1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "lldb/lldb-python.h"
11 
12 #include "NativeProcessLinux.h"
13 
14 // C Includes
15 #include <errno.h>
16 #include <semaphore.h>
17 #include <string.h>
18 #include <stdint.h>
19 #include <unistd.h>
20 
21 // C++ Includes
22 #include <fstream>
23 #include <sstream>
24 #include <string>
25 #include <unordered_map>
26 
27 // Other libraries and framework includes
28 #include "lldb/Core/EmulateInstruction.h"
29 #include "lldb/Core/Error.h"
30 #include "lldb/Core/Module.h"
31 #include "lldb/Core/ModuleSpec.h"
32 #include "lldb/Core/RegisterValue.h"
33 #include "lldb/Core/State.h"
34 #include "lldb/Host/common/NativeBreakpoint.h"
35 #include "lldb/Host/common/NativeRegisterContext.h"
36 #include "lldb/Host/Host.h"
37 #include "lldb/Host/ThreadLauncher.h"
38 #include "lldb/Target/Platform.h"
39 #include "lldb/Target/Process.h"
40 #include "lldb/Target/ProcessLaunchInfo.h"
41 #include "lldb/Target/Target.h"
42 #include "lldb/Utility/LLDBAssert.h"
43 #include "lldb/Utility/PseudoTerminal.h"
44 
45 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
46 #include "Plugins/Process/Utility/LinuxSignals.h"
47 #include "Utility/StringExtractor.h"
48 #include "NativeThreadLinux.h"
49 #include "ProcFileReader.h"
50 #include "Procfs.h"
51 
52 // System includes - They have to be included after framework includes because they define some
53 // macros which collide with variable names in other modules
54 #include <linux/unistd.h>
55 #include <sys/socket.h>
56 
57 #include <sys/types.h>
58 #include <sys/uio.h>
59 #include <sys/user.h>
60 #include <sys/wait.h>
61 
62 #include "lldb/Host/linux/Personality.h"
63 #include "lldb/Host/linux/Ptrace.h"
64 #include "lldb/Host/linux/Signalfd.h"
65 #include "lldb/Host/android/Android.h"
66 
67 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS  0xffffffff
68 
69 // Support hardware breakpoints in case it has not been defined
70 #ifndef TRAP_HWBKPT
71   #define TRAP_HWBKPT 4
72 #endif
73 
74 using namespace lldb;
75 using namespace lldb_private;
76 using namespace lldb_private::process_linux;
77 using namespace llvm;
78 
79 // Private bits we only need internally.
80 namespace
81 {
82     const UnixSignals&
83     GetUnixSignals ()
84     {
85         static process_linux::LinuxSignals signals;
86         return signals;
87     }
88 
89     Error
90     ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch)
91     {
92         // Grab process info for the running process.
93         ProcessInstanceInfo process_info;
94         if (!platform.GetProcessInfo (pid, process_info))
95             return Error("failed to get process info");
96 
97         // Resolve the executable module.
98         ModuleSP exe_module_sp;
99         ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
100         FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ());
101         Error error = platform.ResolveExecutable(
102             exe_module_spec,
103             exe_module_sp,
104             executable_search_paths.GetSize () ? &executable_search_paths : NULL);
105 
106         if (!error.Success ())
107             return error;
108 
109         // Check if we've got our architecture from the exe_module.
110         arch = exe_module_sp->GetArchitecture ();
111         if (arch.IsValid ())
112             return Error();
113         else
114             return Error("failed to retrieve a valid architecture from the exe module");
115     }
116 
117     void
118     DisplayBytes (StreamString &s, void *bytes, uint32_t count)
119     {
120         uint8_t *ptr = (uint8_t *)bytes;
121         const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
122         for(uint32_t i=0; i<loop_count; i++)
123         {
124             s.Printf ("[%x]", *ptr);
125             ptr++;
126         }
127     }
128 
129     void
130     PtraceDisplayBytes(int &req, void *data, size_t data_size)
131     {
132         StreamString buf;
133         Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (
134                     POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE));
135 
136         if (verbose_log)
137         {
138             switch(req)
139             {
140             case PTRACE_POKETEXT:
141             {
142                 DisplayBytes(buf, &data, 8);
143                 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData());
144                 break;
145             }
146             case PTRACE_POKEDATA:
147             {
148                 DisplayBytes(buf, &data, 8);
149                 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData());
150                 break;
151             }
152             case PTRACE_POKEUSER:
153             {
154                 DisplayBytes(buf, &data, 8);
155                 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData());
156                 break;
157             }
158             case PTRACE_SETREGS:
159             {
160                 DisplayBytes(buf, data, data_size);
161                 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData());
162                 break;
163             }
164             case PTRACE_SETFPREGS:
165             {
166                 DisplayBytes(buf, data, data_size);
167                 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData());
168                 break;
169             }
170             case PTRACE_SETSIGINFO:
171             {
172                 DisplayBytes(buf, data, sizeof(siginfo_t));
173                 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData());
174                 break;
175             }
176             case PTRACE_SETREGSET:
177             {
178                 // Extract iov_base from data, which is a pointer to the struct IOVEC
179                 DisplayBytes(buf, *(void **)data, data_size);
180                 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData());
181                 break;
182             }
183             default:
184             {
185             }
186             }
187         }
188     }
189 
190     //------------------------------------------------------------------------------
191     // Static implementations of NativeProcessLinux::ReadMemory and
192     // NativeProcessLinux::WriteMemory.  This enables mutual recursion between these
193     // functions without needed to go thru the thread funnel.
194 
195     size_t
196     DoReadMemory(
197         lldb::pid_t pid,
198         lldb::addr_t vm_addr,
199         void *buf,
200         size_t size,
201         Error &error)
202     {
203         // ptrace word size is determined by the host, not the child
204         static const unsigned word_size = sizeof(void*);
205         unsigned char *dst = static_cast<unsigned char*>(buf);
206         size_t bytes_read;
207         size_t remainder;
208         long data;
209 
210         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
211         if (log)
212             ProcessPOSIXLog::IncNestLevel();
213         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
214             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__,
215                     pid, word_size, (void*)vm_addr, buf, size);
216 
217         assert(sizeof(data) >= word_size);
218         for (bytes_read = 0; bytes_read < size; bytes_read += remainder)
219         {
220             data = NativeProcessLinux::PtraceWrapper(PTRACE_PEEKDATA, pid, (void*)vm_addr, nullptr, 0, error);
221             if (error.Fail())
222             {
223                 if (log)
224                     ProcessPOSIXLog::DecNestLevel();
225                 return bytes_read;
226             }
227 
228             remainder = size - bytes_read;
229             remainder = remainder > word_size ? word_size : remainder;
230 
231             // Copy the data into our buffer
232             for (unsigned i = 0; i < remainder; ++i)
233                 dst[i] = ((data >> i*8) & 0xFF);
234 
235             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
236                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
237                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
238                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
239             {
240                 uintptr_t print_dst = 0;
241                 // Format bytes from data by moving into print_dst for log output
242                 for (unsigned i = 0; i < remainder; ++i)
243                     print_dst |= (((data >> i*8) & 0xFF) << i*8);
244                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
245                         (void*)vm_addr, print_dst, (unsigned long)data);
246             }
247 
248             vm_addr += word_size;
249             dst += word_size;
250         }
251 
252         if (log)
253             ProcessPOSIXLog::DecNestLevel();
254         return bytes_read;
255     }
256 
257     size_t
258     DoWriteMemory(
259         lldb::pid_t pid,
260         lldb::addr_t vm_addr,
261         const void *buf,
262         size_t size,
263         Error &error)
264     {
265         // ptrace word size is determined by the host, not the child
266         static const unsigned word_size = sizeof(void*);
267         const unsigned char *src = static_cast<const unsigned char*>(buf);
268         size_t bytes_written = 0;
269         size_t remainder;
270 
271         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
272         if (log)
273             ProcessPOSIXLog::IncNestLevel();
274         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
275             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__,
276                     pid, word_size, (void*)vm_addr, buf, size);
277 
278         for (bytes_written = 0; bytes_written < size; bytes_written += remainder)
279         {
280             remainder = size - bytes_written;
281             remainder = remainder > word_size ? word_size : remainder;
282 
283             if (remainder == word_size)
284             {
285                 unsigned long data = 0;
286                 assert(sizeof(data) >= word_size);
287                 for (unsigned i = 0; i < word_size; ++i)
288                     data |= (unsigned long)src[i] << i*8;
289 
290                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
291                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
292                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
293                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
294                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
295                             (void*)vm_addr, *(const unsigned long*)src, data);
296 
297                 if (NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data, 0, error))
298                 {
299                     if (log)
300                         ProcessPOSIXLog::DecNestLevel();
301                     return bytes_written;
302                 }
303             }
304             else
305             {
306                 unsigned char buff[8];
307                 if (DoReadMemory(pid, vm_addr,
308                                 buff, word_size, error) != word_size)
309                 {
310                     if (log)
311                         ProcessPOSIXLog::DecNestLevel();
312                     return bytes_written;
313                 }
314 
315                 memcpy(buff, src, remainder);
316 
317                 if (DoWriteMemory(pid, vm_addr,
318                                 buff, word_size, error) != word_size)
319                 {
320                     if (log)
321                         ProcessPOSIXLog::DecNestLevel();
322                     return bytes_written;
323                 }
324 
325                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
326                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
327                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
328                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
329                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
330                             (void*)vm_addr, *(const unsigned long*)src, *(unsigned long*)buff);
331             }
332 
333             vm_addr += word_size;
334             src += word_size;
335         }
336         if (log)
337             ProcessPOSIXLog::DecNestLevel();
338         return bytes_written;
339     }
340 
341     //------------------------------------------------------------------------------
342     /// @class ReadOperation
343     /// @brief Implements NativeProcessLinux::ReadMemory.
344     class ReadOperation : public NativeProcessLinux::Operation
345     {
346     public:
347         ReadOperation(
348             lldb::addr_t addr,
349             void *buff,
350             size_t size,
351             size_t &result) :
352             Operation (),
353             m_addr (addr),
354             m_buff (buff),
355             m_size (size),
356             m_result (result)
357             {
358             }
359 
360         void Execute (NativeProcessLinux *process) override;
361 
362     private:
363         lldb::addr_t m_addr;
364         void *m_buff;
365         size_t m_size;
366         size_t &m_result;
367     };
368 
369     void
370     ReadOperation::Execute (NativeProcessLinux *process)
371     {
372         m_result = DoReadMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
373     }
374 
375     //------------------------------------------------------------------------------
376     /// @class WriteOperation
377     /// @brief Implements NativeProcessLinux::WriteMemory.
378     class WriteOperation : public NativeProcessLinux::Operation
379     {
380     public:
381         WriteOperation(
382             lldb::addr_t addr,
383             const void *buff,
384             size_t size,
385             size_t &result) :
386             Operation (),
387             m_addr (addr),
388             m_buff (buff),
389             m_size (size),
390             m_result (result)
391             {
392             }
393 
394         void Execute (NativeProcessLinux *process) override;
395 
396     private:
397         lldb::addr_t m_addr;
398         const void *m_buff;
399         size_t m_size;
400         size_t &m_result;
401     };
402 
403     void
404     WriteOperation::Execute(NativeProcessLinux *process)
405     {
406         m_result = DoWriteMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
407     }
408 
409     //------------------------------------------------------------------------------
410     /// @class ResumeOperation
411     /// @brief Implements NativeProcessLinux::Resume.
412     class ResumeOperation : public NativeProcessLinux::Operation
413     {
414     public:
415         ResumeOperation(lldb::tid_t tid, uint32_t signo) :
416             m_tid(tid), m_signo(signo) { }
417 
418         void Execute(NativeProcessLinux *monitor) override;
419 
420     private:
421         lldb::tid_t m_tid;
422         uint32_t m_signo;
423     };
424 
425     void
426     ResumeOperation::Execute(NativeProcessLinux *monitor)
427     {
428         intptr_t data = 0;
429 
430         if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
431             data = m_signo;
432 
433         NativeProcessLinux::PtraceWrapper(PTRACE_CONT, m_tid, nullptr, (void*)data, 0, m_error);
434         if (m_error.Fail())
435         {
436             Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
437 
438             if (log)
439                 log->Printf ("ResumeOperation (%"  PRIu64 ") failed: %s", m_tid, m_error.AsCString());
440         }
441     }
442 
443     //------------------------------------------------------------------------------
444     /// @class SingleStepOperation
445     /// @brief Implements NativeProcessLinux::SingleStep.
446     class SingleStepOperation : public NativeProcessLinux::Operation
447     {
448     public:
449         SingleStepOperation(lldb::tid_t tid, uint32_t signo)
450             : m_tid(tid), m_signo(signo) { }
451 
452         void Execute(NativeProcessLinux *monitor) override;
453 
454     private:
455         lldb::tid_t m_tid;
456         uint32_t m_signo;
457     };
458 
459     void
460     SingleStepOperation::Execute(NativeProcessLinux *monitor)
461     {
462         intptr_t data = 0;
463 
464         if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
465             data = m_signo;
466 
467         NativeProcessLinux::PtraceWrapper(PTRACE_SINGLESTEP, m_tid, nullptr, (void*)data, 0, m_error);
468     }
469 
470     //------------------------------------------------------------------------------
471     /// @class SiginfoOperation
472     /// @brief Implements NativeProcessLinux::GetSignalInfo.
473     class SiginfoOperation : public NativeProcessLinux::Operation
474     {
475     public:
476         SiginfoOperation(lldb::tid_t tid, void *info)
477             : m_tid(tid), m_info(info) { }
478 
479         void Execute(NativeProcessLinux *monitor) override;
480 
481     private:
482         lldb::tid_t m_tid;
483         void *m_info;
484     };
485 
486     void
487     SiginfoOperation::Execute(NativeProcessLinux *monitor)
488     {
489         NativeProcessLinux::PtraceWrapper(PTRACE_GETSIGINFO, m_tid, nullptr, m_info, 0, m_error);
490     }
491 
492     //------------------------------------------------------------------------------
493     /// @class EventMessageOperation
494     /// @brief Implements NativeProcessLinux::GetEventMessage.
