1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "NativeProcessLinux.h"
11 
12 // C Includes
13 #include <errno.h>
14 #include <semaphore.h>
15 #include <string.h>
16 #include <stdint.h>
17 #include <unistd.h>
18 
19 // C++ Includes
20 #include <fstream>
21 #include <mutex>
22 #include <sstream>
23 #include <string>
24 #include <unordered_map>
25 
26 // Other libraries and framework includes
27 #include "lldb/Core/EmulateInstruction.h"
28 #include "lldb/Core/Error.h"
29 #include "lldb/Core/Module.h"
30 #include "lldb/Core/ModuleSpec.h"
31 #include "lldb/Core/RegisterValue.h"
32 #include "lldb/Core/State.h"
33 #include "lldb/Host/common/NativeBreakpoint.h"
34 #include "lldb/Host/common/NativeRegisterContext.h"
35 #include "lldb/Host/Host.h"
36 #include "lldb/Host/ThreadLauncher.h"
37 #include "lldb/Target/Platform.h"
38 #include "lldb/Target/Process.h"
39 #include "lldb/Target/ProcessLaunchInfo.h"
40 #include "lldb/Target/Target.h"
41 #include "lldb/Utility/LLDBAssert.h"
42 #include "lldb/Utility/PseudoTerminal.h"
43 #include "lldb/Utility/StringExtractor.h"
44 
45 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
46 #include "NativeThreadLinux.h"
47 #include "ProcFileReader.h"
48 #include "Procfs.h"
49 
50 // System includes - They have to be included after framework includes because they define some
51 // macros which collide with variable names in other modules
52 #include <linux/unistd.h>
53 #include <sys/socket.h>
54 
55 #include <sys/syscall.h>
56 #include <sys/types.h>
57 #include <sys/user.h>
58 #include <sys/wait.h>
59 
60 #include "lldb/Host/linux/Personality.h"
61 #include "lldb/Host/linux/Ptrace.h"
62 #include "lldb/Host/linux/Signalfd.h"
63 #include "lldb/Host/linux/Uio.h"
64 #include "lldb/Host/android/Android.h"
65 
66 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS  0xffffffff
67 
68 // Support hardware breakpoints in case it has not been defined
69 #ifndef TRAP_HWBKPT
70   #define TRAP_HWBKPT 4
71 #endif
72 
73 using namespace lldb;
74 using namespace lldb_private;
75 using namespace lldb_private::process_linux;
76 using namespace llvm;
77 
78 // Private bits we only need internally.
79 
80 static bool ProcessVmReadvSupported()
81 {
82     static bool is_supported;
83     static std::once_flag flag;
84 
85     std::call_once(flag, [] {
86         Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
87 
88         uint32_t source = 0x47424742;
89         uint32_t dest = 0;
90 
91         struct iovec local, remote;
92         remote.iov_base = &source;
93         local.iov_base = &dest;
94         remote.iov_len = local.iov_len = sizeof source;
95 
96         // We shall try if cross-process-memory reads work by attempting to read a value from our own process.
97         ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
98         is_supported = (res == sizeof(source) && source == dest);
99         if (log)
100         {
101             if (is_supported)
102                 log->Printf("%s: Detected kernel support for process_vm_readv syscall. Fast memory reads enabled.",
103                         __FUNCTION__);
104             else
105                 log->Printf("%s: syscall process_vm_readv failed (error: %s). Fast memory reads disabled.",
106                         __FUNCTION__, strerror(errno));
107         }
108     });
109 
110     return is_supported;
111 }
112 
113 namespace
114 {
115     Error
116     ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch)
117     {
118         // Grab process info for the running process.
119         ProcessInstanceInfo process_info;
120         if (!platform.GetProcessInfo (pid, process_info))
121             return Error("failed to get process info");
122 
123         // Resolve the executable module.
124         ModuleSP exe_module_sp;
125         ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
126         FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ());
127         Error error = platform.ResolveExecutable(
128             exe_module_spec,
129             exe_module_sp,
130             executable_search_paths.GetSize () ? &executable_search_paths : NULL);
131 
132         if (!error.Success ())
133             return error;
134 
135         // Check if we've got our architecture from the exe_module.
136         arch = exe_module_sp->GetArchitecture ();
137         if (arch.IsValid ())
138             return Error();
139         else
140             return Error("failed to retrieve a valid architecture from the exe module");
141     }
142 
143     void
144     DisplayBytes (StreamString &s, void *bytes, uint32_t count)
145     {
146         uint8_t *ptr = (uint8_t *)bytes;
147         const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
148         for(uint32_t i=0; i<loop_count; i++)
149         {
150             s.Printf ("[%x]", *ptr);
151             ptr++;
152         }
153     }
154 
155     void
156     PtraceDisplayBytes(int &req, void *data, size_t data_size)
157     {
158         StreamString buf;
159         Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (
160                     POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE));
161 
162         if (verbose_log)
163         {
164             switch(req)
165             {
166             case PTRACE_POKETEXT:
167             {
168                 DisplayBytes(buf, &data, 8);
169                 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData());
170                 break;
171             }
172             case PTRACE_POKEDATA:
173             {
174                 DisplayBytes(buf, &data, 8);
175                 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData());
176                 break;
177             }
178             case PTRACE_POKEUSER:
179             {
180                 DisplayBytes(buf, &data, 8);
181                 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData());
182                 break;
183             }
184             case PTRACE_SETREGS:
185             {
186                 DisplayBytes(buf, data, data_size);
187                 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData());
188                 break;
189             }
190             case PTRACE_SETFPREGS:
191             {
192                 DisplayBytes(buf, data, data_size);
193                 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData());
194                 break;
195             }
196             case PTRACE_SETSIGINFO:
197             {
198                 DisplayBytes(buf, data, sizeof(siginfo_t));
199                 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData());
200                 break;
201             }
202             case PTRACE_SETREGSET:
203             {
204                 // Extract iov_base from data, which is a pointer to the struct IOVEC
205                 DisplayBytes(buf, *(void **)data, data_size);
206                 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData());
207                 break;
208             }
209             default:
210             {
211             }
212             }
213         }
214     }
215 
216     //------------------------------------------------------------------------------
217     // Static implementations of NativeProcessLinux::ReadMemory and
218     // NativeProcessLinux::WriteMemory.  This enables mutual recursion between these
219     // functions without needed to go thru the thread funnel.
220 
221     Error
222     DoReadMemory(
223         lldb::pid_t pid,
224         lldb::addr_t vm_addr,
225         void *buf,
226         size_t size,
227         size_t &bytes_read)
228     {
229         // ptrace word size is determined by the host, not the child
230         static const unsigned word_size = sizeof(void*);
231         unsigned char *dst = static_cast<unsigned char*>(buf);
232         size_t remainder;
233         long data;
234 
235         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
236         if (log)
237             ProcessPOSIXLog::IncNestLevel();
238         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
239             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__,
240                     pid, word_size, (void*)vm_addr, buf, size);
241 
242         assert(sizeof(data) >= word_size);
243         for (bytes_read = 0; bytes_read < size; bytes_read += remainder)
244         {
245             Error error = NativeProcessLinux::PtraceWrapper(PTRACE_PEEKDATA, pid, (void*)vm_addr, nullptr, 0, &data);
246             if (error.Fail())
247             {
248                 if (log)
249                     ProcessPOSIXLog::DecNestLevel();
250                 return error;
251             }
252 
253             remainder = size - bytes_read;
254             remainder = remainder > word_size ? word_size : remainder;
255 
256             // Copy the data into our buffer
257             for (unsigned i = 0; i < remainder; ++i)
258                 dst[i] = ((data >> i*8) & 0xFF);
259 
260             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
261                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
262                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
263                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
264             {
265                 uintptr_t print_dst = 0;
266                 // Format bytes from data by moving into print_dst for log output
267                 for (unsigned i = 0; i < remainder; ++i)
268                     print_dst |= (((data >> i*8) & 0xFF) << i*8);
269                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
270                         (void*)vm_addr, print_dst, (unsigned long)data);
271             }
272             vm_addr += word_size;
273             dst += word_size;
274         }
275 
276         if (log)
277             ProcessPOSIXLog::DecNestLevel();
278         return Error();
279     }
280 
281     Error
282     DoWriteMemory(
283         lldb::pid_t pid,
284         lldb::addr_t vm_addr,
285         const void *buf,
286         size_t size,
287         size_t &bytes_written)
288     {
289         // ptrace word size is determined by the host, not the child
290         static const unsigned word_size = sizeof(void*);
291         const unsigned char *src = static_cast<const unsigned char*>(buf);
292         size_t remainder;
293         Error error;
294 
295         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
296         if (log)
297             ProcessPOSIXLog::IncNestLevel();
298         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
299             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__,
300                     pid, word_size, (void*)vm_addr, buf, size);
301 
302         for (bytes_written = 0; bytes_written < size; bytes_written += remainder)
303         {
304             remainder = size - bytes_written;
305             remainder = remainder > word_size ? word_size : remainder;
306 
307             if (remainder == word_size)
308             {
309                 unsigned long data = 0;
310                 assert(sizeof(data) >= word_size);
311                 for (unsigned i = 0; i < word_size; ++i)
312                     data |= (unsigned long)src[i] << i*8;
313 
314                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
315                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
316                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
317                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
318                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
319                             (void*)vm_addr, *(const unsigned long*)src, data);
320 
321                 error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data);
322                 if (error.Fail())
323                 {
324                     if (log)
325                         ProcessPOSIXLog::DecNestLevel();
326                     return error;
327                 }
328             }
329             else
330             {
331                 unsigned char buff[8];
332                 size_t bytes_read;
333                 error = DoReadMemory(pid, vm_addr, buff, word_size, bytes_read);
334                 if (error.Fail())
335                 {
336                     if (log)
337                         ProcessPOSIXLog::DecNestLevel();
338                     return error;
339                 }
340 
341                 memcpy(buff, src, remainder);
342 
343                 size_t bytes_written_rec;
344                 error = DoWriteMemory(pid, vm_addr, buff, word_size, bytes_written_rec);
345                 if (error.Fail())
346                 {
347                     if (log)
348                         ProcessPOSIXLog::DecNestLevel();
349                     return error;
350                 }
351 
352                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
353                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
354                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
355                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
356                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
357                             (void*)vm_addr, *(const unsigned long*)src, *(unsigned long*)buff);
358             }
359 
360             vm_addr += word_size;
361             src += word_size;
362         }
363         if (log)
364             ProcessPOSIXLog::DecNestLevel();
365         return error;
366     }
367 } // end of anonymous namespace
368 
369 // Simple helper function to ensure flags are enabled on the given file
370 // descriptor.
371 static Error
372 EnsureFDFlags(int fd, int flags)
373 {
374     Error error;
375 
376     int status = fcntl(fd, F_GETFL);
377     if (status == -1)
378     {
379         error.SetErrorToErrno();
380         return error;
381     }
382 
383     if (fcntl(fd, F_SETFL, status | flags) == -1)
384     {
385         error.SetErrorToErrno();
386         return error;
387     }
388 
389     return error;
390 }
391 
392 // This class encapsulates the privileged thread which performs all ptrace and wait operations on
393 // the inferior. The thread consists of a main loop which waits for events and processes them
394 //   - SIGCHLD (delivered over a signalfd file descriptor): These signals notify us of events in
395 //     the inferior process. Upon receiving this signal we do a waitpid to get more information
396 //     and dispatch to NativeProcessLinux::MonitorCallback.
397 //   - requests for ptrace operations: These initiated via the DoOperation method, which funnels
398 //     them to the Monitor thread via m_operation member. The Monitor thread is signaled over a
399 //     pipe, and the completion of the operation is signalled over the semaphore.
400 //   - thread exit event: this is signaled from the Monitor destructor by closing the write end
401 //     of the command pipe.
402 class NativeProcessLinux::Monitor
403 {
404 private:
405     // The initial monitor operation (launch or attach). It returns a inferior process id.
406     std::unique_ptr<InitialOperation> m_initial_operation_up;
407 
408     ::pid_t                           m_child_pid = -1;
409     NativeProcessLinux              * m_native_process;
410 
411     enum { READ, WRITE };
412     int        m_pipefd[2] = {-1, -1};
413     int        m_signal_fd = -1;
414     HostThread m_thread;
415 
416     // current operation which must be executed on the priviliged thread
417     Mutex            m_operation_mutex;
418     const Operation *m_operation = nullptr;
419     sem_t            m_operation_sem;
420     Error            m_operation_error;
421 
422     unsigned   m_operation_nesting_level = 0;
423 
424     static constexpr char operation_command   = 'o';
425     static constexpr char begin_block_command = '{';
426     static constexpr char end_block_command   = '}';
427 
428     void
429     HandleSignals();
430 
431     void
432     HandleWait();
433 
434     // Returns true if the thread should exit.
435     bool
436     HandleCommands();
437 
438     void
439     MainLoop();
440 
441     static void *
442     RunMonitor(void *arg);
443 
444     Error
445     WaitForAck();
446 
447     void
448     BeginOperationBlock()
449     {
450         write(m_pipefd[WRITE], &begin_block_command, sizeof operation_command);
451         WaitForAck();
452     }
453 
454     void
455     EndOperationBlock()
456     {
457         write(m_pipefd[WRITE], &end_block_command, sizeof operation_command);
458         WaitForAck();
459     }
460 
461 public:
462     Monitor(const InitialOperation &initial_operation,
463             NativeProcessLinux *native_process)
464         : m_initial_operation_up(new InitialOperation(initial_operation)),
465           m_native_process(native_process)
466     {
467         sem_init(&m_operation_sem, 0, 0);
468     }
469 
470     ~Monitor();
471 
472     Error
473     Initialize();
474 
475     void
476     Terminate();
477 
478     Error
479     DoOperation(const Operation &op);
480 
481     class ScopedOperationLock {
482         Monitor &m_monitor;
483 
484     public:
485         ScopedOperationLock(Monitor &monitor)
486             : m_monitor(monitor)
487         { m_monitor.BeginOperationBlock(); }
488 
489         ~ScopedOperationLock()
490         { m_monitor.EndOperationBlock(); }
491     };
492 };
493 constexpr char NativeProcessLinux::Monitor::operation_command;
494 constexpr char NativeProcessLinux::Monitor::begin_block_command;
495 constexpr char NativeProcessLinux::Monitor::end_block_command;
496 
497 Error
498 NativeProcessLinux::Monitor::Initialize()
499 {
500     Error error;
501 
502     // We get a SIGCHLD every time something interesting happens with the inferior. We shall be
503     // listening for these signals over a signalfd file descriptors. This allows us to wait for
504     // multiple kinds of events with select.
