor_up->DoOperation(&op);
3896     return op.GetError();
3897 }
3898 
3899 Error
3900 NativeProcessLinux::ReadRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
3901 {
3902     ReadRegisterSetOperation op(tid, buf, buf_size, regset);
3903     m_monitor_up->DoOperation(&op);
3904     return op.GetError();
3905 }
3906 
3907 Error
3908 NativeProcessLinux::WriteGPR(lldb::tid_t tid, void *buf, size_t buf_size)
3909 {
3910     WriteGPROperation op(tid, buf, buf_size);
3911     m_monitor_up->DoOperation(&op);
3912     return op.GetError();
3913 }
3914 
3915 Error
3916 NativeProcessLinux::WriteFPR(lldb::tid_t tid, void *buf, size_t buf_size)
3917 {
3918     WriteFPROperation op(tid, buf, buf_size);
3919     m_monitor_up->DoOperation(&op);
3920     return op.GetError();
3921 }
3922 
3923 Error
3924 NativeProcessLinux::WriteRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
3925 {
3926     WriteRegisterSetOperation op(tid, buf, buf_size, regset);
3927     m_monitor_up->DoOperation(&op);
3928     return op.GetError();
3929 }
3930 
3931 Error
3932 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo)
3933 {
3934     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3935 
3936     if (log)
3937         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " with signal %s", __FUNCTION__, tid,
3938                                  GetUnixSignals().GetSignalAsCString (signo));
3939     ResumeOperation op (tid, signo);
3940     m_monitor_up->DoOperation (&op);
3941     if (log)
3942         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " result = %s", __FUNCTION__, tid, op.GetError().Success() ? "true" : "false");
3943     return op.GetError();
3944 }
3945 
3946 Error
3947 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo)
3948 {
3949     SingleStepOperation op(tid, signo);
3950     m_monitor_up->DoOperation(&op);
3951     return op.GetError();
3952 }
3953 
3954 Error
3955 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo)
3956 {
3957     SiginfoOperation op(tid, siginfo);
3958     m_monitor_up->DoOperation(&op);
3959     return op.GetError();
3960 }
3961 
3962 Error
3963 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message)
3964 {
3965     EventMessageOperation op(tid, message);
3966     m_monitor_up->DoOperation(&op);
3967     return op.GetError();
3968 }
3969 
3970 Error
3971 NativeProcessLinux::Detach(lldb::tid_t tid)
3972 {
3973     if (tid == LLDB_INVALID_THREAD_ID)
3974         return Error();
3975 
3976     DetachOperation op(tid);
3977     m_monitor_up->DoOperation(&op);
3978     return op.GetError();
3979 }
3980 
3981 bool
3982 NativeProcessLinux::DupDescriptor(const char *path, int fd, int flags)
3983 {
3984     int target_fd = open(path, flags, 0666);
3985 
3986     if (target_fd == -1)
3987         return false;
3988 
3989     if (dup2(target_fd, fd) == -1)
3990         return false;
3991 
3992     return (close(target_fd) == -1) ? false : true;
3993 }
3994 
3995 void
3996 NativeProcessLinux::StartMonitorThread(const InitialOperation &initial_operation, Error &error)
3997 {
3998     m_monitor_up.reset(new Monitor(initial_operation, this));
3999     error = m_monitor_up->Initialize();
4000     if (error.Fail()) {
4001         m_monitor_up.reset();
4002     }
4003 }
4004 
4005 bool
4006 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id)
4007 {
4008     for (auto thread_sp : m_threads)
4009     {
4010         assert (thread_sp && "thread list should not contain NULL threads");
4011         if (thread_sp->GetID () == thread_id)
4012         {
4013             // We have this thread.
4014             return true;
4015         }
4016     }
4017 
4018     // We don't have this thread.
4019     return false;
4020 }
4021 
4022 NativeThreadProtocolSP
4023 NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id)
4024 {
4025     // CONSIDER organize threads by map - we can do better than linear.
4026     for (auto thread_sp : m_threads)
4027     {
4028         if (thread_sp->GetID () == thread_id)
4029             return thread_sp;
4030     }
4031 
4032     // We don't have this thread.