495     class EventMessageOperation : public NativeProcessLinux::Operation
496     {
497     public:
498         EventMessageOperation(lldb::tid_t tid, unsigned long *message)
499             : m_tid(tid), m_message(message) { }
500 
501         void Execute(NativeProcessLinux *monitor) override;
502 
503     private:
504         lldb::tid_t m_tid;
505         unsigned long *m_message;
506     };
507 
508     void
509     EventMessageOperation::Execute(NativeProcessLinux *monitor)
510     {
511         NativeProcessLinux::PtraceWrapper(PTRACE_GETEVENTMSG, m_tid, nullptr, m_message, 0, m_error);
512     }
513 
514     class DetachOperation : public NativeProcessLinux::Operation
515     {
516     public:
517         DetachOperation(lldb::tid_t tid) : m_tid(tid) { }
518 
519         void Execute(NativeProcessLinux *monitor) override;
520 
521     private:
522         lldb::tid_t m_tid;
523     };
524 
525     void
526     DetachOperation::Execute(NativeProcessLinux *monitor)
527     {
528         NativeProcessLinux::PtraceWrapper(PTRACE_DETACH, m_tid, nullptr, 0, 0, m_error);
529     }
530 } // end of anonymous namespace
531 
532 // Simple helper function to ensure flags are enabled on the given file
533 // descriptor.
534 static Error
535 EnsureFDFlags(int fd, int flags)
536 {
537     Error error;
538 
539     int status = fcntl(fd, F_GETFL);
540     if (status == -1)
541     {
542         error.SetErrorToErrno();
543         return error;
544     }
545 
546     if (fcntl(fd, F_SETFL, status | flags) == -1)
547     {
548         error.SetErrorToErrno();
549         return error;
550     }
551 
552     return error;
553 }
554 
555 // This class encapsulates the privileged thread which performs all ptrace and wait operations on
556 // the inferior. The thread consists of a main loop which waits for events and processes them
557 //   - SIGCHLD (delivered over a signalfd file descriptor): These signals notify us of events in
558 //     the inferior process. Upon receiving this signal we do a waitpid to get more information
559 //     and dispatch to NativeProcessLinux::MonitorCallback.
560 //   - requests for ptrace operations: These initiated via the DoOperation method, which funnels
561 //     them to the Monitor thread via m_operation member. The Monitor thread is signaled over a
562 //     pipe, and the completion of the operation is signalled over the semaphore.
563 //   - thread exit event: this is signaled from the Monitor destructor by closing the write end
564 //     of the command pipe.
565 class NativeProcessLinux::Monitor
566 {
567 private:
568     // The initial monitor operation (launch or attach). It returns a inferior process id.
569     std::unique_ptr<InitialOperation> m_initial_operation_up;
570 
571     ::pid_t                           m_child_pid = -1;
572     NativeProcessLinux              * m_native_process;
573 
574     enum { READ, WRITE };
575     int        m_pipefd[2] = {-1, -1};
576     int        m_signal_fd = -1;
577     HostThread m_thread;
578 
579     // current operation which must be executed on the priviliged thread
580     Mutex      m_operation_mutex;
581     Operation *m_operation = nullptr;
582     sem_t      m_operation_sem;
583     Error      m_operation_error;
584 
585     unsigned   m_operation_nesting_level = 0;
586 
587     static constexpr char operation_command   = 'o';
588     static constexpr char begin_block_command = '{';
589     static constexpr char end_block_command   = '}';
590 
591     void
592     HandleSignals();
593 
594     void
595     HandleWait();
596 
597     // Returns true if the thread should exit.
598     bool
599     HandleCommands();
600 
601     void
602     MainLoop();
603 
604     static void *
605     RunMonitor(void *arg);
606 
607     Error
608     WaitForAck();
609 
610     void
611     BeginOperationBlock()
612     {
613         write(m_pipefd[WRITE], &begin_block_command, sizeof operation_command);
614         WaitForAck();
615     }
616 
617     void
618     EndOperationBlock()
619     {
620         write(m_pipefd[WRITE], &end_block_command, sizeof operation_command);
621         WaitForAck();
622     }
623 
624 public:
625     Monitor(const InitialOperation &initial_operation,
626             NativeProcessLinux *native_process)
627         : m_initial_operation_up(new InitialOperation(initial_operation)),
628           m_native_process(native_process)
629     {
630         sem_init(&m_operation_sem, 0, 0);
631     }
632 
633     ~Monitor();
634 
635     Error
636     Initialize();
637 
638     void
639     Terminate();
640 
641     void
642     DoOperation(Operation *op);
643 
644     class ScopedOperationLock {
645         Monitor &m_monitor;
646 
647     public:
648         ScopedOperationLock(Monitor &monitor)
649             : m_monitor(monitor)
650         { m_monitor.BeginOperationBlock(); }
651 
652         ~ScopedOperationLock()
653         { m_monitor.EndOperationBlock(); }
654     };
655 };
656 constexpr char NativeProcessLinux::Monitor::operation_command;
657 constexpr char NativeProcessLinux::Monitor::begin_block_command;
658 constexpr char NativeProcessLinux::Monitor::end_block_command;
659 
660 Error
661 NativeProcessLinux::Monitor::Initialize()
662 {
663     Error error;
664 
665     // We get a SIGCHLD every time something interesting happens with the inferior. We shall be
666     // listening for these signals over a signalfd file descriptors. This allows us to wait for
667     // multiple kinds of events with select.
668     sigset_t signals;
669     sigemptyset(&signals);
670     sigaddset(&signals, SIGCHLD);
671     m_signal_fd = signalfd(-1, &signals, SFD_NONBLOCK | SFD_CLOEXEC);
672     if (m_signal_fd < 0)
673     {
674         return Error("NativeProcessLinux::Monitor::%s failed due to signalfd failure. Monitoring the inferior will be impossible: %s",
675                     __FUNCTION__, strerror(errno));
676 
677     }
678 
679     if (pipe2(m_pipefd, O_CLOEXEC) == -1)
680     {
681         error.SetErrorToErrno();
682         return error;
683     }
684 
685     if ((error = EnsureFDFlags(m_pipefd[READ], O_NONBLOCK)).Fail()) {
686         return error;
687     }
688 
689     static const char g_thread_name[] = "lldb.process.nativelinux.monitor";
690     m_thread = ThreadLauncher::LaunchThread(g_thread_name, Monitor::RunMonitor, this, nullptr);
691     if (!m_thread.IsJoinable())
692         return Error("Failed to create monitor thread for NativeProcessLinux.");
693 
694     // Wait for initial operation to complete.
695     return WaitForAck();
696 }
697 
698 void
699 NativeProcessLinux::Monitor::DoOperation(Operation *op)
700 {
701     if (m_thread.EqualsThread(pthread_self())) {
702         // If we're on the Monitor thread, we can simply execute the operation.
703         op->Execute(m_native_process);
704         return;
705     }
706 
707     // Otherwise we need to pass the operation to the Monitor thread so it can handle it.
708     Mutex::Locker lock(m_operation_mutex);
709 
710     m_operation = op;
711 
712     // notify the thread that an operation is ready to be processed
713     write(m_pipefd[WRITE], &operation_command, sizeof operation_command);
714 
715     WaitForAck();
716 }
717 
718 void
719 NativeProcessLinux::Monitor::Terminate()
720 {
721     if (m_pipefd[WRITE] >= 0)
722     {
723         close(m_pipefd[WRITE]);
724         m_pipefd[WRITE] = -1;
725     }
726     if (m_thread.IsJoinable())
727         m_thread.Join(nullptr);
728 }
729 
730 NativeProcessLinux::Monitor::~Monitor()
731 {
732     Terminate();
733     if (m_pipefd[READ] >= 0)
734         close(m_pipefd[READ]);
735     if (m_signal_fd >= 0)
736         close(m_signal_fd);
737     sem_destroy(&m_operation_sem);
738 }
739 
740 void
741 NativeProcessLinux::Monitor::HandleSignals()
742 {
743     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
744 
745     // We don't really care about the content of the SIGCHLD siginfo structure, as we will get
746     // all the information from waitpid(). We just need to read all the signals so that we can
747     // sleep next time we reach select().
748     while (true)
749     {
750         signalfd_siginfo info;
751         ssize_t size = read(m_signal_fd, &info, sizeof info);
752         if (size == -1)
753         {
754             if (errno == EAGAIN || errno == EWOULDBLOCK)
755                 break; // We are done.
756             if (errno == EINTR)
757                 continue;
758             if (log)
759                 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor failed: %s",
760                         __FUNCTION__, strerror(errno));
761             break;
762         }
763         if (size != sizeof info)
764         {
765             // We got incomplete information structure. This should not happen, let's just log
766             // that.
767             if (log)
768                 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor returned incomplete data: "
769                         "structure size is %zd, read returned %zd bytes",
770                         __FUNCTION__, sizeof info, size);
771             break;
772         }
773         if (log)
774             log->Printf("NativeProcessLinux::Monitor::%s received signal %s(%d).", __FUNCTION__,
775                 Host::GetSignalAsCString(info.ssi_signo), info.ssi_signo);
776     }
777 }
778 
779 void
780 NativeProcessLinux::Monitor::HandleWait()
781 {
782     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
783     // Process all pending waitpid notifications.
784     while (true)
785     {
786         int status = -1;
787         ::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG);
788 
789         if (wait_pid == 0)
790             break; // We are done.
791 
792         if (wait_pid == -1)
793         {
794             if (errno == EINTR)
795                 continue;
796 
797             if (log)
798               log->Printf("NativeProcessLinux::Monitor::%s waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG) failed: %s",
799                       __FUNCTION__, strerror(errno));
800             break;
801         }
802 
803         bool exited = false;
804         int signal = 0;
805         int exit_status = 0;
806         const char *status_cstr = NULL;
807         if (WIFSTOPPED(status))
808         {
809             signal = WSTOPSIG(status);
810             status_cstr = "STOPPED";
811         }
812         else if (WIFEXITED(status))
813         {
814             exit_status = WEXITSTATUS(status);
815             status_cstr = "EXITED";
816             exited = true;
817         }
818         else if (WIFSIGNALED(status))
819         {
820             signal = WTERMSIG(status);
821             status_cstr = "SIGNALED";
822             if (wait_pid == m_child_pid) {
823                 exited = true;
824                 exit_status = -1;
825             }
826         }
827         else
828             status_cstr = "(\?\?\?)";
829 
830         if (log)
831             log->Printf("NativeProcessLinux::Monitor::%s: waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG)"
832                 "=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i",
833                 __FUNCTION__, wait_pid, status, status_cstr, signal, exit_status);
834 
835         m_native_process->MonitorCallback (wait_pid, exited, signal, exit_status);
836     }
837 }
838 
839 bool
840 NativeProcessLinux::Monitor::HandleCommands()
841 {
842     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
843 
844     while (true)
845     {
846         char command = 0;
847         ssize_t size = read(m_pipefd[READ], &command, sizeof command);
848         if (size == -1)
849         {
850             if (errno == EAGAIN || errno == EWOULDBLOCK)
851                 return false;
852             if (errno == EINTR)
853                 continue;
854             if (log)
855                 log->Printf("NativeProcessLinux::Monitor::%s exiting because read from command file descriptor failed: %s", __FUNCTION__, strerror(errno));
856             return true;
857         }
858         if (size == 0) // end of file - write end closed
859         {
860             if (log)
861                 log->Printf("NativeProcessLinux::Monitor::%s exit command received, exiting...", __FUNCTION__);
862             assert(m_operation_nesting_level == 0 && "Unbalanced begin/end block commands detected");
863             return true; // We are done.
864         }
865 
866         switch (command)
867         {
868         case operation_command:
869             m_operation->Execute(m_native_process);
870             break;
871         case begin_block_command:
872             ++m_operation_nesting_level;
873             break;
874         case end_block_command:
875             assert(m_operation_nesting_level > 0);
876             --m_operation_nesting_level;
877             break;
878         default:
879             if (log)
880                 log->Printf("NativeProcessLinux::Monitor::%s received unknown command '%c'",
881                         __FUNCTION__, command);
882         }
883 
884         // notify calling thread that the command has been processed
885         sem_post(&m_operation_sem);
886     }
887 }
888 
889 void
890 NativeProcessLinux::Monitor::MainLoop()
891 {
892     ::pid_t child_pid = (*m_initial_operation_up)(m_operation_error);
893     m_initial_operation_up.reset();
894     m_child_pid = child_pid;
895     sem_post(&m_operation_sem);
896 
897     while (true)
898     {
899         fd_set fds;
900         FD_ZERO(&fds);
901         // Only process waitpid events if we are outside of an operation block. Any pending
902         // events will be processed after we leave the block.
903         if (m_operation_nesting_level == 0)
904             FD_SET(m_signal_fd, &fds);
905         FD_SET(m_pipefd[READ], &fds);
906 
907         int max_fd = std::max(m_signal_fd, m_pipefd[READ]) + 1;
908         int r = select(max_fd, &fds, nullptr, nullptr, nullptr);
909         if (r < 0)
910         {
911             Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
912             if (log)
913                 log->Printf("NativeProcessLinux::Monitor::%s exiting because select failed: %s",
914                         __FUNCTION__, strerror(errno));
915             return;
916         }
917 
918         if (FD_ISSET(m_pipefd[READ], &fds))
919         {
920             if (HandleCommands())
921                 return;
922         }
923 
924         if (FD_ISSET(m_signal_fd, &fds))
925         {
926             HandleSignals();
927             HandleWait();
928         }
929     }
930 }
931 
932 Error
933 NativeProcessLinux::Monitor::WaitForAck()
934 {
935     Error error;
936     while (sem_wait(&m_operation_sem) != 0)
937     {
938         if (errno == EINTR)
939             continue;
940 
941         error.SetErrorToErrno();
942         return error;
943     }
944 
945     return m_operation_error;
946 }
947 
948 void *
949 NativeProcessLinux::Monitor::RunMonitor(void *arg)
950 {
951     static_cast<Monitor *>(arg)->MainLoop();
952     return nullptr;
953 }
954 
955 
956 NativeProcessLinux::LaunchArgs::LaunchArgs(Module *module,
957                                        char const **argv,
958                                        char const **envp,
959                                        const std::string &stdin_path,
960                                        const std::string &stdout_path,
961                                        const std::string &stderr_path,
962                                        const char *working_dir,
963                                        const ProcessLaunchInfo &launch_info)
964     : m_module(module),
965       m_argv(argv),
966       m_envp(envp),
967       m_stdin_path(stdin_path),
968       m_stdout_path(stdout_path),
969       m_stderr_path(stderr_path),
970       m_working_dir(working_dir),
971       m_launch_info(launch_info)
972 {
973 }
974 
975 NativeProcessLinux::LaunchArgs::~LaunchArgs()
976 { }
977 
978 // -----------------------------------------------------------------------------
979 // Public Static Methods
980 // -----------------------------------------------------------------------------
981 
982 Error
983 NativeProcessLinux::LaunchProcess (
984     Module *exe_module,
985     ProcessLaunchInfo &launch_info,
986     NativeProcessProtocol::NativeDelegate &native_delegate,
987     NativeProcessProtocolSP &native_process_sp)
988 {
989     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
990 
991     Error error;
992 
993     // Verify the working directory is valid if one was specified.