505     sigset_t signals;
506     sigemptyset(&signals);
507     sigaddset(&signals, SIGCHLD);
508     m_signal_fd = signalfd(-1, &signals, SFD_NONBLOCK | SFD_CLOEXEC);
509     if (m_signal_fd < 0)
510     {
511         return Error("NativeProcessLinux::Monitor::%s failed due to signalfd failure. Monitoring the inferior will be impossible: %s",
512                     __FUNCTION__, strerror(errno));
513 
514     }
515 
516     if (pipe2(m_pipefd, O_CLOEXEC) == -1)
517     {
518         error.SetErrorToErrno();
519         return error;
520     }
521 
522     if ((error = EnsureFDFlags(m_pipefd[READ], O_NONBLOCK)).Fail()) {
523         return error;
524     }
525 
526     static const char g_thread_name[] = "lldb.process.nativelinux.monitor";
527     m_thread = ThreadLauncher::LaunchThread(g_thread_name, Monitor::RunMonitor, this, nullptr);
528     if (!m_thread.IsJoinable())
529         return Error("Failed to create monitor thread for NativeProcessLinux.");
530 
531     // Wait for initial operation to complete.
532     return WaitForAck();
533 }
534 
535 Error
536 NativeProcessLinux::Monitor::DoOperation(const Operation &op)
537 {
538     if (m_thread.EqualsThread(pthread_self())) {
539         // If we're on the Monitor thread, we can simply execute the operation.
540         return op();
541     }
542 
543     // Otherwise we need to pass the operation to the Monitor thread so it can handle it.
544     Mutex::Locker lock(m_operation_mutex);
545 
546     m_operation = &op;
547 
548     // notify the thread that an operation is ready to be processed
549     write(m_pipefd[WRITE], &operation_command, sizeof operation_command);
550 
551     return WaitForAck();
552 }
553 
554 void
555 NativeProcessLinux::Monitor::Terminate()
556 {
557     if (m_pipefd[WRITE] >= 0)
558     {
559         close(m_pipefd[WRITE]);
560         m_pipefd[WRITE] = -1;
561     }
562     if (m_thread.IsJoinable())
563         m_thread.Join(nullptr);
564 }
565 
566 NativeProcessLinux::Monitor::~Monitor()
567 {
568     Terminate();
569     if (m_pipefd[READ] >= 0)
570         close(m_pipefd[READ]);
571     if (m_signal_fd >= 0)
572         close(m_signal_fd);
573     sem_destroy(&m_operation_sem);
574 }
575 
576 void
577 NativeProcessLinux::Monitor::HandleSignals()
578 {
579     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
580 
581     // We don't really care about the content of the SIGCHLD siginfo structure, as we will get
582     // all the information from waitpid(). We just need to read all the signals so that we can
583     // sleep next time we reach select().
584     while (true)
585     {
586         signalfd_siginfo info;
587         ssize_t size = read(m_signal_fd, &info, sizeof info);
588         if (size == -1)
589         {
590             if (errno == EAGAIN || errno == EWOULDBLOCK)
591                 break; // We are done.
592             if (errno == EINTR)
593                 continue;
594             if (log)
595                 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor failed: %s",
596                         __FUNCTION__, strerror(errno));
597             break;
598         }
599         if (size != sizeof info)
600         {
601             // We got incomplete information structure. This should not happen, let's just log
602             // that.
603             if (log)
604                 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor returned incomplete data: "
605                         "structure size is %zd, read returned %zd bytes",
606                         __FUNCTION__, sizeof info, size);
607             break;
608         }
609         if (log)
610             log->Printf("NativeProcessLinux::Monitor::%s received signal %s(%d).", __FUNCTION__,
611                 Host::GetSignalAsCString(info.ssi_signo), info.ssi_signo);
612     }
613 }
614 
615 void
616 NativeProcessLinux::Monitor::HandleWait()
617 {
618     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
619     // Process all pending waitpid notifications.
620     while (true)
621     {
622         int status = -1;
623         ::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG);
624 
625         if (wait_pid == 0)
626             break; // We are done.
627 
628         if (wait_pid == -1)
629         {
630             if (errno == EINTR)
631                 continue;
632 
633             if (log)
634               log->Printf("NativeProcessLinux::Monitor::%s waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG) failed: %s",
635                       __FUNCTION__, strerror(errno));
636             break;
637         }
638 
639         bool exited = false;
640         int signal = 0;
641         int exit_status = 0;
642         const char *status_cstr = NULL;
643         if (WIFSTOPPED(status))
644         {
645             signal = WSTOPSIG(status);
646             status_cstr = "STOPPED";
647         }
648         else if (WIFEXITED(status))
649         {
650             exit_status = WEXITSTATUS(status);
651             status_cstr = "EXITED";
652             exited = true;
653         }
654         else if (WIFSIGNALED(status))
655         {
656             signal = WTERMSIG(status);
657             status_cstr = "SIGNALED";
658             if (wait_pid == m_child_pid) {
659                 exited = true;
660                 exit_status = -1;
661             }
662         }
663         else
664             status_cstr = "(\?\?\?)";
665 
666         if (log)
667             log->Printf("NativeProcessLinux::Monitor::%s: waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG)"
668                 "=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i",
669                 __FUNCTION__, wait_pid, status, status_cstr, signal, exit_status);
670 
671         m_native_process->MonitorCallback (wait_pid, exited, signal, exit_status);
672     }
673 }
674 
675 bool
676 NativeProcessLinux::Monitor::HandleCommands()
677 {
678     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
679 
680     while (true)
681     {
682         char command = 0;
683         ssize_t size = read(m_pipefd[READ], &command, sizeof command);
684         if (size == -1)
685         {
686             if (errno == EAGAIN || errno == EWOULDBLOCK)
687                 return false;
688             if (errno == EINTR)
689                 continue;
690             if (log)
691                 log->Printf("NativeProcessLinux::Monitor::%s exiting because read from command file descriptor failed: %s", __FUNCTION__, strerror(errno));
692             return true;
693         }
694         if (size == 0) // end of file - write end closed
695         {
696             if (log)
697                 log->Printf("NativeProcessLinux::Monitor::%s exit command received, exiting...", __FUNCTION__);
698             assert(m_operation_nesting_level == 0 && "Unbalanced begin/end block commands detected");
699             return true; // We are done.
700         }
701 
702         switch (command)
703         {
704         case operation_command:
705             m_operation_error = (*m_operation)();
706             break;
707         case begin_block_command:
708             ++m_operation_nesting_level;
709             break;
710         case end_block_command:
711             assert(m_operation_nesting_level > 0);
712             --m_operation_nesting_level;
713             break;
714         default:
715             if (log)
716                 log->Printf("NativeProcessLinux::Monitor::%s received unknown command '%c'",
717                         __FUNCTION__, command);
718         }
719 
720         // notify calling thread that the command has been processed
721         sem_post(&m_operation_sem);
722     }
723 }
724 
725 void
726 NativeProcessLinux::Monitor::MainLoop()
727 {
728     ::pid_t child_pid = (*m_initial_operation_up)(m_operation_error);
729     m_initial_operation_up.reset();
730     m_child_pid = child_pid;
731     sem_post(&m_operation_sem);
732 
733     while (true)
734     {
735         fd_set fds;
736         FD_ZERO(&fds);
737         // Only process waitpid events if we are outside of an operation block. Any pending
738         // events will be processed after we leave the block.
739         if (m_operation_nesting_level == 0)
740             FD_SET(m_signal_fd, &fds);
741         FD_SET(m_pipefd[READ], &fds);
742 
743         int max_fd = std::max(m_signal_fd, m_pipefd[READ]) + 1;
744         int r = select(max_fd, &fds, nullptr, nullptr, nullptr);
745         if (r < 0)
746         {
747             Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
748             if (log)
749                 log->Printf("NativeProcessLinux::Monitor::%s exiting because select failed: %s",
750                         __FUNCTION__, strerror(errno));
751             return;
752         }
753 
754         if (FD_ISSET(m_pipefd[READ], &fds))
755         {
756             if (HandleCommands())
757                 return;
758         }
759 
760         if (FD_ISSET(m_signal_fd, &fds))
761         {
762             HandleSignals();
763             HandleWait();
764         }
765     }
766 }
767 
768 Error
769 NativeProcessLinux::Monitor::WaitForAck()
770 {
771     Error error;
772     while (sem_wait(&m_operation_sem) != 0)
773     {
774         if (errno == EINTR)
775             continue;
776 
777         error.SetErrorToErrno();
778         return error;
779     }
780 
781     return m_operation_error;
782 }
783 
784 void *
785 NativeProcessLinux::Monitor::RunMonitor(void *arg)
786 {
787     static_cast<Monitor *>(arg)->MainLoop();
788     return nullptr;
789 }
790 
791 
792 NativeProcessLinux::LaunchArgs::LaunchArgs(Module *module,
793                                        char const **argv,
794                                        char const **envp,
795                                        const FileSpec &stdin_file_spec,
796                                        const FileSpec &stdout_file_spec,
797                                        const FileSpec &stderr_file_spec,
798                                        const FileSpec &working_dir,
799                                        const ProcessLaunchInfo &launch_info)
800     : m_module(module),
801       m_argv(argv),
802       m_envp(envp),
803       m_stdin_file_spec(stdin_file_spec),
804       m_stdout_file_spec(stdout_file_spec),
805       m_stderr_file_spec(stderr_file_spec),
806       m_working_dir(working_dir),
807       m_launch_info(launch_info)
808 {
809 }
810 
811 NativeProcessLinux::LaunchArgs::~LaunchArgs()
812 { }
813 
814 // -----------------------------------------------------------------------------
815 // Public Static Methods
816 // -----------------------------------------------------------------------------
817 
818 Error
819 NativeProcessProtocol::Launch (
820     ProcessLaunchInfo &launch_info,
821     NativeProcessProtocol::NativeDelegate &native_delegate,
822     NativeProcessProtocolSP &native_process_sp)
823 {
824     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
825 
826     lldb::ModuleSP exe_module_sp;
827     PlatformSP platform_sp (Platform::GetHostPlatform ());
828     Error error = platform_sp->ResolveExecutable(
829             ModuleSpec(launch_info.GetExecutableFile(), launch_info.GetArchitecture()),
830             exe_module_sp,
831             nullptr);
832 
833     if (! error.Success())
834         return error;
835 
836     // Verify the working directory is valid if one was specified.
837     FileSpec working_dir{launch_info.GetWorkingDirectory()};
838     if (working_dir &&
839             (!working_dir.ResolvePath() ||
840              working_dir.GetFileType() != FileSpec::eFileTypeDirectory))
841     {
842         error.SetErrorStringWithFormat ("No such file or directory: %s",
843                 working_dir.GetCString());
844         return error;
845     }
846 
847     const FileAction *file_action;
848 
849     // Default of empty will mean to use existing open file descriptors.
850     FileSpec stdin_file_spec{};
851     FileSpec stdout_file_spec{};
852     FileSpec stderr_file_spec{};
853 
854     file_action = launch_info.GetFileActionForFD (STDIN_FILENO);
855     if (file_action)
856         stdin_file_spec = file_action->GetFileSpec();
857 
858     file_action = launch_info.GetFileActionForFD (STDOUT_FILENO);
859     if (file_action)
860         stdout_file_spec = file_action->GetFileSpec();
861 
862     file_action = launch_info.GetFileActionForFD (STDERR_FILENO);
863     if (file_action)
864         stderr_file_spec = file_action->GetFileSpec();
865 
866     if (log)
867     {
868         if (stdin_file_spec)
869             log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'",
870                     __FUNCTION__, stdin_file_spec.GetCString());
871         else
872             log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__);
873 
874         if (stdout_file_spec)
875             log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'",
876                     __FUNCTION__, stdout_file_spec.GetCString());
877         else
878             log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__);
879 
880         if (stderr_file_spec)
881             log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'",
882                     __FUNCTION__, stderr_file_spec.GetCString());
883         else
884             log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__);
885     }
886 
887     // Create the NativeProcessLinux in launch mode.
888     native_process_sp.reset (new NativeProcessLinux ());
889 
890     if (log)
891     {
892         int i = 0;
893         for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i)
894         {
895             log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr");
896             ++i;
897         }
898     }
899 
900     if (!native_process_sp->RegisterNativeDelegate (native_delegate))
901     {
902         native_process_sp.reset ();
903         error.SetErrorStringWithFormat ("failed to register the native delegate");
904         return error;
905     }
906 
907     std::static_pointer_cast<NativeProcessLinux> (native_process_sp)->LaunchInferior (
908             exe_module_sp.get(),
909             launch_info.GetArguments ().GetConstArgumentVector (),
910             launch_info.GetEnvironmentEntries ().GetConstArgumentVector (),
911             stdin_file_spec,
912             stdout_file_spec,
913             stderr_file_spec,
914             working_dir,
915             launch_info,
916             error);
917 
918     if (error.Fail ())
919     {
920         native_process_sp.reset ();
921         if (log)
922             log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ());
923         return error;
924     }
925 
926     launch_info.SetProcessID (native_process_sp->GetID ());
927 
928     return error;
929 }
930 
931 Error
932 NativeProcessProtocol::Attach (
933     lldb::pid_t pid,
934     NativeProcessProtocol::NativeDelegate &native_delegate,
935     NativeProcessProtocolSP &native_process_sp)
936 {
937     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
938     if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE))
939         log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid);
940 
941     // Grab the current platform architecture.  This should be Linux,
942     // since this code is only intended to run on a Linux host.
943     PlatformSP platform_sp (Platform::GetHostPlatform ());
944     if (!platform_sp)
945         return Error("failed to get a valid default platform");
946 
947     // Retrieve the architecture for the running process.
948     ArchSpec process_arch;
949     Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch);
950     if (!error.Success ())
951         return error;
952 
953     std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ());
954 
955     if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate))
956     {
957         error.SetErrorStringWithFormat ("failed to register the native delegate");
958         return error;
959     }
960 
961     native_process_linux_sp->AttachToInferior (pid, error);
962     if (!error.Success ())
963         return error;
964 
965     native_process_sp = native_process_linux_sp;
966     return error;
967 }
968 
969 // -----------------------------------------------------------------------------
970 // Public Instance Methods
971 // -----------------------------------------------------------------------------
972 
973 NativeProcessLinux::NativeProcessLinux () :
974     NativeProcessProtocol (LLDB_INVALID_PROCESS_ID),
975     m_arch (),
976     m_supports_mem_region (eLazyBoolCalculate),
977     m_mem_region_cache (),
978     m_mem_region_cache_mutex ()
979 {
980 }
981 
982 //------------------------------------------------------------------------------
983 // NativeProcessLinux spawns a new thread which performs all operations on the inferior process.