4033     return NativeThreadProtocolSP ();
4034 }
4035 
4036 bool
4037 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id)
4038 {
4039     Mutex::Locker locker (m_threads_mutex);
4040     for (auto it = m_threads.begin (); it != m_threads.end (); ++it)
4041     {
4042         if (*it && ((*it)->GetID () == thread_id))
4043         {
4044             m_threads.erase (it);
4045             return true;
4046         }
4047     }
4048 
4049     // Didn't find it.
4050     return false;
4051 }
4052 
4053 NativeThreadProtocolSP
4054 NativeProcessLinux::AddThread (lldb::tid_t thread_id)
4055 {
4056     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
4057 
4058     Mutex::Locker locker (m_threads_mutex);
4059 
4060     if (log)
4061     {
4062         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64,
4063                 __FUNCTION__,
4064                 GetID (),
4065                 thread_id);
4066     }
4067 
4068     assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists");
4069 
4070     // If this is the first thread, save it as the current thread
4071     if (m_threads.empty ())
4072         SetCurrentThreadID (thread_id);
4073 
4074     NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id));
4075     m_threads.push_back (thread_sp);
4076 
4077     return thread_sp;
4078 }
4079 
4080 Error
4081 NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp)
4082 {
4083     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS));
4084 
4085     Error error;
4086 
4087     // Get a linux thread pointer.
4088     if (!thread_sp)
4089     {
4090         error.SetErrorString ("null thread_sp");
4091         if (log)
4092             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
4093         return error;
4094     }
4095     std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp);
4096 
4097     // Find out the size of a breakpoint (might depend on where we are in the code).
4098     NativeRegisterContextSP context_sp = linux_thread_sp->GetRegisterContext ();
4099     if (!context_sp)
4100     {
4101         error.SetErrorString ("cannot get a NativeRegisterContext for the thread");
4102         if (log)
4103             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
4104         return error;
4105     }
4106 
4107     uint32_t breakpoint_size = 0;
4108     error = GetSoftwareBreakpointPCOffset (context_sp, breakpoint_size);
4109     if (error.Fail ())
4110     {
4111         if (log)
4112             log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ());
4113         return error;
4114     }
4115     else
4116     {
4117         if (log)
4118             log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size);
4119     }
4120 
4121     // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size.
4122     const lldb::addr_t initial_pc_addr = context_sp->GetPC ();
4123     lldb::addr_t breakpoint_addr = initial_pc_addr;
4124     if (breakpoint_size > 0)
4125     {
4126         // Do not allow breakpoint probe to wrap around.
4127         if (breakpoint_addr >= breakpoint_size)
4128             breakpoint_addr -= breakpoint_size;
4129     }
4130 
4131     // Check if we stopped because of a breakpoint.
4132     NativeBreakpointSP breakpoint_sp;
4133     error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp);
4134     if (!error.Success () || !breakpoint_sp)
4135     {
4136         // We didn't find one at a software probe location.  Nothing to do.
4137         if (log)
4138             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr);
4139         return Error ();
4140     }
4141 
4142     // If the breakpoint is not a software breakpoint, nothing to do.
4143     if (!breakpoint_sp->IsSoftwareBreakpoint ())
4144     {
4145         if (log)
4146             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr);
4147         return Error ();
4148     }
4149 
4150     //
4151     // We have a software breakpoint and need to adjust the PC.
4152     //
4153 
4154     // Sanity check.
4155     if (breakpoint_size == 0)
4156     {
4157         // Nothing to do!  How did we get here?
4158         if (log)
4159             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr);
4160         return Error ();
4161     }
4162 
4163     // Change the program counter.