994     const char* working_dir = launch_info.GetWorkingDirectory ();
995     if (working_dir)
996     {
997       FileSpec working_dir_fs (working_dir, true);
998       if (!working_dir_fs || working_dir_fs.GetFileType () != FileSpec::eFileTypeDirectory)
999       {
1000           error.SetErrorStringWithFormat ("No such file or directory: %s", working_dir);
1001           return error;
1002       }
1003     }
1004 
1005     const FileAction *file_action;
1006 
1007     // Default of NULL will mean to use existing open file descriptors.
1008     std::string stdin_path;
1009     std::string stdout_path;
1010     std::string stderr_path;
1011 
1012     file_action = launch_info.GetFileActionForFD (STDIN_FILENO);
1013     if (file_action)
1014         stdin_path = file_action->GetPath ();
1015 
1016     file_action = launch_info.GetFileActionForFD (STDOUT_FILENO);
1017     if (file_action)
1018         stdout_path = file_action->GetPath ();
1019 
1020     file_action = launch_info.GetFileActionForFD (STDERR_FILENO);
1021     if (file_action)
1022         stderr_path = file_action->GetPath ();
1023 
1024     if (log)
1025     {
1026         if (!stdin_path.empty ())
1027             log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'", __FUNCTION__, stdin_path.c_str ());
1028         else
1029             log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__);
1030 
1031         if (!stdout_path.empty ())
1032             log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'", __FUNCTION__, stdout_path.c_str ());
1033         else
1034             log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__);
1035 
1036         if (!stderr_path.empty ())
1037             log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'", __FUNCTION__, stderr_path.c_str ());
1038         else
1039             log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__);
1040     }
1041 
1042     // Create the NativeProcessLinux in launch mode.
1043     native_process_sp.reset (new NativeProcessLinux ());
1044 
1045     if (log)
1046     {
1047         int i = 0;
1048         for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i)
1049         {
1050             log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr");
1051             ++i;
1052         }
1053     }
1054 
1055     if (!native_process_sp->RegisterNativeDelegate (native_delegate))
1056     {
1057         native_process_sp.reset ();
1058         error.SetErrorStringWithFormat ("failed to register the native delegate");
1059         return error;
1060     }
1061 
1062     std::static_pointer_cast<NativeProcessLinux> (native_process_sp)->LaunchInferior (
1063             exe_module,
1064             launch_info.GetArguments ().GetConstArgumentVector (),
1065             launch_info.GetEnvironmentEntries ().GetConstArgumentVector (),
1066             stdin_path,
1067             stdout_path,
1068             stderr_path,
1069             working_dir,
1070             launch_info,
1071             error);
1072 
1073     if (error.Fail ())
1074     {
1075         native_process_sp.reset ();
1076         if (log)
1077             log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ());
1078         return error;
1079     }
1080 
1081     launch_info.SetProcessID (native_process_sp->GetID ());
1082 
1083     return error;
1084 }
1085 
1086 Error
1087 NativeProcessLinux::AttachToProcess (
1088     lldb::pid_t pid,
1089     NativeProcessProtocol::NativeDelegate &native_delegate,
1090     NativeProcessProtocolSP &native_process_sp)
1091 {
1092     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1093     if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE))
1094         log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid);
1095 
1096     // Grab the current platform architecture.  This should be Linux,
1097     // since this code is only intended to run on a Linux host.
1098     PlatformSP platform_sp (Platform::GetHostPlatform ());
1099     if (!platform_sp)
1100         return Error("failed to get a valid default platform");
1101 
1102     // Retrieve the architecture for the running process.
1103     ArchSpec process_arch;
1104     Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch);
1105     if (!error.Success ())
1106         return error;
1107 
1108     std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ());
1109 
1110     if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate))
1111     {
1112         error.SetErrorStringWithFormat ("failed to register the native delegate");
1113         return error;
1114     }
1115 
1116     native_process_linux_sp->AttachToInferior (pid, error);
1117     if (!error.Success ())
1118         return error;
1119 
1120     native_process_sp = native_process_linux_sp;
1121     return error;
1122 }
1123 
1124 // -----------------------------------------------------------------------------
1125 // Public Instance Methods
1126 // -----------------------------------------------------------------------------
1127 
1128 NativeProcessLinux::NativeProcessLinux () :
1129     NativeProcessProtocol (LLDB_INVALID_PROCESS_ID),
1130     m_arch (),
1131     m_supports_mem_region (eLazyBoolCalculate),
1132     m_mem_region_cache (),
1133     m_mem_region_cache_mutex ()
1134 {
1135 }
1136 
1137 //------------------------------------------------------------------------------
1138 // NativeProcessLinux spawns a new thread which performs all operations on the inferior process.
1139 // Refer to Monitor and Operation classes to see why this is necessary.
1140 //------------------------------------------------------------------------------
1141 void
1142 NativeProcessLinux::LaunchInferior (
1143     Module *module,
1144     const char *argv[],
1145     const char *envp[],
1146     const std::string &stdin_path,
1147     const std::string &stdout_path,
1148     const std::string &stderr_path,
1149     const char *working_dir,
1150     const ProcessLaunchInfo &launch_info,
1151     Error &error)
1152 {
1153     if (module)
1154         m_arch = module->GetArchitecture ();
1155 
1156     SetState (eStateLaunching);
1157 
1158     std::unique_ptr<LaunchArgs> args(
1159         new LaunchArgs(
1160             module, argv, envp,
1161             stdin_path, stdout_path, stderr_path,
1162             working_dir, launch_info));
1163 
1164     StartMonitorThread ([&] (Error &e) { return Launch(args.get(), e); }, error);
1165     if (!error.Success ())
1166         return;
1167 }
1168 
1169 void
1170 NativeProcessLinux::AttachToInferior (lldb::pid_t pid, Error &error)
1171 {
1172     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1173     if (log)
1174         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid);
1175 
1176     // We can use the Host for everything except the ResolveExecutable portion.
1177     PlatformSP platform_sp = Platform::GetHostPlatform ();
1178     if (!platform_sp)
1179     {
1180         if (log)
1181             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid);
1182         error.SetErrorString ("no default platform available");
1183         return;
1184     }
1185 
1186     // Gather info about the process.
1187     ProcessInstanceInfo process_info;
1188     if (!platform_sp->GetProcessInfo (pid, process_info))
1189     {
1190         if (log)
1191             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid);
1192         error.SetErrorString ("failed to get process info");
1193         return;
1194     }
1195 
1196     // Resolve the executable module
1197     ModuleSP exe_module_sp;
1198     FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths());
1199     ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
1200     error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp,
1201                                            executable_search_paths.GetSize() ? &executable_search_paths : NULL);
1202     if (!error.Success())
1203         return;
1204 
1205     // Set the architecture to the exe architecture.
1206     m_arch = exe_module_sp->GetArchitecture();
1207     if (log)
1208         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ());
1209 
1210     m_pid = pid;
1211     SetState(eStateAttaching);
1212 
1213     StartMonitorThread ([=] (Error &e) { return Attach(pid, e); }, error);
1214     if (!error.Success ())
1215         return;
1216 }
1217 
1218 void
1219 NativeProcessLinux::Terminate ()
1220 {
1221     m_monitor_up->Terminate();
1222 }
1223 
1224 ::pid_t
1225 NativeProcessLinux::Launch(LaunchArgs *args, Error &error)
1226 {
1227     assert (args && "null args");
1228 
1229     const char **argv = args->m_argv;
1230     const char **envp = args->m_envp;
1231     const char *working_dir = args->m_working_dir;
1232 
1233     lldb_utility::PseudoTerminal terminal;
1234     const size_t err_len = 1024;
1235     char err_str[err_len];
1236     lldb::pid_t pid;
1237     NativeThreadProtocolSP thread_sp;
1238 
1239     lldb::ThreadSP inferior;
1240 
1241     // Propagate the environment if one is not supplied.
1242     if (envp == NULL || envp[0] == NULL)
1243         envp = const_cast<const char **>(environ);
1244 
1245     if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1))
1246     {
1247         error.SetErrorToGenericError();
1248         error.SetErrorStringWithFormat("Process fork failed: %s", err_str);
1249         return -1;
1250     }
1251 
1252     // Recognized child exit status codes.
1253     enum {
1254         ePtraceFailed = 1,
1255         eDupStdinFailed,
1256         eDupStdoutFailed,
1257         eDupStderrFailed,
1258         eChdirFailed,
1259         eExecFailed,
1260         eSetGidFailed
1261     };
1262 
1263     // Child process.
1264     if (pid == 0)
1265     {
1266         // FIXME consider opening a pipe between parent/child and have this forked child
1267         // send log info to parent re: launch status, in place of the log lines removed here.
1268 
1269         // Start tracing this child that is about to exec.
1270         NativeProcessLinux::PtraceWrapper(PTRACE_TRACEME, 0, nullptr, nullptr, 0, error);
1271         if (error.Fail())
1272             exit(ePtraceFailed);
1273 
1274         // terminal has already dupped the tty descriptors to stdin/out/err.
1275         // This closes original fd from which they were copied (and avoids
1276         // leaking descriptors to the debugged process.
1277         terminal.CloseSlaveFileDescriptor();
1278 
1279         // Do not inherit setgid powers.
1280         if (setgid(getgid()) != 0)
1281             exit(eSetGidFailed);
1282 
1283         // Attempt to have our own process group.
1284         if (setpgid(0, 0) != 0)
1285         {
1286             // FIXME log that this failed. This is common.
1287             // Don't allow this to prevent an inferior exec.
1288         }
1289 
1290         // Dup file descriptors if needed.
1291         if (!args->m_stdin_path.empty ())
1292             if (!DupDescriptor(args->m_stdin_path.c_str (), STDIN_FILENO, O_RDONLY))
1293                 exit(eDupStdinFailed);
1294 
1295         if (!args->m_stdout_path.empty ())
1296             if (!DupDescriptor(args->m_stdout_path.c_str (), STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
1297                 exit(eDupStdoutFailed);
1298 
1299         if (!args->m_stderr_path.empty ())
1300             if (!DupDescriptor(args->m_stderr_path.c_str (), STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
1301                 exit(eDupStderrFailed);
1302 
1303         // Close everything besides stdin, stdout, and stderr that has no file
1304         // action to avoid leaking
1305         for (int fd = 3; fd < sysconf(_SC_OPEN_MAX); ++fd)
1306             if (!args->m_launch_info.GetFileActionForFD(fd))
1307                 close(fd);
1308 
1309         // Change working directory
1310         if (working_dir != NULL && working_dir[0])
1311           if (0 != ::chdir(working_dir))
1312               exit(eChdirFailed);
1313 
1314         // Disable ASLR if requested.
1315         if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR))
1316         {
1317             const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS);
1318             if (old_personality == -1)
1319             {
1320                 // Can't retrieve Linux personality.  Cannot disable ASLR.
1321             }
1322             else
1323             {
1324                 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality);
1325                 if (new_personality == -1)
1326                 {
1327                     // Disabling ASLR failed.
1328                 }
1329                 else
1330                 {
1331                     // Disabling ASLR succeeded.
1332                 }
1333             }
1334         }
1335 
1336         // Execute.  We should never return...
1337         execve(argv[0],
1338                const_cast<char *const *>(argv),
1339                const_cast<char *const *>(envp));
1340 
1341         // ...unless exec fails.  In which case we definitely need to end the child here.
1342         exit(eExecFailed);
1343     }
1344 
1345     //
1346     // This is the parent code here.
1347     //
1348     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1349 
1350     // Wait for the child process to trap on its call to execve.
1351     ::pid_t wpid;
1352     int status;
1353     if ((wpid = waitpid(pid, &status, 0)) < 0)
1354     {
1355         error.SetErrorToErrno();
1356         if (log)
1357             log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s",
1358                     __FUNCTION__, error.AsCString ());
1359 
1360         // Mark the inferior as invalid.
1361         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1362         SetState (StateType::eStateInvalid);
1363 
1364         return -1;
1365     }
1366     else if (WIFEXITED(status))
1367     {
1368         // open, dup or execve likely failed for some reason.
1369         error.SetErrorToGenericError();
1370         switch (WEXITSTATUS(status))
1371         {
1372             case ePtraceFailed:
1373                 error.SetErrorString("Child ptrace failed.");
1374                 break;
1375             case eDupStdinFailed:
1376                 error.SetErrorString("Child open stdin failed.");
1377                 break;
1378             case eDupStdoutFailed:
1379                 error.SetErrorString("Child open stdout failed.");
1380                 break;
1381             case eDupStderrFailed:
1382                 error.SetErrorString("Child open stderr failed.");
1383                 break;
1384             case eChdirFailed:
1385                 error.SetErrorString("Child failed to set working directory.");
1386                 break;
1387             case eExecFailed:
1388                 error.SetErrorString("Child exec failed.");
1389                 break;
1390             case eSetGidFailed:
1391                 error.SetErrorString("Child setgid failed.");
1392                 break;
1393             default:
1394                 error.SetErrorString("Child returned unknown exit status.");
1395                 break;
1396         }
1397 
1398         if (log)
1399         {
1400             log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP",
1401                     __FUNCTION__,
1402                     WEXITSTATUS(status));
1403         }
1404 
1405         // Mark the inferior as invalid.
1406         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1407         SetState (StateType::eStateInvalid);
1408 
1409         return -1;
1410     }
1411     assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) &&
1412            "Could not sync with inferior process.");
1413 
1414     if (log)
1415         log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__);
1416 
1417     error = SetDefaultPtraceOpts(pid);
1418     if (error.Fail())
1419     {
1420         if (log)
1421             log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s",
1422                     __FUNCTION__, error.AsCString ());
1423 
1424         // Mark the inferior as invalid.
1425         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1426         SetState (StateType::eStateInvalid);
1427 
1428         return -1;
1429     }
1430 
1431     // Release the master terminal descriptor and pass it off to the
1432     // NativeProcessLinux instance.  Similarly stash the inferior pid.
1433     m_terminal_fd = terminal.ReleaseMasterFileDescriptor();
1434     m_pid = pid;
1435 
1436     // Set the terminal fd to be in non blocking mode (it simplifies the
1437     // implementation of ProcessLinux::GetSTDOUT to have a non-blocking
1438     // descriptor to read from).
1439     error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
1440     if (error.Fail())
1441     {
1442         if (log)
1443             log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s",
1444                     __FUNCTION__, error.AsCString ());
1445 
1446         // Mark the inferior as invalid.
1447         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1448         SetState (StateType::eStateInvalid);
1449 
1450         return -1;
1451     }
1452 
1453     if (log)
1454         log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid);
1455 
1456     thread_sp = AddThread (pid);
1457     assert (thread_sp && "AddThread() returned a nullptr thread");
1458     std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP);
1459     ThreadWasCreated(pid);
1460 
1461     // Let our process instance know the thread has stopped.