984 // Refer to Monitor and Operation classes to see why this is necessary.
985 //------------------------------------------------------------------------------
986 void
987 NativeProcessLinux::LaunchInferior (
988     Module *module,
989     const char *argv[],
990     const char *envp[],
991     const FileSpec &stdin_file_spec,
992     const FileSpec &stdout_file_spec,
993     const FileSpec &stderr_file_spec,
994     const FileSpec &working_dir,
995     const ProcessLaunchInfo &launch_info,
996     Error &error)
997 {
998     if (module)
999         m_arch = module->GetArchitecture ();
1000 
1001     SetState (eStateLaunching);
1002 
1003     std::unique_ptr<LaunchArgs> args(
1004         new LaunchArgs(module, argv, envp,
1005                        stdin_file_spec,
1006                        stdout_file_spec,
1007                        stderr_file_spec,
1008                        working_dir,
1009                        launch_info));
1010 
1011     StartMonitorThread ([&] (Error &e) { return Launch(args.get(), e); }, error);
1012     if (!error.Success ())
1013         return;
1014 }
1015 
1016 void
1017 NativeProcessLinux::AttachToInferior (lldb::pid_t pid, Error &error)
1018 {
1019     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1020     if (log)
1021         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid);
1022 
1023     // We can use the Host for everything except the ResolveExecutable portion.
1024     PlatformSP platform_sp = Platform::GetHostPlatform ();
1025     if (!platform_sp)
1026     {
1027         if (log)
1028             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid);
1029         error.SetErrorString ("no default platform available");
1030         return;
1031     }
1032 
1033     // Gather info about the process.
1034     ProcessInstanceInfo process_info;
1035     if (!platform_sp->GetProcessInfo (pid, process_info))
1036     {
1037         if (log)
1038             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid);
1039         error.SetErrorString ("failed to get process info");
1040         return;
1041     }
1042 
1043     // Resolve the executable module
1044     ModuleSP exe_module_sp;
1045     FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths());
1046     ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
1047     error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp,
1048                                            executable_search_paths.GetSize() ? &executable_search_paths : NULL);
1049     if (!error.Success())
1050         return;
1051 
1052     // Set the architecture to the exe architecture.
1053     m_arch = exe_module_sp->GetArchitecture();
1054     if (log)
1055         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ());
1056 
1057     m_pid = pid;
1058     SetState(eStateAttaching);
1059 
1060     StartMonitorThread ([=] (Error &e) { return Attach(pid, e); }, error);
1061     if (!error.Success ())
1062         return;
1063 }
1064 
1065 void
1066 NativeProcessLinux::Terminate ()
1067 {
1068     m_monitor_up->Terminate();
1069 }
1070 
1071 ::pid_t
1072 NativeProcessLinux::Launch(LaunchArgs *args, Error &error)
1073 {
1074     assert (args && "null args");
1075 
1076     const char **argv = args->m_argv;
1077     const char **envp = args->m_envp;
1078     const FileSpec working_dir = args->m_working_dir;
1079 
1080     lldb_utility::PseudoTerminal terminal;
1081     const size_t err_len = 1024;
1082     char err_str[err_len];
1083     lldb::pid_t pid;
1084     NativeThreadProtocolSP thread_sp;
1085 
1086     lldb::ThreadSP inferior;
1087 
1088     // Propagate the environment if one is not supplied.
1089     if (envp == NULL || envp[0] == NULL)
1090         envp = const_cast<const char **>(environ);
1091 
1092     if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1))
1093     {
1094         error.SetErrorToGenericError();
1095         error.SetErrorStringWithFormat("Process fork failed: %s", err_str);
1096         return -1;
1097     }
1098 
1099     // Recognized child exit status codes.
1100     enum {
1101         ePtraceFailed = 1,
1102         eDupStdinFailed,
1103         eDupStdoutFailed,
1104         eDupStderrFailed,
1105         eChdirFailed,
1106         eExecFailed,
1107         eSetGidFailed
1108     };
1109 
1110     // Child process.
1111     if (pid == 0)
1112     {
1113         // FIXME consider opening a pipe between parent/child and have this forked child
1114         // send log info to parent re: launch status, in place of the log lines removed here.
1115 
1116         // Start tracing this child that is about to exec.
1117         error = PtraceWrapper(PTRACE_TRACEME, 0);
1118         if (error.Fail())
1119             exit(ePtraceFailed);
1120 
1121         // terminal has already dupped the tty descriptors to stdin/out/err.
1122         // This closes original fd from which they were copied (and avoids
1123         // leaking descriptors to the debugged process.
1124         terminal.CloseSlaveFileDescriptor();
1125 
1126         // Do not inherit setgid powers.
1127         if (setgid(getgid()) != 0)
1128             exit(eSetGidFailed);
1129 
1130         // Attempt to have our own process group.
1131         if (setpgid(0, 0) != 0)
1132         {
1133             // FIXME log that this failed. This is common.
1134             // Don't allow this to prevent an inferior exec.
1135         }
1136 
1137         // Dup file descriptors if needed.
1138         if (args->m_stdin_file_spec)
1139             if (!DupDescriptor(args->m_stdin_file_spec, STDIN_FILENO, O_RDONLY))
1140                 exit(eDupStdinFailed);
1141 
1142         if (args->m_stdout_file_spec)
1143             if (!DupDescriptor(args->m_stdout_file_spec, STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
1144                 exit(eDupStdoutFailed);
1145 
1146         if (args->m_stderr_file_spec)
1147             if (!DupDescriptor(args->m_stderr_file_spec, STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
1148                 exit(eDupStderrFailed);
1149 
1150         // Close everything besides stdin, stdout, and stderr that has no file
1151         // action to avoid leaking
1152         for (int fd = 3; fd < sysconf(_SC_OPEN_MAX); ++fd)
1153             if (!args->m_launch_info.GetFileActionForFD(fd))
1154                 close(fd);
1155 
1156         // Change working directory
1157         if (working_dir && 0 != ::chdir(working_dir.GetCString()))
1158               exit(eChdirFailed);
1159 
1160         // Disable ASLR if requested.
1161         if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR))
1162         {
1163             const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS);
1164             if (old_personality == -1)
1165             {
1166                 // Can't retrieve Linux personality.  Cannot disable ASLR.
1167             }
1168             else
1169             {
1170                 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality);
1171                 if (new_personality == -1)
1172                 {
1173                     // Disabling ASLR failed.
1174                 }
1175                 else
1176                 {
1177                     // Disabling ASLR succeeded.
1178                 }
1179             }
1180         }
1181 
1182         // Execute.  We should never return...
1183         execve(argv[0],
1184                const_cast<char *const *>(argv),
1185                const_cast<char *const *>(envp));
1186 
1187         // ...unless exec fails.  In which case we definitely need to end the child here.
1188         exit(eExecFailed);
1189     }
1190 
1191     //
1192     // This is the parent code here.
1193     //
1194     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1195 
1196     // Wait for the child process to trap on its call to execve.
1197     ::pid_t wpid;
1198     int status;
1199     if ((wpid = waitpid(pid, &status, 0)) < 0)
1200     {
1201         error.SetErrorToErrno();
1202         if (log)
1203             log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s",
1204                     __FUNCTION__, error.AsCString ());
1205 
1206         // Mark the inferior as invalid.
1207         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1208         SetState (StateType::eStateInvalid);
1209 
1210         return -1;
1211     }
1212     else if (WIFEXITED(status))
1213     {
1214         // open, dup or execve likely failed for some reason.
1215         error.SetErrorToGenericError();
1216         switch (WEXITSTATUS(status))
1217         {
1218             case ePtraceFailed:
1219                 error.SetErrorString("Child ptrace failed.");
1220                 break;
1221             case eDupStdinFailed:
1222                 error.SetErrorString("Child open stdin failed.");
1223                 break;
1224             case eDupStdoutFailed:
1225                 error.SetErrorString("Child open stdout failed.");
1226                 break;
1227             case eDupStderrFailed:
1228                 error.SetErrorString("Child open stderr failed.");
1229                 break;
1230             case eChdirFailed:
1231                 error.SetErrorString("Child failed to set working directory.");
1232                 break;
1233             case eExecFailed:
1234                 error.SetErrorString("Child exec failed.");
1235                 break;
1236             case eSetGidFailed:
1237                 error.SetErrorString("Child setgid failed.");
1238                 break;
1239             default:
1240                 error.SetErrorString("Child returned unknown exit status.");
1241                 break;
1242         }
1243 
1244         if (log)
1245         {
1246             log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP",
1247                     __FUNCTION__,
1248                     WEXITSTATUS(status));
1249         }
1250 
1251         // Mark the inferior as invalid.
1252         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1253         SetState (StateType::eStateInvalid);
1254 
1255         return -1;
1256     }
1257     assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) &&
1258            "Could not sync with inferior process.");
1259 
1260     if (log)
1261         log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__);
1262 
1263     error = SetDefaultPtraceOpts(pid);
1264     if (error.Fail())
1265     {
1266         if (log)
1267             log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s",
1268                     __FUNCTION__, error.AsCString ());
1269 
1270         // Mark the inferior as invalid.
1271         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1272         SetState (StateType::eStateInvalid);
1273 
1274         return -1;
1275     }
1276 
1277     // Release the master terminal descriptor and pass it off to the
1278     // NativeProcessLinux instance.  Similarly stash the inferior pid.
1279     m_terminal_fd = terminal.ReleaseMasterFileDescriptor();
1280     m_pid = pid;
1281 
1282     // Set the terminal fd to be in non blocking mode (it simplifies the
1283     // implementation of ProcessLinux::GetSTDOUT to have a non-blocking
1284     // descriptor to read from).
1285     error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
1286     if (error.Fail())
1287     {
1288         if (log)
1289             log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s",
1290                     __FUNCTION__, error.AsCString ());
1291 
1292         // Mark the inferior as invalid.
1293         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1294         SetState (StateType::eStateInvalid);
1295 
1296         return -1;
1297     }
1298 
1299     if (log)
1300         log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid);
1301 
1302     thread_sp = AddThread (pid);
1303     assert (thread_sp && "AddThread() returned a nullptr thread");
1304     std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP);
1305     ThreadWasCreated(pid);
1306 
1307     // Let our process instance know the thread has stopped.
1308     SetCurrentThreadID (thread_sp->GetID ());
1309     SetState (StateType::eStateStopped);
1310 
1311     if (log)
1312     {
1313         if (error.Success ())
1314         {
1315             log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__);
1316         }
1317         else
1318         {
1319             log->Printf ("NativeProcessLinux::%s inferior launching failed: %s",
1320                 __FUNCTION__, error.AsCString ());
1321             return -1;
1322         }
1323     }
1324     return pid;
1325 }
1326 
1327 ::pid_t
1328 NativeProcessLinux::Attach(lldb::pid_t pid, Error &error)
1329 {
1330     lldb::ThreadSP inferior;
1331     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1332 
1333     // Use a map to keep track of the threads which we have attached/need to attach.
1334     Host::TidMap tids_to_attach;
1335     if (pid <= 1)
1336     {
1337         error.SetErrorToGenericError();
1338         error.SetErrorString("Attaching to process 1 is not allowed.");
1339         return -1;
1340     }
1341 
1342     while (Host::FindProcessThreads(pid, tids_to_attach))
1343     {
1344         for (Host::TidMap::iterator it = tids_to_attach.begin();
1345              it != tids_to_attach.end();)
1346         {
1347             if (it->second == false)
1348             {
1349                 lldb::tid_t tid = it->first;
1350 
1351                 // Attach to the requested process.
1352                 // An attach will cause the thread to stop with a SIGSTOP.
1353                 error = PtraceWrapper(PTRACE_ATTACH, tid);
1354                 if (error.Fail())
1355                 {
1356                     // No such thread. The thread may have exited.
1357                     // More error handling may be needed.
1358                     if (error.GetError() == ESRCH)
1359                     {
1360                         it = tids_to_attach.erase(it);
1361                         continue;
1362                     }
1363                     else
1364                         return -1;
1365                 }
1366 
1367                 int status;
1368                 // Need to use __WALL otherwise we receive an error with errno=ECHLD
1369                 // At this point we should have a thread stopped if waitpid succeeds.
1370                 if ((status = waitpid(tid, NULL, __WALL)) < 0)
1371                 {
1372                     // No such thread. The thread may have exited.
1373                     // More error handling may be needed.
1374                     if (errno == ESRCH)
1375                     {
1376                         it = tids_to_attach.erase(it);
1377                         continue;
1378                     }
1379                     else
1380                     {
1381                         error.SetErrorToErrno();
1382                         return -1;
1383                     }
1384                 }
1385 
1386                 error = SetDefaultPtraceOpts(tid);
1387                 if (error.Fail())
1388                     return -1;
1389 
1390                 if (log)
1391                     log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid);
1392 
1393                 it->second = true;
1394 
1395                 // Create the thread, mark it as stopped.
1396                 NativeThreadProtocolSP thread_sp (AddThread (static_cast<lldb::tid_t> (tid)));
1397                 assert (thread_sp && "AddThread() returned a nullptr");
1398 
1399                 // This will notify this is a new thread and tell the system it is stopped.
1400                 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP);
1401                 ThreadWasCreated(tid);
1402                 SetCurrentThreadID (thread_sp->GetID ());
1403             }
1404 
1405             // move the loop forward
1406             ++it;
1407         }
1408     }
1409 
1410     if (tids_to_attach.size() > 0)
1411     {
1412         m_pid = pid;
1413         // Let our process instance know the thread has stopped.
1414         SetState (StateType::eStateStopped);
1415     }
1416     else
1417     {
1418         error.SetErrorToGenericError();
1419         error.SetErrorString("No such process.");
1420         return -1;
1421     }
1422 
1423     return pid;
1424 }
1425 
1426 Error
1427 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid)
1428 {
1429     long ptrace_opts = 0;
1430 
1431     // Have the child raise an event on exit.  This is used to keep the child in
1432     // limbo until it is destroyed.
1433     ptrace_opts |= PTRACE_O_TRACEEXIT;
1434 
1435     // Have the tracer trace threads which spawn in the inferior process.
1436     // TODO: if we want to support tracing the inferiors' child, add the
1437     // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
1438     ptrace_opts |= PTRACE_O_TRACECLONE;
1439 
1440     // Have the tracer notify us before execve returns
1441     // (needed to disable legacy SIGTRAP generation)
1442     ptrace_opts |= PTRACE_O_TRACEEXEC;
1443 
1444     return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts);
1445 }
1446 
1447 static ExitType convert_pid_status_to_exit_type (int status)
1448 {
1449     if (WIFEXITED (status))
1450         return ExitType::eExitTypeExit;
1451     else if (WIFSIGNALED (status))
1452         return ExitType::eExitTypeSignal;
1453     else if (WIFSTOPPED (status))
1454         return ExitType::eExitTypeStop;
1455     else
1456     {
1457         // We don't know what this is.