4164     if (log)
4165         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_sp->GetID (), initial_pc_addr, breakpoint_addr);
4166 
4167     error = context_sp->SetPC (breakpoint_addr);
4168     if (error.Fail ())
4169     {
4170         if (log)
4171             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_sp->GetID (), error.AsCString ());
4172         return error;
4173     }
4174 
4175     return error;
4176 }
4177 
4178 void
4179 NativeProcessLinux::NotifyThreadCreateStopped (lldb::tid_t tid)
4180 {
4181     const bool is_stopped = true;
4182     NotifyThreadCreate (tid, is_stopped);
4183 }
4184 
4185 void
4186 NativeProcessLinux::StopRunningThreads(lldb::tid_t trigerring_tid)
4187 {
4188     Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
4189     if (log)
4190         log->Printf("NativeProcessLinux::%s tid %" PRIu64, __FUNCTION__, trigerring_tid);
4191 
4192     const lldb::pid_t pid = GetID ();
4193     StopRunningThreads(trigerring_tid,
4194             [=](lldb::tid_t request_stop_tid) { return RequestThreadStop(pid, request_stop_tid); });
4195 }
4196 
4197 void
4198 NativeProcessLinux::StopRunningThreadsWithSkipTID(lldb::tid_t deferred_signal_tid,
4199                                                   lldb::tid_t skip_stop_request_tid)
4200 {
4201     Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
4202     if (log)
4203         log->Printf("NativeProcessLinux::%s deferred_signal_tid %" PRIu64 ", skip_stop_request_tid %" PRIu64, __FUNCTION__, deferred_signal_tid, skip_stop_request_tid);
4204 
4205     const lldb::pid_t pid = GetID ();
4206     StopRunningThreadsWithSkipTID(deferred_signal_tid,
4207             skip_stop_request_tid != LLDB_INVALID_THREAD_ID ? NativeProcessLinux::ThreadIDSet {skip_stop_request_tid} : NativeProcessLinux::ThreadIDSet (),
4208             [=](lldb::tid_t request_stop_tid) { return RequestThreadStop(pid, request_stop_tid); });
4209 }
4210 
4211 Error
4212 NativeProcessLinux::RequestThreadStop (const lldb::pid_t pid, const lldb::tid_t tid)
4213 {
4214     Log* log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
4215     if (log)
4216         log->Printf ("NativeProcessLinux::%s requesting thread stop(pid: %" PRIu64 ", tid: %" PRIu64 ")", __FUNCTION__, pid, tid);
4217 
4218     Error err;
4219     errno = 0;
4220     if (::tgkill (pid, tid, SIGSTOP) != 0)
4221     {
4222         err.SetErrorToErrno ();
4223         if (log)
4224             log->Printf ("NativeProcessLinux::%s tgkill(%" PRIu64 ", %" PRIu64 ", SIGSTOP) failed: %s", __FUNCTION__, pid, tid, err.AsCString ());
4225     }
4226 
4227     return err;
4228 }
4229 
4230 Error
4231 NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec)
4232 {
4233     char maps_file_name[32];
4234     snprintf(maps_file_name, sizeof(maps_file_name), "/proc/%" PRIu64 "/maps", GetID());
4235 
4236     FileSpec maps_file_spec(maps_file_name, false);
4237     if (!maps_file_spec.Exists()) {
4238         file_spec.Clear();
4239         return Error("/proc/%" PRIu64 "/maps file doesn't exists!", GetID());
4240     }
4241 
4242     FileSpec module_file_spec(module_path, true);
4243 
4244     std::ifstream maps_file(maps_file_name);
4245     std::string maps_data_str((std::istreambuf_iterator<char>(maps_file)), std::istreambuf_iterator<char>());
4246     StringRef maps_data(maps_data_str.c_str());
4247 
4248     while (!maps_data.empty())
4249     {
4250         StringRef maps_row;
4251         std::tie(maps_row, maps_data) = maps_data.split('\n');
4252 
4253         SmallVector<StringRef, 16> maps_columns;
4254         maps_row.split(maps_columns, StringRef(" "), -1, false);
4255 
4256         if (maps_columns.size() >= 6)
4257         {
4258             file_spec.SetFile(maps_columns[5].str().c_str(), false);
4259             if (file_spec.GetFilename() == module_file_spec.GetFilename())
4260                 return Error();
4261         }
4262     }
4263 
4264     file_spec.Clear();
4265     return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
4266                  module_file_spec.GetFilename().AsCString(), GetID());
4267 }
4268 
4269 Error
4270 NativeProcessLinux::DoResume(
4271         lldb::tid_t tid,
4272         ResumeThreadFunction request_thread_resume_function,
4273         bool error_when_already_running)
4274 {
4275     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
4276 
4277     auto find_it = m_tid_map.find (tid);
4278     lldbassert(find_it != m_tid_map.end ()); // Ensure we know about the thread.
4279 
4280     auto& context = find_it->second;
4281     // Tell the thread to resume if we don't already think it is running.
4282     const bool is_stopped = context.m_state == ThreadState::Stopped;
4283 
4284     lldbassert(!(error_when_already_running && !is_stopped));
4285 
4286     if (!is_stopped)
4287     {
4288         // It's not an error, just a log, if the error_when_already_running flag is not set.