1462     SetCurrentThreadID (thread_sp->GetID ());
1463     SetState (StateType::eStateStopped);
1464 
1465     if (log)
1466     {
1467         if (error.Success ())
1468         {
1469             log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__);
1470         }
1471         else
1472         {
1473             log->Printf ("NativeProcessLinux::%s inferior launching failed: %s",
1474                 __FUNCTION__, error.AsCString ());
1475             return -1;
1476         }
1477     }
1478     return pid;
1479 }
1480 
1481 ::pid_t
1482 NativeProcessLinux::Attach(lldb::pid_t pid, Error &error)
1483 {
1484     lldb::ThreadSP inferior;
1485     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1486 
1487     // Use a map to keep track of the threads which we have attached/need to attach.
1488     Host::TidMap tids_to_attach;
1489     if (pid <= 1)
1490     {
1491         error.SetErrorToGenericError();
1492         error.SetErrorString("Attaching to process 1 is not allowed.");
1493         return -1;
1494     }
1495 
1496     while (Host::FindProcessThreads(pid, tids_to_attach))
1497     {
1498         for (Host::TidMap::iterator it = tids_to_attach.begin();
1499              it != tids_to_attach.end();)
1500         {
1501             if (it->second == false)
1502             {
1503                 lldb::tid_t tid = it->first;
1504 
1505                 // Attach to the requested process.
1506                 // An attach will cause the thread to stop with a SIGSTOP.
1507                 NativeProcessLinux::PtraceWrapper(PTRACE_ATTACH, tid, nullptr, nullptr, 0, error);
1508                 if (error.Fail())
1509                 {
1510                     // No such thread. The thread may have exited.
1511                     // More error handling may be needed.
1512                     if (error.GetError() == ESRCH)
1513                     {
1514                         it = tids_to_attach.erase(it);
1515                         continue;
1516                     }
1517                     else
1518                         return -1;
1519                 }
1520 
1521                 int status;
1522                 // Need to use __WALL otherwise we receive an error with errno=ECHLD
1523                 // At this point we should have a thread stopped if waitpid succeeds.
1524                 if ((status = waitpid(tid, NULL, __WALL)) < 0)
1525                 {
1526                     // No such thread. The thread may have exited.
1527                     // More error handling may be needed.
1528                     if (errno == ESRCH)
1529                     {
1530                         it = tids_to_attach.erase(it);
1531                         continue;
1532                     }
1533                     else
1534                     {
1535                         error.SetErrorToErrno();
1536                         return -1;
1537                     }
1538                 }
1539 
1540                 error = SetDefaultPtraceOpts(tid);
1541                 if (error.Fail())
1542                     return -1;
1543 
1544                 if (log)
1545                     log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid);
1546 
1547                 it->second = true;
1548 
1549                 // Create the thread, mark it as stopped.
1550                 NativeThreadProtocolSP thread_sp (AddThread (static_cast<lldb::tid_t> (tid)));
1551                 assert (thread_sp && "AddThread() returned a nullptr");
1552 
1553                 // This will notify this is a new thread and tell the system it is stopped.
1554                 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP);
1555                 ThreadWasCreated(tid);
1556                 SetCurrentThreadID (thread_sp->GetID ());
1557             }
1558 
1559             // move the loop forward
1560             ++it;
1561         }
1562     }
1563 
1564     if (tids_to_attach.size() > 0)
1565     {
1566         m_pid = pid;
1567         // Let our process instance know the thread has stopped.
1568         SetState (StateType::eStateStopped);
1569     }
1570     else
1571     {
1572         error.SetErrorToGenericError();
1573         error.SetErrorString("No such process.");
1574         return -1;
1575     }
1576 
1577     return pid;
1578 }
1579 
1580 Error
1581 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid)
1582 {
1583     long ptrace_opts = 0;
1584 
1585     // Have the child raise an event on exit.  This is used to keep the child in
1586     // limbo until it is destroyed.
1587     ptrace_opts |= PTRACE_O_TRACEEXIT;
1588 
1589     // Have the tracer trace threads which spawn in the inferior process.
1590     // TODO: if we want to support tracing the inferiors' child, add the
1591     // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
1592     ptrace_opts |= PTRACE_O_TRACECLONE;
1593 
1594     // Have the tracer notify us before execve returns
1595     // (needed to disable legacy SIGTRAP generation)
1596     ptrace_opts |= PTRACE_O_TRACEEXEC;
1597 
1598     Error error;
1599     NativeProcessLinux::PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts, 0, error);
1600     return error;
1601 }
1602 
1603 static ExitType convert_pid_status_to_exit_type (int status)
1604 {
1605     if (WIFEXITED (status))
1606         return ExitType::eExitTypeExit;
1607     else if (WIFSIGNALED (status))
1608         return ExitType::eExitTypeSignal;
1609     else if (WIFSTOPPED (status))
1610         return ExitType::eExitTypeStop;
1611     else
1612     {
1613         // We don't know what this is.
1614         return ExitType::eExitTypeInvalid;
1615     }
1616 }
1617 
1618 static int convert_pid_status_to_return_code (int status)
1619 {
1620     if (WIFEXITED (status))
1621         return WEXITSTATUS (status);
1622     else if (WIFSIGNALED (status))
1623         return WTERMSIG (status);
1624     else if (WIFSTOPPED (status))
1625         return WSTOPSIG (status);
1626     else
1627     {
1628         // We don't know what this is.
1629         return ExitType::eExitTypeInvalid;
1630     }
1631 }
1632 
1633 // Handles all waitpid events from the inferior process.
1634 void
1635 NativeProcessLinux::MonitorCallback(lldb::pid_t pid,
1636                                     bool exited,
1637                                     int signal,
1638                                     int status)
1639 {
1640     Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS));
1641 
1642     // Certain activities differ based on whether the pid is the tid of the main thread.
1643     const bool is_main_thread = (pid == GetID ());
1644 
1645     // Handle when the thread exits.
1646     if (exited)
1647     {
1648         if (log)
1649             log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %"  PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not");
1650 
1651         // This is a thread that exited.  Ensure we're not tracking it anymore.
1652         const bool thread_found = StopTrackingThread (pid);
1653 
1654         if (is_main_thread)
1655         {
1656             // We only set the exit status and notify the delegate if we haven't already set the process
1657             // state to an exited state.  We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8)
1658             // for the main thread.
1659             const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed);
1660             if (!already_notified)
1661             {
1662                 if (log)
1663                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ()));
1664                 // The main thread exited.  We're done monitoring.  Report to delegate.
1665                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
1666 
1667                 // Notify delegate that our process has exited.
1668                 SetState (StateType::eStateExited, true);
1669             }
1670             else
1671             {
1672                 if (log)
1673                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
1674             }
1675         }
1676         else
1677         {
1678             // Do we want to report to the delegate in this case?  I think not.  If this was an orderly
1679             // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal,
1680             // and we would have done an all-stop then.
1681             if (log)
1682                 log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
1683         }
1684         return;
1685     }
1686 
1687     // Get details on the signal raised.
1688     siginfo_t info;
1689     const auto err = GetSignalInfo(pid, &info);
1690     if (err.Success())
1691     {
1692         // We have retrieved the signal info.  Dispatch appropriately.
1693         if (info.si_signo == SIGTRAP)
1694             MonitorSIGTRAP(&info, pid);
1695         else
1696             MonitorSignal(&info, pid, exited);
1697     }
1698     else
1699     {
1700         if (err.GetError() == EINVAL)
1701         {
1702             // This is a group stop reception for this tid.
1703             // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the
1704             // tracee, triggering the group-stop mechanism. Normally receiving these would stop
1705             // the process, pending a SIGCONT. Simulating this state in a debugger is hard and is
1706             // generally not needed (one use case is debugging background task being managed by a
1707             // shell). For general use, it is sufficient to stop the process in a signal-delivery
1708             // stop which happens before the group stop. This done by MonitorSignal and works
1709             // correctly for all signals.
1710             if (log)
1711                 log->Printf("NativeProcessLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64 ". Transparent handling of group stops not supported, resuming the thread.", __FUNCTION__, GetID (), pid);
1712             Resume(pid, signal);
1713         }
1714         else
1715         {
1716             // ptrace(GETSIGINFO) failed (but not due to group-stop).
1717 
1718             // A return value of ESRCH means the thread/process is no longer on the system,
1719             // so it was killed somehow outside of our control.  Either way, we can't do anything
1720             // with it anymore.
1721 
1722             // Stop tracking the metadata for the thread since it's entirely off the system now.
1723             const bool thread_found = StopTrackingThread (pid);
1724 
1725             if (log)
1726                 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)",
1727                              __FUNCTION__, err.AsCString(), pid, signal, status, err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found");
1728 
1729             if (is_main_thread)
1730             {
1731                 // Notify the delegate - our process is not available but appears to have been killed outside
1732                 // our control.  Is eStateExited the right exit state in this case?
1733                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
1734                 SetState (StateType::eStateExited, true);
1735             }
1736             else
1737             {
1738                 // This thread was pulled out from underneath us.  Anything to do here? Do we want to do an all stop?
1739                 if (log)
1740                     log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid);
1741             }
1742         }
1743     }
1744 }
1745 
1746 void
1747 NativeProcessLinux::WaitForNewThread(::pid_t tid)
1748 {
1749     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1750 
1751     NativeThreadProtocolSP new_thread_sp = GetThreadByID(tid);
1752 
1753     if (new_thread_sp)
1754     {
1755         // We are already tracking the thread - we got the event on the new thread (see
1756         // MonitorSignal) before this one. We are done.
1757         return;
1758     }
1759 
1760     // The thread is not tracked yet, let's wait for it to appear.
1761     int status = -1;
1762     ::pid_t wait_pid;
1763     do
1764     {
1765         if (log)
1766             log->Printf ("NativeProcessLinux::%s() received thread creation event for tid %" PRIu32 ". tid not tracked yet, waiting for thread to appear...", __FUNCTION__, tid);
1767         wait_pid = waitpid(tid, &status, __WALL);
1768     }
1769     while (wait_pid == -1 && errno == EINTR);
1770     // Since we are waiting on a specific tid, this must be the creation event. But let's do
1771     // some checks just in case.
1772     if (wait_pid != tid) {
1773         if (log)
1774             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime", __FUNCTION__, tid);
1775         // The only way I know of this could happen is if the whole process was
1776         // SIGKILLed in the mean time. In any case, we can't do anything about that now.
1777         return;
1778     }
1779     if (WIFEXITED(status))
1780     {
1781         if (log)
1782             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " returned an 'exited' event. Not tracking the thread.", __FUNCTION__, tid);
1783         // Also a very improbable event.
1784         return;
1785     }
1786 
1787     siginfo_t info;
1788     Error error = GetSignalInfo(tid, &info);
1789     if (error.Fail())
1790     {
1791         if (log)
1792             log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime.", __FUNCTION__, tid);
1793         return;
1794     }
1795 
1796     if (((info.si_pid != 0) || (info.si_code != SI_USER)) && log)
1797     {
1798         // We should be getting a thread creation signal here, but we received something
1799         // else. There isn't much we can do about it now, so we will just log that. Since the
1800         // thread is alive and we are receiving events from it, we shall pretend that it was
1801         // created properly.
1802         log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " received unexpected signal with code %d from pid %d.", __FUNCTION__, tid, info.si_code, info.si_pid);
1803     }
1804 
1805     if (log)
1806         log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": tracking new thread tid %" PRIu32,
1807                  __FUNCTION__, GetID (), tid);
1808 
1809     new_thread_sp = AddThread(tid);
1810     std::static_pointer_cast<NativeThreadLinux> (new_thread_sp)->SetRunning ();
1811     Resume (tid, LLDB_INVALID_SIGNAL_NUMBER);
1812     ThreadWasCreated(tid);
1813 }
1814 
1815 void
1816 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid)
1817 {
1818     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1819     const bool is_main_thread = (pid == GetID ());
1820 
1821     assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!");
1822     if (!info)
1823         return;
1824 
1825     Mutex::Locker locker (m_threads_mutex);
1826 
1827     // See if we can find a thread for this signal.
1828     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
1829     if (!thread_sp)
1830     {
1831         if (log)
1832             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
1833     }
1834 
1835     switch (info->si_code)
1836     {
1837     // TODO: these two cases are required if we want to support tracing of the inferiors' children.  We'd need this to debug a monitor.
1838     // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
1839     // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
1840 
1841     case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)):
1842     {
1843         // This is the notification on the parent thread which informs us of new thread
1844         // creation.
1845         // We don't want to do anything with the parent thread so we just resume it. In case we
1846         // want to implement "break on thread creation" functionality, we would need to stop
1847         // here.
1848 
1849         unsigned long event_message = 0;
1850         if (GetEventMessage (pid, &event_message).Fail())
1851         {
1852             if (log)
1853                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, pid);
1854         } else
1855             WaitForNewThread(event_message);
1856 
1857         Resume (pid, LLDB_INVALID_SIGNAL_NUMBER);
1858         break;
1859     }
1860 
1861     case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)):
1862     {
1863         NativeThreadProtocolSP main_thread_sp;
1864         if (log)
1865             log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP);
1866 
1867         // Exec clears any pending notifications.
1868         m_pending_notification_up.reset ();
1869 
1870         // Remove all but the main thread here.  Linux fork creates a new process which only copies the main thread.  Mutexes are in undefined state.
1871         if (log)
1872             log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__);
1873 
1874         for (auto thread_sp : m_threads)
1875         {
1876             const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID ();
1877             if (is_main_thread)
1878             {
1879                 main_thread_sp = thread_sp;
1880                 if (log)
1881                     log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ());
1882             }
1883             else
1884             {
1885                 // Tell thread coordinator this thread is dead.
1886                 if (log)
1887                     log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ());
1888             }
1889         }
1890 
1891         m_threads.clear ();
1892 
1893         if (main_thread_sp)
1894         {
1895             m_threads.push_back (main_thread_sp);
1896             SetCurrentThreadID (main_thread_sp->GetID ());
1897             std::static_pointer_cast<NativeThreadLinux> (main_thread_sp)->SetStoppedByExec ();
1898         }
1899         else
1900         {
1901             SetCurrentThreadID (LLDB_INVALID_THREAD_ID);
1902             if (log)
1903                 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ());
1904         }
1905 
1906         // Tell coordinator about about the "new" (since exec) stopped main thread.
1907         const lldb::tid_t main_thread_tid = GetID ();
1908         ThreadWasCreated(main_thread_tid);
1909 
1910         // NOTE: ideally these next statements would execute at the same time as the coordinator thread create was executed.
1911         // Consider a handler that can execute when that happens.
1912         // Let our delegate know we have just exec'd.
1913         NotifyDidExec ();
1914 
1915         // If we have a main thread, indicate we are stopped.
1916         assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked");
1917 
1918         // Let the process know we're stopped.