1458         return ExitType::eExitTypeInvalid;
1459     }
1460 }
1461 
1462 static int convert_pid_status_to_return_code (int status)
1463 {
1464     if (WIFEXITED (status))
1465         return WEXITSTATUS (status);
1466     else if (WIFSIGNALED (status))
1467         return WTERMSIG (status);
1468     else if (WIFSTOPPED (status))
1469         return WSTOPSIG (status);
1470     else
1471     {
1472         // We don't know what this is.
1473         return ExitType::eExitTypeInvalid;
1474     }
1475 }
1476 
1477 // Handles all waitpid events from the inferior process.
1478 void
1479 NativeProcessLinux::MonitorCallback(lldb::pid_t pid,
1480                                     bool exited,
1481                                     int signal,
1482                                     int status)
1483 {
1484     Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS));
1485 
1486     // Certain activities differ based on whether the pid is the tid of the main thread.
1487     const bool is_main_thread = (pid == GetID ());
1488 
1489     // Handle when the thread exits.
1490     if (exited)
1491     {
1492         if (log)
1493             log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %"  PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not");
1494 
1495         // This is a thread that exited.  Ensure we're not tracking it anymore.
1496         const bool thread_found = StopTrackingThread (pid);
1497 
1498         if (is_main_thread)
1499         {
1500             // We only set the exit status and notify the delegate if we haven't already set the process
1501             // state to an exited state.  We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8)
1502             // for the main thread.
1503             const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed);
1504             if (!already_notified)
1505             {
1506                 if (log)
1507                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ()));
1508                 // The main thread exited.  We're done monitoring.  Report to delegate.
1509                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
1510 
1511                 // Notify delegate that our process has exited.
1512                 SetState (StateType::eStateExited, true);
1513             }
1514             else
1515             {
1516                 if (log)
1517                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
1518             }
1519         }
1520         else
1521         {
1522             // Do we want to report to the delegate in this case?  I think not.  If this was an orderly
1523             // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal,
1524             // and we would have done an all-stop then.
1525             if (log)
1526                 log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
1527         }
1528         return;
1529     }
1530 
1531     // Get details on the signal raised.
1532     siginfo_t info;
1533     const auto err = GetSignalInfo(pid, &info);
1534     if (err.Success())
1535     {
1536         // We have retrieved the signal info.  Dispatch appropriately.
1537         if (info.si_signo == SIGTRAP)
1538             MonitorSIGTRAP(&info, pid);
1539         else
1540             MonitorSignal(&info, pid, exited);
1541     }
1542     else
1543     {
1544         if (err.GetError() == EINVAL)
1545         {
1546             // This is a group stop reception for this tid.
1547             // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the
1548             // tracee, triggering the group-stop mechanism. Normally receiving these would stop
1549             // the process, pending a SIGCONT. Simulating this state in a debugger is hard and is
1550             // generally not needed (one use case is debugging background task being managed by a
1551             // shell). For general use, it is sufficient to stop the process in a signal-delivery
1552             // stop which happens before the group stop. This done by MonitorSignal and works
1553             // correctly for all signals.
1554             if (log)
1555                 log->Printf("NativeProcessLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64 ". Transparent handling of group stops not supported, resuming the thread.", __FUNCTION__, GetID (), pid);
1556             Resume(pid, signal);
1557         }
1558         else
1559         {
1560             // ptrace(GETSIGINFO) failed (but not due to group-stop).
1561 
1562             // A return value of ESRCH means the thread/process is no longer on the system,
1563             // so it was killed somehow outside of our control.  Either way, we can't do anything
1564             // with it anymore.
1565 
1566             // Stop tracking the metadata for the thread since it's entirely off the system now.
1567             const bool thread_found = StopTrackingThread (pid);
1568 
1569             if (log)
1570                 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)",
1571                              __FUNCTION__, err.AsCString(), pid, signal, status, err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found");
1572 
1573             if (is_main_thread)
1574             {
1575                 // Notify the delegate - our process is not available but appears to have been killed outside
1576                 // our control.  Is eStateExited the right exit state in this case?
1577                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
1578                 SetState (StateType::eStateExited, true);
1579             }
1580             else
1581             {
1582                 // This thread was pulled out from underneath us.  Anything to do here? Do we want to do an all stop?
1583                 if (log)
1584                     log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid);
1585             }
1586         }
1587     }
1588 }
1589 
1590 void
1591 NativeProcessLinux::WaitForNewThread(::pid_t tid)
1592 {
1593     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1594 
1595     NativeThreadProtocolSP new_thread_sp = GetThreadByID(tid);
1596 
1597     if (new_thread_sp)
1598     {
1599         // We are already tracking the thread - we got the event on the new thread (see
1600         // MonitorSignal) before this one. We are done.
1601         return;
1602     }
1603 
1604     // The thread is not tracked yet, let's wait for it to appear.
1605     int status = -1;
1606     ::pid_t wait_pid;
1607     do
1608     {
1609         if (log)
1610             log->Printf ("NativeProcessLinux::%s() received thread creation event for tid %" PRIu32 ". tid not tracked yet, waiting for thread to appear...", __FUNCTION__, tid);
1611         wait_pid = waitpid(tid, &status, __WALL);
1612     }
1613     while (wait_pid == -1 && errno == EINTR);
1614     // Since we are waiting on a specific tid, this must be the creation event. But let's do
1615     // some checks just in case.
1616     if (wait_pid != tid) {
1617         if (log)
1618             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime", __FUNCTION__, tid);
1619         // The only way I know of this could happen is if the whole process was
1620         // SIGKILLed in the mean time. In any case, we can't do anything about that now.
1621         return;
1622     }
1623     if (WIFEXITED(status))
1624     {
1625         if (log)
1626             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " returned an 'exited' event. Not tracking the thread.", __FUNCTION__, tid);
1627         // Also a very improbable event.
1628         return;
1629     }
1630 
1631     siginfo_t info;
1632     Error error = GetSignalInfo(tid, &info);
1633     if (error.Fail())
1634     {
1635         if (log)
1636             log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime.", __FUNCTION__, tid);
1637         return;
1638     }
1639 
1640     if (((info.si_pid != 0) || (info.si_code != SI_USER)) && log)
1641     {
1642         // We should be getting a thread creation signal here, but we received something
1643         // else. There isn't much we can do about it now, so we will just log that. Since the
1644         // thread is alive and we are receiving events from it, we shall pretend that it was
1645         // created properly.
1646         log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " received unexpected signal with code %d from pid %d.", __FUNCTION__, tid, info.si_code, info.si_pid);
1647     }
1648 
1649     if (log)
1650         log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": tracking new thread tid %" PRIu32,
1651                  __FUNCTION__, GetID (), tid);
1652 
1653     new_thread_sp = AddThread(tid);
1654     std::static_pointer_cast<NativeThreadLinux> (new_thread_sp)->SetRunning ();
1655     Resume (tid, LLDB_INVALID_SIGNAL_NUMBER);
1656     ThreadWasCreated(tid);
1657 }
1658 
1659 void
1660 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid)
1661 {
1662     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1663     const bool is_main_thread = (pid == GetID ());
1664 
1665     assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!");
1666     if (!info)
1667         return;
1668 
1669     Mutex::Locker locker (m_threads_mutex);
1670 
1671     // See if we can find a thread for this signal.
1672     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
1673     if (!thread_sp)
1674     {
1675         if (log)
1676             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
1677     }
1678 
1679     switch (info->si_code)
1680     {
1681     // TODO: these two cases are required if we want to support tracing of the inferiors' children.  We'd need this to debug a monitor.
1682     // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
1683     // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
1684 
1685     case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)):
1686     {
1687         // This is the notification on the parent thread which informs us of new thread
1688         // creation.
1689         // We don't want to do anything with the parent thread so we just resume it. In case we
1690         // want to implement "break on thread creation" functionality, we would need to stop
1691         // here.
1692 
1693         unsigned long event_message = 0;
1694         if (GetEventMessage (pid, &event_message).Fail())
1695         {
1696             if (log)
1697                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, pid);
1698         } else
1699             WaitForNewThread(event_message);
1700 
1701         Resume (pid, LLDB_INVALID_SIGNAL_NUMBER);
1702         break;
1703     }
1704 
1705     case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)):
1706     {
1707         NativeThreadProtocolSP main_thread_sp;
1708         if (log)
1709             log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP);
1710 
1711         // Exec clears any pending notifications.
1712         m_pending_notification_up.reset ();
1713 
1714         // Remove all but the main thread here.  Linux fork creates a new process which only copies the main thread.  Mutexes are in undefined state.
1715         if (log)
1716             log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__);
1717 
1718         for (auto thread_sp : m_threads)
1719         {
1720             const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID ();
1721             if (is_main_thread)
1722             {
1723                 main_thread_sp = thread_sp;
1724                 if (log)
1725                     log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ());
1726             }
1727             else
1728             {
1729                 // Tell thread coordinator this thread is dead.
1730                 if (log)
1731                     log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ());
1732             }
1733         }
1734 
1735         m_threads.clear ();
1736 
1737         if (main_thread_sp)
1738         {
1739             m_threads.push_back (main_thread_sp);
1740             SetCurrentThreadID (main_thread_sp->GetID ());
1741             std::static_pointer_cast<NativeThreadLinux> (main_thread_sp)->SetStoppedByExec ();
1742         }
1743         else
1744         {
1745             SetCurrentThreadID (LLDB_INVALID_THREAD_ID);
1746             if (log)
1747                 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ());
1748         }
1749 
1750         // Tell coordinator about about the "new" (since exec) stopped main thread.
1751         const lldb::tid_t main_thread_tid = GetID ();
1752         ThreadWasCreated(main_thread_tid);
1753 
1754         // NOTE: ideally these next statements would execute at the same time as the coordinator thread create was executed.
1755         // Consider a handler that can execute when that happens.
1756         // Let our delegate know we have just exec'd.
1757         NotifyDidExec ();
1758 
1759         // If we have a main thread, indicate we are stopped.
1760         assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked");
1761 
1762         // Let the process know we're stopped.
1763         StopRunningThreads (pid);
1764 
1765         break;
1766     }
1767 
1768     case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)):
1769     {
1770         // The inferior process or one of its threads is about to exit.
1771         // We don't want to do anything with the thread so we just resume it. In case we
1772         // want to implement "break on thread exit" functionality, we would need to stop
1773         // here.
1774 
1775         unsigned long data = 0;
1776         if (GetEventMessage(pid, &data).Fail())
1777             data = -1;
1778 
1779         if (log)
1780         {
1781             log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)",
1782                          __FUNCTION__,
1783                          data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false",
1784                          pid,
1785                     is_main_thread ? "is main thread" : "not main thread");
1786         }
1787 
1788         if (is_main_thread)
1789         {
1790             SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true);
1791         }
1792 
1793         Resume(pid, LLDB_INVALID_SIGNAL_NUMBER);
1794 
1795         break;
1796     }
1797 
1798     case 0:
1799     case TRAP_TRACE:  // We receive this on single stepping.
1800     case TRAP_HWBKPT: // We receive this on watchpoint hit
1801         if (thread_sp)
1802         {
1803             // If a watchpoint was hit, report it
1804             uint32_t wp_index;
1805             Error error = thread_sp->GetRegisterContext()->GetWatchpointHitIndex(wp_index, (lldb::addr_t)info->si_addr);
1806             if (error.Fail() && log)
1807                 log->Printf("NativeProcessLinux::%s() "
1808                             "received error while checking for watchpoint hits, "
1809                             "pid = %" PRIu64 " error = %s",
1810                             __FUNCTION__, pid, error.AsCString());
1811             if (wp_index != LLDB_INVALID_INDEX32)
1812             {
1813                 MonitorWatchpoint(pid, thread_sp, wp_index);
1814                 break;
1815             }
1816         }
1817         // Otherwise, report step over
1818         MonitorTrace(pid, thread_sp);
1819         break;
1820 
1821     case SI_KERNEL:
1822 #if defined __mips__
1823         // For mips there is no special signal for watchpoint
1824         // So we check for watchpoint in kernel trap
1825         if (thread_sp)
1826         {
1827             // If a watchpoint was hit, report it
1828             uint32_t wp_index;
1829             Error error = thread_sp->GetRegisterContext()->GetWatchpointHitIndex(wp_index, LLDB_INVALID_ADDRESS);
1830             if (error.Fail() && log)
1831                 log->Printf("NativeProcessLinux::%s() "
1832                             "received error while checking for watchpoint hits, "
1833                             "pid = %" PRIu64 " error = %s",
1834                             __FUNCTION__, pid, error.AsCString());
1835             if (wp_index != LLDB_INVALID_INDEX32)
1836             {
1837                 MonitorWatchpoint(pid, thread_sp, wp_index);
1838                 break;
1839             }
1840         }
1841         // NO BREAK
1842 #endif
1843     case TRAP_BRKPT:
1844         MonitorBreakpoint(pid, thread_sp);
1845         break;
1846 
1847     case SIGTRAP:
1848     case (SIGTRAP | 0x80):
1849         if (log)
1850             log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), pid);
1851 
1852         // Ignore these signals until we know more about them.
1853         Resume(pid, LLDB_INVALID_SIGNAL_NUMBER);
1854         break;
1855 
1856     default:
1857         assert(false && "Unexpected SIGTRAP code!");
1858         if (log)
1859             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%d",
1860                     __FUNCTION__, GetID (), pid, info->si_code);
1861         break;
1862 
1863     }
1864 }
1865 
1866 void
1867 NativeProcessLinux::MonitorTrace(lldb::pid_t pid, NativeThreadProtocolSP thread_sp)
1868 {
1869     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1870     if (log)
1871         log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)",
1872                 __FUNCTION__, pid);
1873 
1874     if (thread_sp)
1875         std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace();
1876 
1877     // This thread is currently stopped.
1878     ThreadDidStop(pid, false);
1879 
1880     // Here we don't have to request the rest of the threads to stop or request a deferred stop.
1881     // This would have already happened at the time the Resume() with step operation was signaled.
1882     // At this point, we just need to say we stopped, and the deferred notifcation will fire off
1883     // once all running threads have checked in as stopped.
1884     SetCurrentThreadID(pid);
1885     // Tell the process we have a stop (from software breakpoint).