4289         // This covers cases where, for instance, we're just trying to resume all threads
4290         // from the user side.
4291         if (log)
4292             log->Printf("NativeProcessLinux::%s tid %" PRIu64 " optional resume skipped since it is already running",
4293                     __FUNCTION__,
4294                     tid);
4295         return Error();
4296     }
4297 
4298     // Before we do the resume below, first check if we have a pending
4299     // stop notification this is currently or was previously waiting for
4300     // this thread to stop.  This is potentially a buggy situation since
4301     // we're ostensibly waiting for threads to stop before we send out the
4302     // pending notification, and here we are resuming one before we send
4303     // out the pending stop notification.
4304     if (m_pending_notification_up && log)
4305     {
4306         if (m_pending_notification_up->wait_for_stop_tids.count (tid) > 0)
4307         {
4308             log->Printf("NativeProcessLinux::%s about to resume tid %" PRIu64 " per explicit request but we have a pending stop notification (tid %" PRIu64 ") that is actively waiting for this thread to stop. Valid sequence of events?", __FUNCTION__, tid, m_pending_notification_up->triggering_tid);
4309         }
4310         else if (m_pending_notification_up->original_wait_for_stop_tids.count (tid) > 0)
4311         {
4312             log->Printf("NativeProcessLinux::%s about to resume tid %" PRIu64 " per explicit request but we have a pending stop notification (tid %" PRIu64 ") that hasn't fired yet and this is one of the threads we had been waiting on (and already marked satisfied for this tid). Valid sequence of events?", __FUNCTION__, tid, m_pending_notification_up->triggering_tid);
4313             for (auto tid : m_pending_notification_up->wait_for_stop_tids)
4314             {
4315                 log->Printf("NativeProcessLinux::%s tid %" PRIu64 " deferred stop notification still waiting on tid  %" PRIu64,
4316                                  __FUNCTION__,
4317                                  m_pending_notification_up->triggering_tid,
4318                                  tid);
4319             }
4320         }
4321     }
4322 
4323     // Request a resume.  We expect this to be synchronous and the system
4324     // to reflect it is running after this completes.
4325     const auto error = request_thread_resume_function (tid, false);
4326     if (error.Success ())
4327     {
4328         // Now mark it is running.
4329         context.m_state = ThreadState::Running;
4330         context.m_request_resume_function = request_thread_resume_function;
4331     }
4332     else if (log)
4333     {
4334         log->Printf("NativeProcessLinux::%s failed to resume thread tid  %" PRIu64 ": %s",
4335                          __FUNCTION__, tid, error.AsCString ());
4336     }
4337 
4338     return error;
4339 }
4340 
4341 //===----------------------------------------------------------------------===//
4342 
4343 void
4344 NativeProcessLinux::StopThreads(const lldb::tid_t triggering_tid,
4345                                               const ThreadIDSet &wait_for_stop_tids,
4346                                               const StopThreadFunction &request_thread_stop_function)
4347 {
4348     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
4349     std::lock_guard<std::mutex> lock(m_event_mutex);
4350 
4351     if (log)
4352     {
4353         log->Printf("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ", wait_for_stop_tids.size(): %zd)",
4354                 __FUNCTION__, triggering_tid, wait_for_stop_tids.size());
4355     }
4356 
4357     DoStopThreads(PendingNotificationUP(new PendingNotification(
4358                 triggering_tid, wait_for_stop_tids, request_thread_stop_function)));
4359 
4360     if (log)
4361     {
4362         log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__);
4363     }
4364 }
4365 
4366 void
4367 NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid,
4368                                                      const StopThreadFunction &request_thread_stop_function)
4369 {
4370     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
4371     std::lock_guard<std::mutex> lock(m_event_mutex);
4372 
4373     if (log)
4374     {
4375         log->Printf("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ")",
4376                 __FUNCTION__, triggering_tid);
4377     }
4378 
4379     DoStopThreads(PendingNotificationUP(new PendingNotification(
4380                 triggering_tid,
4381                 request_thread_stop_function)));
4382 
4383     if (log)
4384     {
4385         log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__);
4386     }
4387 }
4388 
4389 void
4390 NativeProcessLinux::StopRunningThreadsWithSkipTID(lldb::tid_t triggering_tid,