1919         StopRunningThreads (pid);
1920 
1921         break;
1922     }
1923 
1924     case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)):
1925     {
1926         // The inferior process or one of its threads is about to exit.
1927         // We don't want to do anything with the thread so we just resume it. In case we
1928         // want to implement "break on thread exit" functionality, we would need to stop
1929         // here.
1930 
1931         unsigned long data = 0;
1932         if (GetEventMessage(pid, &data).Fail())
1933             data = -1;
1934 
1935         if (log)
1936         {
1937             log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)",
1938                          __FUNCTION__,
1939                          data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false",
1940                          pid,
1941                     is_main_thread ? "is main thread" : "not main thread");
1942         }
1943 
1944         if (is_main_thread)
1945         {
1946             SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true);
1947         }
1948 
1949         Resume(pid, LLDB_INVALID_SIGNAL_NUMBER);
1950 
1951         break;
1952     }
1953 
1954     case 0:
1955     case TRAP_TRACE:  // We receive this on single stepping.
1956     case TRAP_HWBKPT: // We receive this on watchpoint hit
1957         if (thread_sp)
1958         {
1959             // If a watchpoint was hit, report it
1960             uint32_t wp_index;
1961             Error error = thread_sp->GetRegisterContext()->GetWatchpointHitIndex(wp_index, (lldb::addr_t)info->si_addr);
1962             if (error.Fail() && log)
1963                 log->Printf("NativeProcessLinux::%s() "
1964                             "received error while checking for watchpoint hits, "
1965                             "pid = %" PRIu64 " error = %s",
1966                             __FUNCTION__, pid, error.AsCString());
1967             if (wp_index != LLDB_INVALID_INDEX32)
1968             {
1969                 MonitorWatchpoint(pid, thread_sp, wp_index);
1970                 break;
1971             }
1972         }
1973         // Otherwise, report step over
1974         MonitorTrace(pid, thread_sp);
1975         break;
1976 
1977     case SI_KERNEL:
1978     case TRAP_BRKPT:
1979         MonitorBreakpoint(pid, thread_sp);
1980         break;
1981 
1982     case SIGTRAP:
1983     case (SIGTRAP | 0x80):
1984         if (log)
1985             log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), pid);
1986 
1987         // Ignore these signals until we know more about them.
1988         Resume(pid, LLDB_INVALID_SIGNAL_NUMBER);
1989         break;
1990 
1991     default:
1992         assert(false && "Unexpected SIGTRAP code!");
1993         if (log)
1994             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%d",
1995                     __FUNCTION__, GetID (), pid, info->si_code);
1996         break;
1997 
1998     }
1999 }
2000 
2001 void
2002 NativeProcessLinux::MonitorTrace(lldb::pid_t pid, NativeThreadProtocolSP thread_sp)
2003 {
2004     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2005     if (log)
2006         log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)",
2007                 __FUNCTION__, pid);
2008 
2009     if (thread_sp)
2010         std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace();
2011 
2012     // This thread is currently stopped.
2013     ThreadDidStop(pid, false);
2014 
2015     // Here we don't have to request the rest of the threads to stop or request a deferred stop.
2016     // This would have already happened at the time the Resume() with step operation was signaled.
2017     // At this point, we just need to say we stopped, and the deferred notifcation will fire off
2018     // once all running threads have checked in as stopped.
2019     SetCurrentThreadID(pid);
2020     // Tell the process we have a stop (from software breakpoint).
2021     StopRunningThreads(pid);
2022 }
2023 
2024 void
2025 NativeProcessLinux::MonitorBreakpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp)
2026 {
2027     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
2028     if (log)
2029         log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64,
2030                 __FUNCTION__, pid);
2031 
2032     // This thread is currently stopped.
2033     ThreadDidStop(pid, false);
2034 
2035     // Mark the thread as stopped at breakpoint.
2036     if (thread_sp)
2037     {
2038         std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByBreakpoint();
2039         Error error = FixupBreakpointPCAsNeeded(thread_sp);
2040         if (error.Fail())
2041             if (log)
2042                 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s",
2043                         __FUNCTION__, pid, error.AsCString());
2044 
2045         if (m_threads_stepping_with_breakpoint.find(pid) != m_threads_stepping_with_breakpoint.end())
2046             std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace();
2047     }
2048     else
2049         if (log)
2050             log->Printf("NativeProcessLinux::%s()  pid = %" PRIu64 ": "
2051                     "warning, cannot process software breakpoint since no thread metadata",
2052                     __FUNCTION__, pid);
2053 
2054 
2055     // We need to tell all other running threads before we notify the delegate about this stop.
2056     StopRunningThreads(pid);
2057 }
2058 
2059 void
2060 NativeProcessLinux::MonitorWatchpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp, uint32_t wp_index)
2061 {
2062     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
2063     if (log)
2064         log->Printf("NativeProcessLinux::%s() received watchpoint event, "
2065                     "pid = %" PRIu64 ", wp_index = %" PRIu32,
2066                     __FUNCTION__, pid, wp_index);
2067 
2068     // This thread is currently stopped.
2069     ThreadDidStop(pid, false);
2070 
2071     // Mark the thread as stopped at watchpoint.
2072     // The address is at (lldb::addr_t)info->si_addr if we need it.
2073     lldbassert(thread_sp && "thread_sp cannot be NULL");
2074     std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByWatchpoint(wp_index);
2075 
2076     // We need to tell all other running threads before we notify the delegate about this stop.
2077     StopRunningThreads(pid);
2078 }
2079 
2080 void
2081 NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited)
2082 {
2083     assert (info && "null info");
2084     if (!info)
2085         return;
2086 
2087     const int signo = info->si_signo;
2088     const bool is_from_llgs = info->si_pid == getpid ();
2089 
2090     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2091 
2092     // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
2093     // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
2094     // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
2095     //
2096     // IOW, user generated signals never generate what we consider to be a
2097     // "crash".
2098     //
2099     // Similarly, ACK signals generated by this monitor.
2100 
2101     Mutex::Locker locker (m_threads_mutex);
2102 
2103     // See if we can find a thread for this signal.
2104     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
2105     if (!thread_sp)
2106     {
2107         if (log)
2108             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
2109     }
2110 
2111     // Handle the signal.
2112     if (info->si_code == SI_TKILL || info->si_code == SI_USER)
2113     {
2114         if (log)
2115             log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")",
2116                             __FUNCTION__,
2117                             GetUnixSignals ().GetSignalAsCString (signo),
2118                             signo,
2119                             (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"),
2120                             info->si_pid,
2121                             is_from_llgs ? "from llgs" : "not from llgs",
2122                             pid);
2123     }
2124 
2125     // Check for new thread notification.
2126     if ((info->si_pid == 0) && (info->si_code == SI_USER))
2127     {
2128         // A new thread creation is being signaled. This is one of two parts that come in
2129         // a non-deterministic order. This code handles the case where the new thread event comes
2130         // before the event on the parent thread. For the opposite case see code in
2131         // MonitorSIGTRAP.
2132         if (log)
2133             log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification",
2134                      __FUNCTION__, GetID (), pid);
2135 
2136         thread_sp = AddThread(pid);
2137         assert (thread_sp.get() && "failed to create the tracking data for newly created inferior thread");
2138         // We can now resume the newly created thread.
2139         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2140         Resume (pid, LLDB_INVALID_SIGNAL_NUMBER);
2141         ThreadWasCreated(pid);
2142         // Done handling.
2143         return;
2144     }
2145 
2146     // Check for thread stop notification.
2147     if (is_from_llgs && (info->si_code == SI_TKILL) && (signo == SIGSTOP))
2148     {
2149         // This is a tgkill()-based stop.
2150         if (thread_sp)
2151         {
2152             if (log)
2153                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped",
2154                              __FUNCTION__,
2155                              GetID (),
2156                              pid);
2157 
2158             // Check that we're not already marked with a stop reason.
2159             // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that
2160             // the kernel signaled us with the thread stopping which we handled and marked as stopped,
2161             // and that, without an intervening resume, we received another stop.  It is more likely
2162             // that we are missing the marking of a run state somewhere if we find that the thread was
2163             // marked as stopped.
2164             std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp);
2165             assert (linux_thread_sp && "linux_thread_sp is null!");
2166 
2167             const StateType thread_state = linux_thread_sp->GetState ();
2168             if (!StateIsStoppedState (thread_state, false))
2169             {
2170                 // An inferior thread has stopped because of a SIGSTOP we have sent it.
2171                 // Generally, these are not important stops and we don't want to report them as
2172                 // they are just used to stop other threads when one thread (the one with the
2173                 // *real* stop reason) hits a breakpoint (watchpoint, etc...). However, in the
2174                 // case of an asynchronous Interrupt(), this *is* the real stop reason, so we
2175                 // leave the signal intact if this is the thread that was chosen as the
2176                 // triggering thread.
2177                 if (m_pending_notification_up && m_pending_notification_up->triggering_tid == pid)
2178                     linux_thread_sp->SetStoppedBySignal(SIGSTOP, info);
2179                 else
2180                     linux_thread_sp->SetStoppedBySignal(0);
2181 
2182                 SetCurrentThreadID (thread_sp->GetID ());
2183                 ThreadDidStop (thread_sp->GetID (), true);
2184             }
2185             else
2186             {
2187                 if (log)
2188                 {
2189                     // Retrieve the signal name if the thread was stopped by a signal.
2190                     int stop_signo = 0;
2191                     const bool stopped_by_signal = linux_thread_sp->IsStopped (&stop_signo);
2192                     const char *signal_name = stopped_by_signal ? GetUnixSignals ().GetSignalAsCString (stop_signo) : "<not stopped by signal>";
2193                     if (!signal_name)
2194                         signal_name = "<no-signal-name>";
2195 
2196                     log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is",
2197                                  __FUNCTION__,
2198                                  GetID (),
2199                                  linux_thread_sp->GetID (),
2200                                  StateAsCString (thread_state),
2201                                  stop_signo,
2202                                  signal_name);
2203                 }
2204                 ThreadDidStop (thread_sp->GetID (), false);
2205             }
2206         }
2207 
2208         // Done handling.
2209         return;
2210     }
2211 
2212     if (log)
2213         log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo));
2214 
2215     // This thread is stopped.
2216     ThreadDidStop (pid, false);
2217 
2218     if (thread_sp)
2219         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal(signo, info);
2220 
2221     // Send a stop to the debugger after we get all other threads to stop.
2222     StopRunningThreads (pid);
2223 }
2224 
2225 namespace {
2226 
2227 struct EmulatorBaton
2228 {
2229     NativeProcessLinux* m_process;
2230     NativeRegisterContext* m_reg_context;
2231 
2232     // eRegisterKindDWARF -> RegsiterValue
2233     std::unordered_map<uint32_t, RegisterValue> m_register_values;
2234 
2235     EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) :
2236             m_process(process), m_reg_context(reg_context) {}
2237 };
2238 
2239 } // anonymous namespace
2240 
2241 static size_t
2242 ReadMemoryCallback (EmulateInstruction *instruction,
2243                     void *baton,
2244                     const EmulateInstruction::Context &context,
2245                     lldb::addr_t addr,
2246                     void *dst,
2247                     size_t length)
2248 {
2249     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2250 
2251     size_t bytes_read;
2252     emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read);
2253     return bytes_read;
2254 }
2255 
2256 static bool
2257 ReadRegisterCallback (EmulateInstruction *instruction,
2258                       void *baton,
2259                       const RegisterInfo *reg_info,
2260                       RegisterValue &reg_value)
2261 {
2262     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2263 
2264     auto it = emulator_baton->m_register_values.find(reg_info->kinds[eRegisterKindDWARF]);
2265     if (it != emulator_baton->m_register_values.end())
2266     {
2267         reg_value = it->second;
2268         return true;
2269     }
2270 
2271     // The emulator only fill in the dwarf regsiter numbers (and in some case
2272     // the generic register numbers). Get the full register info from the
2273     // register context based on the dwarf register numbers.
2274     const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo(
2275             eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
2276 
2277     Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value);
2278     if (error.Success())
2279         return true;
2280 
2281     return false;
2282 }
2283 
2284 static bool
2285 WriteRegisterCallback (EmulateInstruction *instruction,
2286                        void *baton,
2287                        const EmulateInstruction::Context &context,
2288                        const RegisterInfo *reg_info,
2289                        const RegisterValue &reg_value)
2290 {
2291     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2292     emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value;
2293     return true;
2294 }
2295 
2296 static size_t
2297 WriteMemoryCallback (EmulateInstruction *instruction,
2298                      void *baton,
2299                      const EmulateInstruction::Context &context,
2300                      lldb::addr_t addr,
2301                      const void *dst,
2302                      size_t length)
2303 {
2304     return length;
2305 }
2306 
2307 static lldb::addr_t
2308 ReadFlags (NativeRegisterContext* regsiter_context)
2309 {
2310     const RegisterInfo* flags_info = regsiter_context->GetRegisterInfo(
2311             eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
2312     return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS);
2313 }
2314 
2315 Error
2316 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadProtocolSP thread_sp)
2317 {
2318     Error error;
2319     NativeRegisterContextSP register_context_sp = thread_sp->GetRegisterContext();
2320 
2321     std::unique_ptr<EmulateInstruction> emulator_ap(
2322         EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr));
2323 
2324     if (emulator_ap == nullptr)
2325         return Error("Instruction emulator not found!");
2326 
2327     EmulatorBaton baton(this, register_context_sp.get());
2328     emulator_ap->SetBaton(&baton);
2329     emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
2330     emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
2331     emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
2332     emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
2333 
2334     if (!emulator_ap->ReadInstruction())
2335         return Error("Read instruction failed!");
2336 
2337     bool emulation_result = emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
2338 
2339     const RegisterInfo* reg_info_pc = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
2340     const RegisterInfo* reg_info_flags = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
2341 
2342     auto pc_it = baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
2343     auto flags_it = baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
2344 
2345     lldb::addr_t next_pc;
2346     lldb::addr_t next_flags;
2347     if (emulation_result)
2348     {
2349         assert(pc_it != baton.m_register_values.end() && "Emulation was successfull but PC wasn't updated");
2350         next_pc = pc_it->second.GetAsUInt64();
2351 
2352         if (flags_it != baton.m_register_values.end())
2353             next_flags = flags_it->second.GetAsUInt64();
2354         else
2355             next_flags = ReadFlags (register_context_sp.get());
2356     }
2357     else if (pc_it == baton.m_register_values.end())
2358     {
2359         // Emulate instruction failed and it haven't changed PC. Advance PC
2360         // with the size of the current opcode because the emulation of all
2361         // PC modifying instruction should be successful. The failure most
2362         // likely caused by a not supported instruction which don't modify PC.
2363         next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize();
2364         next_flags = ReadFlags (register_context_sp.get());
2365     }
2366     else
2367     {
2368         // The instruction emulation failed after it modified the PC. It is an
2369         // unknown error where we can't continue because the next instruction is
2370         // modifying the PC but we don't  know how.