1886     StopRunningThreads(pid);
1887 }
1888 
1889 void
1890 NativeProcessLinux::MonitorBreakpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp)
1891 {
1892     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
1893     if (log)
1894         log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64,
1895                 __FUNCTION__, pid);
1896 
1897     // This thread is currently stopped.
1898     ThreadDidStop(pid, false);
1899 
1900     // Mark the thread as stopped at breakpoint.
1901     if (thread_sp)
1902     {
1903         std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByBreakpoint();
1904         Error error = FixupBreakpointPCAsNeeded(thread_sp);
1905         if (error.Fail())
1906             if (log)
1907                 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s",
1908                         __FUNCTION__, pid, error.AsCString());
1909 
1910         if (m_threads_stepping_with_breakpoint.find(pid) != m_threads_stepping_with_breakpoint.end())
1911             std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace();
1912     }
1913     else
1914         if (log)
1915             log->Printf("NativeProcessLinux::%s()  pid = %" PRIu64 ": "
1916                     "warning, cannot process software breakpoint since no thread metadata",
1917                     __FUNCTION__, pid);
1918 
1919 
1920     // We need to tell all other running threads before we notify the delegate about this stop.
1921     StopRunningThreads(pid);
1922 }
1923 
1924 void
1925 NativeProcessLinux::MonitorWatchpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp, uint32_t wp_index)
1926 {
1927     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
1928     if (log)
1929         log->Printf("NativeProcessLinux::%s() received watchpoint event, "
1930                     "pid = %" PRIu64 ", wp_index = %" PRIu32,
1931                     __FUNCTION__, pid, wp_index);
1932 
1933     // This thread is currently stopped.
1934     ThreadDidStop(pid, false);
1935 
1936     // Mark the thread as stopped at watchpoint.
1937     // The address is at (lldb::addr_t)info->si_addr if we need it.
1938     lldbassert(thread_sp && "thread_sp cannot be NULL");
1939     std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByWatchpoint(wp_index);
1940 
1941     // We need to tell all other running threads before we notify the delegate about this stop.
1942     StopRunningThreads(pid);
1943 }
1944 
1945 void
1946 NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited)
1947 {
1948     assert (info && "null info");
1949     if (!info)
1950         return;
1951 
1952     const int signo = info->si_signo;
1953     const bool is_from_llgs = info->si_pid == getpid ();
1954 
1955     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1956 
1957     // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
1958     // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
1959     // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
1960     //
1961     // IOW, user generated signals never generate what we consider to be a
1962     // "crash".
1963     //
1964     // Similarly, ACK signals generated by this monitor.
1965 
1966     Mutex::Locker locker (m_threads_mutex);
1967 
1968     // See if we can find a thread for this signal.
1969     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
1970     if (!thread_sp)
1971     {
1972         if (log)
1973             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
1974     }
1975 
1976     // Handle the signal.
1977     if (info->si_code == SI_TKILL || info->si_code == SI_USER)
1978     {
1979         if (log)
1980             log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")",
1981                             __FUNCTION__,
1982                             Host::GetSignalAsCString(signo),
1983                             signo,
1984                             (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"),
1985                             info->si_pid,
1986                             is_from_llgs ? "from llgs" : "not from llgs",
1987                             pid);
1988     }
1989 
1990     // Check for new thread notification.
1991     if ((info->si_pid == 0) && (info->si_code == SI_USER))
1992     {
1993         // A new thread creation is being signaled. This is one of two parts that come in
1994         // a non-deterministic order. This code handles the case where the new thread event comes
1995         // before the event on the parent thread. For the opposite case see code in
1996         // MonitorSIGTRAP.
1997         if (log)
1998             log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification",
1999                      __FUNCTION__, GetID (), pid);
2000 
2001         thread_sp = AddThread(pid);
2002         assert (thread_sp.get() && "failed to create the tracking data for newly created inferior thread");
2003         // We can now resume the newly created thread.
2004         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2005         Resume (pid, LLDB_INVALID_SIGNAL_NUMBER);
2006         ThreadWasCreated(pid);
2007         // Done handling.
2008         return;
2009     }
2010 
2011     // Check for thread stop notification.
2012     if (is_from_llgs && (info->si_code == SI_TKILL) && (signo == SIGSTOP))
2013     {
2014         // This is a tgkill()-based stop.
2015         if (thread_sp)
2016         {
2017             if (log)
2018                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped",
2019                              __FUNCTION__,
2020                              GetID (),
2021                              pid);
2022 
2023             // Check that we're not already marked with a stop reason.
2024             // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that
2025             // the kernel signaled us with the thread stopping which we handled and marked as stopped,
2026             // and that, without an intervening resume, we received another stop.  It is more likely
2027             // that we are missing the marking of a run state somewhere if we find that the thread was
2028             // marked as stopped.
2029             std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp);
2030             assert (linux_thread_sp && "linux_thread_sp is null!");
2031 
2032             const StateType thread_state = linux_thread_sp->GetState ();
2033             if (!StateIsStoppedState (thread_state, false))
2034             {
2035                 // An inferior thread has stopped because of a SIGSTOP we have sent it.
2036                 // Generally, these are not important stops and we don't want to report them as
2037                 // they are just used to stop other threads when one thread (the one with the
2038                 // *real* stop reason) hits a breakpoint (watchpoint, etc...). However, in the
2039                 // case of an asynchronous Interrupt(), this *is* the real stop reason, so we
2040                 // leave the signal intact if this is the thread that was chosen as the
2041                 // triggering thread.
2042                 if (m_pending_notification_up && m_pending_notification_up->triggering_tid == pid)
2043                     linux_thread_sp->SetStoppedBySignal(SIGSTOP, info);
2044                 else
2045                     linux_thread_sp->SetStoppedBySignal(0);
2046 
2047                 SetCurrentThreadID (thread_sp->GetID ());
2048                 ThreadDidStop (thread_sp->GetID (), true);
2049             }
2050             else
2051             {
2052                 if (log)
2053                 {
2054                     // Retrieve the signal name if the thread was stopped by a signal.
2055                     int stop_signo = 0;
2056                     const bool stopped_by_signal = linux_thread_sp->IsStopped (&stop_signo);
2057                     const char *signal_name = stopped_by_signal ? Host::GetSignalAsCString(stop_signo) : "<not stopped by signal>";
2058                     if (!signal_name)
2059                         signal_name = "<no-signal-name>";
2060 
2061                     log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is",
2062                                  __FUNCTION__,
2063                                  GetID (),
2064                                  linux_thread_sp->GetID (),
2065                                  StateAsCString (thread_state),
2066                                  stop_signo,
2067                                  signal_name);
2068                 }
2069                 ThreadDidStop (thread_sp->GetID (), false);
2070             }
2071         }
2072 
2073         // Done handling.
2074         return;
2075     }
2076 
2077     if (log)
2078         log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, Host::GetSignalAsCString(signo));
2079 
2080     // This thread is stopped.
2081     ThreadDidStop (pid, false);
2082 
2083     if (thread_sp)
2084         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal(signo, info);
2085 
2086     // Send a stop to the debugger after we get all other threads to stop.
2087     StopRunningThreads (pid);
2088 }
2089 
2090 namespace {
2091 
2092 struct EmulatorBaton
2093 {
2094     NativeProcessLinux* m_process;
2095     NativeRegisterContext* m_reg_context;
2096 
2097     // eRegisterKindDWARF -> RegsiterValue
2098     std::unordered_map<uint32_t, RegisterValue> m_register_values;
2099 
2100     EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) :
2101             m_process(process), m_reg_context(reg_context) {}
2102 };
2103 
2104 } // anonymous namespace
2105 
2106 static size_t
2107 ReadMemoryCallback (EmulateInstruction *instruction,
2108                     void *baton,
2109                     const EmulateInstruction::Context &context,
2110                     lldb::addr_t addr,
2111                     void *dst,
2112                     size_t length)
2113 {
2114     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2115 
2116     size_t bytes_read;
2117     emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read);
2118     return bytes_read;
2119 }
2120 
2121 static bool
2122 ReadRegisterCallback (EmulateInstruction *instruction,
2123                       void *baton,
2124                       const RegisterInfo *reg_info,
2125                       RegisterValue &reg_value)
2126 {
2127     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2128 
2129     auto it = emulator_baton->m_register_values.find(reg_info->kinds[eRegisterKindDWARF]);
2130     if (it != emulator_baton->m_register_values.end())
2131     {
2132         reg_value = it->second;
2133         return true;
2134     }
2135 
2136     // The emulator only fill in the dwarf regsiter numbers (and in some case
2137     // the generic register numbers). Get the full register info from the
2138     // register context based on the dwarf register numbers.
2139     const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo(
2140             eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
2141 
2142     Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value);
2143     if (error.Success())
2144         return true;
2145 
2146     return false;
2147 }
2148 
2149 static bool
2150 WriteRegisterCallback (EmulateInstruction *instruction,
2151                        void *baton,
2152                        const EmulateInstruction::Context &context,
2153                        const RegisterInfo *reg_info,
2154                        const RegisterValue &reg_value)
2155 {
2156     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2157     emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value;
2158     return true;
2159 }
2160 
2161 static size_t
2162 WriteMemoryCallback (EmulateInstruction *instruction,
2163                      void *baton,
2164                      const EmulateInstruction::Context &context,
2165                      lldb::addr_t addr,
2166                      const void *dst,
2167                      size_t length)
2168 {
2169     return length;
2170 }
2171 
2172 static lldb::addr_t
2173 ReadFlags (NativeRegisterContext* regsiter_context)
2174 {
2175     const RegisterInfo* flags_info = regsiter_context->GetRegisterInfo(
2176             eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
2177     return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS);
2178 }
2179 
2180 Error
2181 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadProtocolSP thread_sp)
2182 {
2183     Error error;
2184     NativeRegisterContextSP register_context_sp = thread_sp->GetRegisterContext();
2185 
2186     std::unique_ptr<EmulateInstruction> emulator_ap(
2187         EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr));
2188 
2189     if (emulator_ap == nullptr)
2190         return Error("Instruction emulator not found!");
2191 
2192     EmulatorBaton baton(this, register_context_sp.get());
2193     emulator_ap->SetBaton(&baton);
2194     emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
2195     emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
2196     emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
2197     emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
2198 
2199     if (!emulator_ap->ReadInstruction())
2200         return Error("Read instruction failed!");
2201 
2202     bool emulation_result = emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
2203 
2204     const RegisterInfo* reg_info_pc = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
2205     const RegisterInfo* reg_info_flags = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
2206 
2207     auto pc_it = baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
2208     auto flags_it = baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
2209 
2210     lldb::addr_t next_pc;
2211     lldb::addr_t next_flags;
2212     if (emulation_result)
2213     {
2214         assert(pc_it != baton.m_register_values.end() && "Emulation was successfull but PC wasn't updated");
2215         next_pc = pc_it->second.GetAsUInt64();
2216 
2217         if (flags_it != baton.m_register_values.end())
2218             next_flags = flags_it->second.GetAsUInt64();
2219         else
2220             next_flags = ReadFlags (register_context_sp.get());
2221     }
2222     else if (pc_it == baton.m_register_values.end())
2223     {
2224         // Emulate instruction failed and it haven't changed PC. Advance PC
2225         // with the size of the current opcode because the emulation of all
2226         // PC modifying instruction should be successful. The failure most
2227         // likely caused by a not supported instruction which don't modify PC.
2228         next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize();
2229         next_flags = ReadFlags (register_context_sp.get());
2230     }
2231     else
2232     {
2233         // The instruction emulation failed after it modified the PC. It is an
2234         // unknown error where we can't continue because the next instruction is
2235         // modifying the PC but we don't  know how.
2236         return Error ("Instruction emulation failed unexpectedly.");
2237     }
2238 
2239     if (m_arch.GetMachine() == llvm::Triple::arm)
2240     {
2241         if (next_flags & 0x20)
2242         {
2243             // Thumb mode
2244             error = SetSoftwareBreakpoint(next_pc, 2);
2245         }
2246         else
2247         {
2248             // Arm mode
2249             error = SetSoftwareBreakpoint(next_pc, 4);
2250         }
2251     }
2252     else if (m_arch.GetMachine() == llvm::Triple::mips64
2253             || m_arch.GetMachine() == llvm::Triple::mips64el
2254             || m_arch.GetMachine() == llvm::Triple::mips
2255             || m_arch.GetMachine() == llvm::Triple::mipsel)
2256         error = SetSoftwareBreakpoint(next_pc, 4);
2257     else
2258     {
2259         // No size hint is given for the next breakpoint
2260         error = SetSoftwareBreakpoint(next_pc, 0);
2261     }
2262 
2263     if (error.Fail())
2264         return error;
2265 
2266     m_threads_stepping_with_breakpoint.insert({thread_sp->GetID(), next_pc});
2267 
2268     return Error();
2269 }
2270 
2271 bool
2272 NativeProcessLinux::SupportHardwareSingleStepping() const
2273 {
2274     if (m_arch.GetMachine() == llvm::Triple::arm
2275         || m_arch.GetMachine() == llvm::Triple::mips64 || m_arch.GetMachine() == llvm::Triple::mips64el
2276         || m_arch.GetMachine() == llvm::Triple::mips || m_arch.GetMachine() == llvm::Triple::mipsel)
2277         return false;
2278     return true;
2279 }
2280 
2281 Error
2282 NativeProcessLinux::Resume (const ResumeActionList &resume_actions)
2283 {
2284     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD));
2285     if (log)
2286         log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ());
2287 
2288     bool software_single_step = !SupportHardwareSingleStepping();
2289 
2290     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
2291     Mutex::Locker locker (m_threads_mutex);
2292 
2293     if (software_single_step)
2294     {
2295         for (auto thread_sp : m_threads)
2296         {
2297             assert (thread_sp && "thread list should not contain NULL threads");
2298 
2299             const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
2300             if (action == nullptr)
2301                 continue;
2302 
2303             if (action->state == eStateStepping)
2304             {
2305                 Error error = SetupSoftwareSingleStepping(thread_sp);
2306                 if (error.Fail())
2307                     return error;
2308             }
2309         }
2310     }
2311 
2312     for (auto thread_sp : m_threads)
2313     {
2314         assert (thread_sp && "thread list should not contain NULL threads");
2315 
2316         const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
2317 
2318         if (action == nullptr)
2319         {
2320             if (log)
2321                 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64,
2322                     __FUNCTION__, GetID (), thread_sp->GetID ());
2323             continue;
2324         }
2325 
2326         if (log)
2327         {
2328             log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64,
2329                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
2330         }
2331 
2332         switch (action->state)
2333         {
2334         case eStateRunning:
2335         {
2336             // Run the thread, possibly feeding it the signal.