4391                                                                  const ThreadIDSet &skip_stop_request_tids,
4392                                                                  const StopThreadFunction &request_thread_stop_function)
4393 {
4394     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
4395     std::lock_guard<std::mutex> lock(m_event_mutex);
4396 
4397     if (log)
4398     {
4399         log->Printf("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ", skip_stop_request_tids.size(): %zd)",
4400                 __FUNCTION__, triggering_tid, skip_stop_request_tids.size());
4401     }
4402 
4403     DoStopThreads(PendingNotificationUP(new PendingNotification(
4404                 triggering_tid,
4405                 request_thread_stop_function,
4406                 skip_stop_request_tids)));
4407 
4408     if (log)
4409     {
4410         log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__);
4411     }
4412 }
4413 
4414 void
4415 NativeProcessLinux::SignalIfRequirementsSatisfied()
4416 {
4417     if (m_pending_notification_up && m_pending_notification_up->wait_for_stop_tids.empty ())
4418     {
4419         SetCurrentThreadID(m_pending_notification_up->triggering_tid);
4420         SetState(StateType::eStateStopped, true);
4421         m_pending_notification_up.reset();
4422     }
4423 }
4424 
4425 bool
4426 NativeProcessLinux::RequestStopOnAllSpecifiedThreads()
4427 {
4428     // Request a stop for all the thread stops that need to be stopped
4429     // and are not already known to be stopped.  Keep a list of all the
4430     // threads from which we still need to hear a stop reply.
4431 
4432     ThreadIDSet sent_tids;
4433     for (auto tid : m_pending_notification_up->wait_for_stop_tids)
4434     {
4435         // Validate we know about all tids for which we must first receive a stop before
4436         // triggering the deferred stop notification.
4437         auto find_it = m_tid_map.find (tid);
4438         lldbassert(find_it != m_tid_map.end());
4439 
4440         // If the pending stop thread is currently running, we need to send it a stop request.
4441         auto& context = find_it->second;
4442         if (context.m_state == ThreadState::Running)
4443         {
4444             RequestThreadStop (tid, context);
4445             sent_tids.insert (tid);
4446         }
4447     }
4448     // We only need to wait for the sent_tids - so swap our wait set
4449     // to the sent tids.  The rest are already stopped and we won't
4450     // be receiving stop notifications for them.
4451     m_pending_notification_up->wait_for_stop_tids.swap (sent_tids);
4452 
4453     // Succeeded, keep running.
4454     return true;
4455 }
4456 
4457 void
4458 NativeProcessLinux::RequestStopOnAllRunningThreads()
4459 {
4460     // Request a stop for all the thread stops that need to be stopped
4461     // and are not already known to be stopped.  Keep a list of all the
4462     // threads from which we still need to hear a stop reply.
4463 
4464     ThreadIDSet sent_tids;
4465     for (auto it = m_tid_map.begin(); it != m_tid_map.end(); ++it)
4466     {
4467         // We only care about threads not stopped.
4468         const bool running = it->second.m_state == ThreadState::Running;
4469         if (running)
4470         {
4471             const lldb::tid_t tid = it->first;
4472 
4473             // Request this thread stop if the tid stop request is not explicitly ignored.
4474             const bool skip_stop_request = m_pending_notification_up->skip_stop_request_tids.count (tid) > 0;
4475             if (!skip_stop_request)
4476                 RequestThreadStop (tid, it->second);
4477 
4478             // Even if we skipped sending the stop request for other reasons (like stepping),
4479             // we still need to wait for that stepping thread to notify completion/stop.
4480             sent_tids.insert (tid);
4481         }
4482     }
4483 
4484     // Set the wait list to the set of tids for which we requested stops.
4485     m_pending_notification_up->wait_for_stop_tids.swap (sent_tids);
4486 }
4487 
4488 void
4489 NativeProcessLinux::RequestThreadStop (lldb::tid_t tid, ThreadContext& context)
4490 {
4491     const auto error = m_pending_notification_up->request_thread_stop_function (tid);
4492     if (error.Success ())
4493         context.m_stop_requested = true;
4494     else
4495     {
4496         Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
4497         if (log)
4498             log->Printf("NativeProcessLinux::%s failed to request thread stop tid  %" PRIu64 ": %s",
4499                          __FUNCTION__, tid, error.AsCString ());
4500     }
4501 }
4502 
4503 
4504 Error
4505 NativeProcessLinux::ThreadDidStop (lldb::tid_t tid, bool initiated_by_llgs)
4506 {
4507     // Ensure we know about the thread.