2371         return Error ("Instruction emulation failed unexpectedly.");
2372     }
2373 
2374     if (m_arch.GetMachine() == llvm::Triple::arm)
2375     {
2376         if (next_flags & 0x20)
2377         {
2378             // Thumb mode
2379             error = SetSoftwareBreakpoint(next_pc, 2);
2380         }
2381         else
2382         {
2383             // Arm mode
2384             error = SetSoftwareBreakpoint(next_pc, 4);
2385         }
2386     }
2387     else if (m_arch.GetMachine() == llvm::Triple::mips64
2388             || m_arch.GetMachine() == llvm::Triple::mips64el)
2389         error = SetSoftwareBreakpoint(next_pc, 4);
2390     else
2391     {
2392         // No size hint is given for the next breakpoint
2393         error = SetSoftwareBreakpoint(next_pc, 0);
2394     }
2395 
2396     if (error.Fail())
2397         return error;
2398 
2399     m_threads_stepping_with_breakpoint.insert({thread_sp->GetID(), next_pc});
2400 
2401     return Error();
2402 }
2403 
2404 bool
2405 NativeProcessLinux::SupportHardwareSingleStepping() const
2406 {
2407     if (m_arch.GetMachine() == llvm::Triple::arm
2408         || m_arch.GetMachine() == llvm::Triple::mips64 || m_arch.GetMachine() == llvm::Triple::mips64el)
2409         return false;
2410     return true;
2411 }
2412 
2413 Error
2414 NativeProcessLinux::Resume (const ResumeActionList &resume_actions)
2415 {
2416     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD));
2417     if (log)
2418         log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ());
2419 
2420     bool software_single_step = !SupportHardwareSingleStepping();
2421 
2422     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
2423     Mutex::Locker locker (m_threads_mutex);
2424 
2425     if (software_single_step)
2426     {
2427         for (auto thread_sp : m_threads)
2428         {
2429             assert (thread_sp && "thread list should not contain NULL threads");
2430 
2431             const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
2432             if (action == nullptr)
2433                 continue;
2434 
2435             if (action->state == eStateStepping)
2436             {
2437                 Error error = SetupSoftwareSingleStepping(thread_sp);
2438                 if (error.Fail())
2439                     return error;
2440             }
2441         }
2442     }
2443 
2444     for (auto thread_sp : m_threads)
2445     {
2446         assert (thread_sp && "thread list should not contain NULL threads");
2447 
2448         const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
2449 
2450         if (action == nullptr)
2451         {
2452             if (log)
2453                 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64,
2454                     __FUNCTION__, GetID (), thread_sp->GetID ());
2455             continue;
2456         }
2457 
2458         if (log)
2459         {
2460             log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64,
2461                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
2462         }
2463 
2464         switch (action->state)
2465         {
2466         case eStateRunning:
2467         {
2468             // Run the thread, possibly feeding it the signal.
2469             const int signo = action->signal;
2470             ResumeThread(thread_sp->GetID (),
2471                     [=](lldb::tid_t tid_to_resume, bool supress_signal)
2472                     {
2473                         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2474                         // Pass this signal number on to the inferior to handle.
2475                         const auto resume_result = Resume (tid_to_resume, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
2476                         if (resume_result.Success())
2477                             SetState(eStateRunning, true);
2478                         return resume_result;
2479                     },
2480                     false);
2481             break;
2482         }
2483 
2484         case eStateStepping:
2485         {
2486             // Request the step.
2487             const int signo = action->signal;
2488             ResumeThread(thread_sp->GetID (),
2489                     [=](lldb::tid_t tid_to_step, bool supress_signal)
2490                     {
2491                         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStepping ();
2492 
2493                         Error step_result;
2494                         if (software_single_step)
2495                             step_result = Resume (tid_to_step, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
2496                         else
2497                             step_result = SingleStep (tid_to_step,(signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
2498 
2499                         assert (step_result.Success() && "SingleStep() failed");
2500                         if (step_result.Success())
2501                             SetState(eStateStepping, true);
2502                         return step_result;
2503                     },
2504                     false);
2505             break;
2506         }
2507 
2508         case eStateSuspended:
2509         case eStateStopped:
2510             lldbassert(0 && "Unexpected state");
2511 
2512         default:
2513             return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64,
2514                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
2515         }
2516     }
2517 
2518     return Error();
2519 }
2520 
2521 Error
2522 NativeProcessLinux::Halt ()
2523 {
2524     Error error;
2525 
2526     if (kill (GetID (), SIGSTOP) != 0)
2527         error.SetErrorToErrno ();
2528 
2529     return error;
2530 }
2531 
2532 Error
2533 NativeProcessLinux::Detach ()
2534 {
2535     Error error;
2536 
2537     // Tell ptrace to detach from the process.
2538     if (GetID () != LLDB_INVALID_PROCESS_ID)
2539         error = Detach (GetID ());
2540 
2541     // Stop monitoring the inferior.
2542     m_monitor_up->Terminate();
2543 
2544     // No error.
2545     return error;
2546 }
2547 
2548 Error
2549 NativeProcessLinux::Signal (int signo)
2550 {
2551     Error error;
2552 
2553     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2554     if (log)
2555         log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64,
2556                 __FUNCTION__, signo,  GetUnixSignals ().GetSignalAsCString (signo), GetID ());
2557 
2558     if (kill(GetID(), signo))
2559         error.SetErrorToErrno();
2560 
2561     return error;
2562 }
2563 
2564 Error
2565 NativeProcessLinux::Interrupt ()
2566 {
2567     // Pick a running thread (or if none, a not-dead stopped thread) as
2568     // the chosen thread that will be the stop-reason thread.
2569     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2570 
2571     NativeThreadProtocolSP running_thread_sp;
2572     NativeThreadProtocolSP stopped_thread_sp;
2573 
2574     if (log)
2575         log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__);
2576 
2577     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
2578     Mutex::Locker locker (m_threads_mutex);
2579 
2580     for (auto thread_sp : m_threads)
2581     {
2582         // The thread shouldn't be null but lets just cover that here.
2583         if (!thread_sp)
2584             continue;
2585 
2586         // If we have a running or stepping thread, we'll call that the
2587         // target of the interrupt.
2588         const auto thread_state = thread_sp->GetState ();
2589         if (thread_state == eStateRunning ||
2590             thread_state == eStateStepping)
2591         {
2592             running_thread_sp = thread_sp;
2593             break;
2594         }
2595         else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true))
2596         {
2597             // Remember the first non-dead stopped thread.  We'll use that as a backup if there are no running threads.
2598             stopped_thread_sp = thread_sp;
2599         }
2600     }
2601 
2602     if (!running_thread_sp && !stopped_thread_sp)
2603     {
2604         Error error("found no running/stepping or live stopped threads as target for interrupt");
2605         if (log)
2606             log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ());
2607 
2608         return error;
2609     }
2610 
2611     NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp;
2612 
2613     if (log)
2614         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target",
2615                      __FUNCTION__,
2616                      GetID (),
2617                      running_thread_sp ? "running" : "stopped",
2618                      deferred_signal_thread_sp->GetID ());
2619 
2620     StopRunningThreads(deferred_signal_thread_sp->GetID());
2621 
2622     return Error();
2623 }
2624 
2625 Error
2626 NativeProcessLinux::Kill ()
2627 {
2628     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2629     if (log)
2630         log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ());
2631 
2632     Error error;
2633 
2634     switch (m_state)
2635     {
2636         case StateType::eStateInvalid:
2637         case StateType::eStateExited:
2638         case StateType::eStateCrashed:
2639         case StateType::eStateDetached:
2640         case StateType::eStateUnloaded:
2641             // Nothing to do - the process is already dead.
2642             if (log)
2643                 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state));
2644             return error;
2645 
2646         case StateType::eStateConnected:
2647         case StateType::eStateAttaching:
2648         case StateType::eStateLaunching:
2649         case StateType::eStateStopped:
2650         case StateType::eStateRunning:
2651         case StateType::eStateStepping:
2652         case StateType::eStateSuspended:
2653             // We can try to kill a process in these states.
2654             break;
2655     }
2656 
2657     if (kill (GetID (), SIGKILL) != 0)
2658     {
2659         error.SetErrorToErrno ();
2660         return error;
2661     }
2662 
2663     return error;
2664 }
2665 
2666 static Error
2667 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info)
2668 {
2669     memory_region_info.Clear();
2670 
2671     StringExtractor line_extractor (maps_line.c_str ());
2672 
2673     // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode   pathname
2674     // perms: rwxp   (letter is present if set, '-' if not, final character is p=private, s=shared).
2675 
2676     // Parse out the starting address
2677     lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0);
2678 
2679     // Parse out hyphen separating start and end address from range.
2680     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-'))
2681         return Error ("malformed /proc/{pid}/maps entry, missing dash between address range");
2682 
2683     // Parse out the ending address
2684     lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address);
2685 
2686     // Parse out the space after the address.
2687     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' '))
2688         return Error ("malformed /proc/{pid}/maps entry, missing space after range");
2689 
2690     // Save the range.
2691     memory_region_info.GetRange ().SetRangeBase (start_address);
2692     memory_region_info.GetRange ().SetRangeEnd (end_address);
2693 
2694     // Parse out each permission entry.
2695     if (line_extractor.GetBytesLeft () < 4)
2696         return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions");
2697 
2698     // Handle read permission.
2699     const char read_perm_char = line_extractor.GetChar ();
2700     if (read_perm_char == 'r')
2701         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes);
2702     else
2703     {
2704         assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" );
2705         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2706     }
2707 
2708     // Handle write permission.
2709     const char write_perm_char = line_extractor.GetChar ();
2710     if (write_perm_char == 'w')
2711         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes);
2712     else
2713     {
2714         assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" );
2715         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2716     }
2717 
2718     // Handle execute permission.
2719     const char exec_perm_char = line_extractor.GetChar ();
2720     if (exec_perm_char == 'x')
2721         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes);
2722     else
2723     {
2724         assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" );
2725         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2726     }
2727 
2728     return Error ();
2729 }
2730 
2731 Error
2732 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info)
2733 {
2734     // FIXME review that the final memory region returned extends to the end of the virtual address space,
2735     // with no perms if it is not mapped.
2736 
2737     // Use an approach that reads memory regions from /proc/{pid}/maps.
2738     // Assume proc maps entries are in ascending order.
2739     // FIXME assert if we find differently.
2740     Mutex::Locker locker (m_mem_region_cache_mutex);
2741 
2742     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2743     Error error;
2744 
2745     if (m_supports_mem_region == LazyBool::eLazyBoolNo)
2746     {
2747         // We're done.
2748         error.SetErrorString ("unsupported");
2749         return error;
2750     }
2751 
2752     // If our cache is empty, pull the latest.  There should always be at least one memory region
2753     // if memory region handling is supported.
2754     if (m_mem_region_cache.empty ())
2755     {
2756         error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
2757              [&] (const std::string &line) -> bool
2758              {
2759                  MemoryRegionInfo info;
2760                  const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info);
2761                  if (parse_error.Success ())
2762                  {
2763                      m_mem_region_cache.push_back (info);
2764                      return true;
2765                  }
2766                  else
2767                  {
2768                      if (log)
2769                          log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ());
2770                      return false;
2771                  }
2772              });
2773 
2774         // If we had an error, we'll mark unsupported.
2775         if (error.Fail ())
2776         {
2777             m_supports_mem_region = LazyBool::eLazyBoolNo;
2778             return error;
2779         }
2780         else if (m_mem_region_cache.empty ())
2781         {
2782             // No entries after attempting to read them.  This shouldn't happen if /proc/{pid}/maps
2783             // is supported.  Assume we don't support map entries via procfs.
2784             if (log)
2785                 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__);
2786             m_supports_mem_region = LazyBool::eLazyBoolNo;
2787             error.SetErrorString ("not supported");
2788             return error;
2789         }
2790 
2791         if (log)
2792             log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ());
2793 
2794         // We support memory retrieval, remember that.
2795         m_supports_mem_region = LazyBool::eLazyBoolYes;
2796     }
2797     else
2798     {
2799         if (log)
2800             log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
2801     }
2802 
2803     lldb::addr_t prev_base_address = 0;
2804 
2805     // FIXME start by finding the last region that is <= target address using binary search.  Data is sorted.
2806     // There can be a ton of regions on pthreads apps with lots of threads.
2807     for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it)
2808     {
2809         MemoryRegionInfo &proc_entry_info = *it;
2810 
2811         // Sanity check assumption that /proc/{pid}/maps entries are ascending.
2812         assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected");
2813         prev_base_address = proc_entry_info.GetRange ().GetRangeBase ();
2814 
2815         // If the target address comes before this entry, indicate distance to next region.
2816         if (load_addr < proc_entry_info.GetRange ().GetRangeBase ())
2817         {
2818             range_info.GetRange ().SetRangeBase (load_addr);
2819             range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr);
2820             range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2821             range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2822             range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2823 
2824             return error;
2825         }
2826         else if (proc_entry_info.GetRange ().Contains (load_addr))
2827         {
2828             // The target address is within the memory region we're processing here.
2829             range_info = proc_entry_info;
2830             return error;
2831         }
2832 
2833         // The target memory address comes somewhere after the region we just parsed.
2834     }
2835 
2836     // If we made it here, we didn't find an entry that contained the given address.
2837     error.SetErrorString ("address comes after final region");
2838 
2839     if (log)
2840         log->Printf ("NativeProcessLinux::%s failed to find map entry for address 0x%" PRIx64 ": %s", __FUNCTION__, load_addr, error.AsCString ());
2841 
2842     return error;
2843 }
2844 
2845 void
2846 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId)
2847 {
2848     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2849     if (log)
2850         log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId);
2851 
2852     {
2853         Mutex::Locker locker (m_mem_region_cache_mutex);
2854         if (log)
2855             log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
2856         m_mem_region_cache.clear ();
2857     }
2858 }
2859 
2860 Error
2861 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, lldb::addr_t &addr)
2862 {
2863     // FIXME implementing this requires the equivalent of
2864     // InferiorCallPOSIX::InferiorCallMmap, which depends on
2865     // functional ThreadPlans working with Native*Protocol.
2866 #if 1
2867     return Error ("not implemented yet");
2868 #else
2869     addr = LLDB_INVALID_ADDRESS;
2870 
2871     unsigned prot = 0;
2872     if (permissions & lldb::ePermissionsReadable)
2873         prot |= eMmapProtRead;
2874     if (permissions & lldb::ePermissionsWritable)
2875         prot |= eMmapProtWrite;
2876     if (permissions & lldb::ePermissionsExecutable)
2877         prot |= eMmapProtExec;
2878 
2879     // TODO implement this directly in NativeProcessLinux
2880     // (and lift to NativeProcessPOSIX if/when that class is
2881     // refactored out).