2337             const int signo = action->signal;
2338             ResumeThread(thread_sp->GetID (),
2339                     [=](lldb::tid_t tid_to_resume, bool supress_signal)
2340                     {
2341                         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2342                         // Pass this signal number on to the inferior to handle.
2343                         const auto resume_result = Resume (tid_to_resume, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
2344                         if (resume_result.Success())
2345                             SetState(eStateRunning, true);
2346                         return resume_result;
2347                     },
2348                     false);
2349             break;
2350         }
2351 
2352         case eStateStepping:
2353         {
2354             // Request the step.
2355             const int signo = action->signal;
2356             ResumeThread(thread_sp->GetID (),
2357                     [=](lldb::tid_t tid_to_step, bool supress_signal)
2358                     {
2359                         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStepping ();
2360 
2361                         Error step_result;
2362                         if (software_single_step)
2363                             step_result = Resume (tid_to_step, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
2364                         else
2365                             step_result = SingleStep (tid_to_step,(signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
2366 
2367                         assert (step_result.Success() && "SingleStep() failed");
2368                         if (step_result.Success())
2369                             SetState(eStateStepping, true);
2370                         return step_result;
2371                     },
2372                     false);
2373             break;
2374         }
2375 
2376         case eStateSuspended:
2377         case eStateStopped:
2378             lldbassert(0 && "Unexpected state");
2379 
2380         default:
2381             return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64,
2382                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
2383         }
2384     }
2385 
2386     return Error();
2387 }
2388 
2389 Error
2390 NativeProcessLinux::Halt ()
2391 {
2392     Error error;
2393 
2394     if (kill (GetID (), SIGSTOP) != 0)
2395         error.SetErrorToErrno ();
2396 
2397     return error;
2398 }
2399 
2400 Error
2401 NativeProcessLinux::Detach ()
2402 {
2403     Error error;
2404 
2405     // Tell ptrace to detach from the process.
2406     if (GetID () != LLDB_INVALID_PROCESS_ID)
2407         error = Detach (GetID ());
2408 
2409     // Stop monitoring the inferior.
2410     m_monitor_up->Terminate();
2411 
2412     // No error.
2413     return error;
2414 }
2415 
2416 Error
2417 NativeProcessLinux::Signal (int signo)
2418 {
2419     Error error;
2420 
2421     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2422     if (log)
2423         log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64,
2424                 __FUNCTION__, signo, Host::GetSignalAsCString(signo), GetID());
2425 
2426     if (kill(GetID(), signo))
2427         error.SetErrorToErrno();
2428 
2429     return error;
2430 }
2431 
2432 Error
2433 NativeProcessLinux::Interrupt ()
2434 {
2435     // Pick a running thread (or if none, a not-dead stopped thread) as
2436     // the chosen thread that will be the stop-reason thread.
2437     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2438 
2439     NativeThreadProtocolSP running_thread_sp;
2440     NativeThreadProtocolSP stopped_thread_sp;
2441 
2442     if (log)
2443         log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__);
2444 
2445     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
2446     Mutex::Locker locker (m_threads_mutex);
2447 
2448     for (auto thread_sp : m_threads)
2449     {
2450         // The thread shouldn't be null but lets just cover that here.
2451         if (!thread_sp)
2452             continue;
2453 
2454         // If we have a running or stepping thread, we'll call that the
2455         // target of the interrupt.
2456         const auto thread_state = thread_sp->GetState ();
2457         if (thread_state == eStateRunning ||
2458             thread_state == eStateStepping)
2459         {
2460             running_thread_sp = thread_sp;
2461             break;
2462         }
2463         else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true))
2464         {
2465             // Remember the first non-dead stopped thread.  We'll use that as a backup if there are no running threads.
2466             stopped_thread_sp = thread_sp;
2467         }
2468     }
2469 
2470     if (!running_thread_sp && !stopped_thread_sp)
2471     {
2472         Error error("found no running/stepping or live stopped threads as target for interrupt");
2473         if (log)
2474             log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ());
2475 
2476         return error;
2477     }
2478 
2479     NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp;
2480 
2481     if (log)
2482         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target",
2483                      __FUNCTION__,
2484                      GetID (),
2485                      running_thread_sp ? "running" : "stopped",
2486                      deferred_signal_thread_sp->GetID ());
2487 
2488     StopRunningThreads(deferred_signal_thread_sp->GetID());
2489 
2490     return Error();
2491 }
2492 
2493 Error
2494 NativeProcessLinux::Kill ()
2495 {
2496     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2497     if (log)
2498         log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ());
2499 
2500     Error error;
2501 
2502     switch (m_state)
2503     {
2504         case StateType::eStateInvalid:
2505         case StateType::eStateExited:
2506         case StateType::eStateCrashed:
2507         case StateType::eStateDetached:
2508         case StateType::eStateUnloaded:
2509             // Nothing to do - the process is already dead.
2510             if (log)
2511                 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state));
2512             return error;
2513 
2514         case StateType::eStateConnected:
2515         case StateType::eStateAttaching:
2516         case StateType::eStateLaunching:
2517         case StateType::eStateStopped:
2518         case StateType::eStateRunning:
2519         case StateType::eStateStepping:
2520         case StateType::eStateSuspended:
2521             // We can try to kill a process in these states.
2522             break;
2523     }
2524 
2525     if (kill (GetID (), SIGKILL) != 0)
2526     {
2527         error.SetErrorToErrno ();
2528         return error;
2529     }
2530 
2531     return error;
2532 }
2533 
2534 static Error
2535 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info)
2536 {
2537     memory_region_info.Clear();
2538 
2539     StringExtractor line_extractor (maps_line.c_str ());
2540 
2541     // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode   pathname
2542     // perms: rwxp   (letter is present if set, '-' if not, final character is p=private, s=shared).
2543 
2544     // Parse out the starting address
2545     lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0);
2546 
2547     // Parse out hyphen separating start and end address from range.
2548     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-'))
2549         return Error ("malformed /proc/{pid}/maps entry, missing dash between address range");
2550 
2551     // Parse out the ending address
2552     lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address);
2553 
2554     // Parse out the space after the address.
2555     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' '))
2556         return Error ("malformed /proc/{pid}/maps entry, missing space after range");
2557 
2558     // Save the range.
2559     memory_region_info.GetRange ().SetRangeBase (start_address);
2560     memory_region_info.GetRange ().SetRangeEnd (end_address);
2561 
2562     // Parse out each permission entry.
2563     if (line_extractor.GetBytesLeft () < 4)
2564         return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions");
2565 
2566     // Handle read permission.
2567     const char read_perm_char = line_extractor.GetChar ();
2568     if (read_perm_char == 'r')
2569         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes);
2570     else
2571     {
2572         assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" );
2573         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2574     }
2575 
2576     // Handle write permission.
2577     const char write_perm_char = line_extractor.GetChar ();
2578     if (write_perm_char == 'w')
2579         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes);
2580     else
2581     {
2582         assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" );
2583         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2584     }
2585 
2586     // Handle execute permission.
2587     const char exec_perm_char = line_extractor.GetChar ();
2588     if (exec_perm_char == 'x')
2589         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes);
2590     else
2591     {
2592         assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" );
2593         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2594     }
2595 
2596     return Error ();
2597 }
2598 
2599 Error
2600 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info)
2601 {
2602     // FIXME review that the final memory region returned extends to the end of the virtual address space,
2603     // with no perms if it is not mapped.
2604 
2605     // Use an approach that reads memory regions from /proc/{pid}/maps.
2606     // Assume proc maps entries are in ascending order.
2607     // FIXME assert if we find differently.
2608     Mutex::Locker locker (m_mem_region_cache_mutex);
2609 
2610     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2611     Error error;
2612 
2613     if (m_supports_mem_region == LazyBool::eLazyBoolNo)
2614     {
2615         // We're done.
2616         error.SetErrorString ("unsupported");
2617         return error;
2618     }
2619 
2620     // If our cache is empty, pull the latest.  There should always be at least one memory region
2621     // if memory region handling is supported.
2622     if (m_mem_region_cache.empty ())
2623     {
2624         error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
2625              [&] (const std::string &line) -> bool
2626              {
2627                  MemoryRegionInfo info;
2628                  const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info);
2629                  if (parse_error.Success ())
2630                  {
2631                      m_mem_region_cache.push_back (info);
2632                      return true;
2633                  }
2634                  else
2635                  {
2636                      if (log)
2637                          log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ());
2638                      return false;
2639                  }
2640              });
2641 
2642         // If we had an error, we'll mark unsupported.
2643         if (error.Fail ())
2644         {
2645             m_supports_mem_region = LazyBool::eLazyBoolNo;
2646             return error;
2647         }
2648         else if (m_mem_region_cache.empty ())
2649         {
2650             // No entries after attempting to read them.  This shouldn't happen if /proc/{pid}/maps
2651             // is supported.  Assume we don't support map entries via procfs.
2652             if (log)
2653                 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__);
2654             m_supports_mem_region = LazyBool::eLazyBoolNo;
2655             error.SetErrorString ("not supported");
2656             return error;
2657         }
2658 
2659         if (log)
2660             log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ());
2661 
2662         // We support memory retrieval, remember that.
2663         m_supports_mem_region = LazyBool::eLazyBoolYes;
2664     }
2665     else
2666     {
2667         if (log)
2668             log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
2669     }
2670 
2671     lldb::addr_t prev_base_address = 0;
2672 
2673     // FIXME start by finding the last region that is <= target address using binary search.  Data is sorted.
2674     // There can be a ton of regions on pthreads apps with lots of threads.
2675     for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it)
2676     {
2677         MemoryRegionInfo &proc_entry_info = *it;
2678 
2679         // Sanity check assumption that /proc/{pid}/maps entries are ascending.
2680         assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected");
2681         prev_base_address = proc_entry_info.GetRange ().GetRangeBase ();
2682 
2683         // If the target address comes before this entry, indicate distance to next region.
2684         if (load_addr < proc_entry_info.GetRange ().GetRangeBase ())
2685         {
2686             range_info.GetRange ().SetRangeBase (load_addr);
2687             range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr);
2688             range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2689             range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2690             range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2691 
2692             return error;
2693         }
2694         else if (proc_entry_info.GetRange ().Contains (load_addr))
2695         {
2696             // The target address is within the memory region we're processing here.
2697             range_info = proc_entry_info;
2698             return error;
2699         }
2700 
2701         // The target memory address comes somewhere after the region we just parsed.
2702     }
2703 
2704     // If we made it here, we didn't find an entry that contained the given address. Return the
2705     // load_addr as start and the amount of bytes betwwen load address and the end of the memory as
2706     // size.
2707     range_info.GetRange ().SetRangeBase (load_addr);
2708     switch (m_arch.GetAddressByteSize())
2709     {
2710         case 4:
2711             range_info.GetRange ().SetByteSize (0x100000000ull - load_addr);
2712             break;
2713         case 8:
2714             range_info.GetRange ().SetByteSize (0ull - load_addr);
2715             break;
2716         default:
2717             assert(false && "Unrecognized data byte size");
2718             break;
2719     }
2720     range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2721     range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2722     range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2723     return error;
2724 }
2725 
2726 void
2727 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId)
2728 {
2729     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2730     if (log)
2731         log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId);
2732 
2733     {
2734         Mutex::Locker locker (m_mem_region_cache_mutex);
2735         if (log)
2736             log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
2737         m_mem_region_cache.clear ();
2738     }
2739 }
2740 
2741 Error
2742 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, lldb::addr_t &addr)
2743 {
2744     // FIXME implementing this requires the equivalent of
2745     // InferiorCallPOSIX::InferiorCallMmap, which depends on
2746     // functional ThreadPlans working with Native*Protocol.
2747 #if 1
2748     return Error ("not implemented yet");
2749 #else
2750     addr = LLDB_INVALID_ADDRESS;
2751 
2752     unsigned prot = 0;
2753     if (permissions & lldb::ePermissionsReadable)
2754         prot |= eMmapProtRead;
2755     if (permissions & lldb::ePermissionsWritable)
2756         prot |= eMmapProtWrite;
2757     if (permissions & lldb::ePermissionsExecutable)
2758         prot |= eMmapProtExec;
2759 
2760     // TODO implement this directly in NativeProcessLinux
2761     // (and lift to NativeProcessPOSIX if/when that class is
2762     // refactored out).
2763     if (InferiorCallMmap(this, addr, 0, size, prot,
2764                          eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
2765         m_addr_to_mmap_size[addr] = size;
2766         return Error ();
2767     } else {
2768         addr = LLDB_INVALID_ADDRESS;
2769         return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions));
2770     }
2771 #endif
2772 }
2773 
2774 Error
2775 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr)
2776 {
2777     // FIXME see comments in AllocateMemory - required lower-level
2778     // bits not in place yet (ThreadPlans)
2779     return Error ("not implemented");
2780 }
2781 
2782 lldb::addr_t
2783 NativeProcessLinux::GetSharedLibraryInfoAddress ()
2784 {
2785 #if 1
2786     // punt on this for now
2787     return LLDB_INVALID_ADDRESS;
2788 #else
2789     // Return the image info address for the exe module
2790 #if 1
2791     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2792 
2793     ModuleSP module_sp;
2794     Error error = GetExeModuleSP (module_sp);
2795     if (error.Fail ())
2796     {
2797          if (log)
2798             log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ());
2799         return LLDB_INVALID_ADDRESS;
2800     }
2801 
2802     if (module_sp == nullptr)
2803     {
2804          if (log)
2805             log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__);
2806          return LLDB_INVALID_ADDRESS;
2807     }
2808 
2809     ObjectFileSP object_file_sp = module_sp->GetObjectFile ();
2810     if (object_file_sp == nullptr)
2811     {
2812          if (log)
2813             log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__);
2814          return LLDB_INVALID_ADDRESS;
2815     }
2816 
2817     return obj_file_sp->GetImageInfoAddress();
2818 #else
2819     Target *target = &GetTarget();
2820     ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile();
2821     Address addr = obj_file->GetImageInfoAddress(target);
2822 
2823     if (addr.IsValid())
2824         return addr.GetLoadAddress(target);
2825     return LLDB_INVALID_ADDRESS;
2826 #endif
2827 #endif // punt on this for now
2828 }
2829 
2830 size_t
2831 NativeProcessLinux::UpdateThreads ()
2832 {
2833     // The NativeProcessLinux monitoring threads are always up to date
2834     // with respect to thread state and they keep the thread list
2835     // populated properly. All this method needs to do is return the
2836     // thread count.