4508     auto find_it = m_tid_map.find (tid);
4509     lldbassert(find_it != m_tid_map.end());
4510 
4511     // Update the global list of known thread states.  This one is definitely stopped.
4512     auto& context = find_it->second;
4513     const auto stop_was_requested = context.m_stop_requested;
4514     context.m_state = ThreadState::Stopped;
4515     context.m_stop_requested = false;
4516 
4517     // If we have a pending notification, remove this from the set.
4518     if (m_pending_notification_up)
4519     {
4520         m_pending_notification_up->wait_for_stop_tids.erase(tid);
4521         SignalIfRequirementsSatisfied();
4522     }
4523 
4524     if (initiated_by_llgs && context.m_request_resume_function && !stop_was_requested)
4525     {
4526         Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
4527         // We can end up here if stop was initiated by LLGS but by this time a
4528         // thread stop has occurred - maybe initiated by another event.
4529         if (log)
4530             log->Printf("Resuming thread %"  PRIu64 " since stop wasn't requested", tid);
4531         const auto error = context.m_request_resume_function (tid, true);
4532         if (error.Success ())
4533         {
4534             context.m_state = ThreadState::Running;
4535         }
4536         else
4537         {
4538             if (log)
4539             {
4540                 log->Printf("NativeProcessLinux::%s failed to resume thread tid  %" PRIu64 ": %s",
4541                         __FUNCTION__, tid, error.AsCString ());
4542             }
4543             return error;
4544         }
4545     }
4546     return Error();
4547 }
4548 
4549 void
4550 NativeProcessLinux::DoStopThreads(PendingNotificationUP &&notification_up)
4551 {
4552     // Validate we know about the deferred trigger thread.
4553     lldbassert(IsKnownThread (notification_up->triggering_tid));
4554 
4555     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
4556     if (m_pending_notification_up && log)
4557     {
4558         // Yikes - we've already got a pending signal notification in progress.
4559         // Log this info.  We lose the pending notification here.
4560         log->Printf("NativeProcessLinux::%s dropping existing pending signal notification for tid %" PRIu64 ", to be replaced with signal for tid %" PRIu64,
4561                    __FUNCTION__,
4562                    m_pending_notification_up->triggering_tid,
4563                    notification_up->triggering_tid);
4564     }
4565     m_pending_notification_up = std::move(notification_up);
4566 
4567     if (m_pending_notification_up->request_stop_on_all_unstopped_threads)
4568         RequestStopOnAllRunningThreads();
4569     else
4570     {
4571         if (!RequestStopOnAllSpecifiedThreads())
4572             return;
4573     }
4574 
4575     SignalIfRequirementsSatisfied();
4576 }
4577 
4578 void
4579 NativeProcessLinux::ThreadWasCreated (lldb::tid_t tid, bool is_stopped)
4580 {
4581     // Ensure we don't already know about the thread.
4582     lldbassert(m_tid_map.find(tid) == m_tid_map.end());
4583 
4584     // Add the new thread to the stop map.
4585     ThreadContext ctx;
4586     ctx.m_state = (is_stopped) ? ThreadState::Stopped : ThreadState::Running;
4587     m_tid_map[tid] = std::move(ctx);
4588 
4589     if (m_pending_notification_up && !is_stopped)
4590     {
4591         // We will need to wait for this new thread to stop as well before firing the
4592         // notification.
4593         m_pending_notification_up->wait_for_stop_tids.insert(tid);
4594         m_pending_notification_up->request_thread_stop_function(tid);
4595     }
4596 }
4597 
4598 void
4599 NativeProcessLinux::ThreadDidDie (lldb::tid_t tid)
4600 {
4601     // Ensure we know about the thread.
4602     auto find_it = m_tid_map.find (tid);
4603     lldbassert(find_it != m_tid_map.end());
4604 
4605     // Update the global list of known thread states.  While this one is stopped, it is also dead.
4606     // So stop tracking it.  We assume the user of this coordinator will not keep trying to add
4607     // dependencies on a thread after it is known to be dead.
4608     m_tid_map.erase (find_it);
4609 
4610     // If we have a pending notification, remove this from the set.