2882     if (InferiorCallMmap(this, addr, 0, size, prot,
2883                          eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
2884         m_addr_to_mmap_size[addr] = size;
2885         return Error ();
2886     } else {
2887         addr = LLDB_INVALID_ADDRESS;
2888         return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions));
2889     }
2890 #endif
2891 }
2892 
2893 Error
2894 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr)
2895 {
2896     // FIXME see comments in AllocateMemory - required lower-level
2897     // bits not in place yet (ThreadPlans)
2898     return Error ("not implemented");
2899 }
2900 
2901 lldb::addr_t
2902 NativeProcessLinux::GetSharedLibraryInfoAddress ()
2903 {
2904 #if 1
2905     // punt on this for now
2906     return LLDB_INVALID_ADDRESS;
2907 #else
2908     // Return the image info address for the exe module
2909 #if 1
2910     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2911 
2912     ModuleSP module_sp;
2913     Error error = GetExeModuleSP (module_sp);
2914     if (error.Fail ())
2915     {
2916          if (log)
2917             log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ());
2918         return LLDB_INVALID_ADDRESS;
2919     }
2920 
2921     if (module_sp == nullptr)
2922     {
2923          if (log)
2924             log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__);
2925          return LLDB_INVALID_ADDRESS;
2926     }
2927 
2928     ObjectFileSP object_file_sp = module_sp->GetObjectFile ();
2929     if (object_file_sp == nullptr)
2930     {
2931          if (log)
2932             log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__);
2933          return LLDB_INVALID_ADDRESS;
2934     }
2935 
2936     return obj_file_sp->GetImageInfoAddress();
2937 #else
2938     Target *target = &GetTarget();
2939     ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile();
2940     Address addr = obj_file->GetImageInfoAddress(target);
2941 
2942     if (addr.IsValid())
2943         return addr.GetLoadAddress(target);
2944     return LLDB_INVALID_ADDRESS;
2945 #endif
2946 #endif // punt on this for now
2947 }
2948 
2949 size_t
2950 NativeProcessLinux::UpdateThreads ()
2951 {
2952     // The NativeProcessLinux monitoring threads are always up to date
2953     // with respect to thread state and they keep the thread list
2954     // populated properly. All this method needs to do is return the
2955     // thread count.
2956     Mutex::Locker locker (m_threads_mutex);
2957     return m_threads.size ();
2958 }
2959 
2960 bool
2961 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const
2962 {
2963     arch = m_arch;
2964     return true;
2965 }
2966 
2967 Error
2968 NativeProcessLinux::GetSoftwareBreakpointPCOffset (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size)
2969 {
2970     // FIXME put this behind a breakpoint protocol class that can be
2971     // set per architecture.  Need ARM, MIPS support here.
2972     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
2973     static const uint8_t g_i386_opcode [] = { 0xCC };
2974     static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d };
2975 
2976     switch (m_arch.GetMachine ())
2977     {
2978         case llvm::Triple::aarch64:
2979             actual_opcode_size = static_cast<uint32_t> (sizeof(g_aarch64_opcode));
2980             return Error ();
2981 
2982         case llvm::Triple::arm:
2983             actual_opcode_size = 0; // On arm the PC don't get updated for breakpoint hits
2984             return Error ();
2985 
2986         case llvm::Triple::x86:
2987         case llvm::Triple::x86_64:
2988             actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode));
2989             return Error ();
2990 
2991         case llvm::Triple::mips64:
2992         case llvm::Triple::mips64el:
2993             actual_opcode_size = static_cast<uint32_t> (sizeof(g_mips64_opcode));
2994             return Error ();
2995 
2996         default:
2997             assert(false && "CPU type not supported!");
2998             return Error ("CPU type not supported");
2999     }
3000 }
3001 
3002 Error
3003 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware)
3004 {
3005     if (hardware)
3006         return Error ("NativeProcessLinux does not support hardware breakpoints");
3007     else
3008         return SetSoftwareBreakpoint (addr, size);
3009 }
3010 
3011 Error
3012 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint,
3013                                                      size_t &actual_opcode_size,
3014                                                      const uint8_t *&trap_opcode_bytes)
3015 {
3016     // FIXME put this behind a breakpoint protocol class that can be set per
3017     // architecture.  Need MIPS support here.
3018     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
3019     // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
3020     // linux kernel does otherwise.
3021     static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 };
3022     static const uint8_t g_i386_opcode [] = { 0xCC };
3023     static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d };
3024     static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 };
3025     static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde };
3026 
3027     switch (m_arch.GetMachine ())
3028     {
3029     case llvm::Triple::aarch64:
3030         trap_opcode_bytes = g_aarch64_opcode;
3031         actual_opcode_size = sizeof(g_aarch64_opcode);
3032         return Error ();
3033 
3034     case llvm::Triple::arm:
3035         switch (trap_opcode_size_hint)
3036         {
3037         case 2:
3038             trap_opcode_bytes = g_thumb_breakpoint_opcode;
3039             actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
3040             return Error ();
3041         case 4:
3042             trap_opcode_bytes = g_arm_breakpoint_opcode;
3043             actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
3044             return Error ();
3045         default:
3046             assert(false && "Unrecognised trap opcode size hint!");
3047             return Error ("Unrecognised trap opcode size hint!");
3048         }
3049 
3050     case llvm::Triple::x86:
3051     case llvm::Triple::x86_64:
3052         trap_opcode_bytes = g_i386_opcode;
3053         actual_opcode_size = sizeof(g_i386_opcode);
3054         return Error ();
3055 
3056     case llvm::Triple::mips64:
3057         trap_opcode_bytes = g_mips64_opcode;
3058         actual_opcode_size = sizeof(g_mips64_opcode);
3059         return Error ();
3060 
3061     case llvm::Triple::mips64el:
3062         trap_opcode_bytes = g_mips64el_opcode;
3063         actual_opcode_size = sizeof(g_mips64el_opcode);
3064         return Error ();
3065 
3066     default:
3067         assert(false && "CPU type not supported!");
3068         return Error ("CPU type not supported");
3069     }
3070 }
3071 
3072 #if 0
3073 ProcessMessage::CrashReason
3074 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
3075 {
3076     ProcessMessage::CrashReason reason;
3077     assert(info->si_signo == SIGSEGV);
3078 
3079     reason = ProcessMessage::eInvalidCrashReason;
3080 
3081     switch (info->si_code)
3082     {
3083     default:
3084         assert(false && "unexpected si_code for SIGSEGV");
3085         break;
3086     case SI_KERNEL:
3087         // Linux will occasionally send spurious SI_KERNEL codes.
3088         // (this is poorly documented in sigaction)
3089         // One way to get this is via unaligned SIMD loads.
3090         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
3091         break;
3092     case SEGV_MAPERR:
3093         reason = ProcessMessage::eInvalidAddress;
3094         break;
3095     case SEGV_ACCERR:
3096         reason = ProcessMessage::ePrivilegedAddress;
3097         break;
3098     }
3099 
3100     return reason;
3101 }
3102 #endif
3103 
3104 
3105 #if 0
3106 ProcessMessage::CrashReason
3107 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
3108 {
3109     ProcessMessage::CrashReason reason;
3110     assert(info->si_signo == SIGILL);
3111 
3112     reason = ProcessMessage::eInvalidCrashReason;
3113 
3114     switch (info->si_code)
3115     {
3116     default:
3117         assert(false && "unexpected si_code for SIGILL");
3118         break;
3119     case ILL_ILLOPC:
3120         reason = ProcessMessage::eIllegalOpcode;
3121         break;
3122     case ILL_ILLOPN:
3123         reason = ProcessMessage::eIllegalOperand;
3124         break;
3125     case ILL_ILLADR:
3126         reason = ProcessMessage::eIllegalAddressingMode;
3127         break;
3128     case ILL_ILLTRP:
3129         reason = ProcessMessage::eIllegalTrap;
3130         break;
3131     case ILL_PRVOPC:
3132         reason = ProcessMessage::ePrivilegedOpcode;
3133         break;
3134     case ILL_PRVREG:
3135         reason = ProcessMessage::ePrivilegedRegister;
3136         break;
3137     case ILL_COPROC:
3138         reason = ProcessMessage::eCoprocessorError;
3139         break;
3140     case ILL_BADSTK:
3141         reason = ProcessMessage::eInternalStackError;
3142         break;
3143     }
3144 
3145     return reason;
3146 }
3147 #endif
3148 
3149 #if 0
3150 ProcessMessage::CrashReason
3151 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
3152 {
3153     ProcessMessage::CrashReason reason;
3154     assert(info->si_signo == SIGFPE);
3155 
3156     reason = ProcessMessage::eInvalidCrashReason;
3157 
3158     switch (info->si_code)
3159     {
3160     default:
3161         assert(false && "unexpected si_code for SIGFPE");
3162         break;
3163     case FPE_INTDIV:
3164         reason = ProcessMessage::eIntegerDivideByZero;
3165         break;
3166     case FPE_INTOVF:
3167         reason = ProcessMessage::eIntegerOverflow;
3168         break;
3169     case FPE_FLTDIV:
3170         reason = ProcessMessage::eFloatDivideByZero;
3171         break;
3172     case FPE_FLTOVF:
3173         reason = ProcessMessage::eFloatOverflow;
3174         break;
3175     case FPE_FLTUND:
3176         reason = ProcessMessage::eFloatUnderflow;
3177         break;
3178     case FPE_FLTRES:
3179         reason = ProcessMessage::eFloatInexactResult;
3180         break;
3181     case FPE_FLTINV:
3182         reason = ProcessMessage::eFloatInvalidOperation;
3183         break;
3184     case FPE_FLTSUB:
3185         reason = ProcessMessage::eFloatSubscriptRange;
3186         break;
3187     }
3188 
3189     return reason;
3190 }
3191 #endif
3192 
3193 #if 0
3194 ProcessMessage::CrashReason
3195 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
3196 {
3197     ProcessMessage::CrashReason reason;
3198     assert(info->si_signo == SIGBUS);
3199 
3200     reason = ProcessMessage::eInvalidCrashReason;
3201 
3202     switch (info->si_code)
3203     {
3204     default:
3205         assert(false && "unexpected si_code for SIGBUS");
3206         break;
3207     case BUS_ADRALN:
3208         reason = ProcessMessage::eIllegalAlignment;
3209         break;
3210     case BUS_ADRERR:
3211         reason = ProcessMessage::eIllegalAddress;
3212         break;
3213     case BUS_OBJERR:
3214         reason = ProcessMessage::eHardwareError;
3215         break;
3216     }
3217 
3218     return reason;
3219 }
3220 #endif
3221 
3222 Error
3223 NativeProcessLinux::SetWatchpoint (lldb::addr_t addr, size_t size, uint32_t watch_flags, bool hardware)
3224 {
3225     // The base SetWatchpoint will end up executing monitor operations. Let's lock the monitor
3226     // for it.
3227     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
3228     return NativeProcessProtocol::SetWatchpoint(addr, size, watch_flags, hardware);
3229 }
3230 
3231 Error
3232 NativeProcessLinux::RemoveWatchpoint (lldb::addr_t addr)
3233 {
3234     // The base RemoveWatchpoint will end up executing monitor operations. Let's lock the monitor
3235     // for it.
3236     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
3237     return NativeProcessProtocol::RemoveWatchpoint(addr);
3238 }
3239 
3240 Error
3241 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
3242 {
3243     ReadOperation op(addr, buf, size, bytes_read);
3244     m_monitor_up->DoOperation(&op);
3245     return op.GetError ();
3246 }
3247 
3248 Error
3249 NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
3250 {
3251     Error error = ReadMemory(addr, buf, size, bytes_read);
3252     if (error.Fail()) return error;
3253     return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size);
3254 }
3255 
3256 Error
3257 NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, size_t size, size_t &bytes_written)
3258 {
3259     WriteOperation op(addr, buf, size, bytes_written);
3260     m_monitor_up->DoOperation(&op);
3261     return op.GetError ();
3262 }
3263 
3264 Error
3265 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo)
3266 {
3267     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3268 
3269     if (log)
3270         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " with signal %s", __FUNCTION__, tid,
3271                                  GetUnixSignals().GetSignalAsCString (signo));
3272     ResumeOperation op (tid, signo);
3273     m_monitor_up->DoOperation (&op);
3274     if (log)
3275         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " result = %s", __FUNCTION__, tid, op.GetError().Success() ? "true" : "false");
3276     return op.GetError();
3277 }
3278 
3279 Error
3280 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo)
3281 {
3282     SingleStepOperation op(tid, signo);
3283     m_monitor_up->DoOperation(&op);
3284     return op.GetError();
3285 }
3286 
3287 Error
3288 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo)
3289 {
3290     SiginfoOperation op(tid, siginfo);
3291     m_monitor_up->DoOperation(&op);
3292     return op.GetError();
3293 }
3294 
3295 Error
3296 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message)
3297 {
3298     EventMessageOperation op(tid, message);
3299     m_monitor_up->DoOperation(&op);
3300     return op.GetError();
3301 }
3302 
3303 Error
3304 NativeProcessLinux::Detach(lldb::tid_t tid)
3305 {
3306     if (tid == LLDB_INVALID_THREAD_ID)
3307         return Error();
3308 
3309     DetachOperation op(tid);
3310     m_monitor_up->DoOperation(&op);
3311     return op.GetError();
3312 }
3313 
3314 bool
3315 NativeProcessLinux::DupDescriptor(const char *path, int fd, int flags)
3316 {
3317     int target_fd = open(path, flags, 0666);
3318 
3319     if (target_fd == -1)
3320         return false;
3321 
3322     if (dup2(target_fd, fd) == -1)
3323         return false;
3324 
3325     return (close(target_fd) == -1) ? false : true;
3326 }
3327 
3328 void
3329 NativeProcessLinux::StartMonitorThread(const InitialOperation &initial_operation, Error &error)
3330 {
3331     m_monitor_up.reset(new Monitor(initial_operation, this));
3332     error = m_monitor_up->Initialize();
3333     if (error.Fail()) {
3334         m_monitor_up.reset();
3335     }
3336 }
3337 
3338 bool
3339 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id)
3340 {
3341     for (auto thread_sp : m_threads)
3342     {
3343         assert (thread_sp && "thread list should not contain NULL threads");
3344         if (thread_sp->GetID () == thread_id)
3345         {
3346             // We have this thread.
3347             return true;
3348         }
3349     }
3350 
3351     // We don't have this thread.
3352     return false;
3353 }
3354 
3355 NativeThreadProtocolSP
3356 NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id)
3357 {
3358     // CONSIDER organize threads by map - we can do better than linear.