2837     Mutex::Locker locker (m_threads_mutex);
2838     return m_threads.size ();
2839 }
2840 
2841 bool
2842 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const
2843 {
2844     arch = m_arch;
2845     return true;
2846 }
2847 
2848 Error
2849 NativeProcessLinux::GetSoftwareBreakpointPCOffset (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size)
2850 {
2851     // FIXME put this behind a breakpoint protocol class that can be
2852     // set per architecture.  Need ARM, MIPS support here.
2853     static const uint8_t g_i386_opcode [] = { 0xCC };
2854 
2855     switch (m_arch.GetMachine ())
2856     {
2857         case llvm::Triple::x86:
2858         case llvm::Triple::x86_64:
2859             actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode));
2860             return Error ();
2861 
2862         case llvm::Triple::arm:
2863         case llvm::Triple::aarch64:
2864         case llvm::Triple::mips64:
2865         case llvm::Triple::mips64el:
2866         case llvm::Triple::mips:
2867         case llvm::Triple::mipsel:
2868             // On these architectures the PC don't get updated for breakpoint hits
2869             actual_opcode_size = 0;
2870             return Error ();
2871 
2872         default:
2873             assert(false && "CPU type not supported!");
2874             return Error ("CPU type not supported");
2875     }
2876 }
2877 
2878 Error
2879 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware)
2880 {
2881     if (hardware)
2882         return Error ("NativeProcessLinux does not support hardware breakpoints");
2883     else
2884         return SetSoftwareBreakpoint (addr, size);
2885 }
2886 
2887 Error
2888 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint,
2889                                                      size_t &actual_opcode_size,
2890                                                      const uint8_t *&trap_opcode_bytes)
2891 {
2892     // FIXME put this behind a breakpoint protocol class that can be set per
2893     // architecture.  Need MIPS support here.
2894     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
2895     // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
2896     // linux kernel does otherwise.
2897     static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 };
2898     static const uint8_t g_i386_opcode [] = { 0xCC };
2899     static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d };
2900     static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 };
2901     static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde };
2902 
2903     switch (m_arch.GetMachine ())
2904     {
2905     case llvm::Triple::aarch64:
2906         trap_opcode_bytes = g_aarch64_opcode;
2907         actual_opcode_size = sizeof(g_aarch64_opcode);
2908         return Error ();
2909 
2910     case llvm::Triple::arm:
2911         switch (trap_opcode_size_hint)
2912         {
2913         case 2:
2914             trap_opcode_bytes = g_thumb_breakpoint_opcode;
2915             actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
2916             return Error ();
2917         case 4:
2918             trap_opcode_bytes = g_arm_breakpoint_opcode;
2919             actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
2920             return Error ();
2921         default:
2922             assert(false && "Unrecognised trap opcode size hint!");
2923             return Error ("Unrecognised trap opcode size hint!");
2924         }
2925 
2926     case llvm::Triple::x86:
2927     case llvm::Triple::x86_64:
2928         trap_opcode_bytes = g_i386_opcode;
2929         actual_opcode_size = sizeof(g_i386_opcode);
2930         return Error ();
2931 
2932     case llvm::Triple::mips:
2933     case llvm::Triple::mips64:
2934         trap_opcode_bytes = g_mips64_opcode;
2935         actual_opcode_size = sizeof(g_mips64_opcode);
2936         return Error ();
2937 
2938     case llvm::Triple::mipsel:
2939     case llvm::Triple::mips64el:
2940         trap_opcode_bytes = g_mips64el_opcode;
2941         actual_opcode_size = sizeof(g_mips64el_opcode);
2942         return Error ();
2943 
2944     default:
2945         assert(false && "CPU type not supported!");
2946         return Error ("CPU type not supported");
2947     }
2948 }
2949 
2950 #if 0
2951 ProcessMessage::CrashReason
2952 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
2953 {
2954     ProcessMessage::CrashReason reason;
2955     assert(info->si_signo == SIGSEGV);
2956 
2957     reason = ProcessMessage::eInvalidCrashReason;
2958 
2959     switch (info->si_code)
2960     {
2961     default:
2962         assert(false && "unexpected si_code for SIGSEGV");
2963         break;
2964     case SI_KERNEL:
2965         // Linux will occasionally send spurious SI_KERNEL codes.
2966         // (this is poorly documented in sigaction)
2967         // One way to get this is via unaligned SIMD loads.
2968         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
2969         break;
2970     case SEGV_MAPERR:
2971         reason = ProcessMessage::eInvalidAddress;
2972         break;
2973     case SEGV_ACCERR:
2974         reason = ProcessMessage::ePrivilegedAddress;
2975         break;
2976     }
2977 
2978     return reason;
2979 }
2980 #endif
2981 
2982 
2983 #if 0
2984 ProcessMessage::CrashReason
2985 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
2986 {
2987     ProcessMessage::CrashReason reason;
2988     assert(info->si_signo == SIGILL);
2989 
2990     reason = ProcessMessage::eInvalidCrashReason;
2991 
2992     switch (info->si_code)
2993     {
2994     default:
2995         assert(false && "unexpected si_code for SIGILL");
2996         break;
2997     case ILL_ILLOPC:
2998         reason = ProcessMessage::eIllegalOpcode;
2999         break;
3000     case ILL_ILLOPN:
3001         reason = ProcessMessage::eIllegalOperand;
3002         break;
3003     case ILL_ILLADR:
3004         reason = ProcessMessage::eIllegalAddressingMode;
3005         break;
3006     case ILL_ILLTRP:
3007         reason = ProcessMessage::eIllegalTrap;
3008         break;
3009     case ILL_PRVOPC:
3010         reason = ProcessMessage::ePrivilegedOpcode;
3011         break;
3012     case ILL_PRVREG:
3013         reason = ProcessMessage::ePrivilegedRegister;
3014         break;
3015     case ILL_COPROC:
3016         reason = ProcessMessage::eCoprocessorError;
3017         break;
3018     case ILL_BADSTK:
3019         reason = ProcessMessage::eInternalStackError;
3020         break;
3021     }
3022 
3023     return reason;
3024 }
3025 #endif
3026 
3027 #if 0
3028 ProcessMessage::CrashReason
3029 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
3030 {
3031     ProcessMessage::CrashReason reason;
3032     assert(info->si_signo == SIGFPE);
3033 
3034     reason = ProcessMessage::eInvalidCrashReason;
3035 
3036     switch (info->si_code)
3037     {
3038     default:
3039         assert(false && "unexpected si_code for SIGFPE");
3040         break;
3041     case FPE_INTDIV:
3042         reason = ProcessMessage::eIntegerDivideByZero;
3043         break;
3044     case FPE_INTOVF:
3045         reason = ProcessMessage::eIntegerOverflow;
3046         break;
3047     case FPE_FLTDIV:
3048         reason = ProcessMessage::eFloatDivideByZero;
3049         break;
3050     case FPE_FLTOVF:
3051         reason = ProcessMessage::eFloatOverflow;
3052         break;
3053     case FPE_FLTUND:
3054         reason = ProcessMessage::eFloatUnderflow;
3055         break;
3056     case FPE_FLTRES:
3057         reason = ProcessMessage::eFloatInexactResult;
3058         break;
3059     case FPE_FLTINV:
3060         reason = ProcessMessage::eFloatInvalidOperation;
3061         break;
3062     case FPE_FLTSUB:
3063         reason = ProcessMessage::eFloatSubscriptRange;
3064         break;
3065     }
3066 
3067     return reason;
3068 }
3069 #endif
3070 
3071 #if 0
3072 ProcessMessage::CrashReason
3073 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
3074 {
3075     ProcessMessage::CrashReason reason;
3076     assert(info->si_signo == SIGBUS);
3077 
3078     reason = ProcessMessage::eInvalidCrashReason;
3079 
3080     switch (info->si_code)
3081     {
3082     default:
3083         assert(false && "unexpected si_code for SIGBUS");
3084         break;
3085     case BUS_ADRALN:
3086         reason = ProcessMessage::eIllegalAlignment;
3087         break;
3088     case BUS_ADRERR:
3089         reason = ProcessMessage::eIllegalAddress;
3090         break;
3091     case BUS_OBJERR:
3092         reason = ProcessMessage::eHardwareError;
3093         break;
3094     }
3095 
3096     return reason;
3097 }
3098 #endif
3099 
3100 Error
3101 NativeProcessLinux::SetWatchpoint (lldb::addr_t addr, size_t size, uint32_t watch_flags, bool hardware)
3102 {
3103     // The base SetWatchpoint will end up executing monitor operations. Let's lock the monitor
3104     // for it.
3105     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
3106     return NativeProcessProtocol::SetWatchpoint(addr, size, watch_flags, hardware);
3107 }
3108 
3109 Error
3110 NativeProcessLinux::RemoveWatchpoint (lldb::addr_t addr)
3111 {
3112     // The base RemoveWatchpoint will end up executing monitor operations. Let's lock the monitor
3113     // for it.
3114     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
3115     return NativeProcessProtocol::RemoveWatchpoint(addr);
3116 }
3117 
3118 Error
3119 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
3120 {
3121     if (ProcessVmReadvSupported()) {
3122         // The process_vm_readv path is about 50 times faster than ptrace api. We want to use
3123         // this syscall if it is supported.
3124 
3125         const ::pid_t pid = GetID();
3126 
3127         struct iovec local_iov, remote_iov;
3128         local_iov.iov_base = buf;
3129         local_iov.iov_len = size;
3130         remote_iov.iov_base = reinterpret_cast<void *>(addr);
3131         remote_iov.iov_len = size;
3132 
3133         bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
3134         const bool success = bytes_read == size;
3135 
3136         Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3137         if (log)
3138             log->Printf ("NativeProcessLinux::%s using process_vm_readv to read %zd bytes from inferior address 0x%" PRIx64": %s",
3139                     __FUNCTION__, size, addr, success ? "Success" : strerror(errno));
3140 
3141         if (success)
3142             return Error();
3143         // else
3144         //     the call failed for some reason, let's retry the read using ptrace api.
3145     }
3146 
3147     return DoOperation([&] { return DoReadMemory(GetID(), addr, buf, size, bytes_read); });
3148 }
3149 
3150 Error
3151 NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
3152 {
3153     Error error = ReadMemory(addr, buf, size, bytes_read);
3154     if (error.Fail()) return error;
3155     return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size);
3156 }
3157 
3158 Error
3159 NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, size_t size, size_t &bytes_written)
3160 {
3161     return DoOperation([&] { return DoWriteMemory(GetID(), addr, buf, size, bytes_written); });
3162 }
3163 
3164 Error
3165 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo)
3166 {
3167     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3168 
3169     if (log)
3170         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " with signal %s", __FUNCTION__, tid,
3171                                  Host::GetSignalAsCString(signo));
3172 
3173 
3174 
3175     intptr_t data = 0;
3176 
3177     if (signo != LLDB_INVALID_SIGNAL_NUMBER)
3178         data = signo;
3179 
3180     Error error = DoOperation([&] { return PtraceWrapper(PTRACE_CONT, tid, nullptr, (void*)data); });
3181 
3182     if (log)
3183         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " result = %s", __FUNCTION__, tid, error.Success() ? "true" : "false");
3184     return error;
3185 }
3186 
3187 Error
3188 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo)
3189 {
3190     intptr_t data = 0;
3191 
3192     if (signo != LLDB_INVALID_SIGNAL_NUMBER)
3193         data = signo;
3194 
3195     return DoOperation([&] { return PtraceWrapper(PTRACE_SINGLESTEP, tid, nullptr, (void*)data); });
3196 }
3197 
3198 Error
3199 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo)
3200 {
3201     return DoOperation([&] { return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); });
3202 }
3203 
3204 Error
3205 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message)
3206 {
3207     return DoOperation([&] { return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); });
3208 }
3209 
3210 Error
3211 NativeProcessLinux::Detach(lldb::tid_t tid)
3212 {
3213     if (tid == LLDB_INVALID_THREAD_ID)
3214         return Error();
3215 
3216     return DoOperation([&] { return PtraceWrapper(PTRACE_DETACH, tid); });
3217 }
3218 
3219 bool
3220 NativeProcessLinux::DupDescriptor(const FileSpec &file_spec, int fd, int flags)
3221 {
3222     int target_fd = open(file_spec.GetCString(), flags, 0666);
3223 
3224     if (target_fd == -1)
3225         return false;
3226 
3227     if (dup2(target_fd, fd) == -1)
3228         return false;
3229 
3230     return (close(target_fd) == -1) ? false : true;
3231 }
3232 
3233 void
3234 NativeProcessLinux::StartMonitorThread(const InitialOperation &initial_operation, Error &error)
3235 {
3236     m_monitor_up.reset(new Monitor(initial_operation, this));
3237     error = m_monitor_up->Initialize();
3238     if (error.Fail()) {
3239         m_monitor_up.reset();
3240     }
3241 }
3242 
3243 bool
3244 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id)
3245 {
3246     for (auto thread_sp : m_threads)
3247     {
3248         assert (thread_sp && "thread list should not contain NULL threads");
3249         if (thread_sp->GetID () == thread_id)
3250         {
3251             // We have this thread.
3252             return true;
3253         }
3254     }
3255 
3256     // We don't have this thread.
3257     return false;
3258 }
3259 
3260 NativeThreadProtocolSP
3261 NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id)
3262 {
3263     // CONSIDER organize threads by map - we can do better than linear.
3264     for (auto thread_sp : m_threads)
3265     {
3266         if (thread_sp->GetID () == thread_id)
3267             return thread_sp;
3268     }
3269 
3270     // We don't have this thread.
3271     return NativeThreadProtocolSP ();
3272 }
3273 
3274 bool
3275 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id)
3276 {
3277     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3278 
3279     if (log)
3280         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread_id);
3281 
3282     bool found = false;
3283 
3284     Mutex::Locker locker (m_threads_mutex);
3285     for (auto it = m_threads.begin (); it != m_threads.end (); ++it)
3286     {
3287         if (*it && ((*it)->GetID () == thread_id))
3288         {
3289             m_threads.erase (it);
3290             found = true;
3291             break;
3292         }
3293     }
3294 
3295     // If we have a pending notification, remove this from the set.
3296     if (m_pending_notification_up)
3297     {
3298         m_pending_notification_up->wait_for_stop_tids.erase(thread_id);
3299         SignalIfAllThreadsStopped();
3300     }
3301 
3302     return found;
3303 }
3304 
3305 NativeThreadProtocolSP
3306 NativeProcessLinux::AddThread (lldb::tid_t thread_id)
3307 {
3308     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3309 
3310     Mutex::Locker locker (m_threads_mutex);
3311 
3312     if (log)
3313     {
3314         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64,
3315                 __FUNCTION__,
3316                 GetID (),
3317                 thread_id);
3318     }
3319 
3320     assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists");
3321 
3322     // If this is the first thread, save it as the current thread
3323     if (m_threads.empty ())
3324         SetCurrentThreadID (thread_id);
3325 
3326     NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id));
3327     m_threads.push_back (thread_sp);
3328 
3329     return thread_sp;
3330 }
3331 
3332 Error
3333 NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp)
3334 {
3335     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS));
3336 
3337     Error error;
3338 
3339     // Get a linux thread pointer.