4611     if (m_pending_notification_up)
4612     {
4613         m_pending_notification_up->wait_for_stop_tids.erase(tid);
4614         SignalIfRequirementsSatisfied();
4615     }
4616 }
4617 
4618 Error
4619 NativeProcessLinux::NotifyThreadStop (lldb::tid_t tid, bool initiated_by_llgs)
4620 {
4621     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
4622     std::lock_guard<std::mutex> lock(m_event_mutex);
4623 
4624     if (log)
4625     {
4626         log->Printf("NativeProcessLinux::%s about to process event: (tid: %" PRIu64 ", %sinitiated by llgs)",
4627                 __FUNCTION__, tid, initiated_by_llgs?"":"not ");
4628     }
4629 
4630     Error error = ThreadDidStop (tid, initiated_by_llgs);
4631 
4632     if (log)
4633     {
4634         log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__);
4635     }
4636 
4637     return error;
4638 }
4639 
4640 Error
4641 NativeProcessLinux::RequestThreadResume (lldb::tid_t tid,
4642                                          const ResumeThreadFunction &request_thread_resume_function)
4643 {
4644     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
4645     std::lock_guard<std::mutex> lock(m_event_mutex);
4646 
4647     if (log)
4648     {
4649         log->Printf("NativeProcessLinux::%s about to process event: (tid: %" PRIu64 ")",
4650                 __FUNCTION__, tid);
4651     }
4652 
4653     Error error = DoResume(tid, request_thread_resume_function, true);
4654 
4655     if (log)
4656     {
4657         log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__);
4658     }
4659 
4660     return error;
4661 }
4662 
4663 Error
4664 NativeProcessLinux::RequestThreadResumeAsNeeded (lldb::tid_t tid,
4665                                                      const ResumeThreadFunction &request_thread_resume_function)
4666 {
4667     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
4668     std::lock_guard<std::mutex> lock(m_event_mutex);
4669 
4670     if (log)
4671     {
4672         log->Printf("NativeProcessLinux::%s about to process event: (tid: %" PRIu64 ")",
4673                 __FUNCTION__, tid);
4674     }
4675 
4676     Error error = DoResume (tid, request_thread_resume_function, false);
4677 
4678     if (log)
4679     {
4680         log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__);
4681     }
4682 
4683     return error;
4684 }
4685 
4686 void
4687 NativeProcessLinux::NotifyThreadCreate (lldb::tid_t tid,
4688                                             bool is_stopped)
4689 {
4690     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
4691     std::lock_guard<std::mutex> lock(m_event_mutex);
4692 
4693     if (log)
4694     {
4695         log->Printf("NativeProcessLinux::%s about to process event: (tid: %" PRIu64 ", is %sstopped)",
4696                 __FUNCTION__, tid, is_stopped?"":"not ");
4697     }
4698 
4699     ThreadWasCreated (tid, is_stopped);
4700 
4701     if (log)
4702     {
4703         log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__);
4704     }
4705 }
4706 
4707 void
4708 NativeProcessLinux::NotifyThreadDeath (lldb::tid_t tid)
4709 {
4710     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
4711     std::lock_guard<std::mutex> lock(m_event_mutex);
4712 
4713     if (log)
4714     {
4715         log->Printf("NativeProcessLinux::%s about to process event: (tid: %" PRIu64 ")", __FUNCTION__, tid);
4716     }
4717 
4718     ThreadDidDie(tid);
4719 
4720     if (log)
4721     {
4722         log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__);
4723     }
4724 }
4725 
4726 void
4727 NativeProcessLinux::ResetForExec ()
4728 {
4729     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
4730     std::lock_guard<std::mutex> lock(m_event_mutex);
4731 
4732     if (log)
4733     {
4734         log->Printf("NativeProcessLinux::%s about to process event", __FUNCTION__);
4735     }
4736 
4737     // Clear the pending notification if there was one.
4738     m_pending_notification_up.reset ();
4739 
4740     // Clear the stop map - we no longer know anything about any thread state.
4741     // The caller is expected to reset thread states for all threads, and we
4742     // will assume anything we haven't heard about is running and requires a
4743     // stop.
4744     m_tid_map.clear ();
4745 
4746     if (log)
4747     {
4748         log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__);
4749     }
4750 }
4751 
4752 bool
4753 NativeProcessLinux::IsKnownThread (lldb::tid_t tid) const
4754 {
4755     return m_tid_map.find (tid) != m_tid_map.end ();
4756 }
4757