3359     for (auto thread_sp : m_threads)
3360     {
3361         if (thread_sp->GetID () == thread_id)
3362             return thread_sp;
3363     }
3364 
3365     // We don't have this thread.
3366     return NativeThreadProtocolSP ();
3367 }
3368 
3369 bool
3370 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id)
3371 {
3372     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3373 
3374     if (log)
3375         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread_id);
3376 
3377     bool found = false;
3378 
3379     Mutex::Locker locker (m_threads_mutex);
3380     for (auto it = m_threads.begin (); it != m_threads.end (); ++it)
3381     {
3382         if (*it && ((*it)->GetID () == thread_id))
3383         {
3384             m_threads.erase (it);
3385             found = true;
3386             break;
3387         }
3388     }
3389 
3390     // If we have a pending notification, remove this from the set.
3391     if (m_pending_notification_up)
3392     {
3393         m_pending_notification_up->wait_for_stop_tids.erase(thread_id);
3394         SignalIfAllThreadsStopped();
3395     }
3396 
3397     return found;
3398 }
3399 
3400 NativeThreadProtocolSP
3401 NativeProcessLinux::AddThread (lldb::tid_t thread_id)
3402 {
3403     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3404 
3405     Mutex::Locker locker (m_threads_mutex);
3406 
3407     if (log)
3408     {
3409         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64,
3410                 __FUNCTION__,
3411                 GetID (),
3412                 thread_id);
3413     }
3414 
3415     assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists");
3416 
3417     // If this is the first thread, save it as the current thread
3418     if (m_threads.empty ())
3419         SetCurrentThreadID (thread_id);
3420 
3421     NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id));
3422     m_threads.push_back (thread_sp);
3423 
3424     return thread_sp;
3425 }
3426 
3427 Error
3428 NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp)
3429 {
3430     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS));
3431 
3432     Error error;
3433 
3434     // Get a linux thread pointer.
3435     if (!thread_sp)
3436     {
3437         error.SetErrorString ("null thread_sp");
3438         if (log)
3439             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
3440         return error;
3441     }
3442     std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp);
3443 
3444     // Find out the size of a breakpoint (might depend on where we are in the code).
3445     NativeRegisterContextSP context_sp = linux_thread_sp->GetRegisterContext ();
3446     if (!context_sp)
3447     {
3448         error.SetErrorString ("cannot get a NativeRegisterContext for the thread");
3449         if (log)
3450             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
3451         return error;
3452     }
3453 
3454     uint32_t breakpoint_size = 0;
3455     error = GetSoftwareBreakpointPCOffset (context_sp, breakpoint_size);
3456     if (error.Fail ())
3457     {
3458         if (log)
3459             log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ());
3460         return error;
3461     }
3462     else
3463     {
3464         if (log)
3465             log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size);
3466     }
3467 
3468     // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size.
3469     const lldb::addr_t initial_pc_addr = context_sp->GetPC ();
3470     lldb::addr_t breakpoint_addr = initial_pc_addr;
3471     if (breakpoint_size > 0)
3472     {
3473         // Do not allow breakpoint probe to wrap around.
3474         if (breakpoint_addr >= breakpoint_size)
3475             breakpoint_addr -= breakpoint_size;
3476     }
3477 
3478     // Check if we stopped because of a breakpoint.
3479     NativeBreakpointSP breakpoint_sp;
3480     error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp);
3481     if (!error.Success () || !breakpoint_sp)
3482     {
3483         // We didn't find one at a software probe location.  Nothing to do.
3484         if (log)
3485             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr);
3486         return Error ();
3487     }
3488 
3489     // If the breakpoint is not a software breakpoint, nothing to do.
3490     if (!breakpoint_sp->IsSoftwareBreakpoint ())
3491     {
3492         if (log)
3493             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr);
3494         return Error ();
3495     }
3496 
3497     //
3498     // We have a software breakpoint and need to adjust the PC.
3499     //
3500 
3501     // Sanity check.
3502     if (breakpoint_size == 0)
3503     {
3504         // Nothing to do!  How did we get here?
3505         if (log)
3506             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr);
3507         return Error ();
3508     }
3509 
3510     // Change the program counter.
3511     if (log)
3512         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_sp->GetID (), initial_pc_addr, breakpoint_addr);
3513 
3514     error = context_sp->SetPC (breakpoint_addr);
3515     if (error.Fail ())
3516     {
3517         if (log)
3518             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_sp->GetID (), error.AsCString ());
3519         return error;
3520     }
3521 
3522     return error;
3523 }
3524 
3525 Error
3526 NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec)
3527 {
3528     char maps_file_name[32];
3529     snprintf(maps_file_name, sizeof(maps_file_name), "/proc/%" PRIu64 "/maps", GetID());
3530 
3531     FileSpec maps_file_spec(maps_file_name, false);
3532     if (!maps_file_spec.Exists()) {
3533         file_spec.Clear();
3534         return Error("/proc/%" PRIu64 "/maps file doesn't exists!", GetID());
3535     }
3536 
3537     FileSpec module_file_spec(module_path, true);
3538 
3539     std::ifstream maps_file(maps_file_name);
3540     std::string maps_data_str((std::istreambuf_iterator<char>(maps_file)), std::istreambuf_iterator<char>());
3541     StringRef maps_data(maps_data_str.c_str());
3542 
3543     while (!maps_data.empty())
3544     {
3545         StringRef maps_row;
3546         std::tie(maps_row, maps_data) = maps_data.split('\n');
3547 
3548         SmallVector<StringRef, 16> maps_columns;
3549         maps_row.split(maps_columns, StringRef(" "), -1, false);
3550 
3551         if (maps_columns.size() >= 6)
3552         {
3553             file_spec.SetFile(maps_columns[5].str().c_str(), false);
3554             if (file_spec.GetFilename() == module_file_spec.GetFilename())
3555                 return Error();
3556         }
3557     }
3558 
3559     file_spec.Clear();
3560     return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
3561                  module_file_spec.GetFilename().AsCString(), GetID());
3562 }
3563 
3564 Error
3565 NativeProcessLinux::ResumeThread(
3566         lldb::tid_t tid,
3567         NativeThreadLinux::ResumeThreadFunction request_thread_resume_function,
3568         bool error_when_already_running)
3569 {
3570     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3571 
3572     if (log)
3573         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ", error_when_already_running: %s)",
3574                 __FUNCTION__, tid, error_when_already_running?"true":"false");
3575 
3576     auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid));
3577     lldbassert(thread_sp != nullptr);
3578 
3579     auto& context = thread_sp->GetThreadContext();
3580     // Tell the thread to resume if we don't already think it is running.
3581     const bool is_stopped = StateIsStoppedState(thread_sp->GetState(), true);
3582 
3583     lldbassert(!(error_when_already_running && !is_stopped));
3584 
3585     if (!is_stopped)
3586     {
3587         // It's not an error, just a log, if the error_when_already_running flag is not set.
3588         // This covers cases where, for instance, we're just trying to resume all threads
3589         // from the user side.
3590         if (log)
3591             log->Printf("NativeProcessLinux::%s tid %" PRIu64 " optional resume skipped since it is already running",
3592                     __FUNCTION__,
3593                     tid);
3594         return Error();
3595     }
3596 
3597     // Before we do the resume below, first check if we have a pending
3598     // stop notification that is currently waiting for
3599     // this thread to stop.  This is potentially a buggy situation since
3600     // we're ostensibly waiting for threads to stop before we send out the
3601     // pending notification, and here we are resuming one before we send
3602     // out the pending stop notification.
3603     if (m_pending_notification_up && log && m_pending_notification_up->wait_for_stop_tids.count (tid) > 0)
3604     {
3605         log->Printf("NativeProcessLinux::%s about to resume tid %" PRIu64 " per explicit request but we have a pending stop notification (tid %" PRIu64 ") that is actively waiting for this thread to stop. Valid sequence of events?", __FUNCTION__, tid, m_pending_notification_up->triggering_tid);
3606     }
3607 
3608     // Request a resume.  We expect this to be synchronous and the system
3609     // to reflect it is running after this completes.
3610     const auto error = request_thread_resume_function (tid, false);
3611     if (error.Success())
3612         context.request_resume_function = request_thread_resume_function;
3613     else if (log)
3614     {
3615         log->Printf("NativeProcessLinux::%s failed to resume thread tid  %" PRIu64 ": %s",
3616                          __FUNCTION__, tid, error.AsCString ());
3617     }
3618 
3619     return error;
3620 }
3621 
3622 //===----------------------------------------------------------------------===//
3623 
3624 void
3625 NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid)
3626 {
3627     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3628 
3629     if (log)
3630     {
3631         log->Printf("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ")",
3632                 __FUNCTION__, triggering_tid);
3633     }
3634 
3635     DoStopThreads(PendingNotificationUP(new PendingNotification(triggering_tid)));
3636 
3637     if (log)
3638     {
3639         log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__);
3640     }
3641 }
3642 
3643 void
3644 NativeProcessLinux::SignalIfAllThreadsStopped()
3645 {
3646     if (m_pending_notification_up && m_pending_notification_up->wait_for_stop_tids.empty ())
3647     {
3648         Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
3649 
3650         // Clear any temporary breakpoints we used to implement software single stepping.
3651         for (const auto &thread_info: m_threads_stepping_with_breakpoint)
3652         {
3653             Error error = RemoveBreakpoint (thread_info.second);
3654             if (error.Fail())
3655                 if (log)
3656                     log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s",
3657                             __FUNCTION__, thread_info.first, error.AsCString());
3658         }
3659         m_threads_stepping_with_breakpoint.clear();
3660 
3661         // Notify the delegate about the stop
3662         SetCurrentThreadID(m_pending_notification_up->triggering_tid);
3663         SetState(StateType::eStateStopped, true);
3664         m_pending_notification_up.reset();
3665     }
3666 }
3667 
3668 void
3669 NativeProcessLinux::RequestStopOnAllRunningThreads()
3670 {
3671     // Request a stop for all the thread stops that need to be stopped
3672     // and are not already known to be stopped.  Keep a list of all the
3673     // threads from which we still need to hear a stop reply.
3674 
3675     ThreadIDSet sent_tids;
3676     for (const auto &thread_sp: m_threads)
3677     {
3678         // We only care about running threads
3679         if (StateIsStoppedState(thread_sp->GetState(), true))
3680             continue;
3681 
3682         static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop();
3683         sent_tids.insert (thread_sp->GetID());
3684     }
3685 
3686     // Set the wait list to the set of tids for which we requested stops.
3687     m_pending_notification_up->wait_for_stop_tids.swap (sent_tids);
3688 }
3689 
3690 
3691 Error
3692 NativeProcessLinux::ThreadDidStop (lldb::tid_t tid, bool initiated_by_llgs)
3693 {
3694     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3695 
3696     if (log)
3697         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ", %sinitiated by llgs)",
3698                 __FUNCTION__, tid, initiated_by_llgs?"":"not ");
3699 
3700     // Ensure we know about the thread.
3701     auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid));
3702     lldbassert(thread_sp != nullptr);
3703 
3704     // Update the global list of known thread states.  This one is definitely stopped.
3705     auto& context = thread_sp->GetThreadContext();
3706     const auto stop_was_requested = context.stop_requested;
3707     context.stop_requested = false;
3708 
3709     // If we have a pending notification, remove this from the set.
3710     if (m_pending_notification_up)
3711     {
3712         m_pending_notification_up->wait_for_stop_tids.erase(tid);
3713         SignalIfAllThreadsStopped();
3714     }
3715 
3716     Error error;
3717     if (initiated_by_llgs && context.request_resume_function && !stop_was_requested)
3718     {
3719         // We can end up here if stop was initiated by LLGS but by this time a
3720         // thread stop has occurred - maybe initiated by another event.
3721         if (log)
3722             log->Printf("Resuming thread %"  PRIu64 " since stop wasn't requested", tid);
3723         error = context.request_resume_function (tid, true);
3724         if (error.Fail() && log)
3725         {
3726                 log->Printf("NativeProcessLinux::%s failed to resume thread tid  %" PRIu64 ": %s",
3727                         __FUNCTION__, tid, error.AsCString ());
3728         }
3729     }
3730     return error;
3731 }
3732 
3733 void
3734 NativeProcessLinux::DoStopThreads(PendingNotificationUP &&notification_up)
3735 {
3736     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3737     if (m_pending_notification_up && log)
3738     {
3739         // Yikes - we've already got a pending signal notification in progress.
3740         // Log this info.  We lose the pending notification here.
3741         log->Printf("NativeProcessLinux::%s dropping existing pending signal notification for tid %" PRIu64 ", to be replaced with signal for tid %" PRIu64,
3742                    __FUNCTION__,
3743                    m_pending_notification_up->triggering_tid,
3744                    notification_up->triggering_tid);
3745     }
3746     m_pending_notification_up = std::move(notification_up);
3747 
3748     RequestStopOnAllRunningThreads();
3749 
3750     SignalIfAllThreadsStopped();
3751 }
3752 
3753 void
3754 NativeProcessLinux::ThreadWasCreated (lldb::tid_t tid)
3755 {
3756     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3757 
3758     if (log)
3759         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, tid);
3760 
3761     auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid));
3762     lldbassert(thread_sp != nullptr);
3763 
3764     if (m_pending_notification_up && StateIsRunningState(thread_sp->GetState()))
3765     {
3766         // We will need to wait for this new thread to stop as well before firing the
3767         // notification.
3768         m_pending_notification_up->wait_for_stop_tids.insert(tid);
3769         thread_sp->RequestStop();
3770     }
3771 }
3772 
3773 Error
3774 NativeProcessLinux::DoOperation(Operation* op)
3775 {
3776     m_monitor_up->DoOperation(op);
3777     return op->GetError();
3778 }
3779 
3780 // Wrapper for ptrace to catch errors and log calls.
3781 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
3782 long
3783 NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error)
3784 {
3785     long int result;
3786 
3787     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE));
3788 
3789     PtraceDisplayBytes(req, data, data_size);
3790 
3791     error.Clear();
3792     errno = 0;
3793     if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
3794         result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
3795     else
3796         result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
3797 
3798     if (result == -1)
3799         error.SetErrorToErrno();
3800 
3801     if (log)
3802         log->Printf("ptrace(%d, %" PRIu64 ", %p, %p, %zu)=%lX", req, pid, addr, data, data_size, result);
3803 
3804     PtraceDisplayBytes(req, data, data_size);
3805 
3806     if (log && error.GetError() != 0)
3807     {
3808         const char* str;
3809         switch (error.GetError())
3810         {
3811         case ESRCH:  str = "ESRCH"; break;
3812         case EINVAL: str = "EINVAL"; break;
3813         case EBUSY:  str = "EBUSY"; break;
3814         case EPERM:  str = "EPERM"; break;
3815         default:     str = error.AsCString();
3816         }
3817         log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str);
3818     }
3819 
3820     return result;
3821 }
3822