3340     if (!thread_sp)
3341     {
3342         error.SetErrorString ("null thread_sp");
3343         if (log)
3344             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
3345         return error;
3346     }
3347     std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp);
3348 
3349     // Find out the size of a breakpoint (might depend on where we are in the code).
3350     NativeRegisterContextSP context_sp = linux_thread_sp->GetRegisterContext ();
3351     if (!context_sp)
3352     {
3353         error.SetErrorString ("cannot get a NativeRegisterContext for the thread");
3354         if (log)
3355             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
3356         return error;
3357     }
3358 
3359     uint32_t breakpoint_size = 0;
3360     error = GetSoftwareBreakpointPCOffset (context_sp, breakpoint_size);
3361     if (error.Fail ())
3362     {
3363         if (log)
3364             log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ());
3365         return error;
3366     }
3367     else
3368     {
3369         if (log)
3370             log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size);
3371     }
3372 
3373     // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size.
3374     const lldb::addr_t initial_pc_addr = context_sp->GetPCfromBreakpointLocation ();
3375     lldb::addr_t breakpoint_addr = initial_pc_addr;
3376     if (breakpoint_size > 0)
3377     {
3378         // Do not allow breakpoint probe to wrap around.
3379         if (breakpoint_addr >= breakpoint_size)
3380             breakpoint_addr -= breakpoint_size;
3381     }
3382 
3383     // Check if we stopped because of a breakpoint.
3384     NativeBreakpointSP breakpoint_sp;
3385     error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp);
3386     if (!error.Success () || !breakpoint_sp)
3387     {
3388         // We didn't find one at a software probe location.  Nothing to do.
3389         if (log)
3390             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr);
3391         return Error ();
3392     }
3393 
3394     // If the breakpoint is not a software breakpoint, nothing to do.
3395     if (!breakpoint_sp->IsSoftwareBreakpoint ())
3396     {
3397         if (log)
3398             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr);
3399         return Error ();
3400     }
3401 
3402     //
3403     // We have a software breakpoint and need to adjust the PC.
3404     //
3405 
3406     // Sanity check.
3407     if (breakpoint_size == 0)
3408     {
3409         // Nothing to do!  How did we get here?
3410         if (log)
3411             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr);
3412         return Error ();
3413     }
3414 
3415     // Change the program counter.
3416     if (log)
3417         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_sp->GetID (), initial_pc_addr, breakpoint_addr);
3418 
3419     error = context_sp->SetPC (breakpoint_addr);
3420     if (error.Fail ())
3421     {
3422         if (log)
3423             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_sp->GetID (), error.AsCString ());
3424         return error;
3425     }
3426 
3427     return error;
3428 }
3429 
3430 Error
3431 NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec)
3432 {
3433     char maps_file_name[32];
3434     snprintf(maps_file_name, sizeof(maps_file_name), "/proc/%" PRIu64 "/maps", GetID());
3435 
3436     FileSpec maps_file_spec(maps_file_name, false);
3437     if (!maps_file_spec.Exists()) {
3438         file_spec.Clear();
3439         return Error("/proc/%" PRIu64 "/maps file doesn't exists!", GetID());
3440     }
3441 
3442     FileSpec module_file_spec(module_path, true);
3443 
3444     std::ifstream maps_file(maps_file_name);
3445     std::string maps_data_str((std::istreambuf_iterator<char>(maps_file)), std::istreambuf_iterator<char>());
3446     StringRef maps_data(maps_data_str.c_str());
3447 
3448     while (!maps_data.empty())
3449     {
3450         StringRef maps_row;
3451         std::tie(maps_row, maps_data) = maps_data.split('\n');
3452 
3453         SmallVector<StringRef, 16> maps_columns;
3454         maps_row.split(maps_columns, StringRef(" "), -1, false);
3455 
3456         if (maps_columns.size() >= 6)
3457         {
3458             file_spec.SetFile(maps_columns[5].str().c_str(), false);
3459             if (file_spec.GetFilename() == module_file_spec.GetFilename())
3460                 return Error();
3461         }
3462     }
3463 
3464     file_spec.Clear();
3465     return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
3466                  module_file_spec.GetFilename().AsCString(), GetID());
3467 }
3468 
3469 Error
3470 NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef& file_name, lldb::addr_t& load_addr)
3471 {
3472     load_addr = LLDB_INVALID_ADDRESS;
3473     Error error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
3474         [&] (const std::string &line) -> bool
3475         {
3476             StringRef maps_row(line);
3477 
3478             SmallVector<StringRef, 16> maps_columns;
3479             maps_row.split(maps_columns, StringRef(" "), -1, false);
3480 
3481             if (maps_columns.size() < 6)
3482             {
3483                 // Return true to continue reading the proc file
3484                 return true;
3485             }
3486 
3487             if (maps_columns[5] == file_name)
3488             {
3489                 StringExtractor addr_extractor(maps_columns[0].str().c_str());
3490                 load_addr = addr_extractor.GetHexMaxU64(false, LLDB_INVALID_ADDRESS);
3491 
3492                 // Return false to stop reading the proc file further
3493                 return false;
3494             }
3495 
3496             // Return true to continue reading the proc file
3497             return true;
3498         });
3499     return error;
3500 }
3501 
3502 Error
3503 NativeProcessLinux::ResumeThread(
3504         lldb::tid_t tid,
3505         NativeThreadLinux::ResumeThreadFunction request_thread_resume_function,
3506         bool error_when_already_running)
3507 {
3508     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3509 
3510     if (log)
3511         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ", error_when_already_running: %s)",
3512                 __FUNCTION__, tid, error_when_already_running?"true":"false");
3513 
3514     auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid));
3515     lldbassert(thread_sp != nullptr);
3516 
3517     auto& context = thread_sp->GetThreadContext();
3518     // Tell the thread to resume if we don't already think it is running.
3519     const bool is_stopped = StateIsStoppedState(thread_sp->GetState(), true);
3520 
3521     lldbassert(!(error_when_already_running && !is_stopped));
3522 
3523     if (!is_stopped)
3524     {
3525         // It's not an error, just a log, if the error_when_already_running flag is not set.
3526         // This covers cases where, for instance, we're just trying to resume all threads
3527         // from the user side.
3528         if (log)
3529             log->Printf("NativeProcessLinux::%s tid %" PRIu64 " optional resume skipped since it is already running",
3530                     __FUNCTION__,
3531                     tid);
3532         return Error();
3533     }
3534 
3535     // Before we do the resume below, first check if we have a pending
3536     // stop notification that is currently waiting for
3537     // this thread to stop.  This is potentially a buggy situation since
3538     // we're ostensibly waiting for threads to stop before we send out the
3539     // pending notification, and here we are resuming one before we send
3540     // out the pending stop notification.
3541     if (m_pending_notification_up && log && m_pending_notification_up->wait_for_stop_tids.count (tid) > 0)
3542     {
3543         log->Printf("NativeProcessLinux::%s about to resume tid %" PRIu64 " per explicit request but we have a pending stop notification (tid %" PRIu64 ") that is actively waiting for this thread to stop. Valid sequence of events?", __FUNCTION__, tid, m_pending_notification_up->triggering_tid);
3544     }
3545 
3546     // Request a resume.  We expect this to be synchronous and the system
3547     // to reflect it is running after this completes.
3548     const auto error = request_thread_resume_function (tid, false);
3549     if (error.Success())
3550         context.request_resume_function = request_thread_resume_function;
3551     else if (log)
3552     {
3553         log->Printf("NativeProcessLinux::%s failed to resume thread tid  %" PRIu64 ": %s",
3554                          __FUNCTION__, tid, error.AsCString ());
3555     }
3556 
3557     return error;
3558 }
3559 
3560 //===----------------------------------------------------------------------===//
3561 
3562 void
3563 NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid)
3564 {
3565     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3566 
3567     if (log)
3568     {
3569         log->Printf("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ")",
3570                 __FUNCTION__, triggering_tid);
3571     }
3572 
3573     DoStopThreads(PendingNotificationUP(new PendingNotification(triggering_tid)));
3574 
3575     if (log)
3576     {
3577         log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__);
3578     }
3579 }
3580 
3581 void
3582 NativeProcessLinux::SignalIfAllThreadsStopped()
3583 {
3584     if (m_pending_notification_up && m_pending_notification_up->wait_for_stop_tids.empty ())
3585     {
3586         Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
3587 
3588         // Clear any temporary breakpoints we used to implement software single stepping.
3589         for (const auto &thread_info: m_threads_stepping_with_breakpoint)
3590         {
3591             Error error = RemoveBreakpoint (thread_info.second);
3592             if (error.Fail())
3593                 if (log)
3594                     log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s",
3595                             __FUNCTION__, thread_info.first, error.AsCString());
3596         }
3597         m_threads_stepping_with_breakpoint.clear();
3598 
3599         // Notify the delegate about the stop
3600         SetCurrentThreadID(m_pending_notification_up->triggering_tid);
3601         SetState(StateType::eStateStopped, true);
3602         m_pending_notification_up.reset();
3603     }
3604 }
3605 
3606 void
3607 NativeProcessLinux::RequestStopOnAllRunningThreads()
3608 {
3609     // Request a stop for all the thread stops that need to be stopped
3610     // and are not already known to be stopped.  Keep a list of all the
3611     // threads from which we still need to hear a stop reply.
3612 
3613     ThreadIDSet sent_tids;
3614     for (const auto &thread_sp: m_threads)
3615     {
3616         // We only care about running threads
3617         if (StateIsStoppedState(thread_sp->GetState(), true))
3618             continue;
3619 
3620         static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop();
3621         sent_tids.insert (thread_sp->GetID());
3622     }
3623 
3624     // Set the wait list to the set of tids for which we requested stops.
3625     m_pending_notification_up->wait_for_stop_tids.swap (sent_tids);
3626 }
3627 
3628 
3629 Error
3630 NativeProcessLinux::ThreadDidStop (lldb::tid_t tid, bool initiated_by_llgs)
3631 {
3632     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3633 
3634     if (log)
3635         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ", %sinitiated by llgs)",
3636                 __FUNCTION__, tid, initiated_by_llgs?"":"not ");
3637 
3638     // Ensure we know about the thread.
3639     auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid));
3640     lldbassert(thread_sp != nullptr);
3641 
3642     // Update the global list of known thread states.  This one is definitely stopped.
3643     auto& context = thread_sp->GetThreadContext();
3644     const auto stop_was_requested = context.stop_requested;
3645     context.stop_requested = false;
3646 
3647     // If we have a pending notification, remove this from the set.
3648     if (m_pending_notification_up)
3649     {
3650         m_pending_notification_up->wait_for_stop_tids.erase(tid);
3651         SignalIfAllThreadsStopped();
3652     }
3653 
3654     Error error;
3655     if (initiated_by_llgs && context.request_resume_function && !stop_was_requested)
3656     {
3657         // We can end up here if stop was initiated by LLGS but by this time a
3658         // thread stop has occurred - maybe initiated by another event.
3659         if (log)
3660             log->Printf("Resuming thread %"  PRIu64 " since stop wasn't requested", tid);
3661         error = context.request_resume_function (tid, true);
3662         if (error.Fail() && log)
3663         {
3664                 log->Printf("NativeProcessLinux::%s failed to resume thread tid  %" PRIu64 ": %s",
3665                         __FUNCTION__, tid, error.AsCString ());
3666         }
3667     }
3668     return error;
3669 }
3670 
3671 void
3672 NativeProcessLinux::DoStopThreads(PendingNotificationUP &&notification_up)
3673 {
3674     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3675     if (m_pending_notification_up && log)
3676     {
3677         // Yikes - we've already got a pending signal notification in progress.
3678         // Log this info.  We lose the pending notification here.
3679         log->Printf("NativeProcessLinux::%s dropping existing pending signal notification for tid %" PRIu64 ", to be replaced with signal for tid %" PRIu64,
3680                    __FUNCTION__,
3681                    m_pending_notification_up->triggering_tid,
3682                    notification_up->triggering_tid);
3683     }
3684     m_pending_notification_up = std::move(notification_up);
3685 
3686     RequestStopOnAllRunningThreads();
3687 
3688     SignalIfAllThreadsStopped();
3689 }
3690 
3691 void
3692 NativeProcessLinux::ThreadWasCreated (lldb::tid_t tid)
3693 {
3694     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3695 
3696     if (log)
3697         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, tid);
3698 
3699     auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid));
3700     lldbassert(thread_sp != nullptr);
3701 
3702     if (m_pending_notification_up && StateIsRunningState(thread_sp->GetState()))
3703     {
3704         // We will need to wait for this new thread to stop as well before firing the
3705         // notification.
3706         m_pending_notification_up->wait_for_stop_tids.insert(tid);
3707         thread_sp->RequestStop();
3708     }
3709 }
3710 
3711 Error
3712 NativeProcessLinux::DoOperation(const Operation &op)
3713 {
3714     return m_monitor_up->DoOperation(op);
3715 }
3716 
3717 // Wrapper for ptrace to catch errors and log calls.
3718 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
3719 Error
3720 NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, long *result)
3721 {
3722     Error error;
3723     long int ret;
3724 
3725     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE));
3726 
3727     PtraceDisplayBytes(req, data, data_size);
3728 
3729     errno = 0;
3730     if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
3731         ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
3732     else
3733         ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
3734 
3735     if (ret == -1)
3736         error.SetErrorToErrno();
3737 
3738     if (result)
3739         *result = ret;
3740 
3741     if (log)
3742         log->Printf("ptrace(%d, %" PRIu64 ", %p, %p, %zu)=%lX", req, pid, addr, data, data_size, ret);
3743 
3744     PtraceDisplayBytes(req, data, data_size);
3745 
3746     if (log && error.GetError() != 0)
3747     {
3748         const char* str;
3749         switch (error.GetError())
3750         {
3751         case ESRCH:  str = "ESRCH"; break;
3752         case EINVAL: str = "EINVAL"; break;
3753         case EBUSY:  str = "EBUSY"; break;
3754         case EPERM:  str = "EPERM"; break;
3755         default:     str = error.AsCString();
3756         }
3757         log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str);
3758     }
3759 
3760     return error;
3761 }
